Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / drivers / media / dvb-frontends / drxd_hard.c
1 /*
2  * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
3  *
4  * Copyright (C) 2003-2007 Micronas
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * version 2 only, as published by the Free Software Foundation.
9  *
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * To obtain the license, point your browser to
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/i2c.h>
27 #include <asm/div64.h>
28
29 #include "dvb_frontend.h"
30 #include "drxd.h"
31 #include "drxd_firm.h"
32
33 #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
34 #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
35
36 #define CHUNK_SIZE 48
37
38 #define DRX_I2C_RMW           0x10
39 #define DRX_I2C_BROADCAST     0x20
40 #define DRX_I2C_CLEARCRC      0x80
41 #define DRX_I2C_SINGLE_MASTER 0xC0
42 #define DRX_I2C_MODEFLAGS     0xC0
43 #define DRX_I2C_FLAGS         0xF0
44
45 #define DEFAULT_LOCK_TIMEOUT    1100
46
47 #define DRX_CHANNEL_AUTO 0
48 #define DRX_CHANNEL_HIGH 1
49 #define DRX_CHANNEL_LOW  2
50
51 #define DRX_LOCK_MPEG  1
52 #define DRX_LOCK_FEC   2
53 #define DRX_LOCK_DEMOD 4
54
55 /****************************************************************************/
56
57 enum CSCDState {
58         CSCD_INIT = 0,
59         CSCD_SET,
60         CSCD_SAVED
61 };
62
63 enum CDrxdState {
64         DRXD_UNINITIALIZED = 0,
65         DRXD_STOPPED,
66         DRXD_STARTED
67 };
68
69 enum AGC_CTRL_MODE {
70         AGC_CTRL_AUTO = 0,
71         AGC_CTRL_USER,
72         AGC_CTRL_OFF
73 };
74
75 enum OperationMode {
76         OM_Default,
77         OM_DVBT_Diversity_Front,
78         OM_DVBT_Diversity_End
79 };
80
81 struct SCfgAgc {
82         enum AGC_CTRL_MODE ctrlMode;
83         u16 outputLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
84         u16 settleLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
85         u16 minOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
86         u16 maxOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
87         u16 speed;              /* range [0, ... , 1023], 1/n of fullscale range */
88
89         u16 R1;
90         u16 R2;
91         u16 R3;
92 };
93
94 struct SNoiseCal {
95         int cpOpt;
96         short cpNexpOfs;
97         short tdCal2k;
98         short tdCal8k;
99 };
100
101 enum app_env {
102         APPENV_STATIC = 0,
103         APPENV_PORTABLE = 1,
104         APPENV_MOBILE = 2
105 };
106
107 enum EIFFilter {
108         IFFILTER_SAW = 0,
109         IFFILTER_DISCRETE = 1
110 };
111
112 struct drxd_state {
113         struct dvb_frontend frontend;
114         struct dvb_frontend_ops ops;
115         struct dtv_frontend_properties props;
116
117         const struct firmware *fw;
118         struct device *dev;
119
120         struct i2c_adapter *i2c;
121         void *priv;
122         struct drxd_config config;
123
124         int i2c_access;
125         int init_done;
126         struct mutex mutex;
127
128         u8 chip_adr;
129         u16 hi_cfg_timing_div;
130         u16 hi_cfg_bridge_delay;
131         u16 hi_cfg_wakeup_key;
132         u16 hi_cfg_ctrl;
133
134         u16 intermediate_freq;
135         u16 osc_clock_freq;
136
137         enum CSCDState cscd_state;
138         enum CDrxdState drxd_state;
139
140         u16 sys_clock_freq;
141         s16 osc_clock_deviation;
142         u16 expected_sys_clock_freq;
143
144         u16 insert_rs_byte;
145         u16 enable_parallel;
146
147         int operation_mode;
148
149         struct SCfgAgc if_agc_cfg;
150         struct SCfgAgc rf_agc_cfg;
151
152         struct SNoiseCal noise_cal;
153
154         u32 fe_fs_add_incr;
155         u32 org_fe_fs_add_incr;
156         u16 current_fe_if_incr;
157
158         u16 m_FeAgRegAgPwd;
159         u16 m_FeAgRegAgAgcSio;
160
161         u16 m_EcOcRegOcModeLop;
162         u16 m_EcOcRegSncSncLvl;
163         u8 *m_InitAtomicRead;
164         u8 *m_HiI2cPatch;
165
166         u8 *m_ResetCEFR;
167         u8 *m_InitFE_1;
168         u8 *m_InitFE_2;
169         u8 *m_InitCP;
170         u8 *m_InitCE;
171         u8 *m_InitEQ;
172         u8 *m_InitSC;
173         u8 *m_InitEC;
174         u8 *m_ResetECRAM;
175         u8 *m_InitDiversityFront;
176         u8 *m_InitDiversityEnd;
177         u8 *m_DisableDiversity;
178         u8 *m_StartDiversityFront;
179         u8 *m_StartDiversityEnd;
180
181         u8 *m_DiversityDelay8MHZ;
182         u8 *m_DiversityDelay6MHZ;
183
184         u8 *microcode;
185         u32 microcode_length;
186
187         int type_A;
188         int PGA;
189         int diversity;
190         int tuner_mirrors;
191
192         enum app_env app_env_default;
193         enum app_env app_env_diversity;
194
195 };
196
197 /****************************************************************************/
198 /* I2C **********************************************************************/
199 /****************************************************************************/
200
201 static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
202 {
203         struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
204
205         if (i2c_transfer(adap, &msg, 1) != 1)
206                 return -1;
207         return 0;
208 }
209
210 static int i2c_read(struct i2c_adapter *adap,
211                     u8 adr, u8 *msg, int len, u8 *answ, int alen)
212 {
213         struct i2c_msg msgs[2] = {
214                 {
215                         .addr = adr, .flags = 0,
216                         .buf = msg, .len = len
217                 }, {
218                         .addr = adr, .flags = I2C_M_RD,
219                         .buf = answ, .len = alen
220                 }
221         };
222         if (i2c_transfer(adap, msgs, 2) != 2)
223                 return -1;
224         return 0;
225 }
226
227 static inline u32 MulDiv32(u32 a, u32 b, u32 c)
228 {
229         u64 tmp64;
230
231         tmp64 = (u64)a * (u64)b;
232         do_div(tmp64, c);
233
234         return (u32) tmp64;
235 }
236
237 static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
238 {
239         u8 adr = state->config.demod_address;
240         u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
241                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
242         };
243         u8 mm2[2];
244         if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
245                 return -1;
246         if (data)
247                 *data = mm2[0] | (mm2[1] << 8);
248         return mm2[0] | (mm2[1] << 8);
249 }
250
251 static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
252 {
253         u8 adr = state->config.demod_address;
254         u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
255                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
256         };
257         u8 mm2[4];
258
259         if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
260                 return -1;
261         if (data)
262                 *data =
263                     mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
264         return 0;
265 }
266
267 static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
268 {
269         u8 adr = state->config.demod_address;
270         u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
271                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
272                 data & 0xff, (data >> 8) & 0xff
273         };
274
275         if (i2c_write(state->i2c, adr, mm, 6) < 0)
276                 return -1;
277         return 0;
278 }
279
280 static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
281 {
282         u8 adr = state->config.demod_address;
283         u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
284                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
285                 data & 0xff, (data >> 8) & 0xff,
286                 (data >> 16) & 0xff, (data >> 24) & 0xff
287         };
288
289         if (i2c_write(state->i2c, adr, mm, 8) < 0)
290                 return -1;
291         return 0;
292 }
293
294 static int write_chunk(struct drxd_state *state,
295                        u32 reg, u8 *data, u32 len, u8 flags)
296 {
297         u8 adr = state->config.demod_address;
298         u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
299                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
300         };
301         int i;
302
303         for (i = 0; i < len; i++)
304                 mm[4 + i] = data[i];
305         if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
306                 printk(KERN_ERR "error in write_chunk\n");
307                 return -1;
308         }
309         return 0;
310 }
311
312 static int WriteBlock(struct drxd_state *state,
313                       u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
314 {
315         while (BlockSize > 0) {
316                 u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
317
318                 if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
319                         return -1;
320                 pBlock += Chunk;
321                 Address += (Chunk >> 1);
322                 BlockSize -= Chunk;
323         }
324         return 0;
325 }
326
327 static int WriteTable(struct drxd_state *state, u8 * pTable)
328 {
329         int status = 0;
330
331         if (!pTable)
332                 return 0;
333
334         while (!status) {
335                 u16 Length;
336                 u32 Address = pTable[0] | (pTable[1] << 8) |
337                     (pTable[2] << 16) | (pTable[3] << 24);
338
339                 if (Address == 0xFFFFFFFF)
340                         break;
341                 pTable += sizeof(u32);
342
343                 Length = pTable[0] | (pTable[1] << 8);
344                 pTable += sizeof(u16);
345                 if (!Length)
346                         break;
347                 status = WriteBlock(state, Address, Length * 2, pTable, 0);
348                 pTable += (Length * 2);
349         }
350         return status;
351 }
352
353 /****************************************************************************/
354 /****************************************************************************/
355 /****************************************************************************/
356
357 static int ResetCEFR(struct drxd_state *state)
358 {
359         return WriteTable(state, state->m_ResetCEFR);
360 }
361
362 static int InitCP(struct drxd_state *state)
363 {
364         return WriteTable(state, state->m_InitCP);
365 }
366
367 static int InitCE(struct drxd_state *state)
368 {
369         int status;
370         enum app_env AppEnv = state->app_env_default;
371
372         do {
373                 status = WriteTable(state, state->m_InitCE);
374                 if (status < 0)
375                         break;
376
377                 if (state->operation_mode == OM_DVBT_Diversity_Front ||
378                     state->operation_mode == OM_DVBT_Diversity_End) {
379                         AppEnv = state->app_env_diversity;
380                 }
381                 if (AppEnv == APPENV_STATIC) {
382                         status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
383                         if (status < 0)
384                                 break;
385                 } else if (AppEnv == APPENV_PORTABLE) {
386                         status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
387                         if (status < 0)
388                                 break;
389                 } else if (AppEnv == APPENV_MOBILE && state->type_A) {
390                         status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
391                         if (status < 0)
392                                 break;
393                 } else if (AppEnv == APPENV_MOBILE && !state->type_A) {
394                         status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
395                         if (status < 0)
396                                 break;
397                 }
398
399                 /* start ce */
400                 status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
401                 if (status < 0)
402                         break;
403         } while (0);
404         return status;
405 }
406
407 static int StopOC(struct drxd_state *state)
408 {
409         int status = 0;
410         u16 ocSyncLvl = 0;
411         u16 ocModeLop = state->m_EcOcRegOcModeLop;
412         u16 dtoIncLop = 0;
413         u16 dtoIncHip = 0;
414
415         do {
416                 /* Store output configuration */
417                 status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
418                 if (status < 0)
419                         break;
420                 /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
421                 state->m_EcOcRegSncSncLvl = ocSyncLvl;
422                 /* m_EcOcRegOcModeLop = ocModeLop; */
423
424                 /* Flush FIFO (byte-boundary) at fixed rate */
425                 status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
426                 if (status < 0)
427                         break;
428                 status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
429                 if (status < 0)
430                         break;
431                 status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
432                 if (status < 0)
433                         break;
434                 status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
435                 if (status < 0)
436                         break;
437                 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
438                 ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
439                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
440                 if (status < 0)
441                         break;
442                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
443                 if (status < 0)
444                         break;
445
446                 msleep(1);
447                 /* Output pins to '0' */
448                 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
449                 if (status < 0)
450                         break;
451
452                 /* Force the OC out of sync */
453                 ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
454                 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
455                 if (status < 0)
456                         break;
457                 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
458                 ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
459                 ocModeLop |= 0x2;       /* Magically-out-of-sync */
460                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
461                 if (status < 0)
462                         break;
463                 status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
464                 if (status < 0)
465                         break;
466                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
467                 if (status < 0)
468                         break;
469         } while (0);
470
471         return status;
472 }
473
474 static int StartOC(struct drxd_state *state)
475 {
476         int status = 0;
477
478         do {
479                 /* Stop OC */
480                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
481                 if (status < 0)
482                         break;
483
484                 /* Restore output configuration */
485                 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
486                 if (status < 0)
487                         break;
488                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
489                 if (status < 0)
490                         break;
491
492                 /* Output pins active again */
493                 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
494                 if (status < 0)
495                         break;
496
497                 /* Start OC */
498                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
499                 if (status < 0)
500                         break;
501         } while (0);
502         return status;
503 }
504
505 static int InitEQ(struct drxd_state *state)
506 {
507         return WriteTable(state, state->m_InitEQ);
508 }
509
510 static int InitEC(struct drxd_state *state)
511 {
512         return WriteTable(state, state->m_InitEC);
513 }
514
515 static int InitSC(struct drxd_state *state)
516 {
517         return WriteTable(state, state->m_InitSC);
518 }
519
520 static int InitAtomicRead(struct drxd_state *state)
521 {
522         return WriteTable(state, state->m_InitAtomicRead);
523 }
524
525 static int CorrectSysClockDeviation(struct drxd_state *state);
526
527 static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
528 {
529         u16 ScRaRamLock = 0;
530         const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
531                                     SC_RA_RAM_LOCK_FEC__M |
532                                     SC_RA_RAM_LOCK_DEMOD__M);
533         const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
534                                    SC_RA_RAM_LOCK_DEMOD__M);
535         const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
536
537         int status;
538
539         *pLockStatus = 0;
540
541         status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
542         if (status < 0) {
543                 printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
544                 return status;
545         }
546
547         if (state->drxd_state != DRXD_STARTED)
548                 return 0;
549
550         if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
551                 *pLockStatus |= DRX_LOCK_MPEG;
552                 CorrectSysClockDeviation(state);
553         }
554
555         if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
556                 *pLockStatus |= DRX_LOCK_FEC;
557
558         if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
559                 *pLockStatus |= DRX_LOCK_DEMOD;
560         return 0;
561 }
562
563 /****************************************************************************/
564
565 static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
566 {
567         int status;
568
569         if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
570                 return -1;
571
572         if (cfg->ctrlMode == AGC_CTRL_USER) {
573                 do {
574                         u16 FeAgRegPm1AgcWri;
575                         u16 FeAgRegAgModeLop;
576
577                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
578                         if (status < 0)
579                                 break;
580                         FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
581                         FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
582                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
583                         if (status < 0)
584                                 break;
585
586                         FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
587                                                   FE_AG_REG_PM1_AGC_WRI__M);
588                         status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
589                         if (status < 0)
590                                 break;
591                 } while (0);
592         } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
593                 if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
594                     ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
595                     ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
596                     ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
597                     )
598                         return -1;
599                 do {
600                         u16 FeAgRegAgModeLop;
601                         u16 FeAgRegEgcSetLvl;
602                         u16 slope, offset;
603
604                         /* == Mode == */
605
606                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
607                         if (status < 0)
608                                 break;
609                         FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
610                         FeAgRegAgModeLop |=
611                             FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
612                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
613                         if (status < 0)
614                                 break;
615
616                         /* == Settle level == */
617
618                         FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
619                                                   FE_AG_REG_EGC_SET_LVL__M);
620                         status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
621                         if (status < 0)
622                                 break;
623
624                         /* == Min/Max == */
625
626                         slope = (u16) ((cfg->maxOutputLevel -
627                                         cfg->minOutputLevel) / 2);
628                         offset = (u16) ((cfg->maxOutputLevel +
629                                          cfg->minOutputLevel) / 2 - 511);
630
631                         status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
632                         if (status < 0)
633                                 break;
634                         status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
635                         if (status < 0)
636                                 break;
637
638                         /* == Speed == */
639                         {
640                                 const u16 maxRur = 8;
641                                 static const u16 slowIncrDecLUT[] = {
642                                         3, 4, 4, 5, 6 };
643                                 static const u16 fastIncrDecLUT[] = {
644                                         14, 15, 15, 16,
645                                         17, 18, 18, 19,
646                                         20, 21, 22, 23,
647                                         24, 26, 27, 28,
648                                         29, 31
649                                 };
650
651                                 u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
652                                     (maxRur + 1);
653                                 u16 fineSpeed = (u16) (cfg->speed -
654                                                        ((cfg->speed /
655                                                          fineSteps) *
656                                                         fineSteps));
657                                 u16 invRurCount = (u16) (cfg->speed /
658                                                          fineSteps);
659                                 u16 rurCount;
660                                 if (invRurCount > maxRur) {
661                                         rurCount = 0;
662                                         fineSpeed += fineSteps;
663                                 } else {
664                                         rurCount = maxRur - invRurCount;
665                                 }
666
667                                 /*
668                                    fastInc = default *
669                                    (2^(fineSpeed/fineSteps))
670                                    => range[default...2*default>
671                                    slowInc = default *
672                                    (2^(fineSpeed/fineSteps))
673                                  */
674                                 {
675                                         u16 fastIncrDec =
676                                             fastIncrDecLUT[fineSpeed /
677                                                            ((fineSteps /
678                                                              (14 + 1)) + 1)];
679                                         u16 slowIncrDec =
680                                             slowIncrDecLUT[fineSpeed /
681                                                            (fineSteps /
682                                                             (3 + 1))];
683
684                                         status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
685                                         if (status < 0)
686                                                 break;
687                                         status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
688                                         if (status < 0)
689                                                 break;
690                                         status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
691                                         if (status < 0)
692                                                 break;
693                                         status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
694                                         if (status < 0)
695                                                 break;
696                                         status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
697                                         if (status < 0)
698                                                 break;
699                                 }
700                         }
701                 } while (0);
702
703         } else {
704                 /* No OFF mode for IF control */
705                 return -1;
706         }
707         return status;
708 }
709
710 static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
711 {
712         int status = 0;
713
714         if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
715                 return -1;
716
717         if (cfg->ctrlMode == AGC_CTRL_USER) {
718                 do {
719                         u16 AgModeLop = 0;
720                         u16 level = (cfg->outputLevel);
721
722                         if (level == DRXD_FE_CTRL_MAX)
723                                 level++;
724
725                         status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
726                         if (status < 0)
727                                 break;
728
729                         /*==== Mode ====*/
730
731                         /* Powerdown PD2, WRI source */
732                         state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
733                         state->m_FeAgRegAgPwd |=
734                             FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
735                         status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
736                         if (status < 0)
737                                 break;
738
739                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
740                         if (status < 0)
741                                 break;
742                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
743                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
744                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
745                                       FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
746                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
747                         if (status < 0)
748                                 break;
749
750                         /* enable AGC2 pin */
751                         {
752                                 u16 FeAgRegAgAgcSio = 0;
753                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
754                                 if (status < 0)
755                                         break;
756                                 FeAgRegAgAgcSio &=
757                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
758                                 FeAgRegAgAgcSio |=
759                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
760                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
761                                 if (status < 0)
762                                         break;
763                         }
764
765                 } while (0);
766         } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
767                 u16 AgModeLop = 0;
768
769                 do {
770                         u16 level;
771                         /* Automatic control */
772                         /* Powerup PD2, AGC2 as output, TGC source */
773                         (state->m_FeAgRegAgPwd) &=
774                             ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
775                         (state->m_FeAgRegAgPwd) |=
776                             FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
777                         status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
778                         if (status < 0)
779                                 break;
780
781                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
782                         if (status < 0)
783                                 break;
784                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
785                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
786                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
787                                       FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
788                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
789                         if (status < 0)
790                                 break;
791                         /* Settle level */
792                         level = (((cfg->settleLevel) >> 4) &
793                                  FE_AG_REG_TGC_SET_LVL__M);
794                         status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
795                         if (status < 0)
796                                 break;
797
798                         /* Min/max: don't care */
799
800                         /* Speed: TODO */
801
802                         /* enable AGC2 pin */
803                         {
804                                 u16 FeAgRegAgAgcSio = 0;
805                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
806                                 if (status < 0)
807                                         break;
808                                 FeAgRegAgAgcSio &=
809                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
810                                 FeAgRegAgAgcSio |=
811                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
812                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
813                                 if (status < 0)
814                                         break;
815                         }
816
817                 } while (0);
818         } else {
819                 u16 AgModeLop = 0;
820
821                 do {
822                         /* No RF AGC control */
823                         /* Powerdown PD2, AGC2 as output, WRI source */
824                         (state->m_FeAgRegAgPwd) &=
825                             ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
826                         (state->m_FeAgRegAgPwd) |=
827                             FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
828                         status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
829                         if (status < 0)
830                                 break;
831
832                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
833                         if (status < 0)
834                                 break;
835                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
836                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
837                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
838                                       FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
839                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
840                         if (status < 0)
841                                 break;
842
843                         /* set FeAgRegAgAgcSio AGC2 (RF) as input */
844                         {
845                                 u16 FeAgRegAgAgcSio = 0;
846                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
847                                 if (status < 0)
848                                         break;
849                                 FeAgRegAgAgcSio &=
850                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
851                                 FeAgRegAgAgcSio |=
852                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
853                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
854                                 if (status < 0)
855                                         break;
856                         }
857                 } while (0);
858         }
859         return status;
860 }
861
862 static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
863 {
864         int status = 0;
865
866         *pValue = 0;
867         if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
868                 u16 Value;
869                 status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
870                 Value &= FE_AG_REG_GC1_AGC_DAT__M;
871                 if (status >= 0) {
872                         /*           3.3V
873                            |
874                            R1
875                            |
876                            Vin - R3 - * -- Vout
877                            |
878                            R2
879                            |
880                            GND
881                          */
882                         u32 R1 = state->if_agc_cfg.R1;
883                         u32 R2 = state->if_agc_cfg.R2;
884                         u32 R3 = state->if_agc_cfg.R3;
885
886                         u32 Vmax, Rpar, Vmin, Vout;
887
888                         if (R2 == 0 && (R1 == 0 || R3 == 0))
889                                 return 0;
890
891                         Vmax = (3300 * R2) / (R1 + R2);
892                         Rpar = (R2 * R3) / (R3 + R2);
893                         Vmin = (3300 * Rpar) / (R1 + Rpar);
894                         Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
895
896                         *pValue = Vout;
897                 }
898         }
899         return status;
900 }
901
902 static int load_firmware(struct drxd_state *state, const char *fw_name)
903 {
904         const struct firmware *fw;
905
906         if (request_firmware(&fw, fw_name, state->dev) < 0) {
907                 printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
908                 return -EIO;
909         }
910
911         state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
912         if (!state->microcode) {
913                 release_firmware(fw);
914                 return -ENOMEM;
915         }
916
917         state->microcode_length = fw->size;
918         release_firmware(fw);
919         return 0;
920 }
921
922 static int DownloadMicrocode(struct drxd_state *state,
923                              const u8 *pMCImage, u32 Length)
924 {
925         u8 *pSrc;
926         u32 Address;
927         u16 nBlocks;
928         u16 BlockSize;
929         u32 offset = 0;
930         int i, status = 0;
931
932         pSrc = (u8 *) pMCImage;
933         /* We're not using Flags */
934         /* Flags = (pSrc[0] << 8) | pSrc[1]; */
935         pSrc += sizeof(u16);
936         offset += sizeof(u16);
937         nBlocks = (pSrc[0] << 8) | pSrc[1];
938         pSrc += sizeof(u16);
939         offset += sizeof(u16);
940
941         for (i = 0; i < nBlocks; i++) {
942                 Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
943                     (pSrc[2] << 8) | pSrc[3];
944                 pSrc += sizeof(u32);
945                 offset += sizeof(u32);
946
947                 BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
948                 pSrc += sizeof(u16);
949                 offset += sizeof(u16);
950
951                 /* We're not using Flags */
952                 /* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
953                 pSrc += sizeof(u16);
954                 offset += sizeof(u16);
955
956                 /* We're not using BlockCRC */
957                 /* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
958                 pSrc += sizeof(u16);
959                 offset += sizeof(u16);
960
961                 status = WriteBlock(state, Address, BlockSize,
962                                     pSrc, DRX_I2C_CLEARCRC);
963                 if (status < 0)
964                         break;
965                 pSrc += BlockSize;
966                 offset += BlockSize;
967         }
968
969         return status;
970 }
971
972 static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
973 {
974         u32 nrRetries = 0;
975         u16 waitCmd;
976         int status;
977
978         status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
979         if (status < 0)
980                 return status;
981
982         do {
983                 nrRetries += 1;
984                 if (nrRetries > DRXD_MAX_RETRIES) {
985                         status = -1;
986                         break;
987                 }
988                 status = Read16(state, HI_RA_RAM_SRV_CMD__A, &waitCmd, 0);
989         } while (waitCmd != 0);
990
991         if (status >= 0)
992                 status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
993         return status;
994 }
995
996 static int HI_CfgCommand(struct drxd_state *state)
997 {
998         int status = 0;
999
1000         mutex_lock(&state->mutex);
1001         Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1002         Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
1003         Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
1004         Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
1005         Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
1006
1007         Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1008
1009         if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
1010             HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
1011                 status = Write16(state, HI_RA_RAM_SRV_CMD__A,
1012                                  HI_RA_RAM_SRV_CMD_CONFIG, 0);
1013         else
1014                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL);
1015         mutex_unlock(&state->mutex);
1016         return status;
1017 }
1018
1019 static int InitHI(struct drxd_state *state)
1020 {
1021         state->hi_cfg_wakeup_key = (state->chip_adr);
1022         /* port/bridge/power down ctrl */
1023         state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1024         return HI_CfgCommand(state);
1025 }
1026
1027 static int HI_ResetCommand(struct drxd_state *state)
1028 {
1029         int status;
1030
1031         mutex_lock(&state->mutex);
1032         status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1033                          HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1034         if (status == 0)
1035                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL);
1036         mutex_unlock(&state->mutex);
1037         msleep(1);
1038         return status;
1039 }
1040
1041 static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1042 {
1043         state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1044         if (bEnableBridge)
1045                 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1046         else
1047                 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1048
1049         return HI_CfgCommand(state);
1050 }
1051
1052 #define HI_TR_WRITE      0x9
1053 #define HI_TR_READ       0xA
1054 #define HI_TR_READ_WRITE 0xB
1055 #define HI_TR_BROADCAST  0x4
1056
1057 #if 0
1058 static int AtomicReadBlock(struct drxd_state *state,
1059                            u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1060 {
1061         int status;
1062         int i = 0;
1063
1064         /* Parameter check */
1065         if ((!pData) || ((DataSize & 1) != 0))
1066                 return -1;
1067
1068         mutex_lock(&state->mutex);
1069
1070         do {
1071                 /* Instruct HI to read n bytes */
1072                 /* TODO use proper names forthese egisters */
1073                 status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1074                 if (status < 0)
1075                         break;
1076                 status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1077                 if (status < 0)
1078                         break;
1079                 status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1080                 if (status < 0)
1081                         break;
1082                 status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1083                 if (status < 0)
1084                         break;
1085                 status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1086                 if (status < 0)
1087                         break;
1088
1089                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1090                 if (status < 0)
1091                         break;
1092
1093         } while (0);
1094
1095         if (status >= 0) {
1096                 for (i = 0; i < (DataSize / 2); i += 1) {
1097                         u16 word;
1098
1099                         status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1100                                         &word, 0);
1101                         if (status < 0)
1102                                 break;
1103                         pData[2 * i] = (u8) (word & 0xFF);
1104                         pData[(2 * i) + 1] = (u8) (word >> 8);
1105                 }
1106         }
1107         mutex_unlock(&state->mutex);
1108         return status;
1109 }
1110
1111 static int AtomicReadReg32(struct drxd_state *state,
1112                            u32 Addr, u32 *pData, u8 Flags)
1113 {
1114         u8 buf[sizeof(u32)];
1115         int status;
1116
1117         if (!pData)
1118                 return -1;
1119         status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1120         *pData = (((u32) buf[0]) << 0) +
1121             (((u32) buf[1]) << 8) +
1122             (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1123         return status;
1124 }
1125 #endif
1126
1127 static int StopAllProcessors(struct drxd_state *state)
1128 {
1129         return Write16(state, HI_COMM_EXEC__A,
1130                        SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1131 }
1132
1133 static int EnableAndResetMB(struct drxd_state *state)
1134 {
1135         if (state->type_A) {
1136                 /* disable? monitor bus observe @ EC_OC */
1137                 Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1138         }
1139
1140         /* do inverse broadcast, followed by explicit write to HI */
1141         Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1142         Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1143         return 0;
1144 }
1145
1146 static int InitCC(struct drxd_state *state)
1147 {
1148         if (state->osc_clock_freq == 0 ||
1149             state->osc_clock_freq > 20000 ||
1150             (state->osc_clock_freq % 4000) != 0) {
1151                 printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1152                 return -1;
1153         }
1154
1155         Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1156         Write16(state, CC_REG_PLL_MODE__A, CC_REG_PLL_MODE_BYPASS_PLL |
1157                 CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1158         Write16(state, CC_REG_REF_DIVIDE__A, state->osc_clock_freq / 4000, 0);
1159         Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL, 0);
1160         Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1161
1162         return 0;
1163 }
1164
1165 static int ResetECOD(struct drxd_state *state)
1166 {
1167         int status = 0;
1168
1169         if (state->type_A)
1170                 status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1171         else
1172                 status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1173
1174         if (!(status < 0))
1175                 status = WriteTable(state, state->m_ResetECRAM);
1176         if (!(status < 0))
1177                 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1178         return status;
1179 }
1180
1181 /* Configure PGA switch */
1182
1183 static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1184 {
1185         int status;
1186         u16 AgModeLop = 0;
1187         u16 AgModeHip = 0;
1188         do {
1189                 if (pgaSwitch) {
1190                         /* PGA on */
1191                         /* fine gain */
1192                         status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1193                         if (status < 0)
1194                                 break;
1195                         AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1196                         AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1197                         status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1198                         if (status < 0)
1199                                 break;
1200
1201                         /* coarse gain */
1202                         status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1203                         if (status < 0)
1204                                 break;
1205                         AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1206                         AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1207                         status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1208                         if (status < 0)
1209                                 break;
1210
1211                         /* enable fine and coarse gain, enable AAF,
1212                            no ext resistor */
1213                         status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1214                         if (status < 0)
1215                                 break;
1216                 } else {
1217                         /* PGA off, bypass */
1218
1219                         /* fine gain */
1220                         status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1221                         if (status < 0)
1222                                 break;
1223                         AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1224                         AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1225                         status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1226                         if (status < 0)
1227                                 break;
1228
1229                         /* coarse gain */
1230                         status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1231                         if (status < 0)
1232                                 break;
1233                         AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1234                         AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1235                         status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1236                         if (status < 0)
1237                                 break;
1238
1239                         /* disable fine and coarse gain, enable AAF,
1240                            no ext resistor */
1241                         status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1242                         if (status < 0)
1243                                 break;
1244                 }
1245         } while (0);
1246         return status;
1247 }
1248
1249 static int InitFE(struct drxd_state *state)
1250 {
1251         int status;
1252
1253         do {
1254                 status = WriteTable(state, state->m_InitFE_1);
1255                 if (status < 0)
1256                         break;
1257
1258                 if (state->type_A) {
1259                         status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1260                                          FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1261                                          0);
1262                 } else {
1263                         if (state->PGA)
1264                                 status = SetCfgPga(state, 0);
1265                         else
1266                                 status =
1267                                     Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1268                                             B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1269                                             0);
1270                 }
1271
1272                 if (status < 0)
1273                         break;
1274                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1275                 if (status < 0)
1276                         break;
1277                 status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1278                 if (status < 0)
1279                         break;
1280
1281                 status = WriteTable(state, state->m_InitFE_2);
1282                 if (status < 0)
1283                         break;
1284
1285         } while (0);
1286
1287         return status;
1288 }
1289
1290 static int InitFT(struct drxd_state *state)
1291 {
1292         /*
1293            norm OFFSET,  MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1294            SC stuff
1295          */
1296         return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1297 }
1298
1299 static int SC_WaitForReady(struct drxd_state *state)
1300 {
1301         u16 curCmd;
1302         int i;
1303
1304         for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1305                 int status = Read16(state, SC_RA_RAM_CMD__A, &curCmd, 0);
1306                 if (status == 0 || curCmd == 0)
1307                         return status;
1308         }
1309         return -1;
1310 }
1311
1312 static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1313 {
1314         int status = 0;
1315         u16 errCode;
1316
1317         Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1318         SC_WaitForReady(state);
1319
1320         Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1321
1322         if (errCode == 0xFFFF) {
1323                 printk(KERN_ERR "Command Error\n");
1324                 status = -1;
1325         }
1326
1327         return status;
1328 }
1329
1330 static int SC_ProcStartCommand(struct drxd_state *state,
1331                                u16 subCmd, u16 param0, u16 param1)
1332 {
1333         int status = 0;
1334         u16 scExec;
1335
1336         mutex_lock(&state->mutex);
1337         do {
1338                 Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1339                 if (scExec != 1) {
1340                         status = -1;
1341                         break;
1342                 }
1343                 SC_WaitForReady(state);
1344                 Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1345                 Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1346                 Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1347
1348                 SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1349         } while (0);
1350         mutex_unlock(&state->mutex);
1351         return status;
1352 }
1353
1354 static int SC_SetPrefParamCommand(struct drxd_state *state,
1355                                   u16 subCmd, u16 param0, u16 param1)
1356 {
1357         int status;
1358
1359         mutex_lock(&state->mutex);
1360         do {
1361                 status = SC_WaitForReady(state);
1362                 if (status < 0)
1363                         break;
1364                 status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1365                 if (status < 0)
1366                         break;
1367                 status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1368                 if (status < 0)
1369                         break;
1370                 status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1371                 if (status < 0)
1372                         break;
1373
1374                 status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1375                 if (status < 0)
1376                         break;
1377         } while (0);
1378         mutex_unlock(&state->mutex);
1379         return status;
1380 }
1381
1382 #if 0
1383 static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1384 {
1385         int status = 0;
1386
1387         mutex_lock(&state->mutex);
1388         do {
1389                 status = SC_WaitForReady(state);
1390                 if (status < 0)
1391                         break;
1392                 status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1393                 if (status < 0)
1394                         break;
1395                 status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1396                 if (status < 0)
1397                         break;
1398         } while (0);
1399         mutex_unlock(&state->mutex);
1400         return status;
1401 }
1402 #endif
1403
1404 static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1405 {
1406         int status;
1407
1408         do {
1409                 u16 EcOcRegIprInvMpg = 0;
1410                 u16 EcOcRegOcModeLop = 0;
1411                 u16 EcOcRegOcModeHip = 0;
1412                 u16 EcOcRegOcMpgSio = 0;
1413
1414                 /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1415
1416                 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1417                         if (bEnableOutput) {
1418                                 EcOcRegOcModeHip |=
1419                                     B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1420                         } else
1421                                 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1422                         EcOcRegOcModeLop |=
1423                             EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1424                 } else {
1425                         EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1426
1427                         if (bEnableOutput)
1428                                 EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1429                         else
1430                                 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1431
1432                         /* Don't Insert RS Byte */
1433                         if (state->insert_rs_byte) {
1434                                 EcOcRegOcModeLop &=
1435                                     (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1436                                 EcOcRegOcModeHip &=
1437                                     (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1438                                 EcOcRegOcModeHip |=
1439                                     EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1440                         } else {
1441                                 EcOcRegOcModeLop |=
1442                                     EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1443                                 EcOcRegOcModeHip &=
1444                                     (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1445                                 EcOcRegOcModeHip |=
1446                                     EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1447                         }
1448
1449                         /* Mode = Parallel */
1450                         if (state->enable_parallel)
1451                                 EcOcRegOcModeLop &=
1452                                     (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1453                         else
1454                                 EcOcRegOcModeLop |=
1455                                     EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1456                 }
1457                 /* Invert Data */
1458                 /* EcOcRegIprInvMpg |= 0x00FF; */
1459                 EcOcRegIprInvMpg &= (~(0x00FF));
1460
1461                 /* Invert Error ( we don't use the pin ) */
1462                 /*  EcOcRegIprInvMpg |= 0x0100; */
1463                 EcOcRegIprInvMpg &= (~(0x0100));
1464
1465                 /* Invert Start ( we don't use the pin ) */
1466                 /* EcOcRegIprInvMpg |= 0x0200; */
1467                 EcOcRegIprInvMpg &= (~(0x0200));
1468
1469                 /* Invert Valid ( we don't use the pin ) */
1470                 /* EcOcRegIprInvMpg |= 0x0400; */
1471                 EcOcRegIprInvMpg &= (~(0x0400));
1472
1473                 /* Invert Clock */
1474                 /* EcOcRegIprInvMpg |= 0x0800; */
1475                 EcOcRegIprInvMpg &= (~(0x0800));
1476
1477                 /* EcOcRegOcModeLop =0x05; */
1478                 status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1479                 if (status < 0)
1480                         break;
1481                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1482                 if (status < 0)
1483                         break;
1484                 status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1485                 if (status < 0)
1486                         break;
1487                 status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1488                 if (status < 0)
1489                         break;
1490         } while (0);
1491         return status;
1492 }
1493
1494 static int SetDeviceTypeId(struct drxd_state *state)
1495 {
1496         int status = 0;
1497         u16 deviceId = 0;
1498
1499         do {
1500                 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1501                 if (status < 0)
1502                         break;
1503                 /* TODO: why twice? */
1504                 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1505                 if (status < 0)
1506                         break;
1507                 printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1508
1509                 state->type_A = 0;
1510                 state->PGA = 0;
1511                 state->diversity = 0;
1512                 if (deviceId == 0) {    /* on A2 only 3975 available */
1513                         state->type_A = 1;
1514                         printk(KERN_INFO "DRX3975D-A2\n");
1515                 } else {
1516                         deviceId >>= 12;
1517                         printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1518                         switch (deviceId) {
1519                         case 4:
1520                                 state->diversity = 1;
1521                                 /* fall through */
1522                         case 3:
1523                         case 7:
1524                                 state->PGA = 1;
1525                                 break;
1526                         case 6:
1527                                 state->diversity = 1;
1528                                 /* fall through */
1529                         case 5:
1530                         case 8:
1531                                 break;
1532                         default:
1533                                 status = -1;
1534                                 break;
1535                         }
1536                 }
1537         } while (0);
1538
1539         if (status < 0)
1540                 return status;
1541
1542         /* Init Table selection */
1543         state->m_InitAtomicRead = DRXD_InitAtomicRead;
1544         state->m_InitSC = DRXD_InitSC;
1545         state->m_ResetECRAM = DRXD_ResetECRAM;
1546         if (state->type_A) {
1547                 state->m_ResetCEFR = DRXD_ResetCEFR;
1548                 state->m_InitFE_1 = DRXD_InitFEA2_1;
1549                 state->m_InitFE_2 = DRXD_InitFEA2_2;
1550                 state->m_InitCP = DRXD_InitCPA2;
1551                 state->m_InitCE = DRXD_InitCEA2;
1552                 state->m_InitEQ = DRXD_InitEQA2;
1553                 state->m_InitEC = DRXD_InitECA2;
1554                 if (load_firmware(state, DRX_FW_FILENAME_A2))
1555                         return -EIO;
1556         } else {
1557                 state->m_ResetCEFR = NULL;
1558                 state->m_InitFE_1 = DRXD_InitFEB1_1;
1559                 state->m_InitFE_2 = DRXD_InitFEB1_2;
1560                 state->m_InitCP = DRXD_InitCPB1;
1561                 state->m_InitCE = DRXD_InitCEB1;
1562                 state->m_InitEQ = DRXD_InitEQB1;
1563                 state->m_InitEC = DRXD_InitECB1;
1564                 if (load_firmware(state, DRX_FW_FILENAME_B1))
1565                         return -EIO;
1566         }
1567         if (state->diversity) {
1568                 state->m_InitDiversityFront = DRXD_InitDiversityFront;
1569                 state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1570                 state->m_DisableDiversity = DRXD_DisableDiversity;
1571                 state->m_StartDiversityFront = DRXD_StartDiversityFront;
1572                 state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1573                 state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1574                 state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1575         } else {
1576                 state->m_InitDiversityFront = NULL;
1577                 state->m_InitDiversityEnd = NULL;
1578                 state->m_DisableDiversity = NULL;
1579                 state->m_StartDiversityFront = NULL;
1580                 state->m_StartDiversityEnd = NULL;
1581                 state->m_DiversityDelay8MHZ = NULL;
1582                 state->m_DiversityDelay6MHZ = NULL;
1583         }
1584
1585         return status;
1586 }
1587
1588 static int CorrectSysClockDeviation(struct drxd_state *state)
1589 {
1590         int status;
1591         s32 incr = 0;
1592         s32 nomincr = 0;
1593         u32 bandwidth = 0;
1594         u32 sysClockInHz = 0;
1595         u32 sysClockFreq = 0;   /* in kHz */
1596         s16 oscClockDeviation;
1597         s16 Diff;
1598
1599         do {
1600                 /* Retrieve bandwidth and incr, sanity check */
1601
1602                 /* These accesses should be AtomicReadReg32, but that
1603                    causes trouble (at least for diversity */
1604                 status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1605                 if (status < 0)
1606                         break;
1607                 status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1608                 if (status < 0)
1609                         break;
1610
1611                 if (state->type_A) {
1612                         if ((nomincr - incr < -500) || (nomincr - incr > 500))
1613                                 break;
1614                 } else {
1615                         if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1616                                 break;
1617                 }
1618
1619                 switch (state->props.bandwidth_hz) {
1620                 case 8000000:
1621                         bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1622                         break;
1623                 case 7000000:
1624                         bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1625                         break;
1626                 case 6000000:
1627                         bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1628                         break;
1629                 default:
1630                         return -1;
1631                         break;
1632                 }
1633
1634                 /* Compute new sysclock value
1635                    sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1636                 incr += (1 << 23);
1637                 sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1638                 sysClockFreq = (u32) (sysClockInHz / 1000);
1639                 /* rounding */
1640                 if ((sysClockInHz % 1000) > 500)
1641                         sysClockFreq++;
1642
1643                 /* Compute clock deviation in ppm */
1644                 oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1645                                              (s32)
1646                                              (state->expected_sys_clock_freq)) *
1647                                             1000000L) /
1648                                            (s32)
1649                                            (state->expected_sys_clock_freq));
1650
1651                 Diff = oscClockDeviation - state->osc_clock_deviation;
1652                 /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1653                 if (Diff >= -200 && Diff <= 200) {
1654                         state->sys_clock_freq = (u16) sysClockFreq;
1655                         if (oscClockDeviation != state->osc_clock_deviation) {
1656                                 if (state->config.osc_deviation) {
1657                                         state->config.osc_deviation(state->priv,
1658                                                                     oscClockDeviation,
1659                                                                     1);
1660                                         state->osc_clock_deviation =
1661                                             oscClockDeviation;
1662                                 }
1663                         }
1664                         /* switch OFF SRMM scan in SC */
1665                         status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1666                         if (status < 0)
1667                                 break;
1668                         /* overrule FE_IF internal value for
1669                            proper re-locking */
1670                         status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1671                         if (status < 0)
1672                                 break;
1673                         state->cscd_state = CSCD_SAVED;
1674                 }
1675         } while (0);
1676
1677         return status;
1678 }
1679
1680 static int DRX_Stop(struct drxd_state *state)
1681 {
1682         int status;
1683
1684         if (state->drxd_state != DRXD_STARTED)
1685                 return 0;
1686
1687         do {
1688                 if (state->cscd_state != CSCD_SAVED) {
1689                         u32 lock;
1690                         status = DRX_GetLockStatus(state, &lock);
1691                         if (status < 0)
1692                                 break;
1693                 }
1694
1695                 status = StopOC(state);
1696                 if (status < 0)
1697                         break;
1698
1699                 state->drxd_state = DRXD_STOPPED;
1700
1701                 status = ConfigureMPEGOutput(state, 0);
1702                 if (status < 0)
1703                         break;
1704
1705                 if (state->type_A) {
1706                         /* Stop relevant processors off the device */
1707                         status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1708                         if (status < 0)
1709                                 break;
1710
1711                         status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1712                         if (status < 0)
1713                                 break;
1714                         status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1715                         if (status < 0)
1716                                 break;
1717                 } else {
1718                         /* Stop all processors except HI & CC & FE */
1719                         status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1720                         if (status < 0)
1721                                 break;
1722                         status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1723                         if (status < 0)
1724                                 break;
1725                         status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1726                         if (status < 0)
1727                                 break;
1728                         status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1729                         if (status < 0)
1730                                 break;
1731                         status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1732                         if (status < 0)
1733                                 break;
1734                         status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1735                         if (status < 0)
1736                                 break;
1737                         status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1738                         if (status < 0)
1739                                 break;
1740                 }
1741
1742         } while (0);
1743         return status;
1744 }
1745
1746 #if 0   /* Currently unused */
1747 static int SetOperationMode(struct drxd_state *state, int oMode)
1748 {
1749         int status;
1750
1751         do {
1752                 if (state->drxd_state != DRXD_STOPPED) {
1753                         status = -1;
1754                         break;
1755                 }
1756
1757                 if (oMode == state->operation_mode) {
1758                         status = 0;
1759                         break;
1760                 }
1761
1762                 if (oMode != OM_Default && !state->diversity) {
1763                         status = -1;
1764                         break;
1765                 }
1766
1767                 switch (oMode) {
1768                 case OM_DVBT_Diversity_Front:
1769                         status = WriteTable(state, state->m_InitDiversityFront);
1770                         break;
1771                 case OM_DVBT_Diversity_End:
1772                         status = WriteTable(state, state->m_InitDiversityEnd);
1773                         break;
1774                 case OM_Default:
1775                         /* We need to check how to
1776                            get DRXD out of diversity */
1777                 default:
1778                         status = WriteTable(state, state->m_DisableDiversity);
1779                         break;
1780                 }
1781         } while (0);
1782
1783         if (!status)
1784                 state->operation_mode = oMode;
1785         return status;
1786 }
1787 #endif
1788
1789 static int StartDiversity(struct drxd_state *state)
1790 {
1791         int status = 0;
1792         u16 rcControl;
1793
1794         do {
1795                 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1796                         status = WriteTable(state, state->m_StartDiversityFront);
1797                         if (status < 0)
1798                                 break;
1799                 } else if (state->operation_mode == OM_DVBT_Diversity_End) {
1800                         status = WriteTable(state, state->m_StartDiversityEnd);
1801                         if (status < 0)
1802                                 break;
1803                         if (state->props.bandwidth_hz == 8000000) {
1804                                 status = WriteTable(state, state->m_DiversityDelay8MHZ);
1805                                 if (status < 0)
1806                                         break;
1807                         } else {
1808                                 status = WriteTable(state, state->m_DiversityDelay6MHZ);
1809                                 if (status < 0)
1810                                         break;
1811                         }
1812
1813                         status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1814                         if (status < 0)
1815                                 break;
1816                         rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1817                         rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1818                             /*  combining enabled */
1819                             B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1820                             B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1821                             B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1822                         status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1823                         if (status < 0)
1824                                 break;
1825                 }
1826         } while (0);
1827         return status;
1828 }
1829
1830 static int SetFrequencyShift(struct drxd_state *state,
1831                              u32 offsetFreq, int channelMirrored)
1832 {
1833         int negativeShift = (state->tuner_mirrors == channelMirrored);
1834
1835         /* Handle all mirroring
1836          *
1837          * Note: ADC mirroring (aliasing) is implictly handled by limiting
1838          * feFsRegAddInc to 28 bits below
1839          * (if the result before masking is more than 28 bits, this means
1840          *  that the ADC is mirroring.
1841          * The masking is in fact the aliasing of the ADC)
1842          *
1843          */
1844
1845         /* Compute register value, unsigned computation */
1846         state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1847                                          offsetFreq,
1848                                          1 << 28, state->sys_clock_freq);
1849         /* Remove integer part */
1850         state->fe_fs_add_incr &= 0x0FFFFFFFL;
1851         if (negativeShift)
1852                 state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1853
1854         /* Save the frequency shift without tunerOffset compensation
1855            for CtrlGetChannel. */
1856         state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1857                                              1 << 28, state->sys_clock_freq);
1858         /* Remove integer part */
1859         state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1860         if (negativeShift)
1861                 state->org_fe_fs_add_incr = ((1L << 28) -
1862                                              state->org_fe_fs_add_incr);
1863
1864         return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1865                        state->fe_fs_add_incr, 0);
1866 }
1867
1868 static int SetCfgNoiseCalibration(struct drxd_state *state,
1869                                   struct SNoiseCal *noiseCal)
1870 {
1871         u16 beOptEna;
1872         int status = 0;
1873
1874         do {
1875                 status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1876                 if (status < 0)
1877                         break;
1878                 if (noiseCal->cpOpt) {
1879                         beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1880                 } else {
1881                         beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1882                         status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1883                         if (status < 0)
1884                                 break;
1885                 }
1886                 status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1887                 if (status < 0)
1888                         break;
1889
1890                 if (!state->type_A) {
1891                         status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1892                         if (status < 0)
1893                                 break;
1894                         status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1895                         if (status < 0)
1896                                 break;
1897                 }
1898         } while (0);
1899
1900         return status;
1901 }
1902
1903 static int DRX_Start(struct drxd_state *state, s32 off)
1904 {
1905         struct dtv_frontend_properties *p = &state->props;
1906         int status;
1907
1908         u16 transmissionParams = 0;
1909         u16 operationMode = 0;
1910         u16 qpskTdTpsPwr = 0;
1911         u16 qam16TdTpsPwr = 0;
1912         u16 qam64TdTpsPwr = 0;
1913         u32 feIfIncr = 0;
1914         u32 bandwidth = 0;
1915         int mirrorFreqSpect;
1916
1917         u16 qpskSnCeGain = 0;
1918         u16 qam16SnCeGain = 0;
1919         u16 qam64SnCeGain = 0;
1920         u16 qpskIsGainMan = 0;
1921         u16 qam16IsGainMan = 0;
1922         u16 qam64IsGainMan = 0;
1923         u16 qpskIsGainExp = 0;
1924         u16 qam16IsGainExp = 0;
1925         u16 qam64IsGainExp = 0;
1926         u16 bandwidthParam = 0;
1927
1928         if (off < 0)
1929                 off = (off - 500) / 1000;
1930         else
1931                 off = (off + 500) / 1000;
1932
1933         do {
1934                 if (state->drxd_state != DRXD_STOPPED)
1935                         return -1;
1936                 status = ResetECOD(state);
1937                 if (status < 0)
1938                         break;
1939                 if (state->type_A) {
1940                         status = InitSC(state);
1941                         if (status < 0)
1942                                 break;
1943                 } else {
1944                         status = InitFT(state);
1945                         if (status < 0)
1946                                 break;
1947                         status = InitCP(state);
1948                         if (status < 0)
1949                                 break;
1950                         status = InitCE(state);
1951                         if (status < 0)
1952                                 break;
1953                         status = InitEQ(state);
1954                         if (status < 0)
1955                                 break;
1956                         status = InitSC(state);
1957                         if (status < 0)
1958                                 break;
1959                 }
1960
1961                 /* Restore current IF & RF AGC settings */
1962
1963                 status = SetCfgIfAgc(state, &state->if_agc_cfg);
1964                 if (status < 0)
1965                         break;
1966                 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1967                 if (status < 0)
1968                         break;
1969
1970                 mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
1971
1972                 switch (p->transmission_mode) {
1973                 default:        /* Not set, detect it automatically */
1974                         operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1975                         /* try first guess DRX_FFTMODE_8K */
1976                         /* fall through */
1977                 case TRANSMISSION_MODE_8K:
1978                         transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1979                         if (state->type_A) {
1980                                 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1981                                 if (status < 0)
1982                                         break;
1983                                 qpskSnCeGain = 99;
1984                                 qam16SnCeGain = 83;
1985                                 qam64SnCeGain = 67;
1986                         }
1987                         break;
1988                 case TRANSMISSION_MODE_2K:
1989                         transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1990                         if (state->type_A) {
1991                                 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1992                                 if (status < 0)
1993                                         break;
1994                                 qpskSnCeGain = 97;
1995                                 qam16SnCeGain = 71;
1996                                 qam64SnCeGain = 65;
1997                         }
1998                         break;
1999                 }
2000
2001                 switch (p->guard_interval) {
2002                 case GUARD_INTERVAL_1_4:
2003                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2004                         break;
2005                 case GUARD_INTERVAL_1_8:
2006                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
2007                         break;
2008                 case GUARD_INTERVAL_1_16:
2009                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
2010                         break;
2011                 case GUARD_INTERVAL_1_32:
2012                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
2013                         break;
2014                 default:        /* Not set, detect it automatically */
2015                         operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2016                         /* try first guess 1/4 */
2017                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2018                         break;
2019                 }
2020
2021                 switch (p->hierarchy) {
2022                 case HIERARCHY_1:
2023                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2024                         if (state->type_A) {
2025                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2026                                 if (status < 0)
2027                                         break;
2028                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2029                                 if (status < 0)
2030                                         break;
2031
2032                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2033                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2034                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2035
2036                                 qpskIsGainMan =
2037                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2038                                 qam16IsGainMan =
2039                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2040                                 qam64IsGainMan =
2041                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2042
2043                                 qpskIsGainExp =
2044                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2045                                 qam16IsGainExp =
2046                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2047                                 qam64IsGainExp =
2048                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2049                         }
2050                         break;
2051
2052                 case HIERARCHY_2:
2053                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2054                         if (state->type_A) {
2055                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2056                                 if (status < 0)
2057                                         break;
2058                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2059                                 if (status < 0)
2060                                         break;
2061
2062                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2063                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2064                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2065
2066                                 qpskIsGainMan =
2067                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2068                                 qam16IsGainMan =
2069                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2070                                 qam64IsGainMan =
2071                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2072
2073                                 qpskIsGainExp =
2074                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2075                                 qam16IsGainExp =
2076                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2077                                 qam64IsGainExp =
2078                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2079                         }
2080                         break;
2081                 case HIERARCHY_4:
2082                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2083                         if (state->type_A) {
2084                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2085                                 if (status < 0)
2086                                         break;
2087                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2088                                 if (status < 0)
2089                                         break;
2090
2091                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2092                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2093                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2094
2095                                 qpskIsGainMan =
2096                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2097                                 qam16IsGainMan =
2098                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2099                                 qam64IsGainMan =
2100                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2101
2102                                 qpskIsGainExp =
2103                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2104                                 qam16IsGainExp =
2105                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2106                                 qam64IsGainExp =
2107                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2108                         }
2109                         break;
2110                 case HIERARCHY_AUTO:
2111                 default:
2112                         /* Not set, detect it automatically, start with none */
2113                         operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2114                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2115                         if (state->type_A) {
2116                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2117                                 if (status < 0)
2118                                         break;
2119                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2120                                 if (status < 0)
2121                                         break;
2122
2123                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2124                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2125                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2126
2127                                 qpskIsGainMan =
2128                                     SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2129                                 qam16IsGainMan =
2130                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2131                                 qam64IsGainMan =
2132                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2133
2134                                 qpskIsGainExp =
2135                                     SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2136                                 qam16IsGainExp =
2137                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2138                                 qam64IsGainExp =
2139                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2140                         }
2141                         break;
2142                 }
2143                 status = status;
2144                 if (status < 0)
2145                         break;
2146
2147                 switch (p->modulation) {
2148                 default:
2149                         operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2150                         /* try first guess DRX_CONSTELLATION_QAM64 */
2151                         /* fall through */
2152                 case QAM_64:
2153                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2154                         if (state->type_A) {
2155                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2156                                 if (status < 0)
2157                                         break;
2158                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2159                                 if (status < 0)
2160                                         break;
2161                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2162                                 if (status < 0)
2163                                         break;
2164                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2165                                 if (status < 0)
2166                                         break;
2167                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2168                                 if (status < 0)
2169                                         break;
2170
2171                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2172                                 if (status < 0)
2173                                         break;
2174                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2175                                 if (status < 0)
2176                                         break;
2177                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2178                                 if (status < 0)
2179                                         break;
2180                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2181                                 if (status < 0)
2182                                         break;
2183                         }
2184                         break;
2185                 case QPSK:
2186                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2187                         if (state->type_A) {
2188                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2189                                 if (status < 0)
2190                                         break;
2191                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2192                                 if (status < 0)
2193                                         break;
2194                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2195                                 if (status < 0)
2196                                         break;
2197                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2198                                 if (status < 0)
2199                                         break;
2200                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2201                                 if (status < 0)
2202                                         break;
2203
2204                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2205                                 if (status < 0)
2206                                         break;
2207                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2208                                 if (status < 0)
2209                                         break;
2210                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2211                                 if (status < 0)
2212                                         break;
2213                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2214                                 if (status < 0)
2215                                         break;
2216                         }
2217                         break;
2218
2219                 case QAM_16:
2220                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2221                         if (state->type_A) {
2222                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2223                                 if (status < 0)
2224                                         break;
2225                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2226                                 if (status < 0)
2227                                         break;
2228                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2229                                 if (status < 0)
2230                                         break;
2231                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2232                                 if (status < 0)
2233                                         break;
2234                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2235                                 if (status < 0)
2236                                         break;
2237
2238                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2239                                 if (status < 0)
2240                                         break;
2241                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2242                                 if (status < 0)
2243                                         break;
2244                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2245                                 if (status < 0)
2246                                         break;
2247                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2248                                 if (status < 0)
2249                                         break;
2250                         }
2251                         break;
2252
2253                 }
2254                 status = status;
2255                 if (status < 0)
2256                         break;
2257
2258                 switch (DRX_CHANNEL_HIGH) {
2259                 default:
2260                 case DRX_CHANNEL_AUTO:
2261                 case DRX_CHANNEL_LOW:
2262                         transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2263                         status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2264                         if (status < 0)
2265                                 break;
2266                         break;
2267                 case DRX_CHANNEL_HIGH:
2268                         transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2269                         status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2270                         if (status < 0)
2271                                 break;
2272                         break;
2273
2274                 }
2275
2276                 switch (p->code_rate_HP) {
2277                 case FEC_1_2:
2278                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2279                         if (state->type_A) {
2280                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2281                                 if (status < 0)
2282                                         break;
2283                         }
2284                         break;
2285                 default:
2286                         operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2287                         /* fall through */
2288                 case FEC_2_3:
2289                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2290                         if (state->type_A) {
2291                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2292                                 if (status < 0)
2293                                         break;
2294                         }
2295                         break;
2296                 case FEC_3_4:
2297                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2298                         if (state->type_A) {
2299                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2300                                 if (status < 0)
2301                                         break;
2302                         }
2303                         break;
2304                 case FEC_5_6:
2305                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2306                         if (state->type_A) {
2307                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2308                                 if (status < 0)
2309                                         break;
2310                         }
2311                         break;
2312                 case FEC_7_8:
2313                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2314                         if (state->type_A) {
2315                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2316                                 if (status < 0)
2317                                         break;
2318                         }
2319                         break;
2320                 }
2321                 status = status;
2322                 if (status < 0)
2323                         break;
2324
2325                 /* First determine real bandwidth (Hz) */
2326                 /* Also set delay for impulse noise cruncher (only A2) */
2327                 /* Also set parameters for EC_OC fix, note
2328                    EC_OC_REG_TMD_HIL_MAR is changed
2329                    by SC for fix for some 8K,1/8 guard but is restored by
2330                    InitEC and ResetEC
2331                    functions */
2332                 switch (p->bandwidth_hz) {
2333                 case 0:
2334                         p->bandwidth_hz = 8000000;
2335                         /* fall through */
2336                 case 8000000:
2337                         /* (64/7)*(8/8)*1000000 */
2338                         bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2339
2340                         bandwidthParam = 0;
2341                         status = Write16(state,
2342                                          FE_AG_REG_IND_DEL__A, 50, 0x0000);
2343                         break;
2344                 case 7000000:
2345                         /* (64/7)*(7/8)*1000000 */
2346                         bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2347                         bandwidthParam = 0x4807;        /*binary:0100 1000 0000 0111 */
2348                         status = Write16(state,
2349                                          FE_AG_REG_IND_DEL__A, 59, 0x0000);
2350                         break;
2351                 case 6000000:
2352                         /* (64/7)*(6/8)*1000000 */
2353                         bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2354                         bandwidthParam = 0x0F07;        /*binary: 0000 1111 0000 0111 */
2355                         status = Write16(state,
2356                                          FE_AG_REG_IND_DEL__A, 71, 0x0000);
2357                         break;
2358                 default:
2359                         status = -EINVAL;
2360                 }
2361                 if (status < 0)
2362                         break;
2363
2364                 status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2365                 if (status < 0)
2366                         break;
2367
2368                 {
2369                         u16 sc_config;
2370                         status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2371                         if (status < 0)
2372                                 break;
2373
2374                         /* enable SLAVE mode in 2k 1/32 to
2375                            prevent timing change glitches */
2376                         if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2377                             (p->guard_interval == GUARD_INTERVAL_1_32)) {
2378                                 /* enable slave */
2379                                 sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2380                         } else {
2381                                 /* disable slave */
2382                                 sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2383                         }
2384                         status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2385                         if (status < 0)
2386                                 break;
2387                 }
2388
2389                 status = SetCfgNoiseCalibration(state, &state->noise_cal);
2390                 if (status < 0)
2391                         break;
2392
2393                 if (state->cscd_state == CSCD_INIT) {
2394                         /* switch on SRMM scan in SC */
2395                         status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2396                         if (status < 0)
2397                                 break;
2398 /*            CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2399                         state->cscd_state = CSCD_SET;
2400                 }
2401
2402                 /* Now compute FE_IF_REG_INCR */
2403                 /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2404                    ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2405                 feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2406                                     (1ULL << 21), bandwidth) - (1 << 23);
2407                 status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2408                 if (status < 0)
2409                         break;
2410                 status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2411                 if (status < 0)
2412                         break;
2413                 /* Bandwidth setting done */
2414
2415                 /* Mirror & frequency offset */
2416                 SetFrequencyShift(state, off, mirrorFreqSpect);
2417
2418                 /* Start SC, write channel settings to SC */
2419
2420                 /* Enable SC after setting all other parameters */
2421                 status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2422                 if (status < 0)
2423                         break;
2424                 status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2425                 if (status < 0)
2426                         break;
2427
2428                 /* Write SC parameter registers, operation mode */
2429 #if 1
2430                 operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2431                                  SC_RA_RAM_OP_AUTO_GUARD__M |
2432                                  SC_RA_RAM_OP_AUTO_CONST__M |
2433                                  SC_RA_RAM_OP_AUTO_HIER__M |
2434                                  SC_RA_RAM_OP_AUTO_RATE__M);
2435 #endif
2436                 status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2437                 if (status < 0)
2438                         break;
2439
2440                 /* Start correct processes to get in lock */
2441                 status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2442                 if (status < 0)
2443                         break;
2444
2445                 status = StartOC(state);
2446                 if (status < 0)
2447                         break;
2448
2449                 if (state->operation_mode != OM_Default) {
2450                         status = StartDiversity(state);
2451                         if (status < 0)
2452                                 break;
2453                 }
2454
2455                 state->drxd_state = DRXD_STARTED;
2456         } while (0);
2457
2458         return status;
2459 }
2460
2461 static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2462 {
2463         u32 ulRfAgcOutputLevel = 0xffffffff;
2464         u32 ulRfAgcSettleLevel = 528;   /* Optimum value for MT2060 */
2465         u32 ulRfAgcMinLevel = 0;        /* Currently unused */
2466         u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */
2467         u32 ulRfAgcSpeed = 0;   /* Currently unused */
2468         u32 ulRfAgcMode = 0;    /*2;   Off */
2469         u32 ulRfAgcR1 = 820;
2470         u32 ulRfAgcR2 = 2200;
2471         u32 ulRfAgcR3 = 150;
2472         u32 ulIfAgcMode = 0;    /* Auto */
2473         u32 ulIfAgcOutputLevel = 0xffffffff;
2474         u32 ulIfAgcSettleLevel = 0xffffffff;
2475         u32 ulIfAgcMinLevel = 0xffffffff;
2476         u32 ulIfAgcMaxLevel = 0xffffffff;
2477         u32 ulIfAgcSpeed = 0xffffffff;
2478         u32 ulIfAgcR1 = 820;
2479         u32 ulIfAgcR2 = 2200;
2480         u32 ulIfAgcR3 = 150;
2481         u32 ulClock = state->config.clock;
2482         u32 ulSerialMode = 0;
2483         u32 ulEcOcRegOcModeLop = 4;     /* Dynamic DTO source */
2484         u32 ulHiI2cDelay = HI_I2C_DELAY;
2485         u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2486         u32 ulHiI2cPatch = 0;
2487         u32 ulEnvironment = APPENV_PORTABLE;
2488         u32 ulEnvironmentDiversity = APPENV_MOBILE;
2489         u32 ulIFFilter = IFFILTER_SAW;
2490
2491         state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2492         state->if_agc_cfg.outputLevel = 0;
2493         state->if_agc_cfg.settleLevel = 140;
2494         state->if_agc_cfg.minOutputLevel = 0;
2495         state->if_agc_cfg.maxOutputLevel = 1023;
2496         state->if_agc_cfg.speed = 904;
2497
2498         if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2499                 state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2500                 state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2501         }
2502
2503         if (ulIfAgcMode == 0 &&
2504             ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2505             ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2506             ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2507             ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2508                 state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2509                 state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2510                 state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2511                 state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2512                 state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2513         }
2514
2515         state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2516         state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2517         state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2518
2519         state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2520         state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2521         state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2522
2523         state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2524         /* rest of the RFAgcCfg structure currently unused */
2525         if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2526                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2527                 state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2528         }
2529
2530         if (ulRfAgcMode == 0 &&
2531             ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2532             ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2533             ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2534             ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2535                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2536                 state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2537                 state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2538                 state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2539                 state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2540         }
2541
2542         if (ulRfAgcMode == 2)
2543                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2544
2545         if (ulEnvironment <= 2)
2546                 state->app_env_default = (enum app_env)
2547                     (ulEnvironment);
2548         if (ulEnvironmentDiversity <= 2)
2549                 state->app_env_diversity = (enum app_env)
2550                     (ulEnvironmentDiversity);
2551
2552         if (ulIFFilter == IFFILTER_DISCRETE) {
2553                 /* discrete filter */
2554                 state->noise_cal.cpOpt = 0;
2555                 state->noise_cal.cpNexpOfs = 40;
2556                 state->noise_cal.tdCal2k = -40;
2557                 state->noise_cal.tdCal8k = -24;
2558         } else {
2559                 /* SAW filter */
2560                 state->noise_cal.cpOpt = 1;
2561                 state->noise_cal.cpNexpOfs = 0;
2562                 state->noise_cal.tdCal2k = -21;
2563                 state->noise_cal.tdCal8k = -24;
2564         }
2565         state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2566
2567         state->chip_adr = (state->config.demod_address << 1) | 1;
2568         switch (ulHiI2cPatch) {
2569         case 1:
2570                 state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2571                 break;
2572         case 3:
2573                 state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2574                 break;
2575         default:
2576                 state->m_HiI2cPatch = NULL;
2577         }
2578
2579         /* modify tuner and clock attributes */
2580         state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2581         /* expected system clock frequency in kHz */
2582         state->expected_sys_clock_freq = 48000;
2583         /* real system clock frequency in kHz */
2584         state->sys_clock_freq = 48000;
2585         state->osc_clock_freq = (u16) ulClock;
2586         state->osc_clock_deviation = 0;
2587         state->cscd_state = CSCD_INIT;
2588         state->drxd_state = DRXD_UNINITIALIZED;
2589
2590         state->PGA = 0;
2591         state->type_A = 0;
2592         state->tuner_mirrors = 0;
2593
2594         /* modify MPEG output attributes */
2595         state->insert_rs_byte = state->config.insert_rs_byte;
2596         state->enable_parallel = (ulSerialMode != 1);
2597
2598         /* Timing div, 250ns/Psys */
2599         /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2600
2601         state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2602                                           ulHiI2cDelay) / 1000;
2603         /* Bridge delay, uses oscilator clock */
2604         /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2605         state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2606                                             ulHiI2cBridgeDelay) / 1000;
2607
2608         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2609         /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2610         state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2611         return 0;
2612 }
2613
2614 static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
2615 {
2616         int status = 0;
2617         u32 driverVersion;
2618
2619         if (state->init_done)
2620                 return 0;
2621
2622         CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2623
2624         do {
2625                 state->operation_mode = OM_Default;
2626
2627                 status = SetDeviceTypeId(state);
2628                 if (status < 0)
2629                         break;
2630
2631                 /* Apply I2c address patch to B1 */
2632                 if (!state->type_A && state->m_HiI2cPatch) {
2633                         status = WriteTable(state, state->m_HiI2cPatch);
2634                         if (status < 0)
2635                                 break;
2636                 }
2637
2638                 if (state->type_A) {
2639                         /* HI firmware patch for UIO readout,
2640                            avoid clearing of result register */
2641                         status = Write16(state, 0x43012D, 0x047f, 0);
2642                         if (status < 0)
2643                                 break;
2644                 }
2645
2646                 status = HI_ResetCommand(state);
2647                 if (status < 0)
2648                         break;
2649
2650                 status = StopAllProcessors(state);
2651                 if (status < 0)
2652                         break;
2653                 status = InitCC(state);
2654                 if (status < 0)
2655                         break;
2656
2657                 state->osc_clock_deviation = 0;
2658
2659                 if (state->config.osc_deviation)
2660                         state->osc_clock_deviation =
2661                             state->config.osc_deviation(state->priv, 0, 0);
2662                 {
2663                         /* Handle clock deviation */
2664                         s32 devB;
2665                         s32 devA = (s32) (state->osc_clock_deviation) *
2666                             (s32) (state->expected_sys_clock_freq);
2667                         /* deviation in kHz */
2668                         s32 deviation = (devA / (1000000L));
2669                         /* rounding, signed */
2670                         if (devA > 0)
2671                                 devB = (2);
2672                         else
2673                                 devB = (-2);
2674                         if ((devB * (devA % 1000000L) > 1000000L)) {
2675                                 /* add +1 or -1 */
2676                                 deviation += (devB / 2);
2677                         }
2678
2679                         state->sys_clock_freq =
2680                             (u16) ((state->expected_sys_clock_freq) +
2681                                    deviation);
2682                 }
2683                 status = InitHI(state);
2684                 if (status < 0)
2685                         break;
2686                 status = InitAtomicRead(state);
2687                 if (status < 0)
2688                         break;
2689
2690                 status = EnableAndResetMB(state);
2691                 if (status < 0)
2692                         break;
2693                 if (state->type_A) {
2694                         status = ResetCEFR(state);
2695                         if (status < 0)
2696                                 break;
2697                 }
2698                 if (fw) {
2699                         status = DownloadMicrocode(state, fw, fw_size);
2700                         if (status < 0)
2701                                 break;
2702                 } else {
2703                         status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2704                         if (status < 0)
2705                                 break;
2706                 }
2707
2708                 if (state->PGA) {
2709                         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2710                         SetCfgPga(state, 0);    /* PGA = 0 dB */
2711                 } else {
2712                         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2713                 }
2714
2715                 state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2716
2717                 status = InitFE(state);
2718                 if (status < 0)
2719                         break;
2720                 status = InitFT(state);
2721                 if (status < 0)
2722                         break;
2723                 status = InitCP(state);
2724                 if (status < 0)
2725                         break;
2726                 status = InitCE(state);
2727                 if (status < 0)
2728                         break;
2729                 status = InitEQ(state);
2730                 if (status < 0)
2731                         break;
2732                 status = InitEC(state);
2733                 if (status < 0)
2734                         break;
2735                 status = InitSC(state);
2736                 if (status < 0)
2737                         break;
2738
2739                 status = SetCfgIfAgc(state, &state->if_agc_cfg);
2740                 if (status < 0)
2741                         break;
2742                 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2743                 if (status < 0)
2744                         break;
2745
2746                 state->cscd_state = CSCD_INIT;
2747                 status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2748                 if (status < 0)
2749                         break;
2750                 status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2751                 if (status < 0)
2752                         break;
2753
2754                 driverVersion = (((VERSION_MAJOR / 10) << 4) +
2755                                  (VERSION_MAJOR % 10)) << 24;
2756                 driverVersion += (((VERSION_MINOR / 10) << 4) +
2757                                   (VERSION_MINOR % 10)) << 16;
2758                 driverVersion += ((VERSION_PATCH / 1000) << 12) +
2759                     ((VERSION_PATCH / 100) << 8) +
2760                     ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2761
2762                 status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2763                 if (status < 0)
2764                         break;
2765
2766                 status = StopOC(state);
2767                 if (status < 0)
2768                         break;
2769
2770                 state->drxd_state = DRXD_STOPPED;
2771                 state->init_done = 1;
2772                 status = 0;
2773         } while (0);
2774         return status;
2775 }
2776
2777 static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
2778 {
2779         DRX_GetLockStatus(state, pLockStatus);
2780
2781         /*if (*pLockStatus&DRX_LOCK_MPEG) */
2782         if (*pLockStatus & DRX_LOCK_FEC) {
2783                 ConfigureMPEGOutput(state, 1);
2784                 /* Get status again, in case we have MPEG lock now */
2785                 /*DRX_GetLockStatus(state, pLockStatus); */
2786         }
2787
2788         return 0;
2789 }
2790
2791 /****************************************************************************/
2792 /****************************************************************************/
2793 /****************************************************************************/
2794
2795 static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2796 {
2797         struct drxd_state *state = fe->demodulator_priv;
2798         u32 value;
2799         int res;
2800
2801         res = ReadIFAgc(state, &value);
2802         if (res < 0)
2803                 *strength = 0;
2804         else
2805                 *strength = 0xffff - (value << 4);
2806         return 0;
2807 }
2808
2809 static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status)
2810 {
2811         struct drxd_state *state = fe->demodulator_priv;
2812         u32 lock;
2813
2814         DRXD_status(state, &lock);
2815         *status = 0;
2816         /* No MPEG lock in V255 firmware, bug ? */
2817 #if 1
2818         if (lock & DRX_LOCK_MPEG)
2819                 *status |= FE_HAS_LOCK;
2820 #else
2821         if (lock & DRX_LOCK_FEC)
2822                 *status |= FE_HAS_LOCK;
2823 #endif
2824         if (lock & DRX_LOCK_FEC)
2825                 *status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2826         if (lock & DRX_LOCK_DEMOD)
2827                 *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2828
2829         return 0;
2830 }
2831
2832 static int drxd_init(struct dvb_frontend *fe)
2833 {
2834         struct drxd_state *state = fe->demodulator_priv;
2835
2836         return DRXD_init(state, NULL, 0);
2837 }
2838
2839 static int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2840 {
2841         struct drxd_state *state = fe->demodulator_priv;
2842
2843         if (state->config.disable_i2c_gate_ctrl == 1)
2844                 return 0;
2845
2846         return DRX_ConfigureI2CBridge(state, onoff);
2847 }
2848
2849 static int drxd_get_tune_settings(struct dvb_frontend *fe,
2850                                   struct dvb_frontend_tune_settings *sets)
2851 {
2852         sets->min_delay_ms = 10000;
2853         sets->max_drift = 0;
2854         sets->step_size = 0;
2855         return 0;
2856 }
2857
2858 static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2859 {
2860         *ber = 0;
2861         return 0;
2862 }
2863
2864 static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2865 {
2866         *snr = 0;
2867         return 0;
2868 }
2869
2870 static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2871 {
2872         *ucblocks = 0;
2873         return 0;
2874 }
2875
2876 static int drxd_sleep(struct dvb_frontend *fe)
2877 {
2878         struct drxd_state *state = fe->demodulator_priv;
2879
2880         ConfigureMPEGOutput(state, 0);
2881         return 0;
2882 }
2883
2884 static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2885 {
2886         return drxd_config_i2c(fe, enable);
2887 }
2888
2889 static int drxd_set_frontend(struct dvb_frontend *fe)
2890 {
2891         struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2892         struct drxd_state *state = fe->demodulator_priv;
2893         s32 off = 0;
2894
2895         state->props = *p;
2896         DRX_Stop(state);
2897
2898         if (fe->ops.tuner_ops.set_params) {
2899                 fe->ops.tuner_ops.set_params(fe);
2900                 if (fe->ops.i2c_gate_ctrl)
2901                         fe->ops.i2c_gate_ctrl(fe, 0);
2902         }
2903
2904         msleep(200);
2905
2906         return DRX_Start(state, off);
2907 }
2908
2909 static void drxd_release(struct dvb_frontend *fe)
2910 {
2911         struct drxd_state *state = fe->demodulator_priv;
2912
2913         kfree(state);
2914 }
2915
2916 static const struct dvb_frontend_ops drxd_ops = {
2917         .delsys = { SYS_DVBT},
2918         .info = {
2919                  .name = "Micronas DRXD DVB-T",
2920                  .frequency_min = 47125000,
2921                  .frequency_max = 855250000,
2922                  .frequency_stepsize = 166667,
2923                  .frequency_tolerance = 0,
2924                  .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2925                  FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2926                  FE_CAN_FEC_AUTO |
2927                  FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2928                  FE_CAN_QAM_AUTO |
2929                  FE_CAN_TRANSMISSION_MODE_AUTO |
2930                  FE_CAN_GUARD_INTERVAL_AUTO |
2931                  FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2932
2933         .release = drxd_release,
2934         .init = drxd_init,
2935         .sleep = drxd_sleep,
2936         .i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2937
2938         .set_frontend = drxd_set_frontend,
2939         .get_tune_settings = drxd_get_tune_settings,
2940
2941         .read_status = drxd_read_status,
2942         .read_ber = drxd_read_ber,
2943         .read_signal_strength = drxd_read_signal_strength,
2944         .read_snr = drxd_read_snr,
2945         .read_ucblocks = drxd_read_ucblocks,
2946 };
2947
2948 struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2949                                  void *priv, struct i2c_adapter *i2c,
2950                                  struct device *dev)
2951 {
2952         struct drxd_state *state = NULL;
2953
2954         state = kzalloc(sizeof(*state), GFP_KERNEL);
2955         if (!state)
2956                 return NULL;
2957
2958         state->ops = drxd_ops;
2959         state->dev = dev;
2960         state->config = *config;
2961         state->i2c = i2c;
2962         state->priv = priv;
2963
2964         mutex_init(&state->mutex);
2965
2966         if (Read16(state, 0, NULL, 0) < 0)
2967                 goto error;
2968
2969         state->frontend.ops = drxd_ops;
2970         state->frontend.demodulator_priv = state;
2971         ConfigureMPEGOutput(state, 0);
2972         /* add few initialization to allow gate control */
2973         CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2974         InitHI(state);
2975
2976         return &state->frontend;
2977
2978 error:
2979         printk(KERN_ERR "drxd: not found\n");
2980         kfree(state);
2981         return NULL;
2982 }
2983 EXPORT_SYMBOL(drxd_attach);
2984
2985 MODULE_DESCRIPTION("DRXD driver");
2986 MODULE_AUTHOR("Micronas");
2987 MODULE_LICENSE("GPL");