Merge 6.4-rc5 into usb-next
[platform/kernel/linux-starfive.git] / drivers / media / cec / core / cec-adap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
4  *
5  * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  */
7
8 #include <linux/errno.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/kmod.h>
13 #include <linux/ktime.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/string.h>
17 #include <linux/types.h>
18
19 #include <drm/drm_connector.h>
20 #include <drm/drm_device.h>
21 #include <drm/drm_edid.h>
22 #include <drm/drm_file.h>
23
24 #include "cec-priv.h"
25
26 static void cec_fill_msg_report_features(struct cec_adapter *adap,
27                                          struct cec_msg *msg,
28                                          unsigned int la_idx);
29
30 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
31 {
32         int i;
33
34         for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
35                 if (adap->log_addrs.log_addr[i] == log_addr)
36                         return i;
37         return -1;
38 }
39
40 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
41 {
42         int i = cec_log_addr2idx(adap, log_addr);
43
44         return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
45 }
46
47 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size,
48                            unsigned int *offset)
49 {
50         unsigned int loc = cec_get_edid_spa_location(edid, size);
51
52         if (offset)
53                 *offset = loc;
54         if (loc == 0)
55                 return CEC_PHYS_ADDR_INVALID;
56         return (edid[loc] << 8) | edid[loc + 1];
57 }
58 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr);
59
60 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info,
61                                  const struct drm_connector *connector)
62 {
63         memset(conn_info, 0, sizeof(*conn_info));
64         conn_info->type = CEC_CONNECTOR_TYPE_DRM;
65         conn_info->drm.card_no = connector->dev->primary->index;
66         conn_info->drm.connector_id = connector->base.id;
67 }
68 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm);
69
70 /*
71  * Queue a new event for this filehandle. If ts == 0, then set it
72  * to the current time.
73  *
74  * We keep a queue of at most max_event events where max_event differs
75  * per event. If the queue becomes full, then drop the oldest event and
76  * keep track of how many events we've dropped.
77  */
78 void cec_queue_event_fh(struct cec_fh *fh,
79                         const struct cec_event *new_ev, u64 ts)
80 {
81         static const u16 max_events[CEC_NUM_EVENTS] = {
82                 1, 1, 800, 800, 8, 8, 8, 8
83         };
84         struct cec_event_entry *entry;
85         unsigned int ev_idx = new_ev->event - 1;
86
87         if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events)))
88                 return;
89
90         if (ts == 0)
91                 ts = ktime_get_ns();
92
93         mutex_lock(&fh->lock);
94         if (ev_idx < CEC_NUM_CORE_EVENTS)
95                 entry = &fh->core_events[ev_idx];
96         else
97                 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
98         if (entry) {
99                 if (new_ev->event == CEC_EVENT_LOST_MSGS &&
100                     fh->queued_events[ev_idx]) {
101                         entry->ev.lost_msgs.lost_msgs +=
102                                 new_ev->lost_msgs.lost_msgs;
103                         goto unlock;
104                 }
105                 entry->ev = *new_ev;
106                 entry->ev.ts = ts;
107
108                 if (fh->queued_events[ev_idx] < max_events[ev_idx]) {
109                         /* Add new msg at the end of the queue */
110                         list_add_tail(&entry->list, &fh->events[ev_idx]);
111                         fh->queued_events[ev_idx]++;
112                         fh->total_queued_events++;
113                         goto unlock;
114                 }
115
116                 if (ev_idx >= CEC_NUM_CORE_EVENTS) {
117                         list_add_tail(&entry->list, &fh->events[ev_idx]);
118                         /* drop the oldest event */
119                         entry = list_first_entry(&fh->events[ev_idx],
120                                                  struct cec_event_entry, list);
121                         list_del(&entry->list);
122                         kfree(entry);
123                 }
124         }
125         /* Mark that events were lost */
126         entry = list_first_entry_or_null(&fh->events[ev_idx],
127                                          struct cec_event_entry, list);
128         if (entry)
129                 entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS;
130
131 unlock:
132         mutex_unlock(&fh->lock);
133         wake_up_interruptible(&fh->wait);
134 }
135
136 /* Queue a new event for all open filehandles. */
137 static void cec_queue_event(struct cec_adapter *adap,
138                             const struct cec_event *ev)
139 {
140         u64 ts = ktime_get_ns();
141         struct cec_fh *fh;
142
143         mutex_lock(&adap->devnode.lock_fhs);
144         list_for_each_entry(fh, &adap->devnode.fhs, list)
145                 cec_queue_event_fh(fh, ev, ts);
146         mutex_unlock(&adap->devnode.lock_fhs);
147 }
148
149 /* Notify userspace that the CEC pin changed state at the given time. */
150 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high,
151                              bool dropped_events, ktime_t ts)
152 {
153         struct cec_event ev = {
154                 .event = is_high ? CEC_EVENT_PIN_CEC_HIGH :
155                                    CEC_EVENT_PIN_CEC_LOW,
156                 .flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0,
157         };
158         struct cec_fh *fh;
159
160         mutex_lock(&adap->devnode.lock_fhs);
161         list_for_each_entry(fh, &adap->devnode.fhs, list) {
162                 if (fh->mode_follower == CEC_MODE_MONITOR_PIN)
163                         cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
164         }
165         mutex_unlock(&adap->devnode.lock_fhs);
166 }
167 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event);
168
169 /* Notify userspace that the HPD pin changed state at the given time. */
170 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
171 {
172         struct cec_event ev = {
173                 .event = is_high ? CEC_EVENT_PIN_HPD_HIGH :
174                                    CEC_EVENT_PIN_HPD_LOW,
175         };
176         struct cec_fh *fh;
177
178         mutex_lock(&adap->devnode.lock_fhs);
179         list_for_each_entry(fh, &adap->devnode.fhs, list)
180                 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
181         mutex_unlock(&adap->devnode.lock_fhs);
182 }
183 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event);
184
185 /* Notify userspace that the 5V pin changed state at the given time. */
186 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
187 {
188         struct cec_event ev = {
189                 .event = is_high ? CEC_EVENT_PIN_5V_HIGH :
190                                    CEC_EVENT_PIN_5V_LOW,
191         };
192         struct cec_fh *fh;
193
194         mutex_lock(&adap->devnode.lock_fhs);
195         list_for_each_entry(fh, &adap->devnode.fhs, list)
196                 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
197         mutex_unlock(&adap->devnode.lock_fhs);
198 }
199 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event);
200
201 /*
202  * Queue a new message for this filehandle.
203  *
204  * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
205  * queue becomes full, then drop the oldest message and keep track
206  * of how many messages we've dropped.
207  */
208 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
209 {
210         static const struct cec_event ev_lost_msgs = {
211                 .event = CEC_EVENT_LOST_MSGS,
212                 .flags = 0,
213                 {
214                         .lost_msgs = { 1 },
215                 },
216         };
217         struct cec_msg_entry *entry;
218
219         mutex_lock(&fh->lock);
220         entry = kmalloc(sizeof(*entry), GFP_KERNEL);
221         if (entry) {
222                 entry->msg = *msg;
223                 /* Add new msg at the end of the queue */
224                 list_add_tail(&entry->list, &fh->msgs);
225
226                 if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) {
227                         /* All is fine if there is enough room */
228                         fh->queued_msgs++;
229                         mutex_unlock(&fh->lock);
230                         wake_up_interruptible(&fh->wait);
231                         return;
232                 }
233
234                 /*
235                  * if the message queue is full, then drop the oldest one and
236                  * send a lost message event.
237                  */
238                 entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list);
239                 list_del(&entry->list);
240                 kfree(entry);
241         }
242         mutex_unlock(&fh->lock);
243
244         /*
245          * We lost a message, either because kmalloc failed or the queue
246          * was full.
247          */
248         cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns());
249 }
250
251 /*
252  * Queue the message for those filehandles that are in monitor mode.
253  * If valid_la is true (this message is for us or was sent by us),
254  * then pass it on to any monitoring filehandle. If this message
255  * isn't for us or from us, then only give it to filehandles that
256  * are in MONITOR_ALL mode.
257  *
258  * This can only happen if the CEC_CAP_MONITOR_ALL capability is
259  * set and the CEC adapter was placed in 'monitor all' mode.
260  */
261 static void cec_queue_msg_monitor(struct cec_adapter *adap,
262                                   const struct cec_msg *msg,
263                                   bool valid_la)
264 {
265         struct cec_fh *fh;
266         u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
267                                       CEC_MODE_MONITOR_ALL;
268
269         mutex_lock(&adap->devnode.lock_fhs);
270         list_for_each_entry(fh, &adap->devnode.fhs, list) {
271                 if (fh->mode_follower >= monitor_mode)
272                         cec_queue_msg_fh(fh, msg);
273         }
274         mutex_unlock(&adap->devnode.lock_fhs);
275 }
276
277 /*
278  * Queue the message for follower filehandles.
279  */
280 static void cec_queue_msg_followers(struct cec_adapter *adap,
281                                     const struct cec_msg *msg)
282 {
283         struct cec_fh *fh;
284
285         mutex_lock(&adap->devnode.lock_fhs);
286         list_for_each_entry(fh, &adap->devnode.fhs, list) {
287                 if (fh->mode_follower == CEC_MODE_FOLLOWER)
288                         cec_queue_msg_fh(fh, msg);
289         }
290         mutex_unlock(&adap->devnode.lock_fhs);
291 }
292
293 /* Notify userspace of an adapter state change. */
294 static void cec_post_state_event(struct cec_adapter *adap)
295 {
296         struct cec_event ev = {
297                 .event = CEC_EVENT_STATE_CHANGE,
298         };
299
300         ev.state_change.phys_addr = adap->phys_addr;
301         ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
302         ev.state_change.have_conn_info =
303                 adap->conn_info.type != CEC_CONNECTOR_TYPE_NO_CONNECTOR;
304         cec_queue_event(adap, &ev);
305 }
306
307 /*
308  * A CEC transmit (and a possible wait for reply) completed.
309  * If this was in blocking mode, then complete it, otherwise
310  * queue the message for userspace to dequeue later.
311  *
312  * This function is called with adap->lock held.
313  */
314 static void cec_data_completed(struct cec_data *data)
315 {
316         /*
317          * Delete this transmit from the filehandle's xfer_list since
318          * we're done with it.
319          *
320          * Note that if the filehandle is closed before this transmit
321          * finished, then the release() function will set data->fh to NULL.
322          * Without that we would be referring to a closed filehandle.
323          */
324         if (data->fh)
325                 list_del_init(&data->xfer_list);
326
327         if (data->blocking) {
328                 /*
329                  * Someone is blocking so mark the message as completed
330                  * and call complete.
331                  */
332                 data->completed = true;
333                 complete(&data->c);
334         } else {
335                 /*
336                  * No blocking, so just queue the message if needed and
337                  * free the memory.
338                  */
339                 if (data->fh)
340                         cec_queue_msg_fh(data->fh, &data->msg);
341                 kfree(data);
342         }
343 }
344
345 /*
346  * A pending CEC transmit needs to be cancelled, either because the CEC
347  * adapter is disabled or the transmit takes an impossibly long time to
348  * finish, or the reply timed out.
349  *
350  * This function is called with adap->lock held.
351  */
352 static void cec_data_cancel(struct cec_data *data, u8 tx_status, u8 rx_status)
353 {
354         struct cec_adapter *adap = data->adap;
355
356         /*
357          * It's either the current transmit, or it is a pending
358          * transmit. Take the appropriate action to clear it.
359          */
360         if (adap->transmitting == data) {
361                 adap->transmitting = NULL;
362         } else {
363                 list_del_init(&data->list);
364                 if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
365                         if (!WARN_ON(!adap->transmit_queue_sz))
366                                 adap->transmit_queue_sz--;
367         }
368
369         if (data->msg.tx_status & CEC_TX_STATUS_OK) {
370                 data->msg.rx_ts = ktime_get_ns();
371                 data->msg.rx_status = rx_status;
372                 if (!data->blocking)
373                         data->msg.tx_status = 0;
374         } else {
375                 data->msg.tx_ts = ktime_get_ns();
376                 data->msg.tx_status |= tx_status |
377                                        CEC_TX_STATUS_MAX_RETRIES;
378                 data->msg.tx_error_cnt++;
379                 data->attempts = 0;
380                 if (!data->blocking)
381                         data->msg.rx_status = 0;
382         }
383
384         /* Queue transmitted message for monitoring purposes */
385         cec_queue_msg_monitor(adap, &data->msg, 1);
386
387         if (!data->blocking && data->msg.sequence)
388                 /* Allow drivers to process the message first */
389                 call_op(adap, received, &data->msg);
390
391         cec_data_completed(data);
392 }
393
394 /*
395  * Flush all pending transmits and cancel any pending timeout work.
396  *
397  * This function is called with adap->lock held.
398  */
399 static void cec_flush(struct cec_adapter *adap)
400 {
401         struct cec_data *data, *n;
402
403         /*
404          * If the adapter is disabled, or we're asked to stop,
405          * then cancel any pending transmits.
406          */
407         while (!list_empty(&adap->transmit_queue)) {
408                 data = list_first_entry(&adap->transmit_queue,
409                                         struct cec_data, list);
410                 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
411         }
412         if (adap->transmitting)
413                 adap->transmit_in_progress_aborted = true;
414
415         /* Cancel the pending timeout work. */
416         list_for_each_entry_safe(data, n, &adap->wait_queue, list) {
417                 if (cancel_delayed_work(&data->work))
418                         cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED);
419                 /*
420                  * If cancel_delayed_work returned false, then
421                  * the cec_wait_timeout function is running,
422                  * which will call cec_data_completed. So no
423                  * need to do anything special in that case.
424                  */
425         }
426         /*
427          * If something went wrong and this counter isn't what it should
428          * be, then this will reset it back to 0. Warn if it is not 0,
429          * since it indicates a bug, either in this framework or in a
430          * CEC driver.
431          */
432         if (WARN_ON(adap->transmit_queue_sz))
433                 adap->transmit_queue_sz = 0;
434 }
435
436 /*
437  * Main CEC state machine
438  *
439  * Wait until the thread should be stopped, or we are not transmitting and
440  * a new transmit message is queued up, in which case we start transmitting
441  * that message. When the adapter finished transmitting the message it will
442  * call cec_transmit_done().
443  *
444  * If the adapter is disabled, then remove all queued messages instead.
445  *
446  * If the current transmit times out, then cancel that transmit.
447  */
448 int cec_thread_func(void *_adap)
449 {
450         struct cec_adapter *adap = _adap;
451
452         for (;;) {
453                 unsigned int signal_free_time;
454                 struct cec_data *data;
455                 bool timeout = false;
456                 u8 attempts;
457
458                 if (adap->transmit_in_progress) {
459                         int err;
460
461                         /*
462                          * We are transmitting a message, so add a timeout
463                          * to prevent the state machine to get stuck waiting
464                          * for this message to finalize and add a check to
465                          * see if the adapter is disabled in which case the
466                          * transmit should be canceled.
467                          */
468                         err = wait_event_interruptible_timeout(adap->kthread_waitq,
469                                 (adap->needs_hpd &&
470                                  (!adap->is_configured && !adap->is_configuring)) ||
471                                 kthread_should_stop() ||
472                                 (!adap->transmit_in_progress &&
473                                  !list_empty(&adap->transmit_queue)),
474                                 msecs_to_jiffies(adap->xfer_timeout_ms));
475                         timeout = err == 0;
476                 } else {
477                         /* Otherwise we just wait for something to happen. */
478                         wait_event_interruptible(adap->kthread_waitq,
479                                 kthread_should_stop() ||
480                                 (!adap->transmit_in_progress &&
481                                  !list_empty(&adap->transmit_queue)));
482                 }
483
484                 mutex_lock(&adap->lock);
485
486                 if ((adap->needs_hpd &&
487                      (!adap->is_configured && !adap->is_configuring)) ||
488                     kthread_should_stop()) {
489                         cec_flush(adap);
490                         goto unlock;
491                 }
492
493                 if (adap->transmit_in_progress && timeout) {
494                         /*
495                          * If we timeout, then log that. Normally this does
496                          * not happen and it is an indication of a faulty CEC
497                          * adapter driver, or the CEC bus is in some weird
498                          * state. On rare occasions it can happen if there is
499                          * so much traffic on the bus that the adapter was
500                          * unable to transmit for xfer_timeout_ms (2.1s by
501                          * default).
502                          */
503                         if (adap->transmitting) {
504                                 pr_warn("cec-%s: message %*ph timed out\n", adap->name,
505                                         adap->transmitting->msg.len,
506                                         adap->transmitting->msg.msg);
507                                 /* Just give up on this. */
508                                 cec_data_cancel(adap->transmitting,
509                                                 CEC_TX_STATUS_TIMEOUT, 0);
510                         } else {
511                                 pr_warn("cec-%s: transmit timed out\n", adap->name);
512                         }
513                         adap->transmit_in_progress = false;
514                         adap->tx_timeouts++;
515                         goto unlock;
516                 }
517
518                 /*
519                  * If we are still transmitting, or there is nothing new to
520                  * transmit, then just continue waiting.
521                  */
522                 if (adap->transmit_in_progress || list_empty(&adap->transmit_queue))
523                         goto unlock;
524
525                 /* Get a new message to transmit */
526                 data = list_first_entry(&adap->transmit_queue,
527                                         struct cec_data, list);
528                 list_del_init(&data->list);
529                 if (!WARN_ON(!data->adap->transmit_queue_sz))
530                         adap->transmit_queue_sz--;
531
532                 /* Make this the current transmitting message */
533                 adap->transmitting = data;
534
535                 /*
536                  * Suggested number of attempts as per the CEC 2.0 spec:
537                  * 4 attempts is the default, except for 'secondary poll
538                  * messages', i.e. poll messages not sent during the adapter
539                  * configuration phase when it allocates logical addresses.
540                  */
541                 if (data->msg.len == 1 && adap->is_configured)
542                         attempts = 2;
543                 else
544                         attempts = 4;
545
546                 /* Set the suggested signal free time */
547                 if (data->attempts) {
548                         /* should be >= 3 data bit periods for a retry */
549                         signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
550                 } else if (adap->last_initiator !=
551                            cec_msg_initiator(&data->msg)) {
552                         /* should be >= 5 data bit periods for new initiator */
553                         signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
554                         adap->last_initiator = cec_msg_initiator(&data->msg);
555                 } else {
556                         /*
557                          * should be >= 7 data bit periods for sending another
558                          * frame immediately after another.
559                          */
560                         signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
561                 }
562                 if (data->attempts == 0)
563                         data->attempts = attempts;
564
565                 adap->transmit_in_progress_aborted = false;
566                 /* Tell the adapter to transmit, cancel on error */
567                 if (call_op(adap, adap_transmit, data->attempts,
568                             signal_free_time, &data->msg))
569                         cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
570                 else
571                         adap->transmit_in_progress = true;
572
573 unlock:
574                 mutex_unlock(&adap->lock);
575
576                 if (kthread_should_stop())
577                         break;
578         }
579         return 0;
580 }
581
582 /*
583  * Called by the CEC adapter if a transmit finished.
584  */
585 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
586                           u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
587                           u8 error_cnt, ktime_t ts)
588 {
589         struct cec_data *data;
590         struct cec_msg *msg;
591         unsigned int attempts_made = arb_lost_cnt + nack_cnt +
592                                      low_drive_cnt + error_cnt;
593         bool done = status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK);
594         bool aborted = adap->transmit_in_progress_aborted;
595
596         dprintk(2, "%s: status 0x%02x\n", __func__, status);
597         if (attempts_made < 1)
598                 attempts_made = 1;
599
600         mutex_lock(&adap->lock);
601         data = adap->transmitting;
602         if (!data) {
603                 /*
604                  * This might happen if a transmit was issued and the cable is
605                  * unplugged while the transmit is ongoing. Ignore this
606                  * transmit in that case.
607                  */
608                 if (!adap->transmit_in_progress)
609                         dprintk(1, "%s was called without an ongoing transmit!\n",
610                                 __func__);
611                 adap->transmit_in_progress = false;
612                 goto wake_thread;
613         }
614         adap->transmit_in_progress = false;
615         adap->transmit_in_progress_aborted = false;
616
617         msg = &data->msg;
618
619         /* Drivers must fill in the status! */
620         WARN_ON(status == 0);
621         msg->tx_ts = ktime_to_ns(ts);
622         msg->tx_status |= status;
623         msg->tx_arb_lost_cnt += arb_lost_cnt;
624         msg->tx_nack_cnt += nack_cnt;
625         msg->tx_low_drive_cnt += low_drive_cnt;
626         msg->tx_error_cnt += error_cnt;
627
628         /* Mark that we're done with this transmit */
629         adap->transmitting = NULL;
630
631         /*
632          * If there are still retry attempts left and there was an error and
633          * the hardware didn't signal that it retried itself (by setting
634          * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
635          */
636         if (!aborted && data->attempts > attempts_made && !done) {
637                 /* Retry this message */
638                 data->attempts -= attempts_made;
639                 if (msg->timeout)
640                         dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n",
641                                 msg->len, msg->msg, data->attempts, msg->reply);
642                 else
643                         dprintk(2, "retransmit: %*ph (attempts: %d)\n",
644                                 msg->len, msg->msg, data->attempts);
645                 /* Add the message in front of the transmit queue */
646                 list_add(&data->list, &adap->transmit_queue);
647                 adap->transmit_queue_sz++;
648                 goto wake_thread;
649         }
650
651         if (aborted && !done)
652                 status |= CEC_TX_STATUS_ABORTED;
653         data->attempts = 0;
654
655         /* Always set CEC_TX_STATUS_MAX_RETRIES on error */
656         if (!(status & CEC_TX_STATUS_OK))
657                 msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
658
659         /* Queue transmitted message for monitoring purposes */
660         cec_queue_msg_monitor(adap, msg, 1);
661
662         if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
663             msg->timeout) {
664                 /*
665                  * Queue the message into the wait queue if we want to wait
666                  * for a reply.
667                  */
668                 list_add_tail(&data->list, &adap->wait_queue);
669                 schedule_delayed_work(&data->work,
670                                       msecs_to_jiffies(msg->timeout));
671         } else {
672                 /* Otherwise we're done */
673                 cec_data_completed(data);
674         }
675
676 wake_thread:
677         /*
678          * Wake up the main thread to see if another message is ready
679          * for transmitting or to retry the current message.
680          */
681         wake_up_interruptible(&adap->kthread_waitq);
682         mutex_unlock(&adap->lock);
683 }
684 EXPORT_SYMBOL_GPL(cec_transmit_done_ts);
685
686 void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
687                                   u8 status, ktime_t ts)
688 {
689         switch (status & ~CEC_TX_STATUS_MAX_RETRIES) {
690         case CEC_TX_STATUS_OK:
691                 cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts);
692                 return;
693         case CEC_TX_STATUS_ARB_LOST:
694                 cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts);
695                 return;
696         case CEC_TX_STATUS_NACK:
697                 cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts);
698                 return;
699         case CEC_TX_STATUS_LOW_DRIVE:
700                 cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts);
701                 return;
702         case CEC_TX_STATUS_ERROR:
703                 cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts);
704                 return;
705         default:
706                 /* Should never happen */
707                 WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status);
708                 return;
709         }
710 }
711 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts);
712
713 /*
714  * Called when waiting for a reply times out.
715  */
716 static void cec_wait_timeout(struct work_struct *work)
717 {
718         struct cec_data *data = container_of(work, struct cec_data, work.work);
719         struct cec_adapter *adap = data->adap;
720
721         mutex_lock(&adap->lock);
722         /*
723          * Sanity check in case the timeout and the arrival of the message
724          * happened at the same time.
725          */
726         if (list_empty(&data->list))
727                 goto unlock;
728
729         /* Mark the message as timed out */
730         list_del_init(&data->list);
731         cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_TIMEOUT);
732 unlock:
733         mutex_unlock(&adap->lock);
734 }
735
736 /*
737  * Transmit a message. The fh argument may be NULL if the transmit is not
738  * associated with a specific filehandle.
739  *
740  * This function is called with adap->lock held.
741  */
742 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
743                         struct cec_fh *fh, bool block)
744 {
745         struct cec_data *data;
746         bool is_raw = msg_is_raw(msg);
747
748         if (adap->devnode.unregistered)
749                 return -ENODEV;
750
751         msg->rx_ts = 0;
752         msg->tx_ts = 0;
753         msg->rx_status = 0;
754         msg->tx_status = 0;
755         msg->tx_arb_lost_cnt = 0;
756         msg->tx_nack_cnt = 0;
757         msg->tx_low_drive_cnt = 0;
758         msg->tx_error_cnt = 0;
759         msg->sequence = 0;
760
761         if (msg->reply && msg->timeout == 0) {
762                 /* Make sure the timeout isn't 0. */
763                 msg->timeout = 1000;
764         }
765         msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW;
766
767         if (!msg->timeout)
768                 msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS;
769
770         /* Sanity checks */
771         if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
772                 dprintk(1, "%s: invalid length %d\n", __func__, msg->len);
773                 return -EINVAL;
774         }
775
776         memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
777
778         if (msg->timeout)
779                 dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
780                         __func__, msg->len, msg->msg, msg->reply,
781                         !block ? ", nb" : "");
782         else
783                 dprintk(2, "%s: %*ph%s\n",
784                         __func__, msg->len, msg->msg, !block ? " (nb)" : "");
785
786         if (msg->timeout && msg->len == 1) {
787                 dprintk(1, "%s: can't reply to poll msg\n", __func__);
788                 return -EINVAL;
789         }
790
791         if (is_raw) {
792                 if (!capable(CAP_SYS_RAWIO))
793                         return -EPERM;
794         } else {
795                 /* A CDC-Only device can only send CDC messages */
796                 if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) &&
797                     (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) {
798                         dprintk(1, "%s: not a CDC message\n", __func__);
799                         return -EINVAL;
800                 }
801
802                 if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
803                         msg->msg[2] = adap->phys_addr >> 8;
804                         msg->msg[3] = adap->phys_addr & 0xff;
805                 }
806
807                 if (msg->len == 1) {
808                         if (cec_msg_destination(msg) == 0xf) {
809                                 dprintk(1, "%s: invalid poll message\n",
810                                         __func__);
811                                 return -EINVAL;
812                         }
813                         if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
814                                 /*
815                                  * If the destination is a logical address our
816                                  * adapter has already claimed, then just NACK
817                                  * this. It depends on the hardware what it will
818                                  * do with a POLL to itself (some OK this), so
819                                  * it is just as easy to handle it here so the
820                                  * behavior will be consistent.
821                                  */
822                                 msg->tx_ts = ktime_get_ns();
823                                 msg->tx_status = CEC_TX_STATUS_NACK |
824                                         CEC_TX_STATUS_MAX_RETRIES;
825                                 msg->tx_nack_cnt = 1;
826                                 msg->sequence = ++adap->sequence;
827                                 if (!msg->sequence)
828                                         msg->sequence = ++adap->sequence;
829                                 return 0;
830                         }
831                 }
832                 if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
833                     cec_has_log_addr(adap, cec_msg_destination(msg))) {
834                         dprintk(1, "%s: destination is the adapter itself\n",
835                                 __func__);
836                         return -EINVAL;
837                 }
838                 if (msg->len > 1 && adap->is_configured &&
839                     !cec_has_log_addr(adap, cec_msg_initiator(msg))) {
840                         dprintk(1, "%s: initiator has unknown logical address %d\n",
841                                 __func__, cec_msg_initiator(msg));
842                         return -EINVAL;
843                 }
844                 /*
845                  * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be
846                  * transmitted to a TV, even if the adapter is unconfigured.
847                  * This makes it possible to detect or wake up displays that
848                  * pull down the HPD when in standby.
849                  */
850                 if (!adap->is_configured && !adap->is_configuring &&
851                     (msg->len > 2 ||
852                      cec_msg_destination(msg) != CEC_LOG_ADDR_TV ||
853                      (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON &&
854                       msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) {
855                         dprintk(1, "%s: adapter is unconfigured\n", __func__);
856                         return -ENONET;
857                 }
858         }
859
860         if (!adap->is_configured && !adap->is_configuring) {
861                 if (adap->needs_hpd) {
862                         dprintk(1, "%s: adapter is unconfigured and needs HPD\n",
863                                 __func__);
864                         return -ENONET;
865                 }
866                 if (msg->reply) {
867                         dprintk(1, "%s: invalid msg->reply\n", __func__);
868                         return -EINVAL;
869                 }
870         }
871
872         if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) {
873                 dprintk(2, "%s: transmit queue full\n", __func__);
874                 return -EBUSY;
875         }
876
877         data = kzalloc(sizeof(*data), GFP_KERNEL);
878         if (!data)
879                 return -ENOMEM;
880
881         msg->sequence = ++adap->sequence;
882         if (!msg->sequence)
883                 msg->sequence = ++adap->sequence;
884
885         data->msg = *msg;
886         data->fh = fh;
887         data->adap = adap;
888         data->blocking = block;
889
890         init_completion(&data->c);
891         INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
892
893         if (fh)
894                 list_add_tail(&data->xfer_list, &fh->xfer_list);
895         else
896                 INIT_LIST_HEAD(&data->xfer_list);
897
898         list_add_tail(&data->list, &adap->transmit_queue);
899         adap->transmit_queue_sz++;
900         if (!adap->transmitting)
901                 wake_up_interruptible(&adap->kthread_waitq);
902
903         /* All done if we don't need to block waiting for completion */
904         if (!block)
905                 return 0;
906
907         /*
908          * Release the lock and wait, retake the lock afterwards.
909          */
910         mutex_unlock(&adap->lock);
911         wait_for_completion_killable(&data->c);
912         if (!data->completed)
913                 cancel_delayed_work_sync(&data->work);
914         mutex_lock(&adap->lock);
915
916         /* Cancel the transmit if it was interrupted */
917         if (!data->completed) {
918                 if (data->msg.tx_status & CEC_TX_STATUS_OK)
919                         cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED);
920                 else
921                         cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
922         }
923
924         /* The transmit completed (possibly with an error) */
925         *msg = data->msg;
926         if (WARN_ON(!list_empty(&data->list)))
927                 list_del(&data->list);
928         if (WARN_ON(!list_empty(&data->xfer_list)))
929                 list_del(&data->xfer_list);
930         kfree(data);
931         return 0;
932 }
933
934 /* Helper function to be used by drivers and this framework. */
935 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
936                      bool block)
937 {
938         int ret;
939
940         mutex_lock(&adap->lock);
941         ret = cec_transmit_msg_fh(adap, msg, NULL, block);
942         mutex_unlock(&adap->lock);
943         return ret;
944 }
945 EXPORT_SYMBOL_GPL(cec_transmit_msg);
946
947 /*
948  * I don't like forward references but without this the low-level
949  * cec_received_msg() function would come after a bunch of high-level
950  * CEC protocol handling functions. That was very confusing.
951  */
952 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
953                               bool is_reply);
954
955 #define DIRECTED        0x80
956 #define BCAST1_4        0x40
957 #define BCAST2_0        0x20    /* broadcast only allowed for >= 2.0 */
958 #define BCAST           (BCAST1_4 | BCAST2_0)
959 #define BOTH            (BCAST | DIRECTED)
960
961 /*
962  * Specify minimum length and whether the message is directed, broadcast
963  * or both. Messages that do not match the criteria are ignored as per
964  * the CEC specification.
965  */
966 static const u8 cec_msg_size[256] = {
967         [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
968         [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
969         [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
970         [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
971         [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
972         [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
973         [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
974         [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
975         [CEC_MSG_STANDBY] = 2 | BOTH,
976         [CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
977         [CEC_MSG_RECORD_ON] = 3 | DIRECTED,
978         [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
979         [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
980         [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
981         [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
982         [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
983         [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
984         [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
985         [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
986         [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
987         [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
988         [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
989         [CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
990         [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
991         [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
992         [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
993         [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
994         [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
995         [CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
996         [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
997         [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
998         [CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
999         [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
1000         [CEC_MSG_PLAY] = 3 | DIRECTED,
1001         [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
1002         [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
1003         [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
1004         [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
1005         [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
1006         [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
1007         [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
1008         [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
1009         [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
1010         [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
1011         [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
1012         [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
1013         [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
1014         [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
1015         [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
1016         [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
1017         [CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
1018         [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
1019         [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
1020         [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
1021         [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
1022         [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
1023         [CEC_MSG_ABORT] = 2 | DIRECTED,
1024         [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
1025         [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
1026         [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
1027         [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1028         [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1029         [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
1030         [CEC_MSG_SET_AUDIO_VOLUME_LEVEL] = 3 | DIRECTED,
1031         [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
1032         [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
1033         [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
1034         [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
1035         [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
1036         [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
1037         [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
1038         [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
1039         [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
1040         [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
1041         [CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
1042         [CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
1043 };
1044
1045 /* Called by the CEC adapter if a message is received */
1046 void cec_received_msg_ts(struct cec_adapter *adap,
1047                          struct cec_msg *msg, ktime_t ts)
1048 {
1049         struct cec_data *data;
1050         u8 msg_init = cec_msg_initiator(msg);
1051         u8 msg_dest = cec_msg_destination(msg);
1052         u8 cmd = msg->msg[1];
1053         bool is_reply = false;
1054         bool valid_la = true;
1055         bool monitor_valid_la = true;
1056         u8 min_len = 0;
1057
1058         if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
1059                 return;
1060
1061         if (adap->devnode.unregistered)
1062                 return;
1063
1064         /*
1065          * Some CEC adapters will receive the messages that they transmitted.
1066          * This test filters out those messages by checking if we are the
1067          * initiator, and just returning in that case.
1068          *
1069          * Note that this won't work if this is an Unregistered device.
1070          *
1071          * It is bad practice if the hardware receives the message that it
1072          * transmitted and luckily most CEC adapters behave correctly in this
1073          * respect.
1074          */
1075         if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
1076             cec_has_log_addr(adap, msg_init))
1077                 return;
1078
1079         msg->rx_ts = ktime_to_ns(ts);
1080         msg->rx_status = CEC_RX_STATUS_OK;
1081         msg->sequence = msg->reply = msg->timeout = 0;
1082         msg->tx_status = 0;
1083         msg->tx_ts = 0;
1084         msg->tx_arb_lost_cnt = 0;
1085         msg->tx_nack_cnt = 0;
1086         msg->tx_low_drive_cnt = 0;
1087         msg->tx_error_cnt = 0;
1088         msg->flags = 0;
1089         memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
1090
1091         mutex_lock(&adap->lock);
1092         dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1093
1094         if (!adap->transmit_in_progress)
1095                 adap->last_initiator = 0xff;
1096
1097         /* Check if this message was for us (directed or broadcast). */
1098         if (!cec_msg_is_broadcast(msg)) {
1099                 valid_la = cec_has_log_addr(adap, msg_dest);
1100                 monitor_valid_la = valid_la;
1101         }
1102
1103         /*
1104          * Check if the length is not too short or if the message is a
1105          * broadcast message where a directed message was expected or
1106          * vice versa. If so, then the message has to be ignored (according
1107          * to section CEC 7.3 and CEC 12.2).
1108          */
1109         if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
1110                 u8 dir_fl = cec_msg_size[cmd] & BOTH;
1111
1112                 min_len = cec_msg_size[cmd] & 0x1f;
1113                 if (msg->len < min_len)
1114                         valid_la = false;
1115                 else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
1116                         valid_la = false;
1117                 else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST))
1118                         valid_la = false;
1119                 else if (cec_msg_is_broadcast(msg) &&
1120                          adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 &&
1121                          !(dir_fl & BCAST1_4))
1122                         valid_la = false;
1123         }
1124         if (valid_la && min_len) {
1125                 /* These messages have special length requirements */
1126                 switch (cmd) {
1127                 case CEC_MSG_TIMER_STATUS:
1128                         if (msg->msg[2] & 0x10) {
1129                                 switch (msg->msg[2] & 0xf) {
1130                                 case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE:
1131                                 case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE:
1132                                         if (msg->len < 5)
1133                                                 valid_la = false;
1134                                         break;
1135                                 }
1136                         } else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) {
1137                                 if (msg->len < 5)
1138                                         valid_la = false;
1139                         }
1140                         break;
1141                 case CEC_MSG_RECORD_ON:
1142                         switch (msg->msg[2]) {
1143                         case CEC_OP_RECORD_SRC_OWN:
1144                                 break;
1145                         case CEC_OP_RECORD_SRC_DIGITAL:
1146                                 if (msg->len < 10)
1147                                         valid_la = false;
1148                                 break;
1149                         case CEC_OP_RECORD_SRC_ANALOG:
1150                                 if (msg->len < 7)
1151                                         valid_la = false;
1152                                 break;
1153                         case CEC_OP_RECORD_SRC_EXT_PLUG:
1154                                 if (msg->len < 4)
1155                                         valid_la = false;
1156                                 break;
1157                         case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
1158                                 if (msg->len < 5)
1159                                         valid_la = false;
1160                                 break;
1161                         }
1162                         break;
1163                 }
1164         }
1165
1166         /* It's a valid message and not a poll or CDC message */
1167         if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
1168                 bool abort = cmd == CEC_MSG_FEATURE_ABORT;
1169
1170                 /* The aborted command is in msg[2] */
1171                 if (abort)
1172                         cmd = msg->msg[2];
1173
1174                 /*
1175                  * Walk over all transmitted messages that are waiting for a
1176                  * reply.
1177                  */
1178                 list_for_each_entry(data, &adap->wait_queue, list) {
1179                         struct cec_msg *dst = &data->msg;
1180
1181                         /*
1182                          * The *only* CEC message that has two possible replies
1183                          * is CEC_MSG_INITIATE_ARC.
1184                          * In this case allow either of the two replies.
1185                          */
1186                         if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
1187                             (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
1188                              cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
1189                             (dst->reply == CEC_MSG_REPORT_ARC_INITIATED ||
1190                              dst->reply == CEC_MSG_REPORT_ARC_TERMINATED))
1191                                 dst->reply = cmd;
1192
1193                         /* Does the command match? */
1194                         if ((abort && cmd != dst->msg[1]) ||
1195                             (!abort && cmd != dst->reply))
1196                                 continue;
1197
1198                         /* Does the addressing match? */
1199                         if (msg_init != cec_msg_destination(dst) &&
1200                             !cec_msg_is_broadcast(dst))
1201                                 continue;
1202
1203                         /* We got a reply */
1204                         memcpy(dst->msg, msg->msg, msg->len);
1205                         dst->len = msg->len;
1206                         dst->rx_ts = msg->rx_ts;
1207                         dst->rx_status = msg->rx_status;
1208                         if (abort)
1209                                 dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1210                         msg->flags = dst->flags;
1211                         msg->sequence = dst->sequence;
1212                         /* Remove it from the wait_queue */
1213                         list_del_init(&data->list);
1214
1215                         /* Cancel the pending timeout work */
1216                         if (!cancel_delayed_work(&data->work)) {
1217                                 mutex_unlock(&adap->lock);
1218                                 cancel_delayed_work_sync(&data->work);
1219                                 mutex_lock(&adap->lock);
1220                         }
1221                         /*
1222                          * Mark this as a reply, provided someone is still
1223                          * waiting for the answer.
1224                          */
1225                         if (data->fh)
1226                                 is_reply = true;
1227                         cec_data_completed(data);
1228                         break;
1229                 }
1230         }
1231         mutex_unlock(&adap->lock);
1232
1233         /* Pass the message on to any monitoring filehandles */
1234         cec_queue_msg_monitor(adap, msg, monitor_valid_la);
1235
1236         /* We're done if it is not for us or a poll message */
1237         if (!valid_la || msg->len <= 1)
1238                 return;
1239
1240         if (adap->log_addrs.log_addr_mask == 0)
1241                 return;
1242
1243         /*
1244          * Process the message on the protocol level. If is_reply is true,
1245          * then cec_receive_notify() won't pass on the reply to the listener(s)
1246          * since that was already done by cec_data_completed() above.
1247          */
1248         cec_receive_notify(adap, msg, is_reply);
1249 }
1250 EXPORT_SYMBOL_GPL(cec_received_msg_ts);
1251
1252 /* Logical Address Handling */
1253
1254 /*
1255  * Attempt to claim a specific logical address.
1256  *
1257  * This function is called with adap->lock held.
1258  */
1259 static int cec_config_log_addr(struct cec_adapter *adap,
1260                                unsigned int idx,
1261                                unsigned int log_addr)
1262 {
1263         struct cec_log_addrs *las = &adap->log_addrs;
1264         struct cec_msg msg = { };
1265         const unsigned int max_retries = 2;
1266         unsigned int i;
1267         int err;
1268
1269         if (cec_has_log_addr(adap, log_addr))
1270                 return 0;
1271
1272         /* Send poll message */
1273         msg.len = 1;
1274         msg.msg[0] = (log_addr << 4) | log_addr;
1275
1276         for (i = 0; i < max_retries; i++) {
1277                 err = cec_transmit_msg_fh(adap, &msg, NULL, true);
1278
1279                 /*
1280                  * While trying to poll the physical address was reset
1281                  * and the adapter was unconfigured, so bail out.
1282                  */
1283                 if (adap->phys_addr == CEC_PHYS_ADDR_INVALID)
1284                         return -EINTR;
1285
1286                 /* Also bail out if the PA changed while configuring. */
1287                 if (adap->must_reconfigure)
1288                         return -EINTR;
1289
1290                 if (err)
1291                         return err;
1292
1293                 /*
1294                  * The message was aborted or timed out due to a disconnect or
1295                  * unconfigure, just bail out.
1296                  */
1297                 if (msg.tx_status &
1298                     (CEC_TX_STATUS_ABORTED | CEC_TX_STATUS_TIMEOUT))
1299                         return -EINTR;
1300                 if (msg.tx_status & CEC_TX_STATUS_OK)
1301                         return 0;
1302                 if (msg.tx_status & CEC_TX_STATUS_NACK)
1303                         break;
1304                 /*
1305                  * Retry up to max_retries times if the message was neither
1306                  * OKed or NACKed. This can happen due to e.g. a Lost
1307                  * Arbitration condition.
1308                  */
1309         }
1310
1311         /*
1312          * If we are unable to get an OK or a NACK after max_retries attempts
1313          * (and note that each attempt already consists of four polls), then
1314          * we assume that something is really weird and that it is not a
1315          * good idea to try and claim this logical address.
1316          */
1317         if (i == max_retries) {
1318                 dprintk(0, "polling for LA %u failed with tx_status=0x%04x\n",
1319                         log_addr, msg.tx_status);
1320                 return 0;
1321         }
1322
1323         /*
1324          * Message not acknowledged, so this logical
1325          * address is free to use.
1326          */
1327         err = call_op(adap, adap_log_addr, log_addr);
1328         if (err)
1329                 return err;
1330
1331         las->log_addr[idx] = log_addr;
1332         las->log_addr_mask |= 1 << log_addr;
1333         return 1;
1334 }
1335
1336 /*
1337  * Unconfigure the adapter: clear all logical addresses and send
1338  * the state changed event.
1339  *
1340  * This function is called with adap->lock held.
1341  */
1342 static void cec_adap_unconfigure(struct cec_adapter *adap)
1343 {
1344         if (!adap->needs_hpd || adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1345                 WARN_ON(call_op(adap, adap_log_addr, CEC_LOG_ADDR_INVALID));
1346         adap->log_addrs.log_addr_mask = 0;
1347         adap->is_configured = false;
1348         cec_flush(adap);
1349         wake_up_interruptible(&adap->kthread_waitq);
1350         cec_post_state_event(adap);
1351         call_void_op(adap, adap_configured, false);
1352 }
1353
1354 /*
1355  * Attempt to claim the required logical addresses.
1356  */
1357 static int cec_config_thread_func(void *arg)
1358 {
1359         /* The various LAs for each type of device */
1360         static const u8 tv_log_addrs[] = {
1361                 CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
1362                 CEC_LOG_ADDR_INVALID
1363         };
1364         static const u8 record_log_addrs[] = {
1365                 CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
1366                 CEC_LOG_ADDR_RECORD_3,
1367                 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1368                 CEC_LOG_ADDR_INVALID
1369         };
1370         static const u8 tuner_log_addrs[] = {
1371                 CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
1372                 CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
1373                 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1374                 CEC_LOG_ADDR_INVALID
1375         };
1376         static const u8 playback_log_addrs[] = {
1377                 CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
1378                 CEC_LOG_ADDR_PLAYBACK_3,
1379                 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1380                 CEC_LOG_ADDR_INVALID
1381         };
1382         static const u8 audiosystem_log_addrs[] = {
1383                 CEC_LOG_ADDR_AUDIOSYSTEM,
1384                 CEC_LOG_ADDR_INVALID
1385         };
1386         static const u8 specific_use_log_addrs[] = {
1387                 CEC_LOG_ADDR_SPECIFIC,
1388                 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1389                 CEC_LOG_ADDR_INVALID
1390         };
1391         static const u8 *type2addrs[6] = {
1392                 [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
1393                 [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
1394                 [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
1395                 [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
1396                 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
1397                 [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
1398         };
1399         static const u16 type2mask[] = {
1400                 [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
1401                 [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
1402                 [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
1403                 [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
1404                 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
1405                 [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
1406         };
1407         struct cec_adapter *adap = arg;
1408         struct cec_log_addrs *las = &adap->log_addrs;
1409         int err;
1410         int i, j;
1411
1412         mutex_lock(&adap->lock);
1413         dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1414                 cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
1415         las->log_addr_mask = 0;
1416
1417         if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
1418                 goto configured;
1419
1420 reconfigure:
1421         for (i = 0; i < las->num_log_addrs; i++) {
1422                 unsigned int type = las->log_addr_type[i];
1423                 const u8 *la_list;
1424                 u8 last_la;
1425
1426                 /*
1427                  * The TV functionality can only map to physical address 0.
1428                  * For any other address, try the Specific functionality
1429                  * instead as per the spec.
1430                  */
1431                 if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
1432                         type = CEC_LOG_ADDR_TYPE_SPECIFIC;
1433
1434                 la_list = type2addrs[type];
1435                 last_la = las->log_addr[i];
1436                 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1437                 if (last_la == CEC_LOG_ADDR_INVALID ||
1438                     last_la == CEC_LOG_ADDR_UNREGISTERED ||
1439                     !((1 << last_la) & type2mask[type]))
1440                         last_la = la_list[0];
1441
1442                 err = cec_config_log_addr(adap, i, last_la);
1443
1444                 if (adap->must_reconfigure) {
1445                         adap->must_reconfigure = false;
1446                         las->log_addr_mask = 0;
1447                         goto reconfigure;
1448                 }
1449
1450                 if (err > 0) /* Reused last LA */
1451                         continue;
1452
1453                 if (err < 0)
1454                         goto unconfigure;
1455
1456                 for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
1457                         /* Tried this one already, skip it */
1458                         if (la_list[j] == last_la)
1459                                 continue;
1460                         /* The backup addresses are CEC 2.0 specific */
1461                         if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
1462                              la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
1463                             las->cec_version < CEC_OP_CEC_VERSION_2_0)
1464                                 continue;
1465
1466                         err = cec_config_log_addr(adap, i, la_list[j]);
1467                         if (err == 0) /* LA is in use */
1468                                 continue;
1469                         if (err < 0)
1470                                 goto unconfigure;
1471                         /* Done, claimed an LA */
1472                         break;
1473                 }
1474
1475                 if (la_list[j] == CEC_LOG_ADDR_INVALID)
1476                         dprintk(1, "could not claim LA %d\n", i);
1477         }
1478
1479         if (adap->log_addrs.log_addr_mask == 0 &&
1480             !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
1481                 goto unconfigure;
1482
1483 configured:
1484         if (adap->log_addrs.log_addr_mask == 0) {
1485                 /* Fall back to unregistered */
1486                 las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
1487                 las->log_addr_mask = 1 << las->log_addr[0];
1488                 for (i = 1; i < las->num_log_addrs; i++)
1489                         las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1490         }
1491         for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
1492                 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1493         adap->is_configured = true;
1494         adap->is_configuring = false;
1495         adap->must_reconfigure = false;
1496         cec_post_state_event(adap);
1497
1498         /*
1499          * Now post the Report Features and Report Physical Address broadcast
1500          * messages. Note that these are non-blocking transmits, meaning that
1501          * they are just queued up and once adap->lock is unlocked the main
1502          * thread will kick in and start transmitting these.
1503          *
1504          * If after this function is done (but before one or more of these
1505          * messages are actually transmitted) the CEC adapter is unconfigured,
1506          * then any remaining messages will be dropped by the main thread.
1507          */
1508         for (i = 0; i < las->num_log_addrs; i++) {
1509                 struct cec_msg msg = {};
1510
1511                 if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
1512                     (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1513                         continue;
1514
1515                 msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;
1516
1517                 /* Report Features must come first according to CEC 2.0 */
1518                 if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
1519                     adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
1520                         cec_fill_msg_report_features(adap, &msg, i);
1521                         cec_transmit_msg_fh(adap, &msg, NULL, false);
1522                 }
1523
1524                 /* Report Physical Address */
1525                 cec_msg_report_physical_addr(&msg, adap->phys_addr,
1526                                              las->primary_device_type[i]);
1527                 dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1528                         las->log_addr[i],
1529                         cec_phys_addr_exp(adap->phys_addr));
1530                 cec_transmit_msg_fh(adap, &msg, NULL, false);
1531
1532                 /* Report Vendor ID */
1533                 if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) {
1534                         cec_msg_device_vendor_id(&msg,
1535                                                  adap->log_addrs.vendor_id);
1536                         cec_transmit_msg_fh(adap, &msg, NULL, false);
1537                 }
1538         }
1539         adap->kthread_config = NULL;
1540         complete(&adap->config_completion);
1541         mutex_unlock(&adap->lock);
1542         call_void_op(adap, adap_configured, true);
1543         return 0;
1544
1545 unconfigure:
1546         for (i = 0; i < las->num_log_addrs; i++)
1547                 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1548         cec_adap_unconfigure(adap);
1549         adap->is_configuring = false;
1550         adap->must_reconfigure = false;
1551         adap->kthread_config = NULL;
1552         complete(&adap->config_completion);
1553         mutex_unlock(&adap->lock);
1554         return 0;
1555 }
1556
1557 /*
1558  * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1559  * logical addresses.
1560  *
1561  * This function is called with adap->lock held.
1562  */
1563 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
1564 {
1565         if (WARN_ON(adap->is_configuring || adap->is_configured))
1566                 return;
1567
1568         init_completion(&adap->config_completion);
1569
1570         /* Ready to kick off the thread */
1571         adap->is_configuring = true;
1572         adap->kthread_config = kthread_run(cec_config_thread_func, adap,
1573                                            "ceccfg-%s", adap->name);
1574         if (IS_ERR(adap->kthread_config)) {
1575                 adap->kthread_config = NULL;
1576                 adap->is_configuring = false;
1577         } else if (block) {
1578                 mutex_unlock(&adap->lock);
1579                 wait_for_completion(&adap->config_completion);
1580                 mutex_lock(&adap->lock);
1581         }
1582 }
1583
1584 /*
1585  * Helper function to enable/disable the CEC adapter.
1586  *
1587  * This function is called with adap->lock held.
1588  */
1589 int cec_adap_enable(struct cec_adapter *adap)
1590 {
1591         bool enable;
1592         int ret = 0;
1593
1594         enable = adap->monitor_all_cnt || adap->monitor_pin_cnt ||
1595                  adap->log_addrs.num_log_addrs;
1596         if (adap->needs_hpd)
1597                 enable = enable && adap->phys_addr != CEC_PHYS_ADDR_INVALID;
1598
1599         if (adap->devnode.unregistered)
1600                 enable = false;
1601
1602         if (enable == adap->is_enabled)
1603                 return 0;
1604
1605         /* serialize adap_enable */
1606         mutex_lock(&adap->devnode.lock);
1607         if (enable) {
1608                 adap->last_initiator = 0xff;
1609                 adap->transmit_in_progress = false;
1610                 ret = adap->ops->adap_enable(adap, true);
1611                 if (!ret) {
1612                         /*
1613                          * Enable monitor-all/pin modes if needed. We warn, but
1614                          * continue if this fails as this is not a critical error.
1615                          */
1616                         if (adap->monitor_all_cnt)
1617                                 WARN_ON(call_op(adap, adap_monitor_all_enable, true));
1618                         if (adap->monitor_pin_cnt)
1619                                 WARN_ON(call_op(adap, adap_monitor_pin_enable, true));
1620                 }
1621         } else {
1622                 /* Disable monitor-all/pin modes if needed (needs_hpd == 1) */
1623                 if (adap->monitor_all_cnt)
1624                         WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1625                 if (adap->monitor_pin_cnt)
1626                         WARN_ON(call_op(adap, adap_monitor_pin_enable, false));
1627                 WARN_ON(adap->ops->adap_enable(adap, false));
1628                 adap->last_initiator = 0xff;
1629                 adap->transmit_in_progress = false;
1630                 adap->transmit_in_progress_aborted = false;
1631                 if (adap->transmitting)
1632                         cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED, 0);
1633         }
1634         if (!ret)
1635                 adap->is_enabled = enable;
1636         wake_up_interruptible(&adap->kthread_waitq);
1637         mutex_unlock(&adap->devnode.lock);
1638         return ret;
1639 }
1640
1641 /* Set a new physical address and send an event notifying userspace of this.
1642  *
1643  * This function is called with adap->lock held.
1644  */
1645 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1646 {
1647         bool becomes_invalid = phys_addr == CEC_PHYS_ADDR_INVALID;
1648         bool is_invalid = adap->phys_addr == CEC_PHYS_ADDR_INVALID;
1649
1650         if (phys_addr == adap->phys_addr)
1651                 return;
1652         if (!becomes_invalid && adap->devnode.unregistered)
1653                 return;
1654
1655         dprintk(1, "new physical address %x.%x.%x.%x\n",
1656                 cec_phys_addr_exp(phys_addr));
1657         if (becomes_invalid || !is_invalid) {
1658                 adap->phys_addr = CEC_PHYS_ADDR_INVALID;
1659                 cec_post_state_event(adap);
1660                 cec_adap_unconfigure(adap);
1661                 if (becomes_invalid) {
1662                         cec_adap_enable(adap);
1663                         return;
1664                 }
1665         }
1666
1667         adap->phys_addr = phys_addr;
1668         if (is_invalid)
1669                 cec_adap_enable(adap);
1670
1671         cec_post_state_event(adap);
1672         if (!adap->log_addrs.num_log_addrs)
1673                 return;
1674         if (adap->is_configuring)
1675                 adap->must_reconfigure = true;
1676         else
1677                 cec_claim_log_addrs(adap, block);
1678 }
1679
1680 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1681 {
1682         if (IS_ERR_OR_NULL(adap))
1683                 return;
1684
1685         mutex_lock(&adap->lock);
1686         __cec_s_phys_addr(adap, phys_addr, block);
1687         mutex_unlock(&adap->lock);
1688 }
1689 EXPORT_SYMBOL_GPL(cec_s_phys_addr);
1690
1691 void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
1692                                const struct edid *edid)
1693 {
1694         u16 pa = CEC_PHYS_ADDR_INVALID;
1695
1696         if (edid && edid->extensions)
1697                 pa = cec_get_edid_phys_addr((const u8 *)edid,
1698                                 EDID_LENGTH * (edid->extensions + 1), NULL);
1699         cec_s_phys_addr(adap, pa, false);
1700 }
1701 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid);
1702
1703 void cec_s_conn_info(struct cec_adapter *adap,
1704                      const struct cec_connector_info *conn_info)
1705 {
1706         if (IS_ERR_OR_NULL(adap))
1707                 return;
1708
1709         if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO))
1710                 return;
1711
1712         mutex_lock(&adap->lock);
1713         if (conn_info)
1714                 adap->conn_info = *conn_info;
1715         else
1716                 memset(&adap->conn_info, 0, sizeof(adap->conn_info));
1717         cec_post_state_event(adap);
1718         mutex_unlock(&adap->lock);
1719 }
1720 EXPORT_SYMBOL_GPL(cec_s_conn_info);
1721
1722 /*
1723  * Called from either the ioctl or a driver to set the logical addresses.
1724  *
1725  * This function is called with adap->lock held.
1726  */
1727 int __cec_s_log_addrs(struct cec_adapter *adap,
1728                       struct cec_log_addrs *log_addrs, bool block)
1729 {
1730         u16 type_mask = 0;
1731         int err;
1732         int i;
1733
1734         if (adap->devnode.unregistered)
1735                 return -ENODEV;
1736
1737         if (!log_addrs || log_addrs->num_log_addrs == 0) {
1738                 if (!adap->log_addrs.num_log_addrs)
1739                         return 0;
1740                 if (adap->is_configuring || adap->is_configured)
1741                         cec_adap_unconfigure(adap);
1742                 adap->log_addrs.num_log_addrs = 0;
1743                 for (i = 0; i < CEC_MAX_LOG_ADDRS; i++)
1744                         adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID;
1745                 adap->log_addrs.osd_name[0] = '\0';
1746                 adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE;
1747                 adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0;
1748                 cec_adap_enable(adap);
1749                 return 0;
1750         }
1751
1752         if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
1753                 /*
1754                  * Sanitize log_addrs fields if a CDC-Only device is
1755                  * requested.
1756                  */
1757                 log_addrs->num_log_addrs = 1;
1758                 log_addrs->osd_name[0] = '\0';
1759                 log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
1760                 log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
1761                 /*
1762                  * This is just an internal convention since a CDC-Only device
1763                  * doesn't have to be a switch. But switches already use
1764                  * unregistered, so it makes some kind of sense to pick this
1765                  * as the primary device. Since a CDC-Only device never sends
1766                  * any 'normal' CEC messages this primary device type is never
1767                  * sent over the CEC bus.
1768                  */
1769                 log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
1770                 log_addrs->all_device_types[0] = 0;
1771                 log_addrs->features[0][0] = 0;
1772                 log_addrs->features[0][1] = 0;
1773         }
1774
1775         /* Ensure the osd name is 0-terminated */
1776         log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
1777
1778         /* Sanity checks */
1779         if (log_addrs->num_log_addrs > adap->available_log_addrs) {
1780                 dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
1781                 return -EINVAL;
1782         }
1783
1784         /*
1785          * Vendor ID is a 24 bit number, so check if the value is
1786          * within the correct range.
1787          */
1788         if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1789             (log_addrs->vendor_id & 0xff000000) != 0) {
1790                 dprintk(1, "invalid vendor ID\n");
1791                 return -EINVAL;
1792         }
1793
1794         if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1795             log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) {
1796                 dprintk(1, "invalid CEC version\n");
1797                 return -EINVAL;
1798         }
1799
1800         if (log_addrs->num_log_addrs > 1)
1801                 for (i = 0; i < log_addrs->num_log_addrs; i++)
1802                         if (log_addrs->log_addr_type[i] ==
1803                                         CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1804                                 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1805                                 return -EINVAL;
1806                         }
1807
1808         for (i = 0; i < log_addrs->num_log_addrs; i++) {
1809                 const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1810                 u8 *features = log_addrs->features[i];
1811                 bool op_is_dev_features = false;
1812                 unsigned int j;
1813
1814                 log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
1815                 if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1816                         dprintk(1, "unknown logical address type\n");
1817                         return -EINVAL;
1818                 }
1819                 if (type_mask & (1 << log_addrs->log_addr_type[i])) {
1820                         dprintk(1, "duplicate logical address type\n");
1821                         return -EINVAL;
1822                 }
1823                 type_mask |= 1 << log_addrs->log_addr_type[i];
1824                 if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
1825                     (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
1826                         /* Record already contains the playback functionality */
1827                         dprintk(1, "invalid record + playback combination\n");
1828                         return -EINVAL;
1829                 }
1830                 if (log_addrs->primary_device_type[i] >
1831                                         CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
1832                         dprintk(1, "unknown primary device type\n");
1833                         return -EINVAL;
1834                 }
1835                 if (log_addrs->primary_device_type[i] == 2) {
1836                         dprintk(1, "invalid primary device type\n");
1837                         return -EINVAL;
1838                 }
1839                 for (j = 0; j < feature_sz; j++) {
1840                         if ((features[j] & 0x80) == 0) {
1841                                 if (op_is_dev_features)
1842                                         break;
1843                                 op_is_dev_features = true;
1844                         }
1845                 }
1846                 if (!op_is_dev_features || j == feature_sz) {
1847                         dprintk(1, "malformed features\n");
1848                         return -EINVAL;
1849                 }
1850                 /* Zero unused part of the feature array */
1851                 memset(features + j + 1, 0, feature_sz - j - 1);
1852         }
1853
1854         if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
1855                 if (log_addrs->num_log_addrs > 2) {
1856                         dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1857                         return -EINVAL;
1858                 }
1859                 if (log_addrs->num_log_addrs == 2) {
1860                         if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
1861                                            (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1862                                 dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1863                                 return -EINVAL;
1864                         }
1865                         if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
1866                                            (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1867                                 dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1868                                 return -EINVAL;
1869                         }
1870                 }
1871         }
1872
1873         /* Zero unused LAs */
1874         for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
1875                 log_addrs->primary_device_type[i] = 0;
1876                 log_addrs->log_addr_type[i] = 0;
1877                 log_addrs->all_device_types[i] = 0;
1878                 memset(log_addrs->features[i], 0,
1879                        sizeof(log_addrs->features[i]));
1880         }
1881
1882         log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
1883         adap->log_addrs = *log_addrs;
1884         err = cec_adap_enable(adap);
1885         if (!err && adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1886                 cec_claim_log_addrs(adap, block);
1887         return err;
1888 }
1889
1890 int cec_s_log_addrs(struct cec_adapter *adap,
1891                     struct cec_log_addrs *log_addrs, bool block)
1892 {
1893         int err;
1894
1895         mutex_lock(&adap->lock);
1896         err = __cec_s_log_addrs(adap, log_addrs, block);
1897         mutex_unlock(&adap->lock);
1898         return err;
1899 }
1900 EXPORT_SYMBOL_GPL(cec_s_log_addrs);
1901
1902 /* High-level core CEC message handling */
1903
1904 /* Fill in the Report Features message */
1905 static void cec_fill_msg_report_features(struct cec_adapter *adap,
1906                                          struct cec_msg *msg,
1907                                          unsigned int la_idx)
1908 {
1909         const struct cec_log_addrs *las = &adap->log_addrs;
1910         const u8 *features = las->features[la_idx];
1911         bool op_is_dev_features = false;
1912         unsigned int idx;
1913
1914         /* Report Features */
1915         msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1916         msg->len = 4;
1917         msg->msg[1] = CEC_MSG_REPORT_FEATURES;
1918         msg->msg[2] = adap->log_addrs.cec_version;
1919         msg->msg[3] = las->all_device_types[la_idx];
1920
1921         /* Write RC Profiles first, then Device Features */
1922         for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1923                 msg->msg[msg->len++] = features[idx];
1924                 if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
1925                         if (op_is_dev_features)
1926                                 break;
1927                         op_is_dev_features = true;
1928                 }
1929         }
1930 }
1931
1932 /* Transmit the Feature Abort message */
1933 static int cec_feature_abort_reason(struct cec_adapter *adap,
1934                                     struct cec_msg *msg, u8 reason)
1935 {
1936         struct cec_msg tx_msg = { };
1937
1938         /*
1939          * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1940          * message!
1941          */
1942         if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
1943                 return 0;
1944         /* Don't Feature Abort messages from 'Unregistered' */
1945         if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED)
1946                 return 0;
1947         cec_msg_set_reply_to(&tx_msg, msg);
1948         cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
1949         return cec_transmit_msg(adap, &tx_msg, false);
1950 }
1951
1952 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
1953 {
1954         return cec_feature_abort_reason(adap, msg,
1955                                         CEC_OP_ABORT_UNRECOGNIZED_OP);
1956 }
1957
1958 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
1959 {
1960         return cec_feature_abort_reason(adap, msg,
1961                                         CEC_OP_ABORT_REFUSED);
1962 }
1963
1964 /*
1965  * Called when a CEC message is received. This function will do any
1966  * necessary core processing. The is_reply bool is true if this message
1967  * is a reply to an earlier transmit.
1968  *
1969  * The message is either a broadcast message or a valid directed message.
1970  */
1971 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
1972                               bool is_reply)
1973 {
1974         bool is_broadcast = cec_msg_is_broadcast(msg);
1975         u8 dest_laddr = cec_msg_destination(msg);
1976         u8 init_laddr = cec_msg_initiator(msg);
1977         u8 devtype = cec_log_addr2dev(adap, dest_laddr);
1978         int la_idx = cec_log_addr2idx(adap, dest_laddr);
1979         bool from_unregistered = init_laddr == 0xf;
1980         struct cec_msg tx_cec_msg = { };
1981
1982         dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1983
1984         /* If this is a CDC-Only device, then ignore any non-CDC messages */
1985         if (cec_is_cdc_only(&adap->log_addrs) &&
1986             msg->msg[1] != CEC_MSG_CDC_MESSAGE)
1987                 return 0;
1988
1989         /* Allow drivers to process the message first */
1990         if (adap->ops->received && !adap->devnode.unregistered &&
1991             adap->ops->received(adap, msg) != -ENOMSG)
1992                 return 0;
1993
1994         /*
1995          * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
1996          * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
1997          * handled by the CEC core, even if the passthrough mode is on.
1998          * The others are just ignored if passthrough mode is on.
1999          */
2000         switch (msg->msg[1]) {
2001         case CEC_MSG_GET_CEC_VERSION:
2002         case CEC_MSG_ABORT:
2003         case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
2004         case CEC_MSG_GIVE_OSD_NAME:
2005                 /*
2006                  * These messages reply with a directed message, so ignore if
2007                  * the initiator is Unregistered.
2008                  */
2009                 if (!adap->passthrough && from_unregistered)
2010                         return 0;
2011                 fallthrough;
2012         case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2013         case CEC_MSG_GIVE_FEATURES:
2014         case CEC_MSG_GIVE_PHYSICAL_ADDR:
2015                 /*
2016                  * Skip processing these messages if the passthrough mode
2017                  * is on.
2018                  */
2019                 if (adap->passthrough)
2020                         goto skip_processing;
2021                 /* Ignore if addressing is wrong */
2022                 if (is_broadcast)
2023                         return 0;
2024                 break;
2025
2026         case CEC_MSG_USER_CONTROL_PRESSED:
2027         case CEC_MSG_USER_CONTROL_RELEASED:
2028                 /* Wrong addressing mode: don't process */
2029                 if (is_broadcast || from_unregistered)
2030                         goto skip_processing;
2031                 break;
2032
2033         case CEC_MSG_REPORT_PHYSICAL_ADDR:
2034                 /*
2035                  * This message is always processed, regardless of the
2036                  * passthrough setting.
2037                  *
2038                  * Exception: don't process if wrong addressing mode.
2039                  */
2040                 if (!is_broadcast)
2041                         goto skip_processing;
2042                 break;
2043
2044         default:
2045                 break;
2046         }
2047
2048         cec_msg_set_reply_to(&tx_cec_msg, msg);
2049
2050         switch (msg->msg[1]) {
2051         /* The following messages are processed but still passed through */
2052         case CEC_MSG_REPORT_PHYSICAL_ADDR: {
2053                 u16 pa = (msg->msg[2] << 8) | msg->msg[3];
2054
2055                 dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
2056                         cec_phys_addr_exp(pa), init_laddr);
2057                 break;
2058         }
2059
2060         case CEC_MSG_USER_CONTROL_PRESSED:
2061                 if (!(adap->capabilities & CEC_CAP_RC) ||
2062                     !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2063                         break;
2064
2065 #ifdef CONFIG_MEDIA_CEC_RC
2066                 switch (msg->msg[2]) {
2067                 /*
2068                  * Play function, this message can have variable length
2069                  * depending on the specific play function that is used.
2070                  */
2071                 case CEC_OP_UI_CMD_PLAY_FUNCTION:
2072                         if (msg->len == 2)
2073                                 rc_keydown(adap->rc, RC_PROTO_CEC,
2074                                            msg->msg[2], 0);
2075                         else
2076                                 rc_keydown(adap->rc, RC_PROTO_CEC,
2077                                            msg->msg[2] << 8 | msg->msg[3], 0);
2078                         break;
2079                 /*
2080                  * Other function messages that are not handled.
2081                  * Currently the RC framework does not allow to supply an
2082                  * additional parameter to a keypress. These "keys" contain
2083                  * other information such as channel number, an input number
2084                  * etc.
2085                  * For the time being these messages are not processed by the
2086                  * framework and are simply forwarded to the user space.
2087                  */
2088                 case CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE:
2089                 case CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION:
2090                 case CEC_OP_UI_CMD_TUNE_FUNCTION:
2091                 case CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION:
2092                 case CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION:
2093                 case CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION:
2094                         break;
2095                 default:
2096                         rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0);
2097                         break;
2098                 }
2099 #endif
2100                 break;
2101
2102         case CEC_MSG_USER_CONTROL_RELEASED:
2103                 if (!(adap->capabilities & CEC_CAP_RC) ||
2104                     !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2105                         break;
2106 #ifdef CONFIG_MEDIA_CEC_RC
2107                 rc_keyup(adap->rc);
2108 #endif
2109                 break;
2110
2111         /*
2112          * The remaining messages are only processed if the passthrough mode
2113          * is off.
2114          */
2115         case CEC_MSG_GET_CEC_VERSION:
2116                 cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
2117                 return cec_transmit_msg(adap, &tx_cec_msg, false);
2118
2119         case CEC_MSG_GIVE_PHYSICAL_ADDR:
2120                 /* Do nothing for CEC switches using addr 15 */
2121                 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
2122                         return 0;
2123                 cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
2124                 return cec_transmit_msg(adap, &tx_cec_msg, false);
2125
2126         case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2127                 if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
2128                         return cec_feature_abort(adap, msg);
2129                 cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
2130                 return cec_transmit_msg(adap, &tx_cec_msg, false);
2131
2132         case CEC_MSG_ABORT:
2133                 /* Do nothing for CEC switches */
2134                 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
2135                         return 0;
2136                 return cec_feature_refused(adap, msg);
2137
2138         case CEC_MSG_GIVE_OSD_NAME: {
2139                 if (adap->log_addrs.osd_name[0] == 0)
2140                         return cec_feature_abort(adap, msg);
2141                 cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
2142                 return cec_transmit_msg(adap, &tx_cec_msg, false);
2143         }
2144
2145         case CEC_MSG_GIVE_FEATURES:
2146                 if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
2147                         return cec_feature_abort(adap, msg);
2148                 cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx);
2149                 return cec_transmit_msg(adap, &tx_cec_msg, false);
2150
2151         default:
2152                 /*
2153                  * Unprocessed messages are aborted if userspace isn't doing
2154                  * any processing either.
2155                  */
2156                 if (!is_broadcast && !is_reply && !adap->follower_cnt &&
2157                     !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
2158                         return cec_feature_abort(adap, msg);
2159                 break;
2160         }
2161
2162 skip_processing:
2163         /* If this was a reply, then we're done, unless otherwise specified */
2164         if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
2165                 return 0;
2166
2167         /*
2168          * Send to the exclusive follower if there is one, otherwise send
2169          * to all followers.
2170          */
2171         if (adap->cec_follower)
2172                 cec_queue_msg_fh(adap->cec_follower, msg);
2173         else
2174                 cec_queue_msg_followers(adap, msg);
2175         return 0;
2176 }
2177
2178 /*
2179  * Helper functions to keep track of the 'monitor all' use count.
2180  *
2181  * These functions are called with adap->lock held.
2182  */
2183 int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
2184 {
2185         int ret;
2186
2187         if (adap->monitor_all_cnt++)
2188                 return 0;
2189
2190         ret = cec_adap_enable(adap);
2191         if (ret)
2192                 adap->monitor_all_cnt--;
2193         return ret;
2194 }
2195
2196 void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
2197 {
2198         if (WARN_ON(!adap->monitor_all_cnt))
2199                 return;
2200         if (--adap->monitor_all_cnt)
2201                 return;
2202         WARN_ON(call_op(adap, adap_monitor_all_enable, false));
2203         cec_adap_enable(adap);
2204 }
2205
2206 /*
2207  * Helper functions to keep track of the 'monitor pin' use count.
2208  *
2209  * These functions are called with adap->lock held.
2210  */
2211 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap)
2212 {
2213         int ret;
2214
2215         if (adap->monitor_pin_cnt++)
2216                 return 0;
2217
2218         ret = cec_adap_enable(adap);
2219         if (ret)
2220                 adap->monitor_pin_cnt--;
2221         return ret;
2222 }
2223
2224 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap)
2225 {
2226         if (WARN_ON(!adap->monitor_pin_cnt))
2227                 return;
2228         if (--adap->monitor_pin_cnt)
2229                 return;
2230         WARN_ON(call_op(adap, adap_monitor_pin_enable, false));
2231         cec_adap_enable(adap);
2232 }
2233
2234 #ifdef CONFIG_DEBUG_FS
2235 /*
2236  * Log the current state of the CEC adapter.
2237  * Very useful for debugging.
2238  */
2239 int cec_adap_status(struct seq_file *file, void *priv)
2240 {
2241         struct cec_adapter *adap = dev_get_drvdata(file->private);
2242         struct cec_data *data;
2243
2244         mutex_lock(&adap->lock);
2245         seq_printf(file, "enabled: %d\n", adap->is_enabled);
2246         seq_printf(file, "configured: %d\n", adap->is_configured);
2247         seq_printf(file, "configuring: %d\n", adap->is_configuring);
2248         seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
2249                    cec_phys_addr_exp(adap->phys_addr));
2250         seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
2251         seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
2252         if (adap->cec_follower)
2253                 seq_printf(file, "has CEC follower%s\n",
2254                            adap->passthrough ? " (in passthrough mode)" : "");
2255         if (adap->cec_initiator)
2256                 seq_puts(file, "has CEC initiator\n");
2257         if (adap->monitor_all_cnt)
2258                 seq_printf(file, "file handles in Monitor All mode: %u\n",
2259                            adap->monitor_all_cnt);
2260         if (adap->monitor_pin_cnt)
2261                 seq_printf(file, "file handles in Monitor Pin mode: %u\n",
2262                            adap->monitor_pin_cnt);
2263         if (adap->tx_timeouts) {
2264                 seq_printf(file, "transmit timeouts: %u\n",
2265                            adap->tx_timeouts);
2266                 adap->tx_timeouts = 0;
2267         }
2268         data = adap->transmitting;
2269         if (data)
2270                 seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
2271                            data->msg.len, data->msg.msg, data->msg.reply,
2272                            data->msg.timeout);
2273         seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
2274         list_for_each_entry(data, &adap->transmit_queue, list) {
2275                 seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
2276                            data->msg.len, data->msg.msg, data->msg.reply,
2277                            data->msg.timeout);
2278         }
2279         list_for_each_entry(data, &adap->wait_queue, list) {
2280                 seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
2281                            data->msg.len, data->msg.msg, data->msg.reply,
2282                            data->msg.timeout);
2283         }
2284
2285         call_void_op(adap, adap_status, file);
2286         mutex_unlock(&adap->lock);
2287         return 0;
2288 }
2289 #endif