2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <linux/sched/signal.h>
60 #include <trace/events/block.h>
61 #include <linux/list_sort.h>
67 #include "raid5-log.h"
69 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
71 #define cpu_to_group(cpu) cpu_to_node(cpu)
72 #define ANY_GROUP NUMA_NO_NODE
74 static bool devices_handle_discard_safely = false;
75 module_param(devices_handle_discard_safely, bool, 0644);
76 MODULE_PARM_DESC(devices_handle_discard_safely,
77 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
78 static struct workqueue_struct *raid5_wq;
80 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
82 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
83 return &conf->stripe_hashtbl[hash];
86 static inline int stripe_hash_locks_hash(sector_t sect)
88 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
91 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
93 spin_lock_irq(conf->hash_locks + hash);
94 spin_lock(&conf->device_lock);
97 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
99 spin_unlock(&conf->device_lock);
100 spin_unlock_irq(conf->hash_locks + hash);
103 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
106 spin_lock_irq(conf->hash_locks);
107 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
108 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
109 spin_lock(&conf->device_lock);
112 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
115 spin_unlock(&conf->device_lock);
116 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
117 spin_unlock(conf->hash_locks + i);
118 spin_unlock_irq(conf->hash_locks);
121 /* Find first data disk in a raid6 stripe */
122 static inline int raid6_d0(struct stripe_head *sh)
125 /* ddf always start from first device */
127 /* md starts just after Q block */
128 if (sh->qd_idx == sh->disks - 1)
131 return sh->qd_idx + 1;
133 static inline int raid6_next_disk(int disk, int raid_disks)
136 return (disk < raid_disks) ? disk : 0;
139 /* When walking through the disks in a raid5, starting at raid6_d0,
140 * We need to map each disk to a 'slot', where the data disks are slot
141 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
142 * is raid_disks-1. This help does that mapping.
144 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
145 int *count, int syndrome_disks)
151 if (idx == sh->pd_idx)
152 return syndrome_disks;
153 if (idx == sh->qd_idx)
154 return syndrome_disks + 1;
160 static void print_raid5_conf (struct r5conf *conf);
162 static int stripe_operations_active(struct stripe_head *sh)
164 return sh->check_state || sh->reconstruct_state ||
165 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
166 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
169 static bool stripe_is_lowprio(struct stripe_head *sh)
171 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
172 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
173 !test_bit(STRIPE_R5C_CACHING, &sh->state);
176 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
178 struct r5conf *conf = sh->raid_conf;
179 struct r5worker_group *group;
181 int i, cpu = sh->cpu;
183 if (!cpu_online(cpu)) {
184 cpu = cpumask_any(cpu_online_mask);
188 if (list_empty(&sh->lru)) {
189 struct r5worker_group *group;
190 group = conf->worker_groups + cpu_to_group(cpu);
191 if (stripe_is_lowprio(sh))
192 list_add_tail(&sh->lru, &group->loprio_list);
194 list_add_tail(&sh->lru, &group->handle_list);
195 group->stripes_cnt++;
199 if (conf->worker_cnt_per_group == 0) {
200 md_wakeup_thread(conf->mddev->thread);
204 group = conf->worker_groups + cpu_to_group(sh->cpu);
206 group->workers[0].working = true;
207 /* at least one worker should run to avoid race */
208 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
210 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
211 /* wakeup more workers */
212 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
213 if (group->workers[i].working == false) {
214 group->workers[i].working = true;
215 queue_work_on(sh->cpu, raid5_wq,
216 &group->workers[i].work);
222 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
223 struct list_head *temp_inactive_list)
226 int injournal = 0; /* number of date pages with R5_InJournal */
228 BUG_ON(!list_empty(&sh->lru));
229 BUG_ON(atomic_read(&conf->active_stripes)==0);
231 if (r5c_is_writeback(conf->log))
232 for (i = sh->disks; i--; )
233 if (test_bit(R5_InJournal, &sh->dev[i].flags))
236 * In the following cases, the stripe cannot be released to cached
237 * lists. Therefore, we make the stripe write out and set
239 * 1. when quiesce in r5c write back;
240 * 2. when resync is requested fot the stripe.
242 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
243 (conf->quiesce && r5c_is_writeback(conf->log) &&
244 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
245 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
246 r5c_make_stripe_write_out(sh);
247 set_bit(STRIPE_HANDLE, &sh->state);
250 if (test_bit(STRIPE_HANDLE, &sh->state)) {
251 if (test_bit(STRIPE_DELAYED, &sh->state) &&
252 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
253 list_add_tail(&sh->lru, &conf->delayed_list);
254 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
255 sh->bm_seq - conf->seq_write > 0)
256 list_add_tail(&sh->lru, &conf->bitmap_list);
258 clear_bit(STRIPE_DELAYED, &sh->state);
259 clear_bit(STRIPE_BIT_DELAY, &sh->state);
260 if (conf->worker_cnt_per_group == 0) {
261 if (stripe_is_lowprio(sh))
262 list_add_tail(&sh->lru,
265 list_add_tail(&sh->lru,
268 raid5_wakeup_stripe_thread(sh);
272 md_wakeup_thread(conf->mddev->thread);
274 BUG_ON(stripe_operations_active(sh));
275 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
276 if (atomic_dec_return(&conf->preread_active_stripes)
278 md_wakeup_thread(conf->mddev->thread);
279 atomic_dec(&conf->active_stripes);
280 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
281 if (!r5c_is_writeback(conf->log))
282 list_add_tail(&sh->lru, temp_inactive_list);
284 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
286 list_add_tail(&sh->lru, temp_inactive_list);
287 else if (injournal == conf->raid_disks - conf->max_degraded) {
289 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
290 atomic_inc(&conf->r5c_cached_full_stripes);
291 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
292 atomic_dec(&conf->r5c_cached_partial_stripes);
293 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
294 r5c_check_cached_full_stripe(conf);
297 * STRIPE_R5C_PARTIAL_STRIPE is set in
298 * r5c_try_caching_write(). No need to
301 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
307 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
308 struct list_head *temp_inactive_list)
310 if (atomic_dec_and_test(&sh->count))
311 do_release_stripe(conf, sh, temp_inactive_list);
315 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
317 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
318 * given time. Adding stripes only takes device lock, while deleting stripes
319 * only takes hash lock.
321 static void release_inactive_stripe_list(struct r5conf *conf,
322 struct list_head *temp_inactive_list,
326 bool do_wakeup = false;
329 if (hash == NR_STRIPE_HASH_LOCKS) {
330 size = NR_STRIPE_HASH_LOCKS;
331 hash = NR_STRIPE_HASH_LOCKS - 1;
335 struct list_head *list = &temp_inactive_list[size - 1];
338 * We don't hold any lock here yet, raid5_get_active_stripe() might
339 * remove stripes from the list
341 if (!list_empty_careful(list)) {
342 spin_lock_irqsave(conf->hash_locks + hash, flags);
343 if (list_empty(conf->inactive_list + hash) &&
345 atomic_dec(&conf->empty_inactive_list_nr);
346 list_splice_tail_init(list, conf->inactive_list + hash);
348 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
355 wake_up(&conf->wait_for_stripe);
356 if (atomic_read(&conf->active_stripes) == 0)
357 wake_up(&conf->wait_for_quiescent);
358 if (conf->retry_read_aligned)
359 md_wakeup_thread(conf->mddev->thread);
363 /* should hold conf->device_lock already */
364 static int release_stripe_list(struct r5conf *conf,
365 struct list_head *temp_inactive_list)
367 struct stripe_head *sh, *t;
369 struct llist_node *head;
371 head = llist_del_all(&conf->released_stripes);
372 head = llist_reverse_order(head);
373 llist_for_each_entry_safe(sh, t, head, release_list) {
376 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
378 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
380 * Don't worry the bit is set here, because if the bit is set
381 * again, the count is always > 1. This is true for
382 * STRIPE_ON_UNPLUG_LIST bit too.
384 hash = sh->hash_lock_index;
385 __release_stripe(conf, sh, &temp_inactive_list[hash]);
392 void raid5_release_stripe(struct stripe_head *sh)
394 struct r5conf *conf = sh->raid_conf;
396 struct list_head list;
400 /* Avoid release_list until the last reference.
402 if (atomic_add_unless(&sh->count, -1, 1))
405 if (unlikely(!conf->mddev->thread) ||
406 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
408 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
410 md_wakeup_thread(conf->mddev->thread);
413 local_irq_save(flags);
414 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
415 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
416 INIT_LIST_HEAD(&list);
417 hash = sh->hash_lock_index;
418 do_release_stripe(conf, sh, &list);
419 spin_unlock(&conf->device_lock);
420 release_inactive_stripe_list(conf, &list, hash);
422 local_irq_restore(flags);
425 static inline void remove_hash(struct stripe_head *sh)
427 pr_debug("remove_hash(), stripe %llu\n",
428 (unsigned long long)sh->sector);
430 hlist_del_init(&sh->hash);
433 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
435 struct hlist_head *hp = stripe_hash(conf, sh->sector);
437 pr_debug("insert_hash(), stripe %llu\n",
438 (unsigned long long)sh->sector);
440 hlist_add_head(&sh->hash, hp);
443 /* find an idle stripe, make sure it is unhashed, and return it. */
444 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
446 struct stripe_head *sh = NULL;
447 struct list_head *first;
449 if (list_empty(conf->inactive_list + hash))
451 first = (conf->inactive_list + hash)->next;
452 sh = list_entry(first, struct stripe_head, lru);
453 list_del_init(first);
455 atomic_inc(&conf->active_stripes);
456 BUG_ON(hash != sh->hash_lock_index);
457 if (list_empty(conf->inactive_list + hash))
458 atomic_inc(&conf->empty_inactive_list_nr);
463 static void shrink_buffers(struct stripe_head *sh)
467 int num = sh->raid_conf->pool_size;
469 for (i = 0; i < num ; i++) {
470 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
474 sh->dev[i].page = NULL;
479 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
482 int num = sh->raid_conf->pool_size;
484 for (i = 0; i < num; i++) {
487 if (!(page = alloc_page(gfp))) {
490 sh->dev[i].page = page;
491 sh->dev[i].orig_page = page;
497 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
498 struct stripe_head *sh);
500 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
502 struct r5conf *conf = sh->raid_conf;
505 BUG_ON(atomic_read(&sh->count) != 0);
506 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
507 BUG_ON(stripe_operations_active(sh));
508 BUG_ON(sh->batch_head);
510 pr_debug("init_stripe called, stripe %llu\n",
511 (unsigned long long)sector);
513 seq = read_seqcount_begin(&conf->gen_lock);
514 sh->generation = conf->generation - previous;
515 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
517 stripe_set_idx(sector, conf, previous, sh);
520 for (i = sh->disks; i--; ) {
521 struct r5dev *dev = &sh->dev[i];
523 if (dev->toread || dev->read || dev->towrite || dev->written ||
524 test_bit(R5_LOCKED, &dev->flags)) {
525 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
526 (unsigned long long)sh->sector, i, dev->toread,
527 dev->read, dev->towrite, dev->written,
528 test_bit(R5_LOCKED, &dev->flags));
532 dev->sector = raid5_compute_blocknr(sh, i, previous);
534 if (read_seqcount_retry(&conf->gen_lock, seq))
536 sh->overwrite_disks = 0;
537 insert_hash(conf, sh);
538 sh->cpu = smp_processor_id();
539 set_bit(STRIPE_BATCH_READY, &sh->state);
542 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
545 struct stripe_head *sh;
547 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
548 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
549 if (sh->sector == sector && sh->generation == generation)
551 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
556 * Need to check if array has failed when deciding whether to:
558 * - remove non-faulty devices
561 * This determination is simple when no reshape is happening.
562 * However if there is a reshape, we need to carefully check
563 * both the before and after sections.
564 * This is because some failed devices may only affect one
565 * of the two sections, and some non-in_sync devices may
566 * be insync in the section most affected by failed devices.
568 int raid5_calc_degraded(struct r5conf *conf)
570 int degraded, degraded2;
575 for (i = 0; i < conf->previous_raid_disks; i++) {
576 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
577 if (rdev && test_bit(Faulty, &rdev->flags))
578 rdev = rcu_dereference(conf->disks[i].replacement);
579 if (!rdev || test_bit(Faulty, &rdev->flags))
581 else if (test_bit(In_sync, &rdev->flags))
584 /* not in-sync or faulty.
585 * If the reshape increases the number of devices,
586 * this is being recovered by the reshape, so
587 * this 'previous' section is not in_sync.
588 * If the number of devices is being reduced however,
589 * the device can only be part of the array if
590 * we are reverting a reshape, so this section will
593 if (conf->raid_disks >= conf->previous_raid_disks)
597 if (conf->raid_disks == conf->previous_raid_disks)
601 for (i = 0; i < conf->raid_disks; i++) {
602 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
603 if (rdev && test_bit(Faulty, &rdev->flags))
604 rdev = rcu_dereference(conf->disks[i].replacement);
605 if (!rdev || test_bit(Faulty, &rdev->flags))
607 else if (test_bit(In_sync, &rdev->flags))
610 /* not in-sync or faulty.
611 * If reshape increases the number of devices, this
612 * section has already been recovered, else it
613 * almost certainly hasn't.
615 if (conf->raid_disks <= conf->previous_raid_disks)
619 if (degraded2 > degraded)
624 static int has_failed(struct r5conf *conf)
628 if (conf->mddev->reshape_position == MaxSector)
629 return conf->mddev->degraded > conf->max_degraded;
631 degraded = raid5_calc_degraded(conf);
632 if (degraded > conf->max_degraded)
638 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
639 int previous, int noblock, int noquiesce)
641 struct stripe_head *sh;
642 int hash = stripe_hash_locks_hash(sector);
643 int inc_empty_inactive_list_flag;
645 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
647 spin_lock_irq(conf->hash_locks + hash);
650 wait_event_lock_irq(conf->wait_for_quiescent,
651 conf->quiesce == 0 || noquiesce,
652 *(conf->hash_locks + hash));
653 sh = __find_stripe(conf, sector, conf->generation - previous);
655 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
656 sh = get_free_stripe(conf, hash);
657 if (!sh && !test_bit(R5_DID_ALLOC,
659 set_bit(R5_ALLOC_MORE,
662 if (noblock && sh == NULL)
665 r5c_check_stripe_cache_usage(conf);
667 set_bit(R5_INACTIVE_BLOCKED,
669 r5l_wake_reclaim(conf->log, 0);
671 conf->wait_for_stripe,
672 !list_empty(conf->inactive_list + hash) &&
673 (atomic_read(&conf->active_stripes)
674 < (conf->max_nr_stripes * 3 / 4)
675 || !test_bit(R5_INACTIVE_BLOCKED,
676 &conf->cache_state)),
677 *(conf->hash_locks + hash));
678 clear_bit(R5_INACTIVE_BLOCKED,
681 init_stripe(sh, sector, previous);
682 atomic_inc(&sh->count);
684 } else if (!atomic_inc_not_zero(&sh->count)) {
685 spin_lock(&conf->device_lock);
686 if (!atomic_read(&sh->count)) {
687 if (!test_bit(STRIPE_HANDLE, &sh->state))
688 atomic_inc(&conf->active_stripes);
689 BUG_ON(list_empty(&sh->lru) &&
690 !test_bit(STRIPE_EXPANDING, &sh->state));
691 inc_empty_inactive_list_flag = 0;
692 if (!list_empty(conf->inactive_list + hash))
693 inc_empty_inactive_list_flag = 1;
694 list_del_init(&sh->lru);
695 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
696 atomic_inc(&conf->empty_inactive_list_nr);
698 sh->group->stripes_cnt--;
702 atomic_inc(&sh->count);
703 spin_unlock(&conf->device_lock);
705 } while (sh == NULL);
707 spin_unlock_irq(conf->hash_locks + hash);
711 static bool is_full_stripe_write(struct stripe_head *sh)
713 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
714 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
717 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
720 spin_lock_irq(&sh2->stripe_lock);
721 spin_lock_nested(&sh1->stripe_lock, 1);
723 spin_lock_irq(&sh1->stripe_lock);
724 spin_lock_nested(&sh2->stripe_lock, 1);
728 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
730 spin_unlock(&sh1->stripe_lock);
731 spin_unlock_irq(&sh2->stripe_lock);
734 /* Only freshly new full stripe normal write stripe can be added to a batch list */
735 static bool stripe_can_batch(struct stripe_head *sh)
737 struct r5conf *conf = sh->raid_conf;
739 if (conf->log || raid5_has_ppl(conf))
741 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
742 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
743 is_full_stripe_write(sh);
746 /* we only do back search */
747 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
749 struct stripe_head *head;
750 sector_t head_sector, tmp_sec;
753 int inc_empty_inactive_list_flag;
755 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
756 tmp_sec = sh->sector;
757 if (!sector_div(tmp_sec, conf->chunk_sectors))
759 head_sector = sh->sector - STRIPE_SECTORS;
761 hash = stripe_hash_locks_hash(head_sector);
762 spin_lock_irq(conf->hash_locks + hash);
763 head = __find_stripe(conf, head_sector, conf->generation);
764 if (head && !atomic_inc_not_zero(&head->count)) {
765 spin_lock(&conf->device_lock);
766 if (!atomic_read(&head->count)) {
767 if (!test_bit(STRIPE_HANDLE, &head->state))
768 atomic_inc(&conf->active_stripes);
769 BUG_ON(list_empty(&head->lru) &&
770 !test_bit(STRIPE_EXPANDING, &head->state));
771 inc_empty_inactive_list_flag = 0;
772 if (!list_empty(conf->inactive_list + hash))
773 inc_empty_inactive_list_flag = 1;
774 list_del_init(&head->lru);
775 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
776 atomic_inc(&conf->empty_inactive_list_nr);
778 head->group->stripes_cnt--;
782 atomic_inc(&head->count);
783 spin_unlock(&conf->device_lock);
785 spin_unlock_irq(conf->hash_locks + hash);
789 if (!stripe_can_batch(head))
792 lock_two_stripes(head, sh);
793 /* clear_batch_ready clear the flag */
794 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
801 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
803 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
804 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
807 if (head->batch_head) {
808 spin_lock(&head->batch_head->batch_lock);
809 /* This batch list is already running */
810 if (!stripe_can_batch(head)) {
811 spin_unlock(&head->batch_head->batch_lock);
815 * We must assign batch_head of this stripe within the
816 * batch_lock, otherwise clear_batch_ready of batch head
817 * stripe could clear BATCH_READY bit of this stripe and
818 * this stripe->batch_head doesn't get assigned, which
819 * could confuse clear_batch_ready for this stripe
821 sh->batch_head = head->batch_head;
824 * at this point, head's BATCH_READY could be cleared, but we
825 * can still add the stripe to batch list
827 list_add(&sh->batch_list, &head->batch_list);
828 spin_unlock(&head->batch_head->batch_lock);
830 head->batch_head = head;
831 sh->batch_head = head->batch_head;
832 spin_lock(&head->batch_lock);
833 list_add_tail(&sh->batch_list, &head->batch_list);
834 spin_unlock(&head->batch_lock);
837 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
838 if (atomic_dec_return(&conf->preread_active_stripes)
840 md_wakeup_thread(conf->mddev->thread);
842 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
843 int seq = sh->bm_seq;
844 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
845 sh->batch_head->bm_seq > seq)
846 seq = sh->batch_head->bm_seq;
847 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
848 sh->batch_head->bm_seq = seq;
851 atomic_inc(&sh->count);
853 unlock_two_stripes(head, sh);
855 raid5_release_stripe(head);
858 /* Determine if 'data_offset' or 'new_data_offset' should be used
859 * in this stripe_head.
861 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
863 sector_t progress = conf->reshape_progress;
864 /* Need a memory barrier to make sure we see the value
865 * of conf->generation, or ->data_offset that was set before
866 * reshape_progress was updated.
869 if (progress == MaxSector)
871 if (sh->generation == conf->generation - 1)
873 /* We are in a reshape, and this is a new-generation stripe,
874 * so use new_data_offset.
879 static void dispatch_bio_list(struct bio_list *tmp)
883 while ((bio = bio_list_pop(tmp)))
884 generic_make_request(bio);
887 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
889 const struct r5pending_data *da = list_entry(a,
890 struct r5pending_data, sibling);
891 const struct r5pending_data *db = list_entry(b,
892 struct r5pending_data, sibling);
893 if (da->sector > db->sector)
895 if (da->sector < db->sector)
900 static void dispatch_defer_bios(struct r5conf *conf, int target,
901 struct bio_list *list)
903 struct r5pending_data *data;
904 struct list_head *first, *next = NULL;
907 if (conf->pending_data_cnt == 0)
910 list_sort(NULL, &conf->pending_list, cmp_stripe);
912 first = conf->pending_list.next;
914 /* temporarily move the head */
915 if (conf->next_pending_data)
916 list_move_tail(&conf->pending_list,
917 &conf->next_pending_data->sibling);
919 while (!list_empty(&conf->pending_list)) {
920 data = list_first_entry(&conf->pending_list,
921 struct r5pending_data, sibling);
922 if (&data->sibling == first)
923 first = data->sibling.next;
924 next = data->sibling.next;
926 bio_list_merge(list, &data->bios);
927 list_move(&data->sibling, &conf->free_list);
932 conf->pending_data_cnt -= cnt;
933 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
935 if (next != &conf->pending_list)
936 conf->next_pending_data = list_entry(next,
937 struct r5pending_data, sibling);
939 conf->next_pending_data = NULL;
940 /* list isn't empty */
941 if (first != &conf->pending_list)
942 list_move_tail(&conf->pending_list, first);
945 static void flush_deferred_bios(struct r5conf *conf)
947 struct bio_list tmp = BIO_EMPTY_LIST;
949 if (conf->pending_data_cnt == 0)
952 spin_lock(&conf->pending_bios_lock);
953 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
954 BUG_ON(conf->pending_data_cnt != 0);
955 spin_unlock(&conf->pending_bios_lock);
957 dispatch_bio_list(&tmp);
960 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
961 struct bio_list *bios)
963 struct bio_list tmp = BIO_EMPTY_LIST;
964 struct r5pending_data *ent;
966 spin_lock(&conf->pending_bios_lock);
967 ent = list_first_entry(&conf->free_list, struct r5pending_data,
969 list_move_tail(&ent->sibling, &conf->pending_list);
970 ent->sector = sector;
971 bio_list_init(&ent->bios);
972 bio_list_merge(&ent->bios, bios);
973 conf->pending_data_cnt++;
974 if (conf->pending_data_cnt >= PENDING_IO_MAX)
975 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
977 spin_unlock(&conf->pending_bios_lock);
979 dispatch_bio_list(&tmp);
983 raid5_end_read_request(struct bio *bi);
985 raid5_end_write_request(struct bio *bi);
987 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
989 struct r5conf *conf = sh->raid_conf;
990 int i, disks = sh->disks;
991 struct stripe_head *head_sh = sh;
992 struct bio_list pending_bios = BIO_EMPTY_LIST;
997 if (log_stripe(sh, s) == 0)
1000 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1002 for (i = disks; i--; ) {
1003 int op, op_flags = 0;
1004 int replace_only = 0;
1005 struct bio *bi, *rbi;
1006 struct md_rdev *rdev, *rrdev = NULL;
1009 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1011 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1013 if (test_bit(R5_Discard, &sh->dev[i].flags))
1014 op = REQ_OP_DISCARD;
1015 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1017 else if (test_and_clear_bit(R5_WantReplace,
1018 &sh->dev[i].flags)) {
1023 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1024 op_flags |= REQ_SYNC;
1027 bi = &sh->dev[i].req;
1028 rbi = &sh->dev[i].rreq; /* For writing to replacement */
1031 rrdev = rcu_dereference(conf->disks[i].replacement);
1032 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1033 rdev = rcu_dereference(conf->disks[i].rdev);
1038 if (op_is_write(op)) {
1042 /* We raced and saw duplicates */
1045 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1050 if (rdev && test_bit(Faulty, &rdev->flags))
1053 atomic_inc(&rdev->nr_pending);
1054 if (rrdev && test_bit(Faulty, &rrdev->flags))
1057 atomic_inc(&rrdev->nr_pending);
1060 /* We have already checked bad blocks for reads. Now
1061 * need to check for writes. We never accept write errors
1062 * on the replacement, so we don't to check rrdev.
1064 while (op_is_write(op) && rdev &&
1065 test_bit(WriteErrorSeen, &rdev->flags)) {
1068 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1069 &first_bad, &bad_sectors);
1074 set_bit(BlockedBadBlocks, &rdev->flags);
1075 if (!conf->mddev->external &&
1076 conf->mddev->sb_flags) {
1077 /* It is very unlikely, but we might
1078 * still need to write out the
1079 * bad block log - better give it
1081 md_check_recovery(conf->mddev);
1084 * Because md_wait_for_blocked_rdev
1085 * will dec nr_pending, we must
1086 * increment it first.
1088 atomic_inc(&rdev->nr_pending);
1089 md_wait_for_blocked_rdev(rdev, conf->mddev);
1091 /* Acknowledged bad block - skip the write */
1092 rdev_dec_pending(rdev, conf->mddev);
1098 if (s->syncing || s->expanding || s->expanded
1100 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1102 set_bit(STRIPE_IO_STARTED, &sh->state);
1104 bio_set_dev(bi, rdev->bdev);
1105 bio_set_op_attrs(bi, op, op_flags);
1106 bi->bi_end_io = op_is_write(op)
1107 ? raid5_end_write_request
1108 : raid5_end_read_request;
1109 bi->bi_private = sh;
1111 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1112 __func__, (unsigned long long)sh->sector,
1114 atomic_inc(&sh->count);
1116 atomic_inc(&head_sh->count);
1117 if (use_new_offset(conf, sh))
1118 bi->bi_iter.bi_sector = (sh->sector
1119 + rdev->new_data_offset);
1121 bi->bi_iter.bi_sector = (sh->sector
1122 + rdev->data_offset);
1123 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1124 bi->bi_opf |= REQ_NOMERGE;
1126 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1127 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1129 if (!op_is_write(op) &&
1130 test_bit(R5_InJournal, &sh->dev[i].flags))
1132 * issuing read for a page in journal, this
1133 * must be preparing for prexor in rmw; read
1134 * the data into orig_page
1136 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1138 sh->dev[i].vec.bv_page = sh->dev[i].page;
1140 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1141 bi->bi_io_vec[0].bv_offset = 0;
1142 bi->bi_iter.bi_size = STRIPE_SIZE;
1144 * If this is discard request, set bi_vcnt 0. We don't
1145 * want to confuse SCSI because SCSI will replace payload
1147 if (op == REQ_OP_DISCARD)
1150 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1152 if (conf->mddev->gendisk)
1153 trace_block_bio_remap(bi->bi_disk->queue,
1154 bi, disk_devt(conf->mddev->gendisk),
1156 if (should_defer && op_is_write(op))
1157 bio_list_add(&pending_bios, bi);
1159 generic_make_request(bi);
1162 if (s->syncing || s->expanding || s->expanded
1164 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1166 set_bit(STRIPE_IO_STARTED, &sh->state);
1168 bio_set_dev(rbi, rrdev->bdev);
1169 bio_set_op_attrs(rbi, op, op_flags);
1170 BUG_ON(!op_is_write(op));
1171 rbi->bi_end_io = raid5_end_write_request;
1172 rbi->bi_private = sh;
1174 pr_debug("%s: for %llu schedule op %d on "
1175 "replacement disc %d\n",
1176 __func__, (unsigned long long)sh->sector,
1178 atomic_inc(&sh->count);
1180 atomic_inc(&head_sh->count);
1181 if (use_new_offset(conf, sh))
1182 rbi->bi_iter.bi_sector = (sh->sector
1183 + rrdev->new_data_offset);
1185 rbi->bi_iter.bi_sector = (sh->sector
1186 + rrdev->data_offset);
1187 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1188 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1189 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1191 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1192 rbi->bi_io_vec[0].bv_offset = 0;
1193 rbi->bi_iter.bi_size = STRIPE_SIZE;
1195 * If this is discard request, set bi_vcnt 0. We don't
1196 * want to confuse SCSI because SCSI will replace payload
1198 if (op == REQ_OP_DISCARD)
1200 if (conf->mddev->gendisk)
1201 trace_block_bio_remap(rbi->bi_disk->queue,
1202 rbi, disk_devt(conf->mddev->gendisk),
1204 if (should_defer && op_is_write(op))
1205 bio_list_add(&pending_bios, rbi);
1207 generic_make_request(rbi);
1209 if (!rdev && !rrdev) {
1210 if (op_is_write(op))
1211 set_bit(STRIPE_DEGRADED, &sh->state);
1212 pr_debug("skip op %d on disc %d for sector %llu\n",
1213 bi->bi_opf, i, (unsigned long long)sh->sector);
1214 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1215 set_bit(STRIPE_HANDLE, &sh->state);
1218 if (!head_sh->batch_head)
1220 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1226 if (should_defer && !bio_list_empty(&pending_bios))
1227 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1230 static struct dma_async_tx_descriptor *
1231 async_copy_data(int frombio, struct bio *bio, struct page **page,
1232 sector_t sector, struct dma_async_tx_descriptor *tx,
1233 struct stripe_head *sh, int no_skipcopy)
1236 struct bvec_iter iter;
1237 struct page *bio_page;
1239 struct async_submit_ctl submit;
1240 enum async_tx_flags flags = 0;
1242 if (bio->bi_iter.bi_sector >= sector)
1243 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1245 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1248 flags |= ASYNC_TX_FENCE;
1249 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1251 bio_for_each_segment(bvl, bio, iter) {
1252 int len = bvl.bv_len;
1256 if (page_offset < 0) {
1257 b_offset = -page_offset;
1258 page_offset += b_offset;
1262 if (len > 0 && page_offset + len > STRIPE_SIZE)
1263 clen = STRIPE_SIZE - page_offset;
1268 b_offset += bvl.bv_offset;
1269 bio_page = bvl.bv_page;
1271 if (sh->raid_conf->skip_copy &&
1272 b_offset == 0 && page_offset == 0 &&
1273 clen == STRIPE_SIZE &&
1277 tx = async_memcpy(*page, bio_page, page_offset,
1278 b_offset, clen, &submit);
1280 tx = async_memcpy(bio_page, *page, b_offset,
1281 page_offset, clen, &submit);
1283 /* chain the operations */
1284 submit.depend_tx = tx;
1286 if (clen < len) /* hit end of page */
1294 static void ops_complete_biofill(void *stripe_head_ref)
1296 struct stripe_head *sh = stripe_head_ref;
1299 pr_debug("%s: stripe %llu\n", __func__,
1300 (unsigned long long)sh->sector);
1302 /* clear completed biofills */
1303 for (i = sh->disks; i--; ) {
1304 struct r5dev *dev = &sh->dev[i];
1306 /* acknowledge completion of a biofill operation */
1307 /* and check if we need to reply to a read request,
1308 * new R5_Wantfill requests are held off until
1309 * !STRIPE_BIOFILL_RUN
1311 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1312 struct bio *rbi, *rbi2;
1317 while (rbi && rbi->bi_iter.bi_sector <
1318 dev->sector + STRIPE_SECTORS) {
1319 rbi2 = r5_next_bio(rbi, dev->sector);
1325 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1327 set_bit(STRIPE_HANDLE, &sh->state);
1328 raid5_release_stripe(sh);
1331 static void ops_run_biofill(struct stripe_head *sh)
1333 struct dma_async_tx_descriptor *tx = NULL;
1334 struct async_submit_ctl submit;
1337 BUG_ON(sh->batch_head);
1338 pr_debug("%s: stripe %llu\n", __func__,
1339 (unsigned long long)sh->sector);
1341 for (i = sh->disks; i--; ) {
1342 struct r5dev *dev = &sh->dev[i];
1343 if (test_bit(R5_Wantfill, &dev->flags)) {
1345 spin_lock_irq(&sh->stripe_lock);
1346 dev->read = rbi = dev->toread;
1348 spin_unlock_irq(&sh->stripe_lock);
1349 while (rbi && rbi->bi_iter.bi_sector <
1350 dev->sector + STRIPE_SECTORS) {
1351 tx = async_copy_data(0, rbi, &dev->page,
1352 dev->sector, tx, sh, 0);
1353 rbi = r5_next_bio(rbi, dev->sector);
1358 atomic_inc(&sh->count);
1359 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1360 async_trigger_callback(&submit);
1363 static void mark_target_uptodate(struct stripe_head *sh, int target)
1370 tgt = &sh->dev[target];
1371 set_bit(R5_UPTODATE, &tgt->flags);
1372 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1373 clear_bit(R5_Wantcompute, &tgt->flags);
1376 static void ops_complete_compute(void *stripe_head_ref)
1378 struct stripe_head *sh = stripe_head_ref;
1380 pr_debug("%s: stripe %llu\n", __func__,
1381 (unsigned long long)sh->sector);
1383 /* mark the computed target(s) as uptodate */
1384 mark_target_uptodate(sh, sh->ops.target);
1385 mark_target_uptodate(sh, sh->ops.target2);
1387 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1388 if (sh->check_state == check_state_compute_run)
1389 sh->check_state = check_state_compute_result;
1390 set_bit(STRIPE_HANDLE, &sh->state);
1391 raid5_release_stripe(sh);
1394 /* return a pointer to the address conversion region of the scribble buffer */
1395 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1396 struct raid5_percpu *percpu, int i)
1400 addr = flex_array_get(percpu->scribble, i);
1401 return addr + sizeof(struct page *) * (sh->disks + 2);
1404 /* return a pointer to the address conversion region of the scribble buffer */
1405 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1409 addr = flex_array_get(percpu->scribble, i);
1413 static struct dma_async_tx_descriptor *
1414 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1416 int disks = sh->disks;
1417 struct page **xor_srcs = to_addr_page(percpu, 0);
1418 int target = sh->ops.target;
1419 struct r5dev *tgt = &sh->dev[target];
1420 struct page *xor_dest = tgt->page;
1422 struct dma_async_tx_descriptor *tx;
1423 struct async_submit_ctl submit;
1426 BUG_ON(sh->batch_head);
1428 pr_debug("%s: stripe %llu block: %d\n",
1429 __func__, (unsigned long long)sh->sector, target);
1430 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1432 for (i = disks; i--; )
1434 xor_srcs[count++] = sh->dev[i].page;
1436 atomic_inc(&sh->count);
1438 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1439 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1440 if (unlikely(count == 1))
1441 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1443 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1448 /* set_syndrome_sources - populate source buffers for gen_syndrome
1449 * @srcs - (struct page *) array of size sh->disks
1450 * @sh - stripe_head to parse
1452 * Populates srcs in proper layout order for the stripe and returns the
1453 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1454 * destination buffer is recorded in srcs[count] and the Q destination
1455 * is recorded in srcs[count+1]].
1457 static int set_syndrome_sources(struct page **srcs,
1458 struct stripe_head *sh,
1461 int disks = sh->disks;
1462 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1463 int d0_idx = raid6_d0(sh);
1467 for (i = 0; i < disks; i++)
1473 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1474 struct r5dev *dev = &sh->dev[i];
1476 if (i == sh->qd_idx || i == sh->pd_idx ||
1477 (srctype == SYNDROME_SRC_ALL) ||
1478 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1479 (test_bit(R5_Wantdrain, &dev->flags) ||
1480 test_bit(R5_InJournal, &dev->flags))) ||
1481 (srctype == SYNDROME_SRC_WRITTEN &&
1483 test_bit(R5_InJournal, &dev->flags)))) {
1484 if (test_bit(R5_InJournal, &dev->flags))
1485 srcs[slot] = sh->dev[i].orig_page;
1487 srcs[slot] = sh->dev[i].page;
1489 i = raid6_next_disk(i, disks);
1490 } while (i != d0_idx);
1492 return syndrome_disks;
1495 static struct dma_async_tx_descriptor *
1496 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1498 int disks = sh->disks;
1499 struct page **blocks = to_addr_page(percpu, 0);
1501 int qd_idx = sh->qd_idx;
1502 struct dma_async_tx_descriptor *tx;
1503 struct async_submit_ctl submit;
1509 BUG_ON(sh->batch_head);
1510 if (sh->ops.target < 0)
1511 target = sh->ops.target2;
1512 else if (sh->ops.target2 < 0)
1513 target = sh->ops.target;
1515 /* we should only have one valid target */
1518 pr_debug("%s: stripe %llu block: %d\n",
1519 __func__, (unsigned long long)sh->sector, target);
1521 tgt = &sh->dev[target];
1522 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1525 atomic_inc(&sh->count);
1527 if (target == qd_idx) {
1528 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1529 blocks[count] = NULL; /* regenerating p is not necessary */
1530 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1531 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1532 ops_complete_compute, sh,
1533 to_addr_conv(sh, percpu, 0));
1534 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1536 /* Compute any data- or p-drive using XOR */
1538 for (i = disks; i-- ; ) {
1539 if (i == target || i == qd_idx)
1541 blocks[count++] = sh->dev[i].page;
1544 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1545 NULL, ops_complete_compute, sh,
1546 to_addr_conv(sh, percpu, 0));
1547 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1553 static struct dma_async_tx_descriptor *
1554 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1556 int i, count, disks = sh->disks;
1557 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1558 int d0_idx = raid6_d0(sh);
1559 int faila = -1, failb = -1;
1560 int target = sh->ops.target;
1561 int target2 = sh->ops.target2;
1562 struct r5dev *tgt = &sh->dev[target];
1563 struct r5dev *tgt2 = &sh->dev[target2];
1564 struct dma_async_tx_descriptor *tx;
1565 struct page **blocks = to_addr_page(percpu, 0);
1566 struct async_submit_ctl submit;
1568 BUG_ON(sh->batch_head);
1569 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1570 __func__, (unsigned long long)sh->sector, target, target2);
1571 BUG_ON(target < 0 || target2 < 0);
1572 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1573 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1575 /* we need to open-code set_syndrome_sources to handle the
1576 * slot number conversion for 'faila' and 'failb'
1578 for (i = 0; i < disks ; i++)
1583 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1585 blocks[slot] = sh->dev[i].page;
1591 i = raid6_next_disk(i, disks);
1592 } while (i != d0_idx);
1594 BUG_ON(faila == failb);
1597 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1598 __func__, (unsigned long long)sh->sector, faila, failb);
1600 atomic_inc(&sh->count);
1602 if (failb == syndrome_disks+1) {
1603 /* Q disk is one of the missing disks */
1604 if (faila == syndrome_disks) {
1605 /* Missing P+Q, just recompute */
1606 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1607 ops_complete_compute, sh,
1608 to_addr_conv(sh, percpu, 0));
1609 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1610 STRIPE_SIZE, &submit);
1614 int qd_idx = sh->qd_idx;
1616 /* Missing D+Q: recompute D from P, then recompute Q */
1617 if (target == qd_idx)
1618 data_target = target2;
1620 data_target = target;
1623 for (i = disks; i-- ; ) {
1624 if (i == data_target || i == qd_idx)
1626 blocks[count++] = sh->dev[i].page;
1628 dest = sh->dev[data_target].page;
1629 init_async_submit(&submit,
1630 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1632 to_addr_conv(sh, percpu, 0));
1633 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1636 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1637 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1638 ops_complete_compute, sh,
1639 to_addr_conv(sh, percpu, 0));
1640 return async_gen_syndrome(blocks, 0, count+2,
1641 STRIPE_SIZE, &submit);
1644 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1645 ops_complete_compute, sh,
1646 to_addr_conv(sh, percpu, 0));
1647 if (failb == syndrome_disks) {
1648 /* We're missing D+P. */
1649 return async_raid6_datap_recov(syndrome_disks+2,
1653 /* We're missing D+D. */
1654 return async_raid6_2data_recov(syndrome_disks+2,
1655 STRIPE_SIZE, faila, failb,
1661 static void ops_complete_prexor(void *stripe_head_ref)
1663 struct stripe_head *sh = stripe_head_ref;
1665 pr_debug("%s: stripe %llu\n", __func__,
1666 (unsigned long long)sh->sector);
1668 if (r5c_is_writeback(sh->raid_conf->log))
1670 * raid5-cache write back uses orig_page during prexor.
1671 * After prexor, it is time to free orig_page
1673 r5c_release_extra_page(sh);
1676 static struct dma_async_tx_descriptor *
1677 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1678 struct dma_async_tx_descriptor *tx)
1680 int disks = sh->disks;
1681 struct page **xor_srcs = to_addr_page(percpu, 0);
1682 int count = 0, pd_idx = sh->pd_idx, i;
1683 struct async_submit_ctl submit;
1685 /* existing parity data subtracted */
1686 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1688 BUG_ON(sh->batch_head);
1689 pr_debug("%s: stripe %llu\n", __func__,
1690 (unsigned long long)sh->sector);
1692 for (i = disks; i--; ) {
1693 struct r5dev *dev = &sh->dev[i];
1694 /* Only process blocks that are known to be uptodate */
1695 if (test_bit(R5_InJournal, &dev->flags))
1696 xor_srcs[count++] = dev->orig_page;
1697 else if (test_bit(R5_Wantdrain, &dev->flags))
1698 xor_srcs[count++] = dev->page;
1701 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1702 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1703 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1708 static struct dma_async_tx_descriptor *
1709 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1710 struct dma_async_tx_descriptor *tx)
1712 struct page **blocks = to_addr_page(percpu, 0);
1714 struct async_submit_ctl submit;
1716 pr_debug("%s: stripe %llu\n", __func__,
1717 (unsigned long long)sh->sector);
1719 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1721 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1722 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1723 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1728 static struct dma_async_tx_descriptor *
1729 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1731 struct r5conf *conf = sh->raid_conf;
1732 int disks = sh->disks;
1734 struct stripe_head *head_sh = sh;
1736 pr_debug("%s: stripe %llu\n", __func__,
1737 (unsigned long long)sh->sector);
1739 for (i = disks; i--; ) {
1744 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1750 * clear R5_InJournal, so when rewriting a page in
1751 * journal, it is not skipped by r5l_log_stripe()
1753 clear_bit(R5_InJournal, &dev->flags);
1754 spin_lock_irq(&sh->stripe_lock);
1755 chosen = dev->towrite;
1756 dev->towrite = NULL;
1757 sh->overwrite_disks = 0;
1758 BUG_ON(dev->written);
1759 wbi = dev->written = chosen;
1760 spin_unlock_irq(&sh->stripe_lock);
1761 WARN_ON(dev->page != dev->orig_page);
1763 while (wbi && wbi->bi_iter.bi_sector <
1764 dev->sector + STRIPE_SECTORS) {
1765 if (wbi->bi_opf & REQ_FUA)
1766 set_bit(R5_WantFUA, &dev->flags);
1767 if (wbi->bi_opf & REQ_SYNC)
1768 set_bit(R5_SyncIO, &dev->flags);
1769 if (bio_op(wbi) == REQ_OP_DISCARD)
1770 set_bit(R5_Discard, &dev->flags);
1772 tx = async_copy_data(1, wbi, &dev->page,
1773 dev->sector, tx, sh,
1774 r5c_is_writeback(conf->log));
1775 if (dev->page != dev->orig_page &&
1776 !r5c_is_writeback(conf->log)) {
1777 set_bit(R5_SkipCopy, &dev->flags);
1778 clear_bit(R5_UPTODATE, &dev->flags);
1779 clear_bit(R5_OVERWRITE, &dev->flags);
1782 wbi = r5_next_bio(wbi, dev->sector);
1785 if (head_sh->batch_head) {
1786 sh = list_first_entry(&sh->batch_list,
1799 static void ops_complete_reconstruct(void *stripe_head_ref)
1801 struct stripe_head *sh = stripe_head_ref;
1802 int disks = sh->disks;
1803 int pd_idx = sh->pd_idx;
1804 int qd_idx = sh->qd_idx;
1806 bool fua = false, sync = false, discard = false;
1808 pr_debug("%s: stripe %llu\n", __func__,
1809 (unsigned long long)sh->sector);
1811 for (i = disks; i--; ) {
1812 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1813 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1814 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1817 for (i = disks; i--; ) {
1818 struct r5dev *dev = &sh->dev[i];
1820 if (dev->written || i == pd_idx || i == qd_idx) {
1821 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1822 set_bit(R5_UPTODATE, &dev->flags);
1824 set_bit(R5_WantFUA, &dev->flags);
1826 set_bit(R5_SyncIO, &dev->flags);
1830 if (sh->reconstruct_state == reconstruct_state_drain_run)
1831 sh->reconstruct_state = reconstruct_state_drain_result;
1832 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1833 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1835 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1836 sh->reconstruct_state = reconstruct_state_result;
1839 set_bit(STRIPE_HANDLE, &sh->state);
1840 raid5_release_stripe(sh);
1844 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1845 struct dma_async_tx_descriptor *tx)
1847 int disks = sh->disks;
1848 struct page **xor_srcs;
1849 struct async_submit_ctl submit;
1850 int count, pd_idx = sh->pd_idx, i;
1851 struct page *xor_dest;
1853 unsigned long flags;
1855 struct stripe_head *head_sh = sh;
1858 pr_debug("%s: stripe %llu\n", __func__,
1859 (unsigned long long)sh->sector);
1861 for (i = 0; i < sh->disks; i++) {
1864 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1867 if (i >= sh->disks) {
1868 atomic_inc(&sh->count);
1869 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1870 ops_complete_reconstruct(sh);
1875 xor_srcs = to_addr_page(percpu, j);
1876 /* check if prexor is active which means only process blocks
1877 * that are part of a read-modify-write (written)
1879 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1881 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1882 for (i = disks; i--; ) {
1883 struct r5dev *dev = &sh->dev[i];
1884 if (head_sh->dev[i].written ||
1885 test_bit(R5_InJournal, &head_sh->dev[i].flags))
1886 xor_srcs[count++] = dev->page;
1889 xor_dest = sh->dev[pd_idx].page;
1890 for (i = disks; i--; ) {
1891 struct r5dev *dev = &sh->dev[i];
1893 xor_srcs[count++] = dev->page;
1897 /* 1/ if we prexor'd then the dest is reused as a source
1898 * 2/ if we did not prexor then we are redoing the parity
1899 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1900 * for the synchronous xor case
1902 last_stripe = !head_sh->batch_head ||
1903 list_first_entry(&sh->batch_list,
1904 struct stripe_head, batch_list) == head_sh;
1906 flags = ASYNC_TX_ACK |
1907 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1909 atomic_inc(&head_sh->count);
1910 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1911 to_addr_conv(sh, percpu, j));
1913 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1914 init_async_submit(&submit, flags, tx, NULL, NULL,
1915 to_addr_conv(sh, percpu, j));
1918 if (unlikely(count == 1))
1919 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1921 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1924 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1931 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1932 struct dma_async_tx_descriptor *tx)
1934 struct async_submit_ctl submit;
1935 struct page **blocks;
1936 int count, i, j = 0;
1937 struct stripe_head *head_sh = sh;
1940 unsigned long txflags;
1942 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1944 for (i = 0; i < sh->disks; i++) {
1945 if (sh->pd_idx == i || sh->qd_idx == i)
1947 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1950 if (i >= sh->disks) {
1951 atomic_inc(&sh->count);
1952 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1953 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1954 ops_complete_reconstruct(sh);
1959 blocks = to_addr_page(percpu, j);
1961 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1962 synflags = SYNDROME_SRC_WRITTEN;
1963 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1965 synflags = SYNDROME_SRC_ALL;
1966 txflags = ASYNC_TX_ACK;
1969 count = set_syndrome_sources(blocks, sh, synflags);
1970 last_stripe = !head_sh->batch_head ||
1971 list_first_entry(&sh->batch_list,
1972 struct stripe_head, batch_list) == head_sh;
1975 atomic_inc(&head_sh->count);
1976 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1977 head_sh, to_addr_conv(sh, percpu, j));
1979 init_async_submit(&submit, 0, tx, NULL, NULL,
1980 to_addr_conv(sh, percpu, j));
1981 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1984 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1990 static void ops_complete_check(void *stripe_head_ref)
1992 struct stripe_head *sh = stripe_head_ref;
1994 pr_debug("%s: stripe %llu\n", __func__,
1995 (unsigned long long)sh->sector);
1997 sh->check_state = check_state_check_result;
1998 set_bit(STRIPE_HANDLE, &sh->state);
1999 raid5_release_stripe(sh);
2002 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2004 int disks = sh->disks;
2005 int pd_idx = sh->pd_idx;
2006 int qd_idx = sh->qd_idx;
2007 struct page *xor_dest;
2008 struct page **xor_srcs = to_addr_page(percpu, 0);
2009 struct dma_async_tx_descriptor *tx;
2010 struct async_submit_ctl submit;
2014 pr_debug("%s: stripe %llu\n", __func__,
2015 (unsigned long long)sh->sector);
2017 BUG_ON(sh->batch_head);
2019 xor_dest = sh->dev[pd_idx].page;
2020 xor_srcs[count++] = xor_dest;
2021 for (i = disks; i--; ) {
2022 if (i == pd_idx || i == qd_idx)
2024 xor_srcs[count++] = sh->dev[i].page;
2027 init_async_submit(&submit, 0, NULL, NULL, NULL,
2028 to_addr_conv(sh, percpu, 0));
2029 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2030 &sh->ops.zero_sum_result, &submit);
2032 atomic_inc(&sh->count);
2033 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2034 tx = async_trigger_callback(&submit);
2037 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2039 struct page **srcs = to_addr_page(percpu, 0);
2040 struct async_submit_ctl submit;
2043 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2044 (unsigned long long)sh->sector, checkp);
2046 BUG_ON(sh->batch_head);
2047 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2051 atomic_inc(&sh->count);
2052 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2053 sh, to_addr_conv(sh, percpu, 0));
2054 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2055 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2058 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2060 int overlap_clear = 0, i, disks = sh->disks;
2061 struct dma_async_tx_descriptor *tx = NULL;
2062 struct r5conf *conf = sh->raid_conf;
2063 int level = conf->level;
2064 struct raid5_percpu *percpu;
2068 percpu = per_cpu_ptr(conf->percpu, cpu);
2069 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2070 ops_run_biofill(sh);
2074 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2076 tx = ops_run_compute5(sh, percpu);
2078 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2079 tx = ops_run_compute6_1(sh, percpu);
2081 tx = ops_run_compute6_2(sh, percpu);
2083 /* terminate the chain if reconstruct is not set to be run */
2084 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2088 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2090 tx = ops_run_prexor5(sh, percpu, tx);
2092 tx = ops_run_prexor6(sh, percpu, tx);
2095 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2096 tx = ops_run_partial_parity(sh, percpu, tx);
2098 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2099 tx = ops_run_biodrain(sh, tx);
2103 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2105 ops_run_reconstruct5(sh, percpu, tx);
2107 ops_run_reconstruct6(sh, percpu, tx);
2110 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2111 if (sh->check_state == check_state_run)
2112 ops_run_check_p(sh, percpu);
2113 else if (sh->check_state == check_state_run_q)
2114 ops_run_check_pq(sh, percpu, 0);
2115 else if (sh->check_state == check_state_run_pq)
2116 ops_run_check_pq(sh, percpu, 1);
2121 if (overlap_clear && !sh->batch_head)
2122 for (i = disks; i--; ) {
2123 struct r5dev *dev = &sh->dev[i];
2124 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2125 wake_up(&sh->raid_conf->wait_for_overlap);
2130 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2133 __free_page(sh->ppl_page);
2134 kmem_cache_free(sc, sh);
2137 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2138 int disks, struct r5conf *conf)
2140 struct stripe_head *sh;
2143 sh = kmem_cache_zalloc(sc, gfp);
2145 spin_lock_init(&sh->stripe_lock);
2146 spin_lock_init(&sh->batch_lock);
2147 INIT_LIST_HEAD(&sh->batch_list);
2148 INIT_LIST_HEAD(&sh->lru);
2149 INIT_LIST_HEAD(&sh->r5c);
2150 INIT_LIST_HEAD(&sh->log_list);
2151 atomic_set(&sh->count, 1);
2152 sh->raid_conf = conf;
2153 sh->log_start = MaxSector;
2154 for (i = 0; i < disks; i++) {
2155 struct r5dev *dev = &sh->dev[i];
2157 bio_init(&dev->req, &dev->vec, 1);
2158 bio_init(&dev->rreq, &dev->rvec, 1);
2161 if (raid5_has_ppl(conf)) {
2162 sh->ppl_page = alloc_page(gfp);
2163 if (!sh->ppl_page) {
2164 free_stripe(sc, sh);
2171 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2173 struct stripe_head *sh;
2175 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2179 if (grow_buffers(sh, gfp)) {
2181 free_stripe(conf->slab_cache, sh);
2184 sh->hash_lock_index =
2185 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2186 /* we just created an active stripe so... */
2187 atomic_inc(&conf->active_stripes);
2189 raid5_release_stripe(sh);
2190 conf->max_nr_stripes++;
2194 static int grow_stripes(struct r5conf *conf, int num)
2196 struct kmem_cache *sc;
2197 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2199 if (conf->mddev->gendisk)
2200 sprintf(conf->cache_name[0],
2201 "raid%d-%s", conf->level, mdname(conf->mddev));
2203 sprintf(conf->cache_name[0],
2204 "raid%d-%p", conf->level, conf->mddev);
2205 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2207 conf->active_name = 0;
2208 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2209 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2213 conf->slab_cache = sc;
2214 conf->pool_size = devs;
2216 if (!grow_one_stripe(conf, GFP_KERNEL))
2223 * scribble_len - return the required size of the scribble region
2224 * @num - total number of disks in the array
2226 * The size must be enough to contain:
2227 * 1/ a struct page pointer for each device in the array +2
2228 * 2/ room to convert each entry in (1) to its corresponding dma
2229 * (dma_map_page()) or page (page_address()) address.
2231 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2232 * calculate over all devices (not just the data blocks), using zeros in place
2233 * of the P and Q blocks.
2235 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2237 struct flex_array *ret;
2240 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2241 ret = flex_array_alloc(len, cnt, flags);
2244 /* always prealloc all elements, so no locking is required */
2245 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2246 flex_array_free(ret);
2252 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2258 * Never shrink. And mddev_suspend() could deadlock if this is called
2259 * from raid5d. In that case, scribble_disks and scribble_sectors
2260 * should equal to new_disks and new_sectors
2262 if (conf->scribble_disks >= new_disks &&
2263 conf->scribble_sectors >= new_sectors)
2265 mddev_suspend(conf->mddev);
2267 for_each_present_cpu(cpu) {
2268 struct raid5_percpu *percpu;
2269 struct flex_array *scribble;
2271 percpu = per_cpu_ptr(conf->percpu, cpu);
2272 scribble = scribble_alloc(new_disks,
2273 new_sectors / STRIPE_SECTORS,
2277 flex_array_free(percpu->scribble);
2278 percpu->scribble = scribble;
2285 mddev_resume(conf->mddev);
2287 conf->scribble_disks = new_disks;
2288 conf->scribble_sectors = new_sectors;
2293 static int resize_stripes(struct r5conf *conf, int newsize)
2295 /* Make all the stripes able to hold 'newsize' devices.
2296 * New slots in each stripe get 'page' set to a new page.
2298 * This happens in stages:
2299 * 1/ create a new kmem_cache and allocate the required number of
2301 * 2/ gather all the old stripe_heads and transfer the pages across
2302 * to the new stripe_heads. This will have the side effect of
2303 * freezing the array as once all stripe_heads have been collected,
2304 * no IO will be possible. Old stripe heads are freed once their
2305 * pages have been transferred over, and the old kmem_cache is
2306 * freed when all stripes are done.
2307 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2308 * we simple return a failure status - no need to clean anything up.
2309 * 4/ allocate new pages for the new slots in the new stripe_heads.
2310 * If this fails, we don't bother trying the shrink the
2311 * stripe_heads down again, we just leave them as they are.
2312 * As each stripe_head is processed the new one is released into
2315 * Once step2 is started, we cannot afford to wait for a write,
2316 * so we use GFP_NOIO allocations.
2318 struct stripe_head *osh, *nsh;
2319 LIST_HEAD(newstripes);
2320 struct disk_info *ndisks;
2322 struct kmem_cache *sc;
2326 md_allow_write(conf->mddev);
2329 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2330 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2335 /* Need to ensure auto-resizing doesn't interfere */
2336 mutex_lock(&conf->cache_size_mutex);
2338 for (i = conf->max_nr_stripes; i; i--) {
2339 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2343 list_add(&nsh->lru, &newstripes);
2346 /* didn't get enough, give up */
2347 while (!list_empty(&newstripes)) {
2348 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2349 list_del(&nsh->lru);
2350 free_stripe(sc, nsh);
2352 kmem_cache_destroy(sc);
2353 mutex_unlock(&conf->cache_size_mutex);
2356 /* Step 2 - Must use GFP_NOIO now.
2357 * OK, we have enough stripes, start collecting inactive
2358 * stripes and copying them over
2362 list_for_each_entry(nsh, &newstripes, lru) {
2363 lock_device_hash_lock(conf, hash);
2364 wait_event_cmd(conf->wait_for_stripe,
2365 !list_empty(conf->inactive_list + hash),
2366 unlock_device_hash_lock(conf, hash),
2367 lock_device_hash_lock(conf, hash));
2368 osh = get_free_stripe(conf, hash);
2369 unlock_device_hash_lock(conf, hash);
2371 for(i=0; i<conf->pool_size; i++) {
2372 nsh->dev[i].page = osh->dev[i].page;
2373 nsh->dev[i].orig_page = osh->dev[i].page;
2375 nsh->hash_lock_index = hash;
2376 free_stripe(conf->slab_cache, osh);
2378 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2379 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2384 kmem_cache_destroy(conf->slab_cache);
2387 * At this point, we are holding all the stripes so the array
2388 * is completely stalled, so now is a good time to resize
2389 * conf->disks and the scribble region
2391 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2393 for (i = 0; i < conf->pool_size; i++)
2394 ndisks[i] = conf->disks[i];
2396 for (i = conf->pool_size; i < newsize; i++) {
2397 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2398 if (!ndisks[i].extra_page)
2403 for (i = conf->pool_size; i < newsize; i++)
2404 if (ndisks[i].extra_page)
2405 put_page(ndisks[i].extra_page);
2409 conf->disks = ndisks;
2414 mutex_unlock(&conf->cache_size_mutex);
2416 conf->slab_cache = sc;
2417 conf->active_name = 1-conf->active_name;
2419 /* Step 4, return new stripes to service */
2420 while(!list_empty(&newstripes)) {
2421 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2422 list_del_init(&nsh->lru);
2424 for (i=conf->raid_disks; i < newsize; i++)
2425 if (nsh->dev[i].page == NULL) {
2426 struct page *p = alloc_page(GFP_NOIO);
2427 nsh->dev[i].page = p;
2428 nsh->dev[i].orig_page = p;
2432 raid5_release_stripe(nsh);
2434 /* critical section pass, GFP_NOIO no longer needed */
2437 conf->pool_size = newsize;
2441 static int drop_one_stripe(struct r5conf *conf)
2443 struct stripe_head *sh;
2444 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2446 spin_lock_irq(conf->hash_locks + hash);
2447 sh = get_free_stripe(conf, hash);
2448 spin_unlock_irq(conf->hash_locks + hash);
2451 BUG_ON(atomic_read(&sh->count));
2453 free_stripe(conf->slab_cache, sh);
2454 atomic_dec(&conf->active_stripes);
2455 conf->max_nr_stripes--;
2459 static void shrink_stripes(struct r5conf *conf)
2461 while (conf->max_nr_stripes &&
2462 drop_one_stripe(conf))
2465 kmem_cache_destroy(conf->slab_cache);
2466 conf->slab_cache = NULL;
2469 static void raid5_end_read_request(struct bio * bi)
2471 struct stripe_head *sh = bi->bi_private;
2472 struct r5conf *conf = sh->raid_conf;
2473 int disks = sh->disks, i;
2474 char b[BDEVNAME_SIZE];
2475 struct md_rdev *rdev = NULL;
2478 for (i=0 ; i<disks; i++)
2479 if (bi == &sh->dev[i].req)
2482 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2483 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2490 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2491 /* If replacement finished while this request was outstanding,
2492 * 'replacement' might be NULL already.
2493 * In that case it moved down to 'rdev'.
2494 * rdev is not removed until all requests are finished.
2496 rdev = conf->disks[i].replacement;
2498 rdev = conf->disks[i].rdev;
2500 if (use_new_offset(conf, sh))
2501 s = sh->sector + rdev->new_data_offset;
2503 s = sh->sector + rdev->data_offset;
2504 if (!bi->bi_status) {
2505 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2506 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2507 /* Note that this cannot happen on a
2508 * replacement device. We just fail those on
2511 pr_info_ratelimited(
2512 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2513 mdname(conf->mddev), STRIPE_SECTORS,
2514 (unsigned long long)s,
2515 bdevname(rdev->bdev, b));
2516 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2517 clear_bit(R5_ReadError, &sh->dev[i].flags);
2518 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2519 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2520 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2522 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2524 * end read for a page in journal, this
2525 * must be preparing for prexor in rmw
2527 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2529 if (atomic_read(&rdev->read_errors))
2530 atomic_set(&rdev->read_errors, 0);
2532 const char *bdn = bdevname(rdev->bdev, b);
2536 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2537 atomic_inc(&rdev->read_errors);
2538 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2539 pr_warn_ratelimited(
2540 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2541 mdname(conf->mddev),
2542 (unsigned long long)s,
2544 else if (conf->mddev->degraded >= conf->max_degraded) {
2546 pr_warn_ratelimited(
2547 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2548 mdname(conf->mddev),
2549 (unsigned long long)s,
2551 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2554 pr_warn_ratelimited(
2555 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2556 mdname(conf->mddev),
2557 (unsigned long long)s,
2559 } else if (atomic_read(&rdev->read_errors)
2560 > conf->max_nr_stripes)
2561 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2562 mdname(conf->mddev), bdn);
2565 if (set_bad && test_bit(In_sync, &rdev->flags)
2566 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2569 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2570 set_bit(R5_ReadError, &sh->dev[i].flags);
2571 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2573 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2575 clear_bit(R5_ReadError, &sh->dev[i].flags);
2576 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2578 && test_bit(In_sync, &rdev->flags)
2579 && rdev_set_badblocks(
2580 rdev, sh->sector, STRIPE_SECTORS, 0)))
2581 md_error(conf->mddev, rdev);
2584 rdev_dec_pending(rdev, conf->mddev);
2586 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2587 set_bit(STRIPE_HANDLE, &sh->state);
2588 raid5_release_stripe(sh);
2591 static void raid5_end_write_request(struct bio *bi)
2593 struct stripe_head *sh = bi->bi_private;
2594 struct r5conf *conf = sh->raid_conf;
2595 int disks = sh->disks, i;
2596 struct md_rdev *uninitialized_var(rdev);
2599 int replacement = 0;
2601 for (i = 0 ; i < disks; i++) {
2602 if (bi == &sh->dev[i].req) {
2603 rdev = conf->disks[i].rdev;
2606 if (bi == &sh->dev[i].rreq) {
2607 rdev = conf->disks[i].replacement;
2611 /* rdev was removed and 'replacement'
2612 * replaced it. rdev is not removed
2613 * until all requests are finished.
2615 rdev = conf->disks[i].rdev;
2619 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2620 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2630 md_error(conf->mddev, rdev);
2631 else if (is_badblock(rdev, sh->sector,
2633 &first_bad, &bad_sectors))
2634 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2636 if (bi->bi_status) {
2637 set_bit(STRIPE_DEGRADED, &sh->state);
2638 set_bit(WriteErrorSeen, &rdev->flags);
2639 set_bit(R5_WriteError, &sh->dev[i].flags);
2640 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2641 set_bit(MD_RECOVERY_NEEDED,
2642 &rdev->mddev->recovery);
2643 } else if (is_badblock(rdev, sh->sector,
2645 &first_bad, &bad_sectors)) {
2646 set_bit(R5_MadeGood, &sh->dev[i].flags);
2647 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2648 /* That was a successful write so make
2649 * sure it looks like we already did
2652 set_bit(R5_ReWrite, &sh->dev[i].flags);
2655 rdev_dec_pending(rdev, conf->mddev);
2657 if (sh->batch_head && bi->bi_status && !replacement)
2658 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2661 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2662 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2663 set_bit(STRIPE_HANDLE, &sh->state);
2664 raid5_release_stripe(sh);
2666 if (sh->batch_head && sh != sh->batch_head)
2667 raid5_release_stripe(sh->batch_head);
2670 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2672 char b[BDEVNAME_SIZE];
2673 struct r5conf *conf = mddev->private;
2674 unsigned long flags;
2675 pr_debug("raid456: error called\n");
2677 spin_lock_irqsave(&conf->device_lock, flags);
2678 clear_bit(In_sync, &rdev->flags);
2679 mddev->degraded = raid5_calc_degraded(conf);
2680 spin_unlock_irqrestore(&conf->device_lock, flags);
2681 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2683 set_bit(Blocked, &rdev->flags);
2684 set_bit(Faulty, &rdev->flags);
2685 set_mask_bits(&mddev->sb_flags, 0,
2686 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2687 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2688 "md/raid:%s: Operation continuing on %d devices.\n",
2690 bdevname(rdev->bdev, b),
2692 conf->raid_disks - mddev->degraded);
2693 r5c_update_on_rdev_error(mddev, rdev);
2697 * Input: a 'big' sector number,
2698 * Output: index of the data and parity disk, and the sector # in them.
2700 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2701 int previous, int *dd_idx,
2702 struct stripe_head *sh)
2704 sector_t stripe, stripe2;
2705 sector_t chunk_number;
2706 unsigned int chunk_offset;
2709 sector_t new_sector;
2710 int algorithm = previous ? conf->prev_algo
2712 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2713 : conf->chunk_sectors;
2714 int raid_disks = previous ? conf->previous_raid_disks
2716 int data_disks = raid_disks - conf->max_degraded;
2718 /* First compute the information on this sector */
2721 * Compute the chunk number and the sector offset inside the chunk
2723 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2724 chunk_number = r_sector;
2727 * Compute the stripe number
2729 stripe = chunk_number;
2730 *dd_idx = sector_div(stripe, data_disks);
2733 * Select the parity disk based on the user selected algorithm.
2735 pd_idx = qd_idx = -1;
2736 switch(conf->level) {
2738 pd_idx = data_disks;
2741 switch (algorithm) {
2742 case ALGORITHM_LEFT_ASYMMETRIC:
2743 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2744 if (*dd_idx >= pd_idx)
2747 case ALGORITHM_RIGHT_ASYMMETRIC:
2748 pd_idx = sector_div(stripe2, raid_disks);
2749 if (*dd_idx >= pd_idx)
2752 case ALGORITHM_LEFT_SYMMETRIC:
2753 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2754 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2756 case ALGORITHM_RIGHT_SYMMETRIC:
2757 pd_idx = sector_div(stripe2, raid_disks);
2758 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2760 case ALGORITHM_PARITY_0:
2764 case ALGORITHM_PARITY_N:
2765 pd_idx = data_disks;
2773 switch (algorithm) {
2774 case ALGORITHM_LEFT_ASYMMETRIC:
2775 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2776 qd_idx = pd_idx + 1;
2777 if (pd_idx == raid_disks-1) {
2778 (*dd_idx)++; /* Q D D D P */
2780 } else if (*dd_idx >= pd_idx)
2781 (*dd_idx) += 2; /* D D P Q D */
2783 case ALGORITHM_RIGHT_ASYMMETRIC:
2784 pd_idx = sector_div(stripe2, raid_disks);
2785 qd_idx = pd_idx + 1;
2786 if (pd_idx == raid_disks-1) {
2787 (*dd_idx)++; /* Q D D D P */
2789 } else if (*dd_idx >= pd_idx)
2790 (*dd_idx) += 2; /* D D P Q D */
2792 case ALGORITHM_LEFT_SYMMETRIC:
2793 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2794 qd_idx = (pd_idx + 1) % raid_disks;
2795 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2797 case ALGORITHM_RIGHT_SYMMETRIC:
2798 pd_idx = sector_div(stripe2, raid_disks);
2799 qd_idx = (pd_idx + 1) % raid_disks;
2800 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2803 case ALGORITHM_PARITY_0:
2808 case ALGORITHM_PARITY_N:
2809 pd_idx = data_disks;
2810 qd_idx = data_disks + 1;
2813 case ALGORITHM_ROTATING_ZERO_RESTART:
2814 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2815 * of blocks for computing Q is different.
2817 pd_idx = sector_div(stripe2, raid_disks);
2818 qd_idx = pd_idx + 1;
2819 if (pd_idx == raid_disks-1) {
2820 (*dd_idx)++; /* Q D D D P */
2822 } else if (*dd_idx >= pd_idx)
2823 (*dd_idx) += 2; /* D D P Q D */
2827 case ALGORITHM_ROTATING_N_RESTART:
2828 /* Same a left_asymmetric, by first stripe is
2829 * D D D P Q rather than
2833 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2834 qd_idx = pd_idx + 1;
2835 if (pd_idx == raid_disks-1) {
2836 (*dd_idx)++; /* Q D D D P */
2838 } else if (*dd_idx >= pd_idx)
2839 (*dd_idx) += 2; /* D D P Q D */
2843 case ALGORITHM_ROTATING_N_CONTINUE:
2844 /* Same as left_symmetric but Q is before P */
2845 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2846 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2847 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2851 case ALGORITHM_LEFT_ASYMMETRIC_6:
2852 /* RAID5 left_asymmetric, with Q on last device */
2853 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2854 if (*dd_idx >= pd_idx)
2856 qd_idx = raid_disks - 1;
2859 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2860 pd_idx = sector_div(stripe2, raid_disks-1);
2861 if (*dd_idx >= pd_idx)
2863 qd_idx = raid_disks - 1;
2866 case ALGORITHM_LEFT_SYMMETRIC_6:
2867 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2868 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2869 qd_idx = raid_disks - 1;
2872 case ALGORITHM_RIGHT_SYMMETRIC_6:
2873 pd_idx = sector_div(stripe2, raid_disks-1);
2874 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2875 qd_idx = raid_disks - 1;
2878 case ALGORITHM_PARITY_0_6:
2881 qd_idx = raid_disks - 1;
2891 sh->pd_idx = pd_idx;
2892 sh->qd_idx = qd_idx;
2893 sh->ddf_layout = ddf_layout;
2896 * Finally, compute the new sector number
2898 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2902 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2904 struct r5conf *conf = sh->raid_conf;
2905 int raid_disks = sh->disks;
2906 int data_disks = raid_disks - conf->max_degraded;
2907 sector_t new_sector = sh->sector, check;
2908 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2909 : conf->chunk_sectors;
2910 int algorithm = previous ? conf->prev_algo
2914 sector_t chunk_number;
2915 int dummy1, dd_idx = i;
2917 struct stripe_head sh2;
2919 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2920 stripe = new_sector;
2922 if (i == sh->pd_idx)
2924 switch(conf->level) {
2927 switch (algorithm) {
2928 case ALGORITHM_LEFT_ASYMMETRIC:
2929 case ALGORITHM_RIGHT_ASYMMETRIC:
2933 case ALGORITHM_LEFT_SYMMETRIC:
2934 case ALGORITHM_RIGHT_SYMMETRIC:
2937 i -= (sh->pd_idx + 1);
2939 case ALGORITHM_PARITY_0:
2942 case ALGORITHM_PARITY_N:
2949 if (i == sh->qd_idx)
2950 return 0; /* It is the Q disk */
2951 switch (algorithm) {
2952 case ALGORITHM_LEFT_ASYMMETRIC:
2953 case ALGORITHM_RIGHT_ASYMMETRIC:
2954 case ALGORITHM_ROTATING_ZERO_RESTART:
2955 case ALGORITHM_ROTATING_N_RESTART:
2956 if (sh->pd_idx == raid_disks-1)
2957 i--; /* Q D D D P */
2958 else if (i > sh->pd_idx)
2959 i -= 2; /* D D P Q D */
2961 case ALGORITHM_LEFT_SYMMETRIC:
2962 case ALGORITHM_RIGHT_SYMMETRIC:
2963 if (sh->pd_idx == raid_disks-1)
2964 i--; /* Q D D D P */
2969 i -= (sh->pd_idx + 2);
2972 case ALGORITHM_PARITY_0:
2975 case ALGORITHM_PARITY_N:
2977 case ALGORITHM_ROTATING_N_CONTINUE:
2978 /* Like left_symmetric, but P is before Q */
2979 if (sh->pd_idx == 0)
2980 i--; /* P D D D Q */
2985 i -= (sh->pd_idx + 1);
2988 case ALGORITHM_LEFT_ASYMMETRIC_6:
2989 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2993 case ALGORITHM_LEFT_SYMMETRIC_6:
2994 case ALGORITHM_RIGHT_SYMMETRIC_6:
2996 i += data_disks + 1;
2997 i -= (sh->pd_idx + 1);
2999 case ALGORITHM_PARITY_0_6:
3008 chunk_number = stripe * data_disks + i;
3009 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3011 check = raid5_compute_sector(conf, r_sector,
3012 previous, &dummy1, &sh2);
3013 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3014 || sh2.qd_idx != sh->qd_idx) {
3015 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3016 mdname(conf->mddev));
3023 * There are cases where we want handle_stripe_dirtying() and
3024 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3026 * This function checks whether we want to delay the towrite. Specifically,
3027 * we delay the towrite when:
3029 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3030 * stripe has data in journal (for other devices).
3032 * In this case, when reading data for the non-overwrite dev, it is
3033 * necessary to handle complex rmw of write back cache (prexor with
3034 * orig_page, and xor with page). To keep read path simple, we would
3035 * like to flush data in journal to RAID disks first, so complex rmw
3036 * is handled in the write patch (handle_stripe_dirtying).
3038 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3040 * It is important to be able to flush all stripes in raid5-cache.
3041 * Therefore, we need reserve some space on the journal device for
3042 * these flushes. If flush operation includes pending writes to the
3043 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3044 * for the flush out. If we exclude these pending writes from flush
3045 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3046 * Therefore, excluding pending writes in these cases enables more
3047 * efficient use of the journal device.
3049 * Note: To make sure the stripe makes progress, we only delay
3050 * towrite for stripes with data already in journal (injournal > 0).
3051 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3052 * no_space_stripes list.
3054 * 3. during journal failure
3055 * In journal failure, we try to flush all cached data to raid disks
3056 * based on data in stripe cache. The array is read-only to upper
3057 * layers, so we would skip all pending writes.
3060 static inline bool delay_towrite(struct r5conf *conf,
3062 struct stripe_head_state *s)
3065 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3066 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3069 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3073 if (s->log_failed && s->injournal)
3079 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3080 int rcw, int expand)
3082 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3083 struct r5conf *conf = sh->raid_conf;
3084 int level = conf->level;
3088 * In some cases, handle_stripe_dirtying initially decided to
3089 * run rmw and allocates extra page for prexor. However, rcw is
3090 * cheaper later on. We need to free the extra page now,
3091 * because we won't be able to do that in ops_complete_prexor().
3093 r5c_release_extra_page(sh);
3095 for (i = disks; i--; ) {
3096 struct r5dev *dev = &sh->dev[i];
3098 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3099 set_bit(R5_LOCKED, &dev->flags);
3100 set_bit(R5_Wantdrain, &dev->flags);
3102 clear_bit(R5_UPTODATE, &dev->flags);
3104 } else if (test_bit(R5_InJournal, &dev->flags)) {
3105 set_bit(R5_LOCKED, &dev->flags);
3109 /* if we are not expanding this is a proper write request, and
3110 * there will be bios with new data to be drained into the
3115 /* False alarm, nothing to do */
3117 sh->reconstruct_state = reconstruct_state_drain_run;
3118 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3120 sh->reconstruct_state = reconstruct_state_run;
3122 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3124 if (s->locked + conf->max_degraded == disks)
3125 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3126 atomic_inc(&conf->pending_full_writes);
3128 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3129 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3130 BUG_ON(level == 6 &&
3131 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3132 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3134 for (i = disks; i--; ) {
3135 struct r5dev *dev = &sh->dev[i];
3136 if (i == pd_idx || i == qd_idx)
3140 (test_bit(R5_UPTODATE, &dev->flags) ||
3141 test_bit(R5_Wantcompute, &dev->flags))) {
3142 set_bit(R5_Wantdrain, &dev->flags);
3143 set_bit(R5_LOCKED, &dev->flags);
3144 clear_bit(R5_UPTODATE, &dev->flags);
3146 } else if (test_bit(R5_InJournal, &dev->flags)) {
3147 set_bit(R5_LOCKED, &dev->flags);
3152 /* False alarm - nothing to do */
3154 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3155 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3156 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3157 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3160 /* keep the parity disk(s) locked while asynchronous operations
3163 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3164 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3168 int qd_idx = sh->qd_idx;
3169 struct r5dev *dev = &sh->dev[qd_idx];
3171 set_bit(R5_LOCKED, &dev->flags);
3172 clear_bit(R5_UPTODATE, &dev->flags);
3176 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3177 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3178 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3179 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3180 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3182 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3183 __func__, (unsigned long long)sh->sector,
3184 s->locked, s->ops_request);
3188 * Each stripe/dev can have one or more bion attached.
3189 * toread/towrite point to the first in a chain.
3190 * The bi_next chain must be in order.
3192 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3193 int forwrite, int previous)
3196 struct r5conf *conf = sh->raid_conf;
3199 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3200 (unsigned long long)bi->bi_iter.bi_sector,
3201 (unsigned long long)sh->sector);
3203 spin_lock_irq(&sh->stripe_lock);
3204 /* Don't allow new IO added to stripes in batch list */
3208 bip = &sh->dev[dd_idx].towrite;
3212 bip = &sh->dev[dd_idx].toread;
3213 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3214 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3216 bip = & (*bip)->bi_next;
3218 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3221 if (forwrite && raid5_has_ppl(conf)) {
3223 * With PPL only writes to consecutive data chunks within a
3224 * stripe are allowed because for a single stripe_head we can
3225 * only have one PPL entry at a time, which describes one data
3226 * range. Not really an overlap, but wait_for_overlap can be
3227 * used to handle this.
3235 for (i = 0; i < sh->disks; i++) {
3236 if (i != sh->pd_idx &&
3237 (i == dd_idx || sh->dev[i].towrite)) {
3238 sector = sh->dev[i].sector;
3239 if (count == 0 || sector < first)
3247 if (first + conf->chunk_sectors * (count - 1) != last)
3251 if (!forwrite || previous)
3252 clear_bit(STRIPE_BATCH_READY, &sh->state);
3254 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3258 bio_inc_remaining(bi);
3259 md_write_inc(conf->mddev, bi);
3262 /* check if page is covered */
3263 sector_t sector = sh->dev[dd_idx].sector;
3264 for (bi=sh->dev[dd_idx].towrite;
3265 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3266 bi && bi->bi_iter.bi_sector <= sector;
3267 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3268 if (bio_end_sector(bi) >= sector)
3269 sector = bio_end_sector(bi);
3271 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3272 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3273 sh->overwrite_disks++;
3276 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3277 (unsigned long long)(*bip)->bi_iter.bi_sector,
3278 (unsigned long long)sh->sector, dd_idx);
3280 if (conf->mddev->bitmap && firstwrite) {
3281 /* Cannot hold spinlock over bitmap_startwrite,
3282 * but must ensure this isn't added to a batch until
3283 * we have added to the bitmap and set bm_seq.
3284 * So set STRIPE_BITMAP_PENDING to prevent
3286 * If multiple add_stripe_bio() calls race here they
3287 * much all set STRIPE_BITMAP_PENDING. So only the first one
3288 * to complete "bitmap_startwrite" gets to set
3289 * STRIPE_BIT_DELAY. This is important as once a stripe
3290 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3293 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3294 spin_unlock_irq(&sh->stripe_lock);
3295 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3297 spin_lock_irq(&sh->stripe_lock);
3298 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3299 if (!sh->batch_head) {
3300 sh->bm_seq = conf->seq_flush+1;
3301 set_bit(STRIPE_BIT_DELAY, &sh->state);
3304 spin_unlock_irq(&sh->stripe_lock);
3306 if (stripe_can_batch(sh))
3307 stripe_add_to_batch_list(conf, sh);
3311 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3312 spin_unlock_irq(&sh->stripe_lock);
3316 static void end_reshape(struct r5conf *conf);
3318 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3319 struct stripe_head *sh)
3321 int sectors_per_chunk =
3322 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3324 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3325 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3327 raid5_compute_sector(conf,
3328 stripe * (disks - conf->max_degraded)
3329 *sectors_per_chunk + chunk_offset,
3335 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3336 struct stripe_head_state *s, int disks)
3339 BUG_ON(sh->batch_head);
3340 for (i = disks; i--; ) {
3344 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3345 struct md_rdev *rdev;
3347 rdev = rcu_dereference(conf->disks[i].rdev);
3348 if (rdev && test_bit(In_sync, &rdev->flags) &&
3349 !test_bit(Faulty, &rdev->flags))
3350 atomic_inc(&rdev->nr_pending);
3355 if (!rdev_set_badblocks(
3359 md_error(conf->mddev, rdev);
3360 rdev_dec_pending(rdev, conf->mddev);
3363 spin_lock_irq(&sh->stripe_lock);
3364 /* fail all writes first */
3365 bi = sh->dev[i].towrite;
3366 sh->dev[i].towrite = NULL;
3367 sh->overwrite_disks = 0;
3368 spin_unlock_irq(&sh->stripe_lock);
3372 log_stripe_write_finished(sh);
3374 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3375 wake_up(&conf->wait_for_overlap);
3377 while (bi && bi->bi_iter.bi_sector <
3378 sh->dev[i].sector + STRIPE_SECTORS) {
3379 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3381 md_write_end(conf->mddev);
3386 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3387 STRIPE_SECTORS, 0, 0);
3389 /* and fail all 'written' */
3390 bi = sh->dev[i].written;
3391 sh->dev[i].written = NULL;
3392 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3393 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3394 sh->dev[i].page = sh->dev[i].orig_page;
3397 if (bi) bitmap_end = 1;
3398 while (bi && bi->bi_iter.bi_sector <
3399 sh->dev[i].sector + STRIPE_SECTORS) {
3400 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3402 md_write_end(conf->mddev);
3407 /* fail any reads if this device is non-operational and
3408 * the data has not reached the cache yet.
3410 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3411 s->failed > conf->max_degraded &&
3412 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3413 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3414 spin_lock_irq(&sh->stripe_lock);
3415 bi = sh->dev[i].toread;
3416 sh->dev[i].toread = NULL;
3417 spin_unlock_irq(&sh->stripe_lock);
3418 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3419 wake_up(&conf->wait_for_overlap);
3422 while (bi && bi->bi_iter.bi_sector <
3423 sh->dev[i].sector + STRIPE_SECTORS) {
3424 struct bio *nextbi =
3425 r5_next_bio(bi, sh->dev[i].sector);
3432 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3433 STRIPE_SECTORS, 0, 0);
3434 /* If we were in the middle of a write the parity block might
3435 * still be locked - so just clear all R5_LOCKED flags
3437 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3442 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3443 if (atomic_dec_and_test(&conf->pending_full_writes))
3444 md_wakeup_thread(conf->mddev->thread);
3448 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3449 struct stripe_head_state *s)
3454 BUG_ON(sh->batch_head);
3455 clear_bit(STRIPE_SYNCING, &sh->state);
3456 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3457 wake_up(&conf->wait_for_overlap);
3460 /* There is nothing more to do for sync/check/repair.
3461 * Don't even need to abort as that is handled elsewhere
3462 * if needed, and not always wanted e.g. if there is a known
3464 * For recover/replace we need to record a bad block on all
3465 * non-sync devices, or abort the recovery
3467 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3468 /* During recovery devices cannot be removed, so
3469 * locking and refcounting of rdevs is not needed
3472 for (i = 0; i < conf->raid_disks; i++) {
3473 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3475 && !test_bit(Faulty, &rdev->flags)
3476 && !test_bit(In_sync, &rdev->flags)
3477 && !rdev_set_badblocks(rdev, sh->sector,
3480 rdev = rcu_dereference(conf->disks[i].replacement);
3482 && !test_bit(Faulty, &rdev->flags)
3483 && !test_bit(In_sync, &rdev->flags)
3484 && !rdev_set_badblocks(rdev, sh->sector,
3490 conf->recovery_disabled =
3491 conf->mddev->recovery_disabled;
3493 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3496 static int want_replace(struct stripe_head *sh, int disk_idx)
3498 struct md_rdev *rdev;
3502 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3504 && !test_bit(Faulty, &rdev->flags)
3505 && !test_bit(In_sync, &rdev->flags)
3506 && (rdev->recovery_offset <= sh->sector
3507 || rdev->mddev->recovery_cp <= sh->sector))
3513 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3514 int disk_idx, int disks)
3516 struct r5dev *dev = &sh->dev[disk_idx];
3517 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3518 &sh->dev[s->failed_num[1]] };
3522 if (test_bit(R5_LOCKED, &dev->flags) ||
3523 test_bit(R5_UPTODATE, &dev->flags))
3524 /* No point reading this as we already have it or have
3525 * decided to get it.
3530 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3531 /* We need this block to directly satisfy a request */
3534 if (s->syncing || s->expanding ||
3535 (s->replacing && want_replace(sh, disk_idx)))
3536 /* When syncing, or expanding we read everything.
3537 * When replacing, we need the replaced block.
3541 if ((s->failed >= 1 && fdev[0]->toread) ||
3542 (s->failed >= 2 && fdev[1]->toread))
3543 /* If we want to read from a failed device, then
3544 * we need to actually read every other device.
3548 /* Sometimes neither read-modify-write nor reconstruct-write
3549 * cycles can work. In those cases we read every block we
3550 * can. Then the parity-update is certain to have enough to
3552 * This can only be a problem when we need to write something,
3553 * and some device has failed. If either of those tests
3554 * fail we need look no further.
3556 if (!s->failed || !s->to_write)
3559 if (test_bit(R5_Insync, &dev->flags) &&
3560 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3561 /* Pre-reads at not permitted until after short delay
3562 * to gather multiple requests. However if this
3563 * device is no Insync, the block could only be computed
3564 * and there is no need to delay that.
3568 for (i = 0; i < s->failed && i < 2; i++) {
3569 if (fdev[i]->towrite &&
3570 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3571 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3572 /* If we have a partial write to a failed
3573 * device, then we will need to reconstruct
3574 * the content of that device, so all other
3575 * devices must be read.
3580 /* If we are forced to do a reconstruct-write, either because
3581 * the current RAID6 implementation only supports that, or
3582 * because parity cannot be trusted and we are currently
3583 * recovering it, there is extra need to be careful.
3584 * If one of the devices that we would need to read, because
3585 * it is not being overwritten (and maybe not written at all)
3586 * is missing/faulty, then we need to read everything we can.
3588 if (sh->raid_conf->level != 6 &&
3589 sh->sector < sh->raid_conf->mddev->recovery_cp)
3590 /* reconstruct-write isn't being forced */
3592 for (i = 0; i < s->failed && i < 2; i++) {
3593 if (s->failed_num[i] != sh->pd_idx &&
3594 s->failed_num[i] != sh->qd_idx &&
3595 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3596 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3603 /* fetch_block - checks the given member device to see if its data needs
3604 * to be read or computed to satisfy a request.
3606 * Returns 1 when no more member devices need to be checked, otherwise returns
3607 * 0 to tell the loop in handle_stripe_fill to continue
3609 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3610 int disk_idx, int disks)
3612 struct r5dev *dev = &sh->dev[disk_idx];
3614 /* is the data in this block needed, and can we get it? */
3615 if (need_this_block(sh, s, disk_idx, disks)) {
3616 /* we would like to get this block, possibly by computing it,
3617 * otherwise read it if the backing disk is insync
3619 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3620 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3621 BUG_ON(sh->batch_head);
3624 * In the raid6 case if the only non-uptodate disk is P
3625 * then we already trusted P to compute the other failed
3626 * drives. It is safe to compute rather than re-read P.
3627 * In other cases we only compute blocks from failed
3628 * devices, otherwise check/repair might fail to detect
3629 * a real inconsistency.
3632 if ((s->uptodate == disks - 1) &&
3633 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3634 (s->failed && (disk_idx == s->failed_num[0] ||
3635 disk_idx == s->failed_num[1])))) {
3636 /* have disk failed, and we're requested to fetch it;
3639 pr_debug("Computing stripe %llu block %d\n",
3640 (unsigned long long)sh->sector, disk_idx);
3641 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3642 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3643 set_bit(R5_Wantcompute, &dev->flags);
3644 sh->ops.target = disk_idx;
3645 sh->ops.target2 = -1; /* no 2nd target */
3647 /* Careful: from this point on 'uptodate' is in the eye
3648 * of raid_run_ops which services 'compute' operations
3649 * before writes. R5_Wantcompute flags a block that will
3650 * be R5_UPTODATE by the time it is needed for a
3651 * subsequent operation.
3655 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3656 /* Computing 2-failure is *very* expensive; only
3657 * do it if failed >= 2
3660 for (other = disks; other--; ) {
3661 if (other == disk_idx)
3663 if (!test_bit(R5_UPTODATE,
3664 &sh->dev[other].flags))
3668 pr_debug("Computing stripe %llu blocks %d,%d\n",
3669 (unsigned long long)sh->sector,
3671 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3672 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3673 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3674 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3675 sh->ops.target = disk_idx;
3676 sh->ops.target2 = other;
3680 } else if (test_bit(R5_Insync, &dev->flags)) {
3681 set_bit(R5_LOCKED, &dev->flags);
3682 set_bit(R5_Wantread, &dev->flags);
3684 pr_debug("Reading block %d (sync=%d)\n",
3685 disk_idx, s->syncing);
3693 * handle_stripe_fill - read or compute data to satisfy pending requests.
3695 static void handle_stripe_fill(struct stripe_head *sh,
3696 struct stripe_head_state *s,
3701 /* look for blocks to read/compute, skip this if a compute
3702 * is already in flight, or if the stripe contents are in the
3703 * midst of changing due to a write
3705 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3706 !sh->reconstruct_state) {
3709 * For degraded stripe with data in journal, do not handle
3710 * read requests yet, instead, flush the stripe to raid
3711 * disks first, this avoids handling complex rmw of write
3712 * back cache (prexor with orig_page, and then xor with
3713 * page) in the read path
3715 if (s->injournal && s->failed) {
3716 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3717 r5c_make_stripe_write_out(sh);
3721 for (i = disks; i--; )
3722 if (fetch_block(sh, s, i, disks))
3726 set_bit(STRIPE_HANDLE, &sh->state);
3729 static void break_stripe_batch_list(struct stripe_head *head_sh,
3730 unsigned long handle_flags);
3731 /* handle_stripe_clean_event
3732 * any written block on an uptodate or failed drive can be returned.
3733 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3734 * never LOCKED, so we don't need to test 'failed' directly.
3736 static void handle_stripe_clean_event(struct r5conf *conf,
3737 struct stripe_head *sh, int disks)
3741 int discard_pending = 0;
3742 struct stripe_head *head_sh = sh;
3743 bool do_endio = false;
3745 for (i = disks; i--; )
3746 if (sh->dev[i].written) {
3748 if (!test_bit(R5_LOCKED, &dev->flags) &&
3749 (test_bit(R5_UPTODATE, &dev->flags) ||
3750 test_bit(R5_Discard, &dev->flags) ||
3751 test_bit(R5_SkipCopy, &dev->flags))) {
3752 /* We can return any write requests */
3753 struct bio *wbi, *wbi2;
3754 pr_debug("Return write for disc %d\n", i);
3755 if (test_and_clear_bit(R5_Discard, &dev->flags))
3756 clear_bit(R5_UPTODATE, &dev->flags);
3757 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3758 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3763 dev->page = dev->orig_page;
3765 dev->written = NULL;
3766 while (wbi && wbi->bi_iter.bi_sector <
3767 dev->sector + STRIPE_SECTORS) {
3768 wbi2 = r5_next_bio(wbi, dev->sector);
3769 md_write_end(conf->mddev);
3773 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3775 !test_bit(STRIPE_DEGRADED, &sh->state),
3777 if (head_sh->batch_head) {
3778 sh = list_first_entry(&sh->batch_list,
3781 if (sh != head_sh) {
3788 } else if (test_bit(R5_Discard, &dev->flags))
3789 discard_pending = 1;
3792 log_stripe_write_finished(sh);
3794 if (!discard_pending &&
3795 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3797 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3798 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3799 if (sh->qd_idx >= 0) {
3800 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3801 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3803 /* now that discard is done we can proceed with any sync */
3804 clear_bit(STRIPE_DISCARD, &sh->state);
3806 * SCSI discard will change some bio fields and the stripe has
3807 * no updated data, so remove it from hash list and the stripe
3808 * will be reinitialized
3811 hash = sh->hash_lock_index;
3812 spin_lock_irq(conf->hash_locks + hash);
3814 spin_unlock_irq(conf->hash_locks + hash);
3815 if (head_sh->batch_head) {
3816 sh = list_first_entry(&sh->batch_list,
3817 struct stripe_head, batch_list);
3823 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3824 set_bit(STRIPE_HANDLE, &sh->state);
3828 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3829 if (atomic_dec_and_test(&conf->pending_full_writes))
3830 md_wakeup_thread(conf->mddev->thread);
3832 if (head_sh->batch_head && do_endio)
3833 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3837 * For RMW in write back cache, we need extra page in prexor to store the
3838 * old data. This page is stored in dev->orig_page.
3840 * This function checks whether we have data for prexor. The exact logic
3842 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3844 static inline bool uptodate_for_rmw(struct r5dev *dev)
3846 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3847 (!test_bit(R5_InJournal, &dev->flags) ||
3848 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3851 static int handle_stripe_dirtying(struct r5conf *conf,
3852 struct stripe_head *sh,
3853 struct stripe_head_state *s,
3856 int rmw = 0, rcw = 0, i;
3857 sector_t recovery_cp = conf->mddev->recovery_cp;
3859 /* Check whether resync is now happening or should start.
3860 * If yes, then the array is dirty (after unclean shutdown or
3861 * initial creation), so parity in some stripes might be inconsistent.
3862 * In this case, we need to always do reconstruct-write, to ensure
3863 * that in case of drive failure or read-error correction, we
3864 * generate correct data from the parity.
3866 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3867 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3869 /* Calculate the real rcw later - for now make it
3870 * look like rcw is cheaper
3873 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3874 conf->rmw_level, (unsigned long long)recovery_cp,
3875 (unsigned long long)sh->sector);
3876 } else for (i = disks; i--; ) {
3877 /* would I have to read this buffer for read_modify_write */
3878 struct r5dev *dev = &sh->dev[i];
3879 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3880 i == sh->pd_idx || i == sh->qd_idx ||
3881 test_bit(R5_InJournal, &dev->flags)) &&
3882 !test_bit(R5_LOCKED, &dev->flags) &&
3883 !(uptodate_for_rmw(dev) ||
3884 test_bit(R5_Wantcompute, &dev->flags))) {
3885 if (test_bit(R5_Insync, &dev->flags))
3888 rmw += 2*disks; /* cannot read it */
3890 /* Would I have to read this buffer for reconstruct_write */
3891 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3892 i != sh->pd_idx && i != sh->qd_idx &&
3893 !test_bit(R5_LOCKED, &dev->flags) &&
3894 !(test_bit(R5_UPTODATE, &dev->flags) ||
3895 test_bit(R5_Wantcompute, &dev->flags))) {
3896 if (test_bit(R5_Insync, &dev->flags))
3903 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3904 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3905 set_bit(STRIPE_HANDLE, &sh->state);
3906 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3907 /* prefer read-modify-write, but need to get some data */
3908 if (conf->mddev->queue)
3909 blk_add_trace_msg(conf->mddev->queue,
3910 "raid5 rmw %llu %d",
3911 (unsigned long long)sh->sector, rmw);
3912 for (i = disks; i--; ) {
3913 struct r5dev *dev = &sh->dev[i];
3914 if (test_bit(R5_InJournal, &dev->flags) &&
3915 dev->page == dev->orig_page &&
3916 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3917 /* alloc page for prexor */
3918 struct page *p = alloc_page(GFP_NOIO);
3926 * alloc_page() failed, try use
3927 * disk_info->extra_page
3929 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3930 &conf->cache_state)) {
3931 r5c_use_extra_page(sh);
3935 /* extra_page in use, add to delayed_list */
3936 set_bit(STRIPE_DELAYED, &sh->state);
3937 s->waiting_extra_page = 1;
3942 for (i = disks; i--; ) {
3943 struct r5dev *dev = &sh->dev[i];
3944 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3945 i == sh->pd_idx || i == sh->qd_idx ||
3946 test_bit(R5_InJournal, &dev->flags)) &&
3947 !test_bit(R5_LOCKED, &dev->flags) &&
3948 !(uptodate_for_rmw(dev) ||
3949 test_bit(R5_Wantcompute, &dev->flags)) &&
3950 test_bit(R5_Insync, &dev->flags)) {
3951 if (test_bit(STRIPE_PREREAD_ACTIVE,
3953 pr_debug("Read_old block %d for r-m-w\n",
3955 set_bit(R5_LOCKED, &dev->flags);
3956 set_bit(R5_Wantread, &dev->flags);
3959 set_bit(STRIPE_DELAYED, &sh->state);
3960 set_bit(STRIPE_HANDLE, &sh->state);
3965 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3966 /* want reconstruct write, but need to get some data */
3969 for (i = disks; i--; ) {
3970 struct r5dev *dev = &sh->dev[i];
3971 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3972 i != sh->pd_idx && i != sh->qd_idx &&
3973 !test_bit(R5_LOCKED, &dev->flags) &&
3974 !(test_bit(R5_UPTODATE, &dev->flags) ||
3975 test_bit(R5_Wantcompute, &dev->flags))) {
3977 if (test_bit(R5_Insync, &dev->flags) &&
3978 test_bit(STRIPE_PREREAD_ACTIVE,
3980 pr_debug("Read_old block "
3981 "%d for Reconstruct\n", i);
3982 set_bit(R5_LOCKED, &dev->flags);
3983 set_bit(R5_Wantread, &dev->flags);
3987 set_bit(STRIPE_DELAYED, &sh->state);
3988 set_bit(STRIPE_HANDLE, &sh->state);
3992 if (rcw && conf->mddev->queue)
3993 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3994 (unsigned long long)sh->sector,
3995 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3998 if (rcw > disks && rmw > disks &&
3999 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4000 set_bit(STRIPE_DELAYED, &sh->state);
4002 /* now if nothing is locked, and if we have enough data,
4003 * we can start a write request
4005 /* since handle_stripe can be called at any time we need to handle the
4006 * case where a compute block operation has been submitted and then a
4007 * subsequent call wants to start a write request. raid_run_ops only
4008 * handles the case where compute block and reconstruct are requested
4009 * simultaneously. If this is not the case then new writes need to be
4010 * held off until the compute completes.
4012 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4013 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4014 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4015 schedule_reconstruction(sh, s, rcw == 0, 0);
4019 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4020 struct stripe_head_state *s, int disks)
4022 struct r5dev *dev = NULL;
4024 BUG_ON(sh->batch_head);
4025 set_bit(STRIPE_HANDLE, &sh->state);
4027 switch (sh->check_state) {
4028 case check_state_idle:
4029 /* start a new check operation if there are no failures */
4030 if (s->failed == 0) {
4031 BUG_ON(s->uptodate != disks);
4032 sh->check_state = check_state_run;
4033 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4034 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4038 dev = &sh->dev[s->failed_num[0]];
4040 case check_state_compute_result:
4041 sh->check_state = check_state_idle;
4043 dev = &sh->dev[sh->pd_idx];
4045 /* check that a write has not made the stripe insync */
4046 if (test_bit(STRIPE_INSYNC, &sh->state))
4049 /* either failed parity check, or recovery is happening */
4050 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4051 BUG_ON(s->uptodate != disks);
4053 set_bit(R5_LOCKED, &dev->flags);
4055 set_bit(R5_Wantwrite, &dev->flags);
4057 clear_bit(STRIPE_DEGRADED, &sh->state);
4058 set_bit(STRIPE_INSYNC, &sh->state);
4060 case check_state_run:
4061 break; /* we will be called again upon completion */
4062 case check_state_check_result:
4063 sh->check_state = check_state_idle;
4065 /* if a failure occurred during the check operation, leave
4066 * STRIPE_INSYNC not set and let the stripe be handled again
4071 /* handle a successful check operation, if parity is correct
4072 * we are done. Otherwise update the mismatch count and repair
4073 * parity if !MD_RECOVERY_CHECK
4075 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4076 /* parity is correct (on disc,
4077 * not in buffer any more)
4079 set_bit(STRIPE_INSYNC, &sh->state);
4081 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4082 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4083 /* don't try to repair!! */
4084 set_bit(STRIPE_INSYNC, &sh->state);
4085 pr_warn_ratelimited("%s: mismatch sector in range "
4086 "%llu-%llu\n", mdname(conf->mddev),
4087 (unsigned long long) sh->sector,
4088 (unsigned long long) sh->sector +
4091 sh->check_state = check_state_compute_run;
4092 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4093 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4094 set_bit(R5_Wantcompute,
4095 &sh->dev[sh->pd_idx].flags);
4096 sh->ops.target = sh->pd_idx;
4097 sh->ops.target2 = -1;
4102 case check_state_compute_run:
4105 pr_err("%s: unknown check_state: %d sector: %llu\n",
4106 __func__, sh->check_state,
4107 (unsigned long long) sh->sector);
4112 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4113 struct stripe_head_state *s,
4116 int pd_idx = sh->pd_idx;
4117 int qd_idx = sh->qd_idx;
4120 BUG_ON(sh->batch_head);
4121 set_bit(STRIPE_HANDLE, &sh->state);
4123 BUG_ON(s->failed > 2);
4125 /* Want to check and possibly repair P and Q.
4126 * However there could be one 'failed' device, in which
4127 * case we can only check one of them, possibly using the
4128 * other to generate missing data
4131 switch (sh->check_state) {
4132 case check_state_idle:
4133 /* start a new check operation if there are < 2 failures */
4134 if (s->failed == s->q_failed) {
4135 /* The only possible failed device holds Q, so it
4136 * makes sense to check P (If anything else were failed,
4137 * we would have used P to recreate it).
4139 sh->check_state = check_state_run;
4141 if (!s->q_failed && s->failed < 2) {
4142 /* Q is not failed, and we didn't use it to generate
4143 * anything, so it makes sense to check it
4145 if (sh->check_state == check_state_run)
4146 sh->check_state = check_state_run_pq;
4148 sh->check_state = check_state_run_q;
4151 /* discard potentially stale zero_sum_result */
4152 sh->ops.zero_sum_result = 0;
4154 if (sh->check_state == check_state_run) {
4155 /* async_xor_zero_sum destroys the contents of P */
4156 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4159 if (sh->check_state >= check_state_run &&
4160 sh->check_state <= check_state_run_pq) {
4161 /* async_syndrome_zero_sum preserves P and Q, so
4162 * no need to mark them !uptodate here
4164 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4168 /* we have 2-disk failure */
4169 BUG_ON(s->failed != 2);
4171 case check_state_compute_result:
4172 sh->check_state = check_state_idle;
4174 /* check that a write has not made the stripe insync */
4175 if (test_bit(STRIPE_INSYNC, &sh->state))
4178 /* now write out any block on a failed drive,
4179 * or P or Q if they were recomputed
4181 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4182 if (s->failed == 2) {
4183 dev = &sh->dev[s->failed_num[1]];
4185 set_bit(R5_LOCKED, &dev->flags);
4186 set_bit(R5_Wantwrite, &dev->flags);
4188 if (s->failed >= 1) {
4189 dev = &sh->dev[s->failed_num[0]];
4191 set_bit(R5_LOCKED, &dev->flags);
4192 set_bit(R5_Wantwrite, &dev->flags);
4194 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4195 dev = &sh->dev[pd_idx];
4197 set_bit(R5_LOCKED, &dev->flags);
4198 set_bit(R5_Wantwrite, &dev->flags);
4200 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4201 dev = &sh->dev[qd_idx];
4203 set_bit(R5_LOCKED, &dev->flags);
4204 set_bit(R5_Wantwrite, &dev->flags);
4206 clear_bit(STRIPE_DEGRADED, &sh->state);
4208 set_bit(STRIPE_INSYNC, &sh->state);
4210 case check_state_run:
4211 case check_state_run_q:
4212 case check_state_run_pq:
4213 break; /* we will be called again upon completion */
4214 case check_state_check_result:
4215 sh->check_state = check_state_idle;
4217 /* handle a successful check operation, if parity is correct
4218 * we are done. Otherwise update the mismatch count and repair
4219 * parity if !MD_RECOVERY_CHECK
4221 if (sh->ops.zero_sum_result == 0) {
4222 /* both parities are correct */
4224 set_bit(STRIPE_INSYNC, &sh->state);
4226 /* in contrast to the raid5 case we can validate
4227 * parity, but still have a failure to write
4230 sh->check_state = check_state_compute_result;
4231 /* Returning at this point means that we may go
4232 * off and bring p and/or q uptodate again so
4233 * we make sure to check zero_sum_result again
4234 * to verify if p or q need writeback
4238 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4239 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4240 /* don't try to repair!! */
4241 set_bit(STRIPE_INSYNC, &sh->state);
4242 pr_warn_ratelimited("%s: mismatch sector in range "
4243 "%llu-%llu\n", mdname(conf->mddev),
4244 (unsigned long long) sh->sector,
4245 (unsigned long long) sh->sector +
4248 int *target = &sh->ops.target;
4250 sh->ops.target = -1;
4251 sh->ops.target2 = -1;
4252 sh->check_state = check_state_compute_run;
4253 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4254 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4255 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4256 set_bit(R5_Wantcompute,
4257 &sh->dev[pd_idx].flags);
4259 target = &sh->ops.target2;
4262 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4263 set_bit(R5_Wantcompute,
4264 &sh->dev[qd_idx].flags);
4271 case check_state_compute_run:
4274 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4275 __func__, sh->check_state,
4276 (unsigned long long) sh->sector);
4281 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4285 /* We have read all the blocks in this stripe and now we need to
4286 * copy some of them into a target stripe for expand.
4288 struct dma_async_tx_descriptor *tx = NULL;
4289 BUG_ON(sh->batch_head);
4290 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4291 for (i = 0; i < sh->disks; i++)
4292 if (i != sh->pd_idx && i != sh->qd_idx) {
4294 struct stripe_head *sh2;
4295 struct async_submit_ctl submit;
4297 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4298 sector_t s = raid5_compute_sector(conf, bn, 0,
4300 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4302 /* so far only the early blocks of this stripe
4303 * have been requested. When later blocks
4304 * get requested, we will try again
4307 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4308 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4309 /* must have already done this block */
4310 raid5_release_stripe(sh2);
4314 /* place all the copies on one channel */
4315 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4316 tx = async_memcpy(sh2->dev[dd_idx].page,
4317 sh->dev[i].page, 0, 0, STRIPE_SIZE,
4320 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4321 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4322 for (j = 0; j < conf->raid_disks; j++)
4323 if (j != sh2->pd_idx &&
4325 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4327 if (j == conf->raid_disks) {
4328 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4329 set_bit(STRIPE_HANDLE, &sh2->state);
4331 raid5_release_stripe(sh2);
4334 /* done submitting copies, wait for them to complete */
4335 async_tx_quiesce(&tx);
4339 * handle_stripe - do things to a stripe.
4341 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4342 * state of various bits to see what needs to be done.
4344 * return some read requests which now have data
4345 * return some write requests which are safely on storage
4346 * schedule a read on some buffers
4347 * schedule a write of some buffers
4348 * return confirmation of parity correctness
4352 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4354 struct r5conf *conf = sh->raid_conf;
4355 int disks = sh->disks;
4358 int do_recovery = 0;
4360 memset(s, 0, sizeof(*s));
4362 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4363 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4364 s->failed_num[0] = -1;
4365 s->failed_num[1] = -1;
4366 s->log_failed = r5l_log_disk_error(conf);
4368 /* Now to look around and see what can be done */
4370 for (i=disks; i--; ) {
4371 struct md_rdev *rdev;
4378 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4380 dev->toread, dev->towrite, dev->written);
4381 /* maybe we can reply to a read
4383 * new wantfill requests are only permitted while
4384 * ops_complete_biofill is guaranteed to be inactive
4386 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4387 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4388 set_bit(R5_Wantfill, &dev->flags);
4390 /* now count some things */
4391 if (test_bit(R5_LOCKED, &dev->flags))
4393 if (test_bit(R5_UPTODATE, &dev->flags))
4395 if (test_bit(R5_Wantcompute, &dev->flags)) {
4397 BUG_ON(s->compute > 2);
4400 if (test_bit(R5_Wantfill, &dev->flags))
4402 else if (dev->toread)
4406 if (!test_bit(R5_OVERWRITE, &dev->flags))
4411 /* Prefer to use the replacement for reads, but only
4412 * if it is recovered enough and has no bad blocks.
4414 rdev = rcu_dereference(conf->disks[i].replacement);
4415 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4416 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4417 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4418 &first_bad, &bad_sectors))
4419 set_bit(R5_ReadRepl, &dev->flags);
4421 if (rdev && !test_bit(Faulty, &rdev->flags))
4422 set_bit(R5_NeedReplace, &dev->flags);
4424 clear_bit(R5_NeedReplace, &dev->flags);
4425 rdev = rcu_dereference(conf->disks[i].rdev);
4426 clear_bit(R5_ReadRepl, &dev->flags);
4428 if (rdev && test_bit(Faulty, &rdev->flags))
4431 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4432 &first_bad, &bad_sectors);
4433 if (s->blocked_rdev == NULL
4434 && (test_bit(Blocked, &rdev->flags)
4437 set_bit(BlockedBadBlocks,
4439 s->blocked_rdev = rdev;
4440 atomic_inc(&rdev->nr_pending);
4443 clear_bit(R5_Insync, &dev->flags);
4447 /* also not in-sync */
4448 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4449 test_bit(R5_UPTODATE, &dev->flags)) {
4450 /* treat as in-sync, but with a read error
4451 * which we can now try to correct
4453 set_bit(R5_Insync, &dev->flags);
4454 set_bit(R5_ReadError, &dev->flags);
4456 } else if (test_bit(In_sync, &rdev->flags))
4457 set_bit(R5_Insync, &dev->flags);
4458 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4459 /* in sync if before recovery_offset */
4460 set_bit(R5_Insync, &dev->flags);
4461 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4462 test_bit(R5_Expanded, &dev->flags))
4463 /* If we've reshaped into here, we assume it is Insync.
4464 * We will shortly update recovery_offset to make
4467 set_bit(R5_Insync, &dev->flags);
4469 if (test_bit(R5_WriteError, &dev->flags)) {
4470 /* This flag does not apply to '.replacement'
4471 * only to .rdev, so make sure to check that*/
4472 struct md_rdev *rdev2 = rcu_dereference(
4473 conf->disks[i].rdev);
4475 clear_bit(R5_Insync, &dev->flags);
4476 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4477 s->handle_bad_blocks = 1;
4478 atomic_inc(&rdev2->nr_pending);
4480 clear_bit(R5_WriteError, &dev->flags);
4482 if (test_bit(R5_MadeGood, &dev->flags)) {
4483 /* This flag does not apply to '.replacement'
4484 * only to .rdev, so make sure to check that*/
4485 struct md_rdev *rdev2 = rcu_dereference(
4486 conf->disks[i].rdev);
4487 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4488 s->handle_bad_blocks = 1;
4489 atomic_inc(&rdev2->nr_pending);
4491 clear_bit(R5_MadeGood, &dev->flags);
4493 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4494 struct md_rdev *rdev2 = rcu_dereference(
4495 conf->disks[i].replacement);
4496 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4497 s->handle_bad_blocks = 1;
4498 atomic_inc(&rdev2->nr_pending);
4500 clear_bit(R5_MadeGoodRepl, &dev->flags);
4502 if (!test_bit(R5_Insync, &dev->flags)) {
4503 /* The ReadError flag will just be confusing now */
4504 clear_bit(R5_ReadError, &dev->flags);
4505 clear_bit(R5_ReWrite, &dev->flags);
4507 if (test_bit(R5_ReadError, &dev->flags))
4508 clear_bit(R5_Insync, &dev->flags);
4509 if (!test_bit(R5_Insync, &dev->flags)) {
4511 s->failed_num[s->failed] = i;
4513 if (rdev && !test_bit(Faulty, &rdev->flags))
4517 if (test_bit(R5_InJournal, &dev->flags))
4519 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4522 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4523 /* If there is a failed device being replaced,
4524 * we must be recovering.
4525 * else if we are after recovery_cp, we must be syncing
4526 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4527 * else we can only be replacing
4528 * sync and recovery both need to read all devices, and so
4529 * use the same flag.
4532 sh->sector >= conf->mddev->recovery_cp ||
4533 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4541 static int clear_batch_ready(struct stripe_head *sh)
4543 /* Return '1' if this is a member of batch, or
4544 * '0' if it is a lone stripe or a head which can now be
4547 struct stripe_head *tmp;
4548 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4549 return (sh->batch_head && sh->batch_head != sh);
4550 spin_lock(&sh->stripe_lock);
4551 if (!sh->batch_head) {
4552 spin_unlock(&sh->stripe_lock);
4557 * this stripe could be added to a batch list before we check
4558 * BATCH_READY, skips it
4560 if (sh->batch_head != sh) {
4561 spin_unlock(&sh->stripe_lock);
4564 spin_lock(&sh->batch_lock);
4565 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4566 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4567 spin_unlock(&sh->batch_lock);
4568 spin_unlock(&sh->stripe_lock);
4571 * BATCH_READY is cleared, no new stripes can be added.
4572 * batch_list can be accessed without lock
4577 static void break_stripe_batch_list(struct stripe_head *head_sh,
4578 unsigned long handle_flags)
4580 struct stripe_head *sh, *next;
4584 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4586 list_del_init(&sh->batch_list);
4588 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4589 (1 << STRIPE_SYNCING) |
4590 (1 << STRIPE_REPLACED) |
4591 (1 << STRIPE_DELAYED) |
4592 (1 << STRIPE_BIT_DELAY) |
4593 (1 << STRIPE_FULL_WRITE) |
4594 (1 << STRIPE_BIOFILL_RUN) |
4595 (1 << STRIPE_COMPUTE_RUN) |
4596 (1 << STRIPE_OPS_REQ_PENDING) |
4597 (1 << STRIPE_DISCARD) |
4598 (1 << STRIPE_BATCH_READY) |
4599 (1 << STRIPE_BATCH_ERR) |
4600 (1 << STRIPE_BITMAP_PENDING)),
4601 "stripe state: %lx\n", sh->state);
4602 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4603 (1 << STRIPE_REPLACED)),
4604 "head stripe state: %lx\n", head_sh->state);
4606 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4607 (1 << STRIPE_PREREAD_ACTIVE) |
4608 (1 << STRIPE_DEGRADED) |
4609 (1 << STRIPE_ON_UNPLUG_LIST)),
4610 head_sh->state & (1 << STRIPE_INSYNC));
4612 sh->check_state = head_sh->check_state;
4613 sh->reconstruct_state = head_sh->reconstruct_state;
4614 for (i = 0; i < sh->disks; i++) {
4615 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4617 sh->dev[i].flags = head_sh->dev[i].flags &
4618 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4620 spin_lock_irq(&sh->stripe_lock);
4621 sh->batch_head = NULL;
4622 spin_unlock_irq(&sh->stripe_lock);
4623 if (handle_flags == 0 ||
4624 sh->state & handle_flags)
4625 set_bit(STRIPE_HANDLE, &sh->state);
4626 raid5_release_stripe(sh);
4628 spin_lock_irq(&head_sh->stripe_lock);
4629 head_sh->batch_head = NULL;
4630 spin_unlock_irq(&head_sh->stripe_lock);
4631 for (i = 0; i < head_sh->disks; i++)
4632 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4634 if (head_sh->state & handle_flags)
4635 set_bit(STRIPE_HANDLE, &head_sh->state);
4638 wake_up(&head_sh->raid_conf->wait_for_overlap);
4641 static void handle_stripe(struct stripe_head *sh)
4643 struct stripe_head_state s;
4644 struct r5conf *conf = sh->raid_conf;
4647 int disks = sh->disks;
4648 struct r5dev *pdev, *qdev;
4650 clear_bit(STRIPE_HANDLE, &sh->state);
4651 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4652 /* already being handled, ensure it gets handled
4653 * again when current action finishes */
4654 set_bit(STRIPE_HANDLE, &sh->state);
4658 if (clear_batch_ready(sh) ) {
4659 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4663 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4664 break_stripe_batch_list(sh, 0);
4666 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4667 spin_lock(&sh->stripe_lock);
4669 * Cannot process 'sync' concurrently with 'discard'.
4670 * Flush data in r5cache before 'sync'.
4672 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4673 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4674 !test_bit(STRIPE_DISCARD, &sh->state) &&
4675 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4676 set_bit(STRIPE_SYNCING, &sh->state);
4677 clear_bit(STRIPE_INSYNC, &sh->state);
4678 clear_bit(STRIPE_REPLACED, &sh->state);
4680 spin_unlock(&sh->stripe_lock);
4682 clear_bit(STRIPE_DELAYED, &sh->state);
4684 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4685 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4686 (unsigned long long)sh->sector, sh->state,
4687 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4688 sh->check_state, sh->reconstruct_state);
4690 analyse_stripe(sh, &s);
4692 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4695 if (s.handle_bad_blocks ||
4696 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4697 set_bit(STRIPE_HANDLE, &sh->state);
4701 if (unlikely(s.blocked_rdev)) {
4702 if (s.syncing || s.expanding || s.expanded ||
4703 s.replacing || s.to_write || s.written) {
4704 set_bit(STRIPE_HANDLE, &sh->state);
4707 /* There is nothing for the blocked_rdev to block */
4708 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4709 s.blocked_rdev = NULL;
4712 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4713 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4714 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4717 pr_debug("locked=%d uptodate=%d to_read=%d"
4718 " to_write=%d failed=%d failed_num=%d,%d\n",
4719 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4720 s.failed_num[0], s.failed_num[1]);
4722 * check if the array has lost more than max_degraded devices and,
4723 * if so, some requests might need to be failed.
4725 * When journal device failed (log_failed), we will only process
4726 * the stripe if there is data need write to raid disks
4728 if (s.failed > conf->max_degraded ||
4729 (s.log_failed && s.injournal == 0)) {
4730 sh->check_state = 0;
4731 sh->reconstruct_state = 0;
4732 break_stripe_batch_list(sh, 0);
4733 if (s.to_read+s.to_write+s.written)
4734 handle_failed_stripe(conf, sh, &s, disks);
4735 if (s.syncing + s.replacing)
4736 handle_failed_sync(conf, sh, &s);
4739 /* Now we check to see if any write operations have recently
4743 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4745 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4746 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4747 sh->reconstruct_state = reconstruct_state_idle;
4749 /* All the 'written' buffers and the parity block are ready to
4750 * be written back to disk
4752 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4753 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4754 BUG_ON(sh->qd_idx >= 0 &&
4755 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4756 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4757 for (i = disks; i--; ) {
4758 struct r5dev *dev = &sh->dev[i];
4759 if (test_bit(R5_LOCKED, &dev->flags) &&
4760 (i == sh->pd_idx || i == sh->qd_idx ||
4761 dev->written || test_bit(R5_InJournal,
4763 pr_debug("Writing block %d\n", i);
4764 set_bit(R5_Wantwrite, &dev->flags);
4769 if (!test_bit(R5_Insync, &dev->flags) ||
4770 ((i == sh->pd_idx || i == sh->qd_idx) &&
4772 set_bit(STRIPE_INSYNC, &sh->state);
4775 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4776 s.dec_preread_active = 1;
4780 * might be able to return some write requests if the parity blocks
4781 * are safe, or on a failed drive
4783 pdev = &sh->dev[sh->pd_idx];
4784 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4785 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4786 qdev = &sh->dev[sh->qd_idx];
4787 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4788 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4792 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4793 && !test_bit(R5_LOCKED, &pdev->flags)
4794 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4795 test_bit(R5_Discard, &pdev->flags))))) &&
4796 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4797 && !test_bit(R5_LOCKED, &qdev->flags)
4798 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4799 test_bit(R5_Discard, &qdev->flags))))))
4800 handle_stripe_clean_event(conf, sh, disks);
4803 r5c_handle_cached_data_endio(conf, sh, disks);
4804 log_stripe_write_finished(sh);
4806 /* Now we might consider reading some blocks, either to check/generate
4807 * parity, or to satisfy requests
4808 * or to load a block that is being partially written.
4810 if (s.to_read || s.non_overwrite
4811 || (conf->level == 6 && s.to_write && s.failed)
4812 || (s.syncing && (s.uptodate + s.compute < disks))
4815 handle_stripe_fill(sh, &s, disks);
4818 * When the stripe finishes full journal write cycle (write to journal
4819 * and raid disk), this is the clean up procedure so it is ready for
4822 r5c_finish_stripe_write_out(conf, sh, &s);
4825 * Now to consider new write requests, cache write back and what else,
4826 * if anything should be read. We do not handle new writes when:
4827 * 1/ A 'write' operation (copy+xor) is already in flight.
4828 * 2/ A 'check' operation is in flight, as it may clobber the parity
4830 * 3/ A r5c cache log write is in flight.
4833 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4834 if (!r5c_is_writeback(conf->log)) {
4836 handle_stripe_dirtying(conf, sh, &s, disks);
4837 } else { /* write back cache */
4840 /* First, try handle writes in caching phase */
4842 ret = r5c_try_caching_write(conf, sh, &s,
4845 * If caching phase failed: ret == -EAGAIN
4847 * stripe under reclaim: !caching && injournal
4849 * fall back to handle_stripe_dirtying()
4851 if (ret == -EAGAIN ||
4852 /* stripe under reclaim: !caching && injournal */
4853 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4855 ret = handle_stripe_dirtying(conf, sh, &s,
4863 /* maybe we need to check and possibly fix the parity for this stripe
4864 * Any reads will already have been scheduled, so we just see if enough
4865 * data is available. The parity check is held off while parity
4866 * dependent operations are in flight.
4868 if (sh->check_state ||
4869 (s.syncing && s.locked == 0 &&
4870 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4871 !test_bit(STRIPE_INSYNC, &sh->state))) {
4872 if (conf->level == 6)
4873 handle_parity_checks6(conf, sh, &s, disks);
4875 handle_parity_checks5(conf, sh, &s, disks);
4878 if ((s.replacing || s.syncing) && s.locked == 0
4879 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4880 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4881 /* Write out to replacement devices where possible */
4882 for (i = 0; i < conf->raid_disks; i++)
4883 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4884 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4885 set_bit(R5_WantReplace, &sh->dev[i].flags);
4886 set_bit(R5_LOCKED, &sh->dev[i].flags);
4890 set_bit(STRIPE_INSYNC, &sh->state);
4891 set_bit(STRIPE_REPLACED, &sh->state);
4893 if ((s.syncing || s.replacing) && s.locked == 0 &&
4894 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4895 test_bit(STRIPE_INSYNC, &sh->state)) {
4896 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4897 clear_bit(STRIPE_SYNCING, &sh->state);
4898 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4899 wake_up(&conf->wait_for_overlap);
4902 /* If the failed drives are just a ReadError, then we might need
4903 * to progress the repair/check process
4905 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4906 for (i = 0; i < s.failed; i++) {
4907 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4908 if (test_bit(R5_ReadError, &dev->flags)
4909 && !test_bit(R5_LOCKED, &dev->flags)
4910 && test_bit(R5_UPTODATE, &dev->flags)
4912 if (!test_bit(R5_ReWrite, &dev->flags)) {
4913 set_bit(R5_Wantwrite, &dev->flags);
4914 set_bit(R5_ReWrite, &dev->flags);
4915 set_bit(R5_LOCKED, &dev->flags);
4918 /* let's read it back */
4919 set_bit(R5_Wantread, &dev->flags);
4920 set_bit(R5_LOCKED, &dev->flags);
4926 /* Finish reconstruct operations initiated by the expansion process */
4927 if (sh->reconstruct_state == reconstruct_state_result) {
4928 struct stripe_head *sh_src
4929 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4930 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4931 /* sh cannot be written until sh_src has been read.
4932 * so arrange for sh to be delayed a little
4934 set_bit(STRIPE_DELAYED, &sh->state);
4935 set_bit(STRIPE_HANDLE, &sh->state);
4936 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4938 atomic_inc(&conf->preread_active_stripes);
4939 raid5_release_stripe(sh_src);
4943 raid5_release_stripe(sh_src);
4945 sh->reconstruct_state = reconstruct_state_idle;
4946 clear_bit(STRIPE_EXPANDING, &sh->state);
4947 for (i = conf->raid_disks; i--; ) {
4948 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4949 set_bit(R5_LOCKED, &sh->dev[i].flags);
4954 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4955 !sh->reconstruct_state) {
4956 /* Need to write out all blocks after computing parity */
4957 sh->disks = conf->raid_disks;
4958 stripe_set_idx(sh->sector, conf, 0, sh);
4959 schedule_reconstruction(sh, &s, 1, 1);
4960 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4961 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4962 atomic_dec(&conf->reshape_stripes);
4963 wake_up(&conf->wait_for_overlap);
4964 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4967 if (s.expanding && s.locked == 0 &&
4968 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4969 handle_stripe_expansion(conf, sh);
4972 /* wait for this device to become unblocked */
4973 if (unlikely(s.blocked_rdev)) {
4974 if (conf->mddev->external)
4975 md_wait_for_blocked_rdev(s.blocked_rdev,
4978 /* Internal metadata will immediately
4979 * be written by raid5d, so we don't
4980 * need to wait here.
4982 rdev_dec_pending(s.blocked_rdev,
4986 if (s.handle_bad_blocks)
4987 for (i = disks; i--; ) {
4988 struct md_rdev *rdev;
4989 struct r5dev *dev = &sh->dev[i];
4990 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4991 /* We own a safe reference to the rdev */
4992 rdev = conf->disks[i].rdev;
4993 if (!rdev_set_badblocks(rdev, sh->sector,
4995 md_error(conf->mddev, rdev);
4996 rdev_dec_pending(rdev, conf->mddev);
4998 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4999 rdev = conf->disks[i].rdev;
5000 rdev_clear_badblocks(rdev, sh->sector,
5002 rdev_dec_pending(rdev, conf->mddev);
5004 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5005 rdev = conf->disks[i].replacement;
5007 /* rdev have been moved down */
5008 rdev = conf->disks[i].rdev;
5009 rdev_clear_badblocks(rdev, sh->sector,
5011 rdev_dec_pending(rdev, conf->mddev);
5016 raid_run_ops(sh, s.ops_request);
5020 if (s.dec_preread_active) {
5021 /* We delay this until after ops_run_io so that if make_request
5022 * is waiting on a flush, it won't continue until the writes
5023 * have actually been submitted.
5025 atomic_dec(&conf->preread_active_stripes);
5026 if (atomic_read(&conf->preread_active_stripes) <
5028 md_wakeup_thread(conf->mddev->thread);
5031 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5034 static void raid5_activate_delayed(struct r5conf *conf)
5036 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5037 while (!list_empty(&conf->delayed_list)) {
5038 struct list_head *l = conf->delayed_list.next;
5039 struct stripe_head *sh;
5040 sh = list_entry(l, struct stripe_head, lru);
5042 clear_bit(STRIPE_DELAYED, &sh->state);
5043 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5044 atomic_inc(&conf->preread_active_stripes);
5045 list_add_tail(&sh->lru, &conf->hold_list);
5046 raid5_wakeup_stripe_thread(sh);
5051 static void activate_bit_delay(struct r5conf *conf,
5052 struct list_head *temp_inactive_list)
5054 /* device_lock is held */
5055 struct list_head head;
5056 list_add(&head, &conf->bitmap_list);
5057 list_del_init(&conf->bitmap_list);
5058 while (!list_empty(&head)) {
5059 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5061 list_del_init(&sh->lru);
5062 atomic_inc(&sh->count);
5063 hash = sh->hash_lock_index;
5064 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5068 static int raid5_congested(struct mddev *mddev, int bits)
5070 struct r5conf *conf = mddev->private;
5072 /* No difference between reads and writes. Just check
5073 * how busy the stripe_cache is
5076 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5079 /* Also checks whether there is pressure on r5cache log space */
5080 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5084 if (atomic_read(&conf->empty_inactive_list_nr))
5090 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5092 struct r5conf *conf = mddev->private;
5093 sector_t sector = bio->bi_iter.bi_sector;
5094 unsigned int chunk_sectors;
5095 unsigned int bio_sectors = bio_sectors(bio);
5097 WARN_ON_ONCE(bio->bi_partno);
5099 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5100 return chunk_sectors >=
5101 ((sector & (chunk_sectors - 1)) + bio_sectors);
5105 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5106 * later sampled by raid5d.
5108 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5110 unsigned long flags;
5112 spin_lock_irqsave(&conf->device_lock, flags);
5114 bi->bi_next = conf->retry_read_aligned_list;
5115 conf->retry_read_aligned_list = bi;
5117 spin_unlock_irqrestore(&conf->device_lock, flags);
5118 md_wakeup_thread(conf->mddev->thread);
5121 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5122 unsigned int *offset)
5126 bi = conf->retry_read_aligned;
5128 *offset = conf->retry_read_offset;
5129 conf->retry_read_aligned = NULL;
5132 bi = conf->retry_read_aligned_list;
5134 conf->retry_read_aligned_list = bi->bi_next;
5143 * The "raid5_align_endio" should check if the read succeeded and if it
5144 * did, call bio_endio on the original bio (having bio_put the new bio
5146 * If the read failed..
5148 static void raid5_align_endio(struct bio *bi)
5150 struct bio* raid_bi = bi->bi_private;
5151 struct mddev *mddev;
5152 struct r5conf *conf;
5153 struct md_rdev *rdev;
5154 blk_status_t error = bi->bi_status;
5158 rdev = (void*)raid_bi->bi_next;
5159 raid_bi->bi_next = NULL;
5160 mddev = rdev->mddev;
5161 conf = mddev->private;
5163 rdev_dec_pending(rdev, conf->mddev);
5167 if (atomic_dec_and_test(&conf->active_aligned_reads))
5168 wake_up(&conf->wait_for_quiescent);
5172 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5174 add_bio_to_retry(raid_bi, conf);
5177 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5179 struct r5conf *conf = mddev->private;
5181 struct bio* align_bi;
5182 struct md_rdev *rdev;
5183 sector_t end_sector;
5185 if (!in_chunk_boundary(mddev, raid_bio)) {
5186 pr_debug("%s: non aligned\n", __func__);
5190 * use bio_clone_fast to make a copy of the bio
5192 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
5196 * set bi_end_io to a new function, and set bi_private to the
5199 align_bi->bi_end_io = raid5_align_endio;
5200 align_bi->bi_private = raid_bio;
5204 align_bi->bi_iter.bi_sector =
5205 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5208 end_sector = bio_end_sector(align_bi);
5210 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5211 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5212 rdev->recovery_offset < end_sector) {
5213 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5215 (test_bit(Faulty, &rdev->flags) ||
5216 !(test_bit(In_sync, &rdev->flags) ||
5217 rdev->recovery_offset >= end_sector)))
5221 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5231 atomic_inc(&rdev->nr_pending);
5233 raid_bio->bi_next = (void*)rdev;
5234 bio_set_dev(align_bi, rdev->bdev);
5235 bio_clear_flag(align_bi, BIO_SEG_VALID);
5237 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5238 bio_sectors(align_bi),
5239 &first_bad, &bad_sectors)) {
5241 rdev_dec_pending(rdev, mddev);
5245 /* No reshape active, so we can trust rdev->data_offset */
5246 align_bi->bi_iter.bi_sector += rdev->data_offset;
5248 spin_lock_irq(&conf->device_lock);
5249 wait_event_lock_irq(conf->wait_for_quiescent,
5252 atomic_inc(&conf->active_aligned_reads);
5253 spin_unlock_irq(&conf->device_lock);
5256 trace_block_bio_remap(align_bi->bi_disk->queue,
5257 align_bi, disk_devt(mddev->gendisk),
5258 raid_bio->bi_iter.bi_sector);
5259 generic_make_request(align_bi);
5268 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5271 sector_t sector = raid_bio->bi_iter.bi_sector;
5272 unsigned chunk_sects = mddev->chunk_sectors;
5273 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5275 if (sectors < bio_sectors(raid_bio)) {
5276 struct r5conf *conf = mddev->private;
5277 split = bio_split(raid_bio, sectors, GFP_NOIO, conf->bio_split);
5278 bio_chain(split, raid_bio);
5279 generic_make_request(raid_bio);
5283 if (!raid5_read_one_chunk(mddev, raid_bio))
5289 /* __get_priority_stripe - get the next stripe to process
5291 * Full stripe writes are allowed to pass preread active stripes up until
5292 * the bypass_threshold is exceeded. In general the bypass_count
5293 * increments when the handle_list is handled before the hold_list; however, it
5294 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5295 * stripe with in flight i/o. The bypass_count will be reset when the
5296 * head of the hold_list has changed, i.e. the head was promoted to the
5299 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5301 struct stripe_head *sh, *tmp;
5302 struct list_head *handle_list = NULL;
5303 struct r5worker_group *wg;
5304 bool second_try = !r5c_is_writeback(conf->log) &&
5305 !r5l_log_disk_error(conf);
5306 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5307 r5l_log_disk_error(conf);
5312 if (conf->worker_cnt_per_group == 0) {
5313 handle_list = try_loprio ? &conf->loprio_list :
5315 } else if (group != ANY_GROUP) {
5316 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5317 &conf->worker_groups[group].handle_list;
5318 wg = &conf->worker_groups[group];
5321 for (i = 0; i < conf->group_cnt; i++) {
5322 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5323 &conf->worker_groups[i].handle_list;
5324 wg = &conf->worker_groups[i];
5325 if (!list_empty(handle_list))
5330 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5332 list_empty(handle_list) ? "empty" : "busy",
5333 list_empty(&conf->hold_list) ? "empty" : "busy",
5334 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5336 if (!list_empty(handle_list)) {
5337 sh = list_entry(handle_list->next, typeof(*sh), lru);
5339 if (list_empty(&conf->hold_list))
5340 conf->bypass_count = 0;
5341 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5342 if (conf->hold_list.next == conf->last_hold)
5343 conf->bypass_count++;
5345 conf->last_hold = conf->hold_list.next;
5346 conf->bypass_count -= conf->bypass_threshold;
5347 if (conf->bypass_count < 0)
5348 conf->bypass_count = 0;
5351 } else if (!list_empty(&conf->hold_list) &&
5352 ((conf->bypass_threshold &&
5353 conf->bypass_count > conf->bypass_threshold) ||
5354 atomic_read(&conf->pending_full_writes) == 0)) {
5356 list_for_each_entry(tmp, &conf->hold_list, lru) {
5357 if (conf->worker_cnt_per_group == 0 ||
5358 group == ANY_GROUP ||
5359 !cpu_online(tmp->cpu) ||
5360 cpu_to_group(tmp->cpu) == group) {
5367 conf->bypass_count -= conf->bypass_threshold;
5368 if (conf->bypass_count < 0)
5369 conf->bypass_count = 0;
5378 try_loprio = !try_loprio;
5386 list_del_init(&sh->lru);
5387 BUG_ON(atomic_inc_return(&sh->count) != 1);
5391 struct raid5_plug_cb {
5392 struct blk_plug_cb cb;
5393 struct list_head list;
5394 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5397 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5399 struct raid5_plug_cb *cb = container_of(
5400 blk_cb, struct raid5_plug_cb, cb);
5401 struct stripe_head *sh;
5402 struct mddev *mddev = cb->cb.data;
5403 struct r5conf *conf = mddev->private;
5407 if (cb->list.next && !list_empty(&cb->list)) {
5408 spin_lock_irq(&conf->device_lock);
5409 while (!list_empty(&cb->list)) {
5410 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5411 list_del_init(&sh->lru);
5413 * avoid race release_stripe_plug() sees
5414 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5415 * is still in our list
5417 smp_mb__before_atomic();
5418 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5420 * STRIPE_ON_RELEASE_LIST could be set here. In that
5421 * case, the count is always > 1 here
5423 hash = sh->hash_lock_index;
5424 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5427 spin_unlock_irq(&conf->device_lock);
5429 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5430 NR_STRIPE_HASH_LOCKS);
5432 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5436 static void release_stripe_plug(struct mddev *mddev,
5437 struct stripe_head *sh)
5439 struct blk_plug_cb *blk_cb = blk_check_plugged(
5440 raid5_unplug, mddev,
5441 sizeof(struct raid5_plug_cb));
5442 struct raid5_plug_cb *cb;
5445 raid5_release_stripe(sh);
5449 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5451 if (cb->list.next == NULL) {
5453 INIT_LIST_HEAD(&cb->list);
5454 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5455 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5458 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5459 list_add_tail(&sh->lru, &cb->list);
5461 raid5_release_stripe(sh);
5464 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5466 struct r5conf *conf = mddev->private;
5467 sector_t logical_sector, last_sector;
5468 struct stripe_head *sh;
5471 if (mddev->reshape_position != MaxSector)
5472 /* Skip discard while reshape is happening */
5475 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5476 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5480 stripe_sectors = conf->chunk_sectors *
5481 (conf->raid_disks - conf->max_degraded);
5482 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5484 sector_div(last_sector, stripe_sectors);
5486 logical_sector *= conf->chunk_sectors;
5487 last_sector *= conf->chunk_sectors;
5489 for (; logical_sector < last_sector;
5490 logical_sector += STRIPE_SECTORS) {
5494 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5495 prepare_to_wait(&conf->wait_for_overlap, &w,
5496 TASK_UNINTERRUPTIBLE);
5497 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5498 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5499 raid5_release_stripe(sh);
5503 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5504 spin_lock_irq(&sh->stripe_lock);
5505 for (d = 0; d < conf->raid_disks; d++) {
5506 if (d == sh->pd_idx || d == sh->qd_idx)
5508 if (sh->dev[d].towrite || sh->dev[d].toread) {
5509 set_bit(R5_Overlap, &sh->dev[d].flags);
5510 spin_unlock_irq(&sh->stripe_lock);
5511 raid5_release_stripe(sh);
5516 set_bit(STRIPE_DISCARD, &sh->state);
5517 finish_wait(&conf->wait_for_overlap, &w);
5518 sh->overwrite_disks = 0;
5519 for (d = 0; d < conf->raid_disks; d++) {
5520 if (d == sh->pd_idx || d == sh->qd_idx)
5522 sh->dev[d].towrite = bi;
5523 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5524 bio_inc_remaining(bi);
5525 md_write_inc(mddev, bi);
5526 sh->overwrite_disks++;
5528 spin_unlock_irq(&sh->stripe_lock);
5529 if (conf->mddev->bitmap) {
5531 d < conf->raid_disks - conf->max_degraded;
5533 bitmap_startwrite(mddev->bitmap,
5537 sh->bm_seq = conf->seq_flush + 1;
5538 set_bit(STRIPE_BIT_DELAY, &sh->state);
5541 set_bit(STRIPE_HANDLE, &sh->state);
5542 clear_bit(STRIPE_DELAYED, &sh->state);
5543 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5544 atomic_inc(&conf->preread_active_stripes);
5545 release_stripe_plug(mddev, sh);
5551 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5553 struct r5conf *conf = mddev->private;
5555 sector_t new_sector;
5556 sector_t logical_sector, last_sector;
5557 struct stripe_head *sh;
5558 const int rw = bio_data_dir(bi);
5561 bool do_flush = false;
5563 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5564 int ret = r5l_handle_flush_request(conf->log, bi);
5568 if (ret == -ENODEV) {
5569 md_flush_request(mddev, bi);
5572 /* ret == -EAGAIN, fallback */
5574 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5575 * we need to flush journal device
5577 do_flush = bi->bi_opf & REQ_PREFLUSH;
5580 if (!md_write_start(mddev, bi))
5583 * If array is degraded, better not do chunk aligned read because
5584 * later we might have to read it again in order to reconstruct
5585 * data on failed drives.
5587 if (rw == READ && mddev->degraded == 0 &&
5588 mddev->reshape_position == MaxSector) {
5589 bi = chunk_aligned_read(mddev, bi);
5594 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5595 make_discard_request(mddev, bi);
5596 md_write_end(mddev);
5600 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5601 last_sector = bio_end_sector(bi);
5604 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5605 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5611 seq = read_seqcount_begin(&conf->gen_lock);
5614 prepare_to_wait(&conf->wait_for_overlap, &w,
5615 TASK_UNINTERRUPTIBLE);
5616 if (unlikely(conf->reshape_progress != MaxSector)) {
5617 /* spinlock is needed as reshape_progress may be
5618 * 64bit on a 32bit platform, and so it might be
5619 * possible to see a half-updated value
5620 * Of course reshape_progress could change after
5621 * the lock is dropped, so once we get a reference
5622 * to the stripe that we think it is, we will have
5625 spin_lock_irq(&conf->device_lock);
5626 if (mddev->reshape_backwards
5627 ? logical_sector < conf->reshape_progress
5628 : logical_sector >= conf->reshape_progress) {
5631 if (mddev->reshape_backwards
5632 ? logical_sector < conf->reshape_safe
5633 : logical_sector >= conf->reshape_safe) {
5634 spin_unlock_irq(&conf->device_lock);
5640 spin_unlock_irq(&conf->device_lock);
5643 new_sector = raid5_compute_sector(conf, logical_sector,
5646 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5647 (unsigned long long)new_sector,
5648 (unsigned long long)logical_sector);
5650 sh = raid5_get_active_stripe(conf, new_sector, previous,
5651 (bi->bi_opf & REQ_RAHEAD), 0);
5653 if (unlikely(previous)) {
5654 /* expansion might have moved on while waiting for a
5655 * stripe, so we must do the range check again.
5656 * Expansion could still move past after this
5657 * test, but as we are holding a reference to
5658 * 'sh', we know that if that happens,
5659 * STRIPE_EXPANDING will get set and the expansion
5660 * won't proceed until we finish with the stripe.
5663 spin_lock_irq(&conf->device_lock);
5664 if (mddev->reshape_backwards
5665 ? logical_sector >= conf->reshape_progress
5666 : logical_sector < conf->reshape_progress)
5667 /* mismatch, need to try again */
5669 spin_unlock_irq(&conf->device_lock);
5671 raid5_release_stripe(sh);
5677 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5678 /* Might have got the wrong stripe_head
5681 raid5_release_stripe(sh);
5686 logical_sector >= mddev->suspend_lo &&
5687 logical_sector < mddev->suspend_hi) {
5688 raid5_release_stripe(sh);
5689 /* As the suspend_* range is controlled by
5690 * userspace, we want an interruptible
5693 prepare_to_wait(&conf->wait_for_overlap,
5694 &w, TASK_INTERRUPTIBLE);
5695 if (logical_sector >= mddev->suspend_lo &&
5696 logical_sector < mddev->suspend_hi) {
5699 sigprocmask(SIG_BLOCK, &full, &old);
5701 sigprocmask(SIG_SETMASK, &old, NULL);
5707 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5708 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5709 /* Stripe is busy expanding or
5710 * add failed due to overlap. Flush everything
5713 md_wakeup_thread(mddev->thread);
5714 raid5_release_stripe(sh);
5720 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5721 /* we only need flush for one stripe */
5725 set_bit(STRIPE_HANDLE, &sh->state);
5726 clear_bit(STRIPE_DELAYED, &sh->state);
5727 if ((!sh->batch_head || sh == sh->batch_head) &&
5728 (bi->bi_opf & REQ_SYNC) &&
5729 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5730 atomic_inc(&conf->preread_active_stripes);
5731 release_stripe_plug(mddev, sh);
5733 /* cannot get stripe for read-ahead, just give-up */
5734 bi->bi_status = BLK_STS_IOERR;
5738 finish_wait(&conf->wait_for_overlap, &w);
5741 md_write_end(mddev);
5746 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5748 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5750 /* reshaping is quite different to recovery/resync so it is
5751 * handled quite separately ... here.
5753 * On each call to sync_request, we gather one chunk worth of
5754 * destination stripes and flag them as expanding.
5755 * Then we find all the source stripes and request reads.
5756 * As the reads complete, handle_stripe will copy the data
5757 * into the destination stripe and release that stripe.
5759 struct r5conf *conf = mddev->private;
5760 struct stripe_head *sh;
5761 sector_t first_sector, last_sector;
5762 int raid_disks = conf->previous_raid_disks;
5763 int data_disks = raid_disks - conf->max_degraded;
5764 int new_data_disks = conf->raid_disks - conf->max_degraded;
5767 sector_t writepos, readpos, safepos;
5768 sector_t stripe_addr;
5769 int reshape_sectors;
5770 struct list_head stripes;
5773 if (sector_nr == 0) {
5774 /* If restarting in the middle, skip the initial sectors */
5775 if (mddev->reshape_backwards &&
5776 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5777 sector_nr = raid5_size(mddev, 0, 0)
5778 - conf->reshape_progress;
5779 } else if (mddev->reshape_backwards &&
5780 conf->reshape_progress == MaxSector) {
5781 /* shouldn't happen, but just in case, finish up.*/
5782 sector_nr = MaxSector;
5783 } else if (!mddev->reshape_backwards &&
5784 conf->reshape_progress > 0)
5785 sector_nr = conf->reshape_progress;
5786 sector_div(sector_nr, new_data_disks);
5788 mddev->curr_resync_completed = sector_nr;
5789 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5796 /* We need to process a full chunk at a time.
5797 * If old and new chunk sizes differ, we need to process the
5801 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5803 /* We update the metadata at least every 10 seconds, or when
5804 * the data about to be copied would over-write the source of
5805 * the data at the front of the range. i.e. one new_stripe
5806 * along from reshape_progress new_maps to after where
5807 * reshape_safe old_maps to
5809 writepos = conf->reshape_progress;
5810 sector_div(writepos, new_data_disks);
5811 readpos = conf->reshape_progress;
5812 sector_div(readpos, data_disks);
5813 safepos = conf->reshape_safe;
5814 sector_div(safepos, data_disks);
5815 if (mddev->reshape_backwards) {
5816 BUG_ON(writepos < reshape_sectors);
5817 writepos -= reshape_sectors;
5818 readpos += reshape_sectors;
5819 safepos += reshape_sectors;
5821 writepos += reshape_sectors;
5822 /* readpos and safepos are worst-case calculations.
5823 * A negative number is overly pessimistic, and causes
5824 * obvious problems for unsigned storage. So clip to 0.
5826 readpos -= min_t(sector_t, reshape_sectors, readpos);
5827 safepos -= min_t(sector_t, reshape_sectors, safepos);
5830 /* Having calculated the 'writepos' possibly use it
5831 * to set 'stripe_addr' which is where we will write to.
5833 if (mddev->reshape_backwards) {
5834 BUG_ON(conf->reshape_progress == 0);
5835 stripe_addr = writepos;
5836 BUG_ON((mddev->dev_sectors &
5837 ~((sector_t)reshape_sectors - 1))
5838 - reshape_sectors - stripe_addr
5841 BUG_ON(writepos != sector_nr + reshape_sectors);
5842 stripe_addr = sector_nr;
5845 /* 'writepos' is the most advanced device address we might write.
5846 * 'readpos' is the least advanced device address we might read.
5847 * 'safepos' is the least address recorded in the metadata as having
5849 * If there is a min_offset_diff, these are adjusted either by
5850 * increasing the safepos/readpos if diff is negative, or
5851 * increasing writepos if diff is positive.
5852 * If 'readpos' is then behind 'writepos', there is no way that we can
5853 * ensure safety in the face of a crash - that must be done by userspace
5854 * making a backup of the data. So in that case there is no particular
5855 * rush to update metadata.
5856 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5857 * update the metadata to advance 'safepos' to match 'readpos' so that
5858 * we can be safe in the event of a crash.
5859 * So we insist on updating metadata if safepos is behind writepos and
5860 * readpos is beyond writepos.
5861 * In any case, update the metadata every 10 seconds.
5862 * Maybe that number should be configurable, but I'm not sure it is
5863 * worth it.... maybe it could be a multiple of safemode_delay???
5865 if (conf->min_offset_diff < 0) {
5866 safepos += -conf->min_offset_diff;
5867 readpos += -conf->min_offset_diff;
5869 writepos += conf->min_offset_diff;
5871 if ((mddev->reshape_backwards
5872 ? (safepos > writepos && readpos < writepos)
5873 : (safepos < writepos && readpos > writepos)) ||
5874 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5875 /* Cannot proceed until we've updated the superblock... */
5876 wait_event(conf->wait_for_overlap,
5877 atomic_read(&conf->reshape_stripes)==0
5878 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5879 if (atomic_read(&conf->reshape_stripes) != 0)
5881 mddev->reshape_position = conf->reshape_progress;
5882 mddev->curr_resync_completed = sector_nr;
5883 conf->reshape_checkpoint = jiffies;
5884 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5885 md_wakeup_thread(mddev->thread);
5886 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5887 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5888 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5890 spin_lock_irq(&conf->device_lock);
5891 conf->reshape_safe = mddev->reshape_position;
5892 spin_unlock_irq(&conf->device_lock);
5893 wake_up(&conf->wait_for_overlap);
5894 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5897 INIT_LIST_HEAD(&stripes);
5898 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5900 int skipped_disk = 0;
5901 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5902 set_bit(STRIPE_EXPANDING, &sh->state);
5903 atomic_inc(&conf->reshape_stripes);
5904 /* If any of this stripe is beyond the end of the old
5905 * array, then we need to zero those blocks
5907 for (j=sh->disks; j--;) {
5909 if (j == sh->pd_idx)
5911 if (conf->level == 6 &&
5914 s = raid5_compute_blocknr(sh, j, 0);
5915 if (s < raid5_size(mddev, 0, 0)) {
5919 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5920 set_bit(R5_Expanded, &sh->dev[j].flags);
5921 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5923 if (!skipped_disk) {
5924 set_bit(STRIPE_EXPAND_READY, &sh->state);
5925 set_bit(STRIPE_HANDLE, &sh->state);
5927 list_add(&sh->lru, &stripes);
5929 spin_lock_irq(&conf->device_lock);
5930 if (mddev->reshape_backwards)
5931 conf->reshape_progress -= reshape_sectors * new_data_disks;
5933 conf->reshape_progress += reshape_sectors * new_data_disks;
5934 spin_unlock_irq(&conf->device_lock);
5935 /* Ok, those stripe are ready. We can start scheduling
5936 * reads on the source stripes.
5937 * The source stripes are determined by mapping the first and last
5938 * block on the destination stripes.
5941 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5944 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5945 * new_data_disks - 1),
5947 if (last_sector >= mddev->dev_sectors)
5948 last_sector = mddev->dev_sectors - 1;
5949 while (first_sector <= last_sector) {
5950 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5951 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5952 set_bit(STRIPE_HANDLE, &sh->state);
5953 raid5_release_stripe(sh);
5954 first_sector += STRIPE_SECTORS;
5956 /* Now that the sources are clearly marked, we can release
5957 * the destination stripes
5959 while (!list_empty(&stripes)) {
5960 sh = list_entry(stripes.next, struct stripe_head, lru);
5961 list_del_init(&sh->lru);
5962 raid5_release_stripe(sh);
5964 /* If this takes us to the resync_max point where we have to pause,
5965 * then we need to write out the superblock.
5967 sector_nr += reshape_sectors;
5968 retn = reshape_sectors;
5970 if (mddev->curr_resync_completed > mddev->resync_max ||
5971 (sector_nr - mddev->curr_resync_completed) * 2
5972 >= mddev->resync_max - mddev->curr_resync_completed) {
5973 /* Cannot proceed until we've updated the superblock... */
5974 wait_event(conf->wait_for_overlap,
5975 atomic_read(&conf->reshape_stripes) == 0
5976 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5977 if (atomic_read(&conf->reshape_stripes) != 0)
5979 mddev->reshape_position = conf->reshape_progress;
5980 mddev->curr_resync_completed = sector_nr;
5981 conf->reshape_checkpoint = jiffies;
5982 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5983 md_wakeup_thread(mddev->thread);
5984 wait_event(mddev->sb_wait,
5985 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5986 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5987 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5989 spin_lock_irq(&conf->device_lock);
5990 conf->reshape_safe = mddev->reshape_position;
5991 spin_unlock_irq(&conf->device_lock);
5992 wake_up(&conf->wait_for_overlap);
5993 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5999 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6002 struct r5conf *conf = mddev->private;
6003 struct stripe_head *sh;
6004 sector_t max_sector = mddev->dev_sectors;
6005 sector_t sync_blocks;
6006 int still_degraded = 0;
6009 if (sector_nr >= max_sector) {
6010 /* just being told to finish up .. nothing much to do */
6012 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6017 if (mddev->curr_resync < max_sector) /* aborted */
6018 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6020 else /* completed sync */
6022 bitmap_close_sync(mddev->bitmap);
6027 /* Allow raid5_quiesce to complete */
6028 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6030 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6031 return reshape_request(mddev, sector_nr, skipped);
6033 /* No need to check resync_max as we never do more than one
6034 * stripe, and as resync_max will always be on a chunk boundary,
6035 * if the check in md_do_sync didn't fire, there is no chance
6036 * of overstepping resync_max here
6039 /* if there is too many failed drives and we are trying
6040 * to resync, then assert that we are finished, because there is
6041 * nothing we can do.
6043 if (mddev->degraded >= conf->max_degraded &&
6044 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6045 sector_t rv = mddev->dev_sectors - sector_nr;
6049 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6051 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6052 sync_blocks >= STRIPE_SECTORS) {
6053 /* we can skip this block, and probably more */
6054 sync_blocks /= STRIPE_SECTORS;
6056 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6059 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6061 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6063 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6064 /* make sure we don't swamp the stripe cache if someone else
6065 * is trying to get access
6067 schedule_timeout_uninterruptible(1);
6069 /* Need to check if array will still be degraded after recovery/resync
6070 * Note in case of > 1 drive failures it's possible we're rebuilding
6071 * one drive while leaving another faulty drive in array.
6074 for (i = 0; i < conf->raid_disks; i++) {
6075 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
6077 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6082 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6084 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6085 set_bit(STRIPE_HANDLE, &sh->state);
6087 raid5_release_stripe(sh);
6089 return STRIPE_SECTORS;
6092 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6093 unsigned int offset)
6095 /* We may not be able to submit a whole bio at once as there
6096 * may not be enough stripe_heads available.
6097 * We cannot pre-allocate enough stripe_heads as we may need
6098 * more than exist in the cache (if we allow ever large chunks).
6099 * So we do one stripe head at a time and record in
6100 * ->bi_hw_segments how many have been done.
6102 * We *know* that this entire raid_bio is in one chunk, so
6103 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6105 struct stripe_head *sh;
6107 sector_t sector, logical_sector, last_sector;
6111 logical_sector = raid_bio->bi_iter.bi_sector &
6112 ~((sector_t)STRIPE_SECTORS-1);
6113 sector = raid5_compute_sector(conf, logical_sector,
6115 last_sector = bio_end_sector(raid_bio);
6117 for (; logical_sector < last_sector;
6118 logical_sector += STRIPE_SECTORS,
6119 sector += STRIPE_SECTORS,
6123 /* already done this stripe */
6126 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6129 /* failed to get a stripe - must wait */
6130 conf->retry_read_aligned = raid_bio;
6131 conf->retry_read_offset = scnt;
6135 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6136 raid5_release_stripe(sh);
6137 conf->retry_read_aligned = raid_bio;
6138 conf->retry_read_offset = scnt;
6142 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6144 raid5_release_stripe(sh);
6148 bio_endio(raid_bio);
6150 if (atomic_dec_and_test(&conf->active_aligned_reads))
6151 wake_up(&conf->wait_for_quiescent);
6155 static int handle_active_stripes(struct r5conf *conf, int group,
6156 struct r5worker *worker,
6157 struct list_head *temp_inactive_list)
6159 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6160 int i, batch_size = 0, hash;
6161 bool release_inactive = false;
6163 while (batch_size < MAX_STRIPE_BATCH &&
6164 (sh = __get_priority_stripe(conf, group)) != NULL)
6165 batch[batch_size++] = sh;
6167 if (batch_size == 0) {
6168 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6169 if (!list_empty(temp_inactive_list + i))
6171 if (i == NR_STRIPE_HASH_LOCKS) {
6172 spin_unlock_irq(&conf->device_lock);
6173 r5l_flush_stripe_to_raid(conf->log);
6174 spin_lock_irq(&conf->device_lock);
6177 release_inactive = true;
6179 spin_unlock_irq(&conf->device_lock);
6181 release_inactive_stripe_list(conf, temp_inactive_list,
6182 NR_STRIPE_HASH_LOCKS);
6184 r5l_flush_stripe_to_raid(conf->log);
6185 if (release_inactive) {
6186 spin_lock_irq(&conf->device_lock);
6190 for (i = 0; i < batch_size; i++)
6191 handle_stripe(batch[i]);
6192 log_write_stripe_run(conf);
6196 spin_lock_irq(&conf->device_lock);
6197 for (i = 0; i < batch_size; i++) {
6198 hash = batch[i]->hash_lock_index;
6199 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6204 static void raid5_do_work(struct work_struct *work)
6206 struct r5worker *worker = container_of(work, struct r5worker, work);
6207 struct r5worker_group *group = worker->group;
6208 struct r5conf *conf = group->conf;
6209 struct mddev *mddev = conf->mddev;
6210 int group_id = group - conf->worker_groups;
6212 struct blk_plug plug;
6214 pr_debug("+++ raid5worker active\n");
6216 blk_start_plug(&plug);
6218 spin_lock_irq(&conf->device_lock);
6220 int batch_size, released;
6222 released = release_stripe_list(conf, worker->temp_inactive_list);
6224 batch_size = handle_active_stripes(conf, group_id, worker,
6225 worker->temp_inactive_list);
6226 worker->working = false;
6227 if (!batch_size && !released)
6229 handled += batch_size;
6230 wait_event_lock_irq(mddev->sb_wait,
6231 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6234 pr_debug("%d stripes handled\n", handled);
6236 spin_unlock_irq(&conf->device_lock);
6238 flush_deferred_bios(conf);
6240 r5l_flush_stripe_to_raid(conf->log);
6242 async_tx_issue_pending_all();
6243 blk_finish_plug(&plug);
6245 pr_debug("--- raid5worker inactive\n");
6249 * This is our raid5 kernel thread.
6251 * We scan the hash table for stripes which can be handled now.
6252 * During the scan, completed stripes are saved for us by the interrupt
6253 * handler, so that they will not have to wait for our next wakeup.
6255 static void raid5d(struct md_thread *thread)
6257 struct mddev *mddev = thread->mddev;
6258 struct r5conf *conf = mddev->private;
6260 struct blk_plug plug;
6262 pr_debug("+++ raid5d active\n");
6264 md_check_recovery(mddev);
6266 blk_start_plug(&plug);
6268 spin_lock_irq(&conf->device_lock);
6271 int batch_size, released;
6272 unsigned int offset;
6274 released = release_stripe_list(conf, conf->temp_inactive_list);
6276 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6279 !list_empty(&conf->bitmap_list)) {
6280 /* Now is a good time to flush some bitmap updates */
6282 spin_unlock_irq(&conf->device_lock);
6283 bitmap_unplug(mddev->bitmap);
6284 spin_lock_irq(&conf->device_lock);
6285 conf->seq_write = conf->seq_flush;
6286 activate_bit_delay(conf, conf->temp_inactive_list);
6288 raid5_activate_delayed(conf);
6290 while ((bio = remove_bio_from_retry(conf, &offset))) {
6292 spin_unlock_irq(&conf->device_lock);
6293 ok = retry_aligned_read(conf, bio, offset);
6294 spin_lock_irq(&conf->device_lock);
6300 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6301 conf->temp_inactive_list);
6302 if (!batch_size && !released)
6304 handled += batch_size;
6306 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6307 spin_unlock_irq(&conf->device_lock);
6308 md_check_recovery(mddev);
6309 spin_lock_irq(&conf->device_lock);
6312 pr_debug("%d stripes handled\n", handled);
6314 spin_unlock_irq(&conf->device_lock);
6315 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6316 mutex_trylock(&conf->cache_size_mutex)) {
6317 grow_one_stripe(conf, __GFP_NOWARN);
6318 /* Set flag even if allocation failed. This helps
6319 * slow down allocation requests when mem is short
6321 set_bit(R5_DID_ALLOC, &conf->cache_state);
6322 mutex_unlock(&conf->cache_size_mutex);
6325 flush_deferred_bios(conf);
6327 r5l_flush_stripe_to_raid(conf->log);
6329 async_tx_issue_pending_all();
6330 blk_finish_plug(&plug);
6332 pr_debug("--- raid5d inactive\n");
6336 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6338 struct r5conf *conf;
6340 spin_lock(&mddev->lock);
6341 conf = mddev->private;
6343 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6344 spin_unlock(&mddev->lock);
6349 raid5_set_cache_size(struct mddev *mddev, int size)
6351 struct r5conf *conf = mddev->private;
6353 if (size <= 16 || size > 32768)
6356 conf->min_nr_stripes = size;
6357 mutex_lock(&conf->cache_size_mutex);
6358 while (size < conf->max_nr_stripes &&
6359 drop_one_stripe(conf))
6361 mutex_unlock(&conf->cache_size_mutex);
6363 md_allow_write(mddev);
6365 mutex_lock(&conf->cache_size_mutex);
6366 while (size > conf->max_nr_stripes)
6367 if (!grow_one_stripe(conf, GFP_KERNEL))
6369 mutex_unlock(&conf->cache_size_mutex);
6373 EXPORT_SYMBOL(raid5_set_cache_size);
6376 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6378 struct r5conf *conf;
6382 if (len >= PAGE_SIZE)
6384 if (kstrtoul(page, 10, &new))
6386 err = mddev_lock(mddev);
6389 conf = mddev->private;
6393 err = raid5_set_cache_size(mddev, new);
6394 mddev_unlock(mddev);
6399 static struct md_sysfs_entry
6400 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6401 raid5_show_stripe_cache_size,
6402 raid5_store_stripe_cache_size);
6405 raid5_show_rmw_level(struct mddev *mddev, char *page)
6407 struct r5conf *conf = mddev->private;
6409 return sprintf(page, "%d\n", conf->rmw_level);
6415 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6417 struct r5conf *conf = mddev->private;
6423 if (len >= PAGE_SIZE)
6426 if (kstrtoul(page, 10, &new))
6429 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6432 if (new != PARITY_DISABLE_RMW &&
6433 new != PARITY_ENABLE_RMW &&
6434 new != PARITY_PREFER_RMW)
6437 conf->rmw_level = new;
6441 static struct md_sysfs_entry
6442 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6443 raid5_show_rmw_level,
6444 raid5_store_rmw_level);
6448 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6450 struct r5conf *conf;
6452 spin_lock(&mddev->lock);
6453 conf = mddev->private;
6455 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6456 spin_unlock(&mddev->lock);
6461 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6463 struct r5conf *conf;
6467 if (len >= PAGE_SIZE)
6469 if (kstrtoul(page, 10, &new))
6472 err = mddev_lock(mddev);
6475 conf = mddev->private;
6478 else if (new > conf->min_nr_stripes)
6481 conf->bypass_threshold = new;
6482 mddev_unlock(mddev);
6486 static struct md_sysfs_entry
6487 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6489 raid5_show_preread_threshold,
6490 raid5_store_preread_threshold);
6493 raid5_show_skip_copy(struct mddev *mddev, char *page)
6495 struct r5conf *conf;
6497 spin_lock(&mddev->lock);
6498 conf = mddev->private;
6500 ret = sprintf(page, "%d\n", conf->skip_copy);
6501 spin_unlock(&mddev->lock);
6506 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6508 struct r5conf *conf;
6512 if (len >= PAGE_SIZE)
6514 if (kstrtoul(page, 10, &new))
6518 err = mddev_lock(mddev);
6521 conf = mddev->private;
6524 else if (new != conf->skip_copy) {
6525 mddev_suspend(mddev);
6526 conf->skip_copy = new;
6528 mddev->queue->backing_dev_info->capabilities |=
6529 BDI_CAP_STABLE_WRITES;
6531 mddev->queue->backing_dev_info->capabilities &=
6532 ~BDI_CAP_STABLE_WRITES;
6533 mddev_resume(mddev);
6535 mddev_unlock(mddev);
6539 static struct md_sysfs_entry
6540 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6541 raid5_show_skip_copy,
6542 raid5_store_skip_copy);
6545 stripe_cache_active_show(struct mddev *mddev, char *page)
6547 struct r5conf *conf = mddev->private;
6549 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6554 static struct md_sysfs_entry
6555 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6558 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6560 struct r5conf *conf;
6562 spin_lock(&mddev->lock);
6563 conf = mddev->private;
6565 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6566 spin_unlock(&mddev->lock);
6570 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6572 int *worker_cnt_per_group,
6573 struct r5worker_group **worker_groups);
6575 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6577 struct r5conf *conf;
6580 struct r5worker_group *new_groups, *old_groups;
6581 int group_cnt, worker_cnt_per_group;
6583 if (len >= PAGE_SIZE)
6585 if (kstrtouint(page, 10, &new))
6587 /* 8192 should be big enough */
6591 err = mddev_lock(mddev);
6594 conf = mddev->private;
6597 else if (new != conf->worker_cnt_per_group) {
6598 mddev_suspend(mddev);
6600 old_groups = conf->worker_groups;
6602 flush_workqueue(raid5_wq);
6604 err = alloc_thread_groups(conf, new,
6605 &group_cnt, &worker_cnt_per_group,
6608 spin_lock_irq(&conf->device_lock);
6609 conf->group_cnt = group_cnt;
6610 conf->worker_cnt_per_group = worker_cnt_per_group;
6611 conf->worker_groups = new_groups;
6612 spin_unlock_irq(&conf->device_lock);
6615 kfree(old_groups[0].workers);
6618 mddev_resume(mddev);
6620 mddev_unlock(mddev);
6625 static struct md_sysfs_entry
6626 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6627 raid5_show_group_thread_cnt,
6628 raid5_store_group_thread_cnt);
6630 static struct attribute *raid5_attrs[] = {
6631 &raid5_stripecache_size.attr,
6632 &raid5_stripecache_active.attr,
6633 &raid5_preread_bypass_threshold.attr,
6634 &raid5_group_thread_cnt.attr,
6635 &raid5_skip_copy.attr,
6636 &raid5_rmw_level.attr,
6637 &r5c_journal_mode.attr,
6640 static struct attribute_group raid5_attrs_group = {
6642 .attrs = raid5_attrs,
6645 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6647 int *worker_cnt_per_group,
6648 struct r5worker_group **worker_groups)
6652 struct r5worker *workers;
6654 *worker_cnt_per_group = cnt;
6657 *worker_groups = NULL;
6660 *group_cnt = num_possible_nodes();
6661 size = sizeof(struct r5worker) * cnt;
6662 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6663 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6664 *group_cnt, GFP_NOIO);
6665 if (!*worker_groups || !workers) {
6667 kfree(*worker_groups);
6671 for (i = 0; i < *group_cnt; i++) {
6672 struct r5worker_group *group;
6674 group = &(*worker_groups)[i];
6675 INIT_LIST_HEAD(&group->handle_list);
6676 INIT_LIST_HEAD(&group->loprio_list);
6678 group->workers = workers + i * cnt;
6680 for (j = 0; j < cnt; j++) {
6681 struct r5worker *worker = group->workers + j;
6682 worker->group = group;
6683 INIT_WORK(&worker->work, raid5_do_work);
6685 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6686 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6693 static void free_thread_groups(struct r5conf *conf)
6695 if (conf->worker_groups)
6696 kfree(conf->worker_groups[0].workers);
6697 kfree(conf->worker_groups);
6698 conf->worker_groups = NULL;
6702 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6704 struct r5conf *conf = mddev->private;
6707 sectors = mddev->dev_sectors;
6709 /* size is defined by the smallest of previous and new size */
6710 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6712 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6713 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6714 return sectors * (raid_disks - conf->max_degraded);
6717 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6719 safe_put_page(percpu->spare_page);
6720 if (percpu->scribble)
6721 flex_array_free(percpu->scribble);
6722 percpu->spare_page = NULL;
6723 percpu->scribble = NULL;
6726 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6728 if (conf->level == 6 && !percpu->spare_page)
6729 percpu->spare_page = alloc_page(GFP_KERNEL);
6730 if (!percpu->scribble)
6731 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6732 conf->previous_raid_disks),
6733 max(conf->chunk_sectors,
6734 conf->prev_chunk_sectors)
6738 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6739 free_scratch_buffer(conf, percpu);
6746 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6748 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6750 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6754 static void raid5_free_percpu(struct r5conf *conf)
6759 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6760 free_percpu(conf->percpu);
6763 static void free_conf(struct r5conf *conf)
6769 if (conf->shrinker.nr_deferred)
6770 unregister_shrinker(&conf->shrinker);
6772 free_thread_groups(conf);
6773 shrink_stripes(conf);
6774 raid5_free_percpu(conf);
6775 for (i = 0; i < conf->pool_size; i++)
6776 if (conf->disks[i].extra_page)
6777 put_page(conf->disks[i].extra_page);
6779 if (conf->bio_split)
6780 bioset_free(conf->bio_split);
6781 kfree(conf->stripe_hashtbl);
6782 kfree(conf->pending_data);
6786 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6788 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6789 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6791 if (alloc_scratch_buffer(conf, percpu)) {
6792 pr_warn("%s: failed memory allocation for cpu%u\n",
6799 static int raid5_alloc_percpu(struct r5conf *conf)
6803 conf->percpu = alloc_percpu(struct raid5_percpu);
6807 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6809 conf->scribble_disks = max(conf->raid_disks,
6810 conf->previous_raid_disks);
6811 conf->scribble_sectors = max(conf->chunk_sectors,
6812 conf->prev_chunk_sectors);
6817 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6818 struct shrink_control *sc)
6820 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6821 unsigned long ret = SHRINK_STOP;
6823 if (mutex_trylock(&conf->cache_size_mutex)) {
6825 while (ret < sc->nr_to_scan &&
6826 conf->max_nr_stripes > conf->min_nr_stripes) {
6827 if (drop_one_stripe(conf) == 0) {
6833 mutex_unlock(&conf->cache_size_mutex);
6838 static unsigned long raid5_cache_count(struct shrinker *shrink,
6839 struct shrink_control *sc)
6841 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6843 if (conf->max_nr_stripes < conf->min_nr_stripes)
6844 /* unlikely, but not impossible */
6846 return conf->max_nr_stripes - conf->min_nr_stripes;
6849 static struct r5conf *setup_conf(struct mddev *mddev)
6851 struct r5conf *conf;
6852 int raid_disk, memory, max_disks;
6853 struct md_rdev *rdev;
6854 struct disk_info *disk;
6857 int group_cnt, worker_cnt_per_group;
6858 struct r5worker_group *new_group;
6860 if (mddev->new_level != 5
6861 && mddev->new_level != 4
6862 && mddev->new_level != 6) {
6863 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6864 mdname(mddev), mddev->new_level);
6865 return ERR_PTR(-EIO);
6867 if ((mddev->new_level == 5
6868 && !algorithm_valid_raid5(mddev->new_layout)) ||
6869 (mddev->new_level == 6
6870 && !algorithm_valid_raid6(mddev->new_layout))) {
6871 pr_warn("md/raid:%s: layout %d not supported\n",
6872 mdname(mddev), mddev->new_layout);
6873 return ERR_PTR(-EIO);
6875 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6876 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6877 mdname(mddev), mddev->raid_disks);
6878 return ERR_PTR(-EINVAL);
6881 if (!mddev->new_chunk_sectors ||
6882 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6883 !is_power_of_2(mddev->new_chunk_sectors)) {
6884 pr_warn("md/raid:%s: invalid chunk size %d\n",
6885 mdname(mddev), mddev->new_chunk_sectors << 9);
6886 return ERR_PTR(-EINVAL);
6889 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6892 INIT_LIST_HEAD(&conf->free_list);
6893 INIT_LIST_HEAD(&conf->pending_list);
6894 conf->pending_data = kzalloc(sizeof(struct r5pending_data) *
6895 PENDING_IO_MAX, GFP_KERNEL);
6896 if (!conf->pending_data)
6898 for (i = 0; i < PENDING_IO_MAX; i++)
6899 list_add(&conf->pending_data[i].sibling, &conf->free_list);
6900 /* Don't enable multi-threading by default*/
6901 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6903 conf->group_cnt = group_cnt;
6904 conf->worker_cnt_per_group = worker_cnt_per_group;
6905 conf->worker_groups = new_group;
6908 spin_lock_init(&conf->device_lock);
6909 seqcount_init(&conf->gen_lock);
6910 mutex_init(&conf->cache_size_mutex);
6911 init_waitqueue_head(&conf->wait_for_quiescent);
6912 init_waitqueue_head(&conf->wait_for_stripe);
6913 init_waitqueue_head(&conf->wait_for_overlap);
6914 INIT_LIST_HEAD(&conf->handle_list);
6915 INIT_LIST_HEAD(&conf->loprio_list);
6916 INIT_LIST_HEAD(&conf->hold_list);
6917 INIT_LIST_HEAD(&conf->delayed_list);
6918 INIT_LIST_HEAD(&conf->bitmap_list);
6919 init_llist_head(&conf->released_stripes);
6920 atomic_set(&conf->active_stripes, 0);
6921 atomic_set(&conf->preread_active_stripes, 0);
6922 atomic_set(&conf->active_aligned_reads, 0);
6923 spin_lock_init(&conf->pending_bios_lock);
6924 conf->batch_bio_dispatch = true;
6925 rdev_for_each(rdev, mddev) {
6926 if (test_bit(Journal, &rdev->flags))
6928 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6929 conf->batch_bio_dispatch = false;
6934 conf->bypass_threshold = BYPASS_THRESHOLD;
6935 conf->recovery_disabled = mddev->recovery_disabled - 1;
6937 conf->raid_disks = mddev->raid_disks;
6938 if (mddev->reshape_position == MaxSector)
6939 conf->previous_raid_disks = mddev->raid_disks;
6941 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6942 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6944 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6950 for (i = 0; i < max_disks; i++) {
6951 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6952 if (!conf->disks[i].extra_page)
6956 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
6957 if (!conf->bio_split)
6959 conf->mddev = mddev;
6961 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6964 /* We init hash_locks[0] separately to that it can be used
6965 * as the reference lock in the spin_lock_nest_lock() call
6966 * in lock_all_device_hash_locks_irq in order to convince
6967 * lockdep that we know what we are doing.
6969 spin_lock_init(conf->hash_locks);
6970 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6971 spin_lock_init(conf->hash_locks + i);
6973 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6974 INIT_LIST_HEAD(conf->inactive_list + i);
6976 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6977 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6979 atomic_set(&conf->r5c_cached_full_stripes, 0);
6980 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6981 atomic_set(&conf->r5c_cached_partial_stripes, 0);
6982 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6983 atomic_set(&conf->r5c_flushing_full_stripes, 0);
6984 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6986 conf->level = mddev->new_level;
6987 conf->chunk_sectors = mddev->new_chunk_sectors;
6988 if (raid5_alloc_percpu(conf) != 0)
6991 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6993 rdev_for_each(rdev, mddev) {
6994 raid_disk = rdev->raid_disk;
6995 if (raid_disk >= max_disks
6996 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6998 disk = conf->disks + raid_disk;
7000 if (test_bit(Replacement, &rdev->flags)) {
7001 if (disk->replacement)
7003 disk->replacement = rdev;
7010 if (test_bit(In_sync, &rdev->flags)) {
7011 char b[BDEVNAME_SIZE];
7012 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7013 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7014 } else if (rdev->saved_raid_disk != raid_disk)
7015 /* Cannot rely on bitmap to complete recovery */
7019 conf->level = mddev->new_level;
7020 if (conf->level == 6) {
7021 conf->max_degraded = 2;
7022 if (raid6_call.xor_syndrome)
7023 conf->rmw_level = PARITY_ENABLE_RMW;
7025 conf->rmw_level = PARITY_DISABLE_RMW;
7027 conf->max_degraded = 1;
7028 conf->rmw_level = PARITY_ENABLE_RMW;
7030 conf->algorithm = mddev->new_layout;
7031 conf->reshape_progress = mddev->reshape_position;
7032 if (conf->reshape_progress != MaxSector) {
7033 conf->prev_chunk_sectors = mddev->chunk_sectors;
7034 conf->prev_algo = mddev->layout;
7036 conf->prev_chunk_sectors = conf->chunk_sectors;
7037 conf->prev_algo = conf->algorithm;
7040 conf->min_nr_stripes = NR_STRIPES;
7041 if (mddev->reshape_position != MaxSector) {
7042 int stripes = max_t(int,
7043 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7044 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7045 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7046 if (conf->min_nr_stripes != NR_STRIPES)
7047 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7048 mdname(mddev), conf->min_nr_stripes);
7050 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7051 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7052 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7053 if (grow_stripes(conf, conf->min_nr_stripes)) {
7054 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7055 mdname(mddev), memory);
7058 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7060 * Losing a stripe head costs more than the time to refill it,
7061 * it reduces the queue depth and so can hurt throughput.
7062 * So set it rather large, scaled by number of devices.
7064 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7065 conf->shrinker.scan_objects = raid5_cache_scan;
7066 conf->shrinker.count_objects = raid5_cache_count;
7067 conf->shrinker.batch = 128;
7068 conf->shrinker.flags = 0;
7069 if (register_shrinker(&conf->shrinker)) {
7070 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7075 sprintf(pers_name, "raid%d", mddev->new_level);
7076 conf->thread = md_register_thread(raid5d, mddev, pers_name);
7077 if (!conf->thread) {
7078 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7088 return ERR_PTR(-EIO);
7090 return ERR_PTR(-ENOMEM);
7093 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7096 case ALGORITHM_PARITY_0:
7097 if (raid_disk < max_degraded)
7100 case ALGORITHM_PARITY_N:
7101 if (raid_disk >= raid_disks - max_degraded)
7104 case ALGORITHM_PARITY_0_6:
7105 if (raid_disk == 0 ||
7106 raid_disk == raid_disks - 1)
7109 case ALGORITHM_LEFT_ASYMMETRIC_6:
7110 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7111 case ALGORITHM_LEFT_SYMMETRIC_6:
7112 case ALGORITHM_RIGHT_SYMMETRIC_6:
7113 if (raid_disk == raid_disks - 1)
7119 static int raid5_run(struct mddev *mddev)
7121 struct r5conf *conf;
7122 int working_disks = 0;
7123 int dirty_parity_disks = 0;
7124 struct md_rdev *rdev;
7125 struct md_rdev *journal_dev = NULL;
7126 sector_t reshape_offset = 0;
7128 long long min_offset_diff = 0;
7131 if (mddev_init_writes_pending(mddev) < 0)
7134 if (mddev->recovery_cp != MaxSector)
7135 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7138 rdev_for_each(rdev, mddev) {
7141 if (test_bit(Journal, &rdev->flags)) {
7145 if (rdev->raid_disk < 0)
7147 diff = (rdev->new_data_offset - rdev->data_offset);
7149 min_offset_diff = diff;
7151 } else if (mddev->reshape_backwards &&
7152 diff < min_offset_diff)
7153 min_offset_diff = diff;
7154 else if (!mddev->reshape_backwards &&
7155 diff > min_offset_diff)
7156 min_offset_diff = diff;
7159 if (mddev->reshape_position != MaxSector) {
7160 /* Check that we can continue the reshape.
7161 * Difficulties arise if the stripe we would write to
7162 * next is at or after the stripe we would read from next.
7163 * For a reshape that changes the number of devices, this
7164 * is only possible for a very short time, and mdadm makes
7165 * sure that time appears to have past before assembling
7166 * the array. So we fail if that time hasn't passed.
7167 * For a reshape that keeps the number of devices the same
7168 * mdadm must be monitoring the reshape can keeping the
7169 * critical areas read-only and backed up. It will start
7170 * the array in read-only mode, so we check for that.
7172 sector_t here_new, here_old;
7174 int max_degraded = (mddev->level == 6 ? 2 : 1);
7179 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7184 if (mddev->new_level != mddev->level) {
7185 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7189 old_disks = mddev->raid_disks - mddev->delta_disks;
7190 /* reshape_position must be on a new-stripe boundary, and one
7191 * further up in new geometry must map after here in old
7193 * If the chunk sizes are different, then as we perform reshape
7194 * in units of the largest of the two, reshape_position needs
7195 * be a multiple of the largest chunk size times new data disks.
7197 here_new = mddev->reshape_position;
7198 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7199 new_data_disks = mddev->raid_disks - max_degraded;
7200 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7201 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7205 reshape_offset = here_new * chunk_sectors;
7206 /* here_new is the stripe we will write to */
7207 here_old = mddev->reshape_position;
7208 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7209 /* here_old is the first stripe that we might need to read
7211 if (mddev->delta_disks == 0) {
7212 /* We cannot be sure it is safe to start an in-place
7213 * reshape. It is only safe if user-space is monitoring
7214 * and taking constant backups.
7215 * mdadm always starts a situation like this in
7216 * readonly mode so it can take control before
7217 * allowing any writes. So just check for that.
7219 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7220 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7221 /* not really in-place - so OK */;
7222 else if (mddev->ro == 0) {
7223 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7227 } else if (mddev->reshape_backwards
7228 ? (here_new * chunk_sectors + min_offset_diff <=
7229 here_old * chunk_sectors)
7230 : (here_new * chunk_sectors >=
7231 here_old * chunk_sectors + (-min_offset_diff))) {
7232 /* Reading from the same stripe as writing to - bad */
7233 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7237 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7238 /* OK, we should be able to continue; */
7240 BUG_ON(mddev->level != mddev->new_level);
7241 BUG_ON(mddev->layout != mddev->new_layout);
7242 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7243 BUG_ON(mddev->delta_disks != 0);
7246 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7247 test_bit(MD_HAS_PPL, &mddev->flags)) {
7248 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7250 clear_bit(MD_HAS_PPL, &mddev->flags);
7251 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7254 if (mddev->private == NULL)
7255 conf = setup_conf(mddev);
7257 conf = mddev->private;
7260 return PTR_ERR(conf);
7262 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7264 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7267 set_disk_ro(mddev->gendisk, 1);
7268 } else if (mddev->recovery_cp == MaxSector)
7269 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7272 conf->min_offset_diff = min_offset_diff;
7273 mddev->thread = conf->thread;
7274 conf->thread = NULL;
7275 mddev->private = conf;
7277 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7279 rdev = conf->disks[i].rdev;
7280 if (!rdev && conf->disks[i].replacement) {
7281 /* The replacement is all we have yet */
7282 rdev = conf->disks[i].replacement;
7283 conf->disks[i].replacement = NULL;
7284 clear_bit(Replacement, &rdev->flags);
7285 conf->disks[i].rdev = rdev;
7289 if (conf->disks[i].replacement &&
7290 conf->reshape_progress != MaxSector) {
7291 /* replacements and reshape simply do not mix. */
7292 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7295 if (test_bit(In_sync, &rdev->flags)) {
7299 /* This disc is not fully in-sync. However if it
7300 * just stored parity (beyond the recovery_offset),
7301 * when we don't need to be concerned about the
7302 * array being dirty.
7303 * When reshape goes 'backwards', we never have
7304 * partially completed devices, so we only need
7305 * to worry about reshape going forwards.
7307 /* Hack because v0.91 doesn't store recovery_offset properly. */
7308 if (mddev->major_version == 0 &&
7309 mddev->minor_version > 90)
7310 rdev->recovery_offset = reshape_offset;
7312 if (rdev->recovery_offset < reshape_offset) {
7313 /* We need to check old and new layout */
7314 if (!only_parity(rdev->raid_disk,
7317 conf->max_degraded))
7320 if (!only_parity(rdev->raid_disk,
7322 conf->previous_raid_disks,
7323 conf->max_degraded))
7325 dirty_parity_disks++;
7329 * 0 for a fully functional array, 1 or 2 for a degraded array.
7331 mddev->degraded = raid5_calc_degraded(conf);
7333 if (has_failed(conf)) {
7334 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7335 mdname(mddev), mddev->degraded, conf->raid_disks);
7339 /* device size must be a multiple of chunk size */
7340 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7341 mddev->resync_max_sectors = mddev->dev_sectors;
7343 if (mddev->degraded > dirty_parity_disks &&
7344 mddev->recovery_cp != MaxSector) {
7345 if (test_bit(MD_HAS_PPL, &mddev->flags))
7346 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7348 else if (mddev->ok_start_degraded)
7349 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7352 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7358 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7359 mdname(mddev), conf->level,
7360 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7363 print_raid5_conf(conf);
7365 if (conf->reshape_progress != MaxSector) {
7366 conf->reshape_safe = conf->reshape_progress;
7367 atomic_set(&conf->reshape_stripes, 0);
7368 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7369 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7370 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7371 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7372 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7376 /* Ok, everything is just fine now */
7377 if (mddev->to_remove == &raid5_attrs_group)
7378 mddev->to_remove = NULL;
7379 else if (mddev->kobj.sd &&
7380 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7381 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7383 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7387 /* read-ahead size must cover two whole stripes, which
7388 * is 2 * (datadisks) * chunksize where 'n' is the
7389 * number of raid devices
7391 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7392 int stripe = data_disks *
7393 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7394 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7395 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7397 chunk_size = mddev->chunk_sectors << 9;
7398 blk_queue_io_min(mddev->queue, chunk_size);
7399 blk_queue_io_opt(mddev->queue, chunk_size *
7400 (conf->raid_disks - conf->max_degraded));
7401 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7403 * We can only discard a whole stripe. It doesn't make sense to
7404 * discard data disk but write parity disk
7406 stripe = stripe * PAGE_SIZE;
7407 /* Round up to power of 2, as discard handling
7408 * currently assumes that */
7409 while ((stripe-1) & stripe)
7410 stripe = (stripe | (stripe-1)) + 1;
7411 mddev->queue->limits.discard_alignment = stripe;
7412 mddev->queue->limits.discard_granularity = stripe;
7414 blk_queue_max_write_same_sectors(mddev->queue, 0);
7415 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7417 rdev_for_each(rdev, mddev) {
7418 disk_stack_limits(mddev->gendisk, rdev->bdev,
7419 rdev->data_offset << 9);
7420 disk_stack_limits(mddev->gendisk, rdev->bdev,
7421 rdev->new_data_offset << 9);
7425 * zeroing is required, otherwise data
7426 * could be lost. Consider a scenario: discard a stripe
7427 * (the stripe could be inconsistent if
7428 * discard_zeroes_data is 0); write one disk of the
7429 * stripe (the stripe could be inconsistent again
7430 * depending on which disks are used to calculate
7431 * parity); the disk is broken; The stripe data of this
7434 * We only allow DISCARD if the sysadmin has confirmed that
7435 * only safe devices are in use by setting a module parameter.
7436 * A better idea might be to turn DISCARD into WRITE_ZEROES
7437 * requests, as that is required to be safe.
7439 if (devices_handle_discard_safely &&
7440 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7441 mddev->queue->limits.discard_granularity >= stripe)
7442 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7445 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7448 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7451 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7456 md_unregister_thread(&mddev->thread);
7457 print_raid5_conf(conf);
7459 mddev->private = NULL;
7460 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7464 static void raid5_free(struct mddev *mddev, void *priv)
7466 struct r5conf *conf = priv;
7469 mddev->to_remove = &raid5_attrs_group;
7472 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7474 struct r5conf *conf = mddev->private;
7477 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7478 conf->chunk_sectors / 2, mddev->layout);
7479 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7481 for (i = 0; i < conf->raid_disks; i++) {
7482 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7483 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7486 seq_printf (seq, "]");
7489 static void print_raid5_conf (struct r5conf *conf)
7492 struct disk_info *tmp;
7494 pr_debug("RAID conf printout:\n");
7496 pr_debug("(conf==NULL)\n");
7499 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7501 conf->raid_disks - conf->mddev->degraded);
7503 for (i = 0; i < conf->raid_disks; i++) {
7504 char b[BDEVNAME_SIZE];
7505 tmp = conf->disks + i;
7507 pr_debug(" disk %d, o:%d, dev:%s\n",
7508 i, !test_bit(Faulty, &tmp->rdev->flags),
7509 bdevname(tmp->rdev->bdev, b));
7513 static int raid5_spare_active(struct mddev *mddev)
7516 struct r5conf *conf = mddev->private;
7517 struct disk_info *tmp;
7519 unsigned long flags;
7521 for (i = 0; i < conf->raid_disks; i++) {
7522 tmp = conf->disks + i;
7523 if (tmp->replacement
7524 && tmp->replacement->recovery_offset == MaxSector
7525 && !test_bit(Faulty, &tmp->replacement->flags)
7526 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7527 /* Replacement has just become active. */
7529 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7532 /* Replaced device not technically faulty,
7533 * but we need to be sure it gets removed
7534 * and never re-added.
7536 set_bit(Faulty, &tmp->rdev->flags);
7537 sysfs_notify_dirent_safe(
7538 tmp->rdev->sysfs_state);
7540 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7541 } else if (tmp->rdev
7542 && tmp->rdev->recovery_offset == MaxSector
7543 && !test_bit(Faulty, &tmp->rdev->flags)
7544 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7546 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7549 spin_lock_irqsave(&conf->device_lock, flags);
7550 mddev->degraded = raid5_calc_degraded(conf);
7551 spin_unlock_irqrestore(&conf->device_lock, flags);
7552 print_raid5_conf(conf);
7556 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7558 struct r5conf *conf = mddev->private;
7560 int number = rdev->raid_disk;
7561 struct md_rdev **rdevp;
7562 struct disk_info *p = conf->disks + number;
7564 print_raid5_conf(conf);
7565 if (test_bit(Journal, &rdev->flags) && conf->log) {
7567 * we can't wait pending write here, as this is called in
7568 * raid5d, wait will deadlock.
7569 * neilb: there is no locking about new writes here,
7570 * so this cannot be safe.
7572 if (atomic_read(&conf->active_stripes) ||
7573 atomic_read(&conf->r5c_cached_full_stripes) ||
7574 atomic_read(&conf->r5c_cached_partial_stripes)) {
7580 if (rdev == p->rdev)
7582 else if (rdev == p->replacement)
7583 rdevp = &p->replacement;
7587 if (number >= conf->raid_disks &&
7588 conf->reshape_progress == MaxSector)
7589 clear_bit(In_sync, &rdev->flags);
7591 if (test_bit(In_sync, &rdev->flags) ||
7592 atomic_read(&rdev->nr_pending)) {
7596 /* Only remove non-faulty devices if recovery
7599 if (!test_bit(Faulty, &rdev->flags) &&
7600 mddev->recovery_disabled != conf->recovery_disabled &&
7601 !has_failed(conf) &&
7602 (!p->replacement || p->replacement == rdev) &&
7603 number < conf->raid_disks) {
7608 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7610 if (atomic_read(&rdev->nr_pending)) {
7611 /* lost the race, try later */
7617 err = log_modify(conf, rdev, false);
7621 if (p->replacement) {
7622 /* We must have just cleared 'rdev' */
7623 p->rdev = p->replacement;
7624 clear_bit(Replacement, &p->replacement->flags);
7625 smp_mb(); /* Make sure other CPUs may see both as identical
7626 * but will never see neither - if they are careful
7628 p->replacement = NULL;
7631 err = log_modify(conf, p->rdev, true);
7634 clear_bit(WantReplacement, &rdev->flags);
7637 print_raid5_conf(conf);
7641 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7643 struct r5conf *conf = mddev->private;
7646 struct disk_info *p;
7648 int last = conf->raid_disks - 1;
7650 if (test_bit(Journal, &rdev->flags)) {
7654 rdev->raid_disk = 0;
7656 * The array is in readonly mode if journal is missing, so no
7657 * write requests running. We should be safe
7659 log_init(conf, rdev, false);
7662 if (mddev->recovery_disabled == conf->recovery_disabled)
7665 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7666 /* no point adding a device */
7669 if (rdev->raid_disk >= 0)
7670 first = last = rdev->raid_disk;
7673 * find the disk ... but prefer rdev->saved_raid_disk
7676 if (rdev->saved_raid_disk >= 0 &&
7677 rdev->saved_raid_disk >= first &&
7678 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7679 first = rdev->saved_raid_disk;
7681 for (disk = first; disk <= last; disk++) {
7682 p = conf->disks + disk;
7683 if (p->rdev == NULL) {
7684 clear_bit(In_sync, &rdev->flags);
7685 rdev->raid_disk = disk;
7686 if (rdev->saved_raid_disk != disk)
7688 rcu_assign_pointer(p->rdev, rdev);
7690 err = log_modify(conf, rdev, true);
7695 for (disk = first; disk <= last; disk++) {
7696 p = conf->disks + disk;
7697 if (test_bit(WantReplacement, &p->rdev->flags) &&
7698 p->replacement == NULL) {
7699 clear_bit(In_sync, &rdev->flags);
7700 set_bit(Replacement, &rdev->flags);
7701 rdev->raid_disk = disk;
7704 rcu_assign_pointer(p->replacement, rdev);
7709 print_raid5_conf(conf);
7713 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7715 /* no resync is happening, and there is enough space
7716 * on all devices, so we can resize.
7717 * We need to make sure resync covers any new space.
7718 * If the array is shrinking we should possibly wait until
7719 * any io in the removed space completes, but it hardly seems
7723 struct r5conf *conf = mddev->private;
7725 if (conf->log || raid5_has_ppl(conf))
7727 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7728 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7729 if (mddev->external_size &&
7730 mddev->array_sectors > newsize)
7732 if (mddev->bitmap) {
7733 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7737 md_set_array_sectors(mddev, newsize);
7738 if (sectors > mddev->dev_sectors &&
7739 mddev->recovery_cp > mddev->dev_sectors) {
7740 mddev->recovery_cp = mddev->dev_sectors;
7741 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7743 mddev->dev_sectors = sectors;
7744 mddev->resync_max_sectors = sectors;
7748 static int check_stripe_cache(struct mddev *mddev)
7750 /* Can only proceed if there are plenty of stripe_heads.
7751 * We need a minimum of one full stripe,, and for sensible progress
7752 * it is best to have about 4 times that.
7753 * If we require 4 times, then the default 256 4K stripe_heads will
7754 * allow for chunk sizes up to 256K, which is probably OK.
7755 * If the chunk size is greater, user-space should request more
7756 * stripe_heads first.
7758 struct r5conf *conf = mddev->private;
7759 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7760 > conf->min_nr_stripes ||
7761 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7762 > conf->min_nr_stripes) {
7763 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7765 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7772 static int check_reshape(struct mddev *mddev)
7774 struct r5conf *conf = mddev->private;
7776 if (conf->log || raid5_has_ppl(conf))
7778 if (mddev->delta_disks == 0 &&
7779 mddev->new_layout == mddev->layout &&
7780 mddev->new_chunk_sectors == mddev->chunk_sectors)
7781 return 0; /* nothing to do */
7782 if (has_failed(conf))
7784 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7785 /* We might be able to shrink, but the devices must
7786 * be made bigger first.
7787 * For raid6, 4 is the minimum size.
7788 * Otherwise 2 is the minimum
7791 if (mddev->level == 6)
7793 if (mddev->raid_disks + mddev->delta_disks < min)
7797 if (!check_stripe_cache(mddev))
7800 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7801 mddev->delta_disks > 0)
7802 if (resize_chunks(conf,
7803 conf->previous_raid_disks
7804 + max(0, mddev->delta_disks),
7805 max(mddev->new_chunk_sectors,
7806 mddev->chunk_sectors)
7810 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7811 return 0; /* never bother to shrink */
7812 return resize_stripes(conf, (conf->previous_raid_disks
7813 + mddev->delta_disks));
7816 static int raid5_start_reshape(struct mddev *mddev)
7818 struct r5conf *conf = mddev->private;
7819 struct md_rdev *rdev;
7821 unsigned long flags;
7823 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7826 if (!check_stripe_cache(mddev))
7829 if (has_failed(conf))
7832 rdev_for_each(rdev, mddev) {
7833 if (!test_bit(In_sync, &rdev->flags)
7834 && !test_bit(Faulty, &rdev->flags))
7838 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7839 /* Not enough devices even to make a degraded array
7844 /* Refuse to reduce size of the array. Any reductions in
7845 * array size must be through explicit setting of array_size
7848 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7849 < mddev->array_sectors) {
7850 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7855 atomic_set(&conf->reshape_stripes, 0);
7856 spin_lock_irq(&conf->device_lock);
7857 write_seqcount_begin(&conf->gen_lock);
7858 conf->previous_raid_disks = conf->raid_disks;
7859 conf->raid_disks += mddev->delta_disks;
7860 conf->prev_chunk_sectors = conf->chunk_sectors;
7861 conf->chunk_sectors = mddev->new_chunk_sectors;
7862 conf->prev_algo = conf->algorithm;
7863 conf->algorithm = mddev->new_layout;
7865 /* Code that selects data_offset needs to see the generation update
7866 * if reshape_progress has been set - so a memory barrier needed.
7869 if (mddev->reshape_backwards)
7870 conf->reshape_progress = raid5_size(mddev, 0, 0);
7872 conf->reshape_progress = 0;
7873 conf->reshape_safe = conf->reshape_progress;
7874 write_seqcount_end(&conf->gen_lock);
7875 spin_unlock_irq(&conf->device_lock);
7877 /* Now make sure any requests that proceeded on the assumption
7878 * the reshape wasn't running - like Discard or Read - have
7881 mddev_suspend(mddev);
7882 mddev_resume(mddev);
7884 /* Add some new drives, as many as will fit.
7885 * We know there are enough to make the newly sized array work.
7886 * Don't add devices if we are reducing the number of
7887 * devices in the array. This is because it is not possible
7888 * to correctly record the "partially reconstructed" state of
7889 * such devices during the reshape and confusion could result.
7891 if (mddev->delta_disks >= 0) {
7892 rdev_for_each(rdev, mddev)
7893 if (rdev->raid_disk < 0 &&
7894 !test_bit(Faulty, &rdev->flags)) {
7895 if (raid5_add_disk(mddev, rdev) == 0) {
7897 >= conf->previous_raid_disks)
7898 set_bit(In_sync, &rdev->flags);
7900 rdev->recovery_offset = 0;
7902 if (sysfs_link_rdev(mddev, rdev))
7903 /* Failure here is OK */;
7905 } else if (rdev->raid_disk >= conf->previous_raid_disks
7906 && !test_bit(Faulty, &rdev->flags)) {
7907 /* This is a spare that was manually added */
7908 set_bit(In_sync, &rdev->flags);
7911 /* When a reshape changes the number of devices,
7912 * ->degraded is measured against the larger of the
7913 * pre and post number of devices.
7915 spin_lock_irqsave(&conf->device_lock, flags);
7916 mddev->degraded = raid5_calc_degraded(conf);
7917 spin_unlock_irqrestore(&conf->device_lock, flags);
7919 mddev->raid_disks = conf->raid_disks;
7920 mddev->reshape_position = conf->reshape_progress;
7921 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7923 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7924 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7925 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7926 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7927 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7928 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7930 if (!mddev->sync_thread) {
7931 mddev->recovery = 0;
7932 spin_lock_irq(&conf->device_lock);
7933 write_seqcount_begin(&conf->gen_lock);
7934 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7935 mddev->new_chunk_sectors =
7936 conf->chunk_sectors = conf->prev_chunk_sectors;
7937 mddev->new_layout = conf->algorithm = conf->prev_algo;
7938 rdev_for_each(rdev, mddev)
7939 rdev->new_data_offset = rdev->data_offset;
7941 conf->generation --;
7942 conf->reshape_progress = MaxSector;
7943 mddev->reshape_position = MaxSector;
7944 write_seqcount_end(&conf->gen_lock);
7945 spin_unlock_irq(&conf->device_lock);
7948 conf->reshape_checkpoint = jiffies;
7949 md_wakeup_thread(mddev->sync_thread);
7950 md_new_event(mddev);
7954 /* This is called from the reshape thread and should make any
7955 * changes needed in 'conf'
7957 static void end_reshape(struct r5conf *conf)
7960 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7962 spin_lock_irq(&conf->device_lock);
7963 conf->previous_raid_disks = conf->raid_disks;
7964 md_finish_reshape(conf->mddev);
7966 conf->reshape_progress = MaxSector;
7967 conf->mddev->reshape_position = MaxSector;
7968 spin_unlock_irq(&conf->device_lock);
7969 wake_up(&conf->wait_for_overlap);
7971 /* read-ahead size must cover two whole stripes, which is
7972 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7974 if (conf->mddev->queue) {
7975 int data_disks = conf->raid_disks - conf->max_degraded;
7976 int stripe = data_disks * ((conf->chunk_sectors << 9)
7978 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7979 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7984 /* This is called from the raid5d thread with mddev_lock held.
7985 * It makes config changes to the device.
7987 static void raid5_finish_reshape(struct mddev *mddev)
7989 struct r5conf *conf = mddev->private;
7991 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7993 if (mddev->delta_disks > 0) {
7994 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7996 set_capacity(mddev->gendisk, mddev->array_sectors);
7997 revalidate_disk(mddev->gendisk);
8001 spin_lock_irq(&conf->device_lock);
8002 mddev->degraded = raid5_calc_degraded(conf);
8003 spin_unlock_irq(&conf->device_lock);
8004 for (d = conf->raid_disks ;
8005 d < conf->raid_disks - mddev->delta_disks;
8007 struct md_rdev *rdev = conf->disks[d].rdev;
8009 clear_bit(In_sync, &rdev->flags);
8010 rdev = conf->disks[d].replacement;
8012 clear_bit(In_sync, &rdev->flags);
8015 mddev->layout = conf->algorithm;
8016 mddev->chunk_sectors = conf->chunk_sectors;
8017 mddev->reshape_position = MaxSector;
8018 mddev->delta_disks = 0;
8019 mddev->reshape_backwards = 0;
8023 static void raid5_quiesce(struct mddev *mddev, int state)
8025 struct r5conf *conf = mddev->private;
8028 case 2: /* resume for a suspend */
8029 wake_up(&conf->wait_for_overlap);
8032 case 1: /* stop all writes */
8033 lock_all_device_hash_locks_irq(conf);
8034 /* '2' tells resync/reshape to pause so that all
8035 * active stripes can drain
8037 r5c_flush_cache(conf, INT_MAX);
8039 wait_event_cmd(conf->wait_for_quiescent,
8040 atomic_read(&conf->active_stripes) == 0 &&
8041 atomic_read(&conf->active_aligned_reads) == 0,
8042 unlock_all_device_hash_locks_irq(conf),
8043 lock_all_device_hash_locks_irq(conf));
8045 unlock_all_device_hash_locks_irq(conf);
8046 /* allow reshape to continue */
8047 wake_up(&conf->wait_for_overlap);
8050 case 0: /* re-enable writes */
8051 lock_all_device_hash_locks_irq(conf);
8053 wake_up(&conf->wait_for_quiescent);
8054 wake_up(&conf->wait_for_overlap);
8055 unlock_all_device_hash_locks_irq(conf);
8058 r5l_quiesce(conf->log, state);
8061 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8063 struct r0conf *raid0_conf = mddev->private;
8066 /* for raid0 takeover only one zone is supported */
8067 if (raid0_conf->nr_strip_zones > 1) {
8068 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8070 return ERR_PTR(-EINVAL);
8073 sectors = raid0_conf->strip_zone[0].zone_end;
8074 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8075 mddev->dev_sectors = sectors;
8076 mddev->new_level = level;
8077 mddev->new_layout = ALGORITHM_PARITY_N;
8078 mddev->new_chunk_sectors = mddev->chunk_sectors;
8079 mddev->raid_disks += 1;
8080 mddev->delta_disks = 1;
8081 /* make sure it will be not marked as dirty */
8082 mddev->recovery_cp = MaxSector;
8084 return setup_conf(mddev);
8087 static void *raid5_takeover_raid1(struct mddev *mddev)
8092 if (mddev->raid_disks != 2 ||
8093 mddev->degraded > 1)
8094 return ERR_PTR(-EINVAL);
8096 /* Should check if there are write-behind devices? */
8098 chunksect = 64*2; /* 64K by default */
8100 /* The array must be an exact multiple of chunksize */
8101 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8104 if ((chunksect<<9) < STRIPE_SIZE)
8105 /* array size does not allow a suitable chunk size */
8106 return ERR_PTR(-EINVAL);
8108 mddev->new_level = 5;
8109 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8110 mddev->new_chunk_sectors = chunksect;
8112 ret = setup_conf(mddev);
8114 mddev_clear_unsupported_flags(mddev,
8115 UNSUPPORTED_MDDEV_FLAGS);
8119 static void *raid5_takeover_raid6(struct mddev *mddev)
8123 switch (mddev->layout) {
8124 case ALGORITHM_LEFT_ASYMMETRIC_6:
8125 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8127 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8128 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8130 case ALGORITHM_LEFT_SYMMETRIC_6:
8131 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8133 case ALGORITHM_RIGHT_SYMMETRIC_6:
8134 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8136 case ALGORITHM_PARITY_0_6:
8137 new_layout = ALGORITHM_PARITY_0;
8139 case ALGORITHM_PARITY_N:
8140 new_layout = ALGORITHM_PARITY_N;
8143 return ERR_PTR(-EINVAL);
8145 mddev->new_level = 5;
8146 mddev->new_layout = new_layout;
8147 mddev->delta_disks = -1;
8148 mddev->raid_disks -= 1;
8149 return setup_conf(mddev);
8152 static int raid5_check_reshape(struct mddev *mddev)
8154 /* For a 2-drive array, the layout and chunk size can be changed
8155 * immediately as not restriping is needed.
8156 * For larger arrays we record the new value - after validation
8157 * to be used by a reshape pass.
8159 struct r5conf *conf = mddev->private;
8160 int new_chunk = mddev->new_chunk_sectors;
8162 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8164 if (new_chunk > 0) {
8165 if (!is_power_of_2(new_chunk))
8167 if (new_chunk < (PAGE_SIZE>>9))
8169 if (mddev->array_sectors & (new_chunk-1))
8170 /* not factor of array size */
8174 /* They look valid */
8176 if (mddev->raid_disks == 2) {
8177 /* can make the change immediately */
8178 if (mddev->new_layout >= 0) {
8179 conf->algorithm = mddev->new_layout;
8180 mddev->layout = mddev->new_layout;
8182 if (new_chunk > 0) {
8183 conf->chunk_sectors = new_chunk ;
8184 mddev->chunk_sectors = new_chunk;
8186 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8187 md_wakeup_thread(mddev->thread);
8189 return check_reshape(mddev);
8192 static int raid6_check_reshape(struct mddev *mddev)
8194 int new_chunk = mddev->new_chunk_sectors;
8196 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8198 if (new_chunk > 0) {
8199 if (!is_power_of_2(new_chunk))
8201 if (new_chunk < (PAGE_SIZE >> 9))
8203 if (mddev->array_sectors & (new_chunk-1))
8204 /* not factor of array size */
8208 /* They look valid */
8209 return check_reshape(mddev);
8212 static void *raid5_takeover(struct mddev *mddev)
8214 /* raid5 can take over:
8215 * raid0 - if there is only one strip zone - make it a raid4 layout
8216 * raid1 - if there are two drives. We need to know the chunk size
8217 * raid4 - trivial - just use a raid4 layout.
8218 * raid6 - Providing it is a *_6 layout
8220 if (mddev->level == 0)
8221 return raid45_takeover_raid0(mddev, 5);
8222 if (mddev->level == 1)
8223 return raid5_takeover_raid1(mddev);
8224 if (mddev->level == 4) {
8225 mddev->new_layout = ALGORITHM_PARITY_N;
8226 mddev->new_level = 5;
8227 return setup_conf(mddev);
8229 if (mddev->level == 6)
8230 return raid5_takeover_raid6(mddev);
8232 return ERR_PTR(-EINVAL);
8235 static void *raid4_takeover(struct mddev *mddev)
8237 /* raid4 can take over:
8238 * raid0 - if there is only one strip zone
8239 * raid5 - if layout is right
8241 if (mddev->level == 0)
8242 return raid45_takeover_raid0(mddev, 4);
8243 if (mddev->level == 5 &&
8244 mddev->layout == ALGORITHM_PARITY_N) {
8245 mddev->new_layout = 0;
8246 mddev->new_level = 4;
8247 return setup_conf(mddev);
8249 return ERR_PTR(-EINVAL);
8252 static struct md_personality raid5_personality;
8254 static void *raid6_takeover(struct mddev *mddev)
8256 /* Currently can only take over a raid5. We map the
8257 * personality to an equivalent raid6 personality
8258 * with the Q block at the end.
8262 if (mddev->pers != &raid5_personality)
8263 return ERR_PTR(-EINVAL);
8264 if (mddev->degraded > 1)
8265 return ERR_PTR(-EINVAL);
8266 if (mddev->raid_disks > 253)
8267 return ERR_PTR(-EINVAL);
8268 if (mddev->raid_disks < 3)
8269 return ERR_PTR(-EINVAL);
8271 switch (mddev->layout) {
8272 case ALGORITHM_LEFT_ASYMMETRIC:
8273 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8275 case ALGORITHM_RIGHT_ASYMMETRIC:
8276 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8278 case ALGORITHM_LEFT_SYMMETRIC:
8279 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8281 case ALGORITHM_RIGHT_SYMMETRIC:
8282 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8284 case ALGORITHM_PARITY_0:
8285 new_layout = ALGORITHM_PARITY_0_6;
8287 case ALGORITHM_PARITY_N:
8288 new_layout = ALGORITHM_PARITY_N;
8291 return ERR_PTR(-EINVAL);
8293 mddev->new_level = 6;
8294 mddev->new_layout = new_layout;
8295 mddev->delta_disks = 1;
8296 mddev->raid_disks += 1;
8297 return setup_conf(mddev);
8300 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8302 struct r5conf *conf;
8305 err = mddev_lock(mddev);
8308 conf = mddev->private;
8310 mddev_unlock(mddev);
8314 if (strncmp(buf, "ppl", 3) == 0) {
8315 /* ppl only works with RAID 5 */
8316 if (!raid5_has_ppl(conf) && conf->level == 5) {
8317 err = log_init(conf, NULL, true);
8319 err = resize_stripes(conf, conf->pool_size);
8325 } else if (strncmp(buf, "resync", 6) == 0) {
8326 if (raid5_has_ppl(conf)) {
8327 mddev_suspend(mddev);
8329 mddev_resume(mddev);
8330 err = resize_stripes(conf, conf->pool_size);
8331 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8332 r5l_log_disk_error(conf)) {
8333 bool journal_dev_exists = false;
8334 struct md_rdev *rdev;
8336 rdev_for_each(rdev, mddev)
8337 if (test_bit(Journal, &rdev->flags)) {
8338 journal_dev_exists = true;
8342 if (!journal_dev_exists) {
8343 mddev_suspend(mddev);
8344 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8345 mddev_resume(mddev);
8346 } else /* need remove journal device first */
8355 md_update_sb(mddev, 1);
8357 mddev_unlock(mddev);
8362 static struct md_personality raid6_personality =
8366 .owner = THIS_MODULE,
8367 .make_request = raid5_make_request,
8370 .status = raid5_status,
8371 .error_handler = raid5_error,
8372 .hot_add_disk = raid5_add_disk,
8373 .hot_remove_disk= raid5_remove_disk,
8374 .spare_active = raid5_spare_active,
8375 .sync_request = raid5_sync_request,
8376 .resize = raid5_resize,
8378 .check_reshape = raid6_check_reshape,
8379 .start_reshape = raid5_start_reshape,
8380 .finish_reshape = raid5_finish_reshape,
8381 .quiesce = raid5_quiesce,
8382 .takeover = raid6_takeover,
8383 .congested = raid5_congested,
8384 .change_consistency_policy = raid5_change_consistency_policy,
8386 static struct md_personality raid5_personality =
8390 .owner = THIS_MODULE,
8391 .make_request = raid5_make_request,
8394 .status = raid5_status,
8395 .error_handler = raid5_error,
8396 .hot_add_disk = raid5_add_disk,
8397 .hot_remove_disk= raid5_remove_disk,
8398 .spare_active = raid5_spare_active,
8399 .sync_request = raid5_sync_request,
8400 .resize = raid5_resize,
8402 .check_reshape = raid5_check_reshape,
8403 .start_reshape = raid5_start_reshape,
8404 .finish_reshape = raid5_finish_reshape,
8405 .quiesce = raid5_quiesce,
8406 .takeover = raid5_takeover,
8407 .congested = raid5_congested,
8408 .change_consistency_policy = raid5_change_consistency_policy,
8411 static struct md_personality raid4_personality =
8415 .owner = THIS_MODULE,
8416 .make_request = raid5_make_request,
8419 .status = raid5_status,
8420 .error_handler = raid5_error,
8421 .hot_add_disk = raid5_add_disk,
8422 .hot_remove_disk= raid5_remove_disk,
8423 .spare_active = raid5_spare_active,
8424 .sync_request = raid5_sync_request,
8425 .resize = raid5_resize,
8427 .check_reshape = raid5_check_reshape,
8428 .start_reshape = raid5_start_reshape,
8429 .finish_reshape = raid5_finish_reshape,
8430 .quiesce = raid5_quiesce,
8431 .takeover = raid4_takeover,
8432 .congested = raid5_congested,
8433 .change_consistency_policy = raid5_change_consistency_policy,
8436 static int __init raid5_init(void)
8440 raid5_wq = alloc_workqueue("raid5wq",
8441 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8445 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8447 raid456_cpu_up_prepare,
8450 destroy_workqueue(raid5_wq);
8453 register_md_personality(&raid6_personality);
8454 register_md_personality(&raid5_personality);
8455 register_md_personality(&raid4_personality);
8459 static void raid5_exit(void)
8461 unregister_md_personality(&raid6_personality);
8462 unregister_md_personality(&raid5_personality);
8463 unregister_md_personality(&raid4_personality);
8464 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8465 destroy_workqueue(raid5_wq);
8468 module_init(raid5_init);
8469 module_exit(raid5_exit);
8470 MODULE_LICENSE("GPL");
8471 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8472 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8473 MODULE_ALIAS("md-raid5");
8474 MODULE_ALIAS("md-raid4");
8475 MODULE_ALIAS("md-level-5");
8476 MODULE_ALIAS("md-level-4");
8477 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8478 MODULE_ALIAS("md-raid6");
8479 MODULE_ALIAS("md-level-6");
8481 /* This used to be two separate modules, they were: */
8482 MODULE_ALIAS("raid5");
8483 MODULE_ALIAS("raid6");