Merge tag 'm68k-for-v4.9-tag1' of git://git.kernel.org/pub/scm/linux/kernel/git/geert...
[platform/kernel/linux-exynos.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio_list *return_bi)
227 {
228         struct bio *bi;
229         while ((bi = bio_list_pop(return_bi)) != NULL) {
230                 bi->bi_iter.bi_size = 0;
231                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232                                          bi, 0);
233                 bio_endio(bi);
234         }
235 }
236
237 static void print_raid5_conf (struct r5conf *conf);
238
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241         return sh->check_state || sh->reconstruct_state ||
242                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248         struct r5conf *conf = sh->raid_conf;
249         struct r5worker_group *group;
250         int thread_cnt;
251         int i, cpu = sh->cpu;
252
253         if (!cpu_online(cpu)) {
254                 cpu = cpumask_any(cpu_online_mask);
255                 sh->cpu = cpu;
256         }
257
258         if (list_empty(&sh->lru)) {
259                 struct r5worker_group *group;
260                 group = conf->worker_groups + cpu_to_group(cpu);
261                 list_add_tail(&sh->lru, &group->handle_list);
262                 group->stripes_cnt++;
263                 sh->group = group;
264         }
265
266         if (conf->worker_cnt_per_group == 0) {
267                 md_wakeup_thread(conf->mddev->thread);
268                 return;
269         }
270
271         group = conf->worker_groups + cpu_to_group(sh->cpu);
272
273         group->workers[0].working = true;
274         /* at least one worker should run to avoid race */
275         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278         /* wakeup more workers */
279         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280                 if (group->workers[i].working == false) {
281                         group->workers[i].working = true;
282                         queue_work_on(sh->cpu, raid5_wq,
283                                       &group->workers[i].work);
284                         thread_cnt--;
285                 }
286         }
287 }
288
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290                               struct list_head *temp_inactive_list)
291 {
292         BUG_ON(!list_empty(&sh->lru));
293         BUG_ON(atomic_read(&conf->active_stripes)==0);
294         if (test_bit(STRIPE_HANDLE, &sh->state)) {
295                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
296                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297                         list_add_tail(&sh->lru, &conf->delayed_list);
298                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299                            sh->bm_seq - conf->seq_write > 0)
300                         list_add_tail(&sh->lru, &conf->bitmap_list);
301                 else {
302                         clear_bit(STRIPE_DELAYED, &sh->state);
303                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
304                         if (conf->worker_cnt_per_group == 0) {
305                                 list_add_tail(&sh->lru, &conf->handle_list);
306                         } else {
307                                 raid5_wakeup_stripe_thread(sh);
308                                 return;
309                         }
310                 }
311                 md_wakeup_thread(conf->mddev->thread);
312         } else {
313                 BUG_ON(stripe_operations_active(sh));
314                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315                         if (atomic_dec_return(&conf->preread_active_stripes)
316                             < IO_THRESHOLD)
317                                 md_wakeup_thread(conf->mddev->thread);
318                 atomic_dec(&conf->active_stripes);
319                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320                         list_add_tail(&sh->lru, temp_inactive_list);
321         }
322 }
323
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325                              struct list_head *temp_inactive_list)
326 {
327         if (atomic_dec_and_test(&sh->count))
328                 do_release_stripe(conf, sh, temp_inactive_list);
329 }
330
331 /*
332  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333  *
334  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335  * given time. Adding stripes only takes device lock, while deleting stripes
336  * only takes hash lock.
337  */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339                                          struct list_head *temp_inactive_list,
340                                          int hash)
341 {
342         int size;
343         bool do_wakeup = false;
344         unsigned long flags;
345
346         if (hash == NR_STRIPE_HASH_LOCKS) {
347                 size = NR_STRIPE_HASH_LOCKS;
348                 hash = NR_STRIPE_HASH_LOCKS - 1;
349         } else
350                 size = 1;
351         while (size) {
352                 struct list_head *list = &temp_inactive_list[size - 1];
353
354                 /*
355                  * We don't hold any lock here yet, raid5_get_active_stripe() might
356                  * remove stripes from the list
357                  */
358                 if (!list_empty_careful(list)) {
359                         spin_lock_irqsave(conf->hash_locks + hash, flags);
360                         if (list_empty(conf->inactive_list + hash) &&
361                             !list_empty(list))
362                                 atomic_dec(&conf->empty_inactive_list_nr);
363                         list_splice_tail_init(list, conf->inactive_list + hash);
364                         do_wakeup = true;
365                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
366                 }
367                 size--;
368                 hash--;
369         }
370
371         if (do_wakeup) {
372                 wake_up(&conf->wait_for_stripe);
373                 if (atomic_read(&conf->active_stripes) == 0)
374                         wake_up(&conf->wait_for_quiescent);
375                 if (conf->retry_read_aligned)
376                         md_wakeup_thread(conf->mddev->thread);
377         }
378 }
379
380 /* should hold conf->device_lock already */
381 static int release_stripe_list(struct r5conf *conf,
382                                struct list_head *temp_inactive_list)
383 {
384         struct stripe_head *sh;
385         int count = 0;
386         struct llist_node *head;
387
388         head = llist_del_all(&conf->released_stripes);
389         head = llist_reverse_order(head);
390         while (head) {
391                 int hash;
392
393                 sh = llist_entry(head, struct stripe_head, release_list);
394                 head = llist_next(head);
395                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
396                 smp_mb();
397                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
398                 /*
399                  * Don't worry the bit is set here, because if the bit is set
400                  * again, the count is always > 1. This is true for
401                  * STRIPE_ON_UNPLUG_LIST bit too.
402                  */
403                 hash = sh->hash_lock_index;
404                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
405                 count++;
406         }
407
408         return count;
409 }
410
411 void raid5_release_stripe(struct stripe_head *sh)
412 {
413         struct r5conf *conf = sh->raid_conf;
414         unsigned long flags;
415         struct list_head list;
416         int hash;
417         bool wakeup;
418
419         /* Avoid release_list until the last reference.
420          */
421         if (atomic_add_unless(&sh->count, -1, 1))
422                 return;
423
424         if (unlikely(!conf->mddev->thread) ||
425                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
426                 goto slow_path;
427         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
428         if (wakeup)
429                 md_wakeup_thread(conf->mddev->thread);
430         return;
431 slow_path:
432         local_irq_save(flags);
433         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
434         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
435                 INIT_LIST_HEAD(&list);
436                 hash = sh->hash_lock_index;
437                 do_release_stripe(conf, sh, &list);
438                 spin_unlock(&conf->device_lock);
439                 release_inactive_stripe_list(conf, &list, hash);
440         }
441         local_irq_restore(flags);
442 }
443
444 static inline void remove_hash(struct stripe_head *sh)
445 {
446         pr_debug("remove_hash(), stripe %llu\n",
447                 (unsigned long long)sh->sector);
448
449         hlist_del_init(&sh->hash);
450 }
451
452 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
453 {
454         struct hlist_head *hp = stripe_hash(conf, sh->sector);
455
456         pr_debug("insert_hash(), stripe %llu\n",
457                 (unsigned long long)sh->sector);
458
459         hlist_add_head(&sh->hash, hp);
460 }
461
462 /* find an idle stripe, make sure it is unhashed, and return it. */
463 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
464 {
465         struct stripe_head *sh = NULL;
466         struct list_head *first;
467
468         if (list_empty(conf->inactive_list + hash))
469                 goto out;
470         first = (conf->inactive_list + hash)->next;
471         sh = list_entry(first, struct stripe_head, lru);
472         list_del_init(first);
473         remove_hash(sh);
474         atomic_inc(&conf->active_stripes);
475         BUG_ON(hash != sh->hash_lock_index);
476         if (list_empty(conf->inactive_list + hash))
477                 atomic_inc(&conf->empty_inactive_list_nr);
478 out:
479         return sh;
480 }
481
482 static void shrink_buffers(struct stripe_head *sh)
483 {
484         struct page *p;
485         int i;
486         int num = sh->raid_conf->pool_size;
487
488         for (i = 0; i < num ; i++) {
489                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
490                 p = sh->dev[i].page;
491                 if (!p)
492                         continue;
493                 sh->dev[i].page = NULL;
494                 put_page(p);
495         }
496 }
497
498 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
499 {
500         int i;
501         int num = sh->raid_conf->pool_size;
502
503         for (i = 0; i < num; i++) {
504                 struct page *page;
505
506                 if (!(page = alloc_page(gfp))) {
507                         return 1;
508                 }
509                 sh->dev[i].page = page;
510                 sh->dev[i].orig_page = page;
511         }
512         return 0;
513 }
514
515 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
516 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
517                             struct stripe_head *sh);
518
519 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
520 {
521         struct r5conf *conf = sh->raid_conf;
522         int i, seq;
523
524         BUG_ON(atomic_read(&sh->count) != 0);
525         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
526         BUG_ON(stripe_operations_active(sh));
527         BUG_ON(sh->batch_head);
528
529         pr_debug("init_stripe called, stripe %llu\n",
530                 (unsigned long long)sector);
531 retry:
532         seq = read_seqcount_begin(&conf->gen_lock);
533         sh->generation = conf->generation - previous;
534         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
535         sh->sector = sector;
536         stripe_set_idx(sector, conf, previous, sh);
537         sh->state = 0;
538
539         for (i = sh->disks; i--; ) {
540                 struct r5dev *dev = &sh->dev[i];
541
542                 if (dev->toread || dev->read || dev->towrite || dev->written ||
543                     test_bit(R5_LOCKED, &dev->flags)) {
544                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
545                                (unsigned long long)sh->sector, i, dev->toread,
546                                dev->read, dev->towrite, dev->written,
547                                test_bit(R5_LOCKED, &dev->flags));
548                         WARN_ON(1);
549                 }
550                 dev->flags = 0;
551                 raid5_build_block(sh, i, previous);
552         }
553         if (read_seqcount_retry(&conf->gen_lock, seq))
554                 goto retry;
555         sh->overwrite_disks = 0;
556         insert_hash(conf, sh);
557         sh->cpu = smp_processor_id();
558         set_bit(STRIPE_BATCH_READY, &sh->state);
559 }
560
561 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
562                                          short generation)
563 {
564         struct stripe_head *sh;
565
566         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
567         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
568                 if (sh->sector == sector && sh->generation == generation)
569                         return sh;
570         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
571         return NULL;
572 }
573
574 /*
575  * Need to check if array has failed when deciding whether to:
576  *  - start an array
577  *  - remove non-faulty devices
578  *  - add a spare
579  *  - allow a reshape
580  * This determination is simple when no reshape is happening.
581  * However if there is a reshape, we need to carefully check
582  * both the before and after sections.
583  * This is because some failed devices may only affect one
584  * of the two sections, and some non-in_sync devices may
585  * be insync in the section most affected by failed devices.
586  */
587 static int calc_degraded(struct r5conf *conf)
588 {
589         int degraded, degraded2;
590         int i;
591
592         rcu_read_lock();
593         degraded = 0;
594         for (i = 0; i < conf->previous_raid_disks; i++) {
595                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
596                 if (rdev && test_bit(Faulty, &rdev->flags))
597                         rdev = rcu_dereference(conf->disks[i].replacement);
598                 if (!rdev || test_bit(Faulty, &rdev->flags))
599                         degraded++;
600                 else if (test_bit(In_sync, &rdev->flags))
601                         ;
602                 else
603                         /* not in-sync or faulty.
604                          * If the reshape increases the number of devices,
605                          * this is being recovered by the reshape, so
606                          * this 'previous' section is not in_sync.
607                          * If the number of devices is being reduced however,
608                          * the device can only be part of the array if
609                          * we are reverting a reshape, so this section will
610                          * be in-sync.
611                          */
612                         if (conf->raid_disks >= conf->previous_raid_disks)
613                                 degraded++;
614         }
615         rcu_read_unlock();
616         if (conf->raid_disks == conf->previous_raid_disks)
617                 return degraded;
618         rcu_read_lock();
619         degraded2 = 0;
620         for (i = 0; i < conf->raid_disks; i++) {
621                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
622                 if (rdev && test_bit(Faulty, &rdev->flags))
623                         rdev = rcu_dereference(conf->disks[i].replacement);
624                 if (!rdev || test_bit(Faulty, &rdev->flags))
625                         degraded2++;
626                 else if (test_bit(In_sync, &rdev->flags))
627                         ;
628                 else
629                         /* not in-sync or faulty.
630                          * If reshape increases the number of devices, this
631                          * section has already been recovered, else it
632                          * almost certainly hasn't.
633                          */
634                         if (conf->raid_disks <= conf->previous_raid_disks)
635                                 degraded2++;
636         }
637         rcu_read_unlock();
638         if (degraded2 > degraded)
639                 return degraded2;
640         return degraded;
641 }
642
643 static int has_failed(struct r5conf *conf)
644 {
645         int degraded;
646
647         if (conf->mddev->reshape_position == MaxSector)
648                 return conf->mddev->degraded > conf->max_degraded;
649
650         degraded = calc_degraded(conf);
651         if (degraded > conf->max_degraded)
652                 return 1;
653         return 0;
654 }
655
656 struct stripe_head *
657 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
658                         int previous, int noblock, int noquiesce)
659 {
660         struct stripe_head *sh;
661         int hash = stripe_hash_locks_hash(sector);
662         int inc_empty_inactive_list_flag;
663
664         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
665
666         spin_lock_irq(conf->hash_locks + hash);
667
668         do {
669                 wait_event_lock_irq(conf->wait_for_quiescent,
670                                     conf->quiesce == 0 || noquiesce,
671                                     *(conf->hash_locks + hash));
672                 sh = __find_stripe(conf, sector, conf->generation - previous);
673                 if (!sh) {
674                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
675                                 sh = get_free_stripe(conf, hash);
676                                 if (!sh && !test_bit(R5_DID_ALLOC,
677                                                      &conf->cache_state))
678                                         set_bit(R5_ALLOC_MORE,
679                                                 &conf->cache_state);
680                         }
681                         if (noblock && sh == NULL)
682                                 break;
683                         if (!sh) {
684                                 set_bit(R5_INACTIVE_BLOCKED,
685                                         &conf->cache_state);
686                                 wait_event_lock_irq(
687                                         conf->wait_for_stripe,
688                                         !list_empty(conf->inactive_list + hash) &&
689                                         (atomic_read(&conf->active_stripes)
690                                          < (conf->max_nr_stripes * 3 / 4)
691                                          || !test_bit(R5_INACTIVE_BLOCKED,
692                                                       &conf->cache_state)),
693                                         *(conf->hash_locks + hash));
694                                 clear_bit(R5_INACTIVE_BLOCKED,
695                                           &conf->cache_state);
696                         } else {
697                                 init_stripe(sh, sector, previous);
698                                 atomic_inc(&sh->count);
699                         }
700                 } else if (!atomic_inc_not_zero(&sh->count)) {
701                         spin_lock(&conf->device_lock);
702                         if (!atomic_read(&sh->count)) {
703                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
704                                         atomic_inc(&conf->active_stripes);
705                                 BUG_ON(list_empty(&sh->lru) &&
706                                        !test_bit(STRIPE_EXPANDING, &sh->state));
707                                 inc_empty_inactive_list_flag = 0;
708                                 if (!list_empty(conf->inactive_list + hash))
709                                         inc_empty_inactive_list_flag = 1;
710                                 list_del_init(&sh->lru);
711                                 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
712                                         atomic_inc(&conf->empty_inactive_list_nr);
713                                 if (sh->group) {
714                                         sh->group->stripes_cnt--;
715                                         sh->group = NULL;
716                                 }
717                         }
718                         atomic_inc(&sh->count);
719                         spin_unlock(&conf->device_lock);
720                 }
721         } while (sh == NULL);
722
723         spin_unlock_irq(conf->hash_locks + hash);
724         return sh;
725 }
726
727 static bool is_full_stripe_write(struct stripe_head *sh)
728 {
729         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
730         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
731 }
732
733 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
734 {
735         local_irq_disable();
736         if (sh1 > sh2) {
737                 spin_lock(&sh2->stripe_lock);
738                 spin_lock_nested(&sh1->stripe_lock, 1);
739         } else {
740                 spin_lock(&sh1->stripe_lock);
741                 spin_lock_nested(&sh2->stripe_lock, 1);
742         }
743 }
744
745 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
746 {
747         spin_unlock(&sh1->stripe_lock);
748         spin_unlock(&sh2->stripe_lock);
749         local_irq_enable();
750 }
751
752 /* Only freshly new full stripe normal write stripe can be added to a batch list */
753 static bool stripe_can_batch(struct stripe_head *sh)
754 {
755         struct r5conf *conf = sh->raid_conf;
756
757         if (conf->log)
758                 return false;
759         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
760                 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
761                 is_full_stripe_write(sh);
762 }
763
764 /* we only do back search */
765 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
766 {
767         struct stripe_head *head;
768         sector_t head_sector, tmp_sec;
769         int hash;
770         int dd_idx;
771         int inc_empty_inactive_list_flag;
772
773         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
774         tmp_sec = sh->sector;
775         if (!sector_div(tmp_sec, conf->chunk_sectors))
776                 return;
777         head_sector = sh->sector - STRIPE_SECTORS;
778
779         hash = stripe_hash_locks_hash(head_sector);
780         spin_lock_irq(conf->hash_locks + hash);
781         head = __find_stripe(conf, head_sector, conf->generation);
782         if (head && !atomic_inc_not_zero(&head->count)) {
783                 spin_lock(&conf->device_lock);
784                 if (!atomic_read(&head->count)) {
785                         if (!test_bit(STRIPE_HANDLE, &head->state))
786                                 atomic_inc(&conf->active_stripes);
787                         BUG_ON(list_empty(&head->lru) &&
788                                !test_bit(STRIPE_EXPANDING, &head->state));
789                         inc_empty_inactive_list_flag = 0;
790                         if (!list_empty(conf->inactive_list + hash))
791                                 inc_empty_inactive_list_flag = 1;
792                         list_del_init(&head->lru);
793                         if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
794                                 atomic_inc(&conf->empty_inactive_list_nr);
795                         if (head->group) {
796                                 head->group->stripes_cnt--;
797                                 head->group = NULL;
798                         }
799                 }
800                 atomic_inc(&head->count);
801                 spin_unlock(&conf->device_lock);
802         }
803         spin_unlock_irq(conf->hash_locks + hash);
804
805         if (!head)
806                 return;
807         if (!stripe_can_batch(head))
808                 goto out;
809
810         lock_two_stripes(head, sh);
811         /* clear_batch_ready clear the flag */
812         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
813                 goto unlock_out;
814
815         if (sh->batch_head)
816                 goto unlock_out;
817
818         dd_idx = 0;
819         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
820                 dd_idx++;
821         if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
822             bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
823                 goto unlock_out;
824
825         if (head->batch_head) {
826                 spin_lock(&head->batch_head->batch_lock);
827                 /* This batch list is already running */
828                 if (!stripe_can_batch(head)) {
829                         spin_unlock(&head->batch_head->batch_lock);
830                         goto unlock_out;
831                 }
832
833                 /*
834                  * at this point, head's BATCH_READY could be cleared, but we
835                  * can still add the stripe to batch list
836                  */
837                 list_add(&sh->batch_list, &head->batch_list);
838                 spin_unlock(&head->batch_head->batch_lock);
839
840                 sh->batch_head = head->batch_head;
841         } else {
842                 head->batch_head = head;
843                 sh->batch_head = head->batch_head;
844                 spin_lock(&head->batch_lock);
845                 list_add_tail(&sh->batch_list, &head->batch_list);
846                 spin_unlock(&head->batch_lock);
847         }
848
849         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
850                 if (atomic_dec_return(&conf->preread_active_stripes)
851                     < IO_THRESHOLD)
852                         md_wakeup_thread(conf->mddev->thread);
853
854         if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
855                 int seq = sh->bm_seq;
856                 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
857                     sh->batch_head->bm_seq > seq)
858                         seq = sh->batch_head->bm_seq;
859                 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
860                 sh->batch_head->bm_seq = seq;
861         }
862
863         atomic_inc(&sh->count);
864 unlock_out:
865         unlock_two_stripes(head, sh);
866 out:
867         raid5_release_stripe(head);
868 }
869
870 /* Determine if 'data_offset' or 'new_data_offset' should be used
871  * in this stripe_head.
872  */
873 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
874 {
875         sector_t progress = conf->reshape_progress;
876         /* Need a memory barrier to make sure we see the value
877          * of conf->generation, or ->data_offset that was set before
878          * reshape_progress was updated.
879          */
880         smp_rmb();
881         if (progress == MaxSector)
882                 return 0;
883         if (sh->generation == conf->generation - 1)
884                 return 0;
885         /* We are in a reshape, and this is a new-generation stripe,
886          * so use new_data_offset.
887          */
888         return 1;
889 }
890
891 static void
892 raid5_end_read_request(struct bio *bi);
893 static void
894 raid5_end_write_request(struct bio *bi);
895
896 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
897 {
898         struct r5conf *conf = sh->raid_conf;
899         int i, disks = sh->disks;
900         struct stripe_head *head_sh = sh;
901
902         might_sleep();
903
904         if (r5l_write_stripe(conf->log, sh) == 0)
905                 return;
906         for (i = disks; i--; ) {
907                 int op, op_flags = 0;
908                 int replace_only = 0;
909                 struct bio *bi, *rbi;
910                 struct md_rdev *rdev, *rrdev = NULL;
911
912                 sh = head_sh;
913                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
914                         op = REQ_OP_WRITE;
915                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
916                                 op_flags = WRITE_FUA;
917                         if (test_bit(R5_Discard, &sh->dev[i].flags))
918                                 op = REQ_OP_DISCARD;
919                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
920                         op = REQ_OP_READ;
921                 else if (test_and_clear_bit(R5_WantReplace,
922                                             &sh->dev[i].flags)) {
923                         op = REQ_OP_WRITE;
924                         replace_only = 1;
925                 } else
926                         continue;
927                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
928                         op_flags |= REQ_SYNC;
929
930 again:
931                 bi = &sh->dev[i].req;
932                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
933
934                 rcu_read_lock();
935                 rrdev = rcu_dereference(conf->disks[i].replacement);
936                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
937                 rdev = rcu_dereference(conf->disks[i].rdev);
938                 if (!rdev) {
939                         rdev = rrdev;
940                         rrdev = NULL;
941                 }
942                 if (op_is_write(op)) {
943                         if (replace_only)
944                                 rdev = NULL;
945                         if (rdev == rrdev)
946                                 /* We raced and saw duplicates */
947                                 rrdev = NULL;
948                 } else {
949                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
950                                 rdev = rrdev;
951                         rrdev = NULL;
952                 }
953
954                 if (rdev && test_bit(Faulty, &rdev->flags))
955                         rdev = NULL;
956                 if (rdev)
957                         atomic_inc(&rdev->nr_pending);
958                 if (rrdev && test_bit(Faulty, &rrdev->flags))
959                         rrdev = NULL;
960                 if (rrdev)
961                         atomic_inc(&rrdev->nr_pending);
962                 rcu_read_unlock();
963
964                 /* We have already checked bad blocks for reads.  Now
965                  * need to check for writes.  We never accept write errors
966                  * on the replacement, so we don't to check rrdev.
967                  */
968                 while (op_is_write(op) && rdev &&
969                        test_bit(WriteErrorSeen, &rdev->flags)) {
970                         sector_t first_bad;
971                         int bad_sectors;
972                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
973                                               &first_bad, &bad_sectors);
974                         if (!bad)
975                                 break;
976
977                         if (bad < 0) {
978                                 set_bit(BlockedBadBlocks, &rdev->flags);
979                                 if (!conf->mddev->external &&
980                                     conf->mddev->flags) {
981                                         /* It is very unlikely, but we might
982                                          * still need to write out the
983                                          * bad block log - better give it
984                                          * a chance*/
985                                         md_check_recovery(conf->mddev);
986                                 }
987                                 /*
988                                  * Because md_wait_for_blocked_rdev
989                                  * will dec nr_pending, we must
990                                  * increment it first.
991                                  */
992                                 atomic_inc(&rdev->nr_pending);
993                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
994                         } else {
995                                 /* Acknowledged bad block - skip the write */
996                                 rdev_dec_pending(rdev, conf->mddev);
997                                 rdev = NULL;
998                         }
999                 }
1000
1001                 if (rdev) {
1002                         if (s->syncing || s->expanding || s->expanded
1003                             || s->replacing)
1004                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1005
1006                         set_bit(STRIPE_IO_STARTED, &sh->state);
1007
1008                         bi->bi_bdev = rdev->bdev;
1009                         bio_set_op_attrs(bi, op, op_flags);
1010                         bi->bi_end_io = op_is_write(op)
1011                                 ? raid5_end_write_request
1012                                 : raid5_end_read_request;
1013                         bi->bi_private = sh;
1014
1015                         pr_debug("%s: for %llu schedule op %d on disc %d\n",
1016                                 __func__, (unsigned long long)sh->sector,
1017                                 bi->bi_opf, i);
1018                         atomic_inc(&sh->count);
1019                         if (sh != head_sh)
1020                                 atomic_inc(&head_sh->count);
1021                         if (use_new_offset(conf, sh))
1022                                 bi->bi_iter.bi_sector = (sh->sector
1023                                                  + rdev->new_data_offset);
1024                         else
1025                                 bi->bi_iter.bi_sector = (sh->sector
1026                                                  + rdev->data_offset);
1027                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1028                                 bi->bi_opf |= REQ_NOMERGE;
1029
1030                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1031                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1032                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1033                         bi->bi_vcnt = 1;
1034                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1035                         bi->bi_io_vec[0].bv_offset = 0;
1036                         bi->bi_iter.bi_size = STRIPE_SIZE;
1037                         /*
1038                          * If this is discard request, set bi_vcnt 0. We don't
1039                          * want to confuse SCSI because SCSI will replace payload
1040                          */
1041                         if (op == REQ_OP_DISCARD)
1042                                 bi->bi_vcnt = 0;
1043                         if (rrdev)
1044                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1045
1046                         if (conf->mddev->gendisk)
1047                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1048                                                       bi, disk_devt(conf->mddev->gendisk),
1049                                                       sh->dev[i].sector);
1050                         generic_make_request(bi);
1051                 }
1052                 if (rrdev) {
1053                         if (s->syncing || s->expanding || s->expanded
1054                             || s->replacing)
1055                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1056
1057                         set_bit(STRIPE_IO_STARTED, &sh->state);
1058
1059                         rbi->bi_bdev = rrdev->bdev;
1060                         bio_set_op_attrs(rbi, op, op_flags);
1061                         BUG_ON(!op_is_write(op));
1062                         rbi->bi_end_io = raid5_end_write_request;
1063                         rbi->bi_private = sh;
1064
1065                         pr_debug("%s: for %llu schedule op %d on "
1066                                  "replacement disc %d\n",
1067                                 __func__, (unsigned long long)sh->sector,
1068                                 rbi->bi_opf, i);
1069                         atomic_inc(&sh->count);
1070                         if (sh != head_sh)
1071                                 atomic_inc(&head_sh->count);
1072                         if (use_new_offset(conf, sh))
1073                                 rbi->bi_iter.bi_sector = (sh->sector
1074                                                   + rrdev->new_data_offset);
1075                         else
1076                                 rbi->bi_iter.bi_sector = (sh->sector
1077                                                   + rrdev->data_offset);
1078                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1079                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1080                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1081                         rbi->bi_vcnt = 1;
1082                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1083                         rbi->bi_io_vec[0].bv_offset = 0;
1084                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1085                         /*
1086                          * If this is discard request, set bi_vcnt 0. We don't
1087                          * want to confuse SCSI because SCSI will replace payload
1088                          */
1089                         if (op == REQ_OP_DISCARD)
1090                                 rbi->bi_vcnt = 0;
1091                         if (conf->mddev->gendisk)
1092                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1093                                                       rbi, disk_devt(conf->mddev->gendisk),
1094                                                       sh->dev[i].sector);
1095                         generic_make_request(rbi);
1096                 }
1097                 if (!rdev && !rrdev) {
1098                         if (op_is_write(op))
1099                                 set_bit(STRIPE_DEGRADED, &sh->state);
1100                         pr_debug("skip op %d on disc %d for sector %llu\n",
1101                                 bi->bi_opf, i, (unsigned long long)sh->sector);
1102                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1103                         set_bit(STRIPE_HANDLE, &sh->state);
1104                 }
1105
1106                 if (!head_sh->batch_head)
1107                         continue;
1108                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1109                                       batch_list);
1110                 if (sh != head_sh)
1111                         goto again;
1112         }
1113 }
1114
1115 static struct dma_async_tx_descriptor *
1116 async_copy_data(int frombio, struct bio *bio, struct page **page,
1117         sector_t sector, struct dma_async_tx_descriptor *tx,
1118         struct stripe_head *sh)
1119 {
1120         struct bio_vec bvl;
1121         struct bvec_iter iter;
1122         struct page *bio_page;
1123         int page_offset;
1124         struct async_submit_ctl submit;
1125         enum async_tx_flags flags = 0;
1126
1127         if (bio->bi_iter.bi_sector >= sector)
1128                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1129         else
1130                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1131
1132         if (frombio)
1133                 flags |= ASYNC_TX_FENCE;
1134         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1135
1136         bio_for_each_segment(bvl, bio, iter) {
1137                 int len = bvl.bv_len;
1138                 int clen;
1139                 int b_offset = 0;
1140
1141                 if (page_offset < 0) {
1142                         b_offset = -page_offset;
1143                         page_offset += b_offset;
1144                         len -= b_offset;
1145                 }
1146
1147                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1148                         clen = STRIPE_SIZE - page_offset;
1149                 else
1150                         clen = len;
1151
1152                 if (clen > 0) {
1153                         b_offset += bvl.bv_offset;
1154                         bio_page = bvl.bv_page;
1155                         if (frombio) {
1156                                 if (sh->raid_conf->skip_copy &&
1157                                     b_offset == 0 && page_offset == 0 &&
1158                                     clen == STRIPE_SIZE)
1159                                         *page = bio_page;
1160                                 else
1161                                         tx = async_memcpy(*page, bio_page, page_offset,
1162                                                   b_offset, clen, &submit);
1163                         } else
1164                                 tx = async_memcpy(bio_page, *page, b_offset,
1165                                                   page_offset, clen, &submit);
1166                 }
1167                 /* chain the operations */
1168                 submit.depend_tx = tx;
1169
1170                 if (clen < len) /* hit end of page */
1171                         break;
1172                 page_offset +=  len;
1173         }
1174
1175         return tx;
1176 }
1177
1178 static void ops_complete_biofill(void *stripe_head_ref)
1179 {
1180         struct stripe_head *sh = stripe_head_ref;
1181         struct bio_list return_bi = BIO_EMPTY_LIST;
1182         int i;
1183
1184         pr_debug("%s: stripe %llu\n", __func__,
1185                 (unsigned long long)sh->sector);
1186
1187         /* clear completed biofills */
1188         for (i = sh->disks; i--; ) {
1189                 struct r5dev *dev = &sh->dev[i];
1190
1191                 /* acknowledge completion of a biofill operation */
1192                 /* and check if we need to reply to a read request,
1193                  * new R5_Wantfill requests are held off until
1194                  * !STRIPE_BIOFILL_RUN
1195                  */
1196                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1197                         struct bio *rbi, *rbi2;
1198
1199                         BUG_ON(!dev->read);
1200                         rbi = dev->read;
1201                         dev->read = NULL;
1202                         while (rbi && rbi->bi_iter.bi_sector <
1203                                 dev->sector + STRIPE_SECTORS) {
1204                                 rbi2 = r5_next_bio(rbi, dev->sector);
1205                                 if (!raid5_dec_bi_active_stripes(rbi))
1206                                         bio_list_add(&return_bi, rbi);
1207                                 rbi = rbi2;
1208                         }
1209                 }
1210         }
1211         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1212
1213         return_io(&return_bi);
1214
1215         set_bit(STRIPE_HANDLE, &sh->state);
1216         raid5_release_stripe(sh);
1217 }
1218
1219 static void ops_run_biofill(struct stripe_head *sh)
1220 {
1221         struct dma_async_tx_descriptor *tx = NULL;
1222         struct async_submit_ctl submit;
1223         int i;
1224
1225         BUG_ON(sh->batch_head);
1226         pr_debug("%s: stripe %llu\n", __func__,
1227                 (unsigned long long)sh->sector);
1228
1229         for (i = sh->disks; i--; ) {
1230                 struct r5dev *dev = &sh->dev[i];
1231                 if (test_bit(R5_Wantfill, &dev->flags)) {
1232                         struct bio *rbi;
1233                         spin_lock_irq(&sh->stripe_lock);
1234                         dev->read = rbi = dev->toread;
1235                         dev->toread = NULL;
1236                         spin_unlock_irq(&sh->stripe_lock);
1237                         while (rbi && rbi->bi_iter.bi_sector <
1238                                 dev->sector + STRIPE_SECTORS) {
1239                                 tx = async_copy_data(0, rbi, &dev->page,
1240                                         dev->sector, tx, sh);
1241                                 rbi = r5_next_bio(rbi, dev->sector);
1242                         }
1243                 }
1244         }
1245
1246         atomic_inc(&sh->count);
1247         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1248         async_trigger_callback(&submit);
1249 }
1250
1251 static void mark_target_uptodate(struct stripe_head *sh, int target)
1252 {
1253         struct r5dev *tgt;
1254
1255         if (target < 0)
1256                 return;
1257
1258         tgt = &sh->dev[target];
1259         set_bit(R5_UPTODATE, &tgt->flags);
1260         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1261         clear_bit(R5_Wantcompute, &tgt->flags);
1262 }
1263
1264 static void ops_complete_compute(void *stripe_head_ref)
1265 {
1266         struct stripe_head *sh = stripe_head_ref;
1267
1268         pr_debug("%s: stripe %llu\n", __func__,
1269                 (unsigned long long)sh->sector);
1270
1271         /* mark the computed target(s) as uptodate */
1272         mark_target_uptodate(sh, sh->ops.target);
1273         mark_target_uptodate(sh, sh->ops.target2);
1274
1275         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1276         if (sh->check_state == check_state_compute_run)
1277                 sh->check_state = check_state_compute_result;
1278         set_bit(STRIPE_HANDLE, &sh->state);
1279         raid5_release_stripe(sh);
1280 }
1281
1282 /* return a pointer to the address conversion region of the scribble buffer */
1283 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1284                                  struct raid5_percpu *percpu, int i)
1285 {
1286         void *addr;
1287
1288         addr = flex_array_get(percpu->scribble, i);
1289         return addr + sizeof(struct page *) * (sh->disks + 2);
1290 }
1291
1292 /* return a pointer to the address conversion region of the scribble buffer */
1293 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1294 {
1295         void *addr;
1296
1297         addr = flex_array_get(percpu->scribble, i);
1298         return addr;
1299 }
1300
1301 static struct dma_async_tx_descriptor *
1302 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1303 {
1304         int disks = sh->disks;
1305         struct page **xor_srcs = to_addr_page(percpu, 0);
1306         int target = sh->ops.target;
1307         struct r5dev *tgt = &sh->dev[target];
1308         struct page *xor_dest = tgt->page;
1309         int count = 0;
1310         struct dma_async_tx_descriptor *tx;
1311         struct async_submit_ctl submit;
1312         int i;
1313
1314         BUG_ON(sh->batch_head);
1315
1316         pr_debug("%s: stripe %llu block: %d\n",
1317                 __func__, (unsigned long long)sh->sector, target);
1318         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1319
1320         for (i = disks; i--; )
1321                 if (i != target)
1322                         xor_srcs[count++] = sh->dev[i].page;
1323
1324         atomic_inc(&sh->count);
1325
1326         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1327                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1328         if (unlikely(count == 1))
1329                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1330         else
1331                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1332
1333         return tx;
1334 }
1335
1336 /* set_syndrome_sources - populate source buffers for gen_syndrome
1337  * @srcs - (struct page *) array of size sh->disks
1338  * @sh - stripe_head to parse
1339  *
1340  * Populates srcs in proper layout order for the stripe and returns the
1341  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1342  * destination buffer is recorded in srcs[count] and the Q destination
1343  * is recorded in srcs[count+1]].
1344  */
1345 static int set_syndrome_sources(struct page **srcs,
1346                                 struct stripe_head *sh,
1347                                 int srctype)
1348 {
1349         int disks = sh->disks;
1350         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1351         int d0_idx = raid6_d0(sh);
1352         int count;
1353         int i;
1354
1355         for (i = 0; i < disks; i++)
1356                 srcs[i] = NULL;
1357
1358         count = 0;
1359         i = d0_idx;
1360         do {
1361                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1362                 struct r5dev *dev = &sh->dev[i];
1363
1364                 if (i == sh->qd_idx || i == sh->pd_idx ||
1365                     (srctype == SYNDROME_SRC_ALL) ||
1366                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1367                      test_bit(R5_Wantdrain, &dev->flags)) ||
1368                     (srctype == SYNDROME_SRC_WRITTEN &&
1369                      dev->written))
1370                         srcs[slot] = sh->dev[i].page;
1371                 i = raid6_next_disk(i, disks);
1372         } while (i != d0_idx);
1373
1374         return syndrome_disks;
1375 }
1376
1377 static struct dma_async_tx_descriptor *
1378 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1379 {
1380         int disks = sh->disks;
1381         struct page **blocks = to_addr_page(percpu, 0);
1382         int target;
1383         int qd_idx = sh->qd_idx;
1384         struct dma_async_tx_descriptor *tx;
1385         struct async_submit_ctl submit;
1386         struct r5dev *tgt;
1387         struct page *dest;
1388         int i;
1389         int count;
1390
1391         BUG_ON(sh->batch_head);
1392         if (sh->ops.target < 0)
1393                 target = sh->ops.target2;
1394         else if (sh->ops.target2 < 0)
1395                 target = sh->ops.target;
1396         else
1397                 /* we should only have one valid target */
1398                 BUG();
1399         BUG_ON(target < 0);
1400         pr_debug("%s: stripe %llu block: %d\n",
1401                 __func__, (unsigned long long)sh->sector, target);
1402
1403         tgt = &sh->dev[target];
1404         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1405         dest = tgt->page;
1406
1407         atomic_inc(&sh->count);
1408
1409         if (target == qd_idx) {
1410                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1411                 blocks[count] = NULL; /* regenerating p is not necessary */
1412                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1413                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1414                                   ops_complete_compute, sh,
1415                                   to_addr_conv(sh, percpu, 0));
1416                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1417         } else {
1418                 /* Compute any data- or p-drive using XOR */
1419                 count = 0;
1420                 for (i = disks; i-- ; ) {
1421                         if (i == target || i == qd_idx)
1422                                 continue;
1423                         blocks[count++] = sh->dev[i].page;
1424                 }
1425
1426                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1427                                   NULL, ops_complete_compute, sh,
1428                                   to_addr_conv(sh, percpu, 0));
1429                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1430         }
1431
1432         return tx;
1433 }
1434
1435 static struct dma_async_tx_descriptor *
1436 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1437 {
1438         int i, count, disks = sh->disks;
1439         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1440         int d0_idx = raid6_d0(sh);
1441         int faila = -1, failb = -1;
1442         int target = sh->ops.target;
1443         int target2 = sh->ops.target2;
1444         struct r5dev *tgt = &sh->dev[target];
1445         struct r5dev *tgt2 = &sh->dev[target2];
1446         struct dma_async_tx_descriptor *tx;
1447         struct page **blocks = to_addr_page(percpu, 0);
1448         struct async_submit_ctl submit;
1449
1450         BUG_ON(sh->batch_head);
1451         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1452                  __func__, (unsigned long long)sh->sector, target, target2);
1453         BUG_ON(target < 0 || target2 < 0);
1454         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1455         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1456
1457         /* we need to open-code set_syndrome_sources to handle the
1458          * slot number conversion for 'faila' and 'failb'
1459          */
1460         for (i = 0; i < disks ; i++)
1461                 blocks[i] = NULL;
1462         count = 0;
1463         i = d0_idx;
1464         do {
1465                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1466
1467                 blocks[slot] = sh->dev[i].page;
1468
1469                 if (i == target)
1470                         faila = slot;
1471                 if (i == target2)
1472                         failb = slot;
1473                 i = raid6_next_disk(i, disks);
1474         } while (i != d0_idx);
1475
1476         BUG_ON(faila == failb);
1477         if (failb < faila)
1478                 swap(faila, failb);
1479         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1480                  __func__, (unsigned long long)sh->sector, faila, failb);
1481
1482         atomic_inc(&sh->count);
1483
1484         if (failb == syndrome_disks+1) {
1485                 /* Q disk is one of the missing disks */
1486                 if (faila == syndrome_disks) {
1487                         /* Missing P+Q, just recompute */
1488                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1489                                           ops_complete_compute, sh,
1490                                           to_addr_conv(sh, percpu, 0));
1491                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1492                                                   STRIPE_SIZE, &submit);
1493                 } else {
1494                         struct page *dest;
1495                         int data_target;
1496                         int qd_idx = sh->qd_idx;
1497
1498                         /* Missing D+Q: recompute D from P, then recompute Q */
1499                         if (target == qd_idx)
1500                                 data_target = target2;
1501                         else
1502                                 data_target = target;
1503
1504                         count = 0;
1505                         for (i = disks; i-- ; ) {
1506                                 if (i == data_target || i == qd_idx)
1507                                         continue;
1508                                 blocks[count++] = sh->dev[i].page;
1509                         }
1510                         dest = sh->dev[data_target].page;
1511                         init_async_submit(&submit,
1512                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1513                                           NULL, NULL, NULL,
1514                                           to_addr_conv(sh, percpu, 0));
1515                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1516                                        &submit);
1517
1518                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1519                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1520                                           ops_complete_compute, sh,
1521                                           to_addr_conv(sh, percpu, 0));
1522                         return async_gen_syndrome(blocks, 0, count+2,
1523                                                   STRIPE_SIZE, &submit);
1524                 }
1525         } else {
1526                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1527                                   ops_complete_compute, sh,
1528                                   to_addr_conv(sh, percpu, 0));
1529                 if (failb == syndrome_disks) {
1530                         /* We're missing D+P. */
1531                         return async_raid6_datap_recov(syndrome_disks+2,
1532                                                        STRIPE_SIZE, faila,
1533                                                        blocks, &submit);
1534                 } else {
1535                         /* We're missing D+D. */
1536                         return async_raid6_2data_recov(syndrome_disks+2,
1537                                                        STRIPE_SIZE, faila, failb,
1538                                                        blocks, &submit);
1539                 }
1540         }
1541 }
1542
1543 static void ops_complete_prexor(void *stripe_head_ref)
1544 {
1545         struct stripe_head *sh = stripe_head_ref;
1546
1547         pr_debug("%s: stripe %llu\n", __func__,
1548                 (unsigned long long)sh->sector);
1549 }
1550
1551 static struct dma_async_tx_descriptor *
1552 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1553                 struct dma_async_tx_descriptor *tx)
1554 {
1555         int disks = sh->disks;
1556         struct page **xor_srcs = to_addr_page(percpu, 0);
1557         int count = 0, pd_idx = sh->pd_idx, i;
1558         struct async_submit_ctl submit;
1559
1560         /* existing parity data subtracted */
1561         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1562
1563         BUG_ON(sh->batch_head);
1564         pr_debug("%s: stripe %llu\n", __func__,
1565                 (unsigned long long)sh->sector);
1566
1567         for (i = disks; i--; ) {
1568                 struct r5dev *dev = &sh->dev[i];
1569                 /* Only process blocks that are known to be uptodate */
1570                 if (test_bit(R5_Wantdrain, &dev->flags))
1571                         xor_srcs[count++] = dev->page;
1572         }
1573
1574         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1575                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1576         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1577
1578         return tx;
1579 }
1580
1581 static struct dma_async_tx_descriptor *
1582 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1583                 struct dma_async_tx_descriptor *tx)
1584 {
1585         struct page **blocks = to_addr_page(percpu, 0);
1586         int count;
1587         struct async_submit_ctl submit;
1588
1589         pr_debug("%s: stripe %llu\n", __func__,
1590                 (unsigned long long)sh->sector);
1591
1592         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1593
1594         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1595                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1596         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1597
1598         return tx;
1599 }
1600
1601 static struct dma_async_tx_descriptor *
1602 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1603 {
1604         int disks = sh->disks;
1605         int i;
1606         struct stripe_head *head_sh = sh;
1607
1608         pr_debug("%s: stripe %llu\n", __func__,
1609                 (unsigned long long)sh->sector);
1610
1611         for (i = disks; i--; ) {
1612                 struct r5dev *dev;
1613                 struct bio *chosen;
1614
1615                 sh = head_sh;
1616                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1617                         struct bio *wbi;
1618
1619 again:
1620                         dev = &sh->dev[i];
1621                         spin_lock_irq(&sh->stripe_lock);
1622                         chosen = dev->towrite;
1623                         dev->towrite = NULL;
1624                         sh->overwrite_disks = 0;
1625                         BUG_ON(dev->written);
1626                         wbi = dev->written = chosen;
1627                         spin_unlock_irq(&sh->stripe_lock);
1628                         WARN_ON(dev->page != dev->orig_page);
1629
1630                         while (wbi && wbi->bi_iter.bi_sector <
1631                                 dev->sector + STRIPE_SECTORS) {
1632                                 if (wbi->bi_opf & REQ_FUA)
1633                                         set_bit(R5_WantFUA, &dev->flags);
1634                                 if (wbi->bi_opf & REQ_SYNC)
1635                                         set_bit(R5_SyncIO, &dev->flags);
1636                                 if (bio_op(wbi) == REQ_OP_DISCARD)
1637                                         set_bit(R5_Discard, &dev->flags);
1638                                 else {
1639                                         tx = async_copy_data(1, wbi, &dev->page,
1640                                                 dev->sector, tx, sh);
1641                                         if (dev->page != dev->orig_page) {
1642                                                 set_bit(R5_SkipCopy, &dev->flags);
1643                                                 clear_bit(R5_UPTODATE, &dev->flags);
1644                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1645                                         }
1646                                 }
1647                                 wbi = r5_next_bio(wbi, dev->sector);
1648                         }
1649
1650                         if (head_sh->batch_head) {
1651                                 sh = list_first_entry(&sh->batch_list,
1652                                                       struct stripe_head,
1653                                                       batch_list);
1654                                 if (sh == head_sh)
1655                                         continue;
1656                                 goto again;
1657                         }
1658                 }
1659         }
1660
1661         return tx;
1662 }
1663
1664 static void ops_complete_reconstruct(void *stripe_head_ref)
1665 {
1666         struct stripe_head *sh = stripe_head_ref;
1667         int disks = sh->disks;
1668         int pd_idx = sh->pd_idx;
1669         int qd_idx = sh->qd_idx;
1670         int i;
1671         bool fua = false, sync = false, discard = false;
1672
1673         pr_debug("%s: stripe %llu\n", __func__,
1674                 (unsigned long long)sh->sector);
1675
1676         for (i = disks; i--; ) {
1677                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1678                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1679                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1680         }
1681
1682         for (i = disks; i--; ) {
1683                 struct r5dev *dev = &sh->dev[i];
1684
1685                 if (dev->written || i == pd_idx || i == qd_idx) {
1686                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1687                                 set_bit(R5_UPTODATE, &dev->flags);
1688                         if (fua)
1689                                 set_bit(R5_WantFUA, &dev->flags);
1690                         if (sync)
1691                                 set_bit(R5_SyncIO, &dev->flags);
1692                 }
1693         }
1694
1695         if (sh->reconstruct_state == reconstruct_state_drain_run)
1696                 sh->reconstruct_state = reconstruct_state_drain_result;
1697         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1698                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1699         else {
1700                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1701                 sh->reconstruct_state = reconstruct_state_result;
1702         }
1703
1704         set_bit(STRIPE_HANDLE, &sh->state);
1705         raid5_release_stripe(sh);
1706 }
1707
1708 static void
1709 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1710                      struct dma_async_tx_descriptor *tx)
1711 {
1712         int disks = sh->disks;
1713         struct page **xor_srcs;
1714         struct async_submit_ctl submit;
1715         int count, pd_idx = sh->pd_idx, i;
1716         struct page *xor_dest;
1717         int prexor = 0;
1718         unsigned long flags;
1719         int j = 0;
1720         struct stripe_head *head_sh = sh;
1721         int last_stripe;
1722
1723         pr_debug("%s: stripe %llu\n", __func__,
1724                 (unsigned long long)sh->sector);
1725
1726         for (i = 0; i < sh->disks; i++) {
1727                 if (pd_idx == i)
1728                         continue;
1729                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1730                         break;
1731         }
1732         if (i >= sh->disks) {
1733                 atomic_inc(&sh->count);
1734                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1735                 ops_complete_reconstruct(sh);
1736                 return;
1737         }
1738 again:
1739         count = 0;
1740         xor_srcs = to_addr_page(percpu, j);
1741         /* check if prexor is active which means only process blocks
1742          * that are part of a read-modify-write (written)
1743          */
1744         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1745                 prexor = 1;
1746                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1747                 for (i = disks; i--; ) {
1748                         struct r5dev *dev = &sh->dev[i];
1749                         if (head_sh->dev[i].written)
1750                                 xor_srcs[count++] = dev->page;
1751                 }
1752         } else {
1753                 xor_dest = sh->dev[pd_idx].page;
1754                 for (i = disks; i--; ) {
1755                         struct r5dev *dev = &sh->dev[i];
1756                         if (i != pd_idx)
1757                                 xor_srcs[count++] = dev->page;
1758                 }
1759         }
1760
1761         /* 1/ if we prexor'd then the dest is reused as a source
1762          * 2/ if we did not prexor then we are redoing the parity
1763          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1764          * for the synchronous xor case
1765          */
1766         last_stripe = !head_sh->batch_head ||
1767                 list_first_entry(&sh->batch_list,
1768                                  struct stripe_head, batch_list) == head_sh;
1769         if (last_stripe) {
1770                 flags = ASYNC_TX_ACK |
1771                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1772
1773                 atomic_inc(&head_sh->count);
1774                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1775                                   to_addr_conv(sh, percpu, j));
1776         } else {
1777                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1778                 init_async_submit(&submit, flags, tx, NULL, NULL,
1779                                   to_addr_conv(sh, percpu, j));
1780         }
1781
1782         if (unlikely(count == 1))
1783                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1784         else
1785                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1786         if (!last_stripe) {
1787                 j++;
1788                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1789                                       batch_list);
1790                 goto again;
1791         }
1792 }
1793
1794 static void
1795 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1796                      struct dma_async_tx_descriptor *tx)
1797 {
1798         struct async_submit_ctl submit;
1799         struct page **blocks;
1800         int count, i, j = 0;
1801         struct stripe_head *head_sh = sh;
1802         int last_stripe;
1803         int synflags;
1804         unsigned long txflags;
1805
1806         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1807
1808         for (i = 0; i < sh->disks; i++) {
1809                 if (sh->pd_idx == i || sh->qd_idx == i)
1810                         continue;
1811                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1812                         break;
1813         }
1814         if (i >= sh->disks) {
1815                 atomic_inc(&sh->count);
1816                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1817                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1818                 ops_complete_reconstruct(sh);
1819                 return;
1820         }
1821
1822 again:
1823         blocks = to_addr_page(percpu, j);
1824
1825         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1826                 synflags = SYNDROME_SRC_WRITTEN;
1827                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1828         } else {
1829                 synflags = SYNDROME_SRC_ALL;
1830                 txflags = ASYNC_TX_ACK;
1831         }
1832
1833         count = set_syndrome_sources(blocks, sh, synflags);
1834         last_stripe = !head_sh->batch_head ||
1835                 list_first_entry(&sh->batch_list,
1836                                  struct stripe_head, batch_list) == head_sh;
1837
1838         if (last_stripe) {
1839                 atomic_inc(&head_sh->count);
1840                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1841                                   head_sh, to_addr_conv(sh, percpu, j));
1842         } else
1843                 init_async_submit(&submit, 0, tx, NULL, NULL,
1844                                   to_addr_conv(sh, percpu, j));
1845         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1846         if (!last_stripe) {
1847                 j++;
1848                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1849                                       batch_list);
1850                 goto again;
1851         }
1852 }
1853
1854 static void ops_complete_check(void *stripe_head_ref)
1855 {
1856         struct stripe_head *sh = stripe_head_ref;
1857
1858         pr_debug("%s: stripe %llu\n", __func__,
1859                 (unsigned long long)sh->sector);
1860
1861         sh->check_state = check_state_check_result;
1862         set_bit(STRIPE_HANDLE, &sh->state);
1863         raid5_release_stripe(sh);
1864 }
1865
1866 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1867 {
1868         int disks = sh->disks;
1869         int pd_idx = sh->pd_idx;
1870         int qd_idx = sh->qd_idx;
1871         struct page *xor_dest;
1872         struct page **xor_srcs = to_addr_page(percpu, 0);
1873         struct dma_async_tx_descriptor *tx;
1874         struct async_submit_ctl submit;
1875         int count;
1876         int i;
1877
1878         pr_debug("%s: stripe %llu\n", __func__,
1879                 (unsigned long long)sh->sector);
1880
1881         BUG_ON(sh->batch_head);
1882         count = 0;
1883         xor_dest = sh->dev[pd_idx].page;
1884         xor_srcs[count++] = xor_dest;
1885         for (i = disks; i--; ) {
1886                 if (i == pd_idx || i == qd_idx)
1887                         continue;
1888                 xor_srcs[count++] = sh->dev[i].page;
1889         }
1890
1891         init_async_submit(&submit, 0, NULL, NULL, NULL,
1892                           to_addr_conv(sh, percpu, 0));
1893         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1894                            &sh->ops.zero_sum_result, &submit);
1895
1896         atomic_inc(&sh->count);
1897         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1898         tx = async_trigger_callback(&submit);
1899 }
1900
1901 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1902 {
1903         struct page **srcs = to_addr_page(percpu, 0);
1904         struct async_submit_ctl submit;
1905         int count;
1906
1907         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1908                 (unsigned long long)sh->sector, checkp);
1909
1910         BUG_ON(sh->batch_head);
1911         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1912         if (!checkp)
1913                 srcs[count] = NULL;
1914
1915         atomic_inc(&sh->count);
1916         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1917                           sh, to_addr_conv(sh, percpu, 0));
1918         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1919                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1920 }
1921
1922 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1923 {
1924         int overlap_clear = 0, i, disks = sh->disks;
1925         struct dma_async_tx_descriptor *tx = NULL;
1926         struct r5conf *conf = sh->raid_conf;
1927         int level = conf->level;
1928         struct raid5_percpu *percpu;
1929         unsigned long cpu;
1930
1931         cpu = get_cpu();
1932         percpu = per_cpu_ptr(conf->percpu, cpu);
1933         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1934                 ops_run_biofill(sh);
1935                 overlap_clear++;
1936         }
1937
1938         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1939                 if (level < 6)
1940                         tx = ops_run_compute5(sh, percpu);
1941                 else {
1942                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1943                                 tx = ops_run_compute6_1(sh, percpu);
1944                         else
1945                                 tx = ops_run_compute6_2(sh, percpu);
1946                 }
1947                 /* terminate the chain if reconstruct is not set to be run */
1948                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1949                         async_tx_ack(tx);
1950         }
1951
1952         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1953                 if (level < 6)
1954                         tx = ops_run_prexor5(sh, percpu, tx);
1955                 else
1956                         tx = ops_run_prexor6(sh, percpu, tx);
1957         }
1958
1959         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1960                 tx = ops_run_biodrain(sh, tx);
1961                 overlap_clear++;
1962         }
1963
1964         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1965                 if (level < 6)
1966                         ops_run_reconstruct5(sh, percpu, tx);
1967                 else
1968                         ops_run_reconstruct6(sh, percpu, tx);
1969         }
1970
1971         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1972                 if (sh->check_state == check_state_run)
1973                         ops_run_check_p(sh, percpu);
1974                 else if (sh->check_state == check_state_run_q)
1975                         ops_run_check_pq(sh, percpu, 0);
1976                 else if (sh->check_state == check_state_run_pq)
1977                         ops_run_check_pq(sh, percpu, 1);
1978                 else
1979                         BUG();
1980         }
1981
1982         if (overlap_clear && !sh->batch_head)
1983                 for (i = disks; i--; ) {
1984                         struct r5dev *dev = &sh->dev[i];
1985                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1986                                 wake_up(&sh->raid_conf->wait_for_overlap);
1987                 }
1988         put_cpu();
1989 }
1990
1991 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
1992         int disks)
1993 {
1994         struct stripe_head *sh;
1995         int i;
1996
1997         sh = kmem_cache_zalloc(sc, gfp);
1998         if (sh) {
1999                 spin_lock_init(&sh->stripe_lock);
2000                 spin_lock_init(&sh->batch_lock);
2001                 INIT_LIST_HEAD(&sh->batch_list);
2002                 INIT_LIST_HEAD(&sh->lru);
2003                 atomic_set(&sh->count, 1);
2004                 for (i = 0; i < disks; i++) {
2005                         struct r5dev *dev = &sh->dev[i];
2006
2007                         bio_init(&dev->req);
2008                         dev->req.bi_io_vec = &dev->vec;
2009                         dev->req.bi_max_vecs = 1;
2010
2011                         bio_init(&dev->rreq);
2012                         dev->rreq.bi_io_vec = &dev->rvec;
2013                         dev->rreq.bi_max_vecs = 1;
2014                 }
2015         }
2016         return sh;
2017 }
2018 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2019 {
2020         struct stripe_head *sh;
2021
2022         sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size);
2023         if (!sh)
2024                 return 0;
2025
2026         sh->raid_conf = conf;
2027
2028         if (grow_buffers(sh, gfp)) {
2029                 shrink_buffers(sh);
2030                 kmem_cache_free(conf->slab_cache, sh);
2031                 return 0;
2032         }
2033         sh->hash_lock_index =
2034                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2035         /* we just created an active stripe so... */
2036         atomic_inc(&conf->active_stripes);
2037
2038         raid5_release_stripe(sh);
2039         conf->max_nr_stripes++;
2040         return 1;
2041 }
2042
2043 static int grow_stripes(struct r5conf *conf, int num)
2044 {
2045         struct kmem_cache *sc;
2046         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2047
2048         if (conf->mddev->gendisk)
2049                 sprintf(conf->cache_name[0],
2050                         "raid%d-%s", conf->level, mdname(conf->mddev));
2051         else
2052                 sprintf(conf->cache_name[0],
2053                         "raid%d-%p", conf->level, conf->mddev);
2054         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2055
2056         conf->active_name = 0;
2057         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2058                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2059                                0, 0, NULL);
2060         if (!sc)
2061                 return 1;
2062         conf->slab_cache = sc;
2063         conf->pool_size = devs;
2064         while (num--)
2065                 if (!grow_one_stripe(conf, GFP_KERNEL))
2066                         return 1;
2067
2068         return 0;
2069 }
2070
2071 /**
2072  * scribble_len - return the required size of the scribble region
2073  * @num - total number of disks in the array
2074  *
2075  * The size must be enough to contain:
2076  * 1/ a struct page pointer for each device in the array +2
2077  * 2/ room to convert each entry in (1) to its corresponding dma
2078  *    (dma_map_page()) or page (page_address()) address.
2079  *
2080  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2081  * calculate over all devices (not just the data blocks), using zeros in place
2082  * of the P and Q blocks.
2083  */
2084 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2085 {
2086         struct flex_array *ret;
2087         size_t len;
2088
2089         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2090         ret = flex_array_alloc(len, cnt, flags);
2091         if (!ret)
2092                 return NULL;
2093         /* always prealloc all elements, so no locking is required */
2094         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2095                 flex_array_free(ret);
2096                 return NULL;
2097         }
2098         return ret;
2099 }
2100
2101 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2102 {
2103         unsigned long cpu;
2104         int err = 0;
2105
2106         /*
2107          * Never shrink. And mddev_suspend() could deadlock if this is called
2108          * from raid5d. In that case, scribble_disks and scribble_sectors
2109          * should equal to new_disks and new_sectors
2110          */
2111         if (conf->scribble_disks >= new_disks &&
2112             conf->scribble_sectors >= new_sectors)
2113                 return 0;
2114         mddev_suspend(conf->mddev);
2115         get_online_cpus();
2116         for_each_present_cpu(cpu) {
2117                 struct raid5_percpu *percpu;
2118                 struct flex_array *scribble;
2119
2120                 percpu = per_cpu_ptr(conf->percpu, cpu);
2121                 scribble = scribble_alloc(new_disks,
2122                                           new_sectors / STRIPE_SECTORS,
2123                                           GFP_NOIO);
2124
2125                 if (scribble) {
2126                         flex_array_free(percpu->scribble);
2127                         percpu->scribble = scribble;
2128                 } else {
2129                         err = -ENOMEM;
2130                         break;
2131                 }
2132         }
2133         put_online_cpus();
2134         mddev_resume(conf->mddev);
2135         if (!err) {
2136                 conf->scribble_disks = new_disks;
2137                 conf->scribble_sectors = new_sectors;
2138         }
2139         return err;
2140 }
2141
2142 static int resize_stripes(struct r5conf *conf, int newsize)
2143 {
2144         /* Make all the stripes able to hold 'newsize' devices.
2145          * New slots in each stripe get 'page' set to a new page.
2146          *
2147          * This happens in stages:
2148          * 1/ create a new kmem_cache and allocate the required number of
2149          *    stripe_heads.
2150          * 2/ gather all the old stripe_heads and transfer the pages across
2151          *    to the new stripe_heads.  This will have the side effect of
2152          *    freezing the array as once all stripe_heads have been collected,
2153          *    no IO will be possible.  Old stripe heads are freed once their
2154          *    pages have been transferred over, and the old kmem_cache is
2155          *    freed when all stripes are done.
2156          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2157          *    we simple return a failre status - no need to clean anything up.
2158          * 4/ allocate new pages for the new slots in the new stripe_heads.
2159          *    If this fails, we don't bother trying the shrink the
2160          *    stripe_heads down again, we just leave them as they are.
2161          *    As each stripe_head is processed the new one is released into
2162          *    active service.
2163          *
2164          * Once step2 is started, we cannot afford to wait for a write,
2165          * so we use GFP_NOIO allocations.
2166          */
2167         struct stripe_head *osh, *nsh;
2168         LIST_HEAD(newstripes);
2169         struct disk_info *ndisks;
2170         int err;
2171         struct kmem_cache *sc;
2172         int i;
2173         int hash, cnt;
2174
2175         if (newsize <= conf->pool_size)
2176                 return 0; /* never bother to shrink */
2177
2178         err = md_allow_write(conf->mddev);
2179         if (err)
2180                 return err;
2181
2182         /* Step 1 */
2183         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2184                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2185                                0, 0, NULL);
2186         if (!sc)
2187                 return -ENOMEM;
2188
2189         /* Need to ensure auto-resizing doesn't interfere */
2190         mutex_lock(&conf->cache_size_mutex);
2191
2192         for (i = conf->max_nr_stripes; i; i--) {
2193                 nsh = alloc_stripe(sc, GFP_KERNEL, newsize);
2194                 if (!nsh)
2195                         break;
2196
2197                 nsh->raid_conf = conf;
2198                 list_add(&nsh->lru, &newstripes);
2199         }
2200         if (i) {
2201                 /* didn't get enough, give up */
2202                 while (!list_empty(&newstripes)) {
2203                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2204                         list_del(&nsh->lru);
2205                         kmem_cache_free(sc, nsh);
2206                 }
2207                 kmem_cache_destroy(sc);
2208                 mutex_unlock(&conf->cache_size_mutex);
2209                 return -ENOMEM;
2210         }
2211         /* Step 2 - Must use GFP_NOIO now.
2212          * OK, we have enough stripes, start collecting inactive
2213          * stripes and copying them over
2214          */
2215         hash = 0;
2216         cnt = 0;
2217         list_for_each_entry(nsh, &newstripes, lru) {
2218                 lock_device_hash_lock(conf, hash);
2219                 wait_event_cmd(conf->wait_for_stripe,
2220                                     !list_empty(conf->inactive_list + hash),
2221                                     unlock_device_hash_lock(conf, hash),
2222                                     lock_device_hash_lock(conf, hash));
2223                 osh = get_free_stripe(conf, hash);
2224                 unlock_device_hash_lock(conf, hash);
2225
2226                 for(i=0; i<conf->pool_size; i++) {
2227                         nsh->dev[i].page = osh->dev[i].page;
2228                         nsh->dev[i].orig_page = osh->dev[i].page;
2229                 }
2230                 nsh->hash_lock_index = hash;
2231                 kmem_cache_free(conf->slab_cache, osh);
2232                 cnt++;
2233                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2234                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2235                         hash++;
2236                         cnt = 0;
2237                 }
2238         }
2239         kmem_cache_destroy(conf->slab_cache);
2240
2241         /* Step 3.
2242          * At this point, we are holding all the stripes so the array
2243          * is completely stalled, so now is a good time to resize
2244          * conf->disks and the scribble region
2245          */
2246         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2247         if (ndisks) {
2248                 for (i=0; i<conf->raid_disks; i++)
2249                         ndisks[i] = conf->disks[i];
2250                 kfree(conf->disks);
2251                 conf->disks = ndisks;
2252         } else
2253                 err = -ENOMEM;
2254
2255         mutex_unlock(&conf->cache_size_mutex);
2256         /* Step 4, return new stripes to service */
2257         while(!list_empty(&newstripes)) {
2258                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2259                 list_del_init(&nsh->lru);
2260
2261                 for (i=conf->raid_disks; i < newsize; i++)
2262                         if (nsh->dev[i].page == NULL) {
2263                                 struct page *p = alloc_page(GFP_NOIO);
2264                                 nsh->dev[i].page = p;
2265                                 nsh->dev[i].orig_page = p;
2266                                 if (!p)
2267                                         err = -ENOMEM;
2268                         }
2269                 raid5_release_stripe(nsh);
2270         }
2271         /* critical section pass, GFP_NOIO no longer needed */
2272
2273         conf->slab_cache = sc;
2274         conf->active_name = 1-conf->active_name;
2275         if (!err)
2276                 conf->pool_size = newsize;
2277         return err;
2278 }
2279
2280 static int drop_one_stripe(struct r5conf *conf)
2281 {
2282         struct stripe_head *sh;
2283         int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2284
2285         spin_lock_irq(conf->hash_locks + hash);
2286         sh = get_free_stripe(conf, hash);
2287         spin_unlock_irq(conf->hash_locks + hash);
2288         if (!sh)
2289                 return 0;
2290         BUG_ON(atomic_read(&sh->count));
2291         shrink_buffers(sh);
2292         kmem_cache_free(conf->slab_cache, sh);
2293         atomic_dec(&conf->active_stripes);
2294         conf->max_nr_stripes--;
2295         return 1;
2296 }
2297
2298 static void shrink_stripes(struct r5conf *conf)
2299 {
2300         while (conf->max_nr_stripes &&
2301                drop_one_stripe(conf))
2302                 ;
2303
2304         kmem_cache_destroy(conf->slab_cache);
2305         conf->slab_cache = NULL;
2306 }
2307
2308 static void raid5_end_read_request(struct bio * bi)
2309 {
2310         struct stripe_head *sh = bi->bi_private;
2311         struct r5conf *conf = sh->raid_conf;
2312         int disks = sh->disks, i;
2313         char b[BDEVNAME_SIZE];
2314         struct md_rdev *rdev = NULL;
2315         sector_t s;
2316
2317         for (i=0 ; i<disks; i++)
2318                 if (bi == &sh->dev[i].req)
2319                         break;
2320
2321         pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2322                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2323                 bi->bi_error);
2324         if (i == disks) {
2325                 bio_reset(bi);
2326                 BUG();
2327                 return;
2328         }
2329         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2330                 /* If replacement finished while this request was outstanding,
2331                  * 'replacement' might be NULL already.
2332                  * In that case it moved down to 'rdev'.
2333                  * rdev is not removed until all requests are finished.
2334                  */
2335                 rdev = conf->disks[i].replacement;
2336         if (!rdev)
2337                 rdev = conf->disks[i].rdev;
2338
2339         if (use_new_offset(conf, sh))
2340                 s = sh->sector + rdev->new_data_offset;
2341         else
2342                 s = sh->sector + rdev->data_offset;
2343         if (!bi->bi_error) {
2344                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2345                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2346                         /* Note that this cannot happen on a
2347                          * replacement device.  We just fail those on
2348                          * any error
2349                          */
2350                         printk_ratelimited(
2351                                 KERN_INFO
2352                                 "md/raid:%s: read error corrected"
2353                                 " (%lu sectors at %llu on %s)\n",
2354                                 mdname(conf->mddev), STRIPE_SECTORS,
2355                                 (unsigned long long)s,
2356                                 bdevname(rdev->bdev, b));
2357                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2358                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2359                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2360                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2361                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2362
2363                 if (atomic_read(&rdev->read_errors))
2364                         atomic_set(&rdev->read_errors, 0);
2365         } else {
2366                 const char *bdn = bdevname(rdev->bdev, b);
2367                 int retry = 0;
2368                 int set_bad = 0;
2369
2370                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2371                 atomic_inc(&rdev->read_errors);
2372                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2373                         printk_ratelimited(
2374                                 KERN_WARNING
2375                                 "md/raid:%s: read error on replacement device "
2376                                 "(sector %llu on %s).\n",
2377                                 mdname(conf->mddev),
2378                                 (unsigned long long)s,
2379                                 bdn);
2380                 else if (conf->mddev->degraded >= conf->max_degraded) {
2381                         set_bad = 1;
2382                         printk_ratelimited(
2383                                 KERN_WARNING
2384                                 "md/raid:%s: read error not correctable "
2385                                 "(sector %llu on %s).\n",
2386                                 mdname(conf->mddev),
2387                                 (unsigned long long)s,
2388                                 bdn);
2389                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2390                         /* Oh, no!!! */
2391                         set_bad = 1;
2392                         printk_ratelimited(
2393                                 KERN_WARNING
2394                                 "md/raid:%s: read error NOT corrected!! "
2395                                 "(sector %llu on %s).\n",
2396                                 mdname(conf->mddev),
2397                                 (unsigned long long)s,
2398                                 bdn);
2399                 } else if (atomic_read(&rdev->read_errors)
2400                          > conf->max_nr_stripes)
2401                         printk(KERN_WARNING
2402                                "md/raid:%s: Too many read errors, failing device %s.\n",
2403                                mdname(conf->mddev), bdn);
2404                 else
2405                         retry = 1;
2406                 if (set_bad && test_bit(In_sync, &rdev->flags)
2407                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2408                         retry = 1;
2409                 if (retry)
2410                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2411                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2412                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2413                         } else
2414                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2415                 else {
2416                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2417                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2418                         if (!(set_bad
2419                               && test_bit(In_sync, &rdev->flags)
2420                               && rdev_set_badblocks(
2421                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2422                                 md_error(conf->mddev, rdev);
2423                 }
2424         }
2425         rdev_dec_pending(rdev, conf->mddev);
2426         bio_reset(bi);
2427         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2428         set_bit(STRIPE_HANDLE, &sh->state);
2429         raid5_release_stripe(sh);
2430 }
2431
2432 static void raid5_end_write_request(struct bio *bi)
2433 {
2434         struct stripe_head *sh = bi->bi_private;
2435         struct r5conf *conf = sh->raid_conf;
2436         int disks = sh->disks, i;
2437         struct md_rdev *uninitialized_var(rdev);
2438         sector_t first_bad;
2439         int bad_sectors;
2440         int replacement = 0;
2441
2442         for (i = 0 ; i < disks; i++) {
2443                 if (bi == &sh->dev[i].req) {
2444                         rdev = conf->disks[i].rdev;
2445                         break;
2446                 }
2447                 if (bi == &sh->dev[i].rreq) {
2448                         rdev = conf->disks[i].replacement;
2449                         if (rdev)
2450                                 replacement = 1;
2451                         else
2452                                 /* rdev was removed and 'replacement'
2453                                  * replaced it.  rdev is not removed
2454                                  * until all requests are finished.
2455                                  */
2456                                 rdev = conf->disks[i].rdev;
2457                         break;
2458                 }
2459         }
2460         pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2461                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2462                 bi->bi_error);
2463         if (i == disks) {
2464                 bio_reset(bi);
2465                 BUG();
2466                 return;
2467         }
2468
2469         if (replacement) {
2470                 if (bi->bi_error)
2471                         md_error(conf->mddev, rdev);
2472                 else if (is_badblock(rdev, sh->sector,
2473                                      STRIPE_SECTORS,
2474                                      &first_bad, &bad_sectors))
2475                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2476         } else {
2477                 if (bi->bi_error) {
2478                         set_bit(STRIPE_DEGRADED, &sh->state);
2479                         set_bit(WriteErrorSeen, &rdev->flags);
2480                         set_bit(R5_WriteError, &sh->dev[i].flags);
2481                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2482                                 set_bit(MD_RECOVERY_NEEDED,
2483                                         &rdev->mddev->recovery);
2484                 } else if (is_badblock(rdev, sh->sector,
2485                                        STRIPE_SECTORS,
2486                                        &first_bad, &bad_sectors)) {
2487                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2488                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2489                                 /* That was a successful write so make
2490                                  * sure it looks like we already did
2491                                  * a re-write.
2492                                  */
2493                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2494                 }
2495         }
2496         rdev_dec_pending(rdev, conf->mddev);
2497
2498         if (sh->batch_head && bi->bi_error && !replacement)
2499                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2500
2501         bio_reset(bi);
2502         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2503                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2504         set_bit(STRIPE_HANDLE, &sh->state);
2505         raid5_release_stripe(sh);
2506
2507         if (sh->batch_head && sh != sh->batch_head)
2508                 raid5_release_stripe(sh->batch_head);
2509 }
2510
2511 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2512 {
2513         struct r5dev *dev = &sh->dev[i];
2514
2515         dev->flags = 0;
2516         dev->sector = raid5_compute_blocknr(sh, i, previous);
2517 }
2518
2519 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2520 {
2521         char b[BDEVNAME_SIZE];
2522         struct r5conf *conf = mddev->private;
2523         unsigned long flags;
2524         pr_debug("raid456: error called\n");
2525
2526         spin_lock_irqsave(&conf->device_lock, flags);
2527         clear_bit(In_sync, &rdev->flags);
2528         mddev->degraded = calc_degraded(conf);
2529         spin_unlock_irqrestore(&conf->device_lock, flags);
2530         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2531
2532         set_bit(Blocked, &rdev->flags);
2533         set_bit(Faulty, &rdev->flags);
2534         set_mask_bits(&mddev->flags, 0,
2535                       BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
2536         printk(KERN_ALERT
2537                "md/raid:%s: Disk failure on %s, disabling device.\n"
2538                "md/raid:%s: Operation continuing on %d devices.\n",
2539                mdname(mddev),
2540                bdevname(rdev->bdev, b),
2541                mdname(mddev),
2542                conf->raid_disks - mddev->degraded);
2543 }
2544
2545 /*
2546  * Input: a 'big' sector number,
2547  * Output: index of the data and parity disk, and the sector # in them.
2548  */
2549 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2550                               int previous, int *dd_idx,
2551                               struct stripe_head *sh)
2552 {
2553         sector_t stripe, stripe2;
2554         sector_t chunk_number;
2555         unsigned int chunk_offset;
2556         int pd_idx, qd_idx;
2557         int ddf_layout = 0;
2558         sector_t new_sector;
2559         int algorithm = previous ? conf->prev_algo
2560                                  : conf->algorithm;
2561         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2562                                          : conf->chunk_sectors;
2563         int raid_disks = previous ? conf->previous_raid_disks
2564                                   : conf->raid_disks;
2565         int data_disks = raid_disks - conf->max_degraded;
2566
2567         /* First compute the information on this sector */
2568
2569         /*
2570          * Compute the chunk number and the sector offset inside the chunk
2571          */
2572         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2573         chunk_number = r_sector;
2574
2575         /*
2576          * Compute the stripe number
2577          */
2578         stripe = chunk_number;
2579         *dd_idx = sector_div(stripe, data_disks);
2580         stripe2 = stripe;
2581         /*
2582          * Select the parity disk based on the user selected algorithm.
2583          */
2584         pd_idx = qd_idx = -1;
2585         switch(conf->level) {
2586         case 4:
2587                 pd_idx = data_disks;
2588                 break;
2589         case 5:
2590                 switch (algorithm) {
2591                 case ALGORITHM_LEFT_ASYMMETRIC:
2592                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2593                         if (*dd_idx >= pd_idx)
2594                                 (*dd_idx)++;
2595                         break;
2596                 case ALGORITHM_RIGHT_ASYMMETRIC:
2597                         pd_idx = sector_div(stripe2, raid_disks);
2598                         if (*dd_idx >= pd_idx)
2599                                 (*dd_idx)++;
2600                         break;
2601                 case ALGORITHM_LEFT_SYMMETRIC:
2602                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2603                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2604                         break;
2605                 case ALGORITHM_RIGHT_SYMMETRIC:
2606                         pd_idx = sector_div(stripe2, raid_disks);
2607                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2608                         break;
2609                 case ALGORITHM_PARITY_0:
2610                         pd_idx = 0;
2611                         (*dd_idx)++;
2612                         break;
2613                 case ALGORITHM_PARITY_N:
2614                         pd_idx = data_disks;
2615                         break;
2616                 default:
2617                         BUG();
2618                 }
2619                 break;
2620         case 6:
2621
2622                 switch (algorithm) {
2623                 case ALGORITHM_LEFT_ASYMMETRIC:
2624                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2625                         qd_idx = pd_idx + 1;
2626                         if (pd_idx == raid_disks-1) {
2627                                 (*dd_idx)++;    /* Q D D D P */
2628                                 qd_idx = 0;
2629                         } else if (*dd_idx >= pd_idx)
2630                                 (*dd_idx) += 2; /* D D P Q D */
2631                         break;
2632                 case ALGORITHM_RIGHT_ASYMMETRIC:
2633                         pd_idx = sector_div(stripe2, raid_disks);
2634                         qd_idx = pd_idx + 1;
2635                         if (pd_idx == raid_disks-1) {
2636                                 (*dd_idx)++;    /* Q D D D P */
2637                                 qd_idx = 0;
2638                         } else if (*dd_idx >= pd_idx)
2639                                 (*dd_idx) += 2; /* D D P Q D */
2640                         break;
2641                 case ALGORITHM_LEFT_SYMMETRIC:
2642                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2643                         qd_idx = (pd_idx + 1) % raid_disks;
2644                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2645                         break;
2646                 case ALGORITHM_RIGHT_SYMMETRIC:
2647                         pd_idx = sector_div(stripe2, raid_disks);
2648                         qd_idx = (pd_idx + 1) % raid_disks;
2649                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2650                         break;
2651
2652                 case ALGORITHM_PARITY_0:
2653                         pd_idx = 0;
2654                         qd_idx = 1;
2655                         (*dd_idx) += 2;
2656                         break;
2657                 case ALGORITHM_PARITY_N:
2658                         pd_idx = data_disks;
2659                         qd_idx = data_disks + 1;
2660                         break;
2661
2662                 case ALGORITHM_ROTATING_ZERO_RESTART:
2663                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2664                          * of blocks for computing Q is different.
2665                          */
2666                         pd_idx = sector_div(stripe2, raid_disks);
2667                         qd_idx = pd_idx + 1;
2668                         if (pd_idx == raid_disks-1) {
2669                                 (*dd_idx)++;    /* Q D D D P */
2670                                 qd_idx = 0;
2671                         } else if (*dd_idx >= pd_idx)
2672                                 (*dd_idx) += 2; /* D D P Q D */
2673                         ddf_layout = 1;
2674                         break;
2675
2676                 case ALGORITHM_ROTATING_N_RESTART:
2677                         /* Same a left_asymmetric, by first stripe is
2678                          * D D D P Q  rather than
2679                          * Q D D D P
2680                          */
2681                         stripe2 += 1;
2682                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2683                         qd_idx = pd_idx + 1;
2684                         if (pd_idx == raid_disks-1) {
2685                                 (*dd_idx)++;    /* Q D D D P */
2686                                 qd_idx = 0;
2687                         } else if (*dd_idx >= pd_idx)
2688                                 (*dd_idx) += 2; /* D D P Q D */
2689                         ddf_layout = 1;
2690                         break;
2691
2692                 case ALGORITHM_ROTATING_N_CONTINUE:
2693                         /* Same as left_symmetric but Q is before P */
2694                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2695                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2696                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2697                         ddf_layout = 1;
2698                         break;
2699
2700                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2701                         /* RAID5 left_asymmetric, with Q on last device */
2702                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2703                         if (*dd_idx >= pd_idx)
2704                                 (*dd_idx)++;
2705                         qd_idx = raid_disks - 1;
2706                         break;
2707
2708                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2709                         pd_idx = sector_div(stripe2, raid_disks-1);
2710                         if (*dd_idx >= pd_idx)
2711                                 (*dd_idx)++;
2712                         qd_idx = raid_disks - 1;
2713                         break;
2714
2715                 case ALGORITHM_LEFT_SYMMETRIC_6:
2716                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2717                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2718                         qd_idx = raid_disks - 1;
2719                         break;
2720
2721                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2722                         pd_idx = sector_div(stripe2, raid_disks-1);
2723                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2724                         qd_idx = raid_disks - 1;
2725                         break;
2726
2727                 case ALGORITHM_PARITY_0_6:
2728                         pd_idx = 0;
2729                         (*dd_idx)++;
2730                         qd_idx = raid_disks - 1;
2731                         break;
2732
2733                 default:
2734                         BUG();
2735                 }
2736                 break;
2737         }
2738
2739         if (sh) {
2740                 sh->pd_idx = pd_idx;
2741                 sh->qd_idx = qd_idx;
2742                 sh->ddf_layout = ddf_layout;
2743         }
2744         /*
2745          * Finally, compute the new sector number
2746          */
2747         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2748         return new_sector;
2749 }
2750
2751 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2752 {
2753         struct r5conf *conf = sh->raid_conf;
2754         int raid_disks = sh->disks;
2755         int data_disks = raid_disks - conf->max_degraded;
2756         sector_t new_sector = sh->sector, check;
2757         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2758                                          : conf->chunk_sectors;
2759         int algorithm = previous ? conf->prev_algo
2760                                  : conf->algorithm;
2761         sector_t stripe;
2762         int chunk_offset;
2763         sector_t chunk_number;
2764         int dummy1, dd_idx = i;
2765         sector_t r_sector;
2766         struct stripe_head sh2;
2767
2768         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2769         stripe = new_sector;
2770
2771         if (i == sh->pd_idx)
2772                 return 0;
2773         switch(conf->level) {
2774         case 4: break;
2775         case 5:
2776                 switch (algorithm) {
2777                 case ALGORITHM_LEFT_ASYMMETRIC:
2778                 case ALGORITHM_RIGHT_ASYMMETRIC:
2779                         if (i > sh->pd_idx)
2780                                 i--;
2781                         break;
2782                 case ALGORITHM_LEFT_SYMMETRIC:
2783                 case ALGORITHM_RIGHT_SYMMETRIC:
2784                         if (i < sh->pd_idx)
2785                                 i += raid_disks;
2786                         i -= (sh->pd_idx + 1);
2787                         break;
2788                 case ALGORITHM_PARITY_0:
2789                         i -= 1;
2790                         break;
2791                 case ALGORITHM_PARITY_N:
2792                         break;
2793                 default:
2794                         BUG();
2795                 }
2796                 break;
2797         case 6:
2798                 if (i == sh->qd_idx)
2799                         return 0; /* It is the Q disk */
2800                 switch (algorithm) {
2801                 case ALGORITHM_LEFT_ASYMMETRIC:
2802                 case ALGORITHM_RIGHT_ASYMMETRIC:
2803                 case ALGORITHM_ROTATING_ZERO_RESTART:
2804                 case ALGORITHM_ROTATING_N_RESTART:
2805                         if (sh->pd_idx == raid_disks-1)
2806                                 i--;    /* Q D D D P */
2807                         else if (i > sh->pd_idx)
2808                                 i -= 2; /* D D P Q D */
2809                         break;
2810                 case ALGORITHM_LEFT_SYMMETRIC:
2811                 case ALGORITHM_RIGHT_SYMMETRIC:
2812                         if (sh->pd_idx == raid_disks-1)
2813                                 i--; /* Q D D D P */
2814                         else {
2815                                 /* D D P Q D */
2816                                 if (i < sh->pd_idx)
2817                                         i += raid_disks;
2818                                 i -= (sh->pd_idx + 2);
2819                         }
2820                         break;
2821                 case ALGORITHM_PARITY_0:
2822                         i -= 2;
2823                         break;
2824                 case ALGORITHM_PARITY_N:
2825                         break;
2826                 case ALGORITHM_ROTATING_N_CONTINUE:
2827                         /* Like left_symmetric, but P is before Q */
2828                         if (sh->pd_idx == 0)
2829                                 i--;    /* P D D D Q */
2830                         else {
2831                                 /* D D Q P D */
2832                                 if (i < sh->pd_idx)
2833                                         i += raid_disks;
2834                                 i -= (sh->pd_idx + 1);
2835                         }
2836                         break;
2837                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2838                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2839                         if (i > sh->pd_idx)
2840                                 i--;
2841                         break;
2842                 case ALGORITHM_LEFT_SYMMETRIC_6:
2843                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2844                         if (i < sh->pd_idx)
2845                                 i += data_disks + 1;
2846                         i -= (sh->pd_idx + 1);
2847                         break;
2848                 case ALGORITHM_PARITY_0_6:
2849                         i -= 1;
2850                         break;
2851                 default:
2852                         BUG();
2853                 }
2854                 break;
2855         }
2856
2857         chunk_number = stripe * data_disks + i;
2858         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2859
2860         check = raid5_compute_sector(conf, r_sector,
2861                                      previous, &dummy1, &sh2);
2862         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2863                 || sh2.qd_idx != sh->qd_idx) {
2864                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2865                        mdname(conf->mddev));
2866                 return 0;
2867         }
2868         return r_sector;
2869 }
2870
2871 static void
2872 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2873                          int rcw, int expand)
2874 {
2875         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2876         struct r5conf *conf = sh->raid_conf;
2877         int level = conf->level;
2878
2879         if (rcw) {
2880
2881                 for (i = disks; i--; ) {
2882                         struct r5dev *dev = &sh->dev[i];
2883
2884                         if (dev->towrite) {
2885                                 set_bit(R5_LOCKED, &dev->flags);
2886                                 set_bit(R5_Wantdrain, &dev->flags);
2887                                 if (!expand)
2888                                         clear_bit(R5_UPTODATE, &dev->flags);
2889                                 s->locked++;
2890                         }
2891                 }
2892                 /* if we are not expanding this is a proper write request, and
2893                  * there will be bios with new data to be drained into the
2894                  * stripe cache
2895                  */
2896                 if (!expand) {
2897                         if (!s->locked)
2898                                 /* False alarm, nothing to do */
2899                                 return;
2900                         sh->reconstruct_state = reconstruct_state_drain_run;
2901                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2902                 } else
2903                         sh->reconstruct_state = reconstruct_state_run;
2904
2905                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2906
2907                 if (s->locked + conf->max_degraded == disks)
2908                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2909                                 atomic_inc(&conf->pending_full_writes);
2910         } else {
2911                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2912                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2913                 BUG_ON(level == 6 &&
2914                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2915                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2916
2917                 for (i = disks; i--; ) {
2918                         struct r5dev *dev = &sh->dev[i];
2919                         if (i == pd_idx || i == qd_idx)
2920                                 continue;
2921
2922                         if (dev->towrite &&
2923                             (test_bit(R5_UPTODATE, &dev->flags) ||
2924                              test_bit(R5_Wantcompute, &dev->flags))) {
2925                                 set_bit(R5_Wantdrain, &dev->flags);
2926                                 set_bit(R5_LOCKED, &dev->flags);
2927                                 clear_bit(R5_UPTODATE, &dev->flags);
2928                                 s->locked++;
2929                         }
2930                 }
2931                 if (!s->locked)
2932                         /* False alarm - nothing to do */
2933                         return;
2934                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2935                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2936                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2937                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2938         }
2939
2940         /* keep the parity disk(s) locked while asynchronous operations
2941          * are in flight
2942          */
2943         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2944         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2945         s->locked++;
2946
2947         if (level == 6) {
2948                 int qd_idx = sh->qd_idx;
2949                 struct r5dev *dev = &sh->dev[qd_idx];
2950
2951                 set_bit(R5_LOCKED, &dev->flags);
2952                 clear_bit(R5_UPTODATE, &dev->flags);
2953                 s->locked++;
2954         }
2955
2956         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2957                 __func__, (unsigned long long)sh->sector,
2958                 s->locked, s->ops_request);
2959 }
2960
2961 /*
2962  * Each stripe/dev can have one or more bion attached.
2963  * toread/towrite point to the first in a chain.
2964  * The bi_next chain must be in order.
2965  */
2966 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2967                           int forwrite, int previous)
2968 {
2969         struct bio **bip;
2970         struct r5conf *conf = sh->raid_conf;
2971         int firstwrite=0;
2972
2973         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2974                 (unsigned long long)bi->bi_iter.bi_sector,
2975                 (unsigned long long)sh->sector);
2976
2977         /*
2978          * If several bio share a stripe. The bio bi_phys_segments acts as a
2979          * reference count to avoid race. The reference count should already be
2980          * increased before this function is called (for example, in
2981          * raid5_make_request()), so other bio sharing this stripe will not free the
2982          * stripe. If a stripe is owned by one stripe, the stripe lock will
2983          * protect it.
2984          */
2985         spin_lock_irq(&sh->stripe_lock);
2986         /* Don't allow new IO added to stripes in batch list */
2987         if (sh->batch_head)
2988                 goto overlap;
2989         if (forwrite) {
2990                 bip = &sh->dev[dd_idx].towrite;
2991                 if (*bip == NULL)
2992                         firstwrite = 1;
2993         } else
2994                 bip = &sh->dev[dd_idx].toread;
2995         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2996                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2997                         goto overlap;
2998                 bip = & (*bip)->bi_next;
2999         }
3000         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3001                 goto overlap;
3002
3003         if (!forwrite || previous)
3004                 clear_bit(STRIPE_BATCH_READY, &sh->state);
3005
3006         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3007         if (*bip)
3008                 bi->bi_next = *bip;
3009         *bip = bi;
3010         raid5_inc_bi_active_stripes(bi);
3011
3012         if (forwrite) {
3013                 /* check if page is covered */
3014                 sector_t sector = sh->dev[dd_idx].sector;
3015                 for (bi=sh->dev[dd_idx].towrite;
3016                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3017                              bi && bi->bi_iter.bi_sector <= sector;
3018                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3019                         if (bio_end_sector(bi) >= sector)
3020                                 sector = bio_end_sector(bi);
3021                 }
3022                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3023                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3024                                 sh->overwrite_disks++;
3025         }
3026
3027         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3028                 (unsigned long long)(*bip)->bi_iter.bi_sector,
3029                 (unsigned long long)sh->sector, dd_idx);
3030
3031         if (conf->mddev->bitmap && firstwrite) {
3032                 /* Cannot hold spinlock over bitmap_startwrite,
3033                  * but must ensure this isn't added to a batch until
3034                  * we have added to the bitmap and set bm_seq.
3035                  * So set STRIPE_BITMAP_PENDING to prevent
3036                  * batching.
3037                  * If multiple add_stripe_bio() calls race here they
3038                  * much all set STRIPE_BITMAP_PENDING.  So only the first one
3039                  * to complete "bitmap_startwrite" gets to set
3040                  * STRIPE_BIT_DELAY.  This is important as once a stripe
3041                  * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3042                  * any more.
3043                  */
3044                 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3045                 spin_unlock_irq(&sh->stripe_lock);
3046                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3047                                   STRIPE_SECTORS, 0);
3048                 spin_lock_irq(&sh->stripe_lock);
3049                 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3050                 if (!sh->batch_head) {
3051                         sh->bm_seq = conf->seq_flush+1;
3052                         set_bit(STRIPE_BIT_DELAY, &sh->state);
3053                 }
3054         }
3055         spin_unlock_irq(&sh->stripe_lock);
3056
3057         if (stripe_can_batch(sh))
3058                 stripe_add_to_batch_list(conf, sh);
3059         return 1;
3060
3061  overlap:
3062         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3063         spin_unlock_irq(&sh->stripe_lock);
3064         return 0;
3065 }
3066
3067 static void end_reshape(struct r5conf *conf);
3068
3069 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3070                             struct stripe_head *sh)
3071 {
3072         int sectors_per_chunk =
3073                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3074         int dd_idx;
3075         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3076         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3077
3078         raid5_compute_sector(conf,
3079                              stripe * (disks - conf->max_degraded)
3080                              *sectors_per_chunk + chunk_offset,
3081                              previous,
3082                              &dd_idx, sh);
3083 }
3084
3085 static void
3086 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3087                                 struct stripe_head_state *s, int disks,
3088                                 struct bio_list *return_bi)
3089 {
3090         int i;
3091         BUG_ON(sh->batch_head);
3092         for (i = disks; i--; ) {
3093                 struct bio *bi;
3094                 int bitmap_end = 0;
3095
3096                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3097                         struct md_rdev *rdev;
3098                         rcu_read_lock();
3099                         rdev = rcu_dereference(conf->disks[i].rdev);
3100                         if (rdev && test_bit(In_sync, &rdev->flags) &&
3101                             !test_bit(Faulty, &rdev->flags))
3102                                 atomic_inc(&rdev->nr_pending);
3103                         else
3104                                 rdev = NULL;
3105                         rcu_read_unlock();
3106                         if (rdev) {
3107                                 if (!rdev_set_badblocks(
3108                                             rdev,
3109                                             sh->sector,
3110                                             STRIPE_SECTORS, 0))
3111                                         md_error(conf->mddev, rdev);
3112                                 rdev_dec_pending(rdev, conf->mddev);
3113                         }
3114                 }
3115                 spin_lock_irq(&sh->stripe_lock);
3116                 /* fail all writes first */
3117                 bi = sh->dev[i].towrite;
3118                 sh->dev[i].towrite = NULL;
3119                 sh->overwrite_disks = 0;
3120                 spin_unlock_irq(&sh->stripe_lock);
3121                 if (bi)
3122                         bitmap_end = 1;
3123
3124                 r5l_stripe_write_finished(sh);
3125
3126                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3127                         wake_up(&conf->wait_for_overlap);
3128
3129                 while (bi && bi->bi_iter.bi_sector <
3130                         sh->dev[i].sector + STRIPE_SECTORS) {
3131                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3132
3133                         bi->bi_error = -EIO;
3134                         if (!raid5_dec_bi_active_stripes(bi)) {
3135                                 md_write_end(conf->mddev);
3136                                 bio_list_add(return_bi, bi);
3137                         }
3138                         bi = nextbi;
3139                 }
3140                 if (bitmap_end)
3141                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3142                                 STRIPE_SECTORS, 0, 0);
3143                 bitmap_end = 0;
3144                 /* and fail all 'written' */
3145                 bi = sh->dev[i].written;
3146                 sh->dev[i].written = NULL;
3147                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3148                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3149                         sh->dev[i].page = sh->dev[i].orig_page;
3150                 }
3151
3152                 if (bi) bitmap_end = 1;
3153                 while (bi && bi->bi_iter.bi_sector <
3154                        sh->dev[i].sector + STRIPE_SECTORS) {
3155                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3156
3157                         bi->bi_error = -EIO;
3158                         if (!raid5_dec_bi_active_stripes(bi)) {
3159                                 md_write_end(conf->mddev);
3160                                 bio_list_add(return_bi, bi);
3161                         }
3162                         bi = bi2;
3163                 }
3164
3165                 /* fail any reads if this device is non-operational and
3166                  * the data has not reached the cache yet.
3167                  */
3168                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3169                     s->failed > conf->max_degraded &&
3170                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3171                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3172                         spin_lock_irq(&sh->stripe_lock);
3173                         bi = sh->dev[i].toread;
3174                         sh->dev[i].toread = NULL;
3175                         spin_unlock_irq(&sh->stripe_lock);
3176                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3177                                 wake_up(&conf->wait_for_overlap);
3178                         if (bi)
3179                                 s->to_read--;
3180                         while (bi && bi->bi_iter.bi_sector <
3181                                sh->dev[i].sector + STRIPE_SECTORS) {
3182                                 struct bio *nextbi =
3183                                         r5_next_bio(bi, sh->dev[i].sector);
3184
3185                                 bi->bi_error = -EIO;
3186                                 if (!raid5_dec_bi_active_stripes(bi))
3187                                         bio_list_add(return_bi, bi);
3188                                 bi = nextbi;
3189                         }
3190                 }
3191                 if (bitmap_end)
3192                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3193                                         STRIPE_SECTORS, 0, 0);
3194                 /* If we were in the middle of a write the parity block might
3195                  * still be locked - so just clear all R5_LOCKED flags
3196                  */
3197                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3198         }
3199         s->to_write = 0;
3200         s->written = 0;
3201
3202         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3203                 if (atomic_dec_and_test(&conf->pending_full_writes))
3204                         md_wakeup_thread(conf->mddev->thread);
3205 }
3206
3207 static void
3208 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3209                    struct stripe_head_state *s)
3210 {
3211         int abort = 0;
3212         int i;
3213
3214         BUG_ON(sh->batch_head);
3215         clear_bit(STRIPE_SYNCING, &sh->state);
3216         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3217                 wake_up(&conf->wait_for_overlap);
3218         s->syncing = 0;
3219         s->replacing = 0;
3220         /* There is nothing more to do for sync/check/repair.
3221          * Don't even need to abort as that is handled elsewhere
3222          * if needed, and not always wanted e.g. if there is a known
3223          * bad block here.
3224          * For recover/replace we need to record a bad block on all
3225          * non-sync devices, or abort the recovery
3226          */
3227         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3228                 /* During recovery devices cannot be removed, so
3229                  * locking and refcounting of rdevs is not needed
3230                  */
3231                 rcu_read_lock();
3232                 for (i = 0; i < conf->raid_disks; i++) {
3233                         struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3234                         if (rdev
3235                             && !test_bit(Faulty, &rdev->flags)
3236                             && !test_bit(In_sync, &rdev->flags)
3237                             && !rdev_set_badblocks(rdev, sh->sector,
3238                                                    STRIPE_SECTORS, 0))
3239                                 abort = 1;
3240                         rdev = rcu_dereference(conf->disks[i].replacement);
3241                         if (rdev
3242                             && !test_bit(Faulty, &rdev->flags)
3243                             && !test_bit(In_sync, &rdev->flags)
3244                             && !rdev_set_badblocks(rdev, sh->sector,
3245                                                    STRIPE_SECTORS, 0))
3246                                 abort = 1;
3247                 }
3248                 rcu_read_unlock();
3249                 if (abort)
3250                         conf->recovery_disabled =
3251                                 conf->mddev->recovery_disabled;
3252         }
3253         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3254 }
3255
3256 static int want_replace(struct stripe_head *sh, int disk_idx)
3257 {
3258         struct md_rdev *rdev;
3259         int rv = 0;
3260
3261         rcu_read_lock();
3262         rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3263         if (rdev
3264             && !test_bit(Faulty, &rdev->flags)
3265             && !test_bit(In_sync, &rdev->flags)
3266             && (rdev->recovery_offset <= sh->sector
3267                 || rdev->mddev->recovery_cp <= sh->sector))
3268                 rv = 1;
3269         rcu_read_unlock();
3270         return rv;
3271 }
3272
3273 /* fetch_block - checks the given member device to see if its data needs
3274  * to be read or computed to satisfy a request.
3275  *
3276  * Returns 1 when no more member devices need to be checked, otherwise returns
3277  * 0 to tell the loop in handle_stripe_fill to continue
3278  */
3279
3280 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3281                            int disk_idx, int disks)
3282 {
3283         struct r5dev *dev = &sh->dev[disk_idx];
3284         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3285                                   &sh->dev[s->failed_num[1]] };
3286         int i;
3287
3288
3289         if (test_bit(R5_LOCKED, &dev->flags) ||
3290             test_bit(R5_UPTODATE, &dev->flags))
3291                 /* No point reading this as we already have it or have
3292                  * decided to get it.
3293                  */
3294                 return 0;
3295
3296         if (dev->toread ||
3297             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3298                 /* We need this block to directly satisfy a request */
3299                 return 1;
3300
3301         if (s->syncing || s->expanding ||
3302             (s->replacing && want_replace(sh, disk_idx)))
3303                 /* When syncing, or expanding we read everything.
3304                  * When replacing, we need the replaced block.
3305                  */
3306                 return 1;
3307
3308         if ((s->failed >= 1 && fdev[0]->toread) ||
3309             (s->failed >= 2 && fdev[1]->toread))
3310                 /* If we want to read from a failed device, then
3311                  * we need to actually read every other device.
3312                  */
3313                 return 1;
3314
3315         /* Sometimes neither read-modify-write nor reconstruct-write
3316          * cycles can work.  In those cases we read every block we
3317          * can.  Then the parity-update is certain to have enough to
3318          * work with.
3319          * This can only be a problem when we need to write something,
3320          * and some device has failed.  If either of those tests
3321          * fail we need look no further.
3322          */
3323         if (!s->failed || !s->to_write)
3324                 return 0;
3325
3326         if (test_bit(R5_Insync, &dev->flags) &&
3327             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3328                 /* Pre-reads at not permitted until after short delay
3329                  * to gather multiple requests.  However if this
3330                  * device is no Insync, the block could only be be computed
3331                  * and there is no need to delay that.
3332                  */
3333                 return 0;
3334
3335         for (i = 0; i < s->failed && i < 2; i++) {
3336                 if (fdev[i]->towrite &&
3337                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3338                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3339                         /* If we have a partial write to a failed
3340                          * device, then we will need to reconstruct
3341                          * the content of that device, so all other
3342                          * devices must be read.
3343                          */
3344                         return 1;
3345         }
3346
3347         /* If we are forced to do a reconstruct-write, either because
3348          * the current RAID6 implementation only supports that, or
3349          * or because parity cannot be trusted and we are currently
3350          * recovering it, there is extra need to be careful.
3351          * If one of the devices that we would need to read, because
3352          * it is not being overwritten (and maybe not written at all)
3353          * is missing/faulty, then we need to read everything we can.
3354          */
3355         if (sh->raid_conf->level != 6 &&
3356             sh->sector < sh->raid_conf->mddev->recovery_cp)
3357                 /* reconstruct-write isn't being forced */
3358                 return 0;
3359         for (i = 0; i < s->failed && i < 2; i++) {
3360                 if (s->failed_num[i] != sh->pd_idx &&
3361                     s->failed_num[i] != sh->qd_idx &&
3362                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3363                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3364                         return 1;
3365         }
3366
3367         return 0;
3368 }
3369
3370 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3371                        int disk_idx, int disks)
3372 {
3373         struct r5dev *dev = &sh->dev[disk_idx];
3374
3375         /* is the data in this block needed, and can we get it? */
3376         if (need_this_block(sh, s, disk_idx, disks)) {
3377                 /* we would like to get this block, possibly by computing it,
3378                  * otherwise read it if the backing disk is insync
3379                  */
3380                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3381                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3382                 BUG_ON(sh->batch_head);
3383                 if ((s->uptodate == disks - 1) &&
3384                     (s->failed && (disk_idx == s->failed_num[0] ||
3385                                    disk_idx == s->failed_num[1]))) {
3386                         /* have disk failed, and we're requested to fetch it;
3387                          * do compute it
3388                          */
3389                         pr_debug("Computing stripe %llu block %d\n",
3390                                (unsigned long long)sh->sector, disk_idx);
3391                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3392                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3393                         set_bit(R5_Wantcompute, &dev->flags);
3394                         sh->ops.target = disk_idx;
3395                         sh->ops.target2 = -1; /* no 2nd target */
3396                         s->req_compute = 1;
3397                         /* Careful: from this point on 'uptodate' is in the eye
3398                          * of raid_run_ops which services 'compute' operations
3399                          * before writes. R5_Wantcompute flags a block that will
3400                          * be R5_UPTODATE by the time it is needed for a
3401                          * subsequent operation.
3402                          */
3403                         s->uptodate++;
3404                         return 1;
3405                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3406                         /* Computing 2-failure is *very* expensive; only
3407                          * do it if failed >= 2
3408                          */
3409                         int other;
3410                         for (other = disks; other--; ) {
3411                                 if (other == disk_idx)
3412                                         continue;
3413                                 if (!test_bit(R5_UPTODATE,
3414                                       &sh->dev[other].flags))
3415                                         break;
3416                         }
3417                         BUG_ON(other < 0);
3418                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3419                                (unsigned long long)sh->sector,
3420                                disk_idx, other);
3421                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3422                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3423                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3424                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3425                         sh->ops.target = disk_idx;
3426                         sh->ops.target2 = other;
3427                         s->uptodate += 2;
3428                         s->req_compute = 1;
3429                         return 1;
3430                 } else if (test_bit(R5_Insync, &dev->flags)) {
3431                         set_bit(R5_LOCKED, &dev->flags);
3432                         set_bit(R5_Wantread, &dev->flags);
3433                         s->locked++;
3434                         pr_debug("Reading block %d (sync=%d)\n",
3435                                 disk_idx, s->syncing);
3436                 }
3437         }
3438
3439         return 0;
3440 }
3441
3442 /**
3443  * handle_stripe_fill - read or compute data to satisfy pending requests.
3444  */
3445 static void handle_stripe_fill(struct stripe_head *sh,
3446                                struct stripe_head_state *s,
3447                                int disks)
3448 {
3449         int i;
3450
3451         /* look for blocks to read/compute, skip this if a compute
3452          * is already in flight, or if the stripe contents are in the
3453          * midst of changing due to a write
3454          */
3455         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3456             !sh->reconstruct_state)
3457                 for (i = disks; i--; )
3458                         if (fetch_block(sh, s, i, disks))
3459                                 break;
3460         set_bit(STRIPE_HANDLE, &sh->state);
3461 }
3462
3463 static void break_stripe_batch_list(struct stripe_head *head_sh,
3464                                     unsigned long handle_flags);
3465 /* handle_stripe_clean_event
3466  * any written block on an uptodate or failed drive can be returned.
3467  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3468  * never LOCKED, so we don't need to test 'failed' directly.
3469  */
3470 static void handle_stripe_clean_event(struct r5conf *conf,
3471         struct stripe_head *sh, int disks, struct bio_list *return_bi)
3472 {
3473         int i;
3474         struct r5dev *dev;
3475         int discard_pending = 0;
3476         struct stripe_head *head_sh = sh;
3477         bool do_endio = false;
3478
3479         for (i = disks; i--; )
3480                 if (sh->dev[i].written) {
3481                         dev = &sh->dev[i];
3482                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3483                             (test_bit(R5_UPTODATE, &dev->flags) ||
3484                              test_bit(R5_Discard, &dev->flags) ||
3485                              test_bit(R5_SkipCopy, &dev->flags))) {
3486                                 /* We can return any write requests */
3487                                 struct bio *wbi, *wbi2;
3488                                 pr_debug("Return write for disc %d\n", i);
3489                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3490                                         clear_bit(R5_UPTODATE, &dev->flags);
3491                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3492                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3493                                 }
3494                                 do_endio = true;
3495
3496 returnbi:
3497                                 dev->page = dev->orig_page;
3498                                 wbi = dev->written;
3499                                 dev->written = NULL;
3500                                 while (wbi && wbi->bi_iter.bi_sector <
3501                                         dev->sector + STRIPE_SECTORS) {
3502                                         wbi2 = r5_next_bio(wbi, dev->sector);
3503                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3504                                                 md_write_end(conf->mddev);
3505                                                 bio_list_add(return_bi, wbi);
3506                                         }
3507                                         wbi = wbi2;
3508                                 }
3509                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3510                                                 STRIPE_SECTORS,
3511                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3512                                                 0);
3513                                 if (head_sh->batch_head) {
3514                                         sh = list_first_entry(&sh->batch_list,
3515                                                               struct stripe_head,
3516                                                               batch_list);
3517                                         if (sh != head_sh) {
3518                                                 dev = &sh->dev[i];
3519                                                 goto returnbi;
3520                                         }
3521                                 }
3522                                 sh = head_sh;
3523                                 dev = &sh->dev[i];
3524                         } else if (test_bit(R5_Discard, &dev->flags))
3525                                 discard_pending = 1;
3526                 }
3527
3528         r5l_stripe_write_finished(sh);
3529
3530         if (!discard_pending &&
3531             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3532                 int hash;
3533                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3534                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3535                 if (sh->qd_idx >= 0) {
3536                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3537                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3538                 }
3539                 /* now that discard is done we can proceed with any sync */
3540                 clear_bit(STRIPE_DISCARD, &sh->state);
3541                 /*
3542                  * SCSI discard will change some bio fields and the stripe has
3543                  * no updated data, so remove it from hash list and the stripe
3544                  * will be reinitialized
3545                  */
3546 unhash:
3547                 hash = sh->hash_lock_index;
3548                 spin_lock_irq(conf->hash_locks + hash);
3549                 remove_hash(sh);
3550                 spin_unlock_irq(conf->hash_locks + hash);
3551                 if (head_sh->batch_head) {
3552                         sh = list_first_entry(&sh->batch_list,
3553                                               struct stripe_head, batch_list);
3554                         if (sh != head_sh)
3555                                         goto unhash;
3556                 }
3557                 sh = head_sh;
3558
3559                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3560                         set_bit(STRIPE_HANDLE, &sh->state);
3561
3562         }
3563
3564         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3565                 if (atomic_dec_and_test(&conf->pending_full_writes))
3566                         md_wakeup_thread(conf->mddev->thread);
3567
3568         if (head_sh->batch_head && do_endio)
3569                 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3570 }
3571
3572 static void handle_stripe_dirtying(struct r5conf *conf,
3573                                    struct stripe_head *sh,
3574                                    struct stripe_head_state *s,
3575                                    int disks)
3576 {
3577         int rmw = 0, rcw = 0, i;
3578         sector_t recovery_cp = conf->mddev->recovery_cp;
3579
3580         /* Check whether resync is now happening or should start.
3581          * If yes, then the array is dirty (after unclean shutdown or
3582          * initial creation), so parity in some stripes might be inconsistent.
3583          * In this case, we need to always do reconstruct-write, to ensure
3584          * that in case of drive failure or read-error correction, we
3585          * generate correct data from the parity.
3586          */
3587         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3588             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3589              s->failed == 0)) {
3590                 /* Calculate the real rcw later - for now make it
3591                  * look like rcw is cheaper
3592                  */
3593                 rcw = 1; rmw = 2;
3594                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3595                          conf->rmw_level, (unsigned long long)recovery_cp,
3596                          (unsigned long long)sh->sector);
3597         } else for (i = disks; i--; ) {
3598                 /* would I have to read this buffer for read_modify_write */
3599                 struct r5dev *dev = &sh->dev[i];
3600                 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3601                     !test_bit(R5_LOCKED, &dev->flags) &&
3602                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3603                       test_bit(R5_Wantcompute, &dev->flags))) {
3604                         if (test_bit(R5_Insync, &dev->flags))
3605                                 rmw++;
3606                         else
3607                                 rmw += 2*disks;  /* cannot read it */
3608                 }
3609                 /* Would I have to read this buffer for reconstruct_write */
3610                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3611                     i != sh->pd_idx && i != sh->qd_idx &&
3612                     !test_bit(R5_LOCKED, &dev->flags) &&
3613                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3614                     test_bit(R5_Wantcompute, &dev->flags))) {
3615                         if (test_bit(R5_Insync, &dev->flags))
3616                                 rcw++;
3617                         else
3618                                 rcw += 2*disks;
3619                 }
3620         }
3621         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3622                 (unsigned long long)sh->sector, rmw, rcw);
3623         set_bit(STRIPE_HANDLE, &sh->state);
3624         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3625                 /* prefer read-modify-write, but need to get some data */
3626                 if (conf->mddev->queue)
3627                         blk_add_trace_msg(conf->mddev->queue,
3628                                           "raid5 rmw %llu %d",
3629                                           (unsigned long long)sh->sector, rmw);
3630                 for (i = disks; i--; ) {
3631                         struct r5dev *dev = &sh->dev[i];
3632                         if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3633                             !test_bit(R5_LOCKED, &dev->flags) &&
3634                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3635                             test_bit(R5_Wantcompute, &dev->flags)) &&
3636                             test_bit(R5_Insync, &dev->flags)) {
3637                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3638                                              &sh->state)) {
3639                                         pr_debug("Read_old block %d for r-m-w\n",
3640                                                  i);
3641                                         set_bit(R5_LOCKED, &dev->flags);
3642                                         set_bit(R5_Wantread, &dev->flags);
3643                                         s->locked++;
3644                                 } else {
3645                                         set_bit(STRIPE_DELAYED, &sh->state);
3646                                         set_bit(STRIPE_HANDLE, &sh->state);
3647                                 }
3648                         }
3649                 }
3650         }
3651         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3652                 /* want reconstruct write, but need to get some data */
3653                 int qread =0;
3654                 rcw = 0;
3655                 for (i = disks; i--; ) {
3656                         struct r5dev *dev = &sh->dev[i];
3657                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3658                             i != sh->pd_idx && i != sh->qd_idx &&
3659                             !test_bit(R5_LOCKED, &dev->flags) &&
3660                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3661                               test_bit(R5_Wantcompute, &dev->flags))) {
3662                                 rcw++;
3663                                 if (test_bit(R5_Insync, &dev->flags) &&
3664                                     test_bit(STRIPE_PREREAD_ACTIVE,
3665                                              &sh->state)) {
3666                                         pr_debug("Read_old block "
3667                                                 "%d for Reconstruct\n", i);
3668                                         set_bit(R5_LOCKED, &dev->flags);
3669                                         set_bit(R5_Wantread, &dev->flags);
3670                                         s->locked++;
3671                                         qread++;
3672                                 } else {
3673                                         set_bit(STRIPE_DELAYED, &sh->state);
3674                                         set_bit(STRIPE_HANDLE, &sh->state);
3675                                 }
3676                         }
3677                 }
3678                 if (rcw && conf->mddev->queue)
3679                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3680                                           (unsigned long long)sh->sector,
3681                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3682         }
3683
3684         if (rcw > disks && rmw > disks &&
3685             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3686                 set_bit(STRIPE_DELAYED, &sh->state);
3687
3688         /* now if nothing is locked, and if we have enough data,
3689          * we can start a write request
3690          */
3691         /* since handle_stripe can be called at any time we need to handle the
3692          * case where a compute block operation has been submitted and then a
3693          * subsequent call wants to start a write request.  raid_run_ops only
3694          * handles the case where compute block and reconstruct are requested
3695          * simultaneously.  If this is not the case then new writes need to be
3696          * held off until the compute completes.
3697          */
3698         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3699             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3700             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3701                 schedule_reconstruction(sh, s, rcw == 0, 0);
3702 }
3703
3704 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3705                                 struct stripe_head_state *s, int disks)
3706 {
3707         struct r5dev *dev = NULL;
3708
3709         BUG_ON(sh->batch_head);
3710         set_bit(STRIPE_HANDLE, &sh->state);
3711
3712         switch (sh->check_state) {
3713         case check_state_idle:
3714                 /* start a new check operation if there are no failures */
3715                 if (s->failed == 0) {
3716                         BUG_ON(s->uptodate != disks);
3717                         sh->check_state = check_state_run;
3718                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3719                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3720                         s->uptodate--;
3721                         break;
3722                 }
3723                 dev = &sh->dev[s->failed_num[0]];
3724                 /* fall through */
3725         case check_state_compute_result:
3726                 sh->check_state = check_state_idle;
3727                 if (!dev)
3728                         dev = &sh->dev[sh->pd_idx];
3729
3730                 /* check that a write has not made the stripe insync */
3731                 if (test_bit(STRIPE_INSYNC, &sh->state))
3732                         break;
3733
3734                 /* either failed parity check, or recovery is happening */
3735                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3736                 BUG_ON(s->uptodate != disks);
3737
3738                 set_bit(R5_LOCKED, &dev->flags);
3739                 s->locked++;
3740                 set_bit(R5_Wantwrite, &dev->flags);
3741
3742                 clear_bit(STRIPE_DEGRADED, &sh->state);
3743                 set_bit(STRIPE_INSYNC, &sh->state);
3744                 break;
3745         case check_state_run:
3746                 break; /* we will be called again upon completion */
3747         case check_state_check_result:
3748                 sh->check_state = check_state_idle;
3749
3750                 /* if a failure occurred during the check operation, leave
3751                  * STRIPE_INSYNC not set and let the stripe be handled again
3752                  */
3753                 if (s->failed)
3754                         break;
3755
3756                 /* handle a successful check operation, if parity is correct
3757                  * we are done.  Otherwise update the mismatch count and repair
3758                  * parity if !MD_RECOVERY_CHECK
3759                  */
3760                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3761                         /* parity is correct (on disc,
3762                          * not in buffer any more)
3763                          */
3764                         set_bit(STRIPE_INSYNC, &sh->state);
3765                 else {
3766                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3767                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3768                                 /* don't try to repair!! */
3769                                 set_bit(STRIPE_INSYNC, &sh->state);
3770                         else {
3771                                 sh->check_state = check_state_compute_run;
3772                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3773                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3774                                 set_bit(R5_Wantcompute,
3775                                         &sh->dev[sh->pd_idx].flags);
3776                                 sh->ops.target = sh->pd_idx;
3777                                 sh->ops.target2 = -1;
3778                                 s->uptodate++;
3779                         }
3780                 }
3781                 break;
3782         case check_state_compute_run:
3783                 break;
3784         default:
3785                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3786                        __func__, sh->check_state,
3787                        (unsigned long long) sh->sector);
3788                 BUG();
3789         }
3790 }
3791
3792 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3793                                   struct stripe_head_state *s,
3794                                   int disks)
3795 {
3796         int pd_idx = sh->pd_idx;
3797         int qd_idx = sh->qd_idx;
3798         struct r5dev *dev;
3799
3800         BUG_ON(sh->batch_head);
3801         set_bit(STRIPE_HANDLE, &sh->state);
3802
3803         BUG_ON(s->failed > 2);
3804
3805         /* Want to check and possibly repair P and Q.
3806          * However there could be one 'failed' device, in which
3807          * case we can only check one of them, possibly using the
3808          * other to generate missing data
3809          */
3810
3811         switch (sh->check_state) {
3812         case check_state_idle:
3813                 /* start a new check operation if there are < 2 failures */
3814                 if (s->failed == s->q_failed) {
3815                         /* The only possible failed device holds Q, so it
3816                          * makes sense to check P (If anything else were failed,
3817                          * we would have used P to recreate it).
3818                          */
3819                         sh->check_state = check_state_run;
3820                 }
3821                 if (!s->q_failed && s->failed < 2) {
3822                         /* Q is not failed, and we didn't use it to generate
3823                          * anything, so it makes sense to check it
3824                          */
3825                         if (sh->check_state == check_state_run)
3826                                 sh->check_state = check_state_run_pq;
3827                         else
3828                                 sh->check_state = check_state_run_q;
3829                 }
3830
3831                 /* discard potentially stale zero_sum_result */
3832                 sh->ops.zero_sum_result = 0;
3833
3834                 if (sh->check_state == check_state_run) {
3835                         /* async_xor_zero_sum destroys the contents of P */
3836                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3837                         s->uptodate--;
3838                 }
3839                 if (sh->check_state >= check_state_run &&
3840                     sh->check_state <= check_state_run_pq) {
3841                         /* async_syndrome_zero_sum preserves P and Q, so
3842                          * no need to mark them !uptodate here
3843                          */
3844                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3845                         break;
3846                 }
3847
3848                 /* we have 2-disk failure */
3849                 BUG_ON(s->failed != 2);
3850                 /* fall through */
3851         case check_state_compute_result:
3852                 sh->check_state = check_state_idle;
3853
3854                 /* check that a write has not made the stripe insync */
3855                 if (test_bit(STRIPE_INSYNC, &sh->state))
3856                         break;
3857
3858                 /* now write out any block on a failed drive,
3859                  * or P or Q if they were recomputed
3860                  */
3861                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3862                 if (s->failed == 2) {
3863                         dev = &sh->dev[s->failed_num[1]];
3864                         s->locked++;
3865                         set_bit(R5_LOCKED, &dev->flags);
3866                         set_bit(R5_Wantwrite, &dev->flags);
3867                 }
3868                 if (s->failed >= 1) {
3869                         dev = &sh->dev[s->failed_num[0]];
3870                         s->locked++;
3871                         set_bit(R5_LOCKED, &dev->flags);
3872                         set_bit(R5_Wantwrite, &dev->flags);
3873                 }
3874                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3875                         dev = &sh->dev[pd_idx];
3876                         s->locked++;
3877                         set_bit(R5_LOCKED, &dev->flags);
3878                         set_bit(R5_Wantwrite, &dev->flags);
3879                 }
3880                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3881                         dev = &sh->dev[qd_idx];
3882                         s->locked++;
3883                         set_bit(R5_LOCKED, &dev->flags);
3884                         set_bit(R5_Wantwrite, &dev->flags);
3885                 }
3886                 clear_bit(STRIPE_DEGRADED, &sh->state);
3887
3888                 set_bit(STRIPE_INSYNC, &sh->state);
3889                 break;
3890         case check_state_run:
3891         case check_state_run_q:
3892         case check_state_run_pq:
3893                 break; /* we will be called again upon completion */
3894         case check_state_check_result:
3895                 sh->check_state = check_state_idle;
3896
3897                 /* handle a successful check operation, if parity is correct
3898                  * we are done.  Otherwise update the mismatch count and repair
3899                  * parity if !MD_RECOVERY_CHECK
3900                  */
3901                 if (sh->ops.zero_sum_result == 0) {
3902                         /* both parities are correct */
3903                         if (!s->failed)
3904                                 set_bit(STRIPE_INSYNC, &sh->state);
3905                         else {
3906                                 /* in contrast to the raid5 case we can validate
3907                                  * parity, but still have a failure to write
3908                                  * back
3909                                  */
3910                                 sh->check_state = check_state_compute_result;
3911                                 /* Returning at this point means that we may go
3912                                  * off and bring p and/or q uptodate again so
3913                                  * we make sure to check zero_sum_result again
3914                                  * to verify if p or q need writeback
3915                                  */
3916                         }
3917                 } else {
3918                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3919                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3920                                 /* don't try to repair!! */
3921                                 set_bit(STRIPE_INSYNC, &sh->state);
3922                         else {
3923                                 int *target = &sh->ops.target;
3924
3925                                 sh->ops.target = -1;
3926                                 sh->ops.target2 = -1;
3927                                 sh->check_state = check_state_compute_run;
3928                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3929                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3930                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3931                                         set_bit(R5_Wantcompute,
3932                                                 &sh->dev[pd_idx].flags);
3933                                         *target = pd_idx;
3934                                         target = &sh->ops.target2;
3935                                         s->uptodate++;
3936                                 }
3937                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3938                                         set_bit(R5_Wantcompute,
3939                                                 &sh->dev[qd_idx].flags);
3940                                         *target = qd_idx;
3941                                         s->uptodate++;
3942                                 }
3943                         }
3944                 }
3945                 break;
3946         case check_state_compute_run:
3947                 break;
3948         default:
3949                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3950                        __func__, sh->check_state,
3951                        (unsigned long long) sh->sector);
3952                 BUG();
3953         }
3954 }
3955
3956 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3957 {
3958         int i;
3959
3960         /* We have read all the blocks in this stripe and now we need to
3961          * copy some of them into a target stripe for expand.
3962          */
3963         struct dma_async_tx_descriptor *tx = NULL;
3964         BUG_ON(sh->batch_head);
3965         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3966         for (i = 0; i < sh->disks; i++)
3967                 if (i != sh->pd_idx && i != sh->qd_idx) {
3968                         int dd_idx, j;
3969                         struct stripe_head *sh2;
3970                         struct async_submit_ctl submit;
3971
3972                         sector_t bn = raid5_compute_blocknr(sh, i, 1);
3973                         sector_t s = raid5_compute_sector(conf, bn, 0,
3974                                                           &dd_idx, NULL);
3975                         sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
3976                         if (sh2 == NULL)
3977                                 /* so far only the early blocks of this stripe
3978                                  * have been requested.  When later blocks
3979                                  * get requested, we will try again
3980                                  */
3981                                 continue;
3982                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3983                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3984                                 /* must have already done this block */
3985                                 raid5_release_stripe(sh2);
3986                                 continue;
3987                         }
3988
3989                         /* place all the copies on one channel */
3990                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3991                         tx = async_memcpy(sh2->dev[dd_idx].page,
3992                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3993                                           &submit);
3994
3995                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3996                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3997                         for (j = 0; j < conf->raid_disks; j++)
3998                                 if (j != sh2->pd_idx &&
3999                                     j != sh2->qd_idx &&
4000                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
4001                                         break;
4002                         if (j == conf->raid_disks) {
4003                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4004                                 set_bit(STRIPE_HANDLE, &sh2->state);
4005                         }
4006                         raid5_release_stripe(sh2);
4007
4008                 }
4009         /* done submitting copies, wait for them to complete */
4010         async_tx_quiesce(&tx);
4011 }
4012
4013 /*
4014  * handle_stripe - do things to a stripe.
4015  *
4016  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4017  * state of various bits to see what needs to be done.
4018  * Possible results:
4019  *    return some read requests which now have data
4020  *    return some write requests which are safely on storage
4021  *    schedule a read on some buffers
4022  *    schedule a write of some buffers
4023  *    return confirmation of parity correctness
4024  *
4025  */
4026
4027 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4028 {
4029         struct r5conf *conf = sh->raid_conf;
4030         int disks = sh->disks;
4031         struct r5dev *dev;
4032         int i;
4033         int do_recovery = 0;
4034
4035         memset(s, 0, sizeof(*s));
4036
4037         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4038         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4039         s->failed_num[0] = -1;
4040         s->failed_num[1] = -1;
4041         s->log_failed = r5l_log_disk_error(conf);
4042
4043         /* Now to look around and see what can be done */
4044         rcu_read_lock();
4045         for (i=disks; i--; ) {
4046                 struct md_rdev *rdev;
4047                 sector_t first_bad;
4048                 int bad_sectors;
4049                 int is_bad = 0;
4050
4051                 dev = &sh->dev[i];
4052
4053                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4054                          i, dev->flags,
4055                          dev->toread, dev->towrite, dev->written);
4056                 /* maybe we can reply to a read
4057                  *
4058                  * new wantfill requests are only permitted while
4059                  * ops_complete_biofill is guaranteed to be inactive
4060                  */
4061                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4062                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4063                         set_bit(R5_Wantfill, &dev->flags);
4064
4065                 /* now count some things */
4066                 if (test_bit(R5_LOCKED, &dev->flags))
4067                         s->locked++;
4068                 if (test_bit(R5_UPTODATE, &dev->flags))
4069                         s->uptodate++;
4070                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4071                         s->compute++;
4072                         BUG_ON(s->compute > 2);
4073                 }
4074
4075                 if (test_bit(R5_Wantfill, &dev->flags))
4076                         s->to_fill++;
4077                 else if (dev->toread)
4078                         s->to_read++;
4079                 if (dev->towrite) {
4080                         s->to_write++;
4081                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4082                                 s->non_overwrite++;
4083                 }
4084                 if (dev->written)
4085                         s->written++;
4086                 /* Prefer to use the replacement for reads, but only
4087                  * if it is recovered enough and has no bad blocks.
4088                  */
4089                 rdev = rcu_dereference(conf->disks[i].replacement);
4090                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4091                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4092                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4093                                  &first_bad, &bad_sectors))
4094                         set_bit(R5_ReadRepl, &dev->flags);
4095                 else {
4096                         if (rdev && !test_bit(Faulty, &rdev->flags))
4097                                 set_bit(R5_NeedReplace, &dev->flags);
4098                         else
4099                                 clear_bit(R5_NeedReplace, &dev->flags);
4100                         rdev = rcu_dereference(conf->disks[i].rdev);
4101                         clear_bit(R5_ReadRepl, &dev->flags);
4102                 }
4103                 if (rdev && test_bit(Faulty, &rdev->flags))
4104                         rdev = NULL;
4105                 if (rdev) {
4106                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4107                                              &first_bad, &bad_sectors);
4108                         if (s->blocked_rdev == NULL
4109                             && (test_bit(Blocked, &rdev->flags)
4110                                 || is_bad < 0)) {
4111                                 if (is_bad < 0)
4112                                         set_bit(BlockedBadBlocks,
4113                                                 &rdev->flags);
4114                                 s->blocked_rdev = rdev;
4115                                 atomic_inc(&rdev->nr_pending);
4116                         }
4117                 }
4118                 clear_bit(R5_Insync, &dev->flags);
4119                 if (!rdev)
4120                         /* Not in-sync */;
4121                 else if (is_bad) {
4122                         /* also not in-sync */
4123                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4124                             test_bit(R5_UPTODATE, &dev->flags)) {
4125                                 /* treat as in-sync, but with a read error
4126                                  * which we can now try to correct
4127                                  */
4128                                 set_bit(R5_Insync, &dev->flags);
4129                                 set_bit(R5_ReadError, &dev->flags);
4130                         }
4131                 } else if (test_bit(In_sync, &rdev->flags))
4132                         set_bit(R5_Insync, &dev->flags);
4133                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4134                         /* in sync if before recovery_offset */
4135                         set_bit(R5_Insync, &dev->flags);
4136                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4137                          test_bit(R5_Expanded, &dev->flags))
4138                         /* If we've reshaped into here, we assume it is Insync.
4139                          * We will shortly update recovery_offset to make
4140                          * it official.
4141                          */
4142                         set_bit(R5_Insync, &dev->flags);
4143
4144                 if (test_bit(R5_WriteError, &dev->flags)) {
4145                         /* This flag does not apply to '.replacement'
4146                          * only to .rdev, so make sure to check that*/
4147                         struct md_rdev *rdev2 = rcu_dereference(
4148                                 conf->disks[i].rdev);
4149                         if (rdev2 == rdev)
4150                                 clear_bit(R5_Insync, &dev->flags);
4151                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4152                                 s->handle_bad_blocks = 1;
4153                                 atomic_inc(&rdev2->nr_pending);
4154                         } else
4155                                 clear_bit(R5_WriteError, &dev->flags);
4156                 }
4157                 if (test_bit(R5_MadeGood, &dev->flags)) {
4158                         /* This flag does not apply to '.replacement'
4159                          * only to .rdev, so make sure to check that*/
4160                         struct md_rdev *rdev2 = rcu_dereference(
4161                                 conf->disks[i].rdev);
4162                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4163                                 s->handle_bad_blocks = 1;
4164                                 atomic_inc(&rdev2->nr_pending);
4165                         } else
4166                                 clear_bit(R5_MadeGood, &dev->flags);
4167                 }
4168                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4169                         struct md_rdev *rdev2 = rcu_dereference(
4170                                 conf->disks[i].replacement);
4171                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4172                                 s->handle_bad_blocks = 1;
4173                                 atomic_inc(&rdev2->nr_pending);
4174                         } else
4175                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4176                 }
4177                 if (!test_bit(R5_Insync, &dev->flags)) {
4178                         /* The ReadError flag will just be confusing now */
4179                         clear_bit(R5_ReadError, &dev->flags);
4180                         clear_bit(R5_ReWrite, &dev->flags);
4181                 }
4182                 if (test_bit(R5_ReadError, &dev->flags))
4183                         clear_bit(R5_Insync, &dev->flags);
4184                 if (!test_bit(R5_Insync, &dev->flags)) {
4185                         if (s->failed < 2)
4186                                 s->failed_num[s->failed] = i;
4187                         s->failed++;
4188                         if (rdev && !test_bit(Faulty, &rdev->flags))
4189                                 do_recovery = 1;
4190                 }
4191         }
4192         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4193                 /* If there is a failed device being replaced,
4194                  *     we must be recovering.
4195                  * else if we are after recovery_cp, we must be syncing
4196                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4197                  * else we can only be replacing
4198                  * sync and recovery both need to read all devices, and so
4199                  * use the same flag.
4200                  */
4201                 if (do_recovery ||
4202                     sh->sector >= conf->mddev->recovery_cp ||
4203                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4204                         s->syncing = 1;
4205                 else
4206                         s->replacing = 1;
4207         }
4208         rcu_read_unlock();
4209 }
4210
4211 static int clear_batch_ready(struct stripe_head *sh)
4212 {
4213         /* Return '1' if this is a member of batch, or
4214          * '0' if it is a lone stripe or a head which can now be
4215          * handled.
4216          */
4217         struct stripe_head *tmp;
4218         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4219                 return (sh->batch_head && sh->batch_head != sh);
4220         spin_lock(&sh->stripe_lock);
4221         if (!sh->batch_head) {
4222                 spin_unlock(&sh->stripe_lock);
4223                 return 0;
4224         }
4225
4226         /*
4227          * this stripe could be added to a batch list before we check
4228          * BATCH_READY, skips it
4229          */
4230         if (sh->batch_head != sh) {
4231                 spin_unlock(&sh->stripe_lock);
4232                 return 1;
4233         }
4234         spin_lock(&sh->batch_lock);
4235         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4236                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4237         spin_unlock(&sh->batch_lock);
4238         spin_unlock(&sh->stripe_lock);
4239
4240         /*
4241          * BATCH_READY is cleared, no new stripes can be added.
4242          * batch_list can be accessed without lock
4243          */
4244         return 0;
4245 }
4246
4247 static void break_stripe_batch_list(struct stripe_head *head_sh,
4248                                     unsigned long handle_flags)
4249 {
4250         struct stripe_head *sh, *next;
4251         int i;
4252         int do_wakeup = 0;
4253
4254         list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4255
4256                 list_del_init(&sh->batch_list);
4257
4258                 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4259                                           (1 << STRIPE_SYNCING) |
4260                                           (1 << STRIPE_REPLACED) |
4261                                           (1 << STRIPE_DELAYED) |
4262                                           (1 << STRIPE_BIT_DELAY) |
4263                                           (1 << STRIPE_FULL_WRITE) |
4264                                           (1 << STRIPE_BIOFILL_RUN) |
4265                                           (1 << STRIPE_COMPUTE_RUN)  |
4266                                           (1 << STRIPE_OPS_REQ_PENDING) |
4267                                           (1 << STRIPE_DISCARD) |
4268                                           (1 << STRIPE_BATCH_READY) |
4269                                           (1 << STRIPE_BATCH_ERR) |
4270                                           (1 << STRIPE_BITMAP_PENDING)),
4271                         "stripe state: %lx\n", sh->state);
4272                 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4273                                               (1 << STRIPE_REPLACED)),
4274                         "head stripe state: %lx\n", head_sh->state);
4275
4276                 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4277                                             (1 << STRIPE_PREREAD_ACTIVE) |
4278                                             (1 << STRIPE_DEGRADED)),
4279                               head_sh->state & (1 << STRIPE_INSYNC));
4280
4281                 sh->check_state = head_sh->check_state;
4282                 sh->reconstruct_state = head_sh->reconstruct_state;
4283                 for (i = 0; i < sh->disks; i++) {
4284                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4285                                 do_wakeup = 1;
4286                         sh->dev[i].flags = head_sh->dev[i].flags &
4287                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4288                 }
4289                 spin_lock_irq(&sh->stripe_lock);
4290                 sh->batch_head = NULL;
4291                 spin_unlock_irq(&sh->stripe_lock);
4292                 if (handle_flags == 0 ||
4293                     sh->state & handle_flags)
4294                         set_bit(STRIPE_HANDLE, &sh->state);
4295                 raid5_release_stripe(sh);
4296         }
4297         spin_lock_irq(&head_sh->stripe_lock);
4298         head_sh->batch_head = NULL;
4299         spin_unlock_irq(&head_sh->stripe_lock);
4300         for (i = 0; i < head_sh->disks; i++)
4301                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4302                         do_wakeup = 1;
4303         if (head_sh->state & handle_flags)
4304                 set_bit(STRIPE_HANDLE, &head_sh->state);
4305
4306         if (do_wakeup)
4307                 wake_up(&head_sh->raid_conf->wait_for_overlap);
4308 }
4309
4310 static void handle_stripe(struct stripe_head *sh)
4311 {
4312         struct stripe_head_state s;
4313         struct r5conf *conf = sh->raid_conf;
4314         int i;
4315         int prexor;
4316         int disks = sh->disks;
4317         struct r5dev *pdev, *qdev;
4318
4319         clear_bit(STRIPE_HANDLE, &sh->state);
4320         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4321                 /* already being handled, ensure it gets handled
4322                  * again when current action finishes */
4323                 set_bit(STRIPE_HANDLE, &sh->state);
4324                 return;
4325         }
4326
4327         if (clear_batch_ready(sh) ) {
4328                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4329                 return;
4330         }
4331
4332         if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4333                 break_stripe_batch_list(sh, 0);
4334
4335         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4336                 spin_lock(&sh->stripe_lock);
4337                 /* Cannot process 'sync' concurrently with 'discard' */
4338                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4339                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4340                         set_bit(STRIPE_SYNCING, &sh->state);
4341                         clear_bit(STRIPE_INSYNC, &sh->state);
4342                         clear_bit(STRIPE_REPLACED, &sh->state);
4343                 }
4344                 spin_unlock(&sh->stripe_lock);
4345         }
4346         clear_bit(STRIPE_DELAYED, &sh->state);
4347
4348         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4349                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4350                (unsigned long long)sh->sector, sh->state,
4351                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4352                sh->check_state, sh->reconstruct_state);
4353
4354         analyse_stripe(sh, &s);
4355
4356         if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4357                 goto finish;
4358
4359         if (s.handle_bad_blocks) {
4360                 set_bit(STRIPE_HANDLE, &sh->state);
4361                 goto finish;
4362         }
4363
4364         if (unlikely(s.blocked_rdev)) {
4365                 if (s.syncing || s.expanding || s.expanded ||
4366                     s.replacing || s.to_write || s.written) {
4367                         set_bit(STRIPE_HANDLE, &sh->state);
4368                         goto finish;
4369                 }
4370                 /* There is nothing for the blocked_rdev to block */
4371                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4372                 s.blocked_rdev = NULL;
4373         }
4374
4375         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4376                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4377                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4378         }
4379
4380         pr_debug("locked=%d uptodate=%d to_read=%d"
4381                " to_write=%d failed=%d failed_num=%d,%d\n",
4382                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4383                s.failed_num[0], s.failed_num[1]);
4384         /* check if the array has lost more than max_degraded devices and,
4385          * if so, some requests might need to be failed.
4386          */
4387         if (s.failed > conf->max_degraded || s.log_failed) {
4388                 sh->check_state = 0;
4389                 sh->reconstruct_state = 0;
4390                 break_stripe_batch_list(sh, 0);
4391                 if (s.to_read+s.to_write+s.written)
4392                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4393                 if (s.syncing + s.replacing)
4394                         handle_failed_sync(conf, sh, &s);
4395         }
4396
4397         /* Now we check to see if any write operations have recently
4398          * completed
4399          */
4400         prexor = 0;
4401         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4402                 prexor = 1;
4403         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4404             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4405                 sh->reconstruct_state = reconstruct_state_idle;
4406
4407                 /* All the 'written' buffers and the parity block are ready to
4408                  * be written back to disk
4409                  */
4410                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4411                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4412                 BUG_ON(sh->qd_idx >= 0 &&
4413                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4414                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4415                 for (i = disks; i--; ) {
4416                         struct r5dev *dev = &sh->dev[i];
4417                         if (test_bit(R5_LOCKED, &dev->flags) &&
4418                                 (i == sh->pd_idx || i == sh->qd_idx ||
4419                                  dev->written)) {
4420                                 pr_debug("Writing block %d\n", i);
4421                                 set_bit(R5_Wantwrite, &dev->flags);
4422                                 if (prexor)
4423                                         continue;
4424                                 if (s.failed > 1)
4425                                         continue;
4426                                 if (!test_bit(R5_Insync, &dev->flags) ||
4427                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4428                                      s.failed == 0))
4429                                         set_bit(STRIPE_INSYNC, &sh->state);
4430                         }
4431                 }
4432                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4433                         s.dec_preread_active = 1;
4434         }
4435
4436         /*
4437          * might be able to return some write requests if the parity blocks
4438          * are safe, or on a failed drive
4439          */
4440         pdev = &sh->dev[sh->pd_idx];
4441         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4442                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4443         qdev = &sh->dev[sh->qd_idx];
4444         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4445                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4446                 || conf->level < 6;
4447
4448         if (s.written &&
4449             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4450                              && !test_bit(R5_LOCKED, &pdev->flags)
4451                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4452                                  test_bit(R5_Discard, &pdev->flags))))) &&
4453             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4454                              && !test_bit(R5_LOCKED, &qdev->flags)
4455                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4456                                  test_bit(R5_Discard, &qdev->flags))))))
4457                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4458
4459         /* Now we might consider reading some blocks, either to check/generate
4460          * parity, or to satisfy requests
4461          * or to load a block that is being partially written.
4462          */
4463         if (s.to_read || s.non_overwrite
4464             || (conf->level == 6 && s.to_write && s.failed)
4465             || (s.syncing && (s.uptodate + s.compute < disks))
4466             || s.replacing
4467             || s.expanding)
4468                 handle_stripe_fill(sh, &s, disks);
4469
4470         /* Now to consider new write requests and what else, if anything
4471          * should be read.  We do not handle new writes when:
4472          * 1/ A 'write' operation (copy+xor) is already in flight.
4473          * 2/ A 'check' operation is in flight, as it may clobber the parity
4474          *    block.
4475          */
4476         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4477                 handle_stripe_dirtying(conf, sh, &s, disks);
4478
4479         /* maybe we need to check and possibly fix the parity for this stripe
4480          * Any reads will already have been scheduled, so we just see if enough
4481          * data is available.  The parity check is held off while parity
4482          * dependent operations are in flight.
4483          */
4484         if (sh->check_state ||
4485             (s.syncing && s.locked == 0 &&
4486              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4487              !test_bit(STRIPE_INSYNC, &sh->state))) {
4488                 if (conf->level == 6)
4489                         handle_parity_checks6(conf, sh, &s, disks);
4490                 else
4491                         handle_parity_checks5(conf, sh, &s, disks);
4492         }
4493
4494         if ((s.replacing || s.syncing) && s.locked == 0
4495             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4496             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4497                 /* Write out to replacement devices where possible */
4498                 for (i = 0; i < conf->raid_disks; i++)
4499                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4500                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4501                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4502                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4503                                 s.locked++;
4504                         }
4505                 if (s.replacing)
4506                         set_bit(STRIPE_INSYNC, &sh->state);
4507                 set_bit(STRIPE_REPLACED, &sh->state);
4508         }
4509         if ((s.syncing || s.replacing) && s.locked == 0 &&
4510             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4511             test_bit(STRIPE_INSYNC, &sh->state)) {
4512                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4513                 clear_bit(STRIPE_SYNCING, &sh->state);
4514                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4515                         wake_up(&conf->wait_for_overlap);
4516         }
4517
4518         /* If the failed drives are just a ReadError, then we might need
4519          * to progress the repair/check process
4520          */
4521         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4522                 for (i = 0; i < s.failed; i++) {
4523                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4524                         if (test_bit(R5_ReadError, &dev->flags)
4525                             && !test_bit(R5_LOCKED, &dev->flags)
4526                             && test_bit(R5_UPTODATE, &dev->flags)
4527                                 ) {
4528                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4529                                         set_bit(R5_Wantwrite, &dev->flags);
4530                                         set_bit(R5_ReWrite, &dev->flags);
4531                                         set_bit(R5_LOCKED, &dev->flags);
4532                                         s.locked++;
4533                                 } else {
4534                                         /* let's read it back */
4535                                         set_bit(R5_Wantread, &dev->flags);
4536                                         set_bit(R5_LOCKED, &dev->flags);
4537                                         s.locked++;
4538                                 }
4539                         }
4540                 }
4541
4542         /* Finish reconstruct operations initiated by the expansion process */
4543         if (sh->reconstruct_state == reconstruct_state_result) {
4544                 struct stripe_head *sh_src
4545                         = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4546                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4547                         /* sh cannot be written until sh_src has been read.
4548                          * so arrange for sh to be delayed a little
4549                          */
4550                         set_bit(STRIPE_DELAYED, &sh->state);
4551                         set_bit(STRIPE_HANDLE, &sh->state);
4552                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4553                                               &sh_src->state))
4554                                 atomic_inc(&conf->preread_active_stripes);
4555                         raid5_release_stripe(sh_src);
4556                         goto finish;
4557                 }
4558                 if (sh_src)
4559                         raid5_release_stripe(sh_src);
4560
4561                 sh->reconstruct_state = reconstruct_state_idle;
4562                 clear_bit(STRIPE_EXPANDING, &sh->state);
4563                 for (i = conf->raid_disks; i--; ) {
4564                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4565                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4566                         s.locked++;
4567                 }
4568         }
4569
4570         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4571             !sh->reconstruct_state) {
4572                 /* Need to write out all blocks after computing parity */
4573                 sh->disks = conf->raid_disks;
4574                 stripe_set_idx(sh->sector, conf, 0, sh);
4575                 schedule_reconstruction(sh, &s, 1, 1);
4576         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4577                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4578                 atomic_dec(&conf->reshape_stripes);
4579                 wake_up(&conf->wait_for_overlap);
4580                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4581         }
4582
4583         if (s.expanding && s.locked == 0 &&
4584             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4585                 handle_stripe_expansion(conf, sh);
4586
4587 finish:
4588         /* wait for this device to become unblocked */
4589         if (unlikely(s.blocked_rdev)) {
4590                 if (conf->mddev->external)
4591                         md_wait_for_blocked_rdev(s.blocked_rdev,
4592                                                  conf->mddev);
4593                 else
4594                         /* Internal metadata will immediately
4595                          * be written by raid5d, so we don't
4596                          * need to wait here.
4597                          */
4598                         rdev_dec_pending(s.blocked_rdev,
4599                                          conf->mddev);
4600         }
4601
4602         if (s.handle_bad_blocks)
4603                 for (i = disks; i--; ) {
4604                         struct md_rdev *rdev;
4605                         struct r5dev *dev = &sh->dev[i];
4606                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4607                                 /* We own a safe reference to the rdev */
4608                                 rdev = conf->disks[i].rdev;
4609                                 if (!rdev_set_badblocks(rdev, sh->sector,
4610                                                         STRIPE_SECTORS, 0))
4611                                         md_error(conf->mddev, rdev);
4612                                 rdev_dec_pending(rdev, conf->mddev);
4613                         }
4614                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4615                                 rdev = conf->disks[i].rdev;
4616                                 rdev_clear_badblocks(rdev, sh->sector,
4617                                                      STRIPE_SECTORS, 0);
4618                                 rdev_dec_pending(rdev, conf->mddev);
4619                         }
4620                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4621                                 rdev = conf->disks[i].replacement;
4622                                 if (!rdev)
4623                                         /* rdev have been moved down */
4624                                         rdev = conf->disks[i].rdev;
4625                                 rdev_clear_badblocks(rdev, sh->sector,
4626                                                      STRIPE_SECTORS, 0);
4627                                 rdev_dec_pending(rdev, conf->mddev);
4628                         }
4629                 }
4630
4631         if (s.ops_request)
4632                 raid_run_ops(sh, s.ops_request);
4633
4634         ops_run_io(sh, &s);
4635
4636         if (s.dec_preread_active) {
4637                 /* We delay this until after ops_run_io so that if make_request
4638                  * is waiting on a flush, it won't continue until the writes
4639                  * have actually been submitted.
4640                  */
4641                 atomic_dec(&conf->preread_active_stripes);
4642                 if (atomic_read(&conf->preread_active_stripes) <
4643                     IO_THRESHOLD)
4644                         md_wakeup_thread(conf->mddev->thread);
4645         }
4646
4647         if (!bio_list_empty(&s.return_bi)) {
4648                 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags) &&
4649                                 (s.failed <= conf->max_degraded ||
4650                                         conf->mddev->external == 0)) {
4651                         spin_lock_irq(&conf->device_lock);
4652                         bio_list_merge(&conf->return_bi, &s.return_bi);
4653                         spin_unlock_irq(&conf->device_lock);
4654                         md_wakeup_thread(conf->mddev->thread);
4655                 } else
4656                         return_io(&s.return_bi);
4657         }
4658
4659         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4660 }
4661
4662 static void raid5_activate_delayed(struct r5conf *conf)
4663 {
4664         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4665                 while (!list_empty(&conf->delayed_list)) {
4666                         struct list_head *l = conf->delayed_list.next;
4667                         struct stripe_head *sh;
4668                         sh = list_entry(l, struct stripe_head, lru);
4669                         list_del_init(l);
4670                         clear_bit(STRIPE_DELAYED, &sh->state);
4671                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4672                                 atomic_inc(&conf->preread_active_stripes);
4673                         list_add_tail(&sh->lru, &conf->hold_list);
4674                         raid5_wakeup_stripe_thread(sh);
4675                 }
4676         }
4677 }
4678
4679 static void activate_bit_delay(struct r5conf *conf,
4680         struct list_head *temp_inactive_list)
4681 {
4682         /* device_lock is held */
4683         struct list_head head;
4684         list_add(&head, &conf->bitmap_list);
4685         list_del_init(&conf->bitmap_list);
4686         while (!list_empty(&head)) {
4687                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4688                 int hash;
4689                 list_del_init(&sh->lru);
4690                 atomic_inc(&sh->count);
4691                 hash = sh->hash_lock_index;
4692                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4693         }
4694 }
4695
4696 static int raid5_congested(struct mddev *mddev, int bits)
4697 {
4698         struct r5conf *conf = mddev->private;
4699
4700         /* No difference between reads and writes.  Just check
4701          * how busy the stripe_cache is
4702          */
4703
4704         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4705                 return 1;
4706         if (conf->quiesce)
4707                 return 1;
4708         if (atomic_read(&conf->empty_inactive_list_nr))
4709                 return 1;
4710
4711         return 0;
4712 }
4713
4714 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4715 {
4716         struct r5conf *conf = mddev->private;
4717         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4718         unsigned int chunk_sectors;
4719         unsigned int bio_sectors = bio_sectors(bio);
4720
4721         chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4722         return  chunk_sectors >=
4723                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4724 }
4725
4726 /*
4727  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4728  *  later sampled by raid5d.
4729  */
4730 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4731 {
4732         unsigned long flags;
4733
4734         spin_lock_irqsave(&conf->device_lock, flags);
4735
4736         bi->bi_next = conf->retry_read_aligned_list;
4737         conf->retry_read_aligned_list = bi;
4738
4739         spin_unlock_irqrestore(&conf->device_lock, flags);
4740         md_wakeup_thread(conf->mddev->thread);
4741 }
4742
4743 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4744 {
4745         struct bio *bi;
4746
4747         bi = conf->retry_read_aligned;
4748         if (bi) {
4749                 conf->retry_read_aligned = NULL;
4750                 return bi;
4751         }
4752         bi = conf->retry_read_aligned_list;
4753         if(bi) {
4754                 conf->retry_read_aligned_list = bi->bi_next;
4755                 bi->bi_next = NULL;
4756                 /*
4757                  * this sets the active strip count to 1 and the processed
4758                  * strip count to zero (upper 8 bits)
4759                  */
4760                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4761         }
4762
4763         return bi;
4764 }
4765
4766 /*
4767  *  The "raid5_align_endio" should check if the read succeeded and if it
4768  *  did, call bio_endio on the original bio (having bio_put the new bio
4769  *  first).
4770  *  If the read failed..
4771  */
4772 static void raid5_align_endio(struct bio *bi)
4773 {
4774         struct bio* raid_bi  = bi->bi_private;
4775         struct mddev *mddev;
4776         struct r5conf *conf;
4777         struct md_rdev *rdev;
4778         int error = bi->bi_error;
4779
4780         bio_put(bi);
4781
4782         rdev = (void*)raid_bi->bi_next;
4783         raid_bi->bi_next = NULL;
4784         mddev = rdev->mddev;
4785         conf = mddev->private;
4786
4787         rdev_dec_pending(rdev, conf->mddev);
4788
4789         if (!error) {
4790                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4791                                          raid_bi, 0);
4792                 bio_endio(raid_bi);
4793                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4794                         wake_up(&conf->wait_for_quiescent);
4795                 return;
4796         }
4797
4798         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4799
4800         add_bio_to_retry(raid_bi, conf);
4801 }
4802
4803 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4804 {
4805         struct r5conf *conf = mddev->private;
4806         int dd_idx;
4807         struct bio* align_bi;
4808         struct md_rdev *rdev;
4809         sector_t end_sector;
4810
4811         if (!in_chunk_boundary(mddev, raid_bio)) {
4812                 pr_debug("%s: non aligned\n", __func__);
4813                 return 0;
4814         }
4815         /*
4816          * use bio_clone_mddev to make a copy of the bio
4817          */
4818         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4819         if (!align_bi)
4820                 return 0;
4821         /*
4822          *   set bi_end_io to a new function, and set bi_private to the
4823          *     original bio.
4824          */
4825         align_bi->bi_end_io  = raid5_align_endio;
4826         align_bi->bi_private = raid_bio;
4827         /*
4828          *      compute position
4829          */
4830         align_bi->bi_iter.bi_sector =
4831                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4832                                      0, &dd_idx, NULL);
4833
4834         end_sector = bio_end_sector(align_bi);
4835         rcu_read_lock();
4836         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4837         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4838             rdev->recovery_offset < end_sector) {
4839                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4840                 if (rdev &&
4841                     (test_bit(Faulty, &rdev->flags) ||
4842                     !(test_bit(In_sync, &rdev->flags) ||
4843                       rdev->recovery_offset >= end_sector)))
4844                         rdev = NULL;
4845         }
4846         if (rdev) {
4847                 sector_t first_bad;
4848                 int bad_sectors;
4849
4850                 atomic_inc(&rdev->nr_pending);
4851                 rcu_read_unlock();
4852                 raid_bio->bi_next = (void*)rdev;
4853                 align_bi->bi_bdev =  rdev->bdev;
4854                 bio_clear_flag(align_bi, BIO_SEG_VALID);
4855
4856                 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4857                                 bio_sectors(align_bi),
4858                                 &first_bad, &bad_sectors)) {
4859                         bio_put(align_bi);
4860                         rdev_dec_pending(rdev, mddev);
4861                         return 0;
4862                 }
4863
4864                 /* No reshape active, so we can trust rdev->data_offset */
4865                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4866
4867                 spin_lock_irq(&conf->device_lock);
4868                 wait_event_lock_irq(conf->wait_for_quiescent,
4869                                     conf->quiesce == 0,
4870                                     conf->device_lock);
4871                 atomic_inc(&conf->active_aligned_reads);
4872                 spin_unlock_irq(&conf->device_lock);
4873
4874                 if (mddev->gendisk)
4875                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4876                                               align_bi, disk_devt(mddev->gendisk),
4877                                               raid_bio->bi_iter.bi_sector);
4878                 generic_make_request(align_bi);
4879                 return 1;
4880         } else {
4881                 rcu_read_unlock();
4882                 bio_put(align_bi);
4883                 return 0;
4884         }
4885 }
4886
4887 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4888 {
4889         struct bio *split;
4890
4891         do {
4892                 sector_t sector = raid_bio->bi_iter.bi_sector;
4893                 unsigned chunk_sects = mddev->chunk_sectors;
4894                 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4895
4896                 if (sectors < bio_sectors(raid_bio)) {
4897                         split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4898                         bio_chain(split, raid_bio);
4899                 } else
4900                         split = raid_bio;
4901
4902                 if (!raid5_read_one_chunk(mddev, split)) {
4903                         if (split != raid_bio)
4904                                 generic_make_request(raid_bio);
4905                         return split;
4906                 }
4907         } while (split != raid_bio);
4908
4909         return NULL;
4910 }
4911
4912 /* __get_priority_stripe - get the next stripe to process
4913  *
4914  * Full stripe writes are allowed to pass preread active stripes up until
4915  * the bypass_threshold is exceeded.  In general the bypass_count
4916  * increments when the handle_list is handled before the hold_list; however, it
4917  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4918  * stripe with in flight i/o.  The bypass_count will be reset when the
4919  * head of the hold_list has changed, i.e. the head was promoted to the
4920  * handle_list.
4921  */
4922 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4923 {
4924         struct stripe_head *sh = NULL, *tmp;
4925         struct list_head *handle_list = NULL;
4926         struct r5worker_group *wg = NULL;
4927
4928         if (conf->worker_cnt_per_group == 0) {
4929                 handle_list = &conf->handle_list;
4930         } else if (group != ANY_GROUP) {
4931                 handle_list = &conf->worker_groups[group].handle_list;
4932                 wg = &conf->worker_groups[group];
4933         } else {
4934                 int i;
4935                 for (i = 0; i < conf->group_cnt; i++) {
4936                         handle_list = &conf->worker_groups[i].handle_list;
4937                         wg = &conf->worker_groups[i];
4938                         if (!list_empty(handle_list))
4939                                 break;
4940                 }
4941         }
4942
4943         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4944                   __func__,
4945                   list_empty(handle_list) ? "empty" : "busy",
4946                   list_empty(&conf->hold_list) ? "empty" : "busy",
4947                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4948
4949         if (!list_empty(handle_list)) {
4950                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4951
4952                 if (list_empty(&conf->hold_list))
4953                         conf->bypass_count = 0;
4954                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4955                         if (conf->hold_list.next == conf->last_hold)
4956                                 conf->bypass_count++;
4957                         else {
4958                                 conf->last_hold = conf->hold_list.next;
4959                                 conf->bypass_count -= conf->bypass_threshold;
4960                                 if (conf->bypass_count < 0)
4961                                         conf->bypass_count = 0;
4962                         }
4963                 }
4964         } else if (!list_empty(&conf->hold_list) &&
4965                    ((conf->bypass_threshold &&
4966                      conf->bypass_count > conf->bypass_threshold) ||
4967                     atomic_read(&conf->pending_full_writes) == 0)) {
4968
4969                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4970                         if (conf->worker_cnt_per_group == 0 ||
4971                             group == ANY_GROUP ||
4972                             !cpu_online(tmp->cpu) ||
4973                             cpu_to_group(tmp->cpu) == group) {
4974                                 sh = tmp;
4975                                 break;
4976                         }
4977                 }
4978
4979                 if (sh) {
4980                         conf->bypass_count -= conf->bypass_threshold;
4981                         if (conf->bypass_count < 0)
4982                                 conf->bypass_count = 0;
4983                 }
4984                 wg = NULL;
4985         }
4986
4987         if (!sh)
4988                 return NULL;
4989
4990         if (wg) {
4991                 wg->stripes_cnt--;
4992                 sh->group = NULL;
4993         }
4994         list_del_init(&sh->lru);
4995         BUG_ON(atomic_inc_return(&sh->count) != 1);
4996         return sh;
4997 }
4998
4999 struct raid5_plug_cb {
5000         struct blk_plug_cb      cb;
5001         struct list_head        list;
5002         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5003 };
5004
5005 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5006 {
5007         struct raid5_plug_cb *cb = container_of(
5008                 blk_cb, struct raid5_plug_cb, cb);
5009         struct stripe_head *sh;
5010         struct mddev *mddev = cb->cb.data;
5011         struct r5conf *conf = mddev->private;
5012         int cnt = 0;
5013         int hash;
5014
5015         if (cb->list.next && !list_empty(&cb->list)) {
5016                 spin_lock_irq(&conf->device_lock);
5017                 while (!list_empty(&cb->list)) {
5018                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
5019                         list_del_init(&sh->lru);
5020                         /*
5021                          * avoid race release_stripe_plug() sees
5022                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
5023                          * is still in our list
5024                          */
5025                         smp_mb__before_atomic();
5026                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5027                         /*
5028                          * STRIPE_ON_RELEASE_LIST could be set here. In that
5029                          * case, the count is always > 1 here
5030                          */
5031                         hash = sh->hash_lock_index;
5032                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5033                         cnt++;
5034                 }
5035                 spin_unlock_irq(&conf->device_lock);
5036         }
5037         release_inactive_stripe_list(conf, cb->temp_inactive_list,
5038                                      NR_STRIPE_HASH_LOCKS);
5039         if (mddev->queue)
5040                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5041         kfree(cb);
5042 }
5043
5044 static void release_stripe_plug(struct mddev *mddev,
5045                                 struct stripe_head *sh)
5046 {
5047         struct blk_plug_cb *blk_cb = blk_check_plugged(
5048                 raid5_unplug, mddev,
5049                 sizeof(struct raid5_plug_cb));
5050         struct raid5_plug_cb *cb;
5051
5052         if (!blk_cb) {
5053                 raid5_release_stripe(sh);
5054                 return;
5055         }
5056
5057         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5058
5059         if (cb->list.next == NULL) {
5060                 int i;
5061                 INIT_LIST_HEAD(&cb->list);
5062                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5063                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5064         }
5065
5066         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5067                 list_add_tail(&sh->lru, &cb->list);
5068         else
5069                 raid5_release_stripe(sh);
5070 }
5071
5072 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5073 {
5074         struct r5conf *conf = mddev->private;
5075         sector_t logical_sector, last_sector;
5076         struct stripe_head *sh;
5077         int remaining;
5078         int stripe_sectors;
5079
5080         if (mddev->reshape_position != MaxSector)
5081                 /* Skip discard while reshape is happening */
5082                 return;
5083
5084         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5085         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5086
5087         bi->bi_next = NULL;
5088         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5089
5090         stripe_sectors = conf->chunk_sectors *
5091                 (conf->raid_disks - conf->max_degraded);
5092         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5093                                                stripe_sectors);
5094         sector_div(last_sector, stripe_sectors);
5095
5096         logical_sector *= conf->chunk_sectors;
5097         last_sector *= conf->chunk_sectors;
5098
5099         for (; logical_sector < last_sector;
5100              logical_sector += STRIPE_SECTORS) {
5101                 DEFINE_WAIT(w);
5102                 int d;
5103         again:
5104                 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5105                 prepare_to_wait(&conf->wait_for_overlap, &w,
5106                                 TASK_UNINTERRUPTIBLE);
5107                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5108                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5109                         raid5_release_stripe(sh);
5110                         schedule();
5111                         goto again;
5112                 }
5113                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5114                 spin_lock_irq(&sh->stripe_lock);
5115                 for (d = 0; d < conf->raid_disks; d++) {
5116                         if (d == sh->pd_idx || d == sh->qd_idx)
5117                                 continue;
5118                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5119                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5120                                 spin_unlock_irq(&sh->stripe_lock);
5121                                 raid5_release_stripe(sh);
5122                                 schedule();
5123                                 goto again;
5124                         }
5125                 }
5126                 set_bit(STRIPE_DISCARD, &sh->state);
5127                 finish_wait(&conf->wait_for_overlap, &w);
5128                 sh->overwrite_disks = 0;
5129                 for (d = 0; d < conf->raid_disks; d++) {
5130                         if (d == sh->pd_idx || d == sh->qd_idx)
5131                                 continue;
5132                         sh->dev[d].towrite = bi;
5133                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5134                         raid5_inc_bi_active_stripes(bi);
5135                         sh->overwrite_disks++;
5136                 }
5137                 spin_unlock_irq(&sh->stripe_lock);
5138                 if (conf->mddev->bitmap) {
5139                         for (d = 0;
5140                              d < conf->raid_disks - conf->max_degraded;
5141                              d++)
5142                                 bitmap_startwrite(mddev->bitmap,
5143                                                   sh->sector,
5144                                                   STRIPE_SECTORS,
5145                                                   0);
5146                         sh->bm_seq = conf->seq_flush + 1;
5147                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5148                 }
5149
5150                 set_bit(STRIPE_HANDLE, &sh->state);
5151                 clear_bit(STRIPE_DELAYED, &sh->state);
5152                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5153                         atomic_inc(&conf->preread_active_stripes);
5154                 release_stripe_plug(mddev, sh);
5155         }
5156
5157         remaining = raid5_dec_bi_active_stripes(bi);
5158         if (remaining == 0) {
5159                 md_write_end(mddev);
5160                 bio_endio(bi);
5161         }
5162 }
5163
5164 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5165 {
5166         struct r5conf *conf = mddev->private;
5167         int dd_idx;
5168         sector_t new_sector;
5169         sector_t logical_sector, last_sector;
5170         struct stripe_head *sh;
5171         const int rw = bio_data_dir(bi);
5172         int remaining;
5173         DEFINE_WAIT(w);
5174         bool do_prepare;
5175
5176         if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5177                 int ret = r5l_handle_flush_request(conf->log, bi);
5178
5179                 if (ret == 0)
5180                         return;
5181                 if (ret == -ENODEV) {
5182                         md_flush_request(mddev, bi);
5183                         return;
5184                 }
5185                 /* ret == -EAGAIN, fallback */
5186         }
5187
5188         md_write_start(mddev, bi);
5189
5190         /*
5191          * If array is degraded, better not do chunk aligned read because
5192          * later we might have to read it again in order to reconstruct
5193          * data on failed drives.
5194          */
5195         if (rw == READ && mddev->degraded == 0 &&
5196             mddev->reshape_position == MaxSector) {
5197                 bi = chunk_aligned_read(mddev, bi);
5198                 if (!bi)
5199                         return;
5200         }
5201
5202         if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5203                 make_discard_request(mddev, bi);
5204                 return;
5205         }
5206
5207         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5208         last_sector = bio_end_sector(bi);
5209         bi->bi_next = NULL;
5210         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5211
5212         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5213         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5214                 int previous;
5215                 int seq;
5216
5217                 do_prepare = false;
5218         retry:
5219                 seq = read_seqcount_begin(&conf->gen_lock);
5220                 previous = 0;
5221                 if (do_prepare)
5222                         prepare_to_wait(&conf->wait_for_overlap, &w,
5223                                 TASK_UNINTERRUPTIBLE);
5224                 if (unlikely(conf->reshape_progress != MaxSector)) {
5225                         /* spinlock is needed as reshape_progress may be
5226                          * 64bit on a 32bit platform, and so it might be
5227                          * possible to see a half-updated value
5228                          * Of course reshape_progress could change after
5229                          * the lock is dropped, so once we get a reference
5230                          * to the stripe that we think it is, we will have
5231                          * to check again.
5232                          */
5233                         spin_lock_irq(&conf->device_lock);
5234                         if (mddev->reshape_backwards
5235                             ? logical_sector < conf->reshape_progress
5236                             : logical_sector >= conf->reshape_progress) {
5237                                 previous = 1;
5238                         } else {
5239                                 if (mddev->reshape_backwards
5240                                     ? logical_sector < conf->reshape_safe
5241                                     : logical_sector >= conf->reshape_safe) {
5242                                         spin_unlock_irq(&conf->device_lock);
5243                                         schedule();
5244                                         do_prepare = true;
5245                                         goto retry;
5246                                 }
5247                         }
5248                         spin_unlock_irq(&conf->device_lock);
5249                 }
5250
5251                 new_sector = raid5_compute_sector(conf, logical_sector,
5252                                                   previous,
5253                                                   &dd_idx, NULL);
5254                 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5255                         (unsigned long long)new_sector,
5256                         (unsigned long long)logical_sector);
5257
5258                 sh = raid5_get_active_stripe(conf, new_sector, previous,
5259                                        (bi->bi_opf & REQ_RAHEAD), 0);
5260                 if (sh) {
5261                         if (unlikely(previous)) {
5262                                 /* expansion might have moved on while waiting for a
5263                                  * stripe, so we must do the range check again.
5264                                  * Expansion could still move past after this
5265                                  * test, but as we are holding a reference to
5266                                  * 'sh', we know that if that happens,
5267                                  *  STRIPE_EXPANDING will get set and the expansion
5268                                  * won't proceed until we finish with the stripe.
5269                                  */
5270                                 int must_retry = 0;
5271                                 spin_lock_irq(&conf->device_lock);
5272                                 if (mddev->reshape_backwards
5273                                     ? logical_sector >= conf->reshape_progress
5274                                     : logical_sector < conf->reshape_progress)
5275                                         /* mismatch, need to try again */
5276                                         must_retry = 1;
5277                                 spin_unlock_irq(&conf->device_lock);
5278                                 if (must_retry) {
5279                                         raid5_release_stripe(sh);
5280                                         schedule();
5281                                         do_prepare = true;
5282                                         goto retry;
5283                                 }
5284                         }
5285                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5286                                 /* Might have got the wrong stripe_head
5287                                  * by accident
5288                                  */
5289                                 raid5_release_stripe(sh);
5290                                 goto retry;
5291                         }
5292
5293                         if (rw == WRITE &&
5294                             logical_sector >= mddev->suspend_lo &&
5295                             logical_sector < mddev->suspend_hi) {
5296                                 raid5_release_stripe(sh);
5297                                 /* As the suspend_* range is controlled by
5298                                  * userspace, we want an interruptible
5299                                  * wait.
5300                                  */
5301                                 flush_signals(current);
5302                                 prepare_to_wait(&conf->wait_for_overlap,
5303                                                 &w, TASK_INTERRUPTIBLE);
5304                                 if (logical_sector >= mddev->suspend_lo &&
5305                                     logical_sector < mddev->suspend_hi) {
5306                                         schedule();
5307                                         do_prepare = true;
5308                                 }
5309                                 goto retry;
5310                         }
5311
5312                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5313                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5314                                 /* Stripe is busy expanding or
5315                                  * add failed due to overlap.  Flush everything
5316                                  * and wait a while
5317                                  */
5318                                 md_wakeup_thread(mddev->thread);
5319                                 raid5_release_stripe(sh);
5320                                 schedule();
5321                                 do_prepare = true;
5322                                 goto retry;
5323                         }
5324                         set_bit(STRIPE_HANDLE, &sh->state);
5325                         clear_bit(STRIPE_DELAYED, &sh->state);
5326                         if ((!sh->batch_head || sh == sh->batch_head) &&
5327                             (bi->bi_opf & REQ_SYNC) &&
5328                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5329                                 atomic_inc(&conf->preread_active_stripes);
5330                         release_stripe_plug(mddev, sh);
5331                 } else {
5332                         /* cannot get stripe for read-ahead, just give-up */
5333                         bi->bi_error = -EIO;
5334                         break;
5335                 }
5336         }
5337         finish_wait(&conf->wait_for_overlap, &w);
5338
5339         remaining = raid5_dec_bi_active_stripes(bi);
5340         if (remaining == 0) {
5341
5342                 if ( rw == WRITE )
5343                         md_write_end(mddev);
5344
5345                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5346                                          bi, 0);
5347                 bio_endio(bi);
5348         }
5349 }
5350
5351 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5352
5353 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5354 {
5355         /* reshaping is quite different to recovery/resync so it is
5356          * handled quite separately ... here.
5357          *
5358          * On each call to sync_request, we gather one chunk worth of
5359          * destination stripes and flag them as expanding.
5360          * Then we find all the source stripes and request reads.
5361          * As the reads complete, handle_stripe will copy the data
5362          * into the destination stripe and release that stripe.
5363          */
5364         struct r5conf *conf = mddev->private;
5365         struct stripe_head *sh;
5366         sector_t first_sector, last_sector;
5367         int raid_disks = conf->previous_raid_disks;
5368         int data_disks = raid_disks - conf->max_degraded;
5369         int new_data_disks = conf->raid_disks - conf->max_degraded;
5370         int i;
5371         int dd_idx;
5372         sector_t writepos, readpos, safepos;
5373         sector_t stripe_addr;
5374         int reshape_sectors;
5375         struct list_head stripes;
5376         sector_t retn;
5377
5378         if (sector_nr == 0) {
5379                 /* If restarting in the middle, skip the initial sectors */
5380                 if (mddev->reshape_backwards &&
5381                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5382                         sector_nr = raid5_size(mddev, 0, 0)
5383                                 - conf->reshape_progress;
5384                 } else if (mddev->reshape_backwards &&
5385                            conf->reshape_progress == MaxSector) {
5386                         /* shouldn't happen, but just in case, finish up.*/
5387                         sector_nr = MaxSector;
5388                 } else if (!mddev->reshape_backwards &&
5389                            conf->reshape_progress > 0)
5390                         sector_nr = conf->reshape_progress;
5391                 sector_div(sector_nr, new_data_disks);
5392                 if (sector_nr) {
5393                         mddev->curr_resync_completed = sector_nr;
5394                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5395                         *skipped = 1;
5396                         retn = sector_nr;
5397                         goto finish;
5398                 }
5399         }
5400
5401         /* We need to process a full chunk at a time.
5402          * If old and new chunk sizes differ, we need to process the
5403          * largest of these
5404          */
5405
5406         reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5407
5408         /* We update the metadata at least every 10 seconds, or when
5409          * the data about to be copied would over-write the source of
5410          * the data at the front of the range.  i.e. one new_stripe
5411          * along from reshape_progress new_maps to after where
5412          * reshape_safe old_maps to
5413          */
5414         writepos = conf->reshape_progress;
5415         sector_div(writepos, new_data_disks);
5416         readpos = conf->reshape_progress;
5417         sector_div(readpos, data_disks);
5418         safepos = conf->reshape_safe;
5419         sector_div(safepos, data_disks);
5420         if (mddev->reshape_backwards) {
5421                 BUG_ON(writepos < reshape_sectors);
5422                 writepos -= reshape_sectors;
5423                 readpos += reshape_sectors;
5424                 safepos += reshape_sectors;
5425         } else {
5426                 writepos += reshape_sectors;
5427                 /* readpos and safepos are worst-case calculations.
5428                  * A negative number is overly pessimistic, and causes
5429                  * obvious problems for unsigned storage.  So clip to 0.
5430                  */
5431                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5432                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5433         }
5434
5435         /* Having calculated the 'writepos' possibly use it
5436          * to set 'stripe_addr' which is where we will write to.
5437          */
5438         if (mddev->reshape_backwards) {
5439                 BUG_ON(conf->reshape_progress == 0);
5440                 stripe_addr = writepos;
5441                 BUG_ON((mddev->dev_sectors &
5442                         ~((sector_t)reshape_sectors - 1))
5443                        - reshape_sectors - stripe_addr
5444                        != sector_nr);
5445         } else {
5446                 BUG_ON(writepos != sector_nr + reshape_sectors);
5447                 stripe_addr = sector_nr;
5448         }
5449
5450         /* 'writepos' is the most advanced device address we might write.
5451          * 'readpos' is the least advanced device address we might read.
5452          * 'safepos' is the least address recorded in the metadata as having
5453          *     been reshaped.
5454          * If there is a min_offset_diff, these are adjusted either by
5455          * increasing the safepos/readpos if diff is negative, or
5456          * increasing writepos if diff is positive.
5457          * If 'readpos' is then behind 'writepos', there is no way that we can
5458          * ensure safety in the face of a crash - that must be done by userspace
5459          * making a backup of the data.  So in that case there is no particular
5460          * rush to update metadata.
5461          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5462          * update the metadata to advance 'safepos' to match 'readpos' so that
5463          * we can be safe in the event of a crash.
5464          * So we insist on updating metadata if safepos is behind writepos and
5465          * readpos is beyond writepos.
5466          * In any case, update the metadata every 10 seconds.
5467          * Maybe that number should be configurable, but I'm not sure it is
5468          * worth it.... maybe it could be a multiple of safemode_delay???
5469          */
5470         if (conf->min_offset_diff < 0) {
5471                 safepos += -conf->min_offset_diff;
5472                 readpos += -conf->min_offset_diff;
5473         } else
5474                 writepos += conf->min_offset_diff;
5475
5476         if ((mddev->reshape_backwards
5477              ? (safepos > writepos && readpos < writepos)
5478              : (safepos < writepos && readpos > writepos)) ||
5479             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5480                 /* Cannot proceed until we've updated the superblock... */
5481                 wait_event(conf->wait_for_overlap,
5482                            atomic_read(&conf->reshape_stripes)==0
5483                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5484                 if (atomic_read(&conf->reshape_stripes) != 0)
5485                         return 0;
5486                 mddev->reshape_position = conf->reshape_progress;
5487                 mddev->curr_resync_completed = sector_nr;
5488                 conf->reshape_checkpoint = jiffies;
5489                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5490                 md_wakeup_thread(mddev->thread);
5491                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5492                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5493                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5494                         return 0;
5495                 spin_lock_irq(&conf->device_lock);
5496                 conf->reshape_safe = mddev->reshape_position;
5497                 spin_unlock_irq(&conf->device_lock);
5498                 wake_up(&conf->wait_for_overlap);
5499                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5500         }
5501
5502         INIT_LIST_HEAD(&stripes);
5503         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5504                 int j;
5505                 int skipped_disk = 0;
5506                 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5507                 set_bit(STRIPE_EXPANDING, &sh->state);
5508                 atomic_inc(&conf->reshape_stripes);
5509                 /* If any of this stripe is beyond the end of the old
5510                  * array, then we need to zero those blocks
5511                  */
5512                 for (j=sh->disks; j--;) {
5513                         sector_t s;
5514                         if (j == sh->pd_idx)
5515                                 continue;
5516                         if (conf->level == 6 &&
5517                             j == sh->qd_idx)
5518                                 continue;
5519                         s = raid5_compute_blocknr(sh, j, 0);
5520                         if (s < raid5_size(mddev, 0, 0)) {
5521                                 skipped_disk = 1;
5522                                 continue;
5523                         }
5524                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5525                         set_bit(R5_Expanded, &sh->dev[j].flags);
5526                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5527                 }
5528                 if (!skipped_disk) {
5529                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5530                         set_bit(STRIPE_HANDLE, &sh->state);
5531                 }
5532                 list_add(&sh->lru, &stripes);
5533         }
5534         spin_lock_irq(&conf->device_lock);
5535         if (mddev->reshape_backwards)
5536                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5537         else
5538                 conf->reshape_progress += reshape_sectors * new_data_disks;
5539         spin_unlock_irq(&conf->device_lock);
5540         /* Ok, those stripe are ready. We can start scheduling
5541          * reads on the source stripes.
5542          * The source stripes are determined by mapping the first and last
5543          * block on the destination stripes.
5544          */
5545         first_sector =
5546                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5547                                      1, &dd_idx, NULL);
5548         last_sector =
5549                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5550                                             * new_data_disks - 1),
5551                                      1, &dd_idx, NULL);
5552         if (last_sector >= mddev->dev_sectors)
5553                 last_sector = mddev->dev_sectors - 1;
5554         while (first_sector <= last_sector) {
5555                 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5556                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5557                 set_bit(STRIPE_HANDLE, &sh->state);
5558                 raid5_release_stripe(sh);
5559                 first_sector += STRIPE_SECTORS;
5560         }
5561         /* Now that the sources are clearly marked, we can release
5562          * the destination stripes
5563          */
5564         while (!list_empty(&stripes)) {
5565                 sh = list_entry(stripes.next, struct stripe_head, lru);
5566                 list_del_init(&sh->lru);
5567                 raid5_release_stripe(sh);
5568         }
5569         /* If this takes us to the resync_max point where we have to pause,
5570          * then we need to write out the superblock.
5571          */
5572         sector_nr += reshape_sectors;
5573         retn = reshape_sectors;
5574 finish:
5575         if (mddev->curr_resync_completed > mddev->resync_max ||
5576             (sector_nr - mddev->curr_resync_completed) * 2
5577             >= mddev->resync_max - mddev->curr_resync_completed) {
5578                 /* Cannot proceed until we've updated the superblock... */
5579                 wait_event(conf->wait_for_overlap,
5580                            atomic_read(&conf->reshape_stripes) == 0
5581                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5582                 if (atomic_read(&conf->reshape_stripes) != 0)
5583                         goto ret;
5584                 mddev->reshape_position = conf->reshape_progress;
5585                 mddev->curr_resync_completed = sector_nr;
5586                 conf->reshape_checkpoint = jiffies;
5587                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5588                 md_wakeup_thread(mddev->thread);
5589                 wait_event(mddev->sb_wait,
5590                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5591                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5592                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5593                         goto ret;
5594                 spin_lock_irq(&conf->device_lock);
5595                 conf->reshape_safe = mddev->reshape_position;
5596                 spin_unlock_irq(&conf->device_lock);
5597                 wake_up(&conf->wait_for_overlap);
5598                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5599         }
5600 ret:
5601         return retn;
5602 }
5603
5604 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5605                                           int *skipped)
5606 {
5607         struct r5conf *conf = mddev->private;
5608         struct stripe_head *sh;
5609         sector_t max_sector = mddev->dev_sectors;
5610         sector_t sync_blocks;
5611         int still_degraded = 0;
5612         int i;
5613
5614         if (sector_nr >= max_sector) {
5615                 /* just being told to finish up .. nothing much to do */
5616
5617                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5618                         end_reshape(conf);
5619                         return 0;
5620                 }
5621
5622                 if (mddev->curr_resync < max_sector) /* aborted */
5623                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5624                                         &sync_blocks, 1);
5625                 else /* completed sync */
5626                         conf->fullsync = 0;
5627                 bitmap_close_sync(mddev->bitmap);
5628
5629                 return 0;
5630         }
5631
5632         /* Allow raid5_quiesce to complete */
5633         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5634
5635         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5636                 return reshape_request(mddev, sector_nr, skipped);
5637
5638         /* No need to check resync_max as we never do more than one
5639          * stripe, and as resync_max will always be on a chunk boundary,
5640          * if the check in md_do_sync didn't fire, there is no chance
5641          * of overstepping resync_max here
5642          */
5643
5644         /* if there is too many failed drives and we are trying
5645          * to resync, then assert that we are finished, because there is
5646          * nothing we can do.
5647          */
5648         if (mddev->degraded >= conf->max_degraded &&
5649             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5650                 sector_t rv = mddev->dev_sectors - sector_nr;
5651                 *skipped = 1;
5652                 return rv;
5653         }
5654         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5655             !conf->fullsync &&
5656             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5657             sync_blocks >= STRIPE_SECTORS) {
5658                 /* we can skip this block, and probably more */
5659                 sync_blocks /= STRIPE_SECTORS;
5660                 *skipped = 1;
5661                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5662         }
5663
5664         bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5665
5666         sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5667         if (sh == NULL) {
5668                 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5669                 /* make sure we don't swamp the stripe cache if someone else
5670                  * is trying to get access
5671                  */
5672                 schedule_timeout_uninterruptible(1);
5673         }
5674         /* Need to check if array will still be degraded after recovery/resync
5675          * Note in case of > 1 drive failures it's possible we're rebuilding
5676          * one drive while leaving another faulty drive in array.
5677          */
5678         rcu_read_lock();
5679         for (i = 0; i < conf->raid_disks; i++) {
5680                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5681
5682                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5683                         still_degraded = 1;
5684         }
5685         rcu_read_unlock();
5686
5687         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5688
5689         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5690         set_bit(STRIPE_HANDLE, &sh->state);
5691
5692         raid5_release_stripe(sh);
5693
5694         return STRIPE_SECTORS;
5695 }
5696
5697 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5698 {
5699         /* We may not be able to submit a whole bio at once as there
5700          * may not be enough stripe_heads available.
5701          * We cannot pre-allocate enough stripe_heads as we may need
5702          * more than exist in the cache (if we allow ever large chunks).
5703          * So we do one stripe head at a time and record in
5704          * ->bi_hw_segments how many have been done.
5705          *
5706          * We *know* that this entire raid_bio is in one chunk, so
5707          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5708          */
5709         struct stripe_head *sh;
5710         int dd_idx;
5711         sector_t sector, logical_sector, last_sector;
5712         int scnt = 0;
5713         int remaining;
5714         int handled = 0;
5715
5716         logical_sector = raid_bio->bi_iter.bi_sector &
5717                 ~((sector_t)STRIPE_SECTORS-1);
5718         sector = raid5_compute_sector(conf, logical_sector,
5719                                       0, &dd_idx, NULL);
5720         last_sector = bio_end_sector(raid_bio);
5721
5722         for (; logical_sector < last_sector;
5723              logical_sector += STRIPE_SECTORS,
5724                      sector += STRIPE_SECTORS,
5725                      scnt++) {
5726
5727                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5728                         /* already done this stripe */
5729                         continue;
5730
5731                 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5732
5733                 if (!sh) {
5734                         /* failed to get a stripe - must wait */
5735                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5736                         conf->retry_read_aligned = raid_bio;
5737                         return handled;
5738                 }
5739
5740                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5741                         raid5_release_stripe(sh);
5742                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5743                         conf->retry_read_aligned = raid_bio;
5744                         return handled;
5745                 }
5746
5747                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5748                 handle_stripe(sh);
5749                 raid5_release_stripe(sh);
5750                 handled++;
5751         }
5752         remaining = raid5_dec_bi_active_stripes(raid_bio);
5753         if (remaining == 0) {
5754                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5755                                          raid_bio, 0);
5756                 bio_endio(raid_bio);
5757         }
5758         if (atomic_dec_and_test(&conf->active_aligned_reads))
5759                 wake_up(&conf->wait_for_quiescent);
5760         return handled;
5761 }
5762
5763 static int handle_active_stripes(struct r5conf *conf, int group,
5764                                  struct r5worker *worker,
5765                                  struct list_head *temp_inactive_list)
5766 {
5767         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5768         int i, batch_size = 0, hash;
5769         bool release_inactive = false;
5770
5771         while (batch_size < MAX_STRIPE_BATCH &&
5772                         (sh = __get_priority_stripe(conf, group)) != NULL)
5773                 batch[batch_size++] = sh;
5774
5775         if (batch_size == 0) {
5776                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5777                         if (!list_empty(temp_inactive_list + i))
5778                                 break;
5779                 if (i == NR_STRIPE_HASH_LOCKS) {
5780                         spin_unlock_irq(&conf->device_lock);
5781                         r5l_flush_stripe_to_raid(conf->log);
5782                         spin_lock_irq(&conf->device_lock);
5783                         return batch_size;
5784                 }
5785                 release_inactive = true;
5786         }
5787         spin_unlock_irq(&conf->device_lock);
5788
5789         release_inactive_stripe_list(conf, temp_inactive_list,
5790                                      NR_STRIPE_HASH_LOCKS);
5791
5792         r5l_flush_stripe_to_raid(conf->log);
5793         if (release_inactive) {
5794                 spin_lock_irq(&conf->device_lock);
5795                 return 0;
5796         }
5797
5798         for (i = 0; i < batch_size; i++)
5799                 handle_stripe(batch[i]);
5800         r5l_write_stripe_run(conf->log);
5801
5802         cond_resched();
5803
5804         spin_lock_irq(&conf->device_lock);
5805         for (i = 0; i < batch_size; i++) {
5806                 hash = batch[i]->hash_lock_index;
5807                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5808         }
5809         return batch_size;
5810 }
5811
5812 static void raid5_do_work(struct work_struct *work)
5813 {
5814         struct r5worker *worker = container_of(work, struct r5worker, work);
5815         struct r5worker_group *group = worker->group;
5816         struct r5conf *conf = group->conf;
5817         int group_id = group - conf->worker_groups;
5818         int handled;
5819         struct blk_plug plug;
5820
5821         pr_debug("+++ raid5worker active\n");
5822
5823         blk_start_plug(&plug);
5824         handled = 0;
5825         spin_lock_irq(&conf->device_lock);
5826         while (1) {
5827                 int batch_size, released;
5828
5829                 released = release_stripe_list(conf, worker->temp_inactive_list);
5830
5831                 batch_size = handle_active_stripes(conf, group_id, worker,
5832                                                    worker->temp_inactive_list);
5833                 worker->working = false;
5834                 if (!batch_size && !released)
5835                         break;
5836                 handled += batch_size;
5837         }
5838         pr_debug("%d stripes handled\n", handled);
5839
5840         spin_unlock_irq(&conf->device_lock);
5841         blk_finish_plug(&plug);
5842
5843         pr_debug("--- raid5worker inactive\n");
5844 }
5845
5846 /*
5847  * This is our raid5 kernel thread.
5848  *
5849  * We scan the hash table for stripes which can be handled now.
5850  * During the scan, completed stripes are saved for us by the interrupt
5851  * handler, so that they will not have to wait for our next wakeup.
5852  */
5853 static void raid5d(struct md_thread *thread)
5854 {
5855         struct mddev *mddev = thread->mddev;
5856         struct r5conf *conf = mddev->private;
5857         int handled;
5858         struct blk_plug plug;
5859
5860         pr_debug("+++ raid5d active\n");
5861
5862         md_check_recovery(mddev);
5863
5864         if (!bio_list_empty(&conf->return_bi) &&
5865             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5866                 struct bio_list tmp = BIO_EMPTY_LIST;
5867                 spin_lock_irq(&conf->device_lock);
5868                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5869                         bio_list_merge(&tmp, &conf->return_bi);
5870                         bio_list_init(&conf->return_bi);
5871                 }
5872                 spin_unlock_irq(&conf->device_lock);
5873                 return_io(&tmp);
5874         }
5875
5876         blk_start_plug(&plug);
5877         handled = 0;
5878         spin_lock_irq(&conf->device_lock);
5879         while (1) {
5880                 struct bio *bio;
5881                 int batch_size, released;
5882
5883                 released = release_stripe_list(conf, conf->temp_inactive_list);
5884                 if (released)
5885                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
5886
5887                 if (
5888                     !list_empty(&conf->bitmap_list)) {
5889                         /* Now is a good time to flush some bitmap updates */
5890                         conf->seq_flush++;
5891                         spin_unlock_irq(&conf->device_lock);
5892                         bitmap_unplug(mddev->bitmap);
5893                         spin_lock_irq(&conf->device_lock);
5894                         conf->seq_write = conf->seq_flush;
5895                         activate_bit_delay(conf, conf->temp_inactive_list);
5896                 }
5897                 raid5_activate_delayed(conf);
5898
5899                 while ((bio = remove_bio_from_retry(conf))) {
5900                         int ok;
5901                         spin_unlock_irq(&conf->device_lock);
5902                         ok = retry_aligned_read(conf, bio);
5903                         spin_lock_irq(&conf->device_lock);
5904                         if (!ok)
5905                                 break;
5906                         handled++;
5907                 }
5908
5909                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5910                                                    conf->temp_inactive_list);
5911                 if (!batch_size && !released)
5912                         break;
5913                 handled += batch_size;
5914
5915                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5916                         spin_unlock_irq(&conf->device_lock);
5917                         md_check_recovery(mddev);
5918                         spin_lock_irq(&conf->device_lock);
5919                 }
5920         }
5921         pr_debug("%d stripes handled\n", handled);
5922
5923         spin_unlock_irq(&conf->device_lock);
5924         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5925             mutex_trylock(&conf->cache_size_mutex)) {
5926                 grow_one_stripe(conf, __GFP_NOWARN);
5927                 /* Set flag even if allocation failed.  This helps
5928                  * slow down allocation requests when mem is short
5929                  */
5930                 set_bit(R5_DID_ALLOC, &conf->cache_state);
5931                 mutex_unlock(&conf->cache_size_mutex);
5932         }
5933
5934         r5l_flush_stripe_to_raid(conf->log);
5935
5936         async_tx_issue_pending_all();
5937         blk_finish_plug(&plug);
5938
5939         pr_debug("--- raid5d inactive\n");
5940 }
5941
5942 static ssize_t
5943 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5944 {
5945         struct r5conf *conf;
5946         int ret = 0;
5947         spin_lock(&mddev->lock);
5948         conf = mddev->private;
5949         if (conf)
5950                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5951         spin_unlock(&mddev->lock);
5952         return ret;
5953 }
5954
5955 int
5956 raid5_set_cache_size(struct mddev *mddev, int size)
5957 {
5958         struct r5conf *conf = mddev->private;
5959         int err;
5960
5961         if (size <= 16 || size > 32768)
5962                 return -EINVAL;
5963
5964         conf->min_nr_stripes = size;
5965         mutex_lock(&conf->cache_size_mutex);
5966         while (size < conf->max_nr_stripes &&
5967                drop_one_stripe(conf))
5968                 ;
5969         mutex_unlock(&conf->cache_size_mutex);
5970
5971
5972         err = md_allow_write(mddev);
5973         if (err)
5974                 return err;
5975
5976         mutex_lock(&conf->cache_size_mutex);
5977         while (size > conf->max_nr_stripes)
5978                 if (!grow_one_stripe(conf, GFP_KERNEL))
5979                         break;
5980         mutex_unlock(&conf->cache_size_mutex);
5981
5982         return 0;
5983 }
5984 EXPORT_SYMBOL(raid5_set_cache_size);
5985
5986 static ssize_t
5987 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5988 {
5989         struct r5conf *conf;
5990         unsigned long new;
5991         int err;
5992
5993         if (len >= PAGE_SIZE)
5994                 return -EINVAL;
5995         if (kstrtoul(page, 10, &new))
5996                 return -EINVAL;
5997         err = mddev_lock(mddev);
5998         if (err)
5999                 return err;
6000         conf = mddev->private;
6001         if (!conf)
6002                 err = -ENODEV;
6003         else
6004                 err = raid5_set_cache_size(mddev, new);
6005         mddev_unlock(mddev);
6006
6007         return err ?: len;
6008 }
6009
6010 static struct md_sysfs_entry
6011 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6012                                 raid5_show_stripe_cache_size,
6013                                 raid5_store_stripe_cache_size);
6014
6015 static ssize_t
6016 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6017 {
6018         struct r5conf *conf = mddev->private;
6019         if (conf)
6020                 return sprintf(page, "%d\n", conf->rmw_level);
6021         else
6022                 return 0;
6023 }
6024
6025 static ssize_t
6026 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6027 {
6028         struct r5conf *conf = mddev->private;
6029         unsigned long new;
6030
6031         if (!conf)
6032                 return -ENODEV;
6033
6034         if (len >= PAGE_SIZE)
6035                 return -EINVAL;
6036
6037         if (kstrtoul(page, 10, &new))
6038                 return -EINVAL;
6039
6040         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6041                 return -EINVAL;
6042
6043         if (new != PARITY_DISABLE_RMW &&
6044             new != PARITY_ENABLE_RMW &&
6045             new != PARITY_PREFER_RMW)
6046                 return -EINVAL;
6047
6048         conf->rmw_level = new;
6049         return len;
6050 }
6051
6052 static struct md_sysfs_entry
6053 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6054                          raid5_show_rmw_level,
6055                          raid5_store_rmw_level);
6056
6057
6058 static ssize_t
6059 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6060 {
6061         struct r5conf *conf;
6062         int ret = 0;
6063         spin_lock(&mddev->lock);
6064         conf = mddev->private;
6065         if (conf)
6066                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6067         spin_unlock(&mddev->lock);
6068         return ret;
6069 }
6070
6071 static ssize_t
6072 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6073 {
6074         struct r5conf *conf;
6075         unsigned long new;
6076         int err;
6077
6078         if (len >= PAGE_SIZE)
6079                 return -EINVAL;
6080         if (kstrtoul(page, 10, &new))
6081                 return -EINVAL;
6082
6083         err = mddev_lock(mddev);
6084         if (err)
6085                 return err;
6086         conf = mddev->private;
6087         if (!conf)
6088                 err = -ENODEV;
6089         else if (new > conf->min_nr_stripes)
6090                 err = -EINVAL;
6091         else
6092                 conf->bypass_threshold = new;
6093         mddev_unlock(mddev);
6094         return err ?: len;
6095 }
6096
6097 static struct md_sysfs_entry
6098 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6099                                         S_IRUGO | S_IWUSR,
6100                                         raid5_show_preread_threshold,
6101                                         raid5_store_preread_threshold);
6102
6103 static ssize_t
6104 raid5_show_skip_copy(struct mddev *mddev, char *page)
6105 {
6106         struct r5conf *conf;
6107         int ret = 0;
6108         spin_lock(&mddev->lock);
6109         conf = mddev->private;
6110         if (conf)
6111                 ret = sprintf(page, "%d\n", conf->skip_copy);
6112         spin_unlock(&mddev->lock);
6113         return ret;
6114 }
6115
6116 static ssize_t
6117 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6118 {
6119         struct r5conf *conf;
6120         unsigned long new;
6121         int err;
6122
6123         if (len >= PAGE_SIZE)
6124                 return -EINVAL;
6125         if (kstrtoul(page, 10, &new))
6126                 return -EINVAL;
6127         new = !!new;
6128
6129         err = mddev_lock(mddev);
6130         if (err)
6131                 return err;
6132         conf = mddev->private;
6133         if (!conf)
6134                 err = -ENODEV;
6135         else if (new != conf->skip_copy) {
6136                 mddev_suspend(mddev);
6137                 conf->skip_copy = new;
6138                 if (new)
6139                         mddev->queue->backing_dev_info.capabilities |=
6140                                 BDI_CAP_STABLE_WRITES;
6141                 else
6142                         mddev->queue->backing_dev_info.capabilities &=
6143                                 ~BDI_CAP_STABLE_WRITES;
6144                 mddev_resume(mddev);
6145         }
6146         mddev_unlock(mddev);
6147         return err ?: len;
6148 }
6149
6150 static struct md_sysfs_entry
6151 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6152                                         raid5_show_skip_copy,
6153                                         raid5_store_skip_copy);
6154
6155 static ssize_t
6156 stripe_cache_active_show(struct mddev *mddev, char *page)
6157 {
6158         struct r5conf *conf = mddev->private;
6159         if (conf)
6160                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6161         else
6162                 return 0;
6163 }
6164
6165 static struct md_sysfs_entry
6166 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6167
6168 static ssize_t
6169 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6170 {
6171         struct r5conf *conf;
6172         int ret = 0;
6173         spin_lock(&mddev->lock);
6174         conf = mddev->private;
6175         if (conf)
6176                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6177         spin_unlock(&mddev->lock);
6178         return ret;
6179 }
6180
6181 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6182                                int *group_cnt,
6183                                int *worker_cnt_per_group,
6184                                struct r5worker_group **worker_groups);
6185 static ssize_t
6186 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6187 {
6188         struct r5conf *conf;
6189         unsigned long new;
6190         int err;
6191         struct r5worker_group *new_groups, *old_groups;
6192         int group_cnt, worker_cnt_per_group;
6193
6194         if (len >= PAGE_SIZE)
6195                 return -EINVAL;
6196         if (kstrtoul(page, 10, &new))
6197                 return -EINVAL;
6198
6199         err = mddev_lock(mddev);
6200         if (err)
6201                 return err;
6202         conf = mddev->private;
6203         if (!conf)
6204                 err = -ENODEV;
6205         else if (new != conf->worker_cnt_per_group) {
6206                 mddev_suspend(mddev);
6207
6208                 old_groups = conf->worker_groups;
6209                 if (old_groups)
6210                         flush_workqueue(raid5_wq);
6211
6212                 err = alloc_thread_groups(conf, new,
6213                                           &group_cnt, &worker_cnt_per_group,
6214                                           &new_groups);
6215                 if (!err) {
6216                         spin_lock_irq(&conf->device_lock);
6217                         conf->group_cnt = group_cnt;
6218                         conf->worker_cnt_per_group = worker_cnt_per_group;
6219                         conf->worker_groups = new_groups;
6220                         spin_unlock_irq(&conf->device_lock);
6221
6222                         if (old_groups)
6223                                 kfree(old_groups[0].workers);
6224                         kfree(old_groups);
6225                 }
6226                 mddev_resume(mddev);
6227         }
6228         mddev_unlock(mddev);
6229
6230         return err ?: len;
6231 }
6232
6233 static struct md_sysfs_entry
6234 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6235                                 raid5_show_group_thread_cnt,
6236                                 raid5_store_group_thread_cnt);
6237
6238 static struct attribute *raid5_attrs[] =  {
6239         &raid5_stripecache_size.attr,
6240         &raid5_stripecache_active.attr,
6241         &raid5_preread_bypass_threshold.attr,
6242         &raid5_group_thread_cnt.attr,
6243         &raid5_skip_copy.attr,
6244         &raid5_rmw_level.attr,
6245         NULL,
6246 };
6247 static struct attribute_group raid5_attrs_group = {
6248         .name = NULL,
6249         .attrs = raid5_attrs,
6250 };
6251
6252 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6253                                int *group_cnt,
6254                                int *worker_cnt_per_group,
6255                                struct r5worker_group **worker_groups)
6256 {
6257         int i, j, k;
6258         ssize_t size;
6259         struct r5worker *workers;
6260
6261         *worker_cnt_per_group = cnt;
6262         if (cnt == 0) {
6263                 *group_cnt = 0;
6264                 *worker_groups = NULL;
6265                 return 0;
6266         }
6267         *group_cnt = num_possible_nodes();
6268         size = sizeof(struct r5worker) * cnt;
6269         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6270         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6271                                 *group_cnt, GFP_NOIO);
6272         if (!*worker_groups || !workers) {
6273                 kfree(workers);
6274                 kfree(*worker_groups);
6275                 return -ENOMEM;
6276         }
6277
6278         for (i = 0; i < *group_cnt; i++) {
6279                 struct r5worker_group *group;
6280
6281                 group = &(*worker_groups)[i];
6282                 INIT_LIST_HEAD(&group->handle_list);
6283                 group->conf = conf;
6284                 group->workers = workers + i * cnt;
6285
6286                 for (j = 0; j < cnt; j++) {
6287                         struct r5worker *worker = group->workers + j;
6288                         worker->group = group;
6289                         INIT_WORK(&worker->work, raid5_do_work);
6290
6291                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6292                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6293                 }
6294         }
6295
6296         return 0;
6297 }
6298
6299 static void free_thread_groups(struct r5conf *conf)
6300 {
6301         if (conf->worker_groups)
6302                 kfree(conf->worker_groups[0].workers);
6303         kfree(conf->worker_groups);
6304         conf->worker_groups = NULL;
6305 }
6306
6307 static sector_t
6308 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6309 {
6310         struct r5conf *conf = mddev->private;
6311
6312         if (!sectors)
6313                 sectors = mddev->dev_sectors;
6314         if (!raid_disks)
6315                 /* size is defined by the smallest of previous and new size */
6316                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6317
6318         sectors &= ~((sector_t)conf->chunk_sectors - 1);
6319         sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6320         return sectors * (raid_disks - conf->max_degraded);
6321 }
6322
6323 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6324 {
6325         safe_put_page(percpu->spare_page);
6326         if (percpu->scribble)
6327                 flex_array_free(percpu->scribble);
6328         percpu->spare_page = NULL;
6329         percpu->scribble = NULL;
6330 }
6331
6332 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6333 {
6334         if (conf->level == 6 && !percpu->spare_page)
6335                 percpu->spare_page = alloc_page(GFP_KERNEL);
6336         if (!percpu->scribble)
6337                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6338                                                       conf->previous_raid_disks),
6339                                                   max(conf->chunk_sectors,
6340                                                       conf->prev_chunk_sectors)
6341                                                    / STRIPE_SECTORS,
6342                                                   GFP_KERNEL);
6343
6344         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6345                 free_scratch_buffer(conf, percpu);
6346                 return -ENOMEM;
6347         }
6348
6349         return 0;
6350 }
6351
6352 static void raid5_free_percpu(struct r5conf *conf)
6353 {
6354         unsigned long cpu;
6355
6356         if (!conf->percpu)
6357                 return;
6358
6359 #ifdef CONFIG_HOTPLUG_CPU
6360         unregister_cpu_notifier(&conf->cpu_notify);
6361 #endif
6362
6363         get_online_cpus();
6364         for_each_possible_cpu(cpu)
6365                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6366         put_online_cpus();
6367
6368         free_percpu(conf->percpu);
6369 }
6370
6371 static void free_conf(struct r5conf *conf)
6372 {
6373         if (conf->log)
6374                 r5l_exit_log(conf->log);
6375         if (conf->shrinker.seeks)
6376                 unregister_shrinker(&conf->shrinker);
6377
6378         free_thread_groups(conf);
6379         shrink_stripes(conf);
6380         raid5_free_percpu(conf);
6381         kfree(conf->disks);
6382         kfree(conf->stripe_hashtbl);
6383         kfree(conf);
6384 }
6385
6386 #ifdef CONFIG_HOTPLUG_CPU
6387 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6388                               void *hcpu)
6389 {
6390         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6391         long cpu = (long)hcpu;
6392         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6393
6394         switch (action) {
6395         case CPU_UP_PREPARE:
6396         case CPU_UP_PREPARE_FROZEN:
6397                 if (alloc_scratch_buffer(conf, percpu)) {
6398                         pr_err("%s: failed memory allocation for cpu%ld\n",
6399                                __func__, cpu);
6400                         return notifier_from_errno(-ENOMEM);
6401                 }
6402                 break;
6403         case CPU_DEAD:
6404         case CPU_DEAD_FROZEN:
6405         case CPU_UP_CANCELED:
6406         case CPU_UP_CANCELED_FROZEN:
6407                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6408                 break;
6409         default:
6410                 break;
6411         }
6412         return NOTIFY_OK;
6413 }
6414 #endif
6415
6416 static int raid5_alloc_percpu(struct r5conf *conf)
6417 {
6418         unsigned long cpu;
6419         int err = 0;
6420
6421         conf->percpu = alloc_percpu(struct raid5_percpu);
6422         if (!conf->percpu)
6423                 return -ENOMEM;
6424
6425 #ifdef CONFIG_HOTPLUG_CPU
6426         conf->cpu_notify.notifier_call = raid456_cpu_notify;
6427         conf->cpu_notify.priority = 0;
6428         err = register_cpu_notifier(&conf->cpu_notify);
6429         if (err)
6430                 return err;
6431 #endif
6432
6433         get_online_cpus();
6434         for_each_present_cpu(cpu) {
6435                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6436                 if (err) {
6437                         pr_err("%s: failed memory allocation for cpu%ld\n",
6438                                __func__, cpu);
6439                         break;
6440                 }
6441         }
6442         put_online_cpus();
6443
6444         if (!err) {
6445                 conf->scribble_disks = max(conf->raid_disks,
6446                         conf->previous_raid_disks);
6447                 conf->scribble_sectors = max(conf->chunk_sectors,
6448                         conf->prev_chunk_sectors);
6449         }
6450         return err;
6451 }
6452
6453 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6454                                       struct shrink_control *sc)
6455 {
6456         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6457         unsigned long ret = SHRINK_STOP;
6458
6459         if (mutex_trylock(&conf->cache_size_mutex)) {
6460                 ret= 0;
6461                 while (ret < sc->nr_to_scan &&
6462                        conf->max_nr_stripes > conf->min_nr_stripes) {
6463                         if (drop_one_stripe(conf) == 0) {
6464                                 ret = SHRINK_STOP;
6465                                 break;
6466                         }
6467                         ret++;
6468                 }
6469                 mutex_unlock(&conf->cache_size_mutex);
6470         }
6471         return ret;
6472 }
6473
6474 static unsigned long raid5_cache_count(struct shrinker *shrink,
6475                                        struct shrink_control *sc)
6476 {
6477         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6478
6479         if (conf->max_nr_stripes < conf->min_nr_stripes)
6480                 /* unlikely, but not impossible */
6481                 return 0;
6482         return conf->max_nr_stripes - conf->min_nr_stripes;
6483 }
6484
6485 static struct r5conf *setup_conf(struct mddev *mddev)
6486 {
6487         struct r5conf *conf;
6488         int raid_disk, memory, max_disks;
6489         struct md_rdev *rdev;
6490         struct disk_info *disk;
6491         char pers_name[6];
6492         int i;
6493         int group_cnt, worker_cnt_per_group;
6494         struct r5worker_group *new_group;
6495
6496         if (mddev->new_level != 5
6497             && mddev->new_level != 4
6498             && mddev->new_level != 6) {
6499                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6500                        mdname(mddev), mddev->new_level);
6501                 return ERR_PTR(-EIO);
6502         }
6503         if ((mddev->new_level == 5
6504              && !algorithm_valid_raid5(mddev->new_layout)) ||
6505             (mddev->new_level == 6
6506              && !algorithm_valid_raid6(mddev->new_layout))) {
6507                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6508                        mdname(mddev), mddev->new_layout);
6509                 return ERR_PTR(-EIO);
6510         }
6511         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6512                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6513                        mdname(mddev), mddev->raid_disks);
6514                 return ERR_PTR(-EINVAL);
6515         }
6516
6517         if (!mddev->new_chunk_sectors ||
6518             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6519             !is_power_of_2(mddev->new_chunk_sectors)) {
6520                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6521                        mdname(mddev), mddev->new_chunk_sectors << 9);
6522                 return ERR_PTR(-EINVAL);
6523         }
6524
6525         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6526         if (conf == NULL)
6527                 goto abort;
6528         /* Don't enable multi-threading by default*/
6529         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6530                                  &new_group)) {
6531                 conf->group_cnt = group_cnt;
6532                 conf->worker_cnt_per_group = worker_cnt_per_group;
6533                 conf->worker_groups = new_group;
6534         } else
6535                 goto abort;
6536         spin_lock_init(&conf->device_lock);
6537         seqcount_init(&conf->gen_lock);
6538         mutex_init(&conf->cache_size_mutex);
6539         init_waitqueue_head(&conf->wait_for_quiescent);
6540         init_waitqueue_head(&conf->wait_for_stripe);
6541         init_waitqueue_head(&conf->wait_for_overlap);
6542         INIT_LIST_HEAD(&conf->handle_list);
6543         INIT_LIST_HEAD(&conf->hold_list);
6544         INIT_LIST_HEAD(&conf->delayed_list);
6545         INIT_LIST_HEAD(&conf->bitmap_list);
6546         bio_list_init(&conf->return_bi);
6547         init_llist_head(&conf->released_stripes);
6548         atomic_set(&conf->active_stripes, 0);
6549         atomic_set(&conf->preread_active_stripes, 0);
6550         atomic_set(&conf->active_aligned_reads, 0);
6551         conf->bypass_threshold = BYPASS_THRESHOLD;
6552         conf->recovery_disabled = mddev->recovery_disabled - 1;
6553
6554         conf->raid_disks = mddev->raid_disks;
6555         if (mddev->reshape_position == MaxSector)
6556                 conf->previous_raid_disks = mddev->raid_disks;
6557         else
6558                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6559         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6560
6561         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6562                               GFP_KERNEL);
6563         if (!conf->disks)
6564                 goto abort;
6565
6566         conf->mddev = mddev;
6567
6568         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6569                 goto abort;
6570
6571         /* We init hash_locks[0] separately to that it can be used
6572          * as the reference lock in the spin_lock_nest_lock() call
6573          * in lock_all_device_hash_locks_irq in order to convince
6574          * lockdep that we know what we are doing.
6575          */
6576         spin_lock_init(conf->hash_locks);
6577         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6578                 spin_lock_init(conf->hash_locks + i);
6579
6580         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6581                 INIT_LIST_HEAD(conf->inactive_list + i);
6582
6583         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6584                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6585
6586         conf->level = mddev->new_level;
6587         conf->chunk_sectors = mddev->new_chunk_sectors;
6588         if (raid5_alloc_percpu(conf) != 0)
6589                 goto abort;
6590
6591         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6592
6593         rdev_for_each(rdev, mddev) {
6594                 raid_disk = rdev->raid_disk;
6595                 if (raid_disk >= max_disks
6596                     || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6597                         continue;
6598                 disk = conf->disks + raid_disk;
6599
6600                 if (test_bit(Replacement, &rdev->flags)) {
6601                         if (disk->replacement)
6602                                 goto abort;
6603                         disk->replacement = rdev;
6604                 } else {
6605                         if (disk->rdev)
6606                                 goto abort;
6607                         disk->rdev = rdev;
6608                 }
6609
6610                 if (test_bit(In_sync, &rdev->flags)) {
6611                         char b[BDEVNAME_SIZE];
6612                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6613                                " disk %d\n",
6614                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6615                 } else if (rdev->saved_raid_disk != raid_disk)
6616                         /* Cannot rely on bitmap to complete recovery */
6617                         conf->fullsync = 1;
6618         }
6619
6620         conf->level = mddev->new_level;
6621         if (conf->level == 6) {
6622                 conf->max_degraded = 2;
6623                 if (raid6_call.xor_syndrome)
6624                         conf->rmw_level = PARITY_ENABLE_RMW;
6625                 else
6626                         conf->rmw_level = PARITY_DISABLE_RMW;
6627         } else {
6628                 conf->max_degraded = 1;
6629                 conf->rmw_level = PARITY_ENABLE_RMW;
6630         }
6631         conf->algorithm = mddev->new_layout;
6632         conf->reshape_progress = mddev->reshape_position;
6633         if (conf->reshape_progress != MaxSector) {
6634                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6635                 conf->prev_algo = mddev->layout;
6636         } else {
6637                 conf->prev_chunk_sectors = conf->chunk_sectors;
6638                 conf->prev_algo = conf->algorithm;
6639         }
6640
6641         conf->min_nr_stripes = NR_STRIPES;
6642         if (mddev->reshape_position != MaxSector) {
6643                 int stripes = max_t(int,
6644                         ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
6645                         ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
6646                 conf->min_nr_stripes = max(NR_STRIPES, stripes);
6647                 if (conf->min_nr_stripes != NR_STRIPES)
6648                         printk(KERN_INFO
6649                                 "md/raid:%s: force stripe size %d for reshape\n",
6650                                 mdname(mddev), conf->min_nr_stripes);
6651         }
6652         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6653                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6654         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6655         if (grow_stripes(conf, conf->min_nr_stripes)) {
6656                 printk(KERN_ERR
6657                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6658                        mdname(mddev), memory);
6659                 goto abort;
6660         } else
6661                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6662                        mdname(mddev), memory);
6663         /*
6664          * Losing a stripe head costs more than the time to refill it,
6665          * it reduces the queue depth and so can hurt throughput.
6666          * So set it rather large, scaled by number of devices.
6667          */
6668         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6669         conf->shrinker.scan_objects = raid5_cache_scan;
6670         conf->shrinker.count_objects = raid5_cache_count;
6671         conf->shrinker.batch = 128;
6672         conf->shrinker.flags = 0;
6673         register_shrinker(&conf->shrinker);
6674
6675         sprintf(pers_name, "raid%d", mddev->new_level);
6676         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6677         if (!conf->thread) {
6678                 printk(KERN_ERR
6679                        "md/raid:%s: couldn't allocate thread.\n",
6680                        mdname(mddev));
6681                 goto abort;
6682         }
6683
6684         return conf;
6685
6686  abort:
6687         if (conf) {
6688                 free_conf(conf);
6689                 return ERR_PTR(-EIO);
6690         } else
6691                 return ERR_PTR(-ENOMEM);
6692 }
6693
6694 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6695 {
6696         switch (algo) {
6697         case ALGORITHM_PARITY_0:
6698                 if (raid_disk < max_degraded)
6699                         return 1;
6700                 break;
6701         case ALGORITHM_PARITY_N:
6702                 if (raid_disk >= raid_disks - max_degraded)
6703                         return 1;
6704                 break;
6705         case ALGORITHM_PARITY_0_6:
6706                 if (raid_disk == 0 ||
6707                     raid_disk == raid_disks - 1)
6708                         return 1;
6709                 break;
6710         case ALGORITHM_LEFT_ASYMMETRIC_6:
6711         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6712         case ALGORITHM_LEFT_SYMMETRIC_6:
6713         case ALGORITHM_RIGHT_SYMMETRIC_6:
6714                 if (raid_disk == raid_disks - 1)
6715                         return 1;
6716         }
6717         return 0;
6718 }
6719
6720 static int raid5_run(struct mddev *mddev)
6721 {
6722         struct r5conf *conf;
6723         int working_disks = 0;
6724         int dirty_parity_disks = 0;
6725         struct md_rdev *rdev;
6726         struct md_rdev *journal_dev = NULL;
6727         sector_t reshape_offset = 0;
6728         int i;
6729         long long min_offset_diff = 0;
6730         int first = 1;
6731
6732         if (mddev->recovery_cp != MaxSector)
6733                 printk(KERN_NOTICE "md/raid:%s: not clean"
6734                        " -- starting background reconstruction\n",
6735                        mdname(mddev));
6736
6737         rdev_for_each(rdev, mddev) {
6738                 long long diff;
6739
6740                 if (test_bit(Journal, &rdev->flags)) {
6741                         journal_dev = rdev;
6742                         continue;
6743                 }
6744                 if (rdev->raid_disk < 0)
6745                         continue;
6746                 diff = (rdev->new_data_offset - rdev->data_offset);
6747                 if (first) {
6748                         min_offset_diff = diff;
6749                         first = 0;
6750                 } else if (mddev->reshape_backwards &&
6751                          diff < min_offset_diff)
6752                         min_offset_diff = diff;
6753                 else if (!mddev->reshape_backwards &&
6754                          diff > min_offset_diff)
6755                         min_offset_diff = diff;
6756         }
6757
6758         if (mddev->reshape_position != MaxSector) {
6759                 /* Check that we can continue the reshape.
6760                  * Difficulties arise if the stripe we would write to
6761                  * next is at or after the stripe we would read from next.
6762                  * For a reshape that changes the number of devices, this
6763                  * is only possible for a very short time, and mdadm makes
6764                  * sure that time appears to have past before assembling
6765                  * the array.  So we fail if that time hasn't passed.
6766                  * For a reshape that keeps the number of devices the same
6767                  * mdadm must be monitoring the reshape can keeping the
6768                  * critical areas read-only and backed up.  It will start
6769                  * the array in read-only mode, so we check for that.
6770                  */
6771                 sector_t here_new, here_old;
6772                 int old_disks;
6773                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6774                 int chunk_sectors;
6775                 int new_data_disks;
6776
6777                 if (journal_dev) {
6778                         printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6779                                mdname(mddev));
6780                         return -EINVAL;
6781                 }
6782
6783                 if (mddev->new_level != mddev->level) {
6784                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6785                                "required - aborting.\n",
6786                                mdname(mddev));
6787                         return -EINVAL;
6788                 }
6789                 old_disks = mddev->raid_disks - mddev->delta_disks;
6790                 /* reshape_position must be on a new-stripe boundary, and one
6791                  * further up in new geometry must map after here in old
6792                  * geometry.
6793                  * If the chunk sizes are different, then as we perform reshape
6794                  * in units of the largest of the two, reshape_position needs
6795                  * be a multiple of the largest chunk size times new data disks.
6796                  */
6797                 here_new = mddev->reshape_position;
6798                 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6799                 new_data_disks = mddev->raid_disks - max_degraded;
6800                 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6801                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6802                                "on a stripe boundary\n", mdname(mddev));
6803                         return -EINVAL;
6804                 }
6805                 reshape_offset = here_new * chunk_sectors;
6806                 /* here_new is the stripe we will write to */
6807                 here_old = mddev->reshape_position;
6808                 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6809                 /* here_old is the first stripe that we might need to read
6810                  * from */
6811                 if (mddev->delta_disks == 0) {
6812                         /* We cannot be sure it is safe to start an in-place
6813                          * reshape.  It is only safe if user-space is monitoring
6814                          * and taking constant backups.
6815                          * mdadm always starts a situation like this in
6816                          * readonly mode so it can take control before
6817                          * allowing any writes.  So just check for that.
6818                          */
6819                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6820                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6821                                 /* not really in-place - so OK */;
6822                         else if (mddev->ro == 0) {
6823                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6824                                        "must be started in read-only mode "
6825                                        "- aborting\n",
6826                                        mdname(mddev));
6827                                 return -EINVAL;
6828                         }
6829                 } else if (mddev->reshape_backwards
6830                     ? (here_new * chunk_sectors + min_offset_diff <=
6831                        here_old * chunk_sectors)
6832                     : (here_new * chunk_sectors >=
6833                        here_old * chunk_sectors + (-min_offset_diff))) {
6834                         /* Reading from the same stripe as writing to - bad */
6835                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6836                                "auto-recovery - aborting.\n",
6837                                mdname(mddev));
6838                         return -EINVAL;
6839                 }
6840                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6841                        mdname(mddev));
6842                 /* OK, we should be able to continue; */
6843         } else {
6844                 BUG_ON(mddev->level != mddev->new_level);
6845                 BUG_ON(mddev->layout != mddev->new_layout);
6846                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6847                 BUG_ON(mddev->delta_disks != 0);
6848         }
6849
6850         if (mddev->private == NULL)
6851                 conf = setup_conf(mddev);
6852         else
6853                 conf = mddev->private;
6854
6855         if (IS_ERR(conf))
6856                 return PTR_ERR(conf);
6857
6858         if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
6859                 if (!journal_dev) {
6860                         pr_err("md/raid:%s: journal disk is missing, force array readonly\n",
6861                                mdname(mddev));
6862                         mddev->ro = 1;
6863                         set_disk_ro(mddev->gendisk, 1);
6864                 } else if (mddev->recovery_cp == MaxSector)
6865                         set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
6866         }
6867
6868         conf->min_offset_diff = min_offset_diff;
6869         mddev->thread = conf->thread;
6870         conf->thread = NULL;
6871         mddev->private = conf;
6872
6873         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6874              i++) {
6875                 rdev = conf->disks[i].rdev;
6876                 if (!rdev && conf->disks[i].replacement) {
6877                         /* The replacement is all we have yet */
6878                         rdev = conf->disks[i].replacement;
6879                         conf->disks[i].replacement = NULL;
6880                         clear_bit(Replacement, &rdev->flags);
6881                         conf->disks[i].rdev = rdev;
6882                 }
6883                 if (!rdev)
6884                         continue;
6885                 if (conf->disks[i].replacement &&
6886                     conf->reshape_progress != MaxSector) {
6887                         /* replacements and reshape simply do not mix. */
6888                         printk(KERN_ERR "md: cannot handle concurrent "
6889                                "replacement and reshape.\n");
6890                         goto abort;
6891                 }
6892                 if (test_bit(In_sync, &rdev->flags)) {
6893                         working_disks++;
6894                         continue;
6895                 }
6896                 /* This disc is not fully in-sync.  However if it
6897                  * just stored parity (beyond the recovery_offset),
6898                  * when we don't need to be concerned about the
6899                  * array being dirty.
6900                  * When reshape goes 'backwards', we never have
6901                  * partially completed devices, so we only need
6902                  * to worry about reshape going forwards.
6903                  */
6904                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6905                 if (mddev->major_version == 0 &&
6906                     mddev->minor_version > 90)
6907                         rdev->recovery_offset = reshape_offset;
6908
6909                 if (rdev->recovery_offset < reshape_offset) {
6910                         /* We need to check old and new layout */
6911                         if (!only_parity(rdev->raid_disk,
6912                                          conf->algorithm,
6913                                          conf->raid_disks,
6914                                          conf->max_degraded))
6915                                 continue;
6916                 }
6917                 if (!only_parity(rdev->raid_disk,
6918                                  conf->prev_algo,
6919                                  conf->previous_raid_disks,
6920                                  conf->max_degraded))
6921                         continue;
6922                 dirty_parity_disks++;
6923         }
6924
6925         /*
6926          * 0 for a fully functional array, 1 or 2 for a degraded array.
6927          */
6928         mddev->degraded = calc_degraded(conf);
6929
6930         if (has_failed(conf)) {
6931                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6932                         " (%d/%d failed)\n",
6933                         mdname(mddev), mddev->degraded, conf->raid_disks);
6934                 goto abort;
6935         }
6936
6937         /* device size must be a multiple of chunk size */
6938         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6939         mddev->resync_max_sectors = mddev->dev_sectors;
6940
6941         if (mddev->degraded > dirty_parity_disks &&
6942             mddev->recovery_cp != MaxSector) {
6943                 if (mddev->ok_start_degraded)
6944                         printk(KERN_WARNING
6945                                "md/raid:%s: starting dirty degraded array"
6946                                " - data corruption possible.\n",
6947                                mdname(mddev));
6948                 else {
6949                         printk(KERN_ERR
6950                                "md/raid:%s: cannot start dirty degraded array.\n",
6951                                mdname(mddev));
6952                         goto abort;
6953                 }
6954         }
6955
6956         if (mddev->degraded == 0)
6957                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6958                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6959                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6960                        mddev->new_layout);
6961         else
6962                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6963                        " out of %d devices, algorithm %d\n",
6964                        mdname(mddev), conf->level,
6965                        mddev->raid_disks - mddev->degraded,
6966                        mddev->raid_disks, mddev->new_layout);
6967
6968         print_raid5_conf(conf);
6969
6970         if (conf->reshape_progress != MaxSector) {
6971                 conf->reshape_safe = conf->reshape_progress;
6972                 atomic_set(&conf->reshape_stripes, 0);
6973                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6974                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6975                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6976                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6977                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6978                                                         "reshape");
6979         }
6980
6981         /* Ok, everything is just fine now */
6982         if (mddev->to_remove == &raid5_attrs_group)
6983                 mddev->to_remove = NULL;
6984         else if (mddev->kobj.sd &&
6985             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6986                 printk(KERN_WARNING
6987                        "raid5: failed to create sysfs attributes for %s\n",
6988                        mdname(mddev));
6989         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6990
6991         if (mddev->queue) {
6992                 int chunk_size;
6993                 bool discard_supported = true;
6994                 /* read-ahead size must cover two whole stripes, which
6995                  * is 2 * (datadisks) * chunksize where 'n' is the
6996                  * number of raid devices
6997                  */
6998                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6999                 int stripe = data_disks *
7000                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7001                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7002                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7003
7004                 chunk_size = mddev->chunk_sectors << 9;
7005                 blk_queue_io_min(mddev->queue, chunk_size);
7006                 blk_queue_io_opt(mddev->queue, chunk_size *
7007                                  (conf->raid_disks - conf->max_degraded));
7008                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7009                 /*
7010                  * We can only discard a whole stripe. It doesn't make sense to
7011                  * discard data disk but write parity disk
7012                  */
7013                 stripe = stripe * PAGE_SIZE;
7014                 /* Round up to power of 2, as discard handling
7015                  * currently assumes that */
7016                 while ((stripe-1) & stripe)
7017                         stripe = (stripe | (stripe-1)) + 1;
7018                 mddev->queue->limits.discard_alignment = stripe;
7019                 mddev->queue->limits.discard_granularity = stripe;
7020                 /*
7021                  * unaligned part of discard request will be ignored, so can't
7022                  * guarantee discard_zeroes_data
7023                  */
7024                 mddev->queue->limits.discard_zeroes_data = 0;
7025
7026                 blk_queue_max_write_same_sectors(mddev->queue, 0);
7027
7028                 rdev_for_each(rdev, mddev) {
7029                         disk_stack_limits(mddev->gendisk, rdev->bdev,
7030                                           rdev->data_offset << 9);
7031                         disk_stack_limits(mddev->gendisk, rdev->bdev,
7032                                           rdev->new_data_offset << 9);
7033                         /*
7034                          * discard_zeroes_data is required, otherwise data
7035                          * could be lost. Consider a scenario: discard a stripe
7036                          * (the stripe could be inconsistent if
7037                          * discard_zeroes_data is 0); write one disk of the
7038                          * stripe (the stripe could be inconsistent again
7039                          * depending on which disks are used to calculate
7040                          * parity); the disk is broken; The stripe data of this
7041                          * disk is lost.
7042                          */
7043                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7044                             !bdev_get_queue(rdev->bdev)->
7045                                                 limits.discard_zeroes_data)
7046                                 discard_supported = false;
7047                         /* Unfortunately, discard_zeroes_data is not currently
7048                          * a guarantee - just a hint.  So we only allow DISCARD
7049                          * if the sysadmin has confirmed that only safe devices
7050                          * are in use by setting a module parameter.
7051                          */
7052                         if (!devices_handle_discard_safely) {
7053                                 if (discard_supported) {
7054                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7055                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7056                                 }
7057                                 discard_supported = false;
7058                         }
7059                 }
7060
7061                 if (discard_supported &&
7062                     mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7063                     mddev->queue->limits.discard_granularity >= stripe)
7064                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7065                                                 mddev->queue);
7066                 else
7067                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7068                                                 mddev->queue);
7069         }
7070
7071         if (journal_dev) {
7072                 char b[BDEVNAME_SIZE];
7073
7074                 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7075                        mdname(mddev), bdevname(journal_dev->bdev, b));
7076                 r5l_init_log(conf, journal_dev);
7077         }
7078
7079         return 0;
7080 abort:
7081         md_unregister_thread(&mddev->thread);
7082         print_raid5_conf(conf);
7083         free_conf(conf);
7084         mddev->private = NULL;
7085         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
7086         return -EIO;
7087 }
7088
7089 static void raid5_free(struct mddev *mddev, void *priv)
7090 {
7091         struct r5conf *conf = priv;
7092
7093         free_conf(conf);
7094         mddev->to_remove = &raid5_attrs_group;
7095 }
7096
7097 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7098 {
7099         struct r5conf *conf = mddev->private;
7100         int i;
7101
7102         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7103                 conf->chunk_sectors / 2, mddev->layout);
7104         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7105         rcu_read_lock();
7106         for (i = 0; i < conf->raid_disks; i++) {
7107                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7108                 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7109         }
7110         rcu_read_unlock();
7111         seq_printf (seq, "]");
7112 }
7113
7114 static void print_raid5_conf (struct r5conf *conf)
7115 {
7116         int i;
7117         struct disk_info *tmp;
7118
7119         printk(KERN_DEBUG "RAID conf printout:\n");
7120         if (!conf) {
7121                 printk("(conf==NULL)\n");
7122                 return;
7123         }
7124         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7125                conf->raid_disks,
7126                conf->raid_disks - conf->mddev->degraded);
7127
7128         for (i = 0; i < conf->raid_disks; i++) {
7129                 char b[BDEVNAME_SIZE];
7130                 tmp = conf->disks + i;
7131                 if (tmp->rdev)
7132                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7133                                i, !test_bit(Faulty, &tmp->rdev->flags),
7134                                bdevname(tmp->rdev->bdev, b));
7135         }
7136 }
7137
7138 static int raid5_spare_active(struct mddev *mddev)
7139 {
7140         int i;
7141         struct r5conf *conf = mddev->private;
7142         struct disk_info *tmp;
7143         int count = 0;
7144         unsigned long flags;
7145
7146         for (i = 0; i < conf->raid_disks; i++) {
7147                 tmp = conf->disks + i;
7148                 if (tmp->replacement
7149                     && tmp->replacement->recovery_offset == MaxSector
7150                     && !test_bit(Faulty, &tmp->replacement->flags)
7151                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7152                         /* Replacement has just become active. */
7153                         if (!tmp->rdev
7154                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7155                                 count++;
7156                         if (tmp->rdev) {
7157                                 /* Replaced device not technically faulty,
7158                                  * but we need to be sure it gets removed
7159                                  * and never re-added.
7160                                  */
7161                                 set_bit(Faulty, &tmp->rdev->flags);
7162                                 sysfs_notify_dirent_safe(
7163                                         tmp->rdev->sysfs_state);
7164                         }
7165                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7166                 } else if (tmp->rdev
7167                     && tmp->rdev->recovery_offset == MaxSector
7168                     && !test_bit(Faulty, &tmp->rdev->flags)
7169                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7170                         count++;
7171                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7172                 }
7173         }
7174         spin_lock_irqsave(&conf->device_lock, flags);
7175         mddev->degraded = calc_degraded(conf);
7176         spin_unlock_irqrestore(&conf->device_lock, flags);
7177         print_raid5_conf(conf);
7178         return count;
7179 }
7180
7181 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7182 {
7183         struct r5conf *conf = mddev->private;
7184         int err = 0;
7185         int number = rdev->raid_disk;
7186         struct md_rdev **rdevp;
7187         struct disk_info *p = conf->disks + number;
7188
7189         print_raid5_conf(conf);
7190         if (test_bit(Journal, &rdev->flags) && conf->log) {
7191                 struct r5l_log *log;
7192                 /*
7193                  * we can't wait pending write here, as this is called in
7194                  * raid5d, wait will deadlock.
7195                  */
7196                 if (atomic_read(&mddev->writes_pending))
7197                         return -EBUSY;
7198                 log = conf->log;
7199                 conf->log = NULL;
7200                 synchronize_rcu();
7201                 r5l_exit_log(log);
7202                 return 0;
7203         }
7204         if (rdev == p->rdev)
7205                 rdevp = &p->rdev;
7206         else if (rdev == p->replacement)
7207                 rdevp = &p->replacement;
7208         else
7209                 return 0;
7210
7211         if (number >= conf->raid_disks &&
7212             conf->reshape_progress == MaxSector)
7213                 clear_bit(In_sync, &rdev->flags);
7214
7215         if (test_bit(In_sync, &rdev->flags) ||
7216             atomic_read(&rdev->nr_pending)) {
7217                 err = -EBUSY;
7218                 goto abort;
7219         }
7220         /* Only remove non-faulty devices if recovery
7221          * isn't possible.
7222          */
7223         if (!test_bit(Faulty, &rdev->flags) &&
7224             mddev->recovery_disabled != conf->recovery_disabled &&
7225             !has_failed(conf) &&
7226             (!p->replacement || p->replacement == rdev) &&
7227             number < conf->raid_disks) {
7228                 err = -EBUSY;
7229                 goto abort;
7230         }
7231         *rdevp = NULL;
7232         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7233                 synchronize_rcu();
7234                 if (atomic_read(&rdev->nr_pending)) {
7235                         /* lost the race, try later */
7236                         err = -EBUSY;
7237                         *rdevp = rdev;
7238                 }
7239         }
7240         if (p->replacement) {
7241                 /* We must have just cleared 'rdev' */
7242                 p->rdev = p->replacement;
7243                 clear_bit(Replacement, &p->replacement->flags);
7244                 smp_mb(); /* Make sure other CPUs may see both as identical
7245                            * but will never see neither - if they are careful
7246                            */
7247                 p->replacement = NULL;
7248                 clear_bit(WantReplacement, &rdev->flags);
7249         } else
7250                 /* We might have just removed the Replacement as faulty-
7251                  * clear the bit just in case
7252                  */
7253                 clear_bit(WantReplacement, &rdev->flags);
7254 abort:
7255
7256         print_raid5_conf(conf);
7257         return err;
7258 }
7259
7260 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7261 {
7262         struct r5conf *conf = mddev->private;
7263         int err = -EEXIST;
7264         int disk;
7265         struct disk_info *p;
7266         int first = 0;
7267         int last = conf->raid_disks - 1;
7268
7269         if (test_bit(Journal, &rdev->flags)) {
7270                 char b[BDEVNAME_SIZE];
7271                 if (conf->log)
7272                         return -EBUSY;
7273
7274                 rdev->raid_disk = 0;
7275                 /*
7276                  * The array is in readonly mode if journal is missing, so no
7277                  * write requests running. We should be safe
7278                  */
7279                 r5l_init_log(conf, rdev);
7280                 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7281                        mdname(mddev), bdevname(rdev->bdev, b));
7282                 return 0;
7283         }
7284         if (mddev->recovery_disabled == conf->recovery_disabled)
7285                 return -EBUSY;
7286
7287         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7288                 /* no point adding a device */
7289                 return -EINVAL;
7290
7291         if (rdev->raid_disk >= 0)
7292                 first = last = rdev->raid_disk;
7293
7294         /*
7295          * find the disk ... but prefer rdev->saved_raid_disk
7296          * if possible.
7297          */
7298         if (rdev->saved_raid_disk >= 0 &&
7299             rdev->saved_raid_disk >= first &&
7300             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7301                 first = rdev->saved_raid_disk;
7302
7303         for (disk = first; disk <= last; disk++) {
7304                 p = conf->disks + disk;
7305                 if (p->rdev == NULL) {
7306                         clear_bit(In_sync, &rdev->flags);
7307                         rdev->raid_disk = disk;
7308                         err = 0;
7309                         if (rdev->saved_raid_disk != disk)
7310                                 conf->fullsync = 1;
7311                         rcu_assign_pointer(p->rdev, rdev);
7312                         goto out;
7313                 }
7314         }
7315         for (disk = first; disk <= last; disk++) {
7316                 p = conf->disks + disk;
7317                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7318                     p->replacement == NULL) {
7319                         clear_bit(In_sync, &rdev->flags);
7320                         set_bit(Replacement, &rdev->flags);
7321                         rdev->raid_disk = disk;
7322                         err = 0;
7323                         conf->fullsync = 1;
7324                         rcu_assign_pointer(p->replacement, rdev);
7325                         break;
7326                 }
7327         }
7328 out:
7329         print_raid5_conf(conf);
7330         return err;
7331 }
7332
7333 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7334 {
7335         /* no resync is happening, and there is enough space
7336          * on all devices, so we can resize.
7337          * We need to make sure resync covers any new space.
7338          * If the array is shrinking we should possibly wait until
7339          * any io in the removed space completes, but it hardly seems
7340          * worth it.
7341          */
7342         sector_t newsize;
7343         struct r5conf *conf = mddev->private;
7344
7345         if (conf->log)
7346                 return -EINVAL;
7347         sectors &= ~((sector_t)conf->chunk_sectors - 1);
7348         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7349         if (mddev->external_size &&
7350             mddev->array_sectors > newsize)
7351                 return -EINVAL;
7352         if (mddev->bitmap) {
7353                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7354                 if (ret)
7355                         return ret;
7356         }
7357         md_set_array_sectors(mddev, newsize);
7358         set_capacity(mddev->gendisk, mddev->array_sectors);
7359         revalidate_disk(mddev->gendisk);
7360         if (sectors > mddev->dev_sectors &&
7361             mddev->recovery_cp > mddev->dev_sectors) {
7362                 mddev->recovery_cp = mddev->dev_sectors;
7363                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7364         }
7365         mddev->dev_sectors = sectors;
7366         mddev->resync_max_sectors = sectors;
7367         return 0;
7368 }
7369
7370 static int check_stripe_cache(struct mddev *mddev)
7371 {
7372         /* Can only proceed if there are plenty of stripe_heads.
7373          * We need a minimum of one full stripe,, and for sensible progress
7374          * it is best to have about 4 times that.
7375          * If we require 4 times, then the default 256 4K stripe_heads will
7376          * allow for chunk sizes up to 256K, which is probably OK.
7377          * If the chunk size is greater, user-space should request more
7378          * stripe_heads first.
7379          */
7380         struct r5conf *conf = mddev->private;
7381         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7382             > conf->min_nr_stripes ||
7383             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7384             > conf->min_nr_stripes) {
7385                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7386                        mdname(mddev),
7387                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7388                         / STRIPE_SIZE)*4);
7389                 return 0;
7390         }
7391         return 1;
7392 }
7393
7394 static int check_reshape(struct mddev *mddev)
7395 {
7396         struct r5conf *conf = mddev->private;
7397
7398         if (conf->log)
7399                 return -EINVAL;
7400         if (mddev->delta_disks == 0 &&
7401             mddev->new_layout == mddev->layout &&
7402             mddev->new_chunk_sectors == mddev->chunk_sectors)
7403                 return 0; /* nothing to do */
7404         if (has_failed(conf))
7405                 return -EINVAL;
7406         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7407                 /* We might be able to shrink, but the devices must
7408                  * be made bigger first.
7409                  * For raid6, 4 is the minimum size.
7410                  * Otherwise 2 is the minimum
7411                  */
7412                 int min = 2;
7413                 if (mddev->level == 6)
7414                         min = 4;
7415                 if (mddev->raid_disks + mddev->delta_disks < min)
7416                         return -EINVAL;
7417         }
7418
7419         if (!check_stripe_cache(mddev))
7420                 return -ENOSPC;
7421
7422         if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7423             mddev->delta_disks > 0)
7424                 if (resize_chunks(conf,
7425                                   conf->previous_raid_disks
7426                                   + max(0, mddev->delta_disks),
7427                                   max(mddev->new_chunk_sectors,
7428                                       mddev->chunk_sectors)
7429                             ) < 0)
7430                         return -ENOMEM;
7431         return resize_stripes(conf, (conf->previous_raid_disks
7432                                      + mddev->delta_disks));
7433 }
7434
7435 static int raid5_start_reshape(struct mddev *mddev)
7436 {
7437         struct r5conf *conf = mddev->private;
7438         struct md_rdev *rdev;
7439         int spares = 0;
7440         unsigned long flags;
7441
7442         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7443                 return -EBUSY;
7444
7445         if (!check_stripe_cache(mddev))
7446                 return -ENOSPC;
7447
7448         if (has_failed(conf))
7449                 return -EINVAL;
7450
7451         rdev_for_each(rdev, mddev) {
7452                 if (!test_bit(In_sync, &rdev->flags)
7453                     && !test_bit(Faulty, &rdev->flags))
7454                         spares++;
7455         }
7456
7457         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7458                 /* Not enough devices even to make a degraded array
7459                  * of that size
7460                  */
7461                 return -EINVAL;
7462
7463         /* Refuse to reduce size of the array.  Any reductions in
7464          * array size must be through explicit setting of array_size
7465          * attribute.
7466          */
7467         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7468             < mddev->array_sectors) {
7469                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7470                        "before number of disks\n", mdname(mddev));
7471                 return -EINVAL;
7472         }
7473
7474         atomic_set(&conf->reshape_stripes, 0);
7475         spin_lock_irq(&conf->device_lock);
7476         write_seqcount_begin(&conf->gen_lock);
7477         conf->previous_raid_disks = conf->raid_disks;
7478         conf->raid_disks += mddev->delta_disks;
7479         conf->prev_chunk_sectors = conf->chunk_sectors;
7480         conf->chunk_sectors = mddev->new_chunk_sectors;
7481         conf->prev_algo = conf->algorithm;
7482         conf->algorithm = mddev->new_layout;
7483         conf->generation++;
7484         /* Code that selects data_offset needs to see the generation update
7485          * if reshape_progress has been set - so a memory barrier needed.
7486          */
7487         smp_mb();
7488         if (mddev->reshape_backwards)
7489                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7490         else
7491                 conf->reshape_progress = 0;
7492         conf->reshape_safe = conf->reshape_progress;
7493         write_seqcount_end(&conf->gen_lock);
7494         spin_unlock_irq(&conf->device_lock);
7495
7496         /* Now make sure any requests that proceeded on the assumption
7497          * the reshape wasn't running - like Discard or Read - have
7498          * completed.
7499          */
7500         mddev_suspend(mddev);
7501         mddev_resume(mddev);
7502
7503         /* Add some new drives, as many as will fit.
7504          * We know there are enough to make the newly sized array work.
7505          * Don't add devices if we are reducing the number of
7506          * devices in the array.  This is because it is not possible
7507          * to correctly record the "partially reconstructed" state of
7508          * such devices during the reshape and confusion could result.
7509          */
7510         if (mddev->delta_disks >= 0) {
7511                 rdev_for_each(rdev, mddev)
7512                         if (rdev->raid_disk < 0 &&
7513                             !test_bit(Faulty, &rdev->flags)) {
7514                                 if (raid5_add_disk(mddev, rdev) == 0) {
7515                                         if (rdev->raid_disk
7516                                             >= conf->previous_raid_disks)
7517                                                 set_bit(In_sync, &rdev->flags);
7518                                         else
7519                                                 rdev->recovery_offset = 0;
7520
7521                                         if (sysfs_link_rdev(mddev, rdev))
7522                                                 /* Failure here is OK */;
7523                                 }
7524                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7525                                    && !test_bit(Faulty, &rdev->flags)) {
7526                                 /* This is a spare that was manually added */
7527                                 set_bit(In_sync, &rdev->flags);
7528                         }
7529
7530                 /* When a reshape changes the number of devices,
7531                  * ->degraded is measured against the larger of the
7532                  * pre and post number of devices.
7533                  */
7534                 spin_lock_irqsave(&conf->device_lock, flags);
7535                 mddev->degraded = calc_degraded(conf);
7536                 spin_unlock_irqrestore(&conf->device_lock, flags);
7537         }
7538         mddev->raid_disks = conf->raid_disks;
7539         mddev->reshape_position = conf->reshape_progress;
7540         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7541
7542         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7543         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7544         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7545         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7546         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7547         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7548                                                 "reshape");
7549         if (!mddev->sync_thread) {
7550                 mddev->recovery = 0;
7551                 spin_lock_irq(&conf->device_lock);
7552                 write_seqcount_begin(&conf->gen_lock);
7553                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7554                 mddev->new_chunk_sectors =
7555                         conf->chunk_sectors = conf->prev_chunk_sectors;
7556                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7557                 rdev_for_each(rdev, mddev)
7558                         rdev->new_data_offset = rdev->data_offset;
7559                 smp_wmb();
7560                 conf->generation --;
7561                 conf->reshape_progress = MaxSector;
7562                 mddev->reshape_position = MaxSector;
7563                 write_seqcount_end(&conf->gen_lock);
7564                 spin_unlock_irq(&conf->device_lock);
7565                 return -EAGAIN;
7566         }
7567         conf->reshape_checkpoint = jiffies;
7568         md_wakeup_thread(mddev->sync_thread);
7569         md_new_event(mddev);
7570         return 0;
7571 }
7572
7573 /* This is called from the reshape thread and should make any
7574  * changes needed in 'conf'
7575  */
7576 static void end_reshape(struct r5conf *conf)
7577 {
7578
7579         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7580                 struct md_rdev *rdev;
7581
7582                 spin_lock_irq(&conf->device_lock);
7583                 conf->previous_raid_disks = conf->raid_disks;
7584                 rdev_for_each(rdev, conf->mddev)
7585                         rdev->data_offset = rdev->new_data_offset;
7586                 smp_wmb();
7587                 conf->reshape_progress = MaxSector;
7588                 conf->mddev->reshape_position = MaxSector;
7589                 spin_unlock_irq(&conf->device_lock);
7590                 wake_up(&conf->wait_for_overlap);
7591
7592                 /* read-ahead size must cover two whole stripes, which is
7593                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7594                  */
7595                 if (conf->mddev->queue) {
7596                         int data_disks = conf->raid_disks - conf->max_degraded;
7597                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7598                                                    / PAGE_SIZE);
7599                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7600                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7601                 }
7602         }
7603 }
7604
7605 /* This is called from the raid5d thread with mddev_lock held.
7606  * It makes config changes to the device.
7607  */
7608 static void raid5_finish_reshape(struct mddev *mddev)
7609 {
7610         struct r5conf *conf = mddev->private;
7611
7612         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7613
7614                 if (mddev->delta_disks > 0) {
7615                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7616                         if (mddev->queue) {
7617                                 set_capacity(mddev->gendisk, mddev->array_sectors);
7618                                 revalidate_disk(mddev->gendisk);
7619                         }
7620                 } else {
7621                         int d;
7622                         spin_lock_irq(&conf->device_lock);
7623                         mddev->degraded = calc_degraded(conf);
7624                         spin_unlock_irq(&conf->device_lock);
7625                         for (d = conf->raid_disks ;
7626                              d < conf->raid_disks - mddev->delta_disks;
7627                              d++) {
7628                                 struct md_rdev *rdev = conf->disks[d].rdev;
7629                                 if (rdev)
7630                                         clear_bit(In_sync, &rdev->flags);
7631                                 rdev = conf->disks[d].replacement;
7632                                 if (rdev)
7633                                         clear_bit(In_sync, &rdev->flags);
7634                         }
7635                 }
7636                 mddev->layout = conf->algorithm;
7637                 mddev->chunk_sectors = conf->chunk_sectors;
7638                 mddev->reshape_position = MaxSector;
7639                 mddev->delta_disks = 0;
7640                 mddev->reshape_backwards = 0;
7641         }
7642 }
7643
7644 static void raid5_quiesce(struct mddev *mddev, int state)
7645 {
7646         struct r5conf *conf = mddev->private;
7647
7648         switch(state) {
7649         case 2: /* resume for a suspend */
7650                 wake_up(&conf->wait_for_overlap);
7651                 break;
7652
7653         case 1: /* stop all writes */
7654                 lock_all_device_hash_locks_irq(conf);
7655                 /* '2' tells resync/reshape to pause so that all
7656                  * active stripes can drain
7657                  */
7658                 conf->quiesce = 2;
7659                 wait_event_cmd(conf->wait_for_quiescent,
7660                                     atomic_read(&conf->active_stripes) == 0 &&
7661                                     atomic_read(&conf->active_aligned_reads) == 0,
7662                                     unlock_all_device_hash_locks_irq(conf),
7663                                     lock_all_device_hash_locks_irq(conf));
7664                 conf->quiesce = 1;
7665                 unlock_all_device_hash_locks_irq(conf);
7666                 /* allow reshape to continue */
7667                 wake_up(&conf->wait_for_overlap);
7668                 break;
7669
7670         case 0: /* re-enable writes */
7671                 lock_all_device_hash_locks_irq(conf);
7672                 conf->quiesce = 0;
7673                 wake_up(&conf->wait_for_quiescent);
7674                 wake_up(&conf->wait_for_overlap);
7675                 unlock_all_device_hash_locks_irq(conf);
7676                 break;
7677         }
7678         r5l_quiesce(conf->log, state);
7679 }
7680
7681 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7682 {
7683         struct r0conf *raid0_conf = mddev->private;
7684         sector_t sectors;
7685
7686         /* for raid0 takeover only one zone is supported */
7687         if (raid0_conf->nr_strip_zones > 1) {
7688                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7689                        mdname(mddev));
7690                 return ERR_PTR(-EINVAL);
7691         }
7692
7693         sectors = raid0_conf->strip_zone[0].zone_end;
7694         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7695         mddev->dev_sectors = sectors;
7696         mddev->new_level = level;
7697         mddev->new_layout = ALGORITHM_PARITY_N;
7698         mddev->new_chunk_sectors = mddev->chunk_sectors;
7699         mddev->raid_disks += 1;
7700         mddev->delta_disks = 1;
7701         /* make sure it will be not marked as dirty */
7702         mddev->recovery_cp = MaxSector;
7703
7704         return setup_conf(mddev);
7705 }
7706
7707 static void *raid5_takeover_raid1(struct mddev *mddev)
7708 {
7709         int chunksect;
7710
7711         if (mddev->raid_disks != 2 ||
7712             mddev->degraded > 1)
7713                 return ERR_PTR(-EINVAL);
7714
7715         /* Should check if there are write-behind devices? */
7716
7717         chunksect = 64*2; /* 64K by default */
7718
7719         /* The array must be an exact multiple of chunksize */
7720         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7721                 chunksect >>= 1;
7722
7723         if ((chunksect<<9) < STRIPE_SIZE)
7724                 /* array size does not allow a suitable chunk size */
7725                 return ERR_PTR(-EINVAL);
7726
7727         mddev->new_level = 5;
7728         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7729         mddev->new_chunk_sectors = chunksect;
7730
7731         return setup_conf(mddev);
7732 }
7733
7734 static void *raid5_takeover_raid6(struct mddev *mddev)
7735 {
7736         int new_layout;
7737
7738         switch (mddev->layout) {
7739         case ALGORITHM_LEFT_ASYMMETRIC_6:
7740                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7741                 break;
7742         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7743                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7744                 break;
7745         case ALGORITHM_LEFT_SYMMETRIC_6:
7746                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7747                 break;
7748         case ALGORITHM_RIGHT_SYMMETRIC_6:
7749                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7750                 break;
7751         case ALGORITHM_PARITY_0_6:
7752                 new_layout = ALGORITHM_PARITY_0;
7753                 break;
7754         case ALGORITHM_PARITY_N:
7755                 new_layout = ALGORITHM_PARITY_N;
7756                 break;
7757         default:
7758                 return ERR_PTR(-EINVAL);
7759         }
7760         mddev->new_level = 5;
7761         mddev->new_layout = new_layout;
7762         mddev->delta_disks = -1;
7763         mddev->raid_disks -= 1;
7764         return setup_conf(mddev);
7765 }
7766
7767 static int raid5_check_reshape(struct mddev *mddev)
7768 {
7769         /* For a 2-drive array, the layout and chunk size can be changed
7770          * immediately as not restriping is needed.
7771          * For larger arrays we record the new value - after validation
7772          * to be used by a reshape pass.
7773          */
7774         struct r5conf *conf = mddev->private;
7775         int new_chunk = mddev->new_chunk_sectors;
7776
7777         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7778                 return -EINVAL;
7779         if (new_chunk > 0) {
7780                 if (!is_power_of_2(new_chunk))
7781                         return -EINVAL;
7782                 if (new_chunk < (PAGE_SIZE>>9))
7783                         return -EINVAL;
7784                 if (mddev->array_sectors & (new_chunk-1))
7785                         /* not factor of array size */
7786                         return -EINVAL;
7787         }
7788
7789         /* They look valid */
7790
7791         if (mddev->raid_disks == 2) {
7792                 /* can make the change immediately */
7793                 if (mddev->new_layout >= 0) {
7794                         conf->algorithm = mddev->new_layout;
7795                         mddev->layout = mddev->new_layout;
7796                 }
7797                 if (new_chunk > 0) {
7798                         conf->chunk_sectors = new_chunk ;
7799                         mddev->chunk_sectors = new_chunk;
7800                 }
7801                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7802                 md_wakeup_thread(mddev->thread);
7803         }
7804         return check_reshape(mddev);
7805 }
7806
7807 static int raid6_check_reshape(struct mddev *mddev)
7808 {
7809         int new_chunk = mddev->new_chunk_sectors;
7810
7811         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7812                 return -EINVAL;
7813         if (new_chunk > 0) {
7814                 if (!is_power_of_2(new_chunk))
7815                         return -EINVAL;
7816                 if (new_chunk < (PAGE_SIZE >> 9))
7817                         return -EINVAL;
7818                 if (mddev->array_sectors & (new_chunk-1))
7819                         /* not factor of array size */
7820                         return -EINVAL;
7821         }
7822
7823         /* They look valid */
7824         return check_reshape(mddev);
7825 }
7826
7827 static void *raid5_takeover(struct mddev *mddev)
7828 {
7829         /* raid5 can take over:
7830          *  raid0 - if there is only one strip zone - make it a raid4 layout
7831          *  raid1 - if there are two drives.  We need to know the chunk size
7832          *  raid4 - trivial - just use a raid4 layout.
7833          *  raid6 - Providing it is a *_6 layout
7834          */
7835         if (mddev->level == 0)
7836                 return raid45_takeover_raid0(mddev, 5);
7837         if (mddev->level == 1)
7838                 return raid5_takeover_raid1(mddev);
7839         if (mddev->level == 4) {
7840                 mddev->new_layout = ALGORITHM_PARITY_N;
7841                 mddev->new_level = 5;
7842                 return setup_conf(mddev);
7843         }
7844         if (mddev->level == 6)
7845                 return raid5_takeover_raid6(mddev);
7846
7847         return ERR_PTR(-EINVAL);
7848 }
7849
7850 static void *raid4_takeover(struct mddev *mddev)
7851 {
7852         /* raid4 can take over:
7853          *  raid0 - if there is only one strip zone
7854          *  raid5 - if layout is right
7855          */
7856         if (mddev->level == 0)
7857                 return raid45_takeover_raid0(mddev, 4);
7858         if (mddev->level == 5 &&
7859             mddev->layout == ALGORITHM_PARITY_N) {
7860                 mddev->new_layout = 0;
7861                 mddev->new_level = 4;
7862                 return setup_conf(mddev);
7863         }
7864         return ERR_PTR(-EINVAL);
7865 }
7866
7867 static struct md_personality raid5_personality;
7868
7869 static void *raid6_takeover(struct mddev *mddev)
7870 {
7871         /* Currently can only take over a raid5.  We map the
7872          * personality to an equivalent raid6 personality
7873          * with the Q block at the end.
7874          */
7875         int new_layout;
7876
7877         if (mddev->pers != &raid5_personality)
7878                 return ERR_PTR(-EINVAL);
7879         if (mddev->degraded > 1)
7880                 return ERR_PTR(-EINVAL);
7881         if (mddev->raid_disks > 253)
7882                 return ERR_PTR(-EINVAL);
7883         if (mddev->raid_disks < 3)
7884                 return ERR_PTR(-EINVAL);
7885
7886         switch (mddev->layout) {
7887         case ALGORITHM_LEFT_ASYMMETRIC:
7888                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7889                 break;
7890         case ALGORITHM_RIGHT_ASYMMETRIC:
7891                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7892                 break;
7893         case ALGORITHM_LEFT_SYMMETRIC:
7894                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7895                 break;
7896         case ALGORITHM_RIGHT_SYMMETRIC:
7897                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7898                 break;
7899         case ALGORITHM_PARITY_0:
7900                 new_layout = ALGORITHM_PARITY_0_6;
7901                 break;
7902         case ALGORITHM_PARITY_N:
7903                 new_layout = ALGORITHM_PARITY_N;
7904                 break;
7905         default:
7906                 return ERR_PTR(-EINVAL);
7907         }
7908         mddev->new_level = 6;
7909         mddev->new_layout = new_layout;
7910         mddev->delta_disks = 1;
7911         mddev->raid_disks += 1;
7912         return setup_conf(mddev);
7913 }
7914
7915 static struct md_personality raid6_personality =
7916 {
7917         .name           = "raid6",
7918         .level          = 6,
7919         .owner          = THIS_MODULE,
7920         .make_request   = raid5_make_request,
7921         .run            = raid5_run,
7922         .free           = raid5_free,
7923         .status         = raid5_status,
7924         .error_handler  = raid5_error,
7925         .hot_add_disk   = raid5_add_disk,
7926         .hot_remove_disk= raid5_remove_disk,
7927         .spare_active   = raid5_spare_active,
7928         .sync_request   = raid5_sync_request,
7929         .resize         = raid5_resize,
7930         .size           = raid5_size,
7931         .check_reshape  = raid6_check_reshape,
7932         .start_reshape  = raid5_start_reshape,
7933         .finish_reshape = raid5_finish_reshape,
7934         .quiesce        = raid5_quiesce,
7935         .takeover       = raid6_takeover,
7936         .congested      = raid5_congested,
7937 };
7938 static struct md_personality raid5_personality =
7939 {
7940         .name           = "raid5",
7941         .level          = 5,
7942         .owner          = THIS_MODULE,
7943         .make_request   = raid5_make_request,
7944         .run            = raid5_run,
7945         .free           = raid5_free,
7946         .status         = raid5_status,
7947         .error_handler  = raid5_error,
7948         .hot_add_disk   = raid5_add_disk,
7949         .hot_remove_disk= raid5_remove_disk,
7950         .spare_active   = raid5_spare_active,
7951         .sync_request   = raid5_sync_request,
7952         .resize         = raid5_resize,
7953         .size           = raid5_size,
7954         .check_reshape  = raid5_check_reshape,
7955         .start_reshape  = raid5_start_reshape,
7956         .finish_reshape = raid5_finish_reshape,
7957         .quiesce        = raid5_quiesce,
7958         .takeover       = raid5_takeover,
7959         .congested      = raid5_congested,
7960 };
7961
7962 static struct md_personality raid4_personality =
7963 {
7964         .name           = "raid4",
7965         .level          = 4,
7966         .owner          = THIS_MODULE,
7967         .make_request   = raid5_make_request,
7968         .run            = raid5_run,
7969         .free           = raid5_free,
7970         .status         = raid5_status,
7971         .error_handler  = raid5_error,
7972         .hot_add_disk   = raid5_add_disk,
7973         .hot_remove_disk= raid5_remove_disk,
7974         .spare_active   = raid5_spare_active,
7975         .sync_request   = raid5_sync_request,
7976         .resize         = raid5_resize,
7977         .size           = raid5_size,
7978         .check_reshape  = raid5_check_reshape,
7979         .start_reshape  = raid5_start_reshape,
7980         .finish_reshape = raid5_finish_reshape,
7981         .quiesce        = raid5_quiesce,
7982         .takeover       = raid4_takeover,
7983         .congested      = raid5_congested,
7984 };
7985
7986 static int __init raid5_init(void)
7987 {
7988         raid5_wq = alloc_workqueue("raid5wq",
7989                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7990         if (!raid5_wq)
7991                 return -ENOMEM;
7992         register_md_personality(&raid6_personality);
7993         register_md_personality(&raid5_personality);
7994         register_md_personality(&raid4_personality);
7995         return 0;
7996 }
7997
7998 static void raid5_exit(void)
7999 {
8000         unregister_md_personality(&raid6_personality);
8001         unregister_md_personality(&raid5_personality);
8002         unregister_md_personality(&raid4_personality);
8003         destroy_workqueue(raid5_wq);
8004 }
8005
8006 module_init(raid5_init);
8007 module_exit(raid5_exit);
8008 MODULE_LICENSE("GPL");
8009 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8010 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8011 MODULE_ALIAS("md-raid5");
8012 MODULE_ALIAS("md-raid4");
8013 MODULE_ALIAS("md-level-5");
8014 MODULE_ALIAS("md-level-4");
8015 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8016 MODULE_ALIAS("md-raid6");
8017 MODULE_ALIAS("md-level-6");
8018
8019 /* This used to be two separate modules, they were: */
8020 MODULE_ALIAS("raid5");
8021 MODULE_ALIAS("raid6");