1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
6 * Copyright (C) 2002, 2003 H. Peter Anvin
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27 * the number of the batch it will be in. This is seq_flush+1.
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
59 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
64 static bool devices_handle_discard_safely = false;
65 module_param(devices_handle_discard_safely, bool, 0644);
66 MODULE_PARM_DESC(devices_handle_discard_safely,
67 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
68 static struct workqueue_struct *raid5_wq;
70 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
72 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
73 return &conf->stripe_hashtbl[hash];
76 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
78 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
81 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
83 spin_lock_irq(conf->hash_locks + hash);
84 spin_lock(&conf->device_lock);
87 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
89 spin_unlock(&conf->device_lock);
90 spin_unlock_irq(conf->hash_locks + hash);
93 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
96 spin_lock_irq(conf->hash_locks);
97 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
98 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
99 spin_lock(&conf->device_lock);
102 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
105 spin_unlock(&conf->device_lock);
106 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
107 spin_unlock(conf->hash_locks + i);
108 spin_unlock_irq(conf->hash_locks);
111 /* Find first data disk in a raid6 stripe */
112 static inline int raid6_d0(struct stripe_head *sh)
115 /* ddf always start from first device */
117 /* md starts just after Q block */
118 if (sh->qd_idx == sh->disks - 1)
121 return sh->qd_idx + 1;
123 static inline int raid6_next_disk(int disk, int raid_disks)
126 return (disk < raid_disks) ? disk : 0;
129 /* When walking through the disks in a raid5, starting at raid6_d0,
130 * We need to map each disk to a 'slot', where the data disks are slot
131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
132 * is raid_disks-1. This help does that mapping.
134 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
135 int *count, int syndrome_disks)
141 if (idx == sh->pd_idx)
142 return syndrome_disks;
143 if (idx == sh->qd_idx)
144 return syndrome_disks + 1;
150 static void print_raid5_conf (struct r5conf *conf);
152 static int stripe_operations_active(struct stripe_head *sh)
154 return sh->check_state || sh->reconstruct_state ||
155 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
156 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
159 static bool stripe_is_lowprio(struct stripe_head *sh)
161 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
162 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
163 !test_bit(STRIPE_R5C_CACHING, &sh->state);
166 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
168 struct r5conf *conf = sh->raid_conf;
169 struct r5worker_group *group;
171 int i, cpu = sh->cpu;
173 if (!cpu_online(cpu)) {
174 cpu = cpumask_any(cpu_online_mask);
178 if (list_empty(&sh->lru)) {
179 struct r5worker_group *group;
180 group = conf->worker_groups + cpu_to_group(cpu);
181 if (stripe_is_lowprio(sh))
182 list_add_tail(&sh->lru, &group->loprio_list);
184 list_add_tail(&sh->lru, &group->handle_list);
185 group->stripes_cnt++;
189 if (conf->worker_cnt_per_group == 0) {
190 md_wakeup_thread(conf->mddev->thread);
194 group = conf->worker_groups + cpu_to_group(sh->cpu);
196 group->workers[0].working = true;
197 /* at least one worker should run to avoid race */
198 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
200 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
201 /* wakeup more workers */
202 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
203 if (group->workers[i].working == false) {
204 group->workers[i].working = true;
205 queue_work_on(sh->cpu, raid5_wq,
206 &group->workers[i].work);
212 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
213 struct list_head *temp_inactive_list)
216 int injournal = 0; /* number of date pages with R5_InJournal */
218 BUG_ON(!list_empty(&sh->lru));
219 BUG_ON(atomic_read(&conf->active_stripes)==0);
221 if (r5c_is_writeback(conf->log))
222 for (i = sh->disks; i--; )
223 if (test_bit(R5_InJournal, &sh->dev[i].flags))
226 * In the following cases, the stripe cannot be released to cached
227 * lists. Therefore, we make the stripe write out and set
229 * 1. when quiesce in r5c write back;
230 * 2. when resync is requested fot the stripe.
232 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
233 (conf->quiesce && r5c_is_writeback(conf->log) &&
234 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
235 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
236 r5c_make_stripe_write_out(sh);
237 set_bit(STRIPE_HANDLE, &sh->state);
240 if (test_bit(STRIPE_HANDLE, &sh->state)) {
241 if (test_bit(STRIPE_DELAYED, &sh->state) &&
242 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
243 list_add_tail(&sh->lru, &conf->delayed_list);
244 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
245 sh->bm_seq - conf->seq_write > 0)
246 list_add_tail(&sh->lru, &conf->bitmap_list);
248 clear_bit(STRIPE_DELAYED, &sh->state);
249 clear_bit(STRIPE_BIT_DELAY, &sh->state);
250 if (conf->worker_cnt_per_group == 0) {
251 if (stripe_is_lowprio(sh))
252 list_add_tail(&sh->lru,
255 list_add_tail(&sh->lru,
258 raid5_wakeup_stripe_thread(sh);
262 md_wakeup_thread(conf->mddev->thread);
264 BUG_ON(stripe_operations_active(sh));
265 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
266 if (atomic_dec_return(&conf->preread_active_stripes)
268 md_wakeup_thread(conf->mddev->thread);
269 atomic_dec(&conf->active_stripes);
270 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
271 if (!r5c_is_writeback(conf->log))
272 list_add_tail(&sh->lru, temp_inactive_list);
274 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
276 list_add_tail(&sh->lru, temp_inactive_list);
277 else if (injournal == conf->raid_disks - conf->max_degraded) {
279 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
280 atomic_inc(&conf->r5c_cached_full_stripes);
281 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
282 atomic_dec(&conf->r5c_cached_partial_stripes);
283 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
284 r5c_check_cached_full_stripe(conf);
287 * STRIPE_R5C_PARTIAL_STRIPE is set in
288 * r5c_try_caching_write(). No need to
291 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
297 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
298 struct list_head *temp_inactive_list)
300 if (atomic_dec_and_test(&sh->count))
301 do_release_stripe(conf, sh, temp_inactive_list);
305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
308 * given time. Adding stripes only takes device lock, while deleting stripes
309 * only takes hash lock.
311 static void release_inactive_stripe_list(struct r5conf *conf,
312 struct list_head *temp_inactive_list,
316 bool do_wakeup = false;
319 if (hash == NR_STRIPE_HASH_LOCKS) {
320 size = NR_STRIPE_HASH_LOCKS;
321 hash = NR_STRIPE_HASH_LOCKS - 1;
325 struct list_head *list = &temp_inactive_list[size - 1];
328 * We don't hold any lock here yet, raid5_get_active_stripe() might
329 * remove stripes from the list
331 if (!list_empty_careful(list)) {
332 spin_lock_irqsave(conf->hash_locks + hash, flags);
333 if (list_empty(conf->inactive_list + hash) &&
335 atomic_dec(&conf->empty_inactive_list_nr);
336 list_splice_tail_init(list, conf->inactive_list + hash);
338 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
345 wake_up(&conf->wait_for_stripe);
346 if (atomic_read(&conf->active_stripes) == 0)
347 wake_up(&conf->wait_for_quiescent);
348 if (conf->retry_read_aligned)
349 md_wakeup_thread(conf->mddev->thread);
353 /* should hold conf->device_lock already */
354 static int release_stripe_list(struct r5conf *conf,
355 struct list_head *temp_inactive_list)
357 struct stripe_head *sh, *t;
359 struct llist_node *head;
361 head = llist_del_all(&conf->released_stripes);
362 head = llist_reverse_order(head);
363 llist_for_each_entry_safe(sh, t, head, release_list) {
366 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
368 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
370 * Don't worry the bit is set here, because if the bit is set
371 * again, the count is always > 1. This is true for
372 * STRIPE_ON_UNPLUG_LIST bit too.
374 hash = sh->hash_lock_index;
375 __release_stripe(conf, sh, &temp_inactive_list[hash]);
382 void raid5_release_stripe(struct stripe_head *sh)
384 struct r5conf *conf = sh->raid_conf;
386 struct list_head list;
390 /* Avoid release_list until the last reference.
392 if (atomic_add_unless(&sh->count, -1, 1))
395 if (unlikely(!conf->mddev->thread) ||
396 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
398 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
400 md_wakeup_thread(conf->mddev->thread);
403 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
404 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
405 INIT_LIST_HEAD(&list);
406 hash = sh->hash_lock_index;
407 do_release_stripe(conf, sh, &list);
408 spin_unlock_irqrestore(&conf->device_lock, flags);
409 release_inactive_stripe_list(conf, &list, hash);
413 static inline void remove_hash(struct stripe_head *sh)
415 pr_debug("remove_hash(), stripe %llu\n",
416 (unsigned long long)sh->sector);
418 hlist_del_init(&sh->hash);
421 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
423 struct hlist_head *hp = stripe_hash(conf, sh->sector);
425 pr_debug("insert_hash(), stripe %llu\n",
426 (unsigned long long)sh->sector);
428 hlist_add_head(&sh->hash, hp);
431 /* find an idle stripe, make sure it is unhashed, and return it. */
432 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
434 struct stripe_head *sh = NULL;
435 struct list_head *first;
437 if (list_empty(conf->inactive_list + hash))
439 first = (conf->inactive_list + hash)->next;
440 sh = list_entry(first, struct stripe_head, lru);
441 list_del_init(first);
443 atomic_inc(&conf->active_stripes);
444 BUG_ON(hash != sh->hash_lock_index);
445 if (list_empty(conf->inactive_list + hash))
446 atomic_inc(&conf->empty_inactive_list_nr);
451 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
452 static void free_stripe_pages(struct stripe_head *sh)
457 /* Have not allocate page pool */
461 for (i = 0; i < sh->nr_pages; i++) {
469 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
474 for (i = 0; i < sh->nr_pages; i++) {
475 /* The page have allocated. */
481 free_stripe_pages(sh);
490 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
497 /* Each of the sh->dev[i] need one conf->stripe_size */
498 cnt = PAGE_SIZE / conf->stripe_size;
499 nr_pages = (disks + cnt - 1) / cnt;
501 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
504 sh->nr_pages = nr_pages;
505 sh->stripes_per_page = cnt;
510 static void shrink_buffers(struct stripe_head *sh)
513 int num = sh->raid_conf->pool_size;
515 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
516 for (i = 0; i < num ; i++) {
519 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
523 sh->dev[i].page = NULL;
527 for (i = 0; i < num; i++)
528 sh->dev[i].page = NULL;
529 free_stripe_pages(sh); /* Free pages */
533 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
536 int num = sh->raid_conf->pool_size;
538 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
539 for (i = 0; i < num; i++) {
542 if (!(page = alloc_page(gfp))) {
545 sh->dev[i].page = page;
546 sh->dev[i].orig_page = page;
547 sh->dev[i].offset = 0;
550 if (alloc_stripe_pages(sh, gfp))
553 for (i = 0; i < num; i++) {
554 sh->dev[i].page = raid5_get_dev_page(sh, i);
555 sh->dev[i].orig_page = sh->dev[i].page;
556 sh->dev[i].offset = raid5_get_page_offset(sh, i);
562 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
563 struct stripe_head *sh);
565 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
567 struct r5conf *conf = sh->raid_conf;
570 BUG_ON(atomic_read(&sh->count) != 0);
571 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
572 BUG_ON(stripe_operations_active(sh));
573 BUG_ON(sh->batch_head);
575 pr_debug("init_stripe called, stripe %llu\n",
576 (unsigned long long)sector);
578 seq = read_seqcount_begin(&conf->gen_lock);
579 sh->generation = conf->generation - previous;
580 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
582 stripe_set_idx(sector, conf, previous, sh);
585 for (i = sh->disks; i--; ) {
586 struct r5dev *dev = &sh->dev[i];
588 if (dev->toread || dev->read || dev->towrite || dev->written ||
589 test_bit(R5_LOCKED, &dev->flags)) {
590 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
591 (unsigned long long)sh->sector, i, dev->toread,
592 dev->read, dev->towrite, dev->written,
593 test_bit(R5_LOCKED, &dev->flags));
597 dev->sector = raid5_compute_blocknr(sh, i, previous);
599 if (read_seqcount_retry(&conf->gen_lock, seq))
601 sh->overwrite_disks = 0;
602 insert_hash(conf, sh);
603 sh->cpu = smp_processor_id();
604 set_bit(STRIPE_BATCH_READY, &sh->state);
607 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
610 struct stripe_head *sh;
612 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
613 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
614 if (sh->sector == sector && sh->generation == generation)
616 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
621 * Need to check if array has failed when deciding whether to:
623 * - remove non-faulty devices
626 * This determination is simple when no reshape is happening.
627 * However if there is a reshape, we need to carefully check
628 * both the before and after sections.
629 * This is because some failed devices may only affect one
630 * of the two sections, and some non-in_sync devices may
631 * be insync in the section most affected by failed devices.
633 int raid5_calc_degraded(struct r5conf *conf)
635 int degraded, degraded2;
640 for (i = 0; i < conf->previous_raid_disks; i++) {
641 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
642 if (rdev && test_bit(Faulty, &rdev->flags))
643 rdev = rcu_dereference(conf->disks[i].replacement);
644 if (!rdev || test_bit(Faulty, &rdev->flags))
646 else if (test_bit(In_sync, &rdev->flags))
649 /* not in-sync or faulty.
650 * If the reshape increases the number of devices,
651 * this is being recovered by the reshape, so
652 * this 'previous' section is not in_sync.
653 * If the number of devices is being reduced however,
654 * the device can only be part of the array if
655 * we are reverting a reshape, so this section will
658 if (conf->raid_disks >= conf->previous_raid_disks)
662 if (conf->raid_disks == conf->previous_raid_disks)
666 for (i = 0; i < conf->raid_disks; i++) {
667 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
668 if (rdev && test_bit(Faulty, &rdev->flags))
669 rdev = rcu_dereference(conf->disks[i].replacement);
670 if (!rdev || test_bit(Faulty, &rdev->flags))
672 else if (test_bit(In_sync, &rdev->flags))
675 /* not in-sync or faulty.
676 * If reshape increases the number of devices, this
677 * section has already been recovered, else it
678 * almost certainly hasn't.
680 if (conf->raid_disks <= conf->previous_raid_disks)
684 if (degraded2 > degraded)
689 static int has_failed(struct r5conf *conf)
693 if (conf->mddev->reshape_position == MaxSector)
694 return conf->mddev->degraded > conf->max_degraded;
696 degraded = raid5_calc_degraded(conf);
697 if (degraded > conf->max_degraded)
703 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
704 int previous, int noblock, int noquiesce)
706 struct stripe_head *sh;
707 int hash = stripe_hash_locks_hash(conf, sector);
708 int inc_empty_inactive_list_flag;
710 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
712 spin_lock_irq(conf->hash_locks + hash);
715 wait_event_lock_irq(conf->wait_for_quiescent,
716 conf->quiesce == 0 || noquiesce,
717 *(conf->hash_locks + hash));
718 sh = __find_stripe(conf, sector, conf->generation - previous);
720 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
721 sh = get_free_stripe(conf, hash);
722 if (!sh && !test_bit(R5_DID_ALLOC,
724 set_bit(R5_ALLOC_MORE,
727 if (noblock && sh == NULL)
730 r5c_check_stripe_cache_usage(conf);
732 set_bit(R5_INACTIVE_BLOCKED,
734 r5l_wake_reclaim(conf->log, 0);
736 conf->wait_for_stripe,
737 !list_empty(conf->inactive_list + hash) &&
738 (atomic_read(&conf->active_stripes)
739 < (conf->max_nr_stripes * 3 / 4)
740 || !test_bit(R5_INACTIVE_BLOCKED,
741 &conf->cache_state)),
742 *(conf->hash_locks + hash));
743 clear_bit(R5_INACTIVE_BLOCKED,
746 init_stripe(sh, sector, previous);
747 atomic_inc(&sh->count);
749 } else if (!atomic_inc_not_zero(&sh->count)) {
750 spin_lock(&conf->device_lock);
751 if (!atomic_read(&sh->count)) {
752 if (!test_bit(STRIPE_HANDLE, &sh->state))
753 atomic_inc(&conf->active_stripes);
754 BUG_ON(list_empty(&sh->lru) &&
755 !test_bit(STRIPE_EXPANDING, &sh->state));
756 inc_empty_inactive_list_flag = 0;
757 if (!list_empty(conf->inactive_list + hash))
758 inc_empty_inactive_list_flag = 1;
759 list_del_init(&sh->lru);
760 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
761 atomic_inc(&conf->empty_inactive_list_nr);
763 sh->group->stripes_cnt--;
767 atomic_inc(&sh->count);
768 spin_unlock(&conf->device_lock);
770 } while (sh == NULL);
772 spin_unlock_irq(conf->hash_locks + hash);
776 static bool is_full_stripe_write(struct stripe_head *sh)
778 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
779 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
782 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
783 __acquires(&sh1->stripe_lock)
784 __acquires(&sh2->stripe_lock)
787 spin_lock_irq(&sh2->stripe_lock);
788 spin_lock_nested(&sh1->stripe_lock, 1);
790 spin_lock_irq(&sh1->stripe_lock);
791 spin_lock_nested(&sh2->stripe_lock, 1);
795 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
796 __releases(&sh1->stripe_lock)
797 __releases(&sh2->stripe_lock)
799 spin_unlock(&sh1->stripe_lock);
800 spin_unlock_irq(&sh2->stripe_lock);
803 /* Only freshly new full stripe normal write stripe can be added to a batch list */
804 static bool stripe_can_batch(struct stripe_head *sh)
806 struct r5conf *conf = sh->raid_conf;
808 if (raid5_has_log(conf) || raid5_has_ppl(conf))
810 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
811 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
812 is_full_stripe_write(sh);
815 /* we only do back search */
816 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
818 struct stripe_head *head;
819 sector_t head_sector, tmp_sec;
822 int inc_empty_inactive_list_flag;
824 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
825 tmp_sec = sh->sector;
826 if (!sector_div(tmp_sec, conf->chunk_sectors))
828 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
830 hash = stripe_hash_locks_hash(conf, head_sector);
831 spin_lock_irq(conf->hash_locks + hash);
832 head = __find_stripe(conf, head_sector, conf->generation);
833 if (head && !atomic_inc_not_zero(&head->count)) {
834 spin_lock(&conf->device_lock);
835 if (!atomic_read(&head->count)) {
836 if (!test_bit(STRIPE_HANDLE, &head->state))
837 atomic_inc(&conf->active_stripes);
838 BUG_ON(list_empty(&head->lru) &&
839 !test_bit(STRIPE_EXPANDING, &head->state));
840 inc_empty_inactive_list_flag = 0;
841 if (!list_empty(conf->inactive_list + hash))
842 inc_empty_inactive_list_flag = 1;
843 list_del_init(&head->lru);
844 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
845 atomic_inc(&conf->empty_inactive_list_nr);
847 head->group->stripes_cnt--;
851 atomic_inc(&head->count);
852 spin_unlock(&conf->device_lock);
854 spin_unlock_irq(conf->hash_locks + hash);
858 if (!stripe_can_batch(head))
861 lock_two_stripes(head, sh);
862 /* clear_batch_ready clear the flag */
863 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
870 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
872 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
873 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
876 if (head->batch_head) {
877 spin_lock(&head->batch_head->batch_lock);
878 /* This batch list is already running */
879 if (!stripe_can_batch(head)) {
880 spin_unlock(&head->batch_head->batch_lock);
884 * We must assign batch_head of this stripe within the
885 * batch_lock, otherwise clear_batch_ready of batch head
886 * stripe could clear BATCH_READY bit of this stripe and
887 * this stripe->batch_head doesn't get assigned, which
888 * could confuse clear_batch_ready for this stripe
890 sh->batch_head = head->batch_head;
893 * at this point, head's BATCH_READY could be cleared, but we
894 * can still add the stripe to batch list
896 list_add(&sh->batch_list, &head->batch_list);
897 spin_unlock(&head->batch_head->batch_lock);
899 head->batch_head = head;
900 sh->batch_head = head->batch_head;
901 spin_lock(&head->batch_lock);
902 list_add_tail(&sh->batch_list, &head->batch_list);
903 spin_unlock(&head->batch_lock);
906 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
907 if (atomic_dec_return(&conf->preread_active_stripes)
909 md_wakeup_thread(conf->mddev->thread);
911 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
912 int seq = sh->bm_seq;
913 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
914 sh->batch_head->bm_seq > seq)
915 seq = sh->batch_head->bm_seq;
916 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
917 sh->batch_head->bm_seq = seq;
920 atomic_inc(&sh->count);
922 unlock_two_stripes(head, sh);
924 raid5_release_stripe(head);
927 /* Determine if 'data_offset' or 'new_data_offset' should be used
928 * in this stripe_head.
930 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
932 sector_t progress = conf->reshape_progress;
933 /* Need a memory barrier to make sure we see the value
934 * of conf->generation, or ->data_offset that was set before
935 * reshape_progress was updated.
938 if (progress == MaxSector)
940 if (sh->generation == conf->generation - 1)
942 /* We are in a reshape, and this is a new-generation stripe,
943 * so use new_data_offset.
948 static void dispatch_bio_list(struct bio_list *tmp)
952 while ((bio = bio_list_pop(tmp)))
953 submit_bio_noacct(bio);
956 static int cmp_stripe(void *priv, const struct list_head *a,
957 const struct list_head *b)
959 const struct r5pending_data *da = list_entry(a,
960 struct r5pending_data, sibling);
961 const struct r5pending_data *db = list_entry(b,
962 struct r5pending_data, sibling);
963 if (da->sector > db->sector)
965 if (da->sector < db->sector)
970 static void dispatch_defer_bios(struct r5conf *conf, int target,
971 struct bio_list *list)
973 struct r5pending_data *data;
974 struct list_head *first, *next = NULL;
977 if (conf->pending_data_cnt == 0)
980 list_sort(NULL, &conf->pending_list, cmp_stripe);
982 first = conf->pending_list.next;
984 /* temporarily move the head */
985 if (conf->next_pending_data)
986 list_move_tail(&conf->pending_list,
987 &conf->next_pending_data->sibling);
989 while (!list_empty(&conf->pending_list)) {
990 data = list_first_entry(&conf->pending_list,
991 struct r5pending_data, sibling);
992 if (&data->sibling == first)
993 first = data->sibling.next;
994 next = data->sibling.next;
996 bio_list_merge(list, &data->bios);
997 list_move(&data->sibling, &conf->free_list);
1002 conf->pending_data_cnt -= cnt;
1003 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1005 if (next != &conf->pending_list)
1006 conf->next_pending_data = list_entry(next,
1007 struct r5pending_data, sibling);
1009 conf->next_pending_data = NULL;
1010 /* list isn't empty */
1011 if (first != &conf->pending_list)
1012 list_move_tail(&conf->pending_list, first);
1015 static void flush_deferred_bios(struct r5conf *conf)
1017 struct bio_list tmp = BIO_EMPTY_LIST;
1019 if (conf->pending_data_cnt == 0)
1022 spin_lock(&conf->pending_bios_lock);
1023 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1024 BUG_ON(conf->pending_data_cnt != 0);
1025 spin_unlock(&conf->pending_bios_lock);
1027 dispatch_bio_list(&tmp);
1030 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1031 struct bio_list *bios)
1033 struct bio_list tmp = BIO_EMPTY_LIST;
1034 struct r5pending_data *ent;
1036 spin_lock(&conf->pending_bios_lock);
1037 ent = list_first_entry(&conf->free_list, struct r5pending_data,
1039 list_move_tail(&ent->sibling, &conf->pending_list);
1040 ent->sector = sector;
1041 bio_list_init(&ent->bios);
1042 bio_list_merge(&ent->bios, bios);
1043 conf->pending_data_cnt++;
1044 if (conf->pending_data_cnt >= PENDING_IO_MAX)
1045 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1047 spin_unlock(&conf->pending_bios_lock);
1049 dispatch_bio_list(&tmp);
1053 raid5_end_read_request(struct bio *bi);
1055 raid5_end_write_request(struct bio *bi);
1057 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1059 struct r5conf *conf = sh->raid_conf;
1060 int i, disks = sh->disks;
1061 struct stripe_head *head_sh = sh;
1062 struct bio_list pending_bios = BIO_EMPTY_LIST;
1068 if (log_stripe(sh, s) == 0)
1071 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1073 for (i = disks; i--; ) {
1074 int op, op_flags = 0;
1075 int replace_only = 0;
1076 struct bio *bi, *rbi;
1077 struct md_rdev *rdev, *rrdev = NULL;
1080 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1082 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1084 if (test_bit(R5_Discard, &sh->dev[i].flags))
1085 op = REQ_OP_DISCARD;
1086 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1088 else if (test_and_clear_bit(R5_WantReplace,
1089 &sh->dev[i].flags)) {
1094 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1095 op_flags |= REQ_SYNC;
1100 rbi = &dev->rreq; /* For writing to replacement */
1103 rrdev = rcu_dereference(conf->disks[i].replacement);
1104 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1105 rdev = rcu_dereference(conf->disks[i].rdev);
1110 if (op_is_write(op)) {
1114 /* We raced and saw duplicates */
1117 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1122 if (rdev && test_bit(Faulty, &rdev->flags))
1125 atomic_inc(&rdev->nr_pending);
1126 if (rrdev && test_bit(Faulty, &rrdev->flags))
1129 atomic_inc(&rrdev->nr_pending);
1132 /* We have already checked bad blocks for reads. Now
1133 * need to check for writes. We never accept write errors
1134 * on the replacement, so we don't to check rrdev.
1136 while (op_is_write(op) && rdev &&
1137 test_bit(WriteErrorSeen, &rdev->flags)) {
1140 int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
1141 &first_bad, &bad_sectors);
1146 set_bit(BlockedBadBlocks, &rdev->flags);
1147 if (!conf->mddev->external &&
1148 conf->mddev->sb_flags) {
1149 /* It is very unlikely, but we might
1150 * still need to write out the
1151 * bad block log - better give it
1153 md_check_recovery(conf->mddev);
1156 * Because md_wait_for_blocked_rdev
1157 * will dec nr_pending, we must
1158 * increment it first.
1160 atomic_inc(&rdev->nr_pending);
1161 md_wait_for_blocked_rdev(rdev, conf->mddev);
1163 /* Acknowledged bad block - skip the write */
1164 rdev_dec_pending(rdev, conf->mddev);
1170 if (s->syncing || s->expanding || s->expanded
1172 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1174 set_bit(STRIPE_IO_STARTED, &sh->state);
1176 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1177 bi->bi_end_io = op_is_write(op)
1178 ? raid5_end_write_request
1179 : raid5_end_read_request;
1180 bi->bi_private = sh;
1182 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1183 __func__, (unsigned long long)sh->sector,
1185 atomic_inc(&sh->count);
1187 atomic_inc(&head_sh->count);
1188 if (use_new_offset(conf, sh))
1189 bi->bi_iter.bi_sector = (sh->sector
1190 + rdev->new_data_offset);
1192 bi->bi_iter.bi_sector = (sh->sector
1193 + rdev->data_offset);
1194 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1195 bi->bi_opf |= REQ_NOMERGE;
1197 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1198 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1200 if (!op_is_write(op) &&
1201 test_bit(R5_InJournal, &sh->dev[i].flags))
1203 * issuing read for a page in journal, this
1204 * must be preparing for prexor in rmw; read
1205 * the data into orig_page
1207 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1209 sh->dev[i].vec.bv_page = sh->dev[i].page;
1211 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1212 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1213 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1214 bi->bi_write_hint = sh->dev[i].write_hint;
1216 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1218 * If this is discard request, set bi_vcnt 0. We don't
1219 * want to confuse SCSI because SCSI will replace payload
1221 if (op == REQ_OP_DISCARD)
1224 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1226 if (conf->mddev->gendisk)
1227 trace_block_bio_remap(bi,
1228 disk_devt(conf->mddev->gendisk),
1230 if (should_defer && op_is_write(op))
1231 bio_list_add(&pending_bios, bi);
1233 submit_bio_noacct(bi);
1236 if (s->syncing || s->expanding || s->expanded
1238 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1240 set_bit(STRIPE_IO_STARTED, &sh->state);
1242 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1243 BUG_ON(!op_is_write(op));
1244 rbi->bi_end_io = raid5_end_write_request;
1245 rbi->bi_private = sh;
1247 pr_debug("%s: for %llu schedule op %d on "
1248 "replacement disc %d\n",
1249 __func__, (unsigned long long)sh->sector,
1251 atomic_inc(&sh->count);
1253 atomic_inc(&head_sh->count);
1254 if (use_new_offset(conf, sh))
1255 rbi->bi_iter.bi_sector = (sh->sector
1256 + rrdev->new_data_offset);
1258 rbi->bi_iter.bi_sector = (sh->sector
1259 + rrdev->data_offset);
1260 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1261 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1262 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1264 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1265 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1266 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1267 rbi->bi_write_hint = sh->dev[i].write_hint;
1268 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1270 * If this is discard request, set bi_vcnt 0. We don't
1271 * want to confuse SCSI because SCSI will replace payload
1273 if (op == REQ_OP_DISCARD)
1275 if (conf->mddev->gendisk)
1276 trace_block_bio_remap(rbi,
1277 disk_devt(conf->mddev->gendisk),
1279 if (should_defer && op_is_write(op))
1280 bio_list_add(&pending_bios, rbi);
1282 submit_bio_noacct(rbi);
1284 if (!rdev && !rrdev) {
1285 if (op_is_write(op))
1286 set_bit(STRIPE_DEGRADED, &sh->state);
1287 pr_debug("skip op %d on disc %d for sector %llu\n",
1288 bi->bi_opf, i, (unsigned long long)sh->sector);
1289 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1290 set_bit(STRIPE_HANDLE, &sh->state);
1293 if (!head_sh->batch_head)
1295 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1301 if (should_defer && !bio_list_empty(&pending_bios))
1302 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1305 static struct dma_async_tx_descriptor *
1306 async_copy_data(int frombio, struct bio *bio, struct page **page,
1307 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1308 struct stripe_head *sh, int no_skipcopy)
1311 struct bvec_iter iter;
1312 struct page *bio_page;
1314 struct async_submit_ctl submit;
1315 enum async_tx_flags flags = 0;
1316 struct r5conf *conf = sh->raid_conf;
1318 if (bio->bi_iter.bi_sector >= sector)
1319 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1321 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1324 flags |= ASYNC_TX_FENCE;
1325 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1327 bio_for_each_segment(bvl, bio, iter) {
1328 int len = bvl.bv_len;
1332 if (page_offset < 0) {
1333 b_offset = -page_offset;
1334 page_offset += b_offset;
1338 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1339 clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1344 b_offset += bvl.bv_offset;
1345 bio_page = bvl.bv_page;
1347 if (conf->skip_copy &&
1348 b_offset == 0 && page_offset == 0 &&
1349 clen == RAID5_STRIPE_SIZE(conf) &&
1353 tx = async_memcpy(*page, bio_page, page_offset + poff,
1354 b_offset, clen, &submit);
1356 tx = async_memcpy(bio_page, *page, b_offset,
1357 page_offset + poff, clen, &submit);
1359 /* chain the operations */
1360 submit.depend_tx = tx;
1362 if (clen < len) /* hit end of page */
1370 static void ops_complete_biofill(void *stripe_head_ref)
1372 struct stripe_head *sh = stripe_head_ref;
1374 struct r5conf *conf = sh->raid_conf;
1376 pr_debug("%s: stripe %llu\n", __func__,
1377 (unsigned long long)sh->sector);
1379 /* clear completed biofills */
1380 for (i = sh->disks; i--; ) {
1381 struct r5dev *dev = &sh->dev[i];
1383 /* acknowledge completion of a biofill operation */
1384 /* and check if we need to reply to a read request,
1385 * new R5_Wantfill requests are held off until
1386 * !STRIPE_BIOFILL_RUN
1388 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1389 struct bio *rbi, *rbi2;
1394 while (rbi && rbi->bi_iter.bi_sector <
1395 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1396 rbi2 = r5_next_bio(conf, rbi, dev->sector);
1402 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1404 set_bit(STRIPE_HANDLE, &sh->state);
1405 raid5_release_stripe(sh);
1408 static void ops_run_biofill(struct stripe_head *sh)
1410 struct dma_async_tx_descriptor *tx = NULL;
1411 struct async_submit_ctl submit;
1413 struct r5conf *conf = sh->raid_conf;
1415 BUG_ON(sh->batch_head);
1416 pr_debug("%s: stripe %llu\n", __func__,
1417 (unsigned long long)sh->sector);
1419 for (i = sh->disks; i--; ) {
1420 struct r5dev *dev = &sh->dev[i];
1421 if (test_bit(R5_Wantfill, &dev->flags)) {
1423 spin_lock_irq(&sh->stripe_lock);
1424 dev->read = rbi = dev->toread;
1426 spin_unlock_irq(&sh->stripe_lock);
1427 while (rbi && rbi->bi_iter.bi_sector <
1428 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1429 tx = async_copy_data(0, rbi, &dev->page,
1431 dev->sector, tx, sh, 0);
1432 rbi = r5_next_bio(conf, rbi, dev->sector);
1437 atomic_inc(&sh->count);
1438 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1439 async_trigger_callback(&submit);
1442 static void mark_target_uptodate(struct stripe_head *sh, int target)
1449 tgt = &sh->dev[target];
1450 set_bit(R5_UPTODATE, &tgt->flags);
1451 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1452 clear_bit(R5_Wantcompute, &tgt->flags);
1455 static void ops_complete_compute(void *stripe_head_ref)
1457 struct stripe_head *sh = stripe_head_ref;
1459 pr_debug("%s: stripe %llu\n", __func__,
1460 (unsigned long long)sh->sector);
1462 /* mark the computed target(s) as uptodate */
1463 mark_target_uptodate(sh, sh->ops.target);
1464 mark_target_uptodate(sh, sh->ops.target2);
1466 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1467 if (sh->check_state == check_state_compute_run)
1468 sh->check_state = check_state_compute_result;
1469 set_bit(STRIPE_HANDLE, &sh->state);
1470 raid5_release_stripe(sh);
1473 /* return a pointer to the address conversion region of the scribble buffer */
1474 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1476 return percpu->scribble + i * percpu->scribble_obj_size;
1479 /* return a pointer to the address conversion region of the scribble buffer */
1480 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1481 struct raid5_percpu *percpu, int i)
1483 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1487 * Return a pointer to record offset address.
1489 static unsigned int *
1490 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1492 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1495 static struct dma_async_tx_descriptor *
1496 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1498 int disks = sh->disks;
1499 struct page **xor_srcs = to_addr_page(percpu, 0);
1500 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1501 int target = sh->ops.target;
1502 struct r5dev *tgt = &sh->dev[target];
1503 struct page *xor_dest = tgt->page;
1504 unsigned int off_dest = tgt->offset;
1506 struct dma_async_tx_descriptor *tx;
1507 struct async_submit_ctl submit;
1510 BUG_ON(sh->batch_head);
1512 pr_debug("%s: stripe %llu block: %d\n",
1513 __func__, (unsigned long long)sh->sector, target);
1514 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1516 for (i = disks; i--; ) {
1518 off_srcs[count] = sh->dev[i].offset;
1519 xor_srcs[count++] = sh->dev[i].page;
1523 atomic_inc(&sh->count);
1525 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1526 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1527 if (unlikely(count == 1))
1528 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1529 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1531 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1532 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1537 /* set_syndrome_sources - populate source buffers for gen_syndrome
1538 * @srcs - (struct page *) array of size sh->disks
1539 * @offs - (unsigned int) array of offset for each page
1540 * @sh - stripe_head to parse
1542 * Populates srcs in proper layout order for the stripe and returns the
1543 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1544 * destination buffer is recorded in srcs[count] and the Q destination
1545 * is recorded in srcs[count+1]].
1547 static int set_syndrome_sources(struct page **srcs,
1549 struct stripe_head *sh,
1552 int disks = sh->disks;
1553 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1554 int d0_idx = raid6_d0(sh);
1558 for (i = 0; i < disks; i++)
1564 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1565 struct r5dev *dev = &sh->dev[i];
1567 if (i == sh->qd_idx || i == sh->pd_idx ||
1568 (srctype == SYNDROME_SRC_ALL) ||
1569 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1570 (test_bit(R5_Wantdrain, &dev->flags) ||
1571 test_bit(R5_InJournal, &dev->flags))) ||
1572 (srctype == SYNDROME_SRC_WRITTEN &&
1574 test_bit(R5_InJournal, &dev->flags)))) {
1575 if (test_bit(R5_InJournal, &dev->flags))
1576 srcs[slot] = sh->dev[i].orig_page;
1578 srcs[slot] = sh->dev[i].page;
1580 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1581 * not shared page. In that case, dev[i].offset
1584 offs[slot] = sh->dev[i].offset;
1586 i = raid6_next_disk(i, disks);
1587 } while (i != d0_idx);
1589 return syndrome_disks;
1592 static struct dma_async_tx_descriptor *
1593 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1595 int disks = sh->disks;
1596 struct page **blocks = to_addr_page(percpu, 0);
1597 unsigned int *offs = to_addr_offs(sh, percpu);
1599 int qd_idx = sh->qd_idx;
1600 struct dma_async_tx_descriptor *tx;
1601 struct async_submit_ctl submit;
1604 unsigned int dest_off;
1608 BUG_ON(sh->batch_head);
1609 if (sh->ops.target < 0)
1610 target = sh->ops.target2;
1611 else if (sh->ops.target2 < 0)
1612 target = sh->ops.target;
1614 /* we should only have one valid target */
1617 pr_debug("%s: stripe %llu block: %d\n",
1618 __func__, (unsigned long long)sh->sector, target);
1620 tgt = &sh->dev[target];
1621 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1623 dest_off = tgt->offset;
1625 atomic_inc(&sh->count);
1627 if (target == qd_idx) {
1628 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1629 blocks[count] = NULL; /* regenerating p is not necessary */
1630 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1631 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1632 ops_complete_compute, sh,
1633 to_addr_conv(sh, percpu, 0));
1634 tx = async_gen_syndrome(blocks, offs, count+2,
1635 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1637 /* Compute any data- or p-drive using XOR */
1639 for (i = disks; i-- ; ) {
1640 if (i == target || i == qd_idx)
1642 offs[count] = sh->dev[i].offset;
1643 blocks[count++] = sh->dev[i].page;
1646 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1647 NULL, ops_complete_compute, sh,
1648 to_addr_conv(sh, percpu, 0));
1649 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1650 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1656 static struct dma_async_tx_descriptor *
1657 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1659 int i, count, disks = sh->disks;
1660 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1661 int d0_idx = raid6_d0(sh);
1662 int faila = -1, failb = -1;
1663 int target = sh->ops.target;
1664 int target2 = sh->ops.target2;
1665 struct r5dev *tgt = &sh->dev[target];
1666 struct r5dev *tgt2 = &sh->dev[target2];
1667 struct dma_async_tx_descriptor *tx;
1668 struct page **blocks = to_addr_page(percpu, 0);
1669 unsigned int *offs = to_addr_offs(sh, percpu);
1670 struct async_submit_ctl submit;
1672 BUG_ON(sh->batch_head);
1673 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1674 __func__, (unsigned long long)sh->sector, target, target2);
1675 BUG_ON(target < 0 || target2 < 0);
1676 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1677 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1679 /* we need to open-code set_syndrome_sources to handle the
1680 * slot number conversion for 'faila' and 'failb'
1682 for (i = 0; i < disks ; i++) {
1689 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1691 offs[slot] = sh->dev[i].offset;
1692 blocks[slot] = sh->dev[i].page;
1698 i = raid6_next_disk(i, disks);
1699 } while (i != d0_idx);
1701 BUG_ON(faila == failb);
1704 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1705 __func__, (unsigned long long)sh->sector, faila, failb);
1707 atomic_inc(&sh->count);
1709 if (failb == syndrome_disks+1) {
1710 /* Q disk is one of the missing disks */
1711 if (faila == syndrome_disks) {
1712 /* Missing P+Q, just recompute */
1713 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1714 ops_complete_compute, sh,
1715 to_addr_conv(sh, percpu, 0));
1716 return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1717 RAID5_STRIPE_SIZE(sh->raid_conf),
1721 unsigned int dest_off;
1723 int qd_idx = sh->qd_idx;
1725 /* Missing D+Q: recompute D from P, then recompute Q */
1726 if (target == qd_idx)
1727 data_target = target2;
1729 data_target = target;
1732 for (i = disks; i-- ; ) {
1733 if (i == data_target || i == qd_idx)
1735 offs[count] = sh->dev[i].offset;
1736 blocks[count++] = sh->dev[i].page;
1738 dest = sh->dev[data_target].page;
1739 dest_off = sh->dev[data_target].offset;
1740 init_async_submit(&submit,
1741 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1743 to_addr_conv(sh, percpu, 0));
1744 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1745 RAID5_STRIPE_SIZE(sh->raid_conf),
1748 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1749 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1750 ops_complete_compute, sh,
1751 to_addr_conv(sh, percpu, 0));
1752 return async_gen_syndrome(blocks, offs, count+2,
1753 RAID5_STRIPE_SIZE(sh->raid_conf),
1757 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1758 ops_complete_compute, sh,
1759 to_addr_conv(sh, percpu, 0));
1760 if (failb == syndrome_disks) {
1761 /* We're missing D+P. */
1762 return async_raid6_datap_recov(syndrome_disks+2,
1763 RAID5_STRIPE_SIZE(sh->raid_conf),
1765 blocks, offs, &submit);
1767 /* We're missing D+D. */
1768 return async_raid6_2data_recov(syndrome_disks+2,
1769 RAID5_STRIPE_SIZE(sh->raid_conf),
1771 blocks, offs, &submit);
1776 static void ops_complete_prexor(void *stripe_head_ref)
1778 struct stripe_head *sh = stripe_head_ref;
1780 pr_debug("%s: stripe %llu\n", __func__,
1781 (unsigned long long)sh->sector);
1783 if (r5c_is_writeback(sh->raid_conf->log))
1785 * raid5-cache write back uses orig_page during prexor.
1786 * After prexor, it is time to free orig_page
1788 r5c_release_extra_page(sh);
1791 static struct dma_async_tx_descriptor *
1792 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1793 struct dma_async_tx_descriptor *tx)
1795 int disks = sh->disks;
1796 struct page **xor_srcs = to_addr_page(percpu, 0);
1797 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1798 int count = 0, pd_idx = sh->pd_idx, i;
1799 struct async_submit_ctl submit;
1801 /* existing parity data subtracted */
1802 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1803 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1805 BUG_ON(sh->batch_head);
1806 pr_debug("%s: stripe %llu\n", __func__,
1807 (unsigned long long)sh->sector);
1809 for (i = disks; i--; ) {
1810 struct r5dev *dev = &sh->dev[i];
1811 /* Only process blocks that are known to be uptodate */
1812 if (test_bit(R5_InJournal, &dev->flags)) {
1814 * For this case, PAGE_SIZE must be equal to 4KB and
1815 * page offset is zero.
1817 off_srcs[count] = dev->offset;
1818 xor_srcs[count++] = dev->orig_page;
1819 } else if (test_bit(R5_Wantdrain, &dev->flags)) {
1820 off_srcs[count] = dev->offset;
1821 xor_srcs[count++] = dev->page;
1825 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1826 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1827 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1828 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1833 static struct dma_async_tx_descriptor *
1834 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1835 struct dma_async_tx_descriptor *tx)
1837 struct page **blocks = to_addr_page(percpu, 0);
1838 unsigned int *offs = to_addr_offs(sh, percpu);
1840 struct async_submit_ctl submit;
1842 pr_debug("%s: stripe %llu\n", __func__,
1843 (unsigned long long)sh->sector);
1845 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1847 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1848 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1849 tx = async_gen_syndrome(blocks, offs, count+2,
1850 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1855 static struct dma_async_tx_descriptor *
1856 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1858 struct r5conf *conf = sh->raid_conf;
1859 int disks = sh->disks;
1861 struct stripe_head *head_sh = sh;
1863 pr_debug("%s: stripe %llu\n", __func__,
1864 (unsigned long long)sh->sector);
1866 for (i = disks; i--; ) {
1871 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1877 * clear R5_InJournal, so when rewriting a page in
1878 * journal, it is not skipped by r5l_log_stripe()
1880 clear_bit(R5_InJournal, &dev->flags);
1881 spin_lock_irq(&sh->stripe_lock);
1882 chosen = dev->towrite;
1883 dev->towrite = NULL;
1884 sh->overwrite_disks = 0;
1885 BUG_ON(dev->written);
1886 wbi = dev->written = chosen;
1887 spin_unlock_irq(&sh->stripe_lock);
1888 WARN_ON(dev->page != dev->orig_page);
1890 while (wbi && wbi->bi_iter.bi_sector <
1891 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1892 if (wbi->bi_opf & REQ_FUA)
1893 set_bit(R5_WantFUA, &dev->flags);
1894 if (wbi->bi_opf & REQ_SYNC)
1895 set_bit(R5_SyncIO, &dev->flags);
1896 if (bio_op(wbi) == REQ_OP_DISCARD)
1897 set_bit(R5_Discard, &dev->flags);
1899 tx = async_copy_data(1, wbi, &dev->page,
1901 dev->sector, tx, sh,
1902 r5c_is_writeback(conf->log));
1903 if (dev->page != dev->orig_page &&
1904 !r5c_is_writeback(conf->log)) {
1905 set_bit(R5_SkipCopy, &dev->flags);
1906 clear_bit(R5_UPTODATE, &dev->flags);
1907 clear_bit(R5_OVERWRITE, &dev->flags);
1910 wbi = r5_next_bio(conf, wbi, dev->sector);
1913 if (head_sh->batch_head) {
1914 sh = list_first_entry(&sh->batch_list,
1927 static void ops_complete_reconstruct(void *stripe_head_ref)
1929 struct stripe_head *sh = stripe_head_ref;
1930 int disks = sh->disks;
1931 int pd_idx = sh->pd_idx;
1932 int qd_idx = sh->qd_idx;
1934 bool fua = false, sync = false, discard = false;
1936 pr_debug("%s: stripe %llu\n", __func__,
1937 (unsigned long long)sh->sector);
1939 for (i = disks; i--; ) {
1940 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1941 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1942 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1945 for (i = disks; i--; ) {
1946 struct r5dev *dev = &sh->dev[i];
1948 if (dev->written || i == pd_idx || i == qd_idx) {
1949 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1950 set_bit(R5_UPTODATE, &dev->flags);
1951 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1952 set_bit(R5_Expanded, &dev->flags);
1955 set_bit(R5_WantFUA, &dev->flags);
1957 set_bit(R5_SyncIO, &dev->flags);
1961 if (sh->reconstruct_state == reconstruct_state_drain_run)
1962 sh->reconstruct_state = reconstruct_state_drain_result;
1963 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1964 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1966 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1967 sh->reconstruct_state = reconstruct_state_result;
1970 set_bit(STRIPE_HANDLE, &sh->state);
1971 raid5_release_stripe(sh);
1975 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1976 struct dma_async_tx_descriptor *tx)
1978 int disks = sh->disks;
1979 struct page **xor_srcs;
1980 unsigned int *off_srcs;
1981 struct async_submit_ctl submit;
1982 int count, pd_idx = sh->pd_idx, i;
1983 struct page *xor_dest;
1984 unsigned int off_dest;
1986 unsigned long flags;
1988 struct stripe_head *head_sh = sh;
1991 pr_debug("%s: stripe %llu\n", __func__,
1992 (unsigned long long)sh->sector);
1994 for (i = 0; i < sh->disks; i++) {
1997 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2000 if (i >= sh->disks) {
2001 atomic_inc(&sh->count);
2002 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2003 ops_complete_reconstruct(sh);
2008 xor_srcs = to_addr_page(percpu, j);
2009 off_srcs = to_addr_offs(sh, percpu);
2010 /* check if prexor is active which means only process blocks
2011 * that are part of a read-modify-write (written)
2013 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2015 off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2016 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2017 for (i = disks; i--; ) {
2018 struct r5dev *dev = &sh->dev[i];
2019 if (head_sh->dev[i].written ||
2020 test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2021 off_srcs[count] = dev->offset;
2022 xor_srcs[count++] = dev->page;
2026 xor_dest = sh->dev[pd_idx].page;
2027 off_dest = sh->dev[pd_idx].offset;
2028 for (i = disks; i--; ) {
2029 struct r5dev *dev = &sh->dev[i];
2031 off_srcs[count] = dev->offset;
2032 xor_srcs[count++] = dev->page;
2037 /* 1/ if we prexor'd then the dest is reused as a source
2038 * 2/ if we did not prexor then we are redoing the parity
2039 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2040 * for the synchronous xor case
2042 last_stripe = !head_sh->batch_head ||
2043 list_first_entry(&sh->batch_list,
2044 struct stripe_head, batch_list) == head_sh;
2046 flags = ASYNC_TX_ACK |
2047 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2049 atomic_inc(&head_sh->count);
2050 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2051 to_addr_conv(sh, percpu, j));
2053 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2054 init_async_submit(&submit, flags, tx, NULL, NULL,
2055 to_addr_conv(sh, percpu, j));
2058 if (unlikely(count == 1))
2059 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2060 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2062 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2063 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2066 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2073 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2074 struct dma_async_tx_descriptor *tx)
2076 struct async_submit_ctl submit;
2077 struct page **blocks;
2079 int count, i, j = 0;
2080 struct stripe_head *head_sh = sh;
2083 unsigned long txflags;
2085 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2087 for (i = 0; i < sh->disks; i++) {
2088 if (sh->pd_idx == i || sh->qd_idx == i)
2090 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2093 if (i >= sh->disks) {
2094 atomic_inc(&sh->count);
2095 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2096 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2097 ops_complete_reconstruct(sh);
2102 blocks = to_addr_page(percpu, j);
2103 offs = to_addr_offs(sh, percpu);
2105 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2106 synflags = SYNDROME_SRC_WRITTEN;
2107 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2109 synflags = SYNDROME_SRC_ALL;
2110 txflags = ASYNC_TX_ACK;
2113 count = set_syndrome_sources(blocks, offs, sh, synflags);
2114 last_stripe = !head_sh->batch_head ||
2115 list_first_entry(&sh->batch_list,
2116 struct stripe_head, batch_list) == head_sh;
2119 atomic_inc(&head_sh->count);
2120 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2121 head_sh, to_addr_conv(sh, percpu, j));
2123 init_async_submit(&submit, 0, tx, NULL, NULL,
2124 to_addr_conv(sh, percpu, j));
2125 tx = async_gen_syndrome(blocks, offs, count+2,
2126 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2129 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2135 static void ops_complete_check(void *stripe_head_ref)
2137 struct stripe_head *sh = stripe_head_ref;
2139 pr_debug("%s: stripe %llu\n", __func__,
2140 (unsigned long long)sh->sector);
2142 sh->check_state = check_state_check_result;
2143 set_bit(STRIPE_HANDLE, &sh->state);
2144 raid5_release_stripe(sh);
2147 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2149 int disks = sh->disks;
2150 int pd_idx = sh->pd_idx;
2151 int qd_idx = sh->qd_idx;
2152 struct page *xor_dest;
2153 unsigned int off_dest;
2154 struct page **xor_srcs = to_addr_page(percpu, 0);
2155 unsigned int *off_srcs = to_addr_offs(sh, percpu);
2156 struct dma_async_tx_descriptor *tx;
2157 struct async_submit_ctl submit;
2161 pr_debug("%s: stripe %llu\n", __func__,
2162 (unsigned long long)sh->sector);
2164 BUG_ON(sh->batch_head);
2166 xor_dest = sh->dev[pd_idx].page;
2167 off_dest = sh->dev[pd_idx].offset;
2168 off_srcs[count] = off_dest;
2169 xor_srcs[count++] = xor_dest;
2170 for (i = disks; i--; ) {
2171 if (i == pd_idx || i == qd_idx)
2173 off_srcs[count] = sh->dev[i].offset;
2174 xor_srcs[count++] = sh->dev[i].page;
2177 init_async_submit(&submit, 0, NULL, NULL, NULL,
2178 to_addr_conv(sh, percpu, 0));
2179 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2180 RAID5_STRIPE_SIZE(sh->raid_conf),
2181 &sh->ops.zero_sum_result, &submit);
2183 atomic_inc(&sh->count);
2184 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2185 tx = async_trigger_callback(&submit);
2188 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2190 struct page **srcs = to_addr_page(percpu, 0);
2191 unsigned int *offs = to_addr_offs(sh, percpu);
2192 struct async_submit_ctl submit;
2195 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2196 (unsigned long long)sh->sector, checkp);
2198 BUG_ON(sh->batch_head);
2199 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2203 atomic_inc(&sh->count);
2204 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2205 sh, to_addr_conv(sh, percpu, 0));
2206 async_syndrome_val(srcs, offs, count+2,
2207 RAID5_STRIPE_SIZE(sh->raid_conf),
2208 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2211 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2213 int overlap_clear = 0, i, disks = sh->disks;
2214 struct dma_async_tx_descriptor *tx = NULL;
2215 struct r5conf *conf = sh->raid_conf;
2216 int level = conf->level;
2217 struct raid5_percpu *percpu;
2219 local_lock(&conf->percpu->lock);
2220 percpu = this_cpu_ptr(conf->percpu);
2221 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2222 ops_run_biofill(sh);
2226 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2228 tx = ops_run_compute5(sh, percpu);
2230 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2231 tx = ops_run_compute6_1(sh, percpu);
2233 tx = ops_run_compute6_2(sh, percpu);
2235 /* terminate the chain if reconstruct is not set to be run */
2236 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2240 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2242 tx = ops_run_prexor5(sh, percpu, tx);
2244 tx = ops_run_prexor6(sh, percpu, tx);
2247 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2248 tx = ops_run_partial_parity(sh, percpu, tx);
2250 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2251 tx = ops_run_biodrain(sh, tx);
2255 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2257 ops_run_reconstruct5(sh, percpu, tx);
2259 ops_run_reconstruct6(sh, percpu, tx);
2262 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2263 if (sh->check_state == check_state_run)
2264 ops_run_check_p(sh, percpu);
2265 else if (sh->check_state == check_state_run_q)
2266 ops_run_check_pq(sh, percpu, 0);
2267 else if (sh->check_state == check_state_run_pq)
2268 ops_run_check_pq(sh, percpu, 1);
2273 if (overlap_clear && !sh->batch_head) {
2274 for (i = disks; i--; ) {
2275 struct r5dev *dev = &sh->dev[i];
2276 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2277 wake_up(&sh->raid_conf->wait_for_overlap);
2280 local_unlock(&conf->percpu->lock);
2283 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2285 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2289 __free_page(sh->ppl_page);
2290 kmem_cache_free(sc, sh);
2293 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2294 int disks, struct r5conf *conf)
2296 struct stripe_head *sh;
2298 sh = kmem_cache_zalloc(sc, gfp);
2300 spin_lock_init(&sh->stripe_lock);
2301 spin_lock_init(&sh->batch_lock);
2302 INIT_LIST_HEAD(&sh->batch_list);
2303 INIT_LIST_HEAD(&sh->lru);
2304 INIT_LIST_HEAD(&sh->r5c);
2305 INIT_LIST_HEAD(&sh->log_list);
2306 atomic_set(&sh->count, 1);
2307 sh->raid_conf = conf;
2308 sh->log_start = MaxSector;
2310 if (raid5_has_ppl(conf)) {
2311 sh->ppl_page = alloc_page(gfp);
2312 if (!sh->ppl_page) {
2313 free_stripe(sc, sh);
2317 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2318 if (init_stripe_shared_pages(sh, conf, disks)) {
2319 free_stripe(sc, sh);
2326 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2328 struct stripe_head *sh;
2330 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2334 if (grow_buffers(sh, gfp)) {
2336 free_stripe(conf->slab_cache, sh);
2339 sh->hash_lock_index =
2340 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2341 /* we just created an active stripe so... */
2342 atomic_inc(&conf->active_stripes);
2344 raid5_release_stripe(sh);
2345 conf->max_nr_stripes++;
2349 static int grow_stripes(struct r5conf *conf, int num)
2351 struct kmem_cache *sc;
2352 size_t namelen = sizeof(conf->cache_name[0]);
2353 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2355 if (conf->mddev->gendisk)
2356 snprintf(conf->cache_name[0], namelen,
2357 "raid%d-%s", conf->level, mdname(conf->mddev));
2359 snprintf(conf->cache_name[0], namelen,
2360 "raid%d-%p", conf->level, conf->mddev);
2361 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2363 conf->active_name = 0;
2364 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2365 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2369 conf->slab_cache = sc;
2370 conf->pool_size = devs;
2372 if (!grow_one_stripe(conf, GFP_KERNEL))
2379 * scribble_alloc - allocate percpu scribble buffer for required size
2380 * of the scribble region
2381 * @percpu: from for_each_present_cpu() of the caller
2382 * @num: total number of disks in the array
2383 * @cnt: scribble objs count for required size of the scribble region
2385 * The scribble buffer size must be enough to contain:
2386 * 1/ a struct page pointer for each device in the array +2
2387 * 2/ room to convert each entry in (1) to its corresponding dma
2388 * (dma_map_page()) or page (page_address()) address.
2390 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2391 * calculate over all devices (not just the data blocks), using zeros in place
2392 * of the P and Q blocks.
2394 static int scribble_alloc(struct raid5_percpu *percpu,
2398 sizeof(struct page *) * (num + 2) +
2399 sizeof(addr_conv_t) * (num + 2) +
2400 sizeof(unsigned int) * (num + 2);
2404 * If here is in raid array suspend context, it is in memalloc noio
2405 * context as well, there is no potential recursive memory reclaim
2406 * I/Os with the GFP_KERNEL flag.
2408 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2412 kvfree(percpu->scribble);
2414 percpu->scribble = scribble;
2415 percpu->scribble_obj_size = obj_size;
2419 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2425 * Never shrink. And mddev_suspend() could deadlock if this is called
2426 * from raid5d. In that case, scribble_disks and scribble_sectors
2427 * should equal to new_disks and new_sectors
2429 if (conf->scribble_disks >= new_disks &&
2430 conf->scribble_sectors >= new_sectors)
2432 mddev_suspend(conf->mddev);
2435 for_each_present_cpu(cpu) {
2436 struct raid5_percpu *percpu;
2438 percpu = per_cpu_ptr(conf->percpu, cpu);
2439 err = scribble_alloc(percpu, new_disks,
2440 new_sectors / RAID5_STRIPE_SECTORS(conf));
2446 mddev_resume(conf->mddev);
2448 conf->scribble_disks = new_disks;
2449 conf->scribble_sectors = new_sectors;
2454 static int resize_stripes(struct r5conf *conf, int newsize)
2456 /* Make all the stripes able to hold 'newsize' devices.
2457 * New slots in each stripe get 'page' set to a new page.
2459 * This happens in stages:
2460 * 1/ create a new kmem_cache and allocate the required number of
2462 * 2/ gather all the old stripe_heads and transfer the pages across
2463 * to the new stripe_heads. This will have the side effect of
2464 * freezing the array as once all stripe_heads have been collected,
2465 * no IO will be possible. Old stripe heads are freed once their
2466 * pages have been transferred over, and the old kmem_cache is
2467 * freed when all stripes are done.
2468 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2469 * we simple return a failure status - no need to clean anything up.
2470 * 4/ allocate new pages for the new slots in the new stripe_heads.
2471 * If this fails, we don't bother trying the shrink the
2472 * stripe_heads down again, we just leave them as they are.
2473 * As each stripe_head is processed the new one is released into
2476 * Once step2 is started, we cannot afford to wait for a write,
2477 * so we use GFP_NOIO allocations.
2479 struct stripe_head *osh, *nsh;
2480 LIST_HEAD(newstripes);
2481 struct disk_info *ndisks;
2483 struct kmem_cache *sc;
2487 md_allow_write(conf->mddev);
2490 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2491 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2496 /* Need to ensure auto-resizing doesn't interfere */
2497 mutex_lock(&conf->cache_size_mutex);
2499 for (i = conf->max_nr_stripes; i; i--) {
2500 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2504 list_add(&nsh->lru, &newstripes);
2507 /* didn't get enough, give up */
2508 while (!list_empty(&newstripes)) {
2509 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2510 list_del(&nsh->lru);
2511 free_stripe(sc, nsh);
2513 kmem_cache_destroy(sc);
2514 mutex_unlock(&conf->cache_size_mutex);
2517 /* Step 2 - Must use GFP_NOIO now.
2518 * OK, we have enough stripes, start collecting inactive
2519 * stripes and copying them over
2523 list_for_each_entry(nsh, &newstripes, lru) {
2524 lock_device_hash_lock(conf, hash);
2525 wait_event_cmd(conf->wait_for_stripe,
2526 !list_empty(conf->inactive_list + hash),
2527 unlock_device_hash_lock(conf, hash),
2528 lock_device_hash_lock(conf, hash));
2529 osh = get_free_stripe(conf, hash);
2530 unlock_device_hash_lock(conf, hash);
2532 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2533 for (i = 0; i < osh->nr_pages; i++) {
2534 nsh->pages[i] = osh->pages[i];
2535 osh->pages[i] = NULL;
2538 for(i=0; i<conf->pool_size; i++) {
2539 nsh->dev[i].page = osh->dev[i].page;
2540 nsh->dev[i].orig_page = osh->dev[i].page;
2541 nsh->dev[i].offset = osh->dev[i].offset;
2543 nsh->hash_lock_index = hash;
2544 free_stripe(conf->slab_cache, osh);
2546 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2547 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2552 kmem_cache_destroy(conf->slab_cache);
2555 * At this point, we are holding all the stripes so the array
2556 * is completely stalled, so now is a good time to resize
2557 * conf->disks and the scribble region
2559 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2561 for (i = 0; i < conf->pool_size; i++)
2562 ndisks[i] = conf->disks[i];
2564 for (i = conf->pool_size; i < newsize; i++) {
2565 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2566 if (!ndisks[i].extra_page)
2571 for (i = conf->pool_size; i < newsize; i++)
2572 if (ndisks[i].extra_page)
2573 put_page(ndisks[i].extra_page);
2577 conf->disks = ndisks;
2582 conf->slab_cache = sc;
2583 conf->active_name = 1-conf->active_name;
2585 /* Step 4, return new stripes to service */
2586 while(!list_empty(&newstripes)) {
2587 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2588 list_del_init(&nsh->lru);
2590 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2591 for (i = 0; i < nsh->nr_pages; i++) {
2594 nsh->pages[i] = alloc_page(GFP_NOIO);
2599 for (i = conf->raid_disks; i < newsize; i++) {
2600 if (nsh->dev[i].page)
2602 nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2603 nsh->dev[i].orig_page = nsh->dev[i].page;
2604 nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2607 for (i=conf->raid_disks; i < newsize; i++)
2608 if (nsh->dev[i].page == NULL) {
2609 struct page *p = alloc_page(GFP_NOIO);
2610 nsh->dev[i].page = p;
2611 nsh->dev[i].orig_page = p;
2612 nsh->dev[i].offset = 0;
2617 raid5_release_stripe(nsh);
2619 /* critical section pass, GFP_NOIO no longer needed */
2622 conf->pool_size = newsize;
2623 mutex_unlock(&conf->cache_size_mutex);
2628 static int drop_one_stripe(struct r5conf *conf)
2630 struct stripe_head *sh;
2631 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2633 spin_lock_irq(conf->hash_locks + hash);
2634 sh = get_free_stripe(conf, hash);
2635 spin_unlock_irq(conf->hash_locks + hash);
2638 BUG_ON(atomic_read(&sh->count));
2640 free_stripe(conf->slab_cache, sh);
2641 atomic_dec(&conf->active_stripes);
2642 conf->max_nr_stripes--;
2646 static void shrink_stripes(struct r5conf *conf)
2648 while (conf->max_nr_stripes &&
2649 drop_one_stripe(conf))
2652 kmem_cache_destroy(conf->slab_cache);
2653 conf->slab_cache = NULL;
2656 static void raid5_end_read_request(struct bio * bi)
2658 struct stripe_head *sh = bi->bi_private;
2659 struct r5conf *conf = sh->raid_conf;
2660 int disks = sh->disks, i;
2661 char b[BDEVNAME_SIZE];
2662 struct md_rdev *rdev = NULL;
2665 for (i=0 ; i<disks; i++)
2666 if (bi == &sh->dev[i].req)
2669 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2670 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2676 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2677 /* If replacement finished while this request was outstanding,
2678 * 'replacement' might be NULL already.
2679 * In that case it moved down to 'rdev'.
2680 * rdev is not removed until all requests are finished.
2682 rdev = conf->disks[i].replacement;
2684 rdev = conf->disks[i].rdev;
2686 if (use_new_offset(conf, sh))
2687 s = sh->sector + rdev->new_data_offset;
2689 s = sh->sector + rdev->data_offset;
2690 if (!bi->bi_status) {
2691 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2692 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2693 /* Note that this cannot happen on a
2694 * replacement device. We just fail those on
2697 pr_info_ratelimited(
2698 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2699 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2700 (unsigned long long)s,
2701 bdevname(rdev->bdev, b));
2702 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2703 clear_bit(R5_ReadError, &sh->dev[i].flags);
2704 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2705 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2706 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2708 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2710 * end read for a page in journal, this
2711 * must be preparing for prexor in rmw
2713 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2715 if (atomic_read(&rdev->read_errors))
2716 atomic_set(&rdev->read_errors, 0);
2718 const char *bdn = bdevname(rdev->bdev, b);
2722 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2723 if (!(bi->bi_status == BLK_STS_PROTECTION))
2724 atomic_inc(&rdev->read_errors);
2725 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2726 pr_warn_ratelimited(
2727 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2728 mdname(conf->mddev),
2729 (unsigned long long)s,
2731 else if (conf->mddev->degraded >= conf->max_degraded) {
2733 pr_warn_ratelimited(
2734 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2735 mdname(conf->mddev),
2736 (unsigned long long)s,
2738 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2741 pr_warn_ratelimited(
2742 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2743 mdname(conf->mddev),
2744 (unsigned long long)s,
2746 } else if (atomic_read(&rdev->read_errors)
2747 > conf->max_nr_stripes) {
2748 if (!test_bit(Faulty, &rdev->flags)) {
2749 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2750 mdname(conf->mddev),
2751 atomic_read(&rdev->read_errors),
2752 conf->max_nr_stripes);
2753 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2754 mdname(conf->mddev), bdn);
2758 if (set_bad && test_bit(In_sync, &rdev->flags)
2759 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2762 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2763 set_bit(R5_ReadError, &sh->dev[i].flags);
2764 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2765 set_bit(R5_ReadError, &sh->dev[i].flags);
2766 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2768 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2770 clear_bit(R5_ReadError, &sh->dev[i].flags);
2771 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2773 && test_bit(In_sync, &rdev->flags)
2774 && rdev_set_badblocks(
2775 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2776 md_error(conf->mddev, rdev);
2779 rdev_dec_pending(rdev, conf->mddev);
2781 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2782 set_bit(STRIPE_HANDLE, &sh->state);
2783 raid5_release_stripe(sh);
2786 static void raid5_end_write_request(struct bio *bi)
2788 struct stripe_head *sh = bi->bi_private;
2789 struct r5conf *conf = sh->raid_conf;
2790 int disks = sh->disks, i;
2791 struct md_rdev *rdev;
2794 int replacement = 0;
2796 for (i = 0 ; i < disks; i++) {
2797 if (bi == &sh->dev[i].req) {
2798 rdev = conf->disks[i].rdev;
2801 if (bi == &sh->dev[i].rreq) {
2802 rdev = conf->disks[i].replacement;
2806 /* rdev was removed and 'replacement'
2807 * replaced it. rdev is not removed
2808 * until all requests are finished.
2810 rdev = conf->disks[i].rdev;
2814 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2815 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2824 md_error(conf->mddev, rdev);
2825 else if (is_badblock(rdev, sh->sector,
2826 RAID5_STRIPE_SECTORS(conf),
2827 &first_bad, &bad_sectors))
2828 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2830 if (bi->bi_status) {
2831 set_bit(STRIPE_DEGRADED, &sh->state);
2832 set_bit(WriteErrorSeen, &rdev->flags);
2833 set_bit(R5_WriteError, &sh->dev[i].flags);
2834 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2835 set_bit(MD_RECOVERY_NEEDED,
2836 &rdev->mddev->recovery);
2837 } else if (is_badblock(rdev, sh->sector,
2838 RAID5_STRIPE_SECTORS(conf),
2839 &first_bad, &bad_sectors)) {
2840 set_bit(R5_MadeGood, &sh->dev[i].flags);
2841 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2842 /* That was a successful write so make
2843 * sure it looks like we already did
2846 set_bit(R5_ReWrite, &sh->dev[i].flags);
2849 rdev_dec_pending(rdev, conf->mddev);
2851 if (sh->batch_head && bi->bi_status && !replacement)
2852 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2855 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2856 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2857 set_bit(STRIPE_HANDLE, &sh->state);
2858 raid5_release_stripe(sh);
2860 if (sh->batch_head && sh != sh->batch_head)
2861 raid5_release_stripe(sh->batch_head);
2864 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2866 char b[BDEVNAME_SIZE];
2867 struct r5conf *conf = mddev->private;
2868 unsigned long flags;
2869 pr_debug("raid456: error called\n");
2871 spin_lock_irqsave(&conf->device_lock, flags);
2873 if (test_bit(In_sync, &rdev->flags) &&
2874 mddev->degraded == conf->max_degraded) {
2876 * Don't allow to achieve failed state
2877 * Don't try to recover this device
2879 conf->recovery_disabled = mddev->recovery_disabled;
2880 spin_unlock_irqrestore(&conf->device_lock, flags);
2884 set_bit(Faulty, &rdev->flags);
2885 clear_bit(In_sync, &rdev->flags);
2886 mddev->degraded = raid5_calc_degraded(conf);
2887 spin_unlock_irqrestore(&conf->device_lock, flags);
2888 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2890 set_bit(Blocked, &rdev->flags);
2891 set_mask_bits(&mddev->sb_flags, 0,
2892 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2893 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2894 "md/raid:%s: Operation continuing on %d devices.\n",
2896 bdevname(rdev->bdev, b),
2898 conf->raid_disks - mddev->degraded);
2899 r5c_update_on_rdev_error(mddev, rdev);
2903 * Input: a 'big' sector number,
2904 * Output: index of the data and parity disk, and the sector # in them.
2906 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2907 int previous, int *dd_idx,
2908 struct stripe_head *sh)
2910 sector_t stripe, stripe2;
2911 sector_t chunk_number;
2912 unsigned int chunk_offset;
2915 sector_t new_sector;
2916 int algorithm = previous ? conf->prev_algo
2918 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2919 : conf->chunk_sectors;
2920 int raid_disks = previous ? conf->previous_raid_disks
2922 int data_disks = raid_disks - conf->max_degraded;
2924 /* First compute the information on this sector */
2927 * Compute the chunk number and the sector offset inside the chunk
2929 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2930 chunk_number = r_sector;
2933 * Compute the stripe number
2935 stripe = chunk_number;
2936 *dd_idx = sector_div(stripe, data_disks);
2939 * Select the parity disk based on the user selected algorithm.
2941 pd_idx = qd_idx = -1;
2942 switch(conf->level) {
2944 pd_idx = data_disks;
2947 switch (algorithm) {
2948 case ALGORITHM_LEFT_ASYMMETRIC:
2949 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2950 if (*dd_idx >= pd_idx)
2953 case ALGORITHM_RIGHT_ASYMMETRIC:
2954 pd_idx = sector_div(stripe2, raid_disks);
2955 if (*dd_idx >= pd_idx)
2958 case ALGORITHM_LEFT_SYMMETRIC:
2959 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2960 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2962 case ALGORITHM_RIGHT_SYMMETRIC:
2963 pd_idx = sector_div(stripe2, raid_disks);
2964 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2966 case ALGORITHM_PARITY_0:
2970 case ALGORITHM_PARITY_N:
2971 pd_idx = data_disks;
2979 switch (algorithm) {
2980 case ALGORITHM_LEFT_ASYMMETRIC:
2981 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2982 qd_idx = pd_idx + 1;
2983 if (pd_idx == raid_disks-1) {
2984 (*dd_idx)++; /* Q D D D P */
2986 } else if (*dd_idx >= pd_idx)
2987 (*dd_idx) += 2; /* D D P Q D */
2989 case ALGORITHM_RIGHT_ASYMMETRIC:
2990 pd_idx = sector_div(stripe2, raid_disks);
2991 qd_idx = pd_idx + 1;
2992 if (pd_idx == raid_disks-1) {
2993 (*dd_idx)++; /* Q D D D P */
2995 } else if (*dd_idx >= pd_idx)
2996 (*dd_idx) += 2; /* D D P Q D */
2998 case ALGORITHM_LEFT_SYMMETRIC:
2999 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3000 qd_idx = (pd_idx + 1) % raid_disks;
3001 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3003 case ALGORITHM_RIGHT_SYMMETRIC:
3004 pd_idx = sector_div(stripe2, raid_disks);
3005 qd_idx = (pd_idx + 1) % raid_disks;
3006 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3009 case ALGORITHM_PARITY_0:
3014 case ALGORITHM_PARITY_N:
3015 pd_idx = data_disks;
3016 qd_idx = data_disks + 1;
3019 case ALGORITHM_ROTATING_ZERO_RESTART:
3020 /* Exactly the same as RIGHT_ASYMMETRIC, but or
3021 * of blocks for computing Q is different.
3023 pd_idx = sector_div(stripe2, raid_disks);
3024 qd_idx = pd_idx + 1;
3025 if (pd_idx == raid_disks-1) {
3026 (*dd_idx)++; /* Q D D D P */
3028 } else if (*dd_idx >= pd_idx)
3029 (*dd_idx) += 2; /* D D P Q D */
3033 case ALGORITHM_ROTATING_N_RESTART:
3034 /* Same a left_asymmetric, by first stripe is
3035 * D D D P Q rather than
3039 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3040 qd_idx = pd_idx + 1;
3041 if (pd_idx == raid_disks-1) {
3042 (*dd_idx)++; /* Q D D D P */
3044 } else if (*dd_idx >= pd_idx)
3045 (*dd_idx) += 2; /* D D P Q D */
3049 case ALGORITHM_ROTATING_N_CONTINUE:
3050 /* Same as left_symmetric but Q is before P */
3051 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3052 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3053 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3057 case ALGORITHM_LEFT_ASYMMETRIC_6:
3058 /* RAID5 left_asymmetric, with Q on last device */
3059 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3060 if (*dd_idx >= pd_idx)
3062 qd_idx = raid_disks - 1;
3065 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3066 pd_idx = sector_div(stripe2, raid_disks-1);
3067 if (*dd_idx >= pd_idx)
3069 qd_idx = raid_disks - 1;
3072 case ALGORITHM_LEFT_SYMMETRIC_6:
3073 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3074 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3075 qd_idx = raid_disks - 1;
3078 case ALGORITHM_RIGHT_SYMMETRIC_6:
3079 pd_idx = sector_div(stripe2, raid_disks-1);
3080 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3081 qd_idx = raid_disks - 1;
3084 case ALGORITHM_PARITY_0_6:
3087 qd_idx = raid_disks - 1;
3097 sh->pd_idx = pd_idx;
3098 sh->qd_idx = qd_idx;
3099 sh->ddf_layout = ddf_layout;
3102 * Finally, compute the new sector number
3104 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3108 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3110 struct r5conf *conf = sh->raid_conf;
3111 int raid_disks = sh->disks;
3112 int data_disks = raid_disks - conf->max_degraded;
3113 sector_t new_sector = sh->sector, check;
3114 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3115 : conf->chunk_sectors;
3116 int algorithm = previous ? conf->prev_algo
3120 sector_t chunk_number;
3121 int dummy1, dd_idx = i;
3123 struct stripe_head sh2;
3125 chunk_offset = sector_div(new_sector, sectors_per_chunk);
3126 stripe = new_sector;
3128 if (i == sh->pd_idx)
3130 switch(conf->level) {
3133 switch (algorithm) {
3134 case ALGORITHM_LEFT_ASYMMETRIC:
3135 case ALGORITHM_RIGHT_ASYMMETRIC:
3139 case ALGORITHM_LEFT_SYMMETRIC:
3140 case ALGORITHM_RIGHT_SYMMETRIC:
3143 i -= (sh->pd_idx + 1);
3145 case ALGORITHM_PARITY_0:
3148 case ALGORITHM_PARITY_N:
3155 if (i == sh->qd_idx)
3156 return 0; /* It is the Q disk */
3157 switch (algorithm) {
3158 case ALGORITHM_LEFT_ASYMMETRIC:
3159 case ALGORITHM_RIGHT_ASYMMETRIC:
3160 case ALGORITHM_ROTATING_ZERO_RESTART:
3161 case ALGORITHM_ROTATING_N_RESTART:
3162 if (sh->pd_idx == raid_disks-1)
3163 i--; /* Q D D D P */
3164 else if (i > sh->pd_idx)
3165 i -= 2; /* D D P Q D */
3167 case ALGORITHM_LEFT_SYMMETRIC:
3168 case ALGORITHM_RIGHT_SYMMETRIC:
3169 if (sh->pd_idx == raid_disks-1)
3170 i--; /* Q D D D P */
3175 i -= (sh->pd_idx + 2);
3178 case ALGORITHM_PARITY_0:
3181 case ALGORITHM_PARITY_N:
3183 case ALGORITHM_ROTATING_N_CONTINUE:
3184 /* Like left_symmetric, but P is before Q */
3185 if (sh->pd_idx == 0)
3186 i--; /* P D D D Q */
3191 i -= (sh->pd_idx + 1);
3194 case ALGORITHM_LEFT_ASYMMETRIC_6:
3195 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3199 case ALGORITHM_LEFT_SYMMETRIC_6:
3200 case ALGORITHM_RIGHT_SYMMETRIC_6:
3202 i += data_disks + 1;
3203 i -= (sh->pd_idx + 1);
3205 case ALGORITHM_PARITY_0_6:
3214 chunk_number = stripe * data_disks + i;
3215 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3217 check = raid5_compute_sector(conf, r_sector,
3218 previous, &dummy1, &sh2);
3219 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3220 || sh2.qd_idx != sh->qd_idx) {
3221 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3222 mdname(conf->mddev));
3229 * There are cases where we want handle_stripe_dirtying() and
3230 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3232 * This function checks whether we want to delay the towrite. Specifically,
3233 * we delay the towrite when:
3235 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3236 * stripe has data in journal (for other devices).
3238 * In this case, when reading data for the non-overwrite dev, it is
3239 * necessary to handle complex rmw of write back cache (prexor with
3240 * orig_page, and xor with page). To keep read path simple, we would
3241 * like to flush data in journal to RAID disks first, so complex rmw
3242 * is handled in the write patch (handle_stripe_dirtying).
3244 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3246 * It is important to be able to flush all stripes in raid5-cache.
3247 * Therefore, we need reserve some space on the journal device for
3248 * these flushes. If flush operation includes pending writes to the
3249 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3250 * for the flush out. If we exclude these pending writes from flush
3251 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3252 * Therefore, excluding pending writes in these cases enables more
3253 * efficient use of the journal device.
3255 * Note: To make sure the stripe makes progress, we only delay
3256 * towrite for stripes with data already in journal (injournal > 0).
3257 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3258 * no_space_stripes list.
3260 * 3. during journal failure
3261 * In journal failure, we try to flush all cached data to raid disks
3262 * based on data in stripe cache. The array is read-only to upper
3263 * layers, so we would skip all pending writes.
3266 static inline bool delay_towrite(struct r5conf *conf,
3268 struct stripe_head_state *s)
3271 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3272 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3275 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3279 if (s->log_failed && s->injournal)
3285 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3286 int rcw, int expand)
3288 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3289 struct r5conf *conf = sh->raid_conf;
3290 int level = conf->level;
3294 * In some cases, handle_stripe_dirtying initially decided to
3295 * run rmw and allocates extra page for prexor. However, rcw is
3296 * cheaper later on. We need to free the extra page now,
3297 * because we won't be able to do that in ops_complete_prexor().
3299 r5c_release_extra_page(sh);
3301 for (i = disks; i--; ) {
3302 struct r5dev *dev = &sh->dev[i];
3304 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3305 set_bit(R5_LOCKED, &dev->flags);
3306 set_bit(R5_Wantdrain, &dev->flags);
3308 clear_bit(R5_UPTODATE, &dev->flags);
3310 } else if (test_bit(R5_InJournal, &dev->flags)) {
3311 set_bit(R5_LOCKED, &dev->flags);
3315 /* if we are not expanding this is a proper write request, and
3316 * there will be bios with new data to be drained into the
3321 /* False alarm, nothing to do */
3323 sh->reconstruct_state = reconstruct_state_drain_run;
3324 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3326 sh->reconstruct_state = reconstruct_state_run;
3328 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3330 if (s->locked + conf->max_degraded == disks)
3331 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3332 atomic_inc(&conf->pending_full_writes);
3334 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3335 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3336 BUG_ON(level == 6 &&
3337 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3338 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3340 for (i = disks; i--; ) {
3341 struct r5dev *dev = &sh->dev[i];
3342 if (i == pd_idx || i == qd_idx)
3346 (test_bit(R5_UPTODATE, &dev->flags) ||
3347 test_bit(R5_Wantcompute, &dev->flags))) {
3348 set_bit(R5_Wantdrain, &dev->flags);
3349 set_bit(R5_LOCKED, &dev->flags);
3350 clear_bit(R5_UPTODATE, &dev->flags);
3352 } else if (test_bit(R5_InJournal, &dev->flags)) {
3353 set_bit(R5_LOCKED, &dev->flags);
3358 /* False alarm - nothing to do */
3360 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3361 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3362 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3363 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3366 /* keep the parity disk(s) locked while asynchronous operations
3369 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3370 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3374 int qd_idx = sh->qd_idx;
3375 struct r5dev *dev = &sh->dev[qd_idx];
3377 set_bit(R5_LOCKED, &dev->flags);
3378 clear_bit(R5_UPTODATE, &dev->flags);
3382 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3383 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3384 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3385 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3386 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3388 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3389 __func__, (unsigned long long)sh->sector,
3390 s->locked, s->ops_request);
3394 * Each stripe/dev can have one or more bion attached.
3395 * toread/towrite point to the first in a chain.
3396 * The bi_next chain must be in order.
3398 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3399 int forwrite, int previous)
3402 struct r5conf *conf = sh->raid_conf;
3405 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3406 (unsigned long long)bi->bi_iter.bi_sector,
3407 (unsigned long long)sh->sector);
3409 spin_lock_irq(&sh->stripe_lock);
3410 sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3411 /* Don't allow new IO added to stripes in batch list */
3415 bip = &sh->dev[dd_idx].towrite;
3419 bip = &sh->dev[dd_idx].toread;
3420 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3421 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3423 bip = & (*bip)->bi_next;
3425 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3428 if (forwrite && raid5_has_ppl(conf)) {
3430 * With PPL only writes to consecutive data chunks within a
3431 * stripe are allowed because for a single stripe_head we can
3432 * only have one PPL entry at a time, which describes one data
3433 * range. Not really an overlap, but wait_for_overlap can be
3434 * used to handle this.
3442 for (i = 0; i < sh->disks; i++) {
3443 if (i != sh->pd_idx &&
3444 (i == dd_idx || sh->dev[i].towrite)) {
3445 sector = sh->dev[i].sector;
3446 if (count == 0 || sector < first)
3454 if (first + conf->chunk_sectors * (count - 1) != last)
3458 if (!forwrite || previous)
3459 clear_bit(STRIPE_BATCH_READY, &sh->state);
3461 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3465 bio_inc_remaining(bi);
3466 md_write_inc(conf->mddev, bi);
3469 /* check if page is covered */
3470 sector_t sector = sh->dev[dd_idx].sector;
3471 for (bi=sh->dev[dd_idx].towrite;
3472 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3473 bi && bi->bi_iter.bi_sector <= sector;
3474 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3475 if (bio_end_sector(bi) >= sector)
3476 sector = bio_end_sector(bi);
3478 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3479 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3480 sh->overwrite_disks++;
3483 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3484 (unsigned long long)(*bip)->bi_iter.bi_sector,
3485 (unsigned long long)sh->sector, dd_idx);
3487 if (conf->mddev->bitmap && firstwrite) {
3488 /* Cannot hold spinlock over bitmap_startwrite,
3489 * but must ensure this isn't added to a batch until
3490 * we have added to the bitmap and set bm_seq.
3491 * So set STRIPE_BITMAP_PENDING to prevent
3493 * If multiple add_stripe_bio() calls race here they
3494 * much all set STRIPE_BITMAP_PENDING. So only the first one
3495 * to complete "bitmap_startwrite" gets to set
3496 * STRIPE_BIT_DELAY. This is important as once a stripe
3497 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3500 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3501 spin_unlock_irq(&sh->stripe_lock);
3502 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3503 RAID5_STRIPE_SECTORS(conf), 0);
3504 spin_lock_irq(&sh->stripe_lock);
3505 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3506 if (!sh->batch_head) {
3507 sh->bm_seq = conf->seq_flush+1;
3508 set_bit(STRIPE_BIT_DELAY, &sh->state);
3511 spin_unlock_irq(&sh->stripe_lock);
3513 if (stripe_can_batch(sh))
3514 stripe_add_to_batch_list(conf, sh);
3518 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3519 spin_unlock_irq(&sh->stripe_lock);
3523 static void end_reshape(struct r5conf *conf);
3525 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3526 struct stripe_head *sh)
3528 int sectors_per_chunk =
3529 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3531 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3532 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3534 raid5_compute_sector(conf,
3535 stripe * (disks - conf->max_degraded)
3536 *sectors_per_chunk + chunk_offset,
3542 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3543 struct stripe_head_state *s, int disks)
3546 BUG_ON(sh->batch_head);
3547 for (i = disks; i--; ) {
3551 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3552 struct md_rdev *rdev;
3554 rdev = rcu_dereference(conf->disks[i].rdev);
3555 if (rdev && test_bit(In_sync, &rdev->flags) &&
3556 !test_bit(Faulty, &rdev->flags))
3557 atomic_inc(&rdev->nr_pending);
3562 if (!rdev_set_badblocks(
3565 RAID5_STRIPE_SECTORS(conf), 0))
3566 md_error(conf->mddev, rdev);
3567 rdev_dec_pending(rdev, conf->mddev);
3570 spin_lock_irq(&sh->stripe_lock);
3571 /* fail all writes first */
3572 bi = sh->dev[i].towrite;
3573 sh->dev[i].towrite = NULL;
3574 sh->overwrite_disks = 0;
3575 spin_unlock_irq(&sh->stripe_lock);
3579 log_stripe_write_finished(sh);
3581 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3582 wake_up(&conf->wait_for_overlap);
3584 while (bi && bi->bi_iter.bi_sector <
3585 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3586 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3588 md_write_end(conf->mddev);
3593 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3594 RAID5_STRIPE_SECTORS(conf), 0, 0);
3596 /* and fail all 'written' */
3597 bi = sh->dev[i].written;
3598 sh->dev[i].written = NULL;
3599 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3600 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3601 sh->dev[i].page = sh->dev[i].orig_page;
3604 if (bi) bitmap_end = 1;
3605 while (bi && bi->bi_iter.bi_sector <
3606 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3607 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3609 md_write_end(conf->mddev);
3614 /* fail any reads if this device is non-operational and
3615 * the data has not reached the cache yet.
3617 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3618 s->failed > conf->max_degraded &&
3619 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3620 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3621 spin_lock_irq(&sh->stripe_lock);
3622 bi = sh->dev[i].toread;
3623 sh->dev[i].toread = NULL;
3624 spin_unlock_irq(&sh->stripe_lock);
3625 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3626 wake_up(&conf->wait_for_overlap);
3629 while (bi && bi->bi_iter.bi_sector <
3630 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3631 struct bio *nextbi =
3632 r5_next_bio(conf, bi, sh->dev[i].sector);
3639 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3640 RAID5_STRIPE_SECTORS(conf), 0, 0);
3641 /* If we were in the middle of a write the parity block might
3642 * still be locked - so just clear all R5_LOCKED flags
3644 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3649 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3650 if (atomic_dec_and_test(&conf->pending_full_writes))
3651 md_wakeup_thread(conf->mddev->thread);
3655 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3656 struct stripe_head_state *s)
3661 BUG_ON(sh->batch_head);
3662 clear_bit(STRIPE_SYNCING, &sh->state);
3663 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3664 wake_up(&conf->wait_for_overlap);
3667 /* There is nothing more to do for sync/check/repair.
3668 * Don't even need to abort as that is handled elsewhere
3669 * if needed, and not always wanted e.g. if there is a known
3671 * For recover/replace we need to record a bad block on all
3672 * non-sync devices, or abort the recovery
3674 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3675 /* During recovery devices cannot be removed, so
3676 * locking and refcounting of rdevs is not needed
3679 for (i = 0; i < conf->raid_disks; i++) {
3680 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3682 && !test_bit(Faulty, &rdev->flags)
3683 && !test_bit(In_sync, &rdev->flags)
3684 && !rdev_set_badblocks(rdev, sh->sector,
3685 RAID5_STRIPE_SECTORS(conf), 0))
3687 rdev = rcu_dereference(conf->disks[i].replacement);
3689 && !test_bit(Faulty, &rdev->flags)
3690 && !test_bit(In_sync, &rdev->flags)
3691 && !rdev_set_badblocks(rdev, sh->sector,
3692 RAID5_STRIPE_SECTORS(conf), 0))
3697 conf->recovery_disabled =
3698 conf->mddev->recovery_disabled;
3700 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3703 static int want_replace(struct stripe_head *sh, int disk_idx)
3705 struct md_rdev *rdev;
3709 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3711 && !test_bit(Faulty, &rdev->flags)
3712 && !test_bit(In_sync, &rdev->flags)
3713 && (rdev->recovery_offset <= sh->sector
3714 || rdev->mddev->recovery_cp <= sh->sector))
3720 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3721 int disk_idx, int disks)
3723 struct r5dev *dev = &sh->dev[disk_idx];
3724 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3725 &sh->dev[s->failed_num[1]] };
3727 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3730 if (test_bit(R5_LOCKED, &dev->flags) ||
3731 test_bit(R5_UPTODATE, &dev->flags))
3732 /* No point reading this as we already have it or have
3733 * decided to get it.
3738 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3739 /* We need this block to directly satisfy a request */
3742 if (s->syncing || s->expanding ||
3743 (s->replacing && want_replace(sh, disk_idx)))
3744 /* When syncing, or expanding we read everything.
3745 * When replacing, we need the replaced block.
3749 if ((s->failed >= 1 && fdev[0]->toread) ||
3750 (s->failed >= 2 && fdev[1]->toread))
3751 /* If we want to read from a failed device, then
3752 * we need to actually read every other device.
3756 /* Sometimes neither read-modify-write nor reconstruct-write
3757 * cycles can work. In those cases we read every block we
3758 * can. Then the parity-update is certain to have enough to
3760 * This can only be a problem when we need to write something,
3761 * and some device has failed. If either of those tests
3762 * fail we need look no further.
3764 if (!s->failed || !s->to_write)
3767 if (test_bit(R5_Insync, &dev->flags) &&
3768 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3769 /* Pre-reads at not permitted until after short delay
3770 * to gather multiple requests. However if this
3771 * device is no Insync, the block could only be computed
3772 * and there is no need to delay that.
3776 for (i = 0; i < s->failed && i < 2; i++) {
3777 if (fdev[i]->towrite &&
3778 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3779 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3780 /* If we have a partial write to a failed
3781 * device, then we will need to reconstruct
3782 * the content of that device, so all other
3783 * devices must be read.
3787 if (s->failed >= 2 &&
3788 (fdev[i]->towrite ||
3789 s->failed_num[i] == sh->pd_idx ||
3790 s->failed_num[i] == sh->qd_idx) &&
3791 !test_bit(R5_UPTODATE, &fdev[i]->flags))
3792 /* In max degraded raid6, If the failed disk is P, Q,
3793 * or we want to read the failed disk, we need to do
3794 * reconstruct-write.
3799 /* If we are forced to do a reconstruct-write, because parity
3800 * cannot be trusted and we are currently recovering it, there
3801 * is extra need to be careful.
3802 * If one of the devices that we would need to read, because
3803 * it is not being overwritten (and maybe not written at all)
3804 * is missing/faulty, then we need to read everything we can.
3807 sh->sector < sh->raid_conf->mddev->recovery_cp)
3808 /* reconstruct-write isn't being forced */
3810 for (i = 0; i < s->failed && i < 2; i++) {
3811 if (s->failed_num[i] != sh->pd_idx &&
3812 s->failed_num[i] != sh->qd_idx &&
3813 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3814 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3821 /* fetch_block - checks the given member device to see if its data needs
3822 * to be read or computed to satisfy a request.
3824 * Returns 1 when no more member devices need to be checked, otherwise returns
3825 * 0 to tell the loop in handle_stripe_fill to continue
3827 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3828 int disk_idx, int disks)
3830 struct r5dev *dev = &sh->dev[disk_idx];
3832 /* is the data in this block needed, and can we get it? */
3833 if (need_this_block(sh, s, disk_idx, disks)) {
3834 /* we would like to get this block, possibly by computing it,
3835 * otherwise read it if the backing disk is insync
3837 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3838 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3839 BUG_ON(sh->batch_head);
3842 * In the raid6 case if the only non-uptodate disk is P
3843 * then we already trusted P to compute the other failed
3844 * drives. It is safe to compute rather than re-read P.
3845 * In other cases we only compute blocks from failed
3846 * devices, otherwise check/repair might fail to detect
3847 * a real inconsistency.
3850 if ((s->uptodate == disks - 1) &&
3851 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3852 (s->failed && (disk_idx == s->failed_num[0] ||
3853 disk_idx == s->failed_num[1])))) {
3854 /* have disk failed, and we're requested to fetch it;
3857 pr_debug("Computing stripe %llu block %d\n",
3858 (unsigned long long)sh->sector, disk_idx);
3859 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3860 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3861 set_bit(R5_Wantcompute, &dev->flags);
3862 sh->ops.target = disk_idx;
3863 sh->ops.target2 = -1; /* no 2nd target */
3865 /* Careful: from this point on 'uptodate' is in the eye
3866 * of raid_run_ops which services 'compute' operations
3867 * before writes. R5_Wantcompute flags a block that will
3868 * be R5_UPTODATE by the time it is needed for a
3869 * subsequent operation.
3873 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3874 /* Computing 2-failure is *very* expensive; only
3875 * do it if failed >= 2
3878 for (other = disks; other--; ) {
3879 if (other == disk_idx)
3881 if (!test_bit(R5_UPTODATE,
3882 &sh->dev[other].flags))
3886 pr_debug("Computing stripe %llu blocks %d,%d\n",
3887 (unsigned long long)sh->sector,
3889 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3890 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3891 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3892 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3893 sh->ops.target = disk_idx;
3894 sh->ops.target2 = other;
3898 } else if (test_bit(R5_Insync, &dev->flags)) {
3899 set_bit(R5_LOCKED, &dev->flags);
3900 set_bit(R5_Wantread, &dev->flags);
3902 pr_debug("Reading block %d (sync=%d)\n",
3903 disk_idx, s->syncing);
3911 * handle_stripe_fill - read or compute data to satisfy pending requests.
3913 static void handle_stripe_fill(struct stripe_head *sh,
3914 struct stripe_head_state *s,
3919 /* look for blocks to read/compute, skip this if a compute
3920 * is already in flight, or if the stripe contents are in the
3921 * midst of changing due to a write
3923 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3924 !sh->reconstruct_state) {
3927 * For degraded stripe with data in journal, do not handle
3928 * read requests yet, instead, flush the stripe to raid
3929 * disks first, this avoids handling complex rmw of write
3930 * back cache (prexor with orig_page, and then xor with
3931 * page) in the read path
3933 if (s->injournal && s->failed) {
3934 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3935 r5c_make_stripe_write_out(sh);
3939 for (i = disks; i--; )
3940 if (fetch_block(sh, s, i, disks))
3944 set_bit(STRIPE_HANDLE, &sh->state);
3947 static void break_stripe_batch_list(struct stripe_head *head_sh,
3948 unsigned long handle_flags);
3949 /* handle_stripe_clean_event
3950 * any written block on an uptodate or failed drive can be returned.
3951 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3952 * never LOCKED, so we don't need to test 'failed' directly.
3954 static void handle_stripe_clean_event(struct r5conf *conf,
3955 struct stripe_head *sh, int disks)
3959 int discard_pending = 0;
3960 struct stripe_head *head_sh = sh;
3961 bool do_endio = false;
3963 for (i = disks; i--; )
3964 if (sh->dev[i].written) {
3966 if (!test_bit(R5_LOCKED, &dev->flags) &&
3967 (test_bit(R5_UPTODATE, &dev->flags) ||
3968 test_bit(R5_Discard, &dev->flags) ||
3969 test_bit(R5_SkipCopy, &dev->flags))) {
3970 /* We can return any write requests */
3971 struct bio *wbi, *wbi2;
3972 pr_debug("Return write for disc %d\n", i);
3973 if (test_and_clear_bit(R5_Discard, &dev->flags))
3974 clear_bit(R5_UPTODATE, &dev->flags);
3975 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3976 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3981 dev->page = dev->orig_page;
3983 dev->written = NULL;
3984 while (wbi && wbi->bi_iter.bi_sector <
3985 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
3986 wbi2 = r5_next_bio(conf, wbi, dev->sector);
3987 md_write_end(conf->mddev);
3991 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3992 RAID5_STRIPE_SECTORS(conf),
3993 !test_bit(STRIPE_DEGRADED, &sh->state),
3995 if (head_sh->batch_head) {
3996 sh = list_first_entry(&sh->batch_list,
3999 if (sh != head_sh) {
4006 } else if (test_bit(R5_Discard, &dev->flags))
4007 discard_pending = 1;
4010 log_stripe_write_finished(sh);
4012 if (!discard_pending &&
4013 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4015 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4016 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4017 if (sh->qd_idx >= 0) {
4018 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4019 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4021 /* now that discard is done we can proceed with any sync */
4022 clear_bit(STRIPE_DISCARD, &sh->state);
4024 * SCSI discard will change some bio fields and the stripe has
4025 * no updated data, so remove it from hash list and the stripe
4026 * will be reinitialized
4029 hash = sh->hash_lock_index;
4030 spin_lock_irq(conf->hash_locks + hash);
4032 spin_unlock_irq(conf->hash_locks + hash);
4033 if (head_sh->batch_head) {
4034 sh = list_first_entry(&sh->batch_list,
4035 struct stripe_head, batch_list);
4041 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4042 set_bit(STRIPE_HANDLE, &sh->state);
4046 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4047 if (atomic_dec_and_test(&conf->pending_full_writes))
4048 md_wakeup_thread(conf->mddev->thread);
4050 if (head_sh->batch_head && do_endio)
4051 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4055 * For RMW in write back cache, we need extra page in prexor to store the
4056 * old data. This page is stored in dev->orig_page.
4058 * This function checks whether we have data for prexor. The exact logic
4060 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4062 static inline bool uptodate_for_rmw(struct r5dev *dev)
4064 return (test_bit(R5_UPTODATE, &dev->flags)) &&
4065 (!test_bit(R5_InJournal, &dev->flags) ||
4066 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4069 static int handle_stripe_dirtying(struct r5conf *conf,
4070 struct stripe_head *sh,
4071 struct stripe_head_state *s,
4074 int rmw = 0, rcw = 0, i;
4075 sector_t recovery_cp = conf->mddev->recovery_cp;
4077 /* Check whether resync is now happening or should start.
4078 * If yes, then the array is dirty (after unclean shutdown or
4079 * initial creation), so parity in some stripes might be inconsistent.
4080 * In this case, we need to always do reconstruct-write, to ensure
4081 * that in case of drive failure or read-error correction, we
4082 * generate correct data from the parity.
4084 if (conf->rmw_level == PARITY_DISABLE_RMW ||
4085 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4087 /* Calculate the real rcw later - for now make it
4088 * look like rcw is cheaper
4091 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4092 conf->rmw_level, (unsigned long long)recovery_cp,
4093 (unsigned long long)sh->sector);
4094 } else for (i = disks; i--; ) {
4095 /* would I have to read this buffer for read_modify_write */
4096 struct r5dev *dev = &sh->dev[i];
4097 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4098 i == sh->pd_idx || i == sh->qd_idx ||
4099 test_bit(R5_InJournal, &dev->flags)) &&
4100 !test_bit(R5_LOCKED, &dev->flags) &&
4101 !(uptodate_for_rmw(dev) ||
4102 test_bit(R5_Wantcompute, &dev->flags))) {
4103 if (test_bit(R5_Insync, &dev->flags))
4106 rmw += 2*disks; /* cannot read it */
4108 /* Would I have to read this buffer for reconstruct_write */
4109 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4110 i != sh->pd_idx && i != sh->qd_idx &&
4111 !test_bit(R5_LOCKED, &dev->flags) &&
4112 !(test_bit(R5_UPTODATE, &dev->flags) ||
4113 test_bit(R5_Wantcompute, &dev->flags))) {
4114 if (test_bit(R5_Insync, &dev->flags))
4121 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4122 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4123 set_bit(STRIPE_HANDLE, &sh->state);
4124 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4125 /* prefer read-modify-write, but need to get some data */
4126 if (conf->mddev->queue)
4127 blk_add_trace_msg(conf->mddev->queue,
4128 "raid5 rmw %llu %d",
4129 (unsigned long long)sh->sector, rmw);
4130 for (i = disks; i--; ) {
4131 struct r5dev *dev = &sh->dev[i];
4132 if (test_bit(R5_InJournal, &dev->flags) &&
4133 dev->page == dev->orig_page &&
4134 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4135 /* alloc page for prexor */
4136 struct page *p = alloc_page(GFP_NOIO);
4144 * alloc_page() failed, try use
4145 * disk_info->extra_page
4147 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4148 &conf->cache_state)) {
4149 r5c_use_extra_page(sh);
4153 /* extra_page in use, add to delayed_list */
4154 set_bit(STRIPE_DELAYED, &sh->state);
4155 s->waiting_extra_page = 1;
4160 for (i = disks; i--; ) {
4161 struct r5dev *dev = &sh->dev[i];
4162 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4163 i == sh->pd_idx || i == sh->qd_idx ||
4164 test_bit(R5_InJournal, &dev->flags)) &&
4165 !test_bit(R5_LOCKED, &dev->flags) &&
4166 !(uptodate_for_rmw(dev) ||
4167 test_bit(R5_Wantcompute, &dev->flags)) &&
4168 test_bit(R5_Insync, &dev->flags)) {
4169 if (test_bit(STRIPE_PREREAD_ACTIVE,
4171 pr_debug("Read_old block %d for r-m-w\n",
4173 set_bit(R5_LOCKED, &dev->flags);
4174 set_bit(R5_Wantread, &dev->flags);
4177 set_bit(STRIPE_DELAYED, &sh->state);
4181 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4182 /* want reconstruct write, but need to get some data */
4185 for (i = disks; i--; ) {
4186 struct r5dev *dev = &sh->dev[i];
4187 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4188 i != sh->pd_idx && i != sh->qd_idx &&
4189 !test_bit(R5_LOCKED, &dev->flags) &&
4190 !(test_bit(R5_UPTODATE, &dev->flags) ||
4191 test_bit(R5_Wantcompute, &dev->flags))) {
4193 if (test_bit(R5_Insync, &dev->flags) &&
4194 test_bit(STRIPE_PREREAD_ACTIVE,
4196 pr_debug("Read_old block "
4197 "%d for Reconstruct\n", i);
4198 set_bit(R5_LOCKED, &dev->flags);
4199 set_bit(R5_Wantread, &dev->flags);
4203 set_bit(STRIPE_DELAYED, &sh->state);
4206 if (rcw && conf->mddev->queue)
4207 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4208 (unsigned long long)sh->sector,
4209 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4212 if (rcw > disks && rmw > disks &&
4213 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4214 set_bit(STRIPE_DELAYED, &sh->state);
4216 /* now if nothing is locked, and if we have enough data,
4217 * we can start a write request
4219 /* since handle_stripe can be called at any time we need to handle the
4220 * case where a compute block operation has been submitted and then a
4221 * subsequent call wants to start a write request. raid_run_ops only
4222 * handles the case where compute block and reconstruct are requested
4223 * simultaneously. If this is not the case then new writes need to be
4224 * held off until the compute completes.
4226 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4227 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4228 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4229 schedule_reconstruction(sh, s, rcw == 0, 0);
4233 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4234 struct stripe_head_state *s, int disks)
4236 struct r5dev *dev = NULL;
4238 BUG_ON(sh->batch_head);
4239 set_bit(STRIPE_HANDLE, &sh->state);
4241 switch (sh->check_state) {
4242 case check_state_idle:
4243 /* start a new check operation if there are no failures */
4244 if (s->failed == 0) {
4245 BUG_ON(s->uptodate != disks);
4246 sh->check_state = check_state_run;
4247 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4248 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4252 dev = &sh->dev[s->failed_num[0]];
4254 case check_state_compute_result:
4255 sh->check_state = check_state_idle;
4257 dev = &sh->dev[sh->pd_idx];
4259 /* check that a write has not made the stripe insync */
4260 if (test_bit(STRIPE_INSYNC, &sh->state))
4263 /* either failed parity check, or recovery is happening */
4264 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4265 BUG_ON(s->uptodate != disks);
4267 set_bit(R5_LOCKED, &dev->flags);
4269 set_bit(R5_Wantwrite, &dev->flags);
4271 clear_bit(STRIPE_DEGRADED, &sh->state);
4272 set_bit(STRIPE_INSYNC, &sh->state);
4274 case check_state_run:
4275 break; /* we will be called again upon completion */
4276 case check_state_check_result:
4277 sh->check_state = check_state_idle;
4279 /* if a failure occurred during the check operation, leave
4280 * STRIPE_INSYNC not set and let the stripe be handled again
4285 /* handle a successful check operation, if parity is correct
4286 * we are done. Otherwise update the mismatch count and repair
4287 * parity if !MD_RECOVERY_CHECK
4289 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4290 /* parity is correct (on disc,
4291 * not in buffer any more)
4293 set_bit(STRIPE_INSYNC, &sh->state);
4295 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4296 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4297 /* don't try to repair!! */
4298 set_bit(STRIPE_INSYNC, &sh->state);
4299 pr_warn_ratelimited("%s: mismatch sector in range "
4300 "%llu-%llu\n", mdname(conf->mddev),
4301 (unsigned long long) sh->sector,
4302 (unsigned long long) sh->sector +
4303 RAID5_STRIPE_SECTORS(conf));
4305 sh->check_state = check_state_compute_run;
4306 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4307 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4308 set_bit(R5_Wantcompute,
4309 &sh->dev[sh->pd_idx].flags);
4310 sh->ops.target = sh->pd_idx;
4311 sh->ops.target2 = -1;
4316 case check_state_compute_run:
4319 pr_err("%s: unknown check_state: %d sector: %llu\n",
4320 __func__, sh->check_state,
4321 (unsigned long long) sh->sector);
4326 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4327 struct stripe_head_state *s,
4330 int pd_idx = sh->pd_idx;
4331 int qd_idx = sh->qd_idx;
4334 BUG_ON(sh->batch_head);
4335 set_bit(STRIPE_HANDLE, &sh->state);
4337 BUG_ON(s->failed > 2);
4339 /* Want to check and possibly repair P and Q.
4340 * However there could be one 'failed' device, in which
4341 * case we can only check one of them, possibly using the
4342 * other to generate missing data
4345 switch (sh->check_state) {
4346 case check_state_idle:
4347 /* start a new check operation if there are < 2 failures */
4348 if (s->failed == s->q_failed) {
4349 /* The only possible failed device holds Q, so it
4350 * makes sense to check P (If anything else were failed,
4351 * we would have used P to recreate it).
4353 sh->check_state = check_state_run;
4355 if (!s->q_failed && s->failed < 2) {
4356 /* Q is not failed, and we didn't use it to generate
4357 * anything, so it makes sense to check it
4359 if (sh->check_state == check_state_run)
4360 sh->check_state = check_state_run_pq;
4362 sh->check_state = check_state_run_q;
4365 /* discard potentially stale zero_sum_result */
4366 sh->ops.zero_sum_result = 0;
4368 if (sh->check_state == check_state_run) {
4369 /* async_xor_zero_sum destroys the contents of P */
4370 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4373 if (sh->check_state >= check_state_run &&
4374 sh->check_state <= check_state_run_pq) {
4375 /* async_syndrome_zero_sum preserves P and Q, so
4376 * no need to mark them !uptodate here
4378 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4382 /* we have 2-disk failure */
4383 BUG_ON(s->failed != 2);
4385 case check_state_compute_result:
4386 sh->check_state = check_state_idle;
4388 /* check that a write has not made the stripe insync */
4389 if (test_bit(STRIPE_INSYNC, &sh->state))
4392 /* now write out any block on a failed drive,
4393 * or P or Q if they were recomputed
4396 if (s->failed == 2) {
4397 dev = &sh->dev[s->failed_num[1]];
4399 set_bit(R5_LOCKED, &dev->flags);
4400 set_bit(R5_Wantwrite, &dev->flags);
4402 if (s->failed >= 1) {
4403 dev = &sh->dev[s->failed_num[0]];
4405 set_bit(R5_LOCKED, &dev->flags);
4406 set_bit(R5_Wantwrite, &dev->flags);
4408 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4409 dev = &sh->dev[pd_idx];
4411 set_bit(R5_LOCKED, &dev->flags);
4412 set_bit(R5_Wantwrite, &dev->flags);
4414 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4415 dev = &sh->dev[qd_idx];
4417 set_bit(R5_LOCKED, &dev->flags);
4418 set_bit(R5_Wantwrite, &dev->flags);
4420 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4421 "%s: disk%td not up to date\n",
4422 mdname(conf->mddev),
4423 dev - (struct r5dev *) &sh->dev)) {
4424 clear_bit(R5_LOCKED, &dev->flags);
4425 clear_bit(R5_Wantwrite, &dev->flags);
4428 clear_bit(STRIPE_DEGRADED, &sh->state);
4430 set_bit(STRIPE_INSYNC, &sh->state);
4432 case check_state_run:
4433 case check_state_run_q:
4434 case check_state_run_pq:
4435 break; /* we will be called again upon completion */
4436 case check_state_check_result:
4437 sh->check_state = check_state_idle;
4439 /* handle a successful check operation, if parity is correct
4440 * we are done. Otherwise update the mismatch count and repair
4441 * parity if !MD_RECOVERY_CHECK
4443 if (sh->ops.zero_sum_result == 0) {
4444 /* both parities are correct */
4446 set_bit(STRIPE_INSYNC, &sh->state);
4448 /* in contrast to the raid5 case we can validate
4449 * parity, but still have a failure to write
4452 sh->check_state = check_state_compute_result;
4453 /* Returning at this point means that we may go
4454 * off and bring p and/or q uptodate again so
4455 * we make sure to check zero_sum_result again
4456 * to verify if p or q need writeback
4460 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4461 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4462 /* don't try to repair!! */
4463 set_bit(STRIPE_INSYNC, &sh->state);
4464 pr_warn_ratelimited("%s: mismatch sector in range "
4465 "%llu-%llu\n", mdname(conf->mddev),
4466 (unsigned long long) sh->sector,
4467 (unsigned long long) sh->sector +
4468 RAID5_STRIPE_SECTORS(conf));
4470 int *target = &sh->ops.target;
4472 sh->ops.target = -1;
4473 sh->ops.target2 = -1;
4474 sh->check_state = check_state_compute_run;
4475 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4476 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4477 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4478 set_bit(R5_Wantcompute,
4479 &sh->dev[pd_idx].flags);
4481 target = &sh->ops.target2;
4484 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4485 set_bit(R5_Wantcompute,
4486 &sh->dev[qd_idx].flags);
4493 case check_state_compute_run:
4496 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4497 __func__, sh->check_state,
4498 (unsigned long long) sh->sector);
4503 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4507 /* We have read all the blocks in this stripe and now we need to
4508 * copy some of them into a target stripe for expand.
4510 struct dma_async_tx_descriptor *tx = NULL;
4511 BUG_ON(sh->batch_head);
4512 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4513 for (i = 0; i < sh->disks; i++)
4514 if (i != sh->pd_idx && i != sh->qd_idx) {
4516 struct stripe_head *sh2;
4517 struct async_submit_ctl submit;
4519 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4520 sector_t s = raid5_compute_sector(conf, bn, 0,
4522 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4524 /* so far only the early blocks of this stripe
4525 * have been requested. When later blocks
4526 * get requested, we will try again
4529 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4530 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4531 /* must have already done this block */
4532 raid5_release_stripe(sh2);
4536 /* place all the copies on one channel */
4537 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4538 tx = async_memcpy(sh2->dev[dd_idx].page,
4539 sh->dev[i].page, sh2->dev[dd_idx].offset,
4540 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4543 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4544 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4545 for (j = 0; j < conf->raid_disks; j++)
4546 if (j != sh2->pd_idx &&
4548 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4550 if (j == conf->raid_disks) {
4551 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4552 set_bit(STRIPE_HANDLE, &sh2->state);
4554 raid5_release_stripe(sh2);
4557 /* done submitting copies, wait for them to complete */
4558 async_tx_quiesce(&tx);
4562 * handle_stripe - do things to a stripe.
4564 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4565 * state of various bits to see what needs to be done.
4567 * return some read requests which now have data
4568 * return some write requests which are safely on storage
4569 * schedule a read on some buffers
4570 * schedule a write of some buffers
4571 * return confirmation of parity correctness
4575 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4577 struct r5conf *conf = sh->raid_conf;
4578 int disks = sh->disks;
4581 int do_recovery = 0;
4583 memset(s, 0, sizeof(*s));
4585 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4586 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4587 s->failed_num[0] = -1;
4588 s->failed_num[1] = -1;
4589 s->log_failed = r5l_log_disk_error(conf);
4591 /* Now to look around and see what can be done */
4593 for (i=disks; i--; ) {
4594 struct md_rdev *rdev;
4601 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4603 dev->toread, dev->towrite, dev->written);
4604 /* maybe we can reply to a read
4606 * new wantfill requests are only permitted while
4607 * ops_complete_biofill is guaranteed to be inactive
4609 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4610 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4611 set_bit(R5_Wantfill, &dev->flags);
4613 /* now count some things */
4614 if (test_bit(R5_LOCKED, &dev->flags))
4616 if (test_bit(R5_UPTODATE, &dev->flags))
4618 if (test_bit(R5_Wantcompute, &dev->flags)) {
4620 BUG_ON(s->compute > 2);
4623 if (test_bit(R5_Wantfill, &dev->flags))
4625 else if (dev->toread)
4629 if (!test_bit(R5_OVERWRITE, &dev->flags))
4634 /* Prefer to use the replacement for reads, but only
4635 * if it is recovered enough and has no bad blocks.
4637 rdev = rcu_dereference(conf->disks[i].replacement);
4638 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4639 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4640 !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4641 &first_bad, &bad_sectors))
4642 set_bit(R5_ReadRepl, &dev->flags);
4644 if (rdev && !test_bit(Faulty, &rdev->flags))
4645 set_bit(R5_NeedReplace, &dev->flags);
4647 clear_bit(R5_NeedReplace, &dev->flags);
4648 rdev = rcu_dereference(conf->disks[i].rdev);
4649 clear_bit(R5_ReadRepl, &dev->flags);
4651 if (rdev && test_bit(Faulty, &rdev->flags))
4654 is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4655 &first_bad, &bad_sectors);
4656 if (s->blocked_rdev == NULL
4657 && (test_bit(Blocked, &rdev->flags)
4660 set_bit(BlockedBadBlocks,
4662 s->blocked_rdev = rdev;
4663 atomic_inc(&rdev->nr_pending);
4666 clear_bit(R5_Insync, &dev->flags);
4670 /* also not in-sync */
4671 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4672 test_bit(R5_UPTODATE, &dev->flags)) {
4673 /* treat as in-sync, but with a read error
4674 * which we can now try to correct
4676 set_bit(R5_Insync, &dev->flags);
4677 set_bit(R5_ReadError, &dev->flags);
4679 } else if (test_bit(In_sync, &rdev->flags))
4680 set_bit(R5_Insync, &dev->flags);
4681 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4682 /* in sync if before recovery_offset */
4683 set_bit(R5_Insync, &dev->flags);
4684 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4685 test_bit(R5_Expanded, &dev->flags))
4686 /* If we've reshaped into here, we assume it is Insync.
4687 * We will shortly update recovery_offset to make
4690 set_bit(R5_Insync, &dev->flags);
4692 if (test_bit(R5_WriteError, &dev->flags)) {
4693 /* This flag does not apply to '.replacement'
4694 * only to .rdev, so make sure to check that*/
4695 struct md_rdev *rdev2 = rcu_dereference(
4696 conf->disks[i].rdev);
4698 clear_bit(R5_Insync, &dev->flags);
4699 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4700 s->handle_bad_blocks = 1;
4701 atomic_inc(&rdev2->nr_pending);
4703 clear_bit(R5_WriteError, &dev->flags);
4705 if (test_bit(R5_MadeGood, &dev->flags)) {
4706 /* This flag does not apply to '.replacement'
4707 * only to .rdev, so make sure to check that*/
4708 struct md_rdev *rdev2 = rcu_dereference(
4709 conf->disks[i].rdev);
4710 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4711 s->handle_bad_blocks = 1;
4712 atomic_inc(&rdev2->nr_pending);
4714 clear_bit(R5_MadeGood, &dev->flags);
4716 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4717 struct md_rdev *rdev2 = rcu_dereference(
4718 conf->disks[i].replacement);
4719 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4720 s->handle_bad_blocks = 1;
4721 atomic_inc(&rdev2->nr_pending);
4723 clear_bit(R5_MadeGoodRepl, &dev->flags);
4725 if (!test_bit(R5_Insync, &dev->flags)) {
4726 /* The ReadError flag will just be confusing now */
4727 clear_bit(R5_ReadError, &dev->flags);
4728 clear_bit(R5_ReWrite, &dev->flags);
4730 if (test_bit(R5_ReadError, &dev->flags))
4731 clear_bit(R5_Insync, &dev->flags);
4732 if (!test_bit(R5_Insync, &dev->flags)) {
4734 s->failed_num[s->failed] = i;
4736 if (rdev && !test_bit(Faulty, &rdev->flags))
4739 rdev = rcu_dereference(
4740 conf->disks[i].replacement);
4741 if (rdev && !test_bit(Faulty, &rdev->flags))
4746 if (test_bit(R5_InJournal, &dev->flags))
4748 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4751 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4752 /* If there is a failed device being replaced,
4753 * we must be recovering.
4754 * else if we are after recovery_cp, we must be syncing
4755 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4756 * else we can only be replacing
4757 * sync and recovery both need to read all devices, and so
4758 * use the same flag.
4761 sh->sector >= conf->mddev->recovery_cp ||
4762 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4771 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4772 * a head which can now be handled.
4774 static int clear_batch_ready(struct stripe_head *sh)
4776 struct stripe_head *tmp;
4777 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4778 return (sh->batch_head && sh->batch_head != sh);
4779 spin_lock(&sh->stripe_lock);
4780 if (!sh->batch_head) {
4781 spin_unlock(&sh->stripe_lock);
4786 * this stripe could be added to a batch list before we check
4787 * BATCH_READY, skips it
4789 if (sh->batch_head != sh) {
4790 spin_unlock(&sh->stripe_lock);
4793 spin_lock(&sh->batch_lock);
4794 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4795 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4796 spin_unlock(&sh->batch_lock);
4797 spin_unlock(&sh->stripe_lock);
4800 * BATCH_READY is cleared, no new stripes can be added.
4801 * batch_list can be accessed without lock
4806 static void break_stripe_batch_list(struct stripe_head *head_sh,
4807 unsigned long handle_flags)
4809 struct stripe_head *sh, *next;
4813 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4815 list_del_init(&sh->batch_list);
4817 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4818 (1 << STRIPE_SYNCING) |
4819 (1 << STRIPE_REPLACED) |
4820 (1 << STRIPE_DELAYED) |
4821 (1 << STRIPE_BIT_DELAY) |
4822 (1 << STRIPE_FULL_WRITE) |
4823 (1 << STRIPE_BIOFILL_RUN) |
4824 (1 << STRIPE_COMPUTE_RUN) |
4825 (1 << STRIPE_DISCARD) |
4826 (1 << STRIPE_BATCH_READY) |
4827 (1 << STRIPE_BATCH_ERR) |
4828 (1 << STRIPE_BITMAP_PENDING)),
4829 "stripe state: %lx\n", sh->state);
4830 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4831 (1 << STRIPE_REPLACED)),
4832 "head stripe state: %lx\n", head_sh->state);
4834 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4835 (1 << STRIPE_PREREAD_ACTIVE) |
4836 (1 << STRIPE_DEGRADED) |
4837 (1 << STRIPE_ON_UNPLUG_LIST)),
4838 head_sh->state & (1 << STRIPE_INSYNC));
4840 sh->check_state = head_sh->check_state;
4841 sh->reconstruct_state = head_sh->reconstruct_state;
4842 spin_lock_irq(&sh->stripe_lock);
4843 sh->batch_head = NULL;
4844 spin_unlock_irq(&sh->stripe_lock);
4845 for (i = 0; i < sh->disks; i++) {
4846 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4848 sh->dev[i].flags = head_sh->dev[i].flags &
4849 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4851 if (handle_flags == 0 ||
4852 sh->state & handle_flags)
4853 set_bit(STRIPE_HANDLE, &sh->state);
4854 raid5_release_stripe(sh);
4856 spin_lock_irq(&head_sh->stripe_lock);
4857 head_sh->batch_head = NULL;
4858 spin_unlock_irq(&head_sh->stripe_lock);
4859 for (i = 0; i < head_sh->disks; i++)
4860 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4862 if (head_sh->state & handle_flags)
4863 set_bit(STRIPE_HANDLE, &head_sh->state);
4866 wake_up(&head_sh->raid_conf->wait_for_overlap);
4869 static void handle_stripe(struct stripe_head *sh)
4871 struct stripe_head_state s;
4872 struct r5conf *conf = sh->raid_conf;
4875 int disks = sh->disks;
4876 struct r5dev *pdev, *qdev;
4878 clear_bit(STRIPE_HANDLE, &sh->state);
4881 * handle_stripe should not continue handle the batched stripe, only
4882 * the head of batch list or lone stripe can continue. Otherwise we
4883 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4884 * is set for the batched stripe.
4886 if (clear_batch_ready(sh))
4889 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4890 /* already being handled, ensure it gets handled
4891 * again when current action finishes */
4892 set_bit(STRIPE_HANDLE, &sh->state);
4896 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4897 break_stripe_batch_list(sh, 0);
4899 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4900 spin_lock(&sh->stripe_lock);
4902 * Cannot process 'sync' concurrently with 'discard'.
4903 * Flush data in r5cache before 'sync'.
4905 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4906 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4907 !test_bit(STRIPE_DISCARD, &sh->state) &&
4908 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4909 set_bit(STRIPE_SYNCING, &sh->state);
4910 clear_bit(STRIPE_INSYNC, &sh->state);
4911 clear_bit(STRIPE_REPLACED, &sh->state);
4913 spin_unlock(&sh->stripe_lock);
4915 clear_bit(STRIPE_DELAYED, &sh->state);
4917 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4918 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4919 (unsigned long long)sh->sector, sh->state,
4920 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4921 sh->check_state, sh->reconstruct_state);
4923 analyse_stripe(sh, &s);
4925 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4928 if (s.handle_bad_blocks ||
4929 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4930 set_bit(STRIPE_HANDLE, &sh->state);
4934 if (unlikely(s.blocked_rdev)) {
4935 if (s.syncing || s.expanding || s.expanded ||
4936 s.replacing || s.to_write || s.written) {
4937 set_bit(STRIPE_HANDLE, &sh->state);
4940 /* There is nothing for the blocked_rdev to block */
4941 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4942 s.blocked_rdev = NULL;
4945 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4946 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4947 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4950 pr_debug("locked=%d uptodate=%d to_read=%d"
4951 " to_write=%d failed=%d failed_num=%d,%d\n",
4952 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4953 s.failed_num[0], s.failed_num[1]);
4955 * check if the array has lost more than max_degraded devices and,
4956 * if so, some requests might need to be failed.
4958 * When journal device failed (log_failed), we will only process
4959 * the stripe if there is data need write to raid disks
4961 if (s.failed > conf->max_degraded ||
4962 (s.log_failed && s.injournal == 0)) {
4963 sh->check_state = 0;
4964 sh->reconstruct_state = 0;
4965 break_stripe_batch_list(sh, 0);
4966 if (s.to_read+s.to_write+s.written)
4967 handle_failed_stripe(conf, sh, &s, disks);
4968 if (s.syncing + s.replacing)
4969 handle_failed_sync(conf, sh, &s);
4972 /* Now we check to see if any write operations have recently
4976 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4978 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4979 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4980 sh->reconstruct_state = reconstruct_state_idle;
4982 /* All the 'written' buffers and the parity block are ready to
4983 * be written back to disk
4985 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4986 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4987 BUG_ON(sh->qd_idx >= 0 &&
4988 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4989 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4990 for (i = disks; i--; ) {
4991 struct r5dev *dev = &sh->dev[i];
4992 if (test_bit(R5_LOCKED, &dev->flags) &&
4993 (i == sh->pd_idx || i == sh->qd_idx ||
4994 dev->written || test_bit(R5_InJournal,
4996 pr_debug("Writing block %d\n", i);
4997 set_bit(R5_Wantwrite, &dev->flags);
5002 if (!test_bit(R5_Insync, &dev->flags) ||
5003 ((i == sh->pd_idx || i == sh->qd_idx) &&
5005 set_bit(STRIPE_INSYNC, &sh->state);
5008 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5009 s.dec_preread_active = 1;
5013 * might be able to return some write requests if the parity blocks
5014 * are safe, or on a failed drive
5016 pdev = &sh->dev[sh->pd_idx];
5017 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5018 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5019 qdev = &sh->dev[sh->qd_idx];
5020 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5021 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5025 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5026 && !test_bit(R5_LOCKED, &pdev->flags)
5027 && (test_bit(R5_UPTODATE, &pdev->flags) ||
5028 test_bit(R5_Discard, &pdev->flags))))) &&
5029 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5030 && !test_bit(R5_LOCKED, &qdev->flags)
5031 && (test_bit(R5_UPTODATE, &qdev->flags) ||
5032 test_bit(R5_Discard, &qdev->flags))))))
5033 handle_stripe_clean_event(conf, sh, disks);
5036 r5c_handle_cached_data_endio(conf, sh, disks);
5037 log_stripe_write_finished(sh);
5039 /* Now we might consider reading some blocks, either to check/generate
5040 * parity, or to satisfy requests
5041 * or to load a block that is being partially written.
5043 if (s.to_read || s.non_overwrite
5044 || (s.to_write && s.failed)
5045 || (s.syncing && (s.uptodate + s.compute < disks))
5048 handle_stripe_fill(sh, &s, disks);
5051 * When the stripe finishes full journal write cycle (write to journal
5052 * and raid disk), this is the clean up procedure so it is ready for
5055 r5c_finish_stripe_write_out(conf, sh, &s);
5058 * Now to consider new write requests, cache write back and what else,
5059 * if anything should be read. We do not handle new writes when:
5060 * 1/ A 'write' operation (copy+xor) is already in flight.
5061 * 2/ A 'check' operation is in flight, as it may clobber the parity
5063 * 3/ A r5c cache log write is in flight.
5066 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5067 if (!r5c_is_writeback(conf->log)) {
5069 handle_stripe_dirtying(conf, sh, &s, disks);
5070 } else { /* write back cache */
5073 /* First, try handle writes in caching phase */
5075 ret = r5c_try_caching_write(conf, sh, &s,
5078 * If caching phase failed: ret == -EAGAIN
5080 * stripe under reclaim: !caching && injournal
5082 * fall back to handle_stripe_dirtying()
5084 if (ret == -EAGAIN ||
5085 /* stripe under reclaim: !caching && injournal */
5086 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5088 ret = handle_stripe_dirtying(conf, sh, &s,
5096 /* maybe we need to check and possibly fix the parity for this stripe
5097 * Any reads will already have been scheduled, so we just see if enough
5098 * data is available. The parity check is held off while parity
5099 * dependent operations are in flight.
5101 if (sh->check_state ||
5102 (s.syncing && s.locked == 0 &&
5103 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5104 !test_bit(STRIPE_INSYNC, &sh->state))) {
5105 if (conf->level == 6)
5106 handle_parity_checks6(conf, sh, &s, disks);
5108 handle_parity_checks5(conf, sh, &s, disks);
5111 if ((s.replacing || s.syncing) && s.locked == 0
5112 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5113 && !test_bit(STRIPE_REPLACED, &sh->state)) {
5114 /* Write out to replacement devices where possible */
5115 for (i = 0; i < conf->raid_disks; i++)
5116 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5117 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5118 set_bit(R5_WantReplace, &sh->dev[i].flags);
5119 set_bit(R5_LOCKED, &sh->dev[i].flags);
5123 set_bit(STRIPE_INSYNC, &sh->state);
5124 set_bit(STRIPE_REPLACED, &sh->state);
5126 if ((s.syncing || s.replacing) && s.locked == 0 &&
5127 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5128 test_bit(STRIPE_INSYNC, &sh->state)) {
5129 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5130 clear_bit(STRIPE_SYNCING, &sh->state);
5131 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5132 wake_up(&conf->wait_for_overlap);
5135 /* If the failed drives are just a ReadError, then we might need
5136 * to progress the repair/check process
5138 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5139 for (i = 0; i < s.failed; i++) {
5140 struct r5dev *dev = &sh->dev[s.failed_num[i]];
5141 if (test_bit(R5_ReadError, &dev->flags)
5142 && !test_bit(R5_LOCKED, &dev->flags)
5143 && test_bit(R5_UPTODATE, &dev->flags)
5145 if (!test_bit(R5_ReWrite, &dev->flags)) {
5146 set_bit(R5_Wantwrite, &dev->flags);
5147 set_bit(R5_ReWrite, &dev->flags);
5149 /* let's read it back */
5150 set_bit(R5_Wantread, &dev->flags);
5151 set_bit(R5_LOCKED, &dev->flags);
5156 /* Finish reconstruct operations initiated by the expansion process */
5157 if (sh->reconstruct_state == reconstruct_state_result) {
5158 struct stripe_head *sh_src
5159 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
5160 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5161 /* sh cannot be written until sh_src has been read.
5162 * so arrange for sh to be delayed a little
5164 set_bit(STRIPE_DELAYED, &sh->state);
5165 set_bit(STRIPE_HANDLE, &sh->state);
5166 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5168 atomic_inc(&conf->preread_active_stripes);
5169 raid5_release_stripe(sh_src);
5173 raid5_release_stripe(sh_src);
5175 sh->reconstruct_state = reconstruct_state_idle;
5176 clear_bit(STRIPE_EXPANDING, &sh->state);
5177 for (i = conf->raid_disks; i--; ) {
5178 set_bit(R5_Wantwrite, &sh->dev[i].flags);
5179 set_bit(R5_LOCKED, &sh->dev[i].flags);
5184 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5185 !sh->reconstruct_state) {
5186 /* Need to write out all blocks after computing parity */
5187 sh->disks = conf->raid_disks;
5188 stripe_set_idx(sh->sector, conf, 0, sh);
5189 schedule_reconstruction(sh, &s, 1, 1);
5190 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5191 clear_bit(STRIPE_EXPAND_READY, &sh->state);
5192 atomic_dec(&conf->reshape_stripes);
5193 wake_up(&conf->wait_for_overlap);
5194 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5197 if (s.expanding && s.locked == 0 &&
5198 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5199 handle_stripe_expansion(conf, sh);
5202 /* wait for this device to become unblocked */
5203 if (unlikely(s.blocked_rdev)) {
5204 if (conf->mddev->external)
5205 md_wait_for_blocked_rdev(s.blocked_rdev,
5208 /* Internal metadata will immediately
5209 * be written by raid5d, so we don't
5210 * need to wait here.
5212 rdev_dec_pending(s.blocked_rdev,
5216 if (s.handle_bad_blocks)
5217 for (i = disks; i--; ) {
5218 struct md_rdev *rdev;
5219 struct r5dev *dev = &sh->dev[i];
5220 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5221 /* We own a safe reference to the rdev */
5222 rdev = conf->disks[i].rdev;
5223 if (!rdev_set_badblocks(rdev, sh->sector,
5224 RAID5_STRIPE_SECTORS(conf), 0))
5225 md_error(conf->mddev, rdev);
5226 rdev_dec_pending(rdev, conf->mddev);
5228 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5229 rdev = conf->disks[i].rdev;
5230 rdev_clear_badblocks(rdev, sh->sector,
5231 RAID5_STRIPE_SECTORS(conf), 0);
5232 rdev_dec_pending(rdev, conf->mddev);
5234 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5235 rdev = conf->disks[i].replacement;
5237 /* rdev have been moved down */
5238 rdev = conf->disks[i].rdev;
5239 rdev_clear_badblocks(rdev, sh->sector,
5240 RAID5_STRIPE_SECTORS(conf), 0);
5241 rdev_dec_pending(rdev, conf->mddev);
5246 raid_run_ops(sh, s.ops_request);
5250 if (s.dec_preread_active) {
5251 /* We delay this until after ops_run_io so that if make_request
5252 * is waiting on a flush, it won't continue until the writes
5253 * have actually been submitted.
5255 atomic_dec(&conf->preread_active_stripes);
5256 if (atomic_read(&conf->preread_active_stripes) <
5258 md_wakeup_thread(conf->mddev->thread);
5261 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5264 static void raid5_activate_delayed(struct r5conf *conf)
5266 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5267 while (!list_empty(&conf->delayed_list)) {
5268 struct list_head *l = conf->delayed_list.next;
5269 struct stripe_head *sh;
5270 sh = list_entry(l, struct stripe_head, lru);
5272 clear_bit(STRIPE_DELAYED, &sh->state);
5273 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5274 atomic_inc(&conf->preread_active_stripes);
5275 list_add_tail(&sh->lru, &conf->hold_list);
5276 raid5_wakeup_stripe_thread(sh);
5281 static void activate_bit_delay(struct r5conf *conf,
5282 struct list_head *temp_inactive_list)
5284 /* device_lock is held */
5285 struct list_head head;
5286 list_add(&head, &conf->bitmap_list);
5287 list_del_init(&conf->bitmap_list);
5288 while (!list_empty(&head)) {
5289 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5291 list_del_init(&sh->lru);
5292 atomic_inc(&sh->count);
5293 hash = sh->hash_lock_index;
5294 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5298 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5300 struct r5conf *conf = mddev->private;
5301 sector_t sector = bio->bi_iter.bi_sector;
5302 unsigned int chunk_sectors;
5303 unsigned int bio_sectors = bio_sectors(bio);
5305 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5306 return chunk_sectors >=
5307 ((sector & (chunk_sectors - 1)) + bio_sectors);
5311 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5312 * later sampled by raid5d.
5314 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5316 unsigned long flags;
5318 spin_lock_irqsave(&conf->device_lock, flags);
5320 bi->bi_next = conf->retry_read_aligned_list;
5321 conf->retry_read_aligned_list = bi;
5323 spin_unlock_irqrestore(&conf->device_lock, flags);
5324 md_wakeup_thread(conf->mddev->thread);
5327 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5328 unsigned int *offset)
5332 bi = conf->retry_read_aligned;
5334 *offset = conf->retry_read_offset;
5335 conf->retry_read_aligned = NULL;
5338 bi = conf->retry_read_aligned_list;
5340 conf->retry_read_aligned_list = bi->bi_next;
5349 * The "raid5_align_endio" should check if the read succeeded and if it
5350 * did, call bio_endio on the original bio (having bio_put the new bio
5352 * If the read failed..
5354 static void raid5_align_endio(struct bio *bi)
5356 struct md_io_acct *md_io_acct = bi->bi_private;
5357 struct bio *raid_bi = md_io_acct->orig_bio;
5358 struct mddev *mddev;
5359 struct r5conf *conf;
5360 struct md_rdev *rdev;
5361 blk_status_t error = bi->bi_status;
5362 unsigned long start_time = md_io_acct->start_time;
5366 rdev = (void*)raid_bi->bi_next;
5367 raid_bi->bi_next = NULL;
5368 mddev = rdev->mddev;
5369 conf = mddev->private;
5371 rdev_dec_pending(rdev, conf->mddev);
5374 if (blk_queue_io_stat(raid_bi->bi_bdev->bd_disk->queue))
5375 bio_end_io_acct(raid_bi, start_time);
5377 if (atomic_dec_and_test(&conf->active_aligned_reads))
5378 wake_up(&conf->wait_for_quiescent);
5382 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5384 add_bio_to_retry(raid_bi, conf);
5387 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5389 struct r5conf *conf = mddev->private;
5390 struct bio *align_bio;
5391 struct md_rdev *rdev;
5392 sector_t sector, end_sector, first_bad;
5393 int bad_sectors, dd_idx;
5394 struct md_io_acct *md_io_acct;
5397 if (!in_chunk_boundary(mddev, raid_bio)) {
5398 pr_debug("%s: non aligned\n", __func__);
5402 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5404 end_sector = bio_end_sector(raid_bio);
5407 if (r5c_big_stripe_cached(conf, sector))
5408 goto out_rcu_unlock;
5410 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5411 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5412 rdev->recovery_offset < end_sector) {
5413 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5415 goto out_rcu_unlock;
5416 if (test_bit(Faulty, &rdev->flags) ||
5417 !(test_bit(In_sync, &rdev->flags) ||
5418 rdev->recovery_offset >= end_sector))
5419 goto out_rcu_unlock;
5422 atomic_inc(&rdev->nr_pending);
5425 if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad,
5428 rdev_dec_pending(rdev, mddev);
5432 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5433 &mddev->io_acct_set);
5434 md_io_acct = container_of(align_bio, struct md_io_acct, bio_clone);
5435 raid_bio->bi_next = (void *)rdev;
5436 if (blk_queue_io_stat(raid_bio->bi_bdev->bd_disk->queue))
5437 md_io_acct->start_time = bio_start_io_acct(raid_bio);
5438 md_io_acct->orig_bio = raid_bio;
5440 align_bio->bi_end_io = raid5_align_endio;
5441 align_bio->bi_private = md_io_acct;
5442 align_bio->bi_iter.bi_sector = sector;
5444 /* No reshape active, so we can trust rdev->data_offset */
5445 align_bio->bi_iter.bi_sector += rdev->data_offset;
5448 if (conf->quiesce == 0) {
5449 atomic_inc(&conf->active_aligned_reads);
5452 /* need a memory barrier to detect the race with raid5_quiesce() */
5453 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5454 /* quiesce is in progress, so we need to undo io activation and wait
5457 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5458 wake_up(&conf->wait_for_quiescent);
5459 spin_lock_irq(&conf->device_lock);
5460 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5462 atomic_inc(&conf->active_aligned_reads);
5463 spin_unlock_irq(&conf->device_lock);
5467 trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk),
5468 raid_bio->bi_iter.bi_sector);
5469 submit_bio_noacct(align_bio);
5477 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5480 sector_t sector = raid_bio->bi_iter.bi_sector;
5481 unsigned chunk_sects = mddev->chunk_sectors;
5482 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5484 if (sectors < bio_sectors(raid_bio)) {
5485 struct r5conf *conf = mddev->private;
5486 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5487 bio_chain(split, raid_bio);
5488 submit_bio_noacct(raid_bio);
5492 if (!raid5_read_one_chunk(mddev, raid_bio))
5498 /* __get_priority_stripe - get the next stripe to process
5500 * Full stripe writes are allowed to pass preread active stripes up until
5501 * the bypass_threshold is exceeded. In general the bypass_count
5502 * increments when the handle_list is handled before the hold_list; however, it
5503 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5504 * stripe with in flight i/o. The bypass_count will be reset when the
5505 * head of the hold_list has changed, i.e. the head was promoted to the
5508 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5510 struct stripe_head *sh, *tmp;
5511 struct list_head *handle_list = NULL;
5512 struct r5worker_group *wg;
5513 bool second_try = !r5c_is_writeback(conf->log) &&
5514 !r5l_log_disk_error(conf);
5515 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5516 r5l_log_disk_error(conf);
5521 if (conf->worker_cnt_per_group == 0) {
5522 handle_list = try_loprio ? &conf->loprio_list :
5524 } else if (group != ANY_GROUP) {
5525 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5526 &conf->worker_groups[group].handle_list;
5527 wg = &conf->worker_groups[group];
5530 for (i = 0; i < conf->group_cnt; i++) {
5531 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5532 &conf->worker_groups[i].handle_list;
5533 wg = &conf->worker_groups[i];
5534 if (!list_empty(handle_list))
5539 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5541 list_empty(handle_list) ? "empty" : "busy",
5542 list_empty(&conf->hold_list) ? "empty" : "busy",
5543 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5545 if (!list_empty(handle_list)) {
5546 sh = list_entry(handle_list->next, typeof(*sh), lru);
5548 if (list_empty(&conf->hold_list))
5549 conf->bypass_count = 0;
5550 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5551 if (conf->hold_list.next == conf->last_hold)
5552 conf->bypass_count++;
5554 conf->last_hold = conf->hold_list.next;
5555 conf->bypass_count -= conf->bypass_threshold;
5556 if (conf->bypass_count < 0)
5557 conf->bypass_count = 0;
5560 } else if (!list_empty(&conf->hold_list) &&
5561 ((conf->bypass_threshold &&
5562 conf->bypass_count > conf->bypass_threshold) ||
5563 atomic_read(&conf->pending_full_writes) == 0)) {
5565 list_for_each_entry(tmp, &conf->hold_list, lru) {
5566 if (conf->worker_cnt_per_group == 0 ||
5567 group == ANY_GROUP ||
5568 !cpu_online(tmp->cpu) ||
5569 cpu_to_group(tmp->cpu) == group) {
5576 conf->bypass_count -= conf->bypass_threshold;
5577 if (conf->bypass_count < 0)
5578 conf->bypass_count = 0;
5587 try_loprio = !try_loprio;
5595 list_del_init(&sh->lru);
5596 BUG_ON(atomic_inc_return(&sh->count) != 1);
5600 struct raid5_plug_cb {
5601 struct blk_plug_cb cb;
5602 struct list_head list;
5603 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5606 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5608 struct raid5_plug_cb *cb = container_of(
5609 blk_cb, struct raid5_plug_cb, cb);
5610 struct stripe_head *sh;
5611 struct mddev *mddev = cb->cb.data;
5612 struct r5conf *conf = mddev->private;
5616 if (cb->list.next && !list_empty(&cb->list)) {
5617 spin_lock_irq(&conf->device_lock);
5618 while (!list_empty(&cb->list)) {
5619 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5620 list_del_init(&sh->lru);
5622 * avoid race release_stripe_plug() sees
5623 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5624 * is still in our list
5626 smp_mb__before_atomic();
5627 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5629 * STRIPE_ON_RELEASE_LIST could be set here. In that
5630 * case, the count is always > 1 here
5632 hash = sh->hash_lock_index;
5633 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5636 spin_unlock_irq(&conf->device_lock);
5638 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5639 NR_STRIPE_HASH_LOCKS);
5641 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5645 static void release_stripe_plug(struct mddev *mddev,
5646 struct stripe_head *sh)
5648 struct blk_plug_cb *blk_cb = blk_check_plugged(
5649 raid5_unplug, mddev,
5650 sizeof(struct raid5_plug_cb));
5651 struct raid5_plug_cb *cb;
5654 raid5_release_stripe(sh);
5658 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5660 if (cb->list.next == NULL) {
5662 INIT_LIST_HEAD(&cb->list);
5663 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5664 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5667 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5668 list_add_tail(&sh->lru, &cb->list);
5670 raid5_release_stripe(sh);
5673 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5675 struct r5conf *conf = mddev->private;
5676 sector_t logical_sector, last_sector;
5677 struct stripe_head *sh;
5680 /* We need to handle this when io_uring supports discard/trim */
5681 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5684 if (mddev->reshape_position != MaxSector)
5685 /* Skip discard while reshape is happening */
5688 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5689 last_sector = bio_end_sector(bi);
5693 stripe_sectors = conf->chunk_sectors *
5694 (conf->raid_disks - conf->max_degraded);
5695 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5697 sector_div(last_sector, stripe_sectors);
5699 logical_sector *= conf->chunk_sectors;
5700 last_sector *= conf->chunk_sectors;
5702 for (; logical_sector < last_sector;
5703 logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5707 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5708 prepare_to_wait(&conf->wait_for_overlap, &w,
5709 TASK_UNINTERRUPTIBLE);
5710 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5711 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5712 raid5_release_stripe(sh);
5716 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5717 spin_lock_irq(&sh->stripe_lock);
5718 for (d = 0; d < conf->raid_disks; d++) {
5719 if (d == sh->pd_idx || d == sh->qd_idx)
5721 if (sh->dev[d].towrite || sh->dev[d].toread) {
5722 set_bit(R5_Overlap, &sh->dev[d].flags);
5723 spin_unlock_irq(&sh->stripe_lock);
5724 raid5_release_stripe(sh);
5729 set_bit(STRIPE_DISCARD, &sh->state);
5730 finish_wait(&conf->wait_for_overlap, &w);
5731 sh->overwrite_disks = 0;
5732 for (d = 0; d < conf->raid_disks; d++) {
5733 if (d == sh->pd_idx || d == sh->qd_idx)
5735 sh->dev[d].towrite = bi;
5736 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5737 bio_inc_remaining(bi);
5738 md_write_inc(mddev, bi);
5739 sh->overwrite_disks++;
5741 spin_unlock_irq(&sh->stripe_lock);
5742 if (conf->mddev->bitmap) {
5744 d < conf->raid_disks - conf->max_degraded;
5746 md_bitmap_startwrite(mddev->bitmap,
5748 RAID5_STRIPE_SECTORS(conf),
5750 sh->bm_seq = conf->seq_flush + 1;
5751 set_bit(STRIPE_BIT_DELAY, &sh->state);
5754 set_bit(STRIPE_HANDLE, &sh->state);
5755 clear_bit(STRIPE_DELAYED, &sh->state);
5756 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5757 atomic_inc(&conf->preread_active_stripes);
5758 release_stripe_plug(mddev, sh);
5764 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5766 struct r5conf *conf = mddev->private;
5768 sector_t new_sector;
5769 sector_t logical_sector, last_sector;
5770 struct stripe_head *sh;
5771 const int rw = bio_data_dir(bi);
5774 bool do_flush = false;
5776 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5777 int ret = log_handle_flush_request(conf, bi);
5781 if (ret == -ENODEV) {
5782 if (md_flush_request(mddev, bi))
5785 /* ret == -EAGAIN, fallback */
5787 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5788 * we need to flush journal device
5790 do_flush = bi->bi_opf & REQ_PREFLUSH;
5793 if (!md_write_start(mddev, bi))
5796 * If array is degraded, better not do chunk aligned read because
5797 * later we might have to read it again in order to reconstruct
5798 * data on failed drives.
5800 if (rw == READ && mddev->degraded == 0 &&
5801 mddev->reshape_position == MaxSector) {
5802 bi = chunk_aligned_read(mddev, bi);
5807 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5808 make_discard_request(mddev, bi);
5809 md_write_end(mddev);
5813 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5814 last_sector = bio_end_sector(bi);
5817 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */
5818 if ((bi->bi_opf & REQ_NOWAIT) &&
5819 (conf->reshape_progress != MaxSector) &&
5820 (mddev->reshape_backwards
5821 ? (logical_sector > conf->reshape_progress && logical_sector <= conf->reshape_safe)
5822 : (logical_sector >= conf->reshape_safe && logical_sector < conf->reshape_progress))) {
5823 bio_wouldblock_error(bi);
5825 md_write_end(mddev);
5828 md_account_bio(mddev, &bi);
5829 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5830 for (; logical_sector < last_sector; logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5836 seq = read_seqcount_begin(&conf->gen_lock);
5839 prepare_to_wait(&conf->wait_for_overlap, &w,
5840 TASK_UNINTERRUPTIBLE);
5841 if (unlikely(conf->reshape_progress != MaxSector)) {
5842 /* spinlock is needed as reshape_progress may be
5843 * 64bit on a 32bit platform, and so it might be
5844 * possible to see a half-updated value
5845 * Of course reshape_progress could change after
5846 * the lock is dropped, so once we get a reference
5847 * to the stripe that we think it is, we will have
5850 spin_lock_irq(&conf->device_lock);
5851 if (mddev->reshape_backwards
5852 ? logical_sector < conf->reshape_progress
5853 : logical_sector >= conf->reshape_progress) {
5856 if (mddev->reshape_backwards
5857 ? logical_sector < conf->reshape_safe
5858 : logical_sector >= conf->reshape_safe) {
5859 spin_unlock_irq(&conf->device_lock);
5865 spin_unlock_irq(&conf->device_lock);
5868 new_sector = raid5_compute_sector(conf, logical_sector,
5871 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5872 (unsigned long long)new_sector,
5873 (unsigned long long)logical_sector);
5875 sh = raid5_get_active_stripe(conf, new_sector, previous,
5876 (bi->bi_opf & REQ_RAHEAD), 0);
5878 if (unlikely(previous)) {
5879 /* expansion might have moved on while waiting for a
5880 * stripe, so we must do the range check again.
5881 * Expansion could still move past after this
5882 * test, but as we are holding a reference to
5883 * 'sh', we know that if that happens,
5884 * STRIPE_EXPANDING will get set and the expansion
5885 * won't proceed until we finish with the stripe.
5888 spin_lock_irq(&conf->device_lock);
5889 if (mddev->reshape_backwards
5890 ? logical_sector >= conf->reshape_progress
5891 : logical_sector < conf->reshape_progress)
5892 /* mismatch, need to try again */
5894 spin_unlock_irq(&conf->device_lock);
5896 raid5_release_stripe(sh);
5902 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5903 /* Might have got the wrong stripe_head
5906 raid5_release_stripe(sh);
5910 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5911 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5912 /* Stripe is busy expanding or
5913 * add failed due to overlap. Flush everything
5916 md_wakeup_thread(mddev->thread);
5917 raid5_release_stripe(sh);
5923 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5924 /* we only need flush for one stripe */
5928 set_bit(STRIPE_HANDLE, &sh->state);
5929 clear_bit(STRIPE_DELAYED, &sh->state);
5930 if ((!sh->batch_head || sh == sh->batch_head) &&
5931 (bi->bi_opf & REQ_SYNC) &&
5932 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5933 atomic_inc(&conf->preread_active_stripes);
5934 release_stripe_plug(mddev, sh);
5936 /* cannot get stripe for read-ahead, just give-up */
5937 bi->bi_status = BLK_STS_IOERR;
5941 finish_wait(&conf->wait_for_overlap, &w);
5944 md_write_end(mddev);
5949 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5951 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5953 /* reshaping is quite different to recovery/resync so it is
5954 * handled quite separately ... here.
5956 * On each call to sync_request, we gather one chunk worth of
5957 * destination stripes and flag them as expanding.
5958 * Then we find all the source stripes and request reads.
5959 * As the reads complete, handle_stripe will copy the data
5960 * into the destination stripe and release that stripe.
5962 struct r5conf *conf = mddev->private;
5963 struct stripe_head *sh;
5964 struct md_rdev *rdev;
5965 sector_t first_sector, last_sector;
5966 int raid_disks = conf->previous_raid_disks;
5967 int data_disks = raid_disks - conf->max_degraded;
5968 int new_data_disks = conf->raid_disks - conf->max_degraded;
5971 sector_t writepos, readpos, safepos;
5972 sector_t stripe_addr;
5973 int reshape_sectors;
5974 struct list_head stripes;
5977 if (sector_nr == 0) {
5978 /* If restarting in the middle, skip the initial sectors */
5979 if (mddev->reshape_backwards &&
5980 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5981 sector_nr = raid5_size(mddev, 0, 0)
5982 - conf->reshape_progress;
5983 } else if (mddev->reshape_backwards &&
5984 conf->reshape_progress == MaxSector) {
5985 /* shouldn't happen, but just in case, finish up.*/
5986 sector_nr = MaxSector;
5987 } else if (!mddev->reshape_backwards &&
5988 conf->reshape_progress > 0)
5989 sector_nr = conf->reshape_progress;
5990 sector_div(sector_nr, new_data_disks);
5992 mddev->curr_resync_completed = sector_nr;
5993 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6000 /* We need to process a full chunk at a time.
6001 * If old and new chunk sizes differ, we need to process the
6005 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6007 /* We update the metadata at least every 10 seconds, or when
6008 * the data about to be copied would over-write the source of
6009 * the data at the front of the range. i.e. one new_stripe
6010 * along from reshape_progress new_maps to after where
6011 * reshape_safe old_maps to
6013 writepos = conf->reshape_progress;
6014 sector_div(writepos, new_data_disks);
6015 readpos = conf->reshape_progress;
6016 sector_div(readpos, data_disks);
6017 safepos = conf->reshape_safe;
6018 sector_div(safepos, data_disks);
6019 if (mddev->reshape_backwards) {
6020 BUG_ON(writepos < reshape_sectors);
6021 writepos -= reshape_sectors;
6022 readpos += reshape_sectors;
6023 safepos += reshape_sectors;
6025 writepos += reshape_sectors;
6026 /* readpos and safepos are worst-case calculations.
6027 * A negative number is overly pessimistic, and causes
6028 * obvious problems for unsigned storage. So clip to 0.
6030 readpos -= min_t(sector_t, reshape_sectors, readpos);
6031 safepos -= min_t(sector_t, reshape_sectors, safepos);
6034 /* Having calculated the 'writepos' possibly use it
6035 * to set 'stripe_addr' which is where we will write to.
6037 if (mddev->reshape_backwards) {
6038 BUG_ON(conf->reshape_progress == 0);
6039 stripe_addr = writepos;
6040 BUG_ON((mddev->dev_sectors &
6041 ~((sector_t)reshape_sectors - 1))
6042 - reshape_sectors - stripe_addr
6045 BUG_ON(writepos != sector_nr + reshape_sectors);
6046 stripe_addr = sector_nr;
6049 /* 'writepos' is the most advanced device address we might write.
6050 * 'readpos' is the least advanced device address we might read.
6051 * 'safepos' is the least address recorded in the metadata as having
6053 * If there is a min_offset_diff, these are adjusted either by
6054 * increasing the safepos/readpos if diff is negative, or
6055 * increasing writepos if diff is positive.
6056 * If 'readpos' is then behind 'writepos', there is no way that we can
6057 * ensure safety in the face of a crash - that must be done by userspace
6058 * making a backup of the data. So in that case there is no particular
6059 * rush to update metadata.
6060 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6061 * update the metadata to advance 'safepos' to match 'readpos' so that
6062 * we can be safe in the event of a crash.
6063 * So we insist on updating metadata if safepos is behind writepos and
6064 * readpos is beyond writepos.
6065 * In any case, update the metadata every 10 seconds.
6066 * Maybe that number should be configurable, but I'm not sure it is
6067 * worth it.... maybe it could be a multiple of safemode_delay???
6069 if (conf->min_offset_diff < 0) {
6070 safepos += -conf->min_offset_diff;
6071 readpos += -conf->min_offset_diff;
6073 writepos += conf->min_offset_diff;
6075 if ((mddev->reshape_backwards
6076 ? (safepos > writepos && readpos < writepos)
6077 : (safepos < writepos && readpos > writepos)) ||
6078 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6079 /* Cannot proceed until we've updated the superblock... */
6080 wait_event(conf->wait_for_overlap,
6081 atomic_read(&conf->reshape_stripes)==0
6082 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6083 if (atomic_read(&conf->reshape_stripes) != 0)
6085 mddev->reshape_position = conf->reshape_progress;
6086 mddev->curr_resync_completed = sector_nr;
6087 if (!mddev->reshape_backwards)
6088 /* Can update recovery_offset */
6089 rdev_for_each(rdev, mddev)
6090 if (rdev->raid_disk >= 0 &&
6091 !test_bit(Journal, &rdev->flags) &&
6092 !test_bit(In_sync, &rdev->flags) &&
6093 rdev->recovery_offset < sector_nr)
6094 rdev->recovery_offset = sector_nr;
6096 conf->reshape_checkpoint = jiffies;
6097 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6098 md_wakeup_thread(mddev->thread);
6099 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6100 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6101 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6103 spin_lock_irq(&conf->device_lock);
6104 conf->reshape_safe = mddev->reshape_position;
6105 spin_unlock_irq(&conf->device_lock);
6106 wake_up(&conf->wait_for_overlap);
6107 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6110 INIT_LIST_HEAD(&stripes);
6111 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6113 int skipped_disk = 0;
6114 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
6115 set_bit(STRIPE_EXPANDING, &sh->state);
6116 atomic_inc(&conf->reshape_stripes);
6117 /* If any of this stripe is beyond the end of the old
6118 * array, then we need to zero those blocks
6120 for (j=sh->disks; j--;) {
6122 if (j == sh->pd_idx)
6124 if (conf->level == 6 &&
6127 s = raid5_compute_blocknr(sh, j, 0);
6128 if (s < raid5_size(mddev, 0, 0)) {
6132 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6133 set_bit(R5_Expanded, &sh->dev[j].flags);
6134 set_bit(R5_UPTODATE, &sh->dev[j].flags);
6136 if (!skipped_disk) {
6137 set_bit(STRIPE_EXPAND_READY, &sh->state);
6138 set_bit(STRIPE_HANDLE, &sh->state);
6140 list_add(&sh->lru, &stripes);
6142 spin_lock_irq(&conf->device_lock);
6143 if (mddev->reshape_backwards)
6144 conf->reshape_progress -= reshape_sectors * new_data_disks;
6146 conf->reshape_progress += reshape_sectors * new_data_disks;
6147 spin_unlock_irq(&conf->device_lock);
6148 /* Ok, those stripe are ready. We can start scheduling
6149 * reads on the source stripes.
6150 * The source stripes are determined by mapping the first and last
6151 * block on the destination stripes.
6154 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6157 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6158 * new_data_disks - 1),
6160 if (last_sector >= mddev->dev_sectors)
6161 last_sector = mddev->dev_sectors - 1;
6162 while (first_sector <= last_sector) {
6163 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
6164 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6165 set_bit(STRIPE_HANDLE, &sh->state);
6166 raid5_release_stripe(sh);
6167 first_sector += RAID5_STRIPE_SECTORS(conf);
6169 /* Now that the sources are clearly marked, we can release
6170 * the destination stripes
6172 while (!list_empty(&stripes)) {
6173 sh = list_entry(stripes.next, struct stripe_head, lru);
6174 list_del_init(&sh->lru);
6175 raid5_release_stripe(sh);
6177 /* If this takes us to the resync_max point where we have to pause,
6178 * then we need to write out the superblock.
6180 sector_nr += reshape_sectors;
6181 retn = reshape_sectors;
6183 if (mddev->curr_resync_completed > mddev->resync_max ||
6184 (sector_nr - mddev->curr_resync_completed) * 2
6185 >= mddev->resync_max - mddev->curr_resync_completed) {
6186 /* Cannot proceed until we've updated the superblock... */
6187 wait_event(conf->wait_for_overlap,
6188 atomic_read(&conf->reshape_stripes) == 0
6189 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6190 if (atomic_read(&conf->reshape_stripes) != 0)
6192 mddev->reshape_position = conf->reshape_progress;
6193 mddev->curr_resync_completed = sector_nr;
6194 if (!mddev->reshape_backwards)
6195 /* Can update recovery_offset */
6196 rdev_for_each(rdev, mddev)
6197 if (rdev->raid_disk >= 0 &&
6198 !test_bit(Journal, &rdev->flags) &&
6199 !test_bit(In_sync, &rdev->flags) &&
6200 rdev->recovery_offset < sector_nr)
6201 rdev->recovery_offset = sector_nr;
6202 conf->reshape_checkpoint = jiffies;
6203 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6204 md_wakeup_thread(mddev->thread);
6205 wait_event(mddev->sb_wait,
6206 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6207 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6208 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6210 spin_lock_irq(&conf->device_lock);
6211 conf->reshape_safe = mddev->reshape_position;
6212 spin_unlock_irq(&conf->device_lock);
6213 wake_up(&conf->wait_for_overlap);
6214 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6220 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6223 struct r5conf *conf = mddev->private;
6224 struct stripe_head *sh;
6225 sector_t max_sector = mddev->dev_sectors;
6226 sector_t sync_blocks;
6227 int still_degraded = 0;
6230 if (sector_nr >= max_sector) {
6231 /* just being told to finish up .. nothing much to do */
6233 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6238 if (mddev->curr_resync < max_sector) /* aborted */
6239 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6241 else /* completed sync */
6243 md_bitmap_close_sync(mddev->bitmap);
6248 /* Allow raid5_quiesce to complete */
6249 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6251 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6252 return reshape_request(mddev, sector_nr, skipped);
6254 /* No need to check resync_max as we never do more than one
6255 * stripe, and as resync_max will always be on a chunk boundary,
6256 * if the check in md_do_sync didn't fire, there is no chance
6257 * of overstepping resync_max here
6260 /* if there is too many failed drives and we are trying
6261 * to resync, then assert that we are finished, because there is
6262 * nothing we can do.
6264 if (mddev->degraded >= conf->max_degraded &&
6265 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6266 sector_t rv = mddev->dev_sectors - sector_nr;
6270 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6272 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6273 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6274 /* we can skip this block, and probably more */
6275 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6277 /* keep things rounded to whole stripes */
6278 return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6281 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6283 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6285 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6286 /* make sure we don't swamp the stripe cache if someone else
6287 * is trying to get access
6289 schedule_timeout_uninterruptible(1);
6291 /* Need to check if array will still be degraded after recovery/resync
6292 * Note in case of > 1 drive failures it's possible we're rebuilding
6293 * one drive while leaving another faulty drive in array.
6296 for (i = 0; i < conf->raid_disks; i++) {
6297 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6299 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6304 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6306 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6307 set_bit(STRIPE_HANDLE, &sh->state);
6309 raid5_release_stripe(sh);
6311 return RAID5_STRIPE_SECTORS(conf);
6314 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6315 unsigned int offset)
6317 /* We may not be able to submit a whole bio at once as there
6318 * may not be enough stripe_heads available.
6319 * We cannot pre-allocate enough stripe_heads as we may need
6320 * more than exist in the cache (if we allow ever large chunks).
6321 * So we do one stripe head at a time and record in
6322 * ->bi_hw_segments how many have been done.
6324 * We *know* that this entire raid_bio is in one chunk, so
6325 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6327 struct stripe_head *sh;
6329 sector_t sector, logical_sector, last_sector;
6333 logical_sector = raid_bio->bi_iter.bi_sector &
6334 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6335 sector = raid5_compute_sector(conf, logical_sector,
6337 last_sector = bio_end_sector(raid_bio);
6339 for (; logical_sector < last_sector;
6340 logical_sector += RAID5_STRIPE_SECTORS(conf),
6341 sector += RAID5_STRIPE_SECTORS(conf),
6345 /* already done this stripe */
6348 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6351 /* failed to get a stripe - must wait */
6352 conf->retry_read_aligned = raid_bio;
6353 conf->retry_read_offset = scnt;
6357 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6358 raid5_release_stripe(sh);
6359 conf->retry_read_aligned = raid_bio;
6360 conf->retry_read_offset = scnt;
6364 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6366 raid5_release_stripe(sh);
6370 bio_endio(raid_bio);
6372 if (atomic_dec_and_test(&conf->active_aligned_reads))
6373 wake_up(&conf->wait_for_quiescent);
6377 static int handle_active_stripes(struct r5conf *conf, int group,
6378 struct r5worker *worker,
6379 struct list_head *temp_inactive_list)
6380 __releases(&conf->device_lock)
6381 __acquires(&conf->device_lock)
6383 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6384 int i, batch_size = 0, hash;
6385 bool release_inactive = false;
6387 while (batch_size < MAX_STRIPE_BATCH &&
6388 (sh = __get_priority_stripe(conf, group)) != NULL)
6389 batch[batch_size++] = sh;
6391 if (batch_size == 0) {
6392 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6393 if (!list_empty(temp_inactive_list + i))
6395 if (i == NR_STRIPE_HASH_LOCKS) {
6396 spin_unlock_irq(&conf->device_lock);
6397 log_flush_stripe_to_raid(conf);
6398 spin_lock_irq(&conf->device_lock);
6401 release_inactive = true;
6403 spin_unlock_irq(&conf->device_lock);
6405 release_inactive_stripe_list(conf, temp_inactive_list,
6406 NR_STRIPE_HASH_LOCKS);
6408 r5l_flush_stripe_to_raid(conf->log);
6409 if (release_inactive) {
6410 spin_lock_irq(&conf->device_lock);
6414 for (i = 0; i < batch_size; i++)
6415 handle_stripe(batch[i]);
6416 log_write_stripe_run(conf);
6420 spin_lock_irq(&conf->device_lock);
6421 for (i = 0; i < batch_size; i++) {
6422 hash = batch[i]->hash_lock_index;
6423 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6428 static void raid5_do_work(struct work_struct *work)
6430 struct r5worker *worker = container_of(work, struct r5worker, work);
6431 struct r5worker_group *group = worker->group;
6432 struct r5conf *conf = group->conf;
6433 struct mddev *mddev = conf->mddev;
6434 int group_id = group - conf->worker_groups;
6436 struct blk_plug plug;
6438 pr_debug("+++ raid5worker active\n");
6440 blk_start_plug(&plug);
6442 spin_lock_irq(&conf->device_lock);
6444 int batch_size, released;
6446 released = release_stripe_list(conf, worker->temp_inactive_list);
6448 batch_size = handle_active_stripes(conf, group_id, worker,
6449 worker->temp_inactive_list);
6450 worker->working = false;
6451 if (!batch_size && !released)
6453 handled += batch_size;
6454 wait_event_lock_irq(mddev->sb_wait,
6455 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6458 pr_debug("%d stripes handled\n", handled);
6460 spin_unlock_irq(&conf->device_lock);
6462 flush_deferred_bios(conf);
6464 r5l_flush_stripe_to_raid(conf->log);
6466 async_tx_issue_pending_all();
6467 blk_finish_plug(&plug);
6469 pr_debug("--- raid5worker inactive\n");
6473 * This is our raid5 kernel thread.
6475 * We scan the hash table for stripes which can be handled now.
6476 * During the scan, completed stripes are saved for us by the interrupt
6477 * handler, so that they will not have to wait for our next wakeup.
6479 static void raid5d(struct md_thread *thread)
6481 struct mddev *mddev = thread->mddev;
6482 struct r5conf *conf = mddev->private;
6484 struct blk_plug plug;
6486 pr_debug("+++ raid5d active\n");
6488 md_check_recovery(mddev);
6490 blk_start_plug(&plug);
6492 spin_lock_irq(&conf->device_lock);
6495 int batch_size, released;
6496 unsigned int offset;
6498 released = release_stripe_list(conf, conf->temp_inactive_list);
6500 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6503 !list_empty(&conf->bitmap_list)) {
6504 /* Now is a good time to flush some bitmap updates */
6506 spin_unlock_irq(&conf->device_lock);
6507 md_bitmap_unplug(mddev->bitmap);
6508 spin_lock_irq(&conf->device_lock);
6509 conf->seq_write = conf->seq_flush;
6510 activate_bit_delay(conf, conf->temp_inactive_list);
6512 raid5_activate_delayed(conf);
6514 while ((bio = remove_bio_from_retry(conf, &offset))) {
6516 spin_unlock_irq(&conf->device_lock);
6517 ok = retry_aligned_read(conf, bio, offset);
6518 spin_lock_irq(&conf->device_lock);
6524 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6525 conf->temp_inactive_list);
6526 if (!batch_size && !released)
6528 handled += batch_size;
6530 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6531 spin_unlock_irq(&conf->device_lock);
6532 md_check_recovery(mddev);
6533 spin_lock_irq(&conf->device_lock);
6536 pr_debug("%d stripes handled\n", handled);
6538 spin_unlock_irq(&conf->device_lock);
6539 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6540 mutex_trylock(&conf->cache_size_mutex)) {
6541 grow_one_stripe(conf, __GFP_NOWARN);
6542 /* Set flag even if allocation failed. This helps
6543 * slow down allocation requests when mem is short
6545 set_bit(R5_DID_ALLOC, &conf->cache_state);
6546 mutex_unlock(&conf->cache_size_mutex);
6549 flush_deferred_bios(conf);
6551 r5l_flush_stripe_to_raid(conf->log);
6553 async_tx_issue_pending_all();
6554 blk_finish_plug(&plug);
6556 pr_debug("--- raid5d inactive\n");
6560 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6562 struct r5conf *conf;
6564 spin_lock(&mddev->lock);
6565 conf = mddev->private;
6567 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6568 spin_unlock(&mddev->lock);
6573 raid5_set_cache_size(struct mddev *mddev, int size)
6576 struct r5conf *conf = mddev->private;
6578 if (size <= 16 || size > 32768)
6581 conf->min_nr_stripes = size;
6582 mutex_lock(&conf->cache_size_mutex);
6583 while (size < conf->max_nr_stripes &&
6584 drop_one_stripe(conf))
6586 mutex_unlock(&conf->cache_size_mutex);
6588 md_allow_write(mddev);
6590 mutex_lock(&conf->cache_size_mutex);
6591 while (size > conf->max_nr_stripes)
6592 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6593 conf->min_nr_stripes = conf->max_nr_stripes;
6597 mutex_unlock(&conf->cache_size_mutex);
6601 EXPORT_SYMBOL(raid5_set_cache_size);
6604 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6606 struct r5conf *conf;
6610 if (len >= PAGE_SIZE)
6612 if (kstrtoul(page, 10, &new))
6614 err = mddev_lock(mddev);
6617 conf = mddev->private;
6621 err = raid5_set_cache_size(mddev, new);
6622 mddev_unlock(mddev);
6627 static struct md_sysfs_entry
6628 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6629 raid5_show_stripe_cache_size,
6630 raid5_store_stripe_cache_size);
6633 raid5_show_rmw_level(struct mddev *mddev, char *page)
6635 struct r5conf *conf = mddev->private;
6637 return sprintf(page, "%d\n", conf->rmw_level);
6643 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6645 struct r5conf *conf = mddev->private;
6651 if (len >= PAGE_SIZE)
6654 if (kstrtoul(page, 10, &new))
6657 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6660 if (new != PARITY_DISABLE_RMW &&
6661 new != PARITY_ENABLE_RMW &&
6662 new != PARITY_PREFER_RMW)
6665 conf->rmw_level = new;
6669 static struct md_sysfs_entry
6670 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6671 raid5_show_rmw_level,
6672 raid5_store_rmw_level);
6675 raid5_show_stripe_size(struct mddev *mddev, char *page)
6677 struct r5conf *conf;
6680 spin_lock(&mddev->lock);
6681 conf = mddev->private;
6683 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6684 spin_unlock(&mddev->lock);
6688 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6690 raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len)
6692 struct r5conf *conf;
6697 if (len >= PAGE_SIZE)
6699 if (kstrtoul(page, 10, &new))
6703 * The value should not be bigger than PAGE_SIZE. It requires to
6704 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6707 if (new % DEFAULT_STRIPE_SIZE != 0 ||
6708 new > PAGE_SIZE || new == 0 ||
6709 new != roundup_pow_of_two(new))
6712 err = mddev_lock(mddev);
6716 conf = mddev->private;
6722 if (new == conf->stripe_size)
6725 pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6726 conf->stripe_size, new);
6728 if (mddev->sync_thread ||
6729 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6730 mddev->reshape_position != MaxSector ||
6731 mddev->sysfs_active) {
6736 mddev_suspend(mddev);
6737 mutex_lock(&conf->cache_size_mutex);
6738 size = conf->max_nr_stripes;
6740 shrink_stripes(conf);
6742 conf->stripe_size = new;
6743 conf->stripe_shift = ilog2(new) - 9;
6744 conf->stripe_sectors = new >> 9;
6745 if (grow_stripes(conf, size)) {
6746 pr_warn("md/raid:%s: couldn't allocate buffers\n",
6750 mutex_unlock(&conf->cache_size_mutex);
6751 mddev_resume(mddev);
6754 mddev_unlock(mddev);
6758 static struct md_sysfs_entry
6759 raid5_stripe_size = __ATTR(stripe_size, 0644,
6760 raid5_show_stripe_size,
6761 raid5_store_stripe_size);
6763 static struct md_sysfs_entry
6764 raid5_stripe_size = __ATTR(stripe_size, 0444,
6765 raid5_show_stripe_size,
6770 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6772 struct r5conf *conf;
6774 spin_lock(&mddev->lock);
6775 conf = mddev->private;
6777 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6778 spin_unlock(&mddev->lock);
6783 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6785 struct r5conf *conf;
6789 if (len >= PAGE_SIZE)
6791 if (kstrtoul(page, 10, &new))
6794 err = mddev_lock(mddev);
6797 conf = mddev->private;
6800 else if (new > conf->min_nr_stripes)
6803 conf->bypass_threshold = new;
6804 mddev_unlock(mddev);
6808 static struct md_sysfs_entry
6809 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6811 raid5_show_preread_threshold,
6812 raid5_store_preread_threshold);
6815 raid5_show_skip_copy(struct mddev *mddev, char *page)
6817 struct r5conf *conf;
6819 spin_lock(&mddev->lock);
6820 conf = mddev->private;
6822 ret = sprintf(page, "%d\n", conf->skip_copy);
6823 spin_unlock(&mddev->lock);
6828 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6830 struct r5conf *conf;
6834 if (len >= PAGE_SIZE)
6836 if (kstrtoul(page, 10, &new))
6840 err = mddev_lock(mddev);
6843 conf = mddev->private;
6846 else if (new != conf->skip_copy) {
6847 struct request_queue *q = mddev->queue;
6849 mddev_suspend(mddev);
6850 conf->skip_copy = new;
6852 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
6854 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
6855 mddev_resume(mddev);
6857 mddev_unlock(mddev);
6861 static struct md_sysfs_entry
6862 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6863 raid5_show_skip_copy,
6864 raid5_store_skip_copy);
6867 stripe_cache_active_show(struct mddev *mddev, char *page)
6869 struct r5conf *conf = mddev->private;
6871 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6876 static struct md_sysfs_entry
6877 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6880 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6882 struct r5conf *conf;
6884 spin_lock(&mddev->lock);
6885 conf = mddev->private;
6887 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6888 spin_unlock(&mddev->lock);
6892 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6894 struct r5worker_group **worker_groups);
6896 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6898 struct r5conf *conf;
6901 struct r5worker_group *new_groups, *old_groups;
6904 if (len >= PAGE_SIZE)
6906 if (kstrtouint(page, 10, &new))
6908 /* 8192 should be big enough */
6912 err = mddev_lock(mddev);
6915 conf = mddev->private;
6918 else if (new != conf->worker_cnt_per_group) {
6919 mddev_suspend(mddev);
6921 old_groups = conf->worker_groups;
6923 flush_workqueue(raid5_wq);
6925 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
6927 spin_lock_irq(&conf->device_lock);
6928 conf->group_cnt = group_cnt;
6929 conf->worker_cnt_per_group = new;
6930 conf->worker_groups = new_groups;
6931 spin_unlock_irq(&conf->device_lock);
6934 kfree(old_groups[0].workers);
6937 mddev_resume(mddev);
6939 mddev_unlock(mddev);
6944 static struct md_sysfs_entry
6945 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6946 raid5_show_group_thread_cnt,
6947 raid5_store_group_thread_cnt);
6949 static struct attribute *raid5_attrs[] = {
6950 &raid5_stripecache_size.attr,
6951 &raid5_stripecache_active.attr,
6952 &raid5_preread_bypass_threshold.attr,
6953 &raid5_group_thread_cnt.attr,
6954 &raid5_skip_copy.attr,
6955 &raid5_rmw_level.attr,
6956 &raid5_stripe_size.attr,
6957 &r5c_journal_mode.attr,
6958 &ppl_write_hint.attr,
6961 static const struct attribute_group raid5_attrs_group = {
6963 .attrs = raid5_attrs,
6966 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
6967 struct r5worker_group **worker_groups)
6971 struct r5worker *workers;
6975 *worker_groups = NULL;
6978 *group_cnt = num_possible_nodes();
6979 size = sizeof(struct r5worker) * cnt;
6980 workers = kcalloc(size, *group_cnt, GFP_NOIO);
6981 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6983 if (!*worker_groups || !workers) {
6985 kfree(*worker_groups);
6989 for (i = 0; i < *group_cnt; i++) {
6990 struct r5worker_group *group;
6992 group = &(*worker_groups)[i];
6993 INIT_LIST_HEAD(&group->handle_list);
6994 INIT_LIST_HEAD(&group->loprio_list);
6996 group->workers = workers + i * cnt;
6998 for (j = 0; j < cnt; j++) {
6999 struct r5worker *worker = group->workers + j;
7000 worker->group = group;
7001 INIT_WORK(&worker->work, raid5_do_work);
7003 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7004 INIT_LIST_HEAD(worker->temp_inactive_list + k);
7011 static void free_thread_groups(struct r5conf *conf)
7013 if (conf->worker_groups)
7014 kfree(conf->worker_groups[0].workers);
7015 kfree(conf->worker_groups);
7016 conf->worker_groups = NULL;
7020 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7022 struct r5conf *conf = mddev->private;
7025 sectors = mddev->dev_sectors;
7027 /* size is defined by the smallest of previous and new size */
7028 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7030 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7031 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7032 return sectors * (raid_disks - conf->max_degraded);
7035 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7037 safe_put_page(percpu->spare_page);
7038 percpu->spare_page = NULL;
7039 kvfree(percpu->scribble);
7040 percpu->scribble = NULL;
7043 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7045 if (conf->level == 6 && !percpu->spare_page) {
7046 percpu->spare_page = alloc_page(GFP_KERNEL);
7047 if (!percpu->spare_page)
7051 if (scribble_alloc(percpu,
7052 max(conf->raid_disks,
7053 conf->previous_raid_disks),
7054 max(conf->chunk_sectors,
7055 conf->prev_chunk_sectors)
7056 / RAID5_STRIPE_SECTORS(conf))) {
7057 free_scratch_buffer(conf, percpu);
7061 local_lock_init(&percpu->lock);
7065 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7067 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7069 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7073 static void raid5_free_percpu(struct r5conf *conf)
7078 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7079 free_percpu(conf->percpu);
7082 static void free_conf(struct r5conf *conf)
7088 unregister_shrinker(&conf->shrinker);
7089 free_thread_groups(conf);
7090 shrink_stripes(conf);
7091 raid5_free_percpu(conf);
7092 for (i = 0; i < conf->pool_size; i++)
7093 if (conf->disks[i].extra_page)
7094 put_page(conf->disks[i].extra_page);
7096 bioset_exit(&conf->bio_split);
7097 kfree(conf->stripe_hashtbl);
7098 kfree(conf->pending_data);
7102 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7104 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7105 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7107 if (alloc_scratch_buffer(conf, percpu)) {
7108 pr_warn("%s: failed memory allocation for cpu%u\n",
7115 static int raid5_alloc_percpu(struct r5conf *conf)
7119 conf->percpu = alloc_percpu(struct raid5_percpu);
7123 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7125 conf->scribble_disks = max(conf->raid_disks,
7126 conf->previous_raid_disks);
7127 conf->scribble_sectors = max(conf->chunk_sectors,
7128 conf->prev_chunk_sectors);
7133 static unsigned long raid5_cache_scan(struct shrinker *shrink,
7134 struct shrink_control *sc)
7136 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7137 unsigned long ret = SHRINK_STOP;
7139 if (mutex_trylock(&conf->cache_size_mutex)) {
7141 while (ret < sc->nr_to_scan &&
7142 conf->max_nr_stripes > conf->min_nr_stripes) {
7143 if (drop_one_stripe(conf) == 0) {
7149 mutex_unlock(&conf->cache_size_mutex);
7154 static unsigned long raid5_cache_count(struct shrinker *shrink,
7155 struct shrink_control *sc)
7157 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7159 if (conf->max_nr_stripes < conf->min_nr_stripes)
7160 /* unlikely, but not impossible */
7162 return conf->max_nr_stripes - conf->min_nr_stripes;
7165 static struct r5conf *setup_conf(struct mddev *mddev)
7167 struct r5conf *conf;
7168 int raid_disk, memory, max_disks;
7169 struct md_rdev *rdev;
7170 struct disk_info *disk;
7174 struct r5worker_group *new_group;
7177 if (mddev->new_level != 5
7178 && mddev->new_level != 4
7179 && mddev->new_level != 6) {
7180 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7181 mdname(mddev), mddev->new_level);
7182 return ERR_PTR(-EIO);
7184 if ((mddev->new_level == 5
7185 && !algorithm_valid_raid5(mddev->new_layout)) ||
7186 (mddev->new_level == 6
7187 && !algorithm_valid_raid6(mddev->new_layout))) {
7188 pr_warn("md/raid:%s: layout %d not supported\n",
7189 mdname(mddev), mddev->new_layout);
7190 return ERR_PTR(-EIO);
7192 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7193 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7194 mdname(mddev), mddev->raid_disks);
7195 return ERR_PTR(-EINVAL);
7198 if (!mddev->new_chunk_sectors ||
7199 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7200 !is_power_of_2(mddev->new_chunk_sectors)) {
7201 pr_warn("md/raid:%s: invalid chunk size %d\n",
7202 mdname(mddev), mddev->new_chunk_sectors << 9);
7203 return ERR_PTR(-EINVAL);
7206 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7210 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7211 conf->stripe_size = DEFAULT_STRIPE_SIZE;
7212 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7213 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7215 INIT_LIST_HEAD(&conf->free_list);
7216 INIT_LIST_HEAD(&conf->pending_list);
7217 conf->pending_data = kcalloc(PENDING_IO_MAX,
7218 sizeof(struct r5pending_data),
7220 if (!conf->pending_data)
7222 for (i = 0; i < PENDING_IO_MAX; i++)
7223 list_add(&conf->pending_data[i].sibling, &conf->free_list);
7224 /* Don't enable multi-threading by default*/
7225 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7226 conf->group_cnt = group_cnt;
7227 conf->worker_cnt_per_group = 0;
7228 conf->worker_groups = new_group;
7231 spin_lock_init(&conf->device_lock);
7232 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7233 mutex_init(&conf->cache_size_mutex);
7234 init_waitqueue_head(&conf->wait_for_quiescent);
7235 init_waitqueue_head(&conf->wait_for_stripe);
7236 init_waitqueue_head(&conf->wait_for_overlap);
7237 INIT_LIST_HEAD(&conf->handle_list);
7238 INIT_LIST_HEAD(&conf->loprio_list);
7239 INIT_LIST_HEAD(&conf->hold_list);
7240 INIT_LIST_HEAD(&conf->delayed_list);
7241 INIT_LIST_HEAD(&conf->bitmap_list);
7242 init_llist_head(&conf->released_stripes);
7243 atomic_set(&conf->active_stripes, 0);
7244 atomic_set(&conf->preread_active_stripes, 0);
7245 atomic_set(&conf->active_aligned_reads, 0);
7246 spin_lock_init(&conf->pending_bios_lock);
7247 conf->batch_bio_dispatch = true;
7248 rdev_for_each(rdev, mddev) {
7249 if (test_bit(Journal, &rdev->flags))
7251 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
7252 conf->batch_bio_dispatch = false;
7257 conf->bypass_threshold = BYPASS_THRESHOLD;
7258 conf->recovery_disabled = mddev->recovery_disabled - 1;
7260 conf->raid_disks = mddev->raid_disks;
7261 if (mddev->reshape_position == MaxSector)
7262 conf->previous_raid_disks = mddev->raid_disks;
7264 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7265 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7267 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7273 for (i = 0; i < max_disks; i++) {
7274 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7275 if (!conf->disks[i].extra_page)
7279 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7282 conf->mddev = mddev;
7284 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
7287 /* We init hash_locks[0] separately to that it can be used
7288 * as the reference lock in the spin_lock_nest_lock() call
7289 * in lock_all_device_hash_locks_irq in order to convince
7290 * lockdep that we know what we are doing.
7292 spin_lock_init(conf->hash_locks);
7293 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7294 spin_lock_init(conf->hash_locks + i);
7296 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7297 INIT_LIST_HEAD(conf->inactive_list + i);
7299 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7300 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7302 atomic_set(&conf->r5c_cached_full_stripes, 0);
7303 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7304 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7305 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7306 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7307 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7309 conf->level = mddev->new_level;
7310 conf->chunk_sectors = mddev->new_chunk_sectors;
7311 if (raid5_alloc_percpu(conf) != 0)
7314 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7316 rdev_for_each(rdev, mddev) {
7317 raid_disk = rdev->raid_disk;
7318 if (raid_disk >= max_disks
7319 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7321 disk = conf->disks + raid_disk;
7323 if (test_bit(Replacement, &rdev->flags)) {
7324 if (disk->replacement)
7326 disk->replacement = rdev;
7333 if (test_bit(In_sync, &rdev->flags)) {
7334 char b[BDEVNAME_SIZE];
7335 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7336 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7337 } else if (rdev->saved_raid_disk != raid_disk)
7338 /* Cannot rely on bitmap to complete recovery */
7342 conf->level = mddev->new_level;
7343 if (conf->level == 6) {
7344 conf->max_degraded = 2;
7345 if (raid6_call.xor_syndrome)
7346 conf->rmw_level = PARITY_ENABLE_RMW;
7348 conf->rmw_level = PARITY_DISABLE_RMW;
7350 conf->max_degraded = 1;
7351 conf->rmw_level = PARITY_ENABLE_RMW;
7353 conf->algorithm = mddev->new_layout;
7354 conf->reshape_progress = mddev->reshape_position;
7355 if (conf->reshape_progress != MaxSector) {
7356 conf->prev_chunk_sectors = mddev->chunk_sectors;
7357 conf->prev_algo = mddev->layout;
7359 conf->prev_chunk_sectors = conf->chunk_sectors;
7360 conf->prev_algo = conf->algorithm;
7363 conf->min_nr_stripes = NR_STRIPES;
7364 if (mddev->reshape_position != MaxSector) {
7365 int stripes = max_t(int,
7366 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7367 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7368 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7369 if (conf->min_nr_stripes != NR_STRIPES)
7370 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7371 mdname(mddev), conf->min_nr_stripes);
7373 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7374 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7375 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7376 if (grow_stripes(conf, conf->min_nr_stripes)) {
7377 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7378 mdname(mddev), memory);
7381 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7383 * Losing a stripe head costs more than the time to refill it,
7384 * it reduces the queue depth and so can hurt throughput.
7385 * So set it rather large, scaled by number of devices.
7387 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7388 conf->shrinker.scan_objects = raid5_cache_scan;
7389 conf->shrinker.count_objects = raid5_cache_count;
7390 conf->shrinker.batch = 128;
7391 conf->shrinker.flags = 0;
7392 if (register_shrinker(&conf->shrinker)) {
7393 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7398 sprintf(pers_name, "raid%d", mddev->new_level);
7399 conf->thread = md_register_thread(raid5d, mddev, pers_name);
7400 if (!conf->thread) {
7401 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7411 return ERR_PTR(-EIO);
7413 return ERR_PTR(-ENOMEM);
7416 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7419 case ALGORITHM_PARITY_0:
7420 if (raid_disk < max_degraded)
7423 case ALGORITHM_PARITY_N:
7424 if (raid_disk >= raid_disks - max_degraded)
7427 case ALGORITHM_PARITY_0_6:
7428 if (raid_disk == 0 ||
7429 raid_disk == raid_disks - 1)
7432 case ALGORITHM_LEFT_ASYMMETRIC_6:
7433 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7434 case ALGORITHM_LEFT_SYMMETRIC_6:
7435 case ALGORITHM_RIGHT_SYMMETRIC_6:
7436 if (raid_disk == raid_disks - 1)
7442 static void raid5_set_io_opt(struct r5conf *conf)
7444 blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) *
7445 (conf->raid_disks - conf->max_degraded));
7448 static int raid5_run(struct mddev *mddev)
7450 struct r5conf *conf;
7451 int working_disks = 0;
7452 int dirty_parity_disks = 0;
7453 struct md_rdev *rdev;
7454 struct md_rdev *journal_dev = NULL;
7455 sector_t reshape_offset = 0;
7457 long long min_offset_diff = 0;
7460 if (acct_bioset_init(mddev)) {
7461 pr_err("md/raid456:%s: alloc acct bioset failed.\n", mdname(mddev));
7465 if (mddev_init_writes_pending(mddev) < 0) {
7470 if (mddev->recovery_cp != MaxSector)
7471 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7474 rdev_for_each(rdev, mddev) {
7477 if (test_bit(Journal, &rdev->flags)) {
7481 if (rdev->raid_disk < 0)
7483 diff = (rdev->new_data_offset - rdev->data_offset);
7485 min_offset_diff = diff;
7487 } else if (mddev->reshape_backwards &&
7488 diff < min_offset_diff)
7489 min_offset_diff = diff;
7490 else if (!mddev->reshape_backwards &&
7491 diff > min_offset_diff)
7492 min_offset_diff = diff;
7495 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7496 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7497 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7503 if (mddev->reshape_position != MaxSector) {
7504 /* Check that we can continue the reshape.
7505 * Difficulties arise if the stripe we would write to
7506 * next is at or after the stripe we would read from next.
7507 * For a reshape that changes the number of devices, this
7508 * is only possible for a very short time, and mdadm makes
7509 * sure that time appears to have past before assembling
7510 * the array. So we fail if that time hasn't passed.
7511 * For a reshape that keeps the number of devices the same
7512 * mdadm must be monitoring the reshape can keeping the
7513 * critical areas read-only and backed up. It will start
7514 * the array in read-only mode, so we check for that.
7516 sector_t here_new, here_old;
7518 int max_degraded = (mddev->level == 6 ? 2 : 1);
7523 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7529 if (mddev->new_level != mddev->level) {
7530 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7535 old_disks = mddev->raid_disks - mddev->delta_disks;
7536 /* reshape_position must be on a new-stripe boundary, and one
7537 * further up in new geometry must map after here in old
7539 * If the chunk sizes are different, then as we perform reshape
7540 * in units of the largest of the two, reshape_position needs
7541 * be a multiple of the largest chunk size times new data disks.
7543 here_new = mddev->reshape_position;
7544 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7545 new_data_disks = mddev->raid_disks - max_degraded;
7546 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7547 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7552 reshape_offset = here_new * chunk_sectors;
7553 /* here_new is the stripe we will write to */
7554 here_old = mddev->reshape_position;
7555 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7556 /* here_old is the first stripe that we might need to read
7558 if (mddev->delta_disks == 0) {
7559 /* We cannot be sure it is safe to start an in-place
7560 * reshape. It is only safe if user-space is monitoring
7561 * and taking constant backups.
7562 * mdadm always starts a situation like this in
7563 * readonly mode so it can take control before
7564 * allowing any writes. So just check for that.
7566 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7567 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7568 /* not really in-place - so OK */;
7569 else if (mddev->ro == 0) {
7570 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7575 } else if (mddev->reshape_backwards
7576 ? (here_new * chunk_sectors + min_offset_diff <=
7577 here_old * chunk_sectors)
7578 : (here_new * chunk_sectors >=
7579 here_old * chunk_sectors + (-min_offset_diff))) {
7580 /* Reading from the same stripe as writing to - bad */
7581 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7586 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7587 /* OK, we should be able to continue; */
7589 BUG_ON(mddev->level != mddev->new_level);
7590 BUG_ON(mddev->layout != mddev->new_layout);
7591 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7592 BUG_ON(mddev->delta_disks != 0);
7595 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7596 test_bit(MD_HAS_PPL, &mddev->flags)) {
7597 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7599 clear_bit(MD_HAS_PPL, &mddev->flags);
7600 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7603 if (mddev->private == NULL)
7604 conf = setup_conf(mddev);
7606 conf = mddev->private;
7609 ret = PTR_ERR(conf);
7613 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7615 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7618 set_disk_ro(mddev->gendisk, 1);
7619 } else if (mddev->recovery_cp == MaxSector)
7620 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7623 conf->min_offset_diff = min_offset_diff;
7624 mddev->thread = conf->thread;
7625 conf->thread = NULL;
7626 mddev->private = conf;
7628 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7630 rdev = conf->disks[i].rdev;
7631 if (!rdev && conf->disks[i].replacement) {
7632 /* The replacement is all we have yet */
7633 rdev = conf->disks[i].replacement;
7634 conf->disks[i].replacement = NULL;
7635 clear_bit(Replacement, &rdev->flags);
7636 conf->disks[i].rdev = rdev;
7640 if (conf->disks[i].replacement &&
7641 conf->reshape_progress != MaxSector) {
7642 /* replacements and reshape simply do not mix. */
7643 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7646 if (test_bit(In_sync, &rdev->flags)) {
7650 /* This disc is not fully in-sync. However if it
7651 * just stored parity (beyond the recovery_offset),
7652 * when we don't need to be concerned about the
7653 * array being dirty.
7654 * When reshape goes 'backwards', we never have
7655 * partially completed devices, so we only need
7656 * to worry about reshape going forwards.
7658 /* Hack because v0.91 doesn't store recovery_offset properly. */
7659 if (mddev->major_version == 0 &&
7660 mddev->minor_version > 90)
7661 rdev->recovery_offset = reshape_offset;
7663 if (rdev->recovery_offset < reshape_offset) {
7664 /* We need to check old and new layout */
7665 if (!only_parity(rdev->raid_disk,
7668 conf->max_degraded))
7671 if (!only_parity(rdev->raid_disk,
7673 conf->previous_raid_disks,
7674 conf->max_degraded))
7676 dirty_parity_disks++;
7680 * 0 for a fully functional array, 1 or 2 for a degraded array.
7682 mddev->degraded = raid5_calc_degraded(conf);
7684 if (has_failed(conf)) {
7685 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7686 mdname(mddev), mddev->degraded, conf->raid_disks);
7690 /* device size must be a multiple of chunk size */
7691 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7692 mddev->resync_max_sectors = mddev->dev_sectors;
7694 if (mddev->degraded > dirty_parity_disks &&
7695 mddev->recovery_cp != MaxSector) {
7696 if (test_bit(MD_HAS_PPL, &mddev->flags))
7697 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7699 else if (mddev->ok_start_degraded)
7700 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7703 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7709 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7710 mdname(mddev), conf->level,
7711 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7714 print_raid5_conf(conf);
7716 if (conf->reshape_progress != MaxSector) {
7717 conf->reshape_safe = conf->reshape_progress;
7718 atomic_set(&conf->reshape_stripes, 0);
7719 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7720 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7721 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7722 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7723 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7725 if (!mddev->sync_thread)
7729 /* Ok, everything is just fine now */
7730 if (mddev->to_remove == &raid5_attrs_group)
7731 mddev->to_remove = NULL;
7732 else if (mddev->kobj.sd &&
7733 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7734 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7736 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7740 /* read-ahead size must cover two whole stripes, which
7741 * is 2 * (datadisks) * chunksize where 'n' is the
7742 * number of raid devices
7744 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7745 int stripe = data_disks *
7746 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7748 chunk_size = mddev->chunk_sectors << 9;
7749 blk_queue_io_min(mddev->queue, chunk_size);
7750 raid5_set_io_opt(conf);
7751 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7753 * We can only discard a whole stripe. It doesn't make sense to
7754 * discard data disk but write parity disk
7756 stripe = stripe * PAGE_SIZE;
7757 stripe = roundup_pow_of_two(stripe);
7758 mddev->queue->limits.discard_alignment = stripe;
7759 mddev->queue->limits.discard_granularity = stripe;
7761 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7763 rdev_for_each(rdev, mddev) {
7764 disk_stack_limits(mddev->gendisk, rdev->bdev,
7765 rdev->data_offset << 9);
7766 disk_stack_limits(mddev->gendisk, rdev->bdev,
7767 rdev->new_data_offset << 9);
7771 * zeroing is required, otherwise data
7772 * could be lost. Consider a scenario: discard a stripe
7773 * (the stripe could be inconsistent if
7774 * discard_zeroes_data is 0); write one disk of the
7775 * stripe (the stripe could be inconsistent again
7776 * depending on which disks are used to calculate
7777 * parity); the disk is broken; The stripe data of this
7780 * We only allow DISCARD if the sysadmin has confirmed that
7781 * only safe devices are in use by setting a module parameter.
7782 * A better idea might be to turn DISCARD into WRITE_ZEROES
7783 * requests, as that is required to be safe.
7785 if (devices_handle_discard_safely &&
7786 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7787 mddev->queue->limits.discard_granularity >= stripe)
7788 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7791 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7794 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7797 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7802 md_unregister_thread(&mddev->thread);
7803 print_raid5_conf(conf);
7805 mddev->private = NULL;
7806 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7809 acct_bioset_exit(mddev);
7813 static void raid5_free(struct mddev *mddev, void *priv)
7815 struct r5conf *conf = priv;
7818 acct_bioset_exit(mddev);
7819 mddev->to_remove = &raid5_attrs_group;
7822 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7824 struct r5conf *conf = mddev->private;
7827 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7828 conf->chunk_sectors / 2, mddev->layout);
7829 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7831 for (i = 0; i < conf->raid_disks; i++) {
7832 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7833 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7836 seq_printf (seq, "]");
7839 static void print_raid5_conf (struct r5conf *conf)
7842 struct disk_info *tmp;
7844 pr_debug("RAID conf printout:\n");
7846 pr_debug("(conf==NULL)\n");
7849 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7851 conf->raid_disks - conf->mddev->degraded);
7853 for (i = 0; i < conf->raid_disks; i++) {
7854 char b[BDEVNAME_SIZE];
7855 tmp = conf->disks + i;
7857 pr_debug(" disk %d, o:%d, dev:%s\n",
7858 i, !test_bit(Faulty, &tmp->rdev->flags),
7859 bdevname(tmp->rdev->bdev, b));
7863 static int raid5_spare_active(struct mddev *mddev)
7866 struct r5conf *conf = mddev->private;
7867 struct disk_info *tmp;
7869 unsigned long flags;
7871 for (i = 0; i < conf->raid_disks; i++) {
7872 tmp = conf->disks + i;
7873 if (tmp->replacement
7874 && tmp->replacement->recovery_offset == MaxSector
7875 && !test_bit(Faulty, &tmp->replacement->flags)
7876 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7877 /* Replacement has just become active. */
7879 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7882 /* Replaced device not technically faulty,
7883 * but we need to be sure it gets removed
7884 * and never re-added.
7886 set_bit(Faulty, &tmp->rdev->flags);
7887 sysfs_notify_dirent_safe(
7888 tmp->rdev->sysfs_state);
7890 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7891 } else if (tmp->rdev
7892 && tmp->rdev->recovery_offset == MaxSector
7893 && !test_bit(Faulty, &tmp->rdev->flags)
7894 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7896 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7899 spin_lock_irqsave(&conf->device_lock, flags);
7900 mddev->degraded = raid5_calc_degraded(conf);
7901 spin_unlock_irqrestore(&conf->device_lock, flags);
7902 print_raid5_conf(conf);
7906 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7908 struct r5conf *conf = mddev->private;
7910 int number = rdev->raid_disk;
7911 struct md_rdev **rdevp;
7912 struct disk_info *p = conf->disks + number;
7914 print_raid5_conf(conf);
7915 if (test_bit(Journal, &rdev->flags) && conf->log) {
7917 * we can't wait pending write here, as this is called in
7918 * raid5d, wait will deadlock.
7919 * neilb: there is no locking about new writes here,
7920 * so this cannot be safe.
7922 if (atomic_read(&conf->active_stripes) ||
7923 atomic_read(&conf->r5c_cached_full_stripes) ||
7924 atomic_read(&conf->r5c_cached_partial_stripes)) {
7930 if (rdev == p->rdev)
7932 else if (rdev == p->replacement)
7933 rdevp = &p->replacement;
7937 if (number >= conf->raid_disks &&
7938 conf->reshape_progress == MaxSector)
7939 clear_bit(In_sync, &rdev->flags);
7941 if (test_bit(In_sync, &rdev->flags) ||
7942 atomic_read(&rdev->nr_pending)) {
7946 /* Only remove non-faulty devices if recovery
7949 if (!test_bit(Faulty, &rdev->flags) &&
7950 mddev->recovery_disabled != conf->recovery_disabled &&
7951 !has_failed(conf) &&
7952 (!p->replacement || p->replacement == rdev) &&
7953 number < conf->raid_disks) {
7958 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7960 if (atomic_read(&rdev->nr_pending)) {
7961 /* lost the race, try later */
7967 err = log_modify(conf, rdev, false);
7971 if (p->replacement) {
7972 /* We must have just cleared 'rdev' */
7973 p->rdev = p->replacement;
7974 clear_bit(Replacement, &p->replacement->flags);
7975 smp_mb(); /* Make sure other CPUs may see both as identical
7976 * but will never see neither - if they are careful
7978 p->replacement = NULL;
7981 err = log_modify(conf, p->rdev, true);
7984 clear_bit(WantReplacement, &rdev->flags);
7987 print_raid5_conf(conf);
7991 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7993 struct r5conf *conf = mddev->private;
7994 int ret, err = -EEXIST;
7996 struct disk_info *p;
7998 int last = conf->raid_disks - 1;
8000 if (test_bit(Journal, &rdev->flags)) {
8004 rdev->raid_disk = 0;
8006 * The array is in readonly mode if journal is missing, so no
8007 * write requests running. We should be safe
8009 ret = log_init(conf, rdev, false);
8013 ret = r5l_start(conf->log);
8019 if (mddev->recovery_disabled == conf->recovery_disabled)
8022 if (rdev->saved_raid_disk < 0 && has_failed(conf))
8023 /* no point adding a device */
8026 if (rdev->raid_disk >= 0)
8027 first = last = rdev->raid_disk;
8030 * find the disk ... but prefer rdev->saved_raid_disk
8033 if (rdev->saved_raid_disk >= 0 &&
8034 rdev->saved_raid_disk >= first &&
8035 conf->disks[rdev->saved_raid_disk].rdev == NULL)
8036 first = rdev->saved_raid_disk;
8038 for (disk = first; disk <= last; disk++) {
8039 p = conf->disks + disk;
8040 if (p->rdev == NULL) {
8041 clear_bit(In_sync, &rdev->flags);
8042 rdev->raid_disk = disk;
8043 if (rdev->saved_raid_disk != disk)
8045 rcu_assign_pointer(p->rdev, rdev);
8047 err = log_modify(conf, rdev, true);
8052 for (disk = first; disk <= last; disk++) {
8053 p = conf->disks + disk;
8054 if (test_bit(WantReplacement, &p->rdev->flags) &&
8055 p->replacement == NULL) {
8056 clear_bit(In_sync, &rdev->flags);
8057 set_bit(Replacement, &rdev->flags);
8058 rdev->raid_disk = disk;
8061 rcu_assign_pointer(p->replacement, rdev);
8066 print_raid5_conf(conf);
8070 static int raid5_resize(struct mddev *mddev, sector_t sectors)
8072 /* no resync is happening, and there is enough space
8073 * on all devices, so we can resize.
8074 * We need to make sure resync covers any new space.
8075 * If the array is shrinking we should possibly wait until
8076 * any io in the removed space completes, but it hardly seems
8080 struct r5conf *conf = mddev->private;
8082 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8084 sectors &= ~((sector_t)conf->chunk_sectors - 1);
8085 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8086 if (mddev->external_size &&
8087 mddev->array_sectors > newsize)
8089 if (mddev->bitmap) {
8090 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
8094 md_set_array_sectors(mddev, newsize);
8095 if (sectors > mddev->dev_sectors &&
8096 mddev->recovery_cp > mddev->dev_sectors) {
8097 mddev->recovery_cp = mddev->dev_sectors;
8098 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8100 mddev->dev_sectors = sectors;
8101 mddev->resync_max_sectors = sectors;
8105 static int check_stripe_cache(struct mddev *mddev)
8107 /* Can only proceed if there are plenty of stripe_heads.
8108 * We need a minimum of one full stripe,, and for sensible progress
8109 * it is best to have about 4 times that.
8110 * If we require 4 times, then the default 256 4K stripe_heads will
8111 * allow for chunk sizes up to 256K, which is probably OK.
8112 * If the chunk size is greater, user-space should request more
8113 * stripe_heads first.
8115 struct r5conf *conf = mddev->private;
8116 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8117 > conf->min_nr_stripes ||
8118 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8119 > conf->min_nr_stripes) {
8120 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
8122 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8123 / RAID5_STRIPE_SIZE(conf))*4);
8129 static int check_reshape(struct mddev *mddev)
8131 struct r5conf *conf = mddev->private;
8133 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8135 if (mddev->delta_disks == 0 &&
8136 mddev->new_layout == mddev->layout &&
8137 mddev->new_chunk_sectors == mddev->chunk_sectors)
8138 return 0; /* nothing to do */
8139 if (has_failed(conf))
8141 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8142 /* We might be able to shrink, but the devices must
8143 * be made bigger first.
8144 * For raid6, 4 is the minimum size.
8145 * Otherwise 2 is the minimum
8148 if (mddev->level == 6)
8150 if (mddev->raid_disks + mddev->delta_disks < min)
8154 if (!check_stripe_cache(mddev))
8157 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8158 mddev->delta_disks > 0)
8159 if (resize_chunks(conf,
8160 conf->previous_raid_disks
8161 + max(0, mddev->delta_disks),
8162 max(mddev->new_chunk_sectors,
8163 mddev->chunk_sectors)
8167 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8168 return 0; /* never bother to shrink */
8169 return resize_stripes(conf, (conf->previous_raid_disks
8170 + mddev->delta_disks));
8173 static int raid5_start_reshape(struct mddev *mddev)
8175 struct r5conf *conf = mddev->private;
8176 struct md_rdev *rdev;
8178 unsigned long flags;
8180 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8183 if (!check_stripe_cache(mddev))
8186 if (has_failed(conf))
8189 rdev_for_each(rdev, mddev) {
8190 if (!test_bit(In_sync, &rdev->flags)
8191 && !test_bit(Faulty, &rdev->flags))
8195 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8196 /* Not enough devices even to make a degraded array
8201 /* Refuse to reduce size of the array. Any reductions in
8202 * array size must be through explicit setting of array_size
8205 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8206 < mddev->array_sectors) {
8207 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8212 atomic_set(&conf->reshape_stripes, 0);
8213 spin_lock_irq(&conf->device_lock);
8214 write_seqcount_begin(&conf->gen_lock);
8215 conf->previous_raid_disks = conf->raid_disks;
8216 conf->raid_disks += mddev->delta_disks;
8217 conf->prev_chunk_sectors = conf->chunk_sectors;
8218 conf->chunk_sectors = mddev->new_chunk_sectors;
8219 conf->prev_algo = conf->algorithm;
8220 conf->algorithm = mddev->new_layout;
8222 /* Code that selects data_offset needs to see the generation update
8223 * if reshape_progress has been set - so a memory barrier needed.
8226 if (mddev->reshape_backwards)
8227 conf->reshape_progress = raid5_size(mddev, 0, 0);
8229 conf->reshape_progress = 0;
8230 conf->reshape_safe = conf->reshape_progress;
8231 write_seqcount_end(&conf->gen_lock);
8232 spin_unlock_irq(&conf->device_lock);
8234 /* Now make sure any requests that proceeded on the assumption
8235 * the reshape wasn't running - like Discard or Read - have
8238 mddev_suspend(mddev);
8239 mddev_resume(mddev);
8241 /* Add some new drives, as many as will fit.
8242 * We know there are enough to make the newly sized array work.
8243 * Don't add devices if we are reducing the number of
8244 * devices in the array. This is because it is not possible
8245 * to correctly record the "partially reconstructed" state of
8246 * such devices during the reshape and confusion could result.
8248 if (mddev->delta_disks >= 0) {
8249 rdev_for_each(rdev, mddev)
8250 if (rdev->raid_disk < 0 &&
8251 !test_bit(Faulty, &rdev->flags)) {
8252 if (raid5_add_disk(mddev, rdev) == 0) {
8254 >= conf->previous_raid_disks)
8255 set_bit(In_sync, &rdev->flags);
8257 rdev->recovery_offset = 0;
8259 /* Failure here is OK */
8260 sysfs_link_rdev(mddev, rdev);
8262 } else if (rdev->raid_disk >= conf->previous_raid_disks
8263 && !test_bit(Faulty, &rdev->flags)) {
8264 /* This is a spare that was manually added */
8265 set_bit(In_sync, &rdev->flags);
8268 /* When a reshape changes the number of devices,
8269 * ->degraded is measured against the larger of the
8270 * pre and post number of devices.
8272 spin_lock_irqsave(&conf->device_lock, flags);
8273 mddev->degraded = raid5_calc_degraded(conf);
8274 spin_unlock_irqrestore(&conf->device_lock, flags);
8276 mddev->raid_disks = conf->raid_disks;
8277 mddev->reshape_position = conf->reshape_progress;
8278 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8280 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8281 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8282 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8283 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8284 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8285 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
8287 if (!mddev->sync_thread) {
8288 mddev->recovery = 0;
8289 spin_lock_irq(&conf->device_lock);
8290 write_seqcount_begin(&conf->gen_lock);
8291 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
8292 mddev->new_chunk_sectors =
8293 conf->chunk_sectors = conf->prev_chunk_sectors;
8294 mddev->new_layout = conf->algorithm = conf->prev_algo;
8295 rdev_for_each(rdev, mddev)
8296 rdev->new_data_offset = rdev->data_offset;
8298 conf->generation --;
8299 conf->reshape_progress = MaxSector;
8300 mddev->reshape_position = MaxSector;
8301 write_seqcount_end(&conf->gen_lock);
8302 spin_unlock_irq(&conf->device_lock);
8305 conf->reshape_checkpoint = jiffies;
8306 md_wakeup_thread(mddev->sync_thread);
8311 /* This is called from the reshape thread and should make any
8312 * changes needed in 'conf'
8314 static void end_reshape(struct r5conf *conf)
8317 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8318 struct md_rdev *rdev;
8320 spin_lock_irq(&conf->device_lock);
8321 conf->previous_raid_disks = conf->raid_disks;
8322 md_finish_reshape(conf->mddev);
8324 conf->reshape_progress = MaxSector;
8325 conf->mddev->reshape_position = MaxSector;
8326 rdev_for_each(rdev, conf->mddev)
8327 if (rdev->raid_disk >= 0 &&
8328 !test_bit(Journal, &rdev->flags) &&
8329 !test_bit(In_sync, &rdev->flags))
8330 rdev->recovery_offset = MaxSector;
8331 spin_unlock_irq(&conf->device_lock);
8332 wake_up(&conf->wait_for_overlap);
8334 if (conf->mddev->queue)
8335 raid5_set_io_opt(conf);
8339 /* This is called from the raid5d thread with mddev_lock held.
8340 * It makes config changes to the device.
8342 static void raid5_finish_reshape(struct mddev *mddev)
8344 struct r5conf *conf = mddev->private;
8346 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8348 if (mddev->delta_disks <= 0) {
8350 spin_lock_irq(&conf->device_lock);
8351 mddev->degraded = raid5_calc_degraded(conf);
8352 spin_unlock_irq(&conf->device_lock);
8353 for (d = conf->raid_disks ;
8354 d < conf->raid_disks - mddev->delta_disks;
8356 struct md_rdev *rdev = conf->disks[d].rdev;
8358 clear_bit(In_sync, &rdev->flags);
8359 rdev = conf->disks[d].replacement;
8361 clear_bit(In_sync, &rdev->flags);
8364 mddev->layout = conf->algorithm;
8365 mddev->chunk_sectors = conf->chunk_sectors;
8366 mddev->reshape_position = MaxSector;
8367 mddev->delta_disks = 0;
8368 mddev->reshape_backwards = 0;
8372 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8374 struct r5conf *conf = mddev->private;
8377 /* stop all writes */
8378 lock_all_device_hash_locks_irq(conf);
8379 /* '2' tells resync/reshape to pause so that all
8380 * active stripes can drain
8382 r5c_flush_cache(conf, INT_MAX);
8383 /* need a memory barrier to make sure read_one_chunk() sees
8384 * quiesce started and reverts to slow (locked) path.
8386 smp_store_release(&conf->quiesce, 2);
8387 wait_event_cmd(conf->wait_for_quiescent,
8388 atomic_read(&conf->active_stripes) == 0 &&
8389 atomic_read(&conf->active_aligned_reads) == 0,
8390 unlock_all_device_hash_locks_irq(conf),
8391 lock_all_device_hash_locks_irq(conf));
8393 unlock_all_device_hash_locks_irq(conf);
8394 /* allow reshape to continue */
8395 wake_up(&conf->wait_for_overlap);
8397 /* re-enable writes */
8398 lock_all_device_hash_locks_irq(conf);
8400 wake_up(&conf->wait_for_quiescent);
8401 wake_up(&conf->wait_for_overlap);
8402 unlock_all_device_hash_locks_irq(conf);
8404 log_quiesce(conf, quiesce);
8407 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8409 struct r0conf *raid0_conf = mddev->private;
8412 /* for raid0 takeover only one zone is supported */
8413 if (raid0_conf->nr_strip_zones > 1) {
8414 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8416 return ERR_PTR(-EINVAL);
8419 sectors = raid0_conf->strip_zone[0].zone_end;
8420 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8421 mddev->dev_sectors = sectors;
8422 mddev->new_level = level;
8423 mddev->new_layout = ALGORITHM_PARITY_N;
8424 mddev->new_chunk_sectors = mddev->chunk_sectors;
8425 mddev->raid_disks += 1;
8426 mddev->delta_disks = 1;
8427 /* make sure it will be not marked as dirty */
8428 mddev->recovery_cp = MaxSector;
8430 return setup_conf(mddev);
8433 static void *raid5_takeover_raid1(struct mddev *mddev)
8438 if (mddev->raid_disks != 2 ||
8439 mddev->degraded > 1)
8440 return ERR_PTR(-EINVAL);
8442 /* Should check if there are write-behind devices? */
8444 chunksect = 64*2; /* 64K by default */
8446 /* The array must be an exact multiple of chunksize */
8447 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8450 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8451 /* array size does not allow a suitable chunk size */
8452 return ERR_PTR(-EINVAL);
8454 mddev->new_level = 5;
8455 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8456 mddev->new_chunk_sectors = chunksect;
8458 ret = setup_conf(mddev);
8460 mddev_clear_unsupported_flags(mddev,
8461 UNSUPPORTED_MDDEV_FLAGS);
8465 static void *raid5_takeover_raid6(struct mddev *mddev)
8469 switch (mddev->layout) {
8470 case ALGORITHM_LEFT_ASYMMETRIC_6:
8471 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8473 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8474 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8476 case ALGORITHM_LEFT_SYMMETRIC_6:
8477 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8479 case ALGORITHM_RIGHT_SYMMETRIC_6:
8480 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8482 case ALGORITHM_PARITY_0_6:
8483 new_layout = ALGORITHM_PARITY_0;
8485 case ALGORITHM_PARITY_N:
8486 new_layout = ALGORITHM_PARITY_N;
8489 return ERR_PTR(-EINVAL);
8491 mddev->new_level = 5;
8492 mddev->new_layout = new_layout;
8493 mddev->delta_disks = -1;
8494 mddev->raid_disks -= 1;
8495 return setup_conf(mddev);
8498 static int raid5_check_reshape(struct mddev *mddev)
8500 /* For a 2-drive array, the layout and chunk size can be changed
8501 * immediately as not restriping is needed.
8502 * For larger arrays we record the new value - after validation
8503 * to be used by a reshape pass.
8505 struct r5conf *conf = mddev->private;
8506 int new_chunk = mddev->new_chunk_sectors;
8508 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8510 if (new_chunk > 0) {
8511 if (!is_power_of_2(new_chunk))
8513 if (new_chunk < (PAGE_SIZE>>9))
8515 if (mddev->array_sectors & (new_chunk-1))
8516 /* not factor of array size */
8520 /* They look valid */
8522 if (mddev->raid_disks == 2) {
8523 /* can make the change immediately */
8524 if (mddev->new_layout >= 0) {
8525 conf->algorithm = mddev->new_layout;
8526 mddev->layout = mddev->new_layout;
8528 if (new_chunk > 0) {
8529 conf->chunk_sectors = new_chunk ;
8530 mddev->chunk_sectors = new_chunk;
8532 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8533 md_wakeup_thread(mddev->thread);
8535 return check_reshape(mddev);
8538 static int raid6_check_reshape(struct mddev *mddev)
8540 int new_chunk = mddev->new_chunk_sectors;
8542 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8544 if (new_chunk > 0) {
8545 if (!is_power_of_2(new_chunk))
8547 if (new_chunk < (PAGE_SIZE >> 9))
8549 if (mddev->array_sectors & (new_chunk-1))
8550 /* not factor of array size */
8554 /* They look valid */
8555 return check_reshape(mddev);
8558 static void *raid5_takeover(struct mddev *mddev)
8560 /* raid5 can take over:
8561 * raid0 - if there is only one strip zone - make it a raid4 layout
8562 * raid1 - if there are two drives. We need to know the chunk size
8563 * raid4 - trivial - just use a raid4 layout.
8564 * raid6 - Providing it is a *_6 layout
8566 if (mddev->level == 0)
8567 return raid45_takeover_raid0(mddev, 5);
8568 if (mddev->level == 1)
8569 return raid5_takeover_raid1(mddev);
8570 if (mddev->level == 4) {
8571 mddev->new_layout = ALGORITHM_PARITY_N;
8572 mddev->new_level = 5;
8573 return setup_conf(mddev);
8575 if (mddev->level == 6)
8576 return raid5_takeover_raid6(mddev);
8578 return ERR_PTR(-EINVAL);
8581 static void *raid4_takeover(struct mddev *mddev)
8583 /* raid4 can take over:
8584 * raid0 - if there is only one strip zone
8585 * raid5 - if layout is right
8587 if (mddev->level == 0)
8588 return raid45_takeover_raid0(mddev, 4);
8589 if (mddev->level == 5 &&
8590 mddev->layout == ALGORITHM_PARITY_N) {
8591 mddev->new_layout = 0;
8592 mddev->new_level = 4;
8593 return setup_conf(mddev);
8595 return ERR_PTR(-EINVAL);
8598 static struct md_personality raid5_personality;
8600 static void *raid6_takeover(struct mddev *mddev)
8602 /* Currently can only take over a raid5. We map the
8603 * personality to an equivalent raid6 personality
8604 * with the Q block at the end.
8608 if (mddev->pers != &raid5_personality)
8609 return ERR_PTR(-EINVAL);
8610 if (mddev->degraded > 1)
8611 return ERR_PTR(-EINVAL);
8612 if (mddev->raid_disks > 253)
8613 return ERR_PTR(-EINVAL);
8614 if (mddev->raid_disks < 3)
8615 return ERR_PTR(-EINVAL);
8617 switch (mddev->layout) {
8618 case ALGORITHM_LEFT_ASYMMETRIC:
8619 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8621 case ALGORITHM_RIGHT_ASYMMETRIC:
8622 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8624 case ALGORITHM_LEFT_SYMMETRIC:
8625 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8627 case ALGORITHM_RIGHT_SYMMETRIC:
8628 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8630 case ALGORITHM_PARITY_0:
8631 new_layout = ALGORITHM_PARITY_0_6;
8633 case ALGORITHM_PARITY_N:
8634 new_layout = ALGORITHM_PARITY_N;
8637 return ERR_PTR(-EINVAL);
8639 mddev->new_level = 6;
8640 mddev->new_layout = new_layout;
8641 mddev->delta_disks = 1;
8642 mddev->raid_disks += 1;
8643 return setup_conf(mddev);
8646 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8648 struct r5conf *conf;
8651 err = mddev_lock(mddev);
8654 conf = mddev->private;
8656 mddev_unlock(mddev);
8660 if (strncmp(buf, "ppl", 3) == 0) {
8661 /* ppl only works with RAID 5 */
8662 if (!raid5_has_ppl(conf) && conf->level == 5) {
8663 err = log_init(conf, NULL, true);
8665 err = resize_stripes(conf, conf->pool_size);
8671 } else if (strncmp(buf, "resync", 6) == 0) {
8672 if (raid5_has_ppl(conf)) {
8673 mddev_suspend(mddev);
8675 mddev_resume(mddev);
8676 err = resize_stripes(conf, conf->pool_size);
8677 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8678 r5l_log_disk_error(conf)) {
8679 bool journal_dev_exists = false;
8680 struct md_rdev *rdev;
8682 rdev_for_each(rdev, mddev)
8683 if (test_bit(Journal, &rdev->flags)) {
8684 journal_dev_exists = true;
8688 if (!journal_dev_exists) {
8689 mddev_suspend(mddev);
8690 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8691 mddev_resume(mddev);
8692 } else /* need remove journal device first */
8701 md_update_sb(mddev, 1);
8703 mddev_unlock(mddev);
8708 static int raid5_start(struct mddev *mddev)
8710 struct r5conf *conf = mddev->private;
8712 return r5l_start(conf->log);
8715 static struct md_personality raid6_personality =
8719 .owner = THIS_MODULE,
8720 .make_request = raid5_make_request,
8722 .start = raid5_start,
8724 .status = raid5_status,
8725 .error_handler = raid5_error,
8726 .hot_add_disk = raid5_add_disk,
8727 .hot_remove_disk= raid5_remove_disk,
8728 .spare_active = raid5_spare_active,
8729 .sync_request = raid5_sync_request,
8730 .resize = raid5_resize,
8732 .check_reshape = raid6_check_reshape,
8733 .start_reshape = raid5_start_reshape,
8734 .finish_reshape = raid5_finish_reshape,
8735 .quiesce = raid5_quiesce,
8736 .takeover = raid6_takeover,
8737 .change_consistency_policy = raid5_change_consistency_policy,
8739 static struct md_personality raid5_personality =
8743 .owner = THIS_MODULE,
8744 .make_request = raid5_make_request,
8746 .start = raid5_start,
8748 .status = raid5_status,
8749 .error_handler = raid5_error,
8750 .hot_add_disk = raid5_add_disk,
8751 .hot_remove_disk= raid5_remove_disk,
8752 .spare_active = raid5_spare_active,
8753 .sync_request = raid5_sync_request,
8754 .resize = raid5_resize,
8756 .check_reshape = raid5_check_reshape,
8757 .start_reshape = raid5_start_reshape,
8758 .finish_reshape = raid5_finish_reshape,
8759 .quiesce = raid5_quiesce,
8760 .takeover = raid5_takeover,
8761 .change_consistency_policy = raid5_change_consistency_policy,
8764 static struct md_personality raid4_personality =
8768 .owner = THIS_MODULE,
8769 .make_request = raid5_make_request,
8771 .start = raid5_start,
8773 .status = raid5_status,
8774 .error_handler = raid5_error,
8775 .hot_add_disk = raid5_add_disk,
8776 .hot_remove_disk= raid5_remove_disk,
8777 .spare_active = raid5_spare_active,
8778 .sync_request = raid5_sync_request,
8779 .resize = raid5_resize,
8781 .check_reshape = raid5_check_reshape,
8782 .start_reshape = raid5_start_reshape,
8783 .finish_reshape = raid5_finish_reshape,
8784 .quiesce = raid5_quiesce,
8785 .takeover = raid4_takeover,
8786 .change_consistency_policy = raid5_change_consistency_policy,
8789 static int __init raid5_init(void)
8793 raid5_wq = alloc_workqueue("raid5wq",
8794 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8798 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8800 raid456_cpu_up_prepare,
8803 destroy_workqueue(raid5_wq);
8806 register_md_personality(&raid6_personality);
8807 register_md_personality(&raid5_personality);
8808 register_md_personality(&raid4_personality);
8812 static void raid5_exit(void)
8814 unregister_md_personality(&raid6_personality);
8815 unregister_md_personality(&raid5_personality);
8816 unregister_md_personality(&raid4_personality);
8817 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8818 destroy_workqueue(raid5_wq);
8821 module_init(raid5_init);
8822 module_exit(raid5_exit);
8823 MODULE_LICENSE("GPL");
8824 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8825 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8826 MODULE_ALIAS("md-raid5");
8827 MODULE_ALIAS("md-raid4");
8828 MODULE_ALIAS("md-level-5");
8829 MODULE_ALIAS("md-level-4");
8830 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8831 MODULE_ALIAS("md-raid6");
8832 MODULE_ALIAS("md-level-6");
8834 /* This used to be two separate modules, they were: */
8835 MODULE_ALIAS("raid5");
8836 MODULE_ALIAS("raid6");