Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60
61 /*
62  * Stripe cache
63  */
64
65 #define NR_STRIPES              256
66 #define STRIPE_SIZE             PAGE_SIZE
67 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD            1
70 #define BYPASS_THRESHOLD        1
71 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK               (NR_HASH - 1)
73
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77         return &conf->stripe_hashtbl[hash];
78 }
79
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap.  There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91         int sectors = bio->bi_size >> 9;
92         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93                 return bio->bi_next;
94         else
95                 return NULL;
96 }
97
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_processed_stripes(struct bio *bio)
103 {
104         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
105         return (atomic_read(segments) >> 16) & 0xffff;
106 }
107
108 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
109 {
110         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
111         return atomic_sub_return(1, segments) & 0xffff;
112 }
113
114 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
115 {
116         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
117         atomic_inc(segments);
118 }
119
120 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
121         unsigned int cnt)
122 {
123         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
124         int old, new;
125
126         do {
127                 old = atomic_read(segments);
128                 new = (old & 0xffff) | (cnt << 16);
129         } while (atomic_cmpxchg(segments, old, new) != old);
130 }
131
132 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
133 {
134         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
135         atomic_set(segments, cnt);
136 }
137
138 /* Find first data disk in a raid6 stripe */
139 static inline int raid6_d0(struct stripe_head *sh)
140 {
141         if (sh->ddf_layout)
142                 /* ddf always start from first device */
143                 return 0;
144         /* md starts just after Q block */
145         if (sh->qd_idx == sh->disks - 1)
146                 return 0;
147         else
148                 return sh->qd_idx + 1;
149 }
150 static inline int raid6_next_disk(int disk, int raid_disks)
151 {
152         disk++;
153         return (disk < raid_disks) ? disk : 0;
154 }
155
156 /* When walking through the disks in a raid5, starting at raid6_d0,
157  * We need to map each disk to a 'slot', where the data disks are slot
158  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
159  * is raid_disks-1.  This help does that mapping.
160  */
161 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
162                              int *count, int syndrome_disks)
163 {
164         int slot = *count;
165
166         if (sh->ddf_layout)
167                 (*count)++;
168         if (idx == sh->pd_idx)
169                 return syndrome_disks;
170         if (idx == sh->qd_idx)
171                 return syndrome_disks + 1;
172         if (!sh->ddf_layout)
173                 (*count)++;
174         return slot;
175 }
176
177 static void return_io(struct bio *return_bi)
178 {
179         struct bio *bi = return_bi;
180         while (bi) {
181
182                 return_bi = bi->bi_next;
183                 bi->bi_next = NULL;
184                 bi->bi_size = 0;
185                 bio_endio(bi, 0);
186                 bi = return_bi;
187         }
188 }
189
190 static void print_raid5_conf (struct r5conf *conf);
191
192 static int stripe_operations_active(struct stripe_head *sh)
193 {
194         return sh->check_state || sh->reconstruct_state ||
195                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
196                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
197 }
198
199 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
200 {
201         BUG_ON(!list_empty(&sh->lru));
202         BUG_ON(atomic_read(&conf->active_stripes)==0);
203         if (test_bit(STRIPE_HANDLE, &sh->state)) {
204                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
205                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
206                         list_add_tail(&sh->lru, &conf->delayed_list);
207                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
208                            sh->bm_seq - conf->seq_write > 0)
209                         list_add_tail(&sh->lru, &conf->bitmap_list);
210                 else {
211                         clear_bit(STRIPE_DELAYED, &sh->state);
212                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
213                         list_add_tail(&sh->lru, &conf->handle_list);
214                 }
215                 md_wakeup_thread(conf->mddev->thread);
216         } else {
217                 BUG_ON(stripe_operations_active(sh));
218                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
219                         if (atomic_dec_return(&conf->preread_active_stripes)
220                             < IO_THRESHOLD)
221                                 md_wakeup_thread(conf->mddev->thread);
222                 atomic_dec(&conf->active_stripes);
223                 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
224                         list_add_tail(&sh->lru, &conf->inactive_list);
225                         wake_up(&conf->wait_for_stripe);
226                         if (conf->retry_read_aligned)
227                                 md_wakeup_thread(conf->mddev->thread);
228                 }
229         }
230 }
231
232 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
233 {
234         if (atomic_dec_and_test(&sh->count))
235                 do_release_stripe(conf, sh);
236 }
237
238 static void release_stripe(struct stripe_head *sh)
239 {
240         struct r5conf *conf = sh->raid_conf;
241         unsigned long flags;
242
243         local_irq_save(flags);
244         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
245                 do_release_stripe(conf, sh);
246                 spin_unlock(&conf->device_lock);
247         }
248         local_irq_restore(flags);
249 }
250
251 static inline void remove_hash(struct stripe_head *sh)
252 {
253         pr_debug("remove_hash(), stripe %llu\n",
254                 (unsigned long long)sh->sector);
255
256         hlist_del_init(&sh->hash);
257 }
258
259 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
260 {
261         struct hlist_head *hp = stripe_hash(conf, sh->sector);
262
263         pr_debug("insert_hash(), stripe %llu\n",
264                 (unsigned long long)sh->sector);
265
266         hlist_add_head(&sh->hash, hp);
267 }
268
269
270 /* find an idle stripe, make sure it is unhashed, and return it. */
271 static struct stripe_head *get_free_stripe(struct r5conf *conf)
272 {
273         struct stripe_head *sh = NULL;
274         struct list_head *first;
275
276         if (list_empty(&conf->inactive_list))
277                 goto out;
278         first = conf->inactive_list.next;
279         sh = list_entry(first, struct stripe_head, lru);
280         list_del_init(first);
281         remove_hash(sh);
282         atomic_inc(&conf->active_stripes);
283 out:
284         return sh;
285 }
286
287 static void shrink_buffers(struct stripe_head *sh)
288 {
289         struct page *p;
290         int i;
291         int num = sh->raid_conf->pool_size;
292
293         for (i = 0; i < num ; i++) {
294                 p = sh->dev[i].page;
295                 if (!p)
296                         continue;
297                 sh->dev[i].page = NULL;
298                 put_page(p);
299         }
300 }
301
302 static int grow_buffers(struct stripe_head *sh)
303 {
304         int i;
305         int num = sh->raid_conf->pool_size;
306
307         for (i = 0; i < num; i++) {
308                 struct page *page;
309
310                 if (!(page = alloc_page(GFP_KERNEL))) {
311                         return 1;
312                 }
313                 sh->dev[i].page = page;
314         }
315         return 0;
316 }
317
318 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
319 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
320                             struct stripe_head *sh);
321
322 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
323 {
324         struct r5conf *conf = sh->raid_conf;
325         int i;
326
327         BUG_ON(atomic_read(&sh->count) != 0);
328         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
329         BUG_ON(stripe_operations_active(sh));
330
331         pr_debug("init_stripe called, stripe %llu\n",
332                 (unsigned long long)sh->sector);
333
334         remove_hash(sh);
335
336         sh->generation = conf->generation - previous;
337         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
338         sh->sector = sector;
339         stripe_set_idx(sector, conf, previous, sh);
340         sh->state = 0;
341
342
343         for (i = sh->disks; i--; ) {
344                 struct r5dev *dev = &sh->dev[i];
345
346                 if (dev->toread || dev->read || dev->towrite || dev->written ||
347                     test_bit(R5_LOCKED, &dev->flags)) {
348                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
349                                (unsigned long long)sh->sector, i, dev->toread,
350                                dev->read, dev->towrite, dev->written,
351                                test_bit(R5_LOCKED, &dev->flags));
352                         WARN_ON(1);
353                 }
354                 dev->flags = 0;
355                 raid5_build_block(sh, i, previous);
356         }
357         insert_hash(conf, sh);
358 }
359
360 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
361                                          short generation)
362 {
363         struct stripe_head *sh;
364         struct hlist_node *hn;
365
366         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
367         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
368                 if (sh->sector == sector && sh->generation == generation)
369                         return sh;
370         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
371         return NULL;
372 }
373
374 /*
375  * Need to check if array has failed when deciding whether to:
376  *  - start an array
377  *  - remove non-faulty devices
378  *  - add a spare
379  *  - allow a reshape
380  * This determination is simple when no reshape is happening.
381  * However if there is a reshape, we need to carefully check
382  * both the before and after sections.
383  * This is because some failed devices may only affect one
384  * of the two sections, and some non-in_sync devices may
385  * be insync in the section most affected by failed devices.
386  */
387 static int calc_degraded(struct r5conf *conf)
388 {
389         int degraded, degraded2;
390         int i;
391
392         rcu_read_lock();
393         degraded = 0;
394         for (i = 0; i < conf->previous_raid_disks; i++) {
395                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
396                 if (!rdev || test_bit(Faulty, &rdev->flags))
397                         degraded++;
398                 else if (test_bit(In_sync, &rdev->flags))
399                         ;
400                 else
401                         /* not in-sync or faulty.
402                          * If the reshape increases the number of devices,
403                          * this is being recovered by the reshape, so
404                          * this 'previous' section is not in_sync.
405                          * If the number of devices is being reduced however,
406                          * the device can only be part of the array if
407                          * we are reverting a reshape, so this section will
408                          * be in-sync.
409                          */
410                         if (conf->raid_disks >= conf->previous_raid_disks)
411                                 degraded++;
412         }
413         rcu_read_unlock();
414         if (conf->raid_disks == conf->previous_raid_disks)
415                 return degraded;
416         rcu_read_lock();
417         degraded2 = 0;
418         for (i = 0; i < conf->raid_disks; i++) {
419                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
420                 if (!rdev || test_bit(Faulty, &rdev->flags))
421                         degraded2++;
422                 else if (test_bit(In_sync, &rdev->flags))
423                         ;
424                 else
425                         /* not in-sync or faulty.
426                          * If reshape increases the number of devices, this
427                          * section has already been recovered, else it
428                          * almost certainly hasn't.
429                          */
430                         if (conf->raid_disks <= conf->previous_raid_disks)
431                                 degraded2++;
432         }
433         rcu_read_unlock();
434         if (degraded2 > degraded)
435                 return degraded2;
436         return degraded;
437 }
438
439 static int has_failed(struct r5conf *conf)
440 {
441         int degraded;
442
443         if (conf->mddev->reshape_position == MaxSector)
444                 return conf->mddev->degraded > conf->max_degraded;
445
446         degraded = calc_degraded(conf);
447         if (degraded > conf->max_degraded)
448                 return 1;
449         return 0;
450 }
451
452 static struct stripe_head *
453 get_active_stripe(struct r5conf *conf, sector_t sector,
454                   int previous, int noblock, int noquiesce)
455 {
456         struct stripe_head *sh;
457
458         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
459
460         spin_lock_irq(&conf->device_lock);
461
462         do {
463                 wait_event_lock_irq(conf->wait_for_stripe,
464                                     conf->quiesce == 0 || noquiesce,
465                                     conf->device_lock, /* nothing */);
466                 sh = __find_stripe(conf, sector, conf->generation - previous);
467                 if (!sh) {
468                         if (!conf->inactive_blocked)
469                                 sh = get_free_stripe(conf);
470                         if (noblock && sh == NULL)
471                                 break;
472                         if (!sh) {
473                                 conf->inactive_blocked = 1;
474                                 wait_event_lock_irq(conf->wait_for_stripe,
475                                                     !list_empty(&conf->inactive_list) &&
476                                                     (atomic_read(&conf->active_stripes)
477                                                      < (conf->max_nr_stripes *3/4)
478                                                      || !conf->inactive_blocked),
479                                                     conf->device_lock,
480                                                     );
481                                 conf->inactive_blocked = 0;
482                         } else
483                                 init_stripe(sh, sector, previous);
484                 } else {
485                         if (atomic_read(&sh->count)) {
486                                 BUG_ON(!list_empty(&sh->lru)
487                                     && !test_bit(STRIPE_EXPANDING, &sh->state)
488                                     && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
489                         } else {
490                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
491                                         atomic_inc(&conf->active_stripes);
492                                 if (list_empty(&sh->lru) &&
493                                     !test_bit(STRIPE_EXPANDING, &sh->state))
494                                         BUG();
495                                 list_del_init(&sh->lru);
496                         }
497                 }
498         } while (sh == NULL);
499
500         if (sh)
501                 atomic_inc(&sh->count);
502
503         spin_unlock_irq(&conf->device_lock);
504         return sh;
505 }
506
507 /* Determine if 'data_offset' or 'new_data_offset' should be used
508  * in this stripe_head.
509  */
510 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
511 {
512         sector_t progress = conf->reshape_progress;
513         /* Need a memory barrier to make sure we see the value
514          * of conf->generation, or ->data_offset that was set before
515          * reshape_progress was updated.
516          */
517         smp_rmb();
518         if (progress == MaxSector)
519                 return 0;
520         if (sh->generation == conf->generation - 1)
521                 return 0;
522         /* We are in a reshape, and this is a new-generation stripe,
523          * so use new_data_offset.
524          */
525         return 1;
526 }
527
528 static void
529 raid5_end_read_request(struct bio *bi, int error);
530 static void
531 raid5_end_write_request(struct bio *bi, int error);
532
533 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
534 {
535         struct r5conf *conf = sh->raid_conf;
536         int i, disks = sh->disks;
537
538         might_sleep();
539
540         for (i = disks; i--; ) {
541                 int rw;
542                 int replace_only = 0;
543                 struct bio *bi, *rbi;
544                 struct md_rdev *rdev, *rrdev = NULL;
545                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
546                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
547                                 rw = WRITE_FUA;
548                         else
549                                 rw = WRITE;
550                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
551                         rw = READ;
552                 else if (test_and_clear_bit(R5_WantReplace,
553                                             &sh->dev[i].flags)) {
554                         rw = WRITE;
555                         replace_only = 1;
556                 } else
557                         continue;
558                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
559                         rw |= REQ_SYNC;
560
561                 bi = &sh->dev[i].req;
562                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
563
564                 bi->bi_rw = rw;
565                 rbi->bi_rw = rw;
566                 if (rw & WRITE) {
567                         bi->bi_end_io = raid5_end_write_request;
568                         rbi->bi_end_io = raid5_end_write_request;
569                 } else
570                         bi->bi_end_io = raid5_end_read_request;
571
572                 rcu_read_lock();
573                 rrdev = rcu_dereference(conf->disks[i].replacement);
574                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
575                 rdev = rcu_dereference(conf->disks[i].rdev);
576                 if (!rdev) {
577                         rdev = rrdev;
578                         rrdev = NULL;
579                 }
580                 if (rw & WRITE) {
581                         if (replace_only)
582                                 rdev = NULL;
583                         if (rdev == rrdev)
584                                 /* We raced and saw duplicates */
585                                 rrdev = NULL;
586                 } else {
587                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
588                                 rdev = rrdev;
589                         rrdev = NULL;
590                 }
591
592                 if (rdev && test_bit(Faulty, &rdev->flags))
593                         rdev = NULL;
594                 if (rdev)
595                         atomic_inc(&rdev->nr_pending);
596                 if (rrdev && test_bit(Faulty, &rrdev->flags))
597                         rrdev = NULL;
598                 if (rrdev)
599                         atomic_inc(&rrdev->nr_pending);
600                 rcu_read_unlock();
601
602                 /* We have already checked bad blocks for reads.  Now
603                  * need to check for writes.  We never accept write errors
604                  * on the replacement, so we don't to check rrdev.
605                  */
606                 while ((rw & WRITE) && rdev &&
607                        test_bit(WriteErrorSeen, &rdev->flags)) {
608                         sector_t first_bad;
609                         int bad_sectors;
610                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
611                                               &first_bad, &bad_sectors);
612                         if (!bad)
613                                 break;
614
615                         if (bad < 0) {
616                                 set_bit(BlockedBadBlocks, &rdev->flags);
617                                 if (!conf->mddev->external &&
618                                     conf->mddev->flags) {
619                                         /* It is very unlikely, but we might
620                                          * still need to write out the
621                                          * bad block log - better give it
622                                          * a chance*/
623                                         md_check_recovery(conf->mddev);
624                                 }
625                                 /*
626                                  * Because md_wait_for_blocked_rdev
627                                  * will dec nr_pending, we must
628                                  * increment it first.
629                                  */
630                                 atomic_inc(&rdev->nr_pending);
631                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
632                         } else {
633                                 /* Acknowledged bad block - skip the write */
634                                 rdev_dec_pending(rdev, conf->mddev);
635                                 rdev = NULL;
636                         }
637                 }
638
639                 if (rdev) {
640                         if (s->syncing || s->expanding || s->expanded
641                             || s->replacing)
642                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
643
644                         set_bit(STRIPE_IO_STARTED, &sh->state);
645
646                         bi->bi_bdev = rdev->bdev;
647                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
648                                 __func__, (unsigned long long)sh->sector,
649                                 bi->bi_rw, i);
650                         atomic_inc(&sh->count);
651                         if (use_new_offset(conf, sh))
652                                 bi->bi_sector = (sh->sector
653                                                  + rdev->new_data_offset);
654                         else
655                                 bi->bi_sector = (sh->sector
656                                                  + rdev->data_offset);
657                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
658                                 bi->bi_rw |= REQ_FLUSH;
659
660                         bi->bi_flags = 1 << BIO_UPTODATE;
661                         bi->bi_idx = 0;
662                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
663                         bi->bi_io_vec[0].bv_offset = 0;
664                         bi->bi_size = STRIPE_SIZE;
665                         bi->bi_next = NULL;
666                         if (rrdev)
667                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
668                         generic_make_request(bi);
669                 }
670                 if (rrdev) {
671                         if (s->syncing || s->expanding || s->expanded
672                             || s->replacing)
673                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
674
675                         set_bit(STRIPE_IO_STARTED, &sh->state);
676
677                         rbi->bi_bdev = rrdev->bdev;
678                         pr_debug("%s: for %llu schedule op %ld on "
679                                  "replacement disc %d\n",
680                                 __func__, (unsigned long long)sh->sector,
681                                 rbi->bi_rw, i);
682                         atomic_inc(&sh->count);
683                         if (use_new_offset(conf, sh))
684                                 rbi->bi_sector = (sh->sector
685                                                   + rrdev->new_data_offset);
686                         else
687                                 rbi->bi_sector = (sh->sector
688                                                   + rrdev->data_offset);
689                         rbi->bi_flags = 1 << BIO_UPTODATE;
690                         rbi->bi_idx = 0;
691                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
692                         rbi->bi_io_vec[0].bv_offset = 0;
693                         rbi->bi_size = STRIPE_SIZE;
694                         rbi->bi_next = NULL;
695                         generic_make_request(rbi);
696                 }
697                 if (!rdev && !rrdev) {
698                         if (rw & WRITE)
699                                 set_bit(STRIPE_DEGRADED, &sh->state);
700                         pr_debug("skip op %ld on disc %d for sector %llu\n",
701                                 bi->bi_rw, i, (unsigned long long)sh->sector);
702                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
703                         set_bit(STRIPE_HANDLE, &sh->state);
704                 }
705         }
706 }
707
708 static struct dma_async_tx_descriptor *
709 async_copy_data(int frombio, struct bio *bio, struct page *page,
710         sector_t sector, struct dma_async_tx_descriptor *tx)
711 {
712         struct bio_vec *bvl;
713         struct page *bio_page;
714         int i;
715         int page_offset;
716         struct async_submit_ctl submit;
717         enum async_tx_flags flags = 0;
718
719         if (bio->bi_sector >= sector)
720                 page_offset = (signed)(bio->bi_sector - sector) * 512;
721         else
722                 page_offset = (signed)(sector - bio->bi_sector) * -512;
723
724         if (frombio)
725                 flags |= ASYNC_TX_FENCE;
726         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
727
728         bio_for_each_segment(bvl, bio, i) {
729                 int len = bvl->bv_len;
730                 int clen;
731                 int b_offset = 0;
732
733                 if (page_offset < 0) {
734                         b_offset = -page_offset;
735                         page_offset += b_offset;
736                         len -= b_offset;
737                 }
738
739                 if (len > 0 && page_offset + len > STRIPE_SIZE)
740                         clen = STRIPE_SIZE - page_offset;
741                 else
742                         clen = len;
743
744                 if (clen > 0) {
745                         b_offset += bvl->bv_offset;
746                         bio_page = bvl->bv_page;
747                         if (frombio)
748                                 tx = async_memcpy(page, bio_page, page_offset,
749                                                   b_offset, clen, &submit);
750                         else
751                                 tx = async_memcpy(bio_page, page, b_offset,
752                                                   page_offset, clen, &submit);
753                 }
754                 /* chain the operations */
755                 submit.depend_tx = tx;
756
757                 if (clen < len) /* hit end of page */
758                         break;
759                 page_offset +=  len;
760         }
761
762         return tx;
763 }
764
765 static void ops_complete_biofill(void *stripe_head_ref)
766 {
767         struct stripe_head *sh = stripe_head_ref;
768         struct bio *return_bi = NULL;
769         int i;
770
771         pr_debug("%s: stripe %llu\n", __func__,
772                 (unsigned long long)sh->sector);
773
774         /* clear completed biofills */
775         for (i = sh->disks; i--; ) {
776                 struct r5dev *dev = &sh->dev[i];
777
778                 /* acknowledge completion of a biofill operation */
779                 /* and check if we need to reply to a read request,
780                  * new R5_Wantfill requests are held off until
781                  * !STRIPE_BIOFILL_RUN
782                  */
783                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
784                         struct bio *rbi, *rbi2;
785
786                         BUG_ON(!dev->read);
787                         rbi = dev->read;
788                         dev->read = NULL;
789                         while (rbi && rbi->bi_sector <
790                                 dev->sector + STRIPE_SECTORS) {
791                                 rbi2 = r5_next_bio(rbi, dev->sector);
792                                 if (!raid5_dec_bi_active_stripes(rbi)) {
793                                         rbi->bi_next = return_bi;
794                                         return_bi = rbi;
795                                 }
796                                 rbi = rbi2;
797                         }
798                 }
799         }
800         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
801
802         return_io(return_bi);
803
804         set_bit(STRIPE_HANDLE, &sh->state);
805         release_stripe(sh);
806 }
807
808 static void ops_run_biofill(struct stripe_head *sh)
809 {
810         struct dma_async_tx_descriptor *tx = NULL;
811         struct async_submit_ctl submit;
812         int i;
813
814         pr_debug("%s: stripe %llu\n", __func__,
815                 (unsigned long long)sh->sector);
816
817         for (i = sh->disks; i--; ) {
818                 struct r5dev *dev = &sh->dev[i];
819                 if (test_bit(R5_Wantfill, &dev->flags)) {
820                         struct bio *rbi;
821                         spin_lock_irq(&sh->stripe_lock);
822                         dev->read = rbi = dev->toread;
823                         dev->toread = NULL;
824                         spin_unlock_irq(&sh->stripe_lock);
825                         while (rbi && rbi->bi_sector <
826                                 dev->sector + STRIPE_SECTORS) {
827                                 tx = async_copy_data(0, rbi, dev->page,
828                                         dev->sector, tx);
829                                 rbi = r5_next_bio(rbi, dev->sector);
830                         }
831                 }
832         }
833
834         atomic_inc(&sh->count);
835         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
836         async_trigger_callback(&submit);
837 }
838
839 static void mark_target_uptodate(struct stripe_head *sh, int target)
840 {
841         struct r5dev *tgt;
842
843         if (target < 0)
844                 return;
845
846         tgt = &sh->dev[target];
847         set_bit(R5_UPTODATE, &tgt->flags);
848         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
849         clear_bit(R5_Wantcompute, &tgt->flags);
850 }
851
852 static void ops_complete_compute(void *stripe_head_ref)
853 {
854         struct stripe_head *sh = stripe_head_ref;
855
856         pr_debug("%s: stripe %llu\n", __func__,
857                 (unsigned long long)sh->sector);
858
859         /* mark the computed target(s) as uptodate */
860         mark_target_uptodate(sh, sh->ops.target);
861         mark_target_uptodate(sh, sh->ops.target2);
862
863         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
864         if (sh->check_state == check_state_compute_run)
865                 sh->check_state = check_state_compute_result;
866         set_bit(STRIPE_HANDLE, &sh->state);
867         release_stripe(sh);
868 }
869
870 /* return a pointer to the address conversion region of the scribble buffer */
871 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
872                                  struct raid5_percpu *percpu)
873 {
874         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
875 }
876
877 static struct dma_async_tx_descriptor *
878 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
879 {
880         int disks = sh->disks;
881         struct page **xor_srcs = percpu->scribble;
882         int target = sh->ops.target;
883         struct r5dev *tgt = &sh->dev[target];
884         struct page *xor_dest = tgt->page;
885         int count = 0;
886         struct dma_async_tx_descriptor *tx;
887         struct async_submit_ctl submit;
888         int i;
889
890         pr_debug("%s: stripe %llu block: %d\n",
891                 __func__, (unsigned long long)sh->sector, target);
892         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
893
894         for (i = disks; i--; )
895                 if (i != target)
896                         xor_srcs[count++] = sh->dev[i].page;
897
898         atomic_inc(&sh->count);
899
900         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
901                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
902         if (unlikely(count == 1))
903                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
904         else
905                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
906
907         return tx;
908 }
909
910 /* set_syndrome_sources - populate source buffers for gen_syndrome
911  * @srcs - (struct page *) array of size sh->disks
912  * @sh - stripe_head to parse
913  *
914  * Populates srcs in proper layout order for the stripe and returns the
915  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
916  * destination buffer is recorded in srcs[count] and the Q destination
917  * is recorded in srcs[count+1]].
918  */
919 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
920 {
921         int disks = sh->disks;
922         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
923         int d0_idx = raid6_d0(sh);
924         int count;
925         int i;
926
927         for (i = 0; i < disks; i++)
928                 srcs[i] = NULL;
929
930         count = 0;
931         i = d0_idx;
932         do {
933                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
934
935                 srcs[slot] = sh->dev[i].page;
936                 i = raid6_next_disk(i, disks);
937         } while (i != d0_idx);
938
939         return syndrome_disks;
940 }
941
942 static struct dma_async_tx_descriptor *
943 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
944 {
945         int disks = sh->disks;
946         struct page **blocks = percpu->scribble;
947         int target;
948         int qd_idx = sh->qd_idx;
949         struct dma_async_tx_descriptor *tx;
950         struct async_submit_ctl submit;
951         struct r5dev *tgt;
952         struct page *dest;
953         int i;
954         int count;
955
956         if (sh->ops.target < 0)
957                 target = sh->ops.target2;
958         else if (sh->ops.target2 < 0)
959                 target = sh->ops.target;
960         else
961                 /* we should only have one valid target */
962                 BUG();
963         BUG_ON(target < 0);
964         pr_debug("%s: stripe %llu block: %d\n",
965                 __func__, (unsigned long long)sh->sector, target);
966
967         tgt = &sh->dev[target];
968         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
969         dest = tgt->page;
970
971         atomic_inc(&sh->count);
972
973         if (target == qd_idx) {
974                 count = set_syndrome_sources(blocks, sh);
975                 blocks[count] = NULL; /* regenerating p is not necessary */
976                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
977                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
978                                   ops_complete_compute, sh,
979                                   to_addr_conv(sh, percpu));
980                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
981         } else {
982                 /* Compute any data- or p-drive using XOR */
983                 count = 0;
984                 for (i = disks; i-- ; ) {
985                         if (i == target || i == qd_idx)
986                                 continue;
987                         blocks[count++] = sh->dev[i].page;
988                 }
989
990                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
991                                   NULL, ops_complete_compute, sh,
992                                   to_addr_conv(sh, percpu));
993                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
994         }
995
996         return tx;
997 }
998
999 static struct dma_async_tx_descriptor *
1000 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1001 {
1002         int i, count, disks = sh->disks;
1003         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1004         int d0_idx = raid6_d0(sh);
1005         int faila = -1, failb = -1;
1006         int target = sh->ops.target;
1007         int target2 = sh->ops.target2;
1008         struct r5dev *tgt = &sh->dev[target];
1009         struct r5dev *tgt2 = &sh->dev[target2];
1010         struct dma_async_tx_descriptor *tx;
1011         struct page **blocks = percpu->scribble;
1012         struct async_submit_ctl submit;
1013
1014         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1015                  __func__, (unsigned long long)sh->sector, target, target2);
1016         BUG_ON(target < 0 || target2 < 0);
1017         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1018         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1019
1020         /* we need to open-code set_syndrome_sources to handle the
1021          * slot number conversion for 'faila' and 'failb'
1022          */
1023         for (i = 0; i < disks ; i++)
1024                 blocks[i] = NULL;
1025         count = 0;
1026         i = d0_idx;
1027         do {
1028                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1029
1030                 blocks[slot] = sh->dev[i].page;
1031
1032                 if (i == target)
1033                         faila = slot;
1034                 if (i == target2)
1035                         failb = slot;
1036                 i = raid6_next_disk(i, disks);
1037         } while (i != d0_idx);
1038
1039         BUG_ON(faila == failb);
1040         if (failb < faila)
1041                 swap(faila, failb);
1042         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1043                  __func__, (unsigned long long)sh->sector, faila, failb);
1044
1045         atomic_inc(&sh->count);
1046
1047         if (failb == syndrome_disks+1) {
1048                 /* Q disk is one of the missing disks */
1049                 if (faila == syndrome_disks) {
1050                         /* Missing P+Q, just recompute */
1051                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1052                                           ops_complete_compute, sh,
1053                                           to_addr_conv(sh, percpu));
1054                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1055                                                   STRIPE_SIZE, &submit);
1056                 } else {
1057                         struct page *dest;
1058                         int data_target;
1059                         int qd_idx = sh->qd_idx;
1060
1061                         /* Missing D+Q: recompute D from P, then recompute Q */
1062                         if (target == qd_idx)
1063                                 data_target = target2;
1064                         else
1065                                 data_target = target;
1066
1067                         count = 0;
1068                         for (i = disks; i-- ; ) {
1069                                 if (i == data_target || i == qd_idx)
1070                                         continue;
1071                                 blocks[count++] = sh->dev[i].page;
1072                         }
1073                         dest = sh->dev[data_target].page;
1074                         init_async_submit(&submit,
1075                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1076                                           NULL, NULL, NULL,
1077                                           to_addr_conv(sh, percpu));
1078                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1079                                        &submit);
1080
1081                         count = set_syndrome_sources(blocks, sh);
1082                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1083                                           ops_complete_compute, sh,
1084                                           to_addr_conv(sh, percpu));
1085                         return async_gen_syndrome(blocks, 0, count+2,
1086                                                   STRIPE_SIZE, &submit);
1087                 }
1088         } else {
1089                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1090                                   ops_complete_compute, sh,
1091                                   to_addr_conv(sh, percpu));
1092                 if (failb == syndrome_disks) {
1093                         /* We're missing D+P. */
1094                         return async_raid6_datap_recov(syndrome_disks+2,
1095                                                        STRIPE_SIZE, faila,
1096                                                        blocks, &submit);
1097                 } else {
1098                         /* We're missing D+D. */
1099                         return async_raid6_2data_recov(syndrome_disks+2,
1100                                                        STRIPE_SIZE, faila, failb,
1101                                                        blocks, &submit);
1102                 }
1103         }
1104 }
1105
1106
1107 static void ops_complete_prexor(void *stripe_head_ref)
1108 {
1109         struct stripe_head *sh = stripe_head_ref;
1110
1111         pr_debug("%s: stripe %llu\n", __func__,
1112                 (unsigned long long)sh->sector);
1113 }
1114
1115 static struct dma_async_tx_descriptor *
1116 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1117                struct dma_async_tx_descriptor *tx)
1118 {
1119         int disks = sh->disks;
1120         struct page **xor_srcs = percpu->scribble;
1121         int count = 0, pd_idx = sh->pd_idx, i;
1122         struct async_submit_ctl submit;
1123
1124         /* existing parity data subtracted */
1125         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1126
1127         pr_debug("%s: stripe %llu\n", __func__,
1128                 (unsigned long long)sh->sector);
1129
1130         for (i = disks; i--; ) {
1131                 struct r5dev *dev = &sh->dev[i];
1132                 /* Only process blocks that are known to be uptodate */
1133                 if (test_bit(R5_Wantdrain, &dev->flags))
1134                         xor_srcs[count++] = dev->page;
1135         }
1136
1137         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1138                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1139         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1140
1141         return tx;
1142 }
1143
1144 static struct dma_async_tx_descriptor *
1145 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1146 {
1147         int disks = sh->disks;
1148         int i;
1149
1150         pr_debug("%s: stripe %llu\n", __func__,
1151                 (unsigned long long)sh->sector);
1152
1153         for (i = disks; i--; ) {
1154                 struct r5dev *dev = &sh->dev[i];
1155                 struct bio *chosen;
1156
1157                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1158                         struct bio *wbi;
1159
1160                         spin_lock_irq(&sh->stripe_lock);
1161                         chosen = dev->towrite;
1162                         dev->towrite = NULL;
1163                         BUG_ON(dev->written);
1164                         wbi = dev->written = chosen;
1165                         spin_unlock_irq(&sh->stripe_lock);
1166
1167                         while (wbi && wbi->bi_sector <
1168                                 dev->sector + STRIPE_SECTORS) {
1169                                 if (wbi->bi_rw & REQ_FUA)
1170                                         set_bit(R5_WantFUA, &dev->flags);
1171                                 if (wbi->bi_rw & REQ_SYNC)
1172                                         set_bit(R5_SyncIO, &dev->flags);
1173                                 tx = async_copy_data(1, wbi, dev->page,
1174                                         dev->sector, tx);
1175                                 wbi = r5_next_bio(wbi, dev->sector);
1176                         }
1177                 }
1178         }
1179
1180         return tx;
1181 }
1182
1183 static void ops_complete_reconstruct(void *stripe_head_ref)
1184 {
1185         struct stripe_head *sh = stripe_head_ref;
1186         int disks = sh->disks;
1187         int pd_idx = sh->pd_idx;
1188         int qd_idx = sh->qd_idx;
1189         int i;
1190         bool fua = false, sync = false;
1191
1192         pr_debug("%s: stripe %llu\n", __func__,
1193                 (unsigned long long)sh->sector);
1194
1195         for (i = disks; i--; ) {
1196                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1197                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1198         }
1199
1200         for (i = disks; i--; ) {
1201                 struct r5dev *dev = &sh->dev[i];
1202
1203                 if (dev->written || i == pd_idx || i == qd_idx) {
1204                         set_bit(R5_UPTODATE, &dev->flags);
1205                         if (fua)
1206                                 set_bit(R5_WantFUA, &dev->flags);
1207                         if (sync)
1208                                 set_bit(R5_SyncIO, &dev->flags);
1209                 }
1210         }
1211
1212         if (sh->reconstruct_state == reconstruct_state_drain_run)
1213                 sh->reconstruct_state = reconstruct_state_drain_result;
1214         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1215                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1216         else {
1217                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1218                 sh->reconstruct_state = reconstruct_state_result;
1219         }
1220
1221         set_bit(STRIPE_HANDLE, &sh->state);
1222         release_stripe(sh);
1223 }
1224
1225 static void
1226 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1227                      struct dma_async_tx_descriptor *tx)
1228 {
1229         int disks = sh->disks;
1230         struct page **xor_srcs = percpu->scribble;
1231         struct async_submit_ctl submit;
1232         int count = 0, pd_idx = sh->pd_idx, i;
1233         struct page *xor_dest;
1234         int prexor = 0;
1235         unsigned long flags;
1236
1237         pr_debug("%s: stripe %llu\n", __func__,
1238                 (unsigned long long)sh->sector);
1239
1240         /* check if prexor is active which means only process blocks
1241          * that are part of a read-modify-write (written)
1242          */
1243         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1244                 prexor = 1;
1245                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1246                 for (i = disks; i--; ) {
1247                         struct r5dev *dev = &sh->dev[i];
1248                         if (dev->written)
1249                                 xor_srcs[count++] = dev->page;
1250                 }
1251         } else {
1252                 xor_dest = sh->dev[pd_idx].page;
1253                 for (i = disks; i--; ) {
1254                         struct r5dev *dev = &sh->dev[i];
1255                         if (i != pd_idx)
1256                                 xor_srcs[count++] = dev->page;
1257                 }
1258         }
1259
1260         /* 1/ if we prexor'd then the dest is reused as a source
1261          * 2/ if we did not prexor then we are redoing the parity
1262          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1263          * for the synchronous xor case
1264          */
1265         flags = ASYNC_TX_ACK |
1266                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1267
1268         atomic_inc(&sh->count);
1269
1270         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1271                           to_addr_conv(sh, percpu));
1272         if (unlikely(count == 1))
1273                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1274         else
1275                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1276 }
1277
1278 static void
1279 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1280                      struct dma_async_tx_descriptor *tx)
1281 {
1282         struct async_submit_ctl submit;
1283         struct page **blocks = percpu->scribble;
1284         int count;
1285
1286         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1287
1288         count = set_syndrome_sources(blocks, sh);
1289
1290         atomic_inc(&sh->count);
1291
1292         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1293                           sh, to_addr_conv(sh, percpu));
1294         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1295 }
1296
1297 static void ops_complete_check(void *stripe_head_ref)
1298 {
1299         struct stripe_head *sh = stripe_head_ref;
1300
1301         pr_debug("%s: stripe %llu\n", __func__,
1302                 (unsigned long long)sh->sector);
1303
1304         sh->check_state = check_state_check_result;
1305         set_bit(STRIPE_HANDLE, &sh->state);
1306         release_stripe(sh);
1307 }
1308
1309 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1310 {
1311         int disks = sh->disks;
1312         int pd_idx = sh->pd_idx;
1313         int qd_idx = sh->qd_idx;
1314         struct page *xor_dest;
1315         struct page **xor_srcs = percpu->scribble;
1316         struct dma_async_tx_descriptor *tx;
1317         struct async_submit_ctl submit;
1318         int count;
1319         int i;
1320
1321         pr_debug("%s: stripe %llu\n", __func__,
1322                 (unsigned long long)sh->sector);
1323
1324         count = 0;
1325         xor_dest = sh->dev[pd_idx].page;
1326         xor_srcs[count++] = xor_dest;
1327         for (i = disks; i--; ) {
1328                 if (i == pd_idx || i == qd_idx)
1329                         continue;
1330                 xor_srcs[count++] = sh->dev[i].page;
1331         }
1332
1333         init_async_submit(&submit, 0, NULL, NULL, NULL,
1334                           to_addr_conv(sh, percpu));
1335         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1336                            &sh->ops.zero_sum_result, &submit);
1337
1338         atomic_inc(&sh->count);
1339         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1340         tx = async_trigger_callback(&submit);
1341 }
1342
1343 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1344 {
1345         struct page **srcs = percpu->scribble;
1346         struct async_submit_ctl submit;
1347         int count;
1348
1349         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1350                 (unsigned long long)sh->sector, checkp);
1351
1352         count = set_syndrome_sources(srcs, sh);
1353         if (!checkp)
1354                 srcs[count] = NULL;
1355
1356         atomic_inc(&sh->count);
1357         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1358                           sh, to_addr_conv(sh, percpu));
1359         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1360                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1361 }
1362
1363 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1364 {
1365         int overlap_clear = 0, i, disks = sh->disks;
1366         struct dma_async_tx_descriptor *tx = NULL;
1367         struct r5conf *conf = sh->raid_conf;
1368         int level = conf->level;
1369         struct raid5_percpu *percpu;
1370         unsigned long cpu;
1371
1372         cpu = get_cpu();
1373         percpu = per_cpu_ptr(conf->percpu, cpu);
1374         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1375                 ops_run_biofill(sh);
1376                 overlap_clear++;
1377         }
1378
1379         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1380                 if (level < 6)
1381                         tx = ops_run_compute5(sh, percpu);
1382                 else {
1383                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1384                                 tx = ops_run_compute6_1(sh, percpu);
1385                         else
1386                                 tx = ops_run_compute6_2(sh, percpu);
1387                 }
1388                 /* terminate the chain if reconstruct is not set to be run */
1389                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1390                         async_tx_ack(tx);
1391         }
1392
1393         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1394                 tx = ops_run_prexor(sh, percpu, tx);
1395
1396         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1397                 tx = ops_run_biodrain(sh, tx);
1398                 overlap_clear++;
1399         }
1400
1401         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1402                 if (level < 6)
1403                         ops_run_reconstruct5(sh, percpu, tx);
1404                 else
1405                         ops_run_reconstruct6(sh, percpu, tx);
1406         }
1407
1408         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1409                 if (sh->check_state == check_state_run)
1410                         ops_run_check_p(sh, percpu);
1411                 else if (sh->check_state == check_state_run_q)
1412                         ops_run_check_pq(sh, percpu, 0);
1413                 else if (sh->check_state == check_state_run_pq)
1414                         ops_run_check_pq(sh, percpu, 1);
1415                 else
1416                         BUG();
1417         }
1418
1419         if (overlap_clear)
1420                 for (i = disks; i--; ) {
1421                         struct r5dev *dev = &sh->dev[i];
1422                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1423                                 wake_up(&sh->raid_conf->wait_for_overlap);
1424                 }
1425         put_cpu();
1426 }
1427
1428 #ifdef CONFIG_MULTICORE_RAID456
1429 static void async_run_ops(void *param, async_cookie_t cookie)
1430 {
1431         struct stripe_head *sh = param;
1432         unsigned long ops_request = sh->ops.request;
1433
1434         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1435         wake_up(&sh->ops.wait_for_ops);
1436
1437         __raid_run_ops(sh, ops_request);
1438         release_stripe(sh);
1439 }
1440
1441 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1442 {
1443         /* since handle_stripe can be called outside of raid5d context
1444          * we need to ensure sh->ops.request is de-staged before another
1445          * request arrives
1446          */
1447         wait_event(sh->ops.wait_for_ops,
1448                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1449         sh->ops.request = ops_request;
1450
1451         atomic_inc(&sh->count);
1452         async_schedule(async_run_ops, sh);
1453 }
1454 #else
1455 #define raid_run_ops __raid_run_ops
1456 #endif
1457
1458 static int grow_one_stripe(struct r5conf *conf)
1459 {
1460         struct stripe_head *sh;
1461         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1462         if (!sh)
1463                 return 0;
1464
1465         sh->raid_conf = conf;
1466         #ifdef CONFIG_MULTICORE_RAID456
1467         init_waitqueue_head(&sh->ops.wait_for_ops);
1468         #endif
1469
1470         spin_lock_init(&sh->stripe_lock);
1471
1472         if (grow_buffers(sh)) {
1473                 shrink_buffers(sh);
1474                 kmem_cache_free(conf->slab_cache, sh);
1475                 return 0;
1476         }
1477         /* we just created an active stripe so... */
1478         atomic_set(&sh->count, 1);
1479         atomic_inc(&conf->active_stripes);
1480         INIT_LIST_HEAD(&sh->lru);
1481         release_stripe(sh);
1482         return 1;
1483 }
1484
1485 static int grow_stripes(struct r5conf *conf, int num)
1486 {
1487         struct kmem_cache *sc;
1488         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1489
1490         if (conf->mddev->gendisk)
1491                 sprintf(conf->cache_name[0],
1492                         "raid%d-%s", conf->level, mdname(conf->mddev));
1493         else
1494                 sprintf(conf->cache_name[0],
1495                         "raid%d-%p", conf->level, conf->mddev);
1496         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1497
1498         conf->active_name = 0;
1499         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1500                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1501                                0, 0, NULL);
1502         if (!sc)
1503                 return 1;
1504         conf->slab_cache = sc;
1505         conf->pool_size = devs;
1506         while (num--)
1507                 if (!grow_one_stripe(conf))
1508                         return 1;
1509         return 0;
1510 }
1511
1512 /**
1513  * scribble_len - return the required size of the scribble region
1514  * @num - total number of disks in the array
1515  *
1516  * The size must be enough to contain:
1517  * 1/ a struct page pointer for each device in the array +2
1518  * 2/ room to convert each entry in (1) to its corresponding dma
1519  *    (dma_map_page()) or page (page_address()) address.
1520  *
1521  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1522  * calculate over all devices (not just the data blocks), using zeros in place
1523  * of the P and Q blocks.
1524  */
1525 static size_t scribble_len(int num)
1526 {
1527         size_t len;
1528
1529         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1530
1531         return len;
1532 }
1533
1534 static int resize_stripes(struct r5conf *conf, int newsize)
1535 {
1536         /* Make all the stripes able to hold 'newsize' devices.
1537          * New slots in each stripe get 'page' set to a new page.
1538          *
1539          * This happens in stages:
1540          * 1/ create a new kmem_cache and allocate the required number of
1541          *    stripe_heads.
1542          * 2/ gather all the old stripe_heads and tranfer the pages across
1543          *    to the new stripe_heads.  This will have the side effect of
1544          *    freezing the array as once all stripe_heads have been collected,
1545          *    no IO will be possible.  Old stripe heads are freed once their
1546          *    pages have been transferred over, and the old kmem_cache is
1547          *    freed when all stripes are done.
1548          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1549          *    we simple return a failre status - no need to clean anything up.
1550          * 4/ allocate new pages for the new slots in the new stripe_heads.
1551          *    If this fails, we don't bother trying the shrink the
1552          *    stripe_heads down again, we just leave them as they are.
1553          *    As each stripe_head is processed the new one is released into
1554          *    active service.
1555          *
1556          * Once step2 is started, we cannot afford to wait for a write,
1557          * so we use GFP_NOIO allocations.
1558          */
1559         struct stripe_head *osh, *nsh;
1560         LIST_HEAD(newstripes);
1561         struct disk_info *ndisks;
1562         unsigned long cpu;
1563         int err;
1564         struct kmem_cache *sc;
1565         int i;
1566
1567         if (newsize <= conf->pool_size)
1568                 return 0; /* never bother to shrink */
1569
1570         err = md_allow_write(conf->mddev);
1571         if (err)
1572                 return err;
1573
1574         /* Step 1 */
1575         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1576                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1577                                0, 0, NULL);
1578         if (!sc)
1579                 return -ENOMEM;
1580
1581         for (i = conf->max_nr_stripes; i; i--) {
1582                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1583                 if (!nsh)
1584                         break;
1585
1586                 nsh->raid_conf = conf;
1587                 #ifdef CONFIG_MULTICORE_RAID456
1588                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1589                 #endif
1590
1591                 list_add(&nsh->lru, &newstripes);
1592         }
1593         if (i) {
1594                 /* didn't get enough, give up */
1595                 while (!list_empty(&newstripes)) {
1596                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1597                         list_del(&nsh->lru);
1598                         kmem_cache_free(sc, nsh);
1599                 }
1600                 kmem_cache_destroy(sc);
1601                 return -ENOMEM;
1602         }
1603         /* Step 2 - Must use GFP_NOIO now.
1604          * OK, we have enough stripes, start collecting inactive
1605          * stripes and copying them over
1606          */
1607         list_for_each_entry(nsh, &newstripes, lru) {
1608                 spin_lock_irq(&conf->device_lock);
1609                 wait_event_lock_irq(conf->wait_for_stripe,
1610                                     !list_empty(&conf->inactive_list),
1611                                     conf->device_lock,
1612                                     );
1613                 osh = get_free_stripe(conf);
1614                 spin_unlock_irq(&conf->device_lock);
1615                 atomic_set(&nsh->count, 1);
1616                 for(i=0; i<conf->pool_size; i++)
1617                         nsh->dev[i].page = osh->dev[i].page;
1618                 for( ; i<newsize; i++)
1619                         nsh->dev[i].page = NULL;
1620                 kmem_cache_free(conf->slab_cache, osh);
1621         }
1622         kmem_cache_destroy(conf->slab_cache);
1623
1624         /* Step 3.
1625          * At this point, we are holding all the stripes so the array
1626          * is completely stalled, so now is a good time to resize
1627          * conf->disks and the scribble region
1628          */
1629         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1630         if (ndisks) {
1631                 for (i=0; i<conf->raid_disks; i++)
1632                         ndisks[i] = conf->disks[i];
1633                 kfree(conf->disks);
1634                 conf->disks = ndisks;
1635         } else
1636                 err = -ENOMEM;
1637
1638         get_online_cpus();
1639         conf->scribble_len = scribble_len(newsize);
1640         for_each_present_cpu(cpu) {
1641                 struct raid5_percpu *percpu;
1642                 void *scribble;
1643
1644                 percpu = per_cpu_ptr(conf->percpu, cpu);
1645                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1646
1647                 if (scribble) {
1648                         kfree(percpu->scribble);
1649                         percpu->scribble = scribble;
1650                 } else {
1651                         err = -ENOMEM;
1652                         break;
1653                 }
1654         }
1655         put_online_cpus();
1656
1657         /* Step 4, return new stripes to service */
1658         while(!list_empty(&newstripes)) {
1659                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1660                 list_del_init(&nsh->lru);
1661
1662                 for (i=conf->raid_disks; i < newsize; i++)
1663                         if (nsh->dev[i].page == NULL) {
1664                                 struct page *p = alloc_page(GFP_NOIO);
1665                                 nsh->dev[i].page = p;
1666                                 if (!p)
1667                                         err = -ENOMEM;
1668                         }
1669                 release_stripe(nsh);
1670         }
1671         /* critical section pass, GFP_NOIO no longer needed */
1672
1673         conf->slab_cache = sc;
1674         conf->active_name = 1-conf->active_name;
1675         conf->pool_size = newsize;
1676         return err;
1677 }
1678
1679 static int drop_one_stripe(struct r5conf *conf)
1680 {
1681         struct stripe_head *sh;
1682
1683         spin_lock_irq(&conf->device_lock);
1684         sh = get_free_stripe(conf);
1685         spin_unlock_irq(&conf->device_lock);
1686         if (!sh)
1687                 return 0;
1688         BUG_ON(atomic_read(&sh->count));
1689         shrink_buffers(sh);
1690         kmem_cache_free(conf->slab_cache, sh);
1691         atomic_dec(&conf->active_stripes);
1692         return 1;
1693 }
1694
1695 static void shrink_stripes(struct r5conf *conf)
1696 {
1697         while (drop_one_stripe(conf))
1698                 ;
1699
1700         if (conf->slab_cache)
1701                 kmem_cache_destroy(conf->slab_cache);
1702         conf->slab_cache = NULL;
1703 }
1704
1705 static void raid5_end_read_request(struct bio * bi, int error)
1706 {
1707         struct stripe_head *sh = bi->bi_private;
1708         struct r5conf *conf = sh->raid_conf;
1709         int disks = sh->disks, i;
1710         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1711         char b[BDEVNAME_SIZE];
1712         struct md_rdev *rdev = NULL;
1713         sector_t s;
1714
1715         for (i=0 ; i<disks; i++)
1716                 if (bi == &sh->dev[i].req)
1717                         break;
1718
1719         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1720                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1721                 uptodate);
1722         if (i == disks) {
1723                 BUG();
1724                 return;
1725         }
1726         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1727                 /* If replacement finished while this request was outstanding,
1728                  * 'replacement' might be NULL already.
1729                  * In that case it moved down to 'rdev'.
1730                  * rdev is not removed until all requests are finished.
1731                  */
1732                 rdev = conf->disks[i].replacement;
1733         if (!rdev)
1734                 rdev = conf->disks[i].rdev;
1735
1736         if (use_new_offset(conf, sh))
1737                 s = sh->sector + rdev->new_data_offset;
1738         else
1739                 s = sh->sector + rdev->data_offset;
1740         if (uptodate) {
1741                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1742                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1743                         /* Note that this cannot happen on a
1744                          * replacement device.  We just fail those on
1745                          * any error
1746                          */
1747                         printk_ratelimited(
1748                                 KERN_INFO
1749                                 "md/raid:%s: read error corrected"
1750                                 " (%lu sectors at %llu on %s)\n",
1751                                 mdname(conf->mddev), STRIPE_SECTORS,
1752                                 (unsigned long long)s,
1753                                 bdevname(rdev->bdev, b));
1754                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1755                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1756                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1757                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1758                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1759
1760                 if (atomic_read(&rdev->read_errors))
1761                         atomic_set(&rdev->read_errors, 0);
1762         } else {
1763                 const char *bdn = bdevname(rdev->bdev, b);
1764                 int retry = 0;
1765                 int set_bad = 0;
1766
1767                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1768                 atomic_inc(&rdev->read_errors);
1769                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1770                         printk_ratelimited(
1771                                 KERN_WARNING
1772                                 "md/raid:%s: read error on replacement device "
1773                                 "(sector %llu on %s).\n",
1774                                 mdname(conf->mddev),
1775                                 (unsigned long long)s,
1776                                 bdn);
1777                 else if (conf->mddev->degraded >= conf->max_degraded) {
1778                         set_bad = 1;
1779                         printk_ratelimited(
1780                                 KERN_WARNING
1781                                 "md/raid:%s: read error not correctable "
1782                                 "(sector %llu on %s).\n",
1783                                 mdname(conf->mddev),
1784                                 (unsigned long long)s,
1785                                 bdn);
1786                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1787                         /* Oh, no!!! */
1788                         set_bad = 1;
1789                         printk_ratelimited(
1790                                 KERN_WARNING
1791                                 "md/raid:%s: read error NOT corrected!! "
1792                                 "(sector %llu on %s).\n",
1793                                 mdname(conf->mddev),
1794                                 (unsigned long long)s,
1795                                 bdn);
1796                 } else if (atomic_read(&rdev->read_errors)
1797                          > conf->max_nr_stripes)
1798                         printk(KERN_WARNING
1799                                "md/raid:%s: Too many read errors, failing device %s.\n",
1800                                mdname(conf->mddev), bdn);
1801                 else
1802                         retry = 1;
1803                 if (retry)
1804                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1805                                 set_bit(R5_ReadError, &sh->dev[i].flags);
1806                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1807                         } else
1808                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1809                 else {
1810                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1811                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1812                         if (!(set_bad
1813                               && test_bit(In_sync, &rdev->flags)
1814                               && rdev_set_badblocks(
1815                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
1816                                 md_error(conf->mddev, rdev);
1817                 }
1818         }
1819         rdev_dec_pending(rdev, conf->mddev);
1820         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1821         set_bit(STRIPE_HANDLE, &sh->state);
1822         release_stripe(sh);
1823 }
1824
1825 static void raid5_end_write_request(struct bio *bi, int error)
1826 {
1827         struct stripe_head *sh = bi->bi_private;
1828         struct r5conf *conf = sh->raid_conf;
1829         int disks = sh->disks, i;
1830         struct md_rdev *uninitialized_var(rdev);
1831         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1832         sector_t first_bad;
1833         int bad_sectors;
1834         int replacement = 0;
1835
1836         for (i = 0 ; i < disks; i++) {
1837                 if (bi == &sh->dev[i].req) {
1838                         rdev = conf->disks[i].rdev;
1839                         break;
1840                 }
1841                 if (bi == &sh->dev[i].rreq) {
1842                         rdev = conf->disks[i].replacement;
1843                         if (rdev)
1844                                 replacement = 1;
1845                         else
1846                                 /* rdev was removed and 'replacement'
1847                                  * replaced it.  rdev is not removed
1848                                  * until all requests are finished.
1849                                  */
1850                                 rdev = conf->disks[i].rdev;
1851                         break;
1852                 }
1853         }
1854         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1855                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1856                 uptodate);
1857         if (i == disks) {
1858                 BUG();
1859                 return;
1860         }
1861
1862         if (replacement) {
1863                 if (!uptodate)
1864                         md_error(conf->mddev, rdev);
1865                 else if (is_badblock(rdev, sh->sector,
1866                                      STRIPE_SECTORS,
1867                                      &first_bad, &bad_sectors))
1868                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1869         } else {
1870                 if (!uptodate) {
1871                         set_bit(WriteErrorSeen, &rdev->flags);
1872                         set_bit(R5_WriteError, &sh->dev[i].flags);
1873                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1874                                 set_bit(MD_RECOVERY_NEEDED,
1875                                         &rdev->mddev->recovery);
1876                 } else if (is_badblock(rdev, sh->sector,
1877                                        STRIPE_SECTORS,
1878                                        &first_bad, &bad_sectors))
1879                         set_bit(R5_MadeGood, &sh->dev[i].flags);
1880         }
1881         rdev_dec_pending(rdev, conf->mddev);
1882
1883         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1884                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1885         set_bit(STRIPE_HANDLE, &sh->state);
1886         release_stripe(sh);
1887 }
1888
1889 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1890         
1891 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1892 {
1893         struct r5dev *dev = &sh->dev[i];
1894
1895         bio_init(&dev->req);
1896         dev->req.bi_io_vec = &dev->vec;
1897         dev->req.bi_vcnt++;
1898         dev->req.bi_max_vecs++;
1899         dev->req.bi_private = sh;
1900         dev->vec.bv_page = dev->page;
1901
1902         bio_init(&dev->rreq);
1903         dev->rreq.bi_io_vec = &dev->rvec;
1904         dev->rreq.bi_vcnt++;
1905         dev->rreq.bi_max_vecs++;
1906         dev->rreq.bi_private = sh;
1907         dev->rvec.bv_page = dev->page;
1908
1909         dev->flags = 0;
1910         dev->sector = compute_blocknr(sh, i, previous);
1911 }
1912
1913 static void error(struct mddev *mddev, struct md_rdev *rdev)
1914 {
1915         char b[BDEVNAME_SIZE];
1916         struct r5conf *conf = mddev->private;
1917         unsigned long flags;
1918         pr_debug("raid456: error called\n");
1919
1920         spin_lock_irqsave(&conf->device_lock, flags);
1921         clear_bit(In_sync, &rdev->flags);
1922         mddev->degraded = calc_degraded(conf);
1923         spin_unlock_irqrestore(&conf->device_lock, flags);
1924         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1925
1926         set_bit(Blocked, &rdev->flags);
1927         set_bit(Faulty, &rdev->flags);
1928         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1929         printk(KERN_ALERT
1930                "md/raid:%s: Disk failure on %s, disabling device.\n"
1931                "md/raid:%s: Operation continuing on %d devices.\n",
1932                mdname(mddev),
1933                bdevname(rdev->bdev, b),
1934                mdname(mddev),
1935                conf->raid_disks - mddev->degraded);
1936 }
1937
1938 /*
1939  * Input: a 'big' sector number,
1940  * Output: index of the data and parity disk, and the sector # in them.
1941  */
1942 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1943                                      int previous, int *dd_idx,
1944                                      struct stripe_head *sh)
1945 {
1946         sector_t stripe, stripe2;
1947         sector_t chunk_number;
1948         unsigned int chunk_offset;
1949         int pd_idx, qd_idx;
1950         int ddf_layout = 0;
1951         sector_t new_sector;
1952         int algorithm = previous ? conf->prev_algo
1953                                  : conf->algorithm;
1954         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1955                                          : conf->chunk_sectors;
1956         int raid_disks = previous ? conf->previous_raid_disks
1957                                   : conf->raid_disks;
1958         int data_disks = raid_disks - conf->max_degraded;
1959
1960         /* First compute the information on this sector */
1961
1962         /*
1963          * Compute the chunk number and the sector offset inside the chunk
1964          */
1965         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1966         chunk_number = r_sector;
1967
1968         /*
1969          * Compute the stripe number
1970          */
1971         stripe = chunk_number;
1972         *dd_idx = sector_div(stripe, data_disks);
1973         stripe2 = stripe;
1974         /*
1975          * Select the parity disk based on the user selected algorithm.
1976          */
1977         pd_idx = qd_idx = -1;
1978         switch(conf->level) {
1979         case 4:
1980                 pd_idx = data_disks;
1981                 break;
1982         case 5:
1983                 switch (algorithm) {
1984                 case ALGORITHM_LEFT_ASYMMETRIC:
1985                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1986                         if (*dd_idx >= pd_idx)
1987                                 (*dd_idx)++;
1988                         break;
1989                 case ALGORITHM_RIGHT_ASYMMETRIC:
1990                         pd_idx = sector_div(stripe2, raid_disks);
1991                         if (*dd_idx >= pd_idx)
1992                                 (*dd_idx)++;
1993                         break;
1994                 case ALGORITHM_LEFT_SYMMETRIC:
1995                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1996                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1997                         break;
1998                 case ALGORITHM_RIGHT_SYMMETRIC:
1999                         pd_idx = sector_div(stripe2, raid_disks);
2000                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2001                         break;
2002                 case ALGORITHM_PARITY_0:
2003                         pd_idx = 0;
2004                         (*dd_idx)++;
2005                         break;
2006                 case ALGORITHM_PARITY_N:
2007                         pd_idx = data_disks;
2008                         break;
2009                 default:
2010                         BUG();
2011                 }
2012                 break;
2013         case 6:
2014
2015                 switch (algorithm) {
2016                 case ALGORITHM_LEFT_ASYMMETRIC:
2017                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2018                         qd_idx = pd_idx + 1;
2019                         if (pd_idx == raid_disks-1) {
2020                                 (*dd_idx)++;    /* Q D D D P */
2021                                 qd_idx = 0;
2022                         } else if (*dd_idx >= pd_idx)
2023                                 (*dd_idx) += 2; /* D D P Q D */
2024                         break;
2025                 case ALGORITHM_RIGHT_ASYMMETRIC:
2026                         pd_idx = sector_div(stripe2, raid_disks);
2027                         qd_idx = pd_idx + 1;
2028                         if (pd_idx == raid_disks-1) {
2029                                 (*dd_idx)++;    /* Q D D D P */
2030                                 qd_idx = 0;
2031                         } else if (*dd_idx >= pd_idx)
2032                                 (*dd_idx) += 2; /* D D P Q D */
2033                         break;
2034                 case ALGORITHM_LEFT_SYMMETRIC:
2035                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2036                         qd_idx = (pd_idx + 1) % raid_disks;
2037                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2038                         break;
2039                 case ALGORITHM_RIGHT_SYMMETRIC:
2040                         pd_idx = sector_div(stripe2, raid_disks);
2041                         qd_idx = (pd_idx + 1) % raid_disks;
2042                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2043                         break;
2044
2045                 case ALGORITHM_PARITY_0:
2046                         pd_idx = 0;
2047                         qd_idx = 1;
2048                         (*dd_idx) += 2;
2049                         break;
2050                 case ALGORITHM_PARITY_N:
2051                         pd_idx = data_disks;
2052                         qd_idx = data_disks + 1;
2053                         break;
2054
2055                 case ALGORITHM_ROTATING_ZERO_RESTART:
2056                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2057                          * of blocks for computing Q is different.
2058                          */
2059                         pd_idx = sector_div(stripe2, raid_disks);
2060                         qd_idx = pd_idx + 1;
2061                         if (pd_idx == raid_disks-1) {
2062                                 (*dd_idx)++;    /* Q D D D P */
2063                                 qd_idx = 0;
2064                         } else if (*dd_idx >= pd_idx)
2065                                 (*dd_idx) += 2; /* D D P Q D */
2066                         ddf_layout = 1;
2067                         break;
2068
2069                 case ALGORITHM_ROTATING_N_RESTART:
2070                         /* Same a left_asymmetric, by first stripe is
2071                          * D D D P Q  rather than
2072                          * Q D D D P
2073                          */
2074                         stripe2 += 1;
2075                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2076                         qd_idx = pd_idx + 1;
2077                         if (pd_idx == raid_disks-1) {
2078                                 (*dd_idx)++;    /* Q D D D P */
2079                                 qd_idx = 0;
2080                         } else if (*dd_idx >= pd_idx)
2081                                 (*dd_idx) += 2; /* D D P Q D */
2082                         ddf_layout = 1;
2083                         break;
2084
2085                 case ALGORITHM_ROTATING_N_CONTINUE:
2086                         /* Same as left_symmetric but Q is before P */
2087                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2088                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2089                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2090                         ddf_layout = 1;
2091                         break;
2092
2093                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2094                         /* RAID5 left_asymmetric, with Q on last device */
2095                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2096                         if (*dd_idx >= pd_idx)
2097                                 (*dd_idx)++;
2098                         qd_idx = raid_disks - 1;
2099                         break;
2100
2101                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2102                         pd_idx = sector_div(stripe2, raid_disks-1);
2103                         if (*dd_idx >= pd_idx)
2104                                 (*dd_idx)++;
2105                         qd_idx = raid_disks - 1;
2106                         break;
2107
2108                 case ALGORITHM_LEFT_SYMMETRIC_6:
2109                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2110                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2111                         qd_idx = raid_disks - 1;
2112                         break;
2113
2114                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2115                         pd_idx = sector_div(stripe2, raid_disks-1);
2116                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2117                         qd_idx = raid_disks - 1;
2118                         break;
2119
2120                 case ALGORITHM_PARITY_0_6:
2121                         pd_idx = 0;
2122                         (*dd_idx)++;
2123                         qd_idx = raid_disks - 1;
2124                         break;
2125
2126                 default:
2127                         BUG();
2128                 }
2129                 break;
2130         }
2131
2132         if (sh) {
2133                 sh->pd_idx = pd_idx;
2134                 sh->qd_idx = qd_idx;
2135                 sh->ddf_layout = ddf_layout;
2136         }
2137         /*
2138          * Finally, compute the new sector number
2139          */
2140         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2141         return new_sector;
2142 }
2143
2144
2145 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2146 {
2147         struct r5conf *conf = sh->raid_conf;
2148         int raid_disks = sh->disks;
2149         int data_disks = raid_disks - conf->max_degraded;
2150         sector_t new_sector = sh->sector, check;
2151         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2152                                          : conf->chunk_sectors;
2153         int algorithm = previous ? conf->prev_algo
2154                                  : conf->algorithm;
2155         sector_t stripe;
2156         int chunk_offset;
2157         sector_t chunk_number;
2158         int dummy1, dd_idx = i;
2159         sector_t r_sector;
2160         struct stripe_head sh2;
2161
2162
2163         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2164         stripe = new_sector;
2165
2166         if (i == sh->pd_idx)
2167                 return 0;
2168         switch(conf->level) {
2169         case 4: break;
2170         case 5:
2171                 switch (algorithm) {
2172                 case ALGORITHM_LEFT_ASYMMETRIC:
2173                 case ALGORITHM_RIGHT_ASYMMETRIC:
2174                         if (i > sh->pd_idx)
2175                                 i--;
2176                         break;
2177                 case ALGORITHM_LEFT_SYMMETRIC:
2178                 case ALGORITHM_RIGHT_SYMMETRIC:
2179                         if (i < sh->pd_idx)
2180                                 i += raid_disks;
2181                         i -= (sh->pd_idx + 1);
2182                         break;
2183                 case ALGORITHM_PARITY_0:
2184                         i -= 1;
2185                         break;
2186                 case ALGORITHM_PARITY_N:
2187                         break;
2188                 default:
2189                         BUG();
2190                 }
2191                 break;
2192         case 6:
2193                 if (i == sh->qd_idx)
2194                         return 0; /* It is the Q disk */
2195                 switch (algorithm) {
2196                 case ALGORITHM_LEFT_ASYMMETRIC:
2197                 case ALGORITHM_RIGHT_ASYMMETRIC:
2198                 case ALGORITHM_ROTATING_ZERO_RESTART:
2199                 case ALGORITHM_ROTATING_N_RESTART:
2200                         if (sh->pd_idx == raid_disks-1)
2201                                 i--;    /* Q D D D P */
2202                         else if (i > sh->pd_idx)
2203                                 i -= 2; /* D D P Q D */
2204                         break;
2205                 case ALGORITHM_LEFT_SYMMETRIC:
2206                 case ALGORITHM_RIGHT_SYMMETRIC:
2207                         if (sh->pd_idx == raid_disks-1)
2208                                 i--; /* Q D D D P */
2209                         else {
2210                                 /* D D P Q D */
2211                                 if (i < sh->pd_idx)
2212                                         i += raid_disks;
2213                                 i -= (sh->pd_idx + 2);
2214                         }
2215                         break;
2216                 case ALGORITHM_PARITY_0:
2217                         i -= 2;
2218                         break;
2219                 case ALGORITHM_PARITY_N:
2220                         break;
2221                 case ALGORITHM_ROTATING_N_CONTINUE:
2222                         /* Like left_symmetric, but P is before Q */
2223                         if (sh->pd_idx == 0)
2224                                 i--;    /* P D D D Q */
2225                         else {
2226                                 /* D D Q P D */
2227                                 if (i < sh->pd_idx)
2228                                         i += raid_disks;
2229                                 i -= (sh->pd_idx + 1);
2230                         }
2231                         break;
2232                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2233                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2234                         if (i > sh->pd_idx)
2235                                 i--;
2236                         break;
2237                 case ALGORITHM_LEFT_SYMMETRIC_6:
2238                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2239                         if (i < sh->pd_idx)
2240                                 i += data_disks + 1;
2241                         i -= (sh->pd_idx + 1);
2242                         break;
2243                 case ALGORITHM_PARITY_0_6:
2244                         i -= 1;
2245                         break;
2246                 default:
2247                         BUG();
2248                 }
2249                 break;
2250         }
2251
2252         chunk_number = stripe * data_disks + i;
2253         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2254
2255         check = raid5_compute_sector(conf, r_sector,
2256                                      previous, &dummy1, &sh2);
2257         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2258                 || sh2.qd_idx != sh->qd_idx) {
2259                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2260                        mdname(conf->mddev));
2261                 return 0;
2262         }
2263         return r_sector;
2264 }
2265
2266
2267 static void
2268 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2269                          int rcw, int expand)
2270 {
2271         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2272         struct r5conf *conf = sh->raid_conf;
2273         int level = conf->level;
2274
2275         if (rcw) {
2276                 /* if we are not expanding this is a proper write request, and
2277                  * there will be bios with new data to be drained into the
2278                  * stripe cache
2279                  */
2280                 if (!expand) {
2281                         sh->reconstruct_state = reconstruct_state_drain_run;
2282                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2283                 } else
2284                         sh->reconstruct_state = reconstruct_state_run;
2285
2286                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2287
2288                 for (i = disks; i--; ) {
2289                         struct r5dev *dev = &sh->dev[i];
2290
2291                         if (dev->towrite) {
2292                                 set_bit(R5_LOCKED, &dev->flags);
2293                                 set_bit(R5_Wantdrain, &dev->flags);
2294                                 if (!expand)
2295                                         clear_bit(R5_UPTODATE, &dev->flags);
2296                                 s->locked++;
2297                         }
2298                 }
2299                 if (s->locked + conf->max_degraded == disks)
2300                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2301                                 atomic_inc(&conf->pending_full_writes);
2302         } else {
2303                 BUG_ON(level == 6);
2304                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2305                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2306
2307                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2308                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2309                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2310                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2311
2312                 for (i = disks; i--; ) {
2313                         struct r5dev *dev = &sh->dev[i];
2314                         if (i == pd_idx)
2315                                 continue;
2316
2317                         if (dev->towrite &&
2318                             (test_bit(R5_UPTODATE, &dev->flags) ||
2319                              test_bit(R5_Wantcompute, &dev->flags))) {
2320                                 set_bit(R5_Wantdrain, &dev->flags);
2321                                 set_bit(R5_LOCKED, &dev->flags);
2322                                 clear_bit(R5_UPTODATE, &dev->flags);
2323                                 s->locked++;
2324                         }
2325                 }
2326         }
2327
2328         /* keep the parity disk(s) locked while asynchronous operations
2329          * are in flight
2330          */
2331         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2332         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2333         s->locked++;
2334
2335         if (level == 6) {
2336                 int qd_idx = sh->qd_idx;
2337                 struct r5dev *dev = &sh->dev[qd_idx];
2338
2339                 set_bit(R5_LOCKED, &dev->flags);
2340                 clear_bit(R5_UPTODATE, &dev->flags);
2341                 s->locked++;
2342         }
2343
2344         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2345                 __func__, (unsigned long long)sh->sector,
2346                 s->locked, s->ops_request);
2347 }
2348
2349 /*
2350  * Each stripe/dev can have one or more bion attached.
2351  * toread/towrite point to the first in a chain.
2352  * The bi_next chain must be in order.
2353  */
2354 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2355 {
2356         struct bio **bip;
2357         struct r5conf *conf = sh->raid_conf;
2358         int firstwrite=0;
2359
2360         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2361                 (unsigned long long)bi->bi_sector,
2362                 (unsigned long long)sh->sector);
2363
2364         /*
2365          * If several bio share a stripe. The bio bi_phys_segments acts as a
2366          * reference count to avoid race. The reference count should already be
2367          * increased before this function is called (for example, in
2368          * make_request()), so other bio sharing this stripe will not free the
2369          * stripe. If a stripe is owned by one stripe, the stripe lock will
2370          * protect it.
2371          */
2372         spin_lock_irq(&sh->stripe_lock);
2373         if (forwrite) {
2374                 bip = &sh->dev[dd_idx].towrite;
2375                 if (*bip == NULL)
2376                         firstwrite = 1;
2377         } else
2378                 bip = &sh->dev[dd_idx].toread;
2379         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2380                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2381                         goto overlap;
2382                 bip = & (*bip)->bi_next;
2383         }
2384         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2385                 goto overlap;
2386
2387         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2388         if (*bip)
2389                 bi->bi_next = *bip;
2390         *bip = bi;
2391         raid5_inc_bi_active_stripes(bi);
2392
2393         if (forwrite) {
2394                 /* check if page is covered */
2395                 sector_t sector = sh->dev[dd_idx].sector;
2396                 for (bi=sh->dev[dd_idx].towrite;
2397                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2398                              bi && bi->bi_sector <= sector;
2399                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2400                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2401                                 sector = bi->bi_sector + (bi->bi_size>>9);
2402                 }
2403                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2404                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2405         }
2406         spin_unlock_irq(&sh->stripe_lock);
2407
2408         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2409                 (unsigned long long)(*bip)->bi_sector,
2410                 (unsigned long long)sh->sector, dd_idx);
2411
2412         if (conf->mddev->bitmap && firstwrite) {
2413                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2414                                   STRIPE_SECTORS, 0);
2415                 sh->bm_seq = conf->seq_flush+1;
2416                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2417         }
2418         return 1;
2419
2420  overlap:
2421         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2422         spin_unlock_irq(&sh->stripe_lock);
2423         return 0;
2424 }
2425
2426 static void end_reshape(struct r5conf *conf);
2427
2428 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2429                             struct stripe_head *sh)
2430 {
2431         int sectors_per_chunk =
2432                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2433         int dd_idx;
2434         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2435         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2436
2437         raid5_compute_sector(conf,
2438                              stripe * (disks - conf->max_degraded)
2439                              *sectors_per_chunk + chunk_offset,
2440                              previous,
2441                              &dd_idx, sh);
2442 }
2443
2444 static void
2445 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2446                                 struct stripe_head_state *s, int disks,
2447                                 struct bio **return_bi)
2448 {
2449         int i;
2450         for (i = disks; i--; ) {
2451                 struct bio *bi;
2452                 int bitmap_end = 0;
2453
2454                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2455                         struct md_rdev *rdev;
2456                         rcu_read_lock();
2457                         rdev = rcu_dereference(conf->disks[i].rdev);
2458                         if (rdev && test_bit(In_sync, &rdev->flags))
2459                                 atomic_inc(&rdev->nr_pending);
2460                         else
2461                                 rdev = NULL;
2462                         rcu_read_unlock();
2463                         if (rdev) {
2464                                 if (!rdev_set_badblocks(
2465                                             rdev,
2466                                             sh->sector,
2467                                             STRIPE_SECTORS, 0))
2468                                         md_error(conf->mddev, rdev);
2469                                 rdev_dec_pending(rdev, conf->mddev);
2470                         }
2471                 }
2472                 spin_lock_irq(&sh->stripe_lock);
2473                 /* fail all writes first */
2474                 bi = sh->dev[i].towrite;
2475                 sh->dev[i].towrite = NULL;
2476                 spin_unlock_irq(&sh->stripe_lock);
2477                 if (bi) {
2478                         s->to_write--;
2479                         bitmap_end = 1;
2480                 }
2481
2482                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2483                         wake_up(&conf->wait_for_overlap);
2484
2485                 while (bi && bi->bi_sector <
2486                         sh->dev[i].sector + STRIPE_SECTORS) {
2487                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2488                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2489                         if (!raid5_dec_bi_active_stripes(bi)) {
2490                                 md_write_end(conf->mddev);
2491                                 bi->bi_next = *return_bi;
2492                                 *return_bi = bi;
2493                         }
2494                         bi = nextbi;
2495                 }
2496                 if (bitmap_end)
2497                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2498                                 STRIPE_SECTORS, 0, 0);
2499                 bitmap_end = 0;
2500                 /* and fail all 'written' */
2501                 bi = sh->dev[i].written;
2502                 sh->dev[i].written = NULL;
2503                 if (bi) bitmap_end = 1;
2504                 while (bi && bi->bi_sector <
2505                        sh->dev[i].sector + STRIPE_SECTORS) {
2506                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2507                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2508                         if (!raid5_dec_bi_active_stripes(bi)) {
2509                                 md_write_end(conf->mddev);
2510                                 bi->bi_next = *return_bi;
2511                                 *return_bi = bi;
2512                         }
2513                         bi = bi2;
2514                 }
2515
2516                 /* fail any reads if this device is non-operational and
2517                  * the data has not reached the cache yet.
2518                  */
2519                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2520                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2521                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2522                         bi = sh->dev[i].toread;
2523                         sh->dev[i].toread = NULL;
2524                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2525                                 wake_up(&conf->wait_for_overlap);
2526                         if (bi) s->to_read--;
2527                         while (bi && bi->bi_sector <
2528                                sh->dev[i].sector + STRIPE_SECTORS) {
2529                                 struct bio *nextbi =
2530                                         r5_next_bio(bi, sh->dev[i].sector);
2531                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2532                                 if (!raid5_dec_bi_active_stripes(bi)) {
2533                                         bi->bi_next = *return_bi;
2534                                         *return_bi = bi;
2535                                 }
2536                                 bi = nextbi;
2537                         }
2538                 }
2539                 if (bitmap_end)
2540                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2541                                         STRIPE_SECTORS, 0, 0);
2542                 /* If we were in the middle of a write the parity block might
2543                  * still be locked - so just clear all R5_LOCKED flags
2544                  */
2545                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2546         }
2547
2548         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2549                 if (atomic_dec_and_test(&conf->pending_full_writes))
2550                         md_wakeup_thread(conf->mddev->thread);
2551 }
2552
2553 static void
2554 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2555                    struct stripe_head_state *s)
2556 {
2557         int abort = 0;
2558         int i;
2559
2560         clear_bit(STRIPE_SYNCING, &sh->state);
2561         s->syncing = 0;
2562         s->replacing = 0;
2563         /* There is nothing more to do for sync/check/repair.
2564          * Don't even need to abort as that is handled elsewhere
2565          * if needed, and not always wanted e.g. if there is a known
2566          * bad block here.
2567          * For recover/replace we need to record a bad block on all
2568          * non-sync devices, or abort the recovery
2569          */
2570         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2571                 /* During recovery devices cannot be removed, so
2572                  * locking and refcounting of rdevs is not needed
2573                  */
2574                 for (i = 0; i < conf->raid_disks; i++) {
2575                         struct md_rdev *rdev = conf->disks[i].rdev;
2576                         if (rdev
2577                             && !test_bit(Faulty, &rdev->flags)
2578                             && !test_bit(In_sync, &rdev->flags)
2579                             && !rdev_set_badblocks(rdev, sh->sector,
2580                                                    STRIPE_SECTORS, 0))
2581                                 abort = 1;
2582                         rdev = conf->disks[i].replacement;
2583                         if (rdev
2584                             && !test_bit(Faulty, &rdev->flags)
2585                             && !test_bit(In_sync, &rdev->flags)
2586                             && !rdev_set_badblocks(rdev, sh->sector,
2587                                                    STRIPE_SECTORS, 0))
2588                                 abort = 1;
2589                 }
2590                 if (abort)
2591                         conf->recovery_disabled =
2592                                 conf->mddev->recovery_disabled;
2593         }
2594         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2595 }
2596
2597 static int want_replace(struct stripe_head *sh, int disk_idx)
2598 {
2599         struct md_rdev *rdev;
2600         int rv = 0;
2601         /* Doing recovery so rcu locking not required */
2602         rdev = sh->raid_conf->disks[disk_idx].replacement;
2603         if (rdev
2604             && !test_bit(Faulty, &rdev->flags)
2605             && !test_bit(In_sync, &rdev->flags)
2606             && (rdev->recovery_offset <= sh->sector
2607                 || rdev->mddev->recovery_cp <= sh->sector))
2608                 rv = 1;
2609
2610         return rv;
2611 }
2612
2613 /* fetch_block - checks the given member device to see if its data needs
2614  * to be read or computed to satisfy a request.
2615  *
2616  * Returns 1 when no more member devices need to be checked, otherwise returns
2617  * 0 to tell the loop in handle_stripe_fill to continue
2618  */
2619 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2620                        int disk_idx, int disks)
2621 {
2622         struct r5dev *dev = &sh->dev[disk_idx];
2623         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2624                                   &sh->dev[s->failed_num[1]] };
2625
2626         /* is the data in this block needed, and can we get it? */
2627         if (!test_bit(R5_LOCKED, &dev->flags) &&
2628             !test_bit(R5_UPTODATE, &dev->flags) &&
2629             (dev->toread ||
2630              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2631              s->syncing || s->expanding ||
2632              (s->replacing && want_replace(sh, disk_idx)) ||
2633              (s->failed >= 1 && fdev[0]->toread) ||
2634              (s->failed >= 2 && fdev[1]->toread) ||
2635              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2636               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2637              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2638                 /* we would like to get this block, possibly by computing it,
2639                  * otherwise read it if the backing disk is insync
2640                  */
2641                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2642                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2643                 if ((s->uptodate == disks - 1) &&
2644                     (s->failed && (disk_idx == s->failed_num[0] ||
2645                                    disk_idx == s->failed_num[1]))) {
2646                         /* have disk failed, and we're requested to fetch it;
2647                          * do compute it
2648                          */
2649                         pr_debug("Computing stripe %llu block %d\n",
2650                                (unsigned long long)sh->sector, disk_idx);
2651                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2652                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2653                         set_bit(R5_Wantcompute, &dev->flags);
2654                         sh->ops.target = disk_idx;
2655                         sh->ops.target2 = -1; /* no 2nd target */
2656                         s->req_compute = 1;
2657                         /* Careful: from this point on 'uptodate' is in the eye
2658                          * of raid_run_ops which services 'compute' operations
2659                          * before writes. R5_Wantcompute flags a block that will
2660                          * be R5_UPTODATE by the time it is needed for a
2661                          * subsequent operation.
2662                          */
2663                         s->uptodate++;
2664                         return 1;
2665                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2666                         /* Computing 2-failure is *very* expensive; only
2667                          * do it if failed >= 2
2668                          */
2669                         int other;
2670                         for (other = disks; other--; ) {
2671                                 if (other == disk_idx)
2672                                         continue;
2673                                 if (!test_bit(R5_UPTODATE,
2674                                       &sh->dev[other].flags))
2675                                         break;
2676                         }
2677                         BUG_ON(other < 0);
2678                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2679                                (unsigned long long)sh->sector,
2680                                disk_idx, other);
2681                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2682                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2683                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2684                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2685                         sh->ops.target = disk_idx;
2686                         sh->ops.target2 = other;
2687                         s->uptodate += 2;
2688                         s->req_compute = 1;
2689                         return 1;
2690                 } else if (test_bit(R5_Insync, &dev->flags)) {
2691                         set_bit(R5_LOCKED, &dev->flags);
2692                         set_bit(R5_Wantread, &dev->flags);
2693                         s->locked++;
2694                         pr_debug("Reading block %d (sync=%d)\n",
2695                                 disk_idx, s->syncing);
2696                 }
2697         }
2698
2699         return 0;
2700 }
2701
2702 /**
2703  * handle_stripe_fill - read or compute data to satisfy pending requests.
2704  */
2705 static void handle_stripe_fill(struct stripe_head *sh,
2706                                struct stripe_head_state *s,
2707                                int disks)
2708 {
2709         int i;
2710
2711         /* look for blocks to read/compute, skip this if a compute
2712          * is already in flight, or if the stripe contents are in the
2713          * midst of changing due to a write
2714          */
2715         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2716             !sh->reconstruct_state)
2717                 for (i = disks; i--; )
2718                         if (fetch_block(sh, s, i, disks))
2719                                 break;
2720         set_bit(STRIPE_HANDLE, &sh->state);
2721 }
2722
2723
2724 /* handle_stripe_clean_event
2725  * any written block on an uptodate or failed drive can be returned.
2726  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2727  * never LOCKED, so we don't need to test 'failed' directly.
2728  */
2729 static void handle_stripe_clean_event(struct r5conf *conf,
2730         struct stripe_head *sh, int disks, struct bio **return_bi)
2731 {
2732         int i;
2733         struct r5dev *dev;
2734
2735         for (i = disks; i--; )
2736                 if (sh->dev[i].written) {
2737                         dev = &sh->dev[i];
2738                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2739                                 test_bit(R5_UPTODATE, &dev->flags)) {
2740                                 /* We can return any write requests */
2741                                 struct bio *wbi, *wbi2;
2742                                 pr_debug("Return write for disc %d\n", i);
2743                                 wbi = dev->written;
2744                                 dev->written = NULL;
2745                                 while (wbi && wbi->bi_sector <
2746                                         dev->sector + STRIPE_SECTORS) {
2747                                         wbi2 = r5_next_bio(wbi, dev->sector);
2748                                         if (!raid5_dec_bi_active_stripes(wbi)) {
2749                                                 md_write_end(conf->mddev);
2750                                                 wbi->bi_next = *return_bi;
2751                                                 *return_bi = wbi;
2752                                         }
2753                                         wbi = wbi2;
2754                                 }
2755                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2756                                                 STRIPE_SECTORS,
2757                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2758                                                 0);
2759                         }
2760                 }
2761
2762         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2763                 if (atomic_dec_and_test(&conf->pending_full_writes))
2764                         md_wakeup_thread(conf->mddev->thread);
2765 }
2766
2767 static void handle_stripe_dirtying(struct r5conf *conf,
2768                                    struct stripe_head *sh,
2769                                    struct stripe_head_state *s,
2770                                    int disks)
2771 {
2772         int rmw = 0, rcw = 0, i;
2773         if (conf->max_degraded == 2) {
2774                 /* RAID6 requires 'rcw' in current implementation
2775                  * Calculate the real rcw later - for now fake it
2776                  * look like rcw is cheaper
2777                  */
2778                 rcw = 1; rmw = 2;
2779         } else for (i = disks; i--; ) {
2780                 /* would I have to read this buffer for read_modify_write */
2781                 struct r5dev *dev = &sh->dev[i];
2782                 if ((dev->towrite || i == sh->pd_idx) &&
2783                     !test_bit(R5_LOCKED, &dev->flags) &&
2784                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2785                       test_bit(R5_Wantcompute, &dev->flags))) {
2786                         if (test_bit(R5_Insync, &dev->flags))
2787                                 rmw++;
2788                         else
2789                                 rmw += 2*disks;  /* cannot read it */
2790                 }
2791                 /* Would I have to read this buffer for reconstruct_write */
2792                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2793                     !test_bit(R5_LOCKED, &dev->flags) &&
2794                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2795                     test_bit(R5_Wantcompute, &dev->flags))) {
2796                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2797                         else
2798                                 rcw += 2*disks;
2799                 }
2800         }
2801         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2802                 (unsigned long long)sh->sector, rmw, rcw);
2803         set_bit(STRIPE_HANDLE, &sh->state);
2804         if (rmw < rcw && rmw > 0)
2805                 /* prefer read-modify-write, but need to get some data */
2806                 for (i = disks; i--; ) {
2807                         struct r5dev *dev = &sh->dev[i];
2808                         if ((dev->towrite || i == sh->pd_idx) &&
2809                             !test_bit(R5_LOCKED, &dev->flags) &&
2810                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2811                             test_bit(R5_Wantcompute, &dev->flags)) &&
2812                             test_bit(R5_Insync, &dev->flags)) {
2813                                 if (
2814                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2815                                         pr_debug("Read_old block "
2816                                                 "%d for r-m-w\n", i);
2817                                         set_bit(R5_LOCKED, &dev->flags);
2818                                         set_bit(R5_Wantread, &dev->flags);
2819                                         s->locked++;
2820                                 } else {
2821                                         set_bit(STRIPE_DELAYED, &sh->state);
2822                                         set_bit(STRIPE_HANDLE, &sh->state);
2823                                 }
2824                         }
2825                 }
2826         if (rcw <= rmw && rcw > 0) {
2827                 /* want reconstruct write, but need to get some data */
2828                 rcw = 0;
2829                 for (i = disks; i--; ) {
2830                         struct r5dev *dev = &sh->dev[i];
2831                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2832                             i != sh->pd_idx && i != sh->qd_idx &&
2833                             !test_bit(R5_LOCKED, &dev->flags) &&
2834                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2835                               test_bit(R5_Wantcompute, &dev->flags))) {
2836                                 rcw++;
2837                                 if (!test_bit(R5_Insync, &dev->flags))
2838                                         continue; /* it's a failed drive */
2839                                 if (
2840                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2841                                         pr_debug("Read_old block "
2842                                                 "%d for Reconstruct\n", i);
2843                                         set_bit(R5_LOCKED, &dev->flags);
2844                                         set_bit(R5_Wantread, &dev->flags);
2845                                         s->locked++;
2846                                 } else {
2847                                         set_bit(STRIPE_DELAYED, &sh->state);
2848                                         set_bit(STRIPE_HANDLE, &sh->state);
2849                                 }
2850                         }
2851                 }
2852         }
2853         /* now if nothing is locked, and if we have enough data,
2854          * we can start a write request
2855          */
2856         /* since handle_stripe can be called at any time we need to handle the
2857          * case where a compute block operation has been submitted and then a
2858          * subsequent call wants to start a write request.  raid_run_ops only
2859          * handles the case where compute block and reconstruct are requested
2860          * simultaneously.  If this is not the case then new writes need to be
2861          * held off until the compute completes.
2862          */
2863         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2864             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2865             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2866                 schedule_reconstruction(sh, s, rcw == 0, 0);
2867 }
2868
2869 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2870                                 struct stripe_head_state *s, int disks)
2871 {
2872         struct r5dev *dev = NULL;
2873
2874         set_bit(STRIPE_HANDLE, &sh->state);
2875
2876         switch (sh->check_state) {
2877         case check_state_idle:
2878                 /* start a new check operation if there are no failures */
2879                 if (s->failed == 0) {
2880                         BUG_ON(s->uptodate != disks);
2881                         sh->check_state = check_state_run;
2882                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2883                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2884                         s->uptodate--;
2885                         break;
2886                 }
2887                 dev = &sh->dev[s->failed_num[0]];
2888                 /* fall through */
2889         case check_state_compute_result:
2890                 sh->check_state = check_state_idle;
2891                 if (!dev)
2892                         dev = &sh->dev[sh->pd_idx];
2893
2894                 /* check that a write has not made the stripe insync */
2895                 if (test_bit(STRIPE_INSYNC, &sh->state))
2896                         break;
2897
2898                 /* either failed parity check, or recovery is happening */
2899                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2900                 BUG_ON(s->uptodate != disks);
2901
2902                 set_bit(R5_LOCKED, &dev->flags);
2903                 s->locked++;
2904                 set_bit(R5_Wantwrite, &dev->flags);
2905
2906                 clear_bit(STRIPE_DEGRADED, &sh->state);
2907                 set_bit(STRIPE_INSYNC, &sh->state);
2908                 break;
2909         case check_state_run:
2910                 break; /* we will be called again upon completion */
2911         case check_state_check_result:
2912                 sh->check_state = check_state_idle;
2913
2914                 /* if a failure occurred during the check operation, leave
2915                  * STRIPE_INSYNC not set and let the stripe be handled again
2916                  */
2917                 if (s->failed)
2918                         break;
2919
2920                 /* handle a successful check operation, if parity is correct
2921                  * we are done.  Otherwise update the mismatch count and repair
2922                  * parity if !MD_RECOVERY_CHECK
2923                  */
2924                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2925                         /* parity is correct (on disc,
2926                          * not in buffer any more)
2927                          */
2928                         set_bit(STRIPE_INSYNC, &sh->state);
2929                 else {
2930                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2931                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2932                                 /* don't try to repair!! */
2933                                 set_bit(STRIPE_INSYNC, &sh->state);
2934                         else {
2935                                 sh->check_state = check_state_compute_run;
2936                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2937                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2938                                 set_bit(R5_Wantcompute,
2939                                         &sh->dev[sh->pd_idx].flags);
2940                                 sh->ops.target = sh->pd_idx;
2941                                 sh->ops.target2 = -1;
2942                                 s->uptodate++;
2943                         }
2944                 }
2945                 break;
2946         case check_state_compute_run:
2947                 break;
2948         default:
2949                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2950                        __func__, sh->check_state,
2951                        (unsigned long long) sh->sector);
2952                 BUG();
2953         }
2954 }
2955
2956
2957 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2958                                   struct stripe_head_state *s,
2959                                   int disks)
2960 {
2961         int pd_idx = sh->pd_idx;
2962         int qd_idx = sh->qd_idx;
2963         struct r5dev *dev;
2964
2965         set_bit(STRIPE_HANDLE, &sh->state);
2966
2967         BUG_ON(s->failed > 2);
2968
2969         /* Want to check and possibly repair P and Q.
2970          * However there could be one 'failed' device, in which
2971          * case we can only check one of them, possibly using the
2972          * other to generate missing data
2973          */
2974
2975         switch (sh->check_state) {
2976         case check_state_idle:
2977                 /* start a new check operation if there are < 2 failures */
2978                 if (s->failed == s->q_failed) {
2979                         /* The only possible failed device holds Q, so it
2980                          * makes sense to check P (If anything else were failed,
2981                          * we would have used P to recreate it).
2982                          */
2983                         sh->check_state = check_state_run;
2984                 }
2985                 if (!s->q_failed && s->failed < 2) {
2986                         /* Q is not failed, and we didn't use it to generate
2987                          * anything, so it makes sense to check it
2988                          */
2989                         if (sh->check_state == check_state_run)
2990                                 sh->check_state = check_state_run_pq;
2991                         else
2992                                 sh->check_state = check_state_run_q;
2993                 }
2994
2995                 /* discard potentially stale zero_sum_result */
2996                 sh->ops.zero_sum_result = 0;
2997
2998                 if (sh->check_state == check_state_run) {
2999                         /* async_xor_zero_sum destroys the contents of P */
3000                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3001                         s->uptodate--;
3002                 }
3003                 if (sh->check_state >= check_state_run &&
3004                     sh->check_state <= check_state_run_pq) {
3005                         /* async_syndrome_zero_sum preserves P and Q, so
3006                          * no need to mark them !uptodate here
3007                          */
3008                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3009                         break;
3010                 }
3011
3012                 /* we have 2-disk failure */
3013                 BUG_ON(s->failed != 2);
3014                 /* fall through */
3015         case check_state_compute_result:
3016                 sh->check_state = check_state_idle;
3017
3018                 /* check that a write has not made the stripe insync */
3019                 if (test_bit(STRIPE_INSYNC, &sh->state))
3020                         break;
3021
3022                 /* now write out any block on a failed drive,
3023                  * or P or Q if they were recomputed
3024                  */
3025                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3026                 if (s->failed == 2) {
3027                         dev = &sh->dev[s->failed_num[1]];
3028                         s->locked++;
3029                         set_bit(R5_LOCKED, &dev->flags);
3030                         set_bit(R5_Wantwrite, &dev->flags);
3031                 }
3032                 if (s->failed >= 1) {
3033                         dev = &sh->dev[s->failed_num[0]];
3034                         s->locked++;
3035                         set_bit(R5_LOCKED, &dev->flags);
3036                         set_bit(R5_Wantwrite, &dev->flags);
3037                 }
3038                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3039                         dev = &sh->dev[pd_idx];
3040                         s->locked++;
3041                         set_bit(R5_LOCKED, &dev->flags);
3042                         set_bit(R5_Wantwrite, &dev->flags);
3043                 }
3044                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3045                         dev = &sh->dev[qd_idx];
3046                         s->locked++;
3047                         set_bit(R5_LOCKED, &dev->flags);
3048                         set_bit(R5_Wantwrite, &dev->flags);
3049                 }
3050                 clear_bit(STRIPE_DEGRADED, &sh->state);
3051
3052                 set_bit(STRIPE_INSYNC, &sh->state);
3053                 break;
3054         case check_state_run:
3055         case check_state_run_q:
3056         case check_state_run_pq:
3057                 break; /* we will be called again upon completion */
3058         case check_state_check_result:
3059                 sh->check_state = check_state_idle;
3060
3061                 /* handle a successful check operation, if parity is correct
3062                  * we are done.  Otherwise update the mismatch count and repair
3063                  * parity if !MD_RECOVERY_CHECK
3064                  */
3065                 if (sh->ops.zero_sum_result == 0) {
3066                         /* both parities are correct */
3067                         if (!s->failed)
3068                                 set_bit(STRIPE_INSYNC, &sh->state);
3069                         else {
3070                                 /* in contrast to the raid5 case we can validate
3071                                  * parity, but still have a failure to write
3072                                  * back
3073                                  */
3074                                 sh->check_state = check_state_compute_result;
3075                                 /* Returning at this point means that we may go
3076                                  * off and bring p and/or q uptodate again so
3077                                  * we make sure to check zero_sum_result again
3078                                  * to verify if p or q need writeback
3079                                  */
3080                         }
3081                 } else {
3082                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
3083                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3084                                 /* don't try to repair!! */
3085                                 set_bit(STRIPE_INSYNC, &sh->state);
3086                         else {
3087                                 int *target = &sh->ops.target;
3088
3089                                 sh->ops.target = -1;
3090                                 sh->ops.target2 = -1;
3091                                 sh->check_state = check_state_compute_run;
3092                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3093                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3094                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3095                                         set_bit(R5_Wantcompute,
3096                                                 &sh->dev[pd_idx].flags);
3097                                         *target = pd_idx;
3098                                         target = &sh->ops.target2;
3099                                         s->uptodate++;
3100                                 }
3101                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3102                                         set_bit(R5_Wantcompute,
3103                                                 &sh->dev[qd_idx].flags);
3104                                         *target = qd_idx;
3105                                         s->uptodate++;
3106                                 }
3107                         }
3108                 }
3109                 break;
3110         case check_state_compute_run:
3111                 break;
3112         default:
3113                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3114                        __func__, sh->check_state,
3115                        (unsigned long long) sh->sector);
3116                 BUG();
3117         }
3118 }
3119
3120 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3121 {
3122         int i;
3123
3124         /* We have read all the blocks in this stripe and now we need to
3125          * copy some of them into a target stripe for expand.
3126          */
3127         struct dma_async_tx_descriptor *tx = NULL;
3128         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3129         for (i = 0; i < sh->disks; i++)
3130                 if (i != sh->pd_idx && i != sh->qd_idx) {
3131                         int dd_idx, j;
3132                         struct stripe_head *sh2;
3133                         struct async_submit_ctl submit;
3134
3135                         sector_t bn = compute_blocknr(sh, i, 1);
3136                         sector_t s = raid5_compute_sector(conf, bn, 0,
3137                                                           &dd_idx, NULL);
3138                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3139                         if (sh2 == NULL)
3140                                 /* so far only the early blocks of this stripe
3141                                  * have been requested.  When later blocks
3142                                  * get requested, we will try again
3143                                  */
3144                                 continue;
3145                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3146                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3147                                 /* must have already done this block */
3148                                 release_stripe(sh2);
3149                                 continue;
3150                         }
3151
3152                         /* place all the copies on one channel */
3153                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3154                         tx = async_memcpy(sh2->dev[dd_idx].page,
3155                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3156                                           &submit);
3157
3158                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3159                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3160                         for (j = 0; j < conf->raid_disks; j++)
3161                                 if (j != sh2->pd_idx &&
3162                                     j != sh2->qd_idx &&
3163                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3164                                         break;
3165                         if (j == conf->raid_disks) {
3166                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3167                                 set_bit(STRIPE_HANDLE, &sh2->state);
3168                         }
3169                         release_stripe(sh2);
3170
3171                 }
3172         /* done submitting copies, wait for them to complete */
3173         if (tx) {
3174                 async_tx_ack(tx);
3175                 dma_wait_for_async_tx(tx);
3176         }
3177 }
3178
3179 /*
3180  * handle_stripe - do things to a stripe.
3181  *
3182  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3183  * state of various bits to see what needs to be done.
3184  * Possible results:
3185  *    return some read requests which now have data
3186  *    return some write requests which are safely on storage
3187  *    schedule a read on some buffers
3188  *    schedule a write of some buffers
3189  *    return confirmation of parity correctness
3190  *
3191  */
3192
3193 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3194 {
3195         struct r5conf *conf = sh->raid_conf;
3196         int disks = sh->disks;
3197         struct r5dev *dev;
3198         int i;
3199         int do_recovery = 0;
3200
3201         memset(s, 0, sizeof(*s));
3202
3203         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3204         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3205         s->failed_num[0] = -1;
3206         s->failed_num[1] = -1;
3207
3208         /* Now to look around and see what can be done */
3209         rcu_read_lock();
3210         for (i=disks; i--; ) {
3211                 struct md_rdev *rdev;
3212                 sector_t first_bad;
3213                 int bad_sectors;
3214                 int is_bad = 0;
3215
3216                 dev = &sh->dev[i];
3217
3218                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3219                          i, dev->flags,
3220                          dev->toread, dev->towrite, dev->written);
3221                 /* maybe we can reply to a read
3222                  *
3223                  * new wantfill requests are only permitted while
3224                  * ops_complete_biofill is guaranteed to be inactive
3225                  */
3226                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3227                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3228                         set_bit(R5_Wantfill, &dev->flags);
3229
3230                 /* now count some things */
3231                 if (test_bit(R5_LOCKED, &dev->flags))
3232                         s->locked++;
3233                 if (test_bit(R5_UPTODATE, &dev->flags))
3234                         s->uptodate++;
3235                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3236                         s->compute++;
3237                         BUG_ON(s->compute > 2);
3238                 }
3239
3240                 if (test_bit(R5_Wantfill, &dev->flags))
3241                         s->to_fill++;
3242                 else if (dev->toread)
3243                         s->to_read++;
3244                 if (dev->towrite) {
3245                         s->to_write++;
3246                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3247                                 s->non_overwrite++;
3248                 }
3249                 if (dev->written)
3250                         s->written++;
3251                 /* Prefer to use the replacement for reads, but only
3252                  * if it is recovered enough and has no bad blocks.
3253                  */
3254                 rdev = rcu_dereference(conf->disks[i].replacement);
3255                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3256                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3257                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3258                                  &first_bad, &bad_sectors))
3259                         set_bit(R5_ReadRepl, &dev->flags);
3260                 else {
3261                         if (rdev)
3262                                 set_bit(R5_NeedReplace, &dev->flags);
3263                         rdev = rcu_dereference(conf->disks[i].rdev);
3264                         clear_bit(R5_ReadRepl, &dev->flags);
3265                 }
3266                 if (rdev && test_bit(Faulty, &rdev->flags))
3267                         rdev = NULL;
3268                 if (rdev) {
3269                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3270                                              &first_bad, &bad_sectors);
3271                         if (s->blocked_rdev == NULL
3272                             && (test_bit(Blocked, &rdev->flags)
3273                                 || is_bad < 0)) {
3274                                 if (is_bad < 0)
3275                                         set_bit(BlockedBadBlocks,
3276                                                 &rdev->flags);
3277                                 s->blocked_rdev = rdev;
3278                                 atomic_inc(&rdev->nr_pending);
3279                         }
3280                 }
3281                 clear_bit(R5_Insync, &dev->flags);
3282                 if (!rdev)
3283                         /* Not in-sync */;
3284                 else if (is_bad) {
3285                         /* also not in-sync */
3286                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3287                             test_bit(R5_UPTODATE, &dev->flags)) {
3288                                 /* treat as in-sync, but with a read error
3289                                  * which we can now try to correct
3290                                  */
3291                                 set_bit(R5_Insync, &dev->flags);
3292                                 set_bit(R5_ReadError, &dev->flags);
3293                         }
3294                 } else if (test_bit(In_sync, &rdev->flags))
3295                         set_bit(R5_Insync, &dev->flags);
3296                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3297                         /* in sync if before recovery_offset */
3298                         set_bit(R5_Insync, &dev->flags);
3299                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3300                          test_bit(R5_Expanded, &dev->flags))
3301                         /* If we've reshaped into here, we assume it is Insync.
3302                          * We will shortly update recovery_offset to make
3303                          * it official.
3304                          */
3305                         set_bit(R5_Insync, &dev->flags);
3306
3307                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3308                         /* This flag does not apply to '.replacement'
3309                          * only to .rdev, so make sure to check that*/
3310                         struct md_rdev *rdev2 = rcu_dereference(
3311                                 conf->disks[i].rdev);
3312                         if (rdev2 == rdev)
3313                                 clear_bit(R5_Insync, &dev->flags);
3314                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3315                                 s->handle_bad_blocks = 1;
3316                                 atomic_inc(&rdev2->nr_pending);
3317                         } else
3318                                 clear_bit(R5_WriteError, &dev->flags);
3319                 }
3320                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3321                         /* This flag does not apply to '.replacement'
3322                          * only to .rdev, so make sure to check that*/
3323                         struct md_rdev *rdev2 = rcu_dereference(
3324                                 conf->disks[i].rdev);
3325                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3326                                 s->handle_bad_blocks = 1;
3327                                 atomic_inc(&rdev2->nr_pending);
3328                         } else
3329                                 clear_bit(R5_MadeGood, &dev->flags);
3330                 }
3331                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3332                         struct md_rdev *rdev2 = rcu_dereference(
3333                                 conf->disks[i].replacement);
3334                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3335                                 s->handle_bad_blocks = 1;
3336                                 atomic_inc(&rdev2->nr_pending);
3337                         } else
3338                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3339                 }
3340                 if (!test_bit(R5_Insync, &dev->flags)) {
3341                         /* The ReadError flag will just be confusing now */
3342                         clear_bit(R5_ReadError, &dev->flags);
3343                         clear_bit(R5_ReWrite, &dev->flags);
3344                 }
3345                 if (test_bit(R5_ReadError, &dev->flags))
3346                         clear_bit(R5_Insync, &dev->flags);
3347                 if (!test_bit(R5_Insync, &dev->flags)) {
3348                         if (s->failed < 2)
3349                                 s->failed_num[s->failed] = i;
3350                         s->failed++;
3351                         if (rdev && !test_bit(Faulty, &rdev->flags))
3352                                 do_recovery = 1;
3353                 }
3354         }
3355         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3356                 /* If there is a failed device being replaced,
3357                  *     we must be recovering.
3358                  * else if we are after recovery_cp, we must be syncing
3359                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3360                  * else we can only be replacing
3361                  * sync and recovery both need to read all devices, and so
3362                  * use the same flag.
3363                  */
3364                 if (do_recovery ||
3365                     sh->sector >= conf->mddev->recovery_cp ||
3366                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3367                         s->syncing = 1;
3368                 else
3369                         s->replacing = 1;
3370         }
3371         rcu_read_unlock();
3372 }
3373
3374 static void handle_stripe(struct stripe_head *sh)
3375 {
3376         struct stripe_head_state s;
3377         struct r5conf *conf = sh->raid_conf;
3378         int i;
3379         int prexor;
3380         int disks = sh->disks;
3381         struct r5dev *pdev, *qdev;
3382
3383         clear_bit(STRIPE_HANDLE, &sh->state);
3384         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3385                 /* already being handled, ensure it gets handled
3386                  * again when current action finishes */
3387                 set_bit(STRIPE_HANDLE, &sh->state);
3388                 return;
3389         }
3390
3391         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3392                 set_bit(STRIPE_SYNCING, &sh->state);
3393                 clear_bit(STRIPE_INSYNC, &sh->state);
3394         }
3395         clear_bit(STRIPE_DELAYED, &sh->state);
3396
3397         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3398                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3399                (unsigned long long)sh->sector, sh->state,
3400                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3401                sh->check_state, sh->reconstruct_state);
3402
3403         analyse_stripe(sh, &s);
3404
3405         if (s.handle_bad_blocks) {
3406                 set_bit(STRIPE_HANDLE, &sh->state);
3407                 goto finish;
3408         }
3409
3410         if (unlikely(s.blocked_rdev)) {
3411                 if (s.syncing || s.expanding || s.expanded ||
3412                     s.replacing || s.to_write || s.written) {
3413                         set_bit(STRIPE_HANDLE, &sh->state);
3414                         goto finish;
3415                 }
3416                 /* There is nothing for the blocked_rdev to block */
3417                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3418                 s.blocked_rdev = NULL;
3419         }
3420
3421         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3422                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3423                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3424         }
3425
3426         pr_debug("locked=%d uptodate=%d to_read=%d"
3427                " to_write=%d failed=%d failed_num=%d,%d\n",
3428                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3429                s.failed_num[0], s.failed_num[1]);
3430         /* check if the array has lost more than max_degraded devices and,
3431          * if so, some requests might need to be failed.
3432          */
3433         if (s.failed > conf->max_degraded) {
3434                 sh->check_state = 0;
3435                 sh->reconstruct_state = 0;
3436                 if (s.to_read+s.to_write+s.written)
3437                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3438                 if (s.syncing + s.replacing)
3439                         handle_failed_sync(conf, sh, &s);
3440         }
3441
3442         /*
3443          * might be able to return some write requests if the parity blocks
3444          * are safe, or on a failed drive
3445          */
3446         pdev = &sh->dev[sh->pd_idx];
3447         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3448                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3449         qdev = &sh->dev[sh->qd_idx];
3450         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3451                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3452                 || conf->level < 6;
3453
3454         if (s.written &&
3455             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3456                              && !test_bit(R5_LOCKED, &pdev->flags)
3457                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3458             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3459                              && !test_bit(R5_LOCKED, &qdev->flags)
3460                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3461                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3462
3463         /* Now we might consider reading some blocks, either to check/generate
3464          * parity, or to satisfy requests
3465          * or to load a block that is being partially written.
3466          */
3467         if (s.to_read || s.non_overwrite
3468             || (conf->level == 6 && s.to_write && s.failed)
3469             || (s.syncing && (s.uptodate + s.compute < disks))
3470             || s.replacing
3471             || s.expanding)
3472                 handle_stripe_fill(sh, &s, disks);
3473
3474         /* Now we check to see if any write operations have recently
3475          * completed
3476          */
3477         prexor = 0;
3478         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3479                 prexor = 1;
3480         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3481             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3482                 sh->reconstruct_state = reconstruct_state_idle;
3483
3484                 /* All the 'written' buffers and the parity block are ready to
3485                  * be written back to disk
3486                  */
3487                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3488                 BUG_ON(sh->qd_idx >= 0 &&
3489                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3490                 for (i = disks; i--; ) {
3491                         struct r5dev *dev = &sh->dev[i];
3492                         if (test_bit(R5_LOCKED, &dev->flags) &&
3493                                 (i == sh->pd_idx || i == sh->qd_idx ||
3494                                  dev->written)) {
3495                                 pr_debug("Writing block %d\n", i);
3496                                 set_bit(R5_Wantwrite, &dev->flags);
3497                                 if (prexor)
3498                                         continue;
3499                                 if (!test_bit(R5_Insync, &dev->flags) ||
3500                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3501                                      s.failed == 0))
3502                                         set_bit(STRIPE_INSYNC, &sh->state);
3503                         }
3504                 }
3505                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3506                         s.dec_preread_active = 1;
3507         }
3508
3509         /* Now to consider new write requests and what else, if anything
3510          * should be read.  We do not handle new writes when:
3511          * 1/ A 'write' operation (copy+xor) is already in flight.
3512          * 2/ A 'check' operation is in flight, as it may clobber the parity
3513          *    block.
3514          */
3515         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3516                 handle_stripe_dirtying(conf, sh, &s, disks);
3517
3518         /* maybe we need to check and possibly fix the parity for this stripe
3519          * Any reads will already have been scheduled, so we just see if enough
3520          * data is available.  The parity check is held off while parity
3521          * dependent operations are in flight.
3522          */
3523         if (sh->check_state ||
3524             (s.syncing && s.locked == 0 &&
3525              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3526              !test_bit(STRIPE_INSYNC, &sh->state))) {
3527                 if (conf->level == 6)
3528                         handle_parity_checks6(conf, sh, &s, disks);
3529                 else
3530                         handle_parity_checks5(conf, sh, &s, disks);
3531         }
3532
3533         if (s.replacing && s.locked == 0
3534             && !test_bit(STRIPE_INSYNC, &sh->state)) {
3535                 /* Write out to replacement devices where possible */
3536                 for (i = 0; i < conf->raid_disks; i++)
3537                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3538                             test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3539                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3540                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3541                                 s.locked++;
3542                         }
3543                 set_bit(STRIPE_INSYNC, &sh->state);
3544         }
3545         if ((s.syncing || s.replacing) && s.locked == 0 &&
3546             test_bit(STRIPE_INSYNC, &sh->state)) {
3547                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3548                 clear_bit(STRIPE_SYNCING, &sh->state);
3549         }
3550
3551         /* If the failed drives are just a ReadError, then we might need
3552          * to progress the repair/check process
3553          */
3554         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3555                 for (i = 0; i < s.failed; i++) {
3556                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3557                         if (test_bit(R5_ReadError, &dev->flags)
3558                             && !test_bit(R5_LOCKED, &dev->flags)
3559                             && test_bit(R5_UPTODATE, &dev->flags)
3560                                 ) {
3561                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3562                                         set_bit(R5_Wantwrite, &dev->flags);
3563                                         set_bit(R5_ReWrite, &dev->flags);
3564                                         set_bit(R5_LOCKED, &dev->flags);
3565                                         s.locked++;
3566                                 } else {
3567                                         /* let's read it back */
3568                                         set_bit(R5_Wantread, &dev->flags);
3569                                         set_bit(R5_LOCKED, &dev->flags);
3570                                         s.locked++;
3571                                 }
3572                         }
3573                 }
3574
3575
3576         /* Finish reconstruct operations initiated by the expansion process */
3577         if (sh->reconstruct_state == reconstruct_state_result) {
3578                 struct stripe_head *sh_src
3579                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3580                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3581                         /* sh cannot be written until sh_src has been read.
3582                          * so arrange for sh to be delayed a little
3583                          */
3584                         set_bit(STRIPE_DELAYED, &sh->state);
3585                         set_bit(STRIPE_HANDLE, &sh->state);
3586                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3587                                               &sh_src->state))
3588                                 atomic_inc(&conf->preread_active_stripes);
3589                         release_stripe(sh_src);
3590                         goto finish;
3591                 }
3592                 if (sh_src)
3593                         release_stripe(sh_src);
3594
3595                 sh->reconstruct_state = reconstruct_state_idle;
3596                 clear_bit(STRIPE_EXPANDING, &sh->state);
3597                 for (i = conf->raid_disks; i--; ) {
3598                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3599                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3600                         s.locked++;
3601                 }
3602         }
3603
3604         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3605             !sh->reconstruct_state) {
3606                 /* Need to write out all blocks after computing parity */
3607                 sh->disks = conf->raid_disks;
3608                 stripe_set_idx(sh->sector, conf, 0, sh);
3609                 schedule_reconstruction(sh, &s, 1, 1);
3610         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3611                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3612                 atomic_dec(&conf->reshape_stripes);
3613                 wake_up(&conf->wait_for_overlap);
3614                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3615         }
3616
3617         if (s.expanding && s.locked == 0 &&
3618             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3619                 handle_stripe_expansion(conf, sh);
3620
3621 finish:
3622         /* wait for this device to become unblocked */
3623         if (unlikely(s.blocked_rdev)) {
3624                 if (conf->mddev->external)
3625                         md_wait_for_blocked_rdev(s.blocked_rdev,
3626                                                  conf->mddev);
3627                 else
3628                         /* Internal metadata will immediately
3629                          * be written by raid5d, so we don't
3630                          * need to wait here.
3631                          */
3632                         rdev_dec_pending(s.blocked_rdev,
3633                                          conf->mddev);
3634         }
3635
3636         if (s.handle_bad_blocks)
3637                 for (i = disks; i--; ) {
3638                         struct md_rdev *rdev;
3639                         struct r5dev *dev = &sh->dev[i];
3640                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3641                                 /* We own a safe reference to the rdev */
3642                                 rdev = conf->disks[i].rdev;
3643                                 if (!rdev_set_badblocks(rdev, sh->sector,
3644                                                         STRIPE_SECTORS, 0))
3645                                         md_error(conf->mddev, rdev);
3646                                 rdev_dec_pending(rdev, conf->mddev);
3647                         }
3648                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3649                                 rdev = conf->disks[i].rdev;
3650                                 rdev_clear_badblocks(rdev, sh->sector,
3651                                                      STRIPE_SECTORS, 0);
3652                                 rdev_dec_pending(rdev, conf->mddev);
3653                         }
3654                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3655                                 rdev = conf->disks[i].replacement;
3656                                 if (!rdev)
3657                                         /* rdev have been moved down */
3658                                         rdev = conf->disks[i].rdev;
3659                                 rdev_clear_badblocks(rdev, sh->sector,
3660                                                      STRIPE_SECTORS, 0);
3661                                 rdev_dec_pending(rdev, conf->mddev);
3662                         }
3663                 }
3664
3665         if (s.ops_request)
3666                 raid_run_ops(sh, s.ops_request);
3667
3668         ops_run_io(sh, &s);
3669
3670         if (s.dec_preread_active) {
3671                 /* We delay this until after ops_run_io so that if make_request
3672                  * is waiting on a flush, it won't continue until the writes
3673                  * have actually been submitted.
3674                  */
3675                 atomic_dec(&conf->preread_active_stripes);
3676                 if (atomic_read(&conf->preread_active_stripes) <
3677                     IO_THRESHOLD)
3678                         md_wakeup_thread(conf->mddev->thread);
3679         }
3680
3681         return_io(s.return_bi);
3682
3683         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3684 }
3685
3686 static void raid5_activate_delayed(struct r5conf *conf)
3687 {
3688         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3689                 while (!list_empty(&conf->delayed_list)) {
3690                         struct list_head *l = conf->delayed_list.next;
3691                         struct stripe_head *sh;
3692                         sh = list_entry(l, struct stripe_head, lru);
3693                         list_del_init(l);
3694                         clear_bit(STRIPE_DELAYED, &sh->state);
3695                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3696                                 atomic_inc(&conf->preread_active_stripes);
3697                         list_add_tail(&sh->lru, &conf->hold_list);
3698                 }
3699         }
3700 }
3701
3702 static void activate_bit_delay(struct r5conf *conf)
3703 {
3704         /* device_lock is held */
3705         struct list_head head;
3706         list_add(&head, &conf->bitmap_list);
3707         list_del_init(&conf->bitmap_list);
3708         while (!list_empty(&head)) {
3709                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3710                 list_del_init(&sh->lru);
3711                 atomic_inc(&sh->count);
3712                 __release_stripe(conf, sh);
3713         }
3714 }
3715
3716 int md_raid5_congested(struct mddev *mddev, int bits)
3717 {
3718         struct r5conf *conf = mddev->private;
3719
3720         /* No difference between reads and writes.  Just check
3721          * how busy the stripe_cache is
3722          */
3723
3724         if (conf->inactive_blocked)
3725                 return 1;
3726         if (conf->quiesce)
3727                 return 1;
3728         if (list_empty_careful(&conf->inactive_list))
3729                 return 1;
3730
3731         return 0;
3732 }
3733 EXPORT_SYMBOL_GPL(md_raid5_congested);
3734
3735 static int raid5_congested(void *data, int bits)
3736 {
3737         struct mddev *mddev = data;
3738
3739         return mddev_congested(mddev, bits) ||
3740                 md_raid5_congested(mddev, bits);
3741 }
3742
3743 /* We want read requests to align with chunks where possible,
3744  * but write requests don't need to.
3745  */
3746 static int raid5_mergeable_bvec(struct request_queue *q,
3747                                 struct bvec_merge_data *bvm,
3748                                 struct bio_vec *biovec)
3749 {
3750         struct mddev *mddev = q->queuedata;
3751         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3752         int max;
3753         unsigned int chunk_sectors = mddev->chunk_sectors;
3754         unsigned int bio_sectors = bvm->bi_size >> 9;
3755
3756         if ((bvm->bi_rw & 1) == WRITE)
3757                 return biovec->bv_len; /* always allow writes to be mergeable */
3758
3759         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3760                 chunk_sectors = mddev->new_chunk_sectors;
3761         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3762         if (max < 0) max = 0;
3763         if (max <= biovec->bv_len && bio_sectors == 0)
3764                 return biovec->bv_len;
3765         else
3766                 return max;
3767 }
3768
3769
3770 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3771 {
3772         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3773         unsigned int chunk_sectors = mddev->chunk_sectors;
3774         unsigned int bio_sectors = bio->bi_size >> 9;
3775
3776         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3777                 chunk_sectors = mddev->new_chunk_sectors;
3778         return  chunk_sectors >=
3779                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3780 }
3781
3782 /*
3783  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3784  *  later sampled by raid5d.
3785  */
3786 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3787 {
3788         unsigned long flags;
3789
3790         spin_lock_irqsave(&conf->device_lock, flags);
3791
3792         bi->bi_next = conf->retry_read_aligned_list;
3793         conf->retry_read_aligned_list = bi;
3794
3795         spin_unlock_irqrestore(&conf->device_lock, flags);
3796         md_wakeup_thread(conf->mddev->thread);
3797 }
3798
3799
3800 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3801 {
3802         struct bio *bi;
3803
3804         bi = conf->retry_read_aligned;
3805         if (bi) {
3806                 conf->retry_read_aligned = NULL;
3807                 return bi;
3808         }
3809         bi = conf->retry_read_aligned_list;
3810         if(bi) {
3811                 conf->retry_read_aligned_list = bi->bi_next;
3812                 bi->bi_next = NULL;
3813                 /*
3814                  * this sets the active strip count to 1 and the processed
3815                  * strip count to zero (upper 8 bits)
3816                  */
3817                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3818         }
3819
3820         return bi;
3821 }
3822
3823
3824 /*
3825  *  The "raid5_align_endio" should check if the read succeeded and if it
3826  *  did, call bio_endio on the original bio (having bio_put the new bio
3827  *  first).
3828  *  If the read failed..
3829  */
3830 static void raid5_align_endio(struct bio *bi, int error)
3831 {
3832         struct bio* raid_bi  = bi->bi_private;
3833         struct mddev *mddev;
3834         struct r5conf *conf;
3835         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3836         struct md_rdev *rdev;
3837
3838         bio_put(bi);
3839
3840         rdev = (void*)raid_bi->bi_next;
3841         raid_bi->bi_next = NULL;
3842         mddev = rdev->mddev;
3843         conf = mddev->private;
3844
3845         rdev_dec_pending(rdev, conf->mddev);
3846
3847         if (!error && uptodate) {
3848                 bio_endio(raid_bi, 0);
3849                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3850                         wake_up(&conf->wait_for_stripe);
3851                 return;
3852         }
3853
3854
3855         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3856
3857         add_bio_to_retry(raid_bi, conf);
3858 }
3859
3860 static int bio_fits_rdev(struct bio *bi)
3861 {
3862         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3863
3864         if ((bi->bi_size>>9) > queue_max_sectors(q))
3865                 return 0;
3866         blk_recount_segments(q, bi);
3867         if (bi->bi_phys_segments > queue_max_segments(q))
3868                 return 0;
3869
3870         if (q->merge_bvec_fn)
3871                 /* it's too hard to apply the merge_bvec_fn at this stage,
3872                  * just just give up
3873                  */
3874                 return 0;
3875
3876         return 1;
3877 }
3878
3879
3880 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3881 {
3882         struct r5conf *conf = mddev->private;
3883         int dd_idx;
3884         struct bio* align_bi;
3885         struct md_rdev *rdev;
3886         sector_t end_sector;
3887
3888         if (!in_chunk_boundary(mddev, raid_bio)) {
3889                 pr_debug("chunk_aligned_read : non aligned\n");
3890                 return 0;
3891         }
3892         /*
3893          * use bio_clone_mddev to make a copy of the bio
3894          */
3895         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3896         if (!align_bi)
3897                 return 0;
3898         /*
3899          *   set bi_end_io to a new function, and set bi_private to the
3900          *     original bio.
3901          */
3902         align_bi->bi_end_io  = raid5_align_endio;
3903         align_bi->bi_private = raid_bio;
3904         /*
3905          *      compute position
3906          */
3907         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3908                                                     0,
3909                                                     &dd_idx, NULL);
3910
3911         end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3912         rcu_read_lock();
3913         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3914         if (!rdev || test_bit(Faulty, &rdev->flags) ||
3915             rdev->recovery_offset < end_sector) {
3916                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3917                 if (rdev &&
3918                     (test_bit(Faulty, &rdev->flags) ||
3919                     !(test_bit(In_sync, &rdev->flags) ||
3920                       rdev->recovery_offset >= end_sector)))
3921                         rdev = NULL;
3922         }
3923         if (rdev) {
3924                 sector_t first_bad;
3925                 int bad_sectors;
3926
3927                 atomic_inc(&rdev->nr_pending);
3928                 rcu_read_unlock();
3929                 raid_bio->bi_next = (void*)rdev;
3930                 align_bi->bi_bdev =  rdev->bdev;
3931                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3932
3933                 if (!bio_fits_rdev(align_bi) ||
3934                     is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3935                                 &first_bad, &bad_sectors)) {
3936                         /* too big in some way, or has a known bad block */
3937                         bio_put(align_bi);
3938                         rdev_dec_pending(rdev, mddev);
3939                         return 0;
3940                 }
3941
3942                 /* No reshape active, so we can trust rdev->data_offset */
3943                 align_bi->bi_sector += rdev->data_offset;
3944
3945                 spin_lock_irq(&conf->device_lock);
3946                 wait_event_lock_irq(conf->wait_for_stripe,
3947                                     conf->quiesce == 0,
3948                                     conf->device_lock, /* nothing */);
3949                 atomic_inc(&conf->active_aligned_reads);
3950                 spin_unlock_irq(&conf->device_lock);
3951
3952                 generic_make_request(align_bi);
3953                 return 1;
3954         } else {
3955                 rcu_read_unlock();
3956                 bio_put(align_bi);
3957                 return 0;
3958         }
3959 }
3960
3961 /* __get_priority_stripe - get the next stripe to process
3962  *
3963  * Full stripe writes are allowed to pass preread active stripes up until
3964  * the bypass_threshold is exceeded.  In general the bypass_count
3965  * increments when the handle_list is handled before the hold_list; however, it
3966  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3967  * stripe with in flight i/o.  The bypass_count will be reset when the
3968  * head of the hold_list has changed, i.e. the head was promoted to the
3969  * handle_list.
3970  */
3971 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3972 {
3973         struct stripe_head *sh;
3974
3975         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3976                   __func__,
3977                   list_empty(&conf->handle_list) ? "empty" : "busy",
3978                   list_empty(&conf->hold_list) ? "empty" : "busy",
3979                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3980
3981         if (!list_empty(&conf->handle_list)) {
3982                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3983
3984                 if (list_empty(&conf->hold_list))
3985                         conf->bypass_count = 0;
3986                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3987                         if (conf->hold_list.next == conf->last_hold)
3988                                 conf->bypass_count++;
3989                         else {
3990                                 conf->last_hold = conf->hold_list.next;
3991                                 conf->bypass_count -= conf->bypass_threshold;
3992                                 if (conf->bypass_count < 0)
3993                                         conf->bypass_count = 0;
3994                         }
3995                 }
3996         } else if (!list_empty(&conf->hold_list) &&
3997                    ((conf->bypass_threshold &&
3998                      conf->bypass_count > conf->bypass_threshold) ||
3999                     atomic_read(&conf->pending_full_writes) == 0)) {
4000                 sh = list_entry(conf->hold_list.next,
4001                                 typeof(*sh), lru);
4002                 conf->bypass_count -= conf->bypass_threshold;
4003                 if (conf->bypass_count < 0)
4004                         conf->bypass_count = 0;
4005         } else
4006                 return NULL;
4007
4008         list_del_init(&sh->lru);
4009         atomic_inc(&sh->count);
4010         BUG_ON(atomic_read(&sh->count) != 1);
4011         return sh;
4012 }
4013
4014 struct raid5_plug_cb {
4015         struct blk_plug_cb      cb;
4016         struct list_head        list;
4017 };
4018
4019 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4020 {
4021         struct raid5_plug_cb *cb = container_of(
4022                 blk_cb, struct raid5_plug_cb, cb);
4023         struct stripe_head *sh;
4024         struct mddev *mddev = cb->cb.data;
4025         struct r5conf *conf = mddev->private;
4026
4027         if (cb->list.next && !list_empty(&cb->list)) {
4028                 spin_lock_irq(&conf->device_lock);
4029                 while (!list_empty(&cb->list)) {
4030                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4031                         list_del_init(&sh->lru);
4032                         /*
4033                          * avoid race release_stripe_plug() sees
4034                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4035                          * is still in our list
4036                          */
4037                         smp_mb__before_clear_bit();
4038                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4039                         __release_stripe(conf, sh);
4040                 }
4041                 spin_unlock_irq(&conf->device_lock);
4042         }
4043         kfree(cb);
4044 }
4045
4046 static void release_stripe_plug(struct mddev *mddev,
4047                                 struct stripe_head *sh)
4048 {
4049         struct blk_plug_cb *blk_cb = blk_check_plugged(
4050                 raid5_unplug, mddev,
4051                 sizeof(struct raid5_plug_cb));
4052         struct raid5_plug_cb *cb;
4053
4054         if (!blk_cb) {
4055                 release_stripe(sh);
4056                 return;
4057         }
4058
4059         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4060
4061         if (cb->list.next == NULL)
4062                 INIT_LIST_HEAD(&cb->list);
4063
4064         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4065                 list_add_tail(&sh->lru, &cb->list);
4066         else
4067                 release_stripe(sh);
4068 }
4069
4070 static void make_request(struct mddev *mddev, struct bio * bi)
4071 {
4072         struct r5conf *conf = mddev->private;
4073         int dd_idx;
4074         sector_t new_sector;
4075         sector_t logical_sector, last_sector;
4076         struct stripe_head *sh;
4077         const int rw = bio_data_dir(bi);
4078         int remaining;
4079
4080         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4081                 md_flush_request(mddev, bi);
4082                 return;
4083         }
4084
4085         md_write_start(mddev, bi);
4086
4087         if (rw == READ &&
4088              mddev->reshape_position == MaxSector &&
4089              chunk_aligned_read(mddev,bi))
4090                 return;
4091
4092         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4093         last_sector = bi->bi_sector + (bi->bi_size>>9);
4094         bi->bi_next = NULL;
4095         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4096
4097         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4098                 DEFINE_WAIT(w);
4099                 int previous;
4100
4101         retry:
4102                 previous = 0;
4103                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4104                 if (unlikely(conf->reshape_progress != MaxSector)) {
4105                         /* spinlock is needed as reshape_progress may be
4106                          * 64bit on a 32bit platform, and so it might be
4107                          * possible to see a half-updated value
4108                          * Of course reshape_progress could change after
4109                          * the lock is dropped, so once we get a reference
4110                          * to the stripe that we think it is, we will have
4111                          * to check again.
4112                          */
4113                         spin_lock_irq(&conf->device_lock);
4114                         if (mddev->reshape_backwards
4115                             ? logical_sector < conf->reshape_progress
4116                             : logical_sector >= conf->reshape_progress) {
4117                                 previous = 1;
4118                         } else {
4119                                 if (mddev->reshape_backwards
4120                                     ? logical_sector < conf->reshape_safe
4121                                     : logical_sector >= conf->reshape_safe) {
4122                                         spin_unlock_irq(&conf->device_lock);
4123                                         schedule();
4124                                         goto retry;
4125                                 }
4126                         }
4127                         spin_unlock_irq(&conf->device_lock);
4128                 }
4129
4130                 new_sector = raid5_compute_sector(conf, logical_sector,
4131                                                   previous,
4132                                                   &dd_idx, NULL);
4133                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4134                         (unsigned long long)new_sector, 
4135                         (unsigned long long)logical_sector);
4136
4137                 sh = get_active_stripe(conf, new_sector, previous,
4138                                        (bi->bi_rw&RWA_MASK), 0);
4139                 if (sh) {
4140                         if (unlikely(previous)) {
4141                                 /* expansion might have moved on while waiting for a
4142                                  * stripe, so we must do the range check again.
4143                                  * Expansion could still move past after this
4144                                  * test, but as we are holding a reference to
4145                                  * 'sh', we know that if that happens,
4146                                  *  STRIPE_EXPANDING will get set and the expansion
4147                                  * won't proceed until we finish with the stripe.
4148                                  */
4149                                 int must_retry = 0;
4150                                 spin_lock_irq(&conf->device_lock);
4151                                 if (mddev->reshape_backwards
4152                                     ? logical_sector >= conf->reshape_progress
4153                                     : logical_sector < conf->reshape_progress)
4154                                         /* mismatch, need to try again */
4155                                         must_retry = 1;
4156                                 spin_unlock_irq(&conf->device_lock);
4157                                 if (must_retry) {
4158                                         release_stripe(sh);
4159                                         schedule();
4160                                         goto retry;
4161                                 }
4162                         }
4163
4164                         if (rw == WRITE &&
4165                             logical_sector >= mddev->suspend_lo &&
4166                             logical_sector < mddev->suspend_hi) {
4167                                 release_stripe(sh);
4168                                 /* As the suspend_* range is controlled by
4169                                  * userspace, we want an interruptible
4170                                  * wait.
4171                                  */
4172                                 flush_signals(current);
4173                                 prepare_to_wait(&conf->wait_for_overlap,
4174                                                 &w, TASK_INTERRUPTIBLE);
4175                                 if (logical_sector >= mddev->suspend_lo &&
4176                                     logical_sector < mddev->suspend_hi)
4177                                         schedule();
4178                                 goto retry;
4179                         }
4180
4181                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4182                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4183                                 /* Stripe is busy expanding or
4184                                  * add failed due to overlap.  Flush everything
4185                                  * and wait a while
4186                                  */
4187                                 md_wakeup_thread(mddev->thread);
4188                                 release_stripe(sh);
4189                                 schedule();
4190                                 goto retry;
4191                         }
4192                         finish_wait(&conf->wait_for_overlap, &w);
4193                         set_bit(STRIPE_HANDLE, &sh->state);
4194                         clear_bit(STRIPE_DELAYED, &sh->state);
4195                         if ((bi->bi_rw & REQ_NOIDLE) &&
4196                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4197                                 atomic_inc(&conf->preread_active_stripes);
4198                         release_stripe_plug(mddev, sh);
4199                 } else {
4200                         /* cannot get stripe for read-ahead, just give-up */
4201                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4202                         finish_wait(&conf->wait_for_overlap, &w);
4203                         break;
4204                 }
4205         }
4206
4207         remaining = raid5_dec_bi_active_stripes(bi);
4208         if (remaining == 0) {
4209
4210                 if ( rw == WRITE )
4211                         md_write_end(mddev);
4212
4213                 bio_endio(bi, 0);
4214         }
4215 }
4216
4217 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4218
4219 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4220 {
4221         /* reshaping is quite different to recovery/resync so it is
4222          * handled quite separately ... here.
4223          *
4224          * On each call to sync_request, we gather one chunk worth of
4225          * destination stripes and flag them as expanding.
4226          * Then we find all the source stripes and request reads.
4227          * As the reads complete, handle_stripe will copy the data
4228          * into the destination stripe and release that stripe.
4229          */
4230         struct r5conf *conf = mddev->private;
4231         struct stripe_head *sh;
4232         sector_t first_sector, last_sector;
4233         int raid_disks = conf->previous_raid_disks;
4234         int data_disks = raid_disks - conf->max_degraded;
4235         int new_data_disks = conf->raid_disks - conf->max_degraded;
4236         int i;
4237         int dd_idx;
4238         sector_t writepos, readpos, safepos;
4239         sector_t stripe_addr;
4240         int reshape_sectors;
4241         struct list_head stripes;
4242
4243         if (sector_nr == 0) {
4244                 /* If restarting in the middle, skip the initial sectors */
4245                 if (mddev->reshape_backwards &&
4246                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4247                         sector_nr = raid5_size(mddev, 0, 0)
4248                                 - conf->reshape_progress;
4249                 } else if (!mddev->reshape_backwards &&
4250                            conf->reshape_progress > 0)
4251                         sector_nr = conf->reshape_progress;
4252                 sector_div(sector_nr, new_data_disks);
4253                 if (sector_nr) {
4254                         mddev->curr_resync_completed = sector_nr;
4255                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4256                         *skipped = 1;
4257                         return sector_nr;
4258                 }
4259         }
4260
4261         /* We need to process a full chunk at a time.
4262          * If old and new chunk sizes differ, we need to process the
4263          * largest of these
4264          */
4265         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4266                 reshape_sectors = mddev->new_chunk_sectors;
4267         else
4268                 reshape_sectors = mddev->chunk_sectors;
4269
4270         /* We update the metadata at least every 10 seconds, or when
4271          * the data about to be copied would over-write the source of
4272          * the data at the front of the range.  i.e. one new_stripe
4273          * along from reshape_progress new_maps to after where
4274          * reshape_safe old_maps to
4275          */
4276         writepos = conf->reshape_progress;
4277         sector_div(writepos, new_data_disks);
4278         readpos = conf->reshape_progress;
4279         sector_div(readpos, data_disks);
4280         safepos = conf->reshape_safe;
4281         sector_div(safepos, data_disks);
4282         if (mddev->reshape_backwards) {
4283                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4284                 readpos += reshape_sectors;
4285                 safepos += reshape_sectors;
4286         } else {
4287                 writepos += reshape_sectors;
4288                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4289                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4290         }
4291
4292         /* Having calculated the 'writepos' possibly use it
4293          * to set 'stripe_addr' which is where we will write to.
4294          */
4295         if (mddev->reshape_backwards) {
4296                 BUG_ON(conf->reshape_progress == 0);
4297                 stripe_addr = writepos;
4298                 BUG_ON((mddev->dev_sectors &
4299                         ~((sector_t)reshape_sectors - 1))
4300                        - reshape_sectors - stripe_addr
4301                        != sector_nr);
4302         } else {
4303                 BUG_ON(writepos != sector_nr + reshape_sectors);
4304                 stripe_addr = sector_nr;
4305         }
4306
4307         /* 'writepos' is the most advanced device address we might write.
4308          * 'readpos' is the least advanced device address we might read.
4309          * 'safepos' is the least address recorded in the metadata as having
4310          *     been reshaped.
4311          * If there is a min_offset_diff, these are adjusted either by
4312          * increasing the safepos/readpos if diff is negative, or
4313          * increasing writepos if diff is positive.
4314          * If 'readpos' is then behind 'writepos', there is no way that we can
4315          * ensure safety in the face of a crash - that must be done by userspace
4316          * making a backup of the data.  So in that case there is no particular
4317          * rush to update metadata.
4318          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4319          * update the metadata to advance 'safepos' to match 'readpos' so that
4320          * we can be safe in the event of a crash.
4321          * So we insist on updating metadata if safepos is behind writepos and
4322          * readpos is beyond writepos.
4323          * In any case, update the metadata every 10 seconds.
4324          * Maybe that number should be configurable, but I'm not sure it is
4325          * worth it.... maybe it could be a multiple of safemode_delay???
4326          */
4327         if (conf->min_offset_diff < 0) {
4328                 safepos += -conf->min_offset_diff;
4329                 readpos += -conf->min_offset_diff;
4330         } else
4331                 writepos += conf->min_offset_diff;
4332
4333         if ((mddev->reshape_backwards
4334              ? (safepos > writepos && readpos < writepos)
4335              : (safepos < writepos && readpos > writepos)) ||
4336             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4337                 /* Cannot proceed until we've updated the superblock... */
4338                 wait_event(conf->wait_for_overlap,
4339                            atomic_read(&conf->reshape_stripes)==0);
4340                 mddev->reshape_position = conf->reshape_progress;
4341                 mddev->curr_resync_completed = sector_nr;
4342                 conf->reshape_checkpoint = jiffies;
4343                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4344                 md_wakeup_thread(mddev->thread);
4345                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4346                            kthread_should_stop());
4347                 spin_lock_irq(&conf->device_lock);
4348                 conf->reshape_safe = mddev->reshape_position;
4349                 spin_unlock_irq(&conf->device_lock);
4350                 wake_up(&conf->wait_for_overlap);
4351                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4352         }
4353
4354         INIT_LIST_HEAD(&stripes);
4355         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4356                 int j;
4357                 int skipped_disk = 0;
4358                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4359                 set_bit(STRIPE_EXPANDING, &sh->state);
4360                 atomic_inc(&conf->reshape_stripes);
4361                 /* If any of this stripe is beyond the end of the old
4362                  * array, then we need to zero those blocks
4363                  */
4364                 for (j=sh->disks; j--;) {
4365                         sector_t s;
4366                         if (j == sh->pd_idx)
4367                                 continue;
4368                         if (conf->level == 6 &&
4369                             j == sh->qd_idx)
4370                                 continue;
4371                         s = compute_blocknr(sh, j, 0);
4372                         if (s < raid5_size(mddev, 0, 0)) {
4373                                 skipped_disk = 1;
4374                                 continue;
4375                         }
4376                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4377                         set_bit(R5_Expanded, &sh->dev[j].flags);
4378                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4379                 }
4380                 if (!skipped_disk) {
4381                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4382                         set_bit(STRIPE_HANDLE, &sh->state);
4383                 }
4384                 list_add(&sh->lru, &stripes);
4385         }
4386         spin_lock_irq(&conf->device_lock);
4387         if (mddev->reshape_backwards)
4388                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4389         else
4390                 conf->reshape_progress += reshape_sectors * new_data_disks;
4391         spin_unlock_irq(&conf->device_lock);
4392         /* Ok, those stripe are ready. We can start scheduling
4393          * reads on the source stripes.
4394          * The source stripes are determined by mapping the first and last
4395          * block on the destination stripes.
4396          */
4397         first_sector =
4398                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4399                                      1, &dd_idx, NULL);
4400         last_sector =
4401                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4402                                             * new_data_disks - 1),
4403                                      1, &dd_idx, NULL);
4404         if (last_sector >= mddev->dev_sectors)
4405                 last_sector = mddev->dev_sectors - 1;
4406         while (first_sector <= last_sector) {
4407                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4408                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4409                 set_bit(STRIPE_HANDLE, &sh->state);
4410                 release_stripe(sh);
4411                 first_sector += STRIPE_SECTORS;
4412         }
4413         /* Now that the sources are clearly marked, we can release
4414          * the destination stripes
4415          */
4416         while (!list_empty(&stripes)) {
4417                 sh = list_entry(stripes.next, struct stripe_head, lru);
4418                 list_del_init(&sh->lru);
4419                 release_stripe(sh);
4420         }
4421         /* If this takes us to the resync_max point where we have to pause,
4422          * then we need to write out the superblock.
4423          */
4424         sector_nr += reshape_sectors;
4425         if ((sector_nr - mddev->curr_resync_completed) * 2
4426             >= mddev->resync_max - mddev->curr_resync_completed) {
4427                 /* Cannot proceed until we've updated the superblock... */
4428                 wait_event(conf->wait_for_overlap,
4429                            atomic_read(&conf->reshape_stripes) == 0);
4430                 mddev->reshape_position = conf->reshape_progress;
4431                 mddev->curr_resync_completed = sector_nr;
4432                 conf->reshape_checkpoint = jiffies;
4433                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4434                 md_wakeup_thread(mddev->thread);
4435                 wait_event(mddev->sb_wait,
4436                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4437                            || kthread_should_stop());
4438                 spin_lock_irq(&conf->device_lock);
4439                 conf->reshape_safe = mddev->reshape_position;
4440                 spin_unlock_irq(&conf->device_lock);
4441                 wake_up(&conf->wait_for_overlap);
4442                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4443         }
4444         return reshape_sectors;
4445 }
4446
4447 /* FIXME go_faster isn't used */
4448 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4449 {
4450         struct r5conf *conf = mddev->private;
4451         struct stripe_head *sh;
4452         sector_t max_sector = mddev->dev_sectors;
4453         sector_t sync_blocks;
4454         int still_degraded = 0;
4455         int i;
4456
4457         if (sector_nr >= max_sector) {
4458                 /* just being told to finish up .. nothing much to do */
4459
4460                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4461                         end_reshape(conf);
4462                         return 0;
4463                 }
4464
4465                 if (mddev->curr_resync < max_sector) /* aborted */
4466                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4467                                         &sync_blocks, 1);
4468                 else /* completed sync */
4469                         conf->fullsync = 0;
4470                 bitmap_close_sync(mddev->bitmap);
4471
4472                 return 0;
4473         }
4474
4475         /* Allow raid5_quiesce to complete */
4476         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4477
4478         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4479                 return reshape_request(mddev, sector_nr, skipped);
4480
4481         /* No need to check resync_max as we never do more than one
4482          * stripe, and as resync_max will always be on a chunk boundary,
4483          * if the check in md_do_sync didn't fire, there is no chance
4484          * of overstepping resync_max here
4485          */
4486
4487         /* if there is too many failed drives and we are trying
4488          * to resync, then assert that we are finished, because there is
4489          * nothing we can do.
4490          */
4491         if (mddev->degraded >= conf->max_degraded &&
4492             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4493                 sector_t rv = mddev->dev_sectors - sector_nr;
4494                 *skipped = 1;
4495                 return rv;
4496         }
4497         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4498             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4499             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4500                 /* we can skip this block, and probably more */
4501                 sync_blocks /= STRIPE_SECTORS;
4502                 *skipped = 1;
4503                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4504         }
4505
4506         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4507
4508         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4509         if (sh == NULL) {
4510                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4511                 /* make sure we don't swamp the stripe cache if someone else
4512                  * is trying to get access
4513                  */
4514                 schedule_timeout_uninterruptible(1);
4515         }
4516         /* Need to check if array will still be degraded after recovery/resync
4517          * We don't need to check the 'failed' flag as when that gets set,
4518          * recovery aborts.
4519          */
4520         for (i = 0; i < conf->raid_disks; i++)
4521                 if (conf->disks[i].rdev == NULL)
4522                         still_degraded = 1;
4523
4524         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4525
4526         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4527
4528         handle_stripe(sh);
4529         release_stripe(sh);
4530
4531         return STRIPE_SECTORS;
4532 }
4533
4534 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4535 {
4536         /* We may not be able to submit a whole bio at once as there
4537          * may not be enough stripe_heads available.
4538          * We cannot pre-allocate enough stripe_heads as we may need
4539          * more than exist in the cache (if we allow ever large chunks).
4540          * So we do one stripe head at a time and record in
4541          * ->bi_hw_segments how many have been done.
4542          *
4543          * We *know* that this entire raid_bio is in one chunk, so
4544          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4545          */
4546         struct stripe_head *sh;
4547         int dd_idx;
4548         sector_t sector, logical_sector, last_sector;
4549         int scnt = 0;
4550         int remaining;
4551         int handled = 0;
4552
4553         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4554         sector = raid5_compute_sector(conf, logical_sector,
4555                                       0, &dd_idx, NULL);
4556         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4557
4558         for (; logical_sector < last_sector;
4559              logical_sector += STRIPE_SECTORS,
4560                      sector += STRIPE_SECTORS,
4561                      scnt++) {
4562
4563                 if (scnt < raid5_bi_processed_stripes(raid_bio))
4564                         /* already done this stripe */
4565                         continue;
4566
4567                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4568
4569                 if (!sh) {
4570                         /* failed to get a stripe - must wait */
4571                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4572                         conf->retry_read_aligned = raid_bio;
4573                         return handled;
4574                 }
4575
4576                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4577                         release_stripe(sh);
4578                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4579                         conf->retry_read_aligned = raid_bio;
4580                         return handled;
4581                 }
4582
4583                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4584                 handle_stripe(sh);
4585                 release_stripe(sh);
4586                 handled++;
4587         }
4588         remaining = raid5_dec_bi_active_stripes(raid_bio);
4589         if (remaining == 0)
4590                 bio_endio(raid_bio, 0);
4591         if (atomic_dec_and_test(&conf->active_aligned_reads))
4592                 wake_up(&conf->wait_for_stripe);
4593         return handled;
4594 }
4595
4596 #define MAX_STRIPE_BATCH 8
4597 static int handle_active_stripes(struct r5conf *conf)
4598 {
4599         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4600         int i, batch_size = 0;
4601
4602         while (batch_size < MAX_STRIPE_BATCH &&
4603                         (sh = __get_priority_stripe(conf)) != NULL)
4604                 batch[batch_size++] = sh;
4605
4606         if (batch_size == 0)
4607                 return batch_size;
4608         spin_unlock_irq(&conf->device_lock);
4609
4610         for (i = 0; i < batch_size; i++)
4611                 handle_stripe(batch[i]);
4612
4613         cond_resched();
4614
4615         spin_lock_irq(&conf->device_lock);
4616         for (i = 0; i < batch_size; i++)
4617                 __release_stripe(conf, batch[i]);
4618         return batch_size;
4619 }
4620
4621 /*
4622  * This is our raid5 kernel thread.
4623  *
4624  * We scan the hash table for stripes which can be handled now.
4625  * During the scan, completed stripes are saved for us by the interrupt
4626  * handler, so that they will not have to wait for our next wakeup.
4627  */
4628 static void raid5d(struct mddev *mddev)
4629 {
4630         struct r5conf *conf = mddev->private;
4631         int handled;
4632         struct blk_plug plug;
4633
4634         pr_debug("+++ raid5d active\n");
4635
4636         md_check_recovery(mddev);
4637
4638         blk_start_plug(&plug);
4639         handled = 0;
4640         spin_lock_irq(&conf->device_lock);
4641         while (1) {
4642                 struct bio *bio;
4643                 int batch_size;
4644
4645                 if (
4646                     !list_empty(&conf->bitmap_list)) {
4647                         /* Now is a good time to flush some bitmap updates */
4648                         conf->seq_flush++;
4649                         spin_unlock_irq(&conf->device_lock);
4650                         bitmap_unplug(mddev->bitmap);
4651                         spin_lock_irq(&conf->device_lock);
4652                         conf->seq_write = conf->seq_flush;
4653                         activate_bit_delay(conf);
4654                 }
4655                 raid5_activate_delayed(conf);
4656
4657                 while ((bio = remove_bio_from_retry(conf))) {
4658                         int ok;
4659                         spin_unlock_irq(&conf->device_lock);
4660                         ok = retry_aligned_read(conf, bio);
4661                         spin_lock_irq(&conf->device_lock);
4662                         if (!ok)
4663                                 break;
4664                         handled++;
4665                 }
4666
4667                 batch_size = handle_active_stripes(conf);
4668                 if (!batch_size)
4669                         break;
4670                 handled += batch_size;
4671
4672                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4673                         spin_unlock_irq(&conf->device_lock);
4674                         md_check_recovery(mddev);
4675                         spin_lock_irq(&conf->device_lock);
4676                 }
4677         }
4678         pr_debug("%d stripes handled\n", handled);
4679
4680         spin_unlock_irq(&conf->device_lock);
4681
4682         async_tx_issue_pending_all();
4683         blk_finish_plug(&plug);
4684
4685         pr_debug("--- raid5d inactive\n");
4686 }
4687
4688 static ssize_t
4689 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4690 {
4691         struct r5conf *conf = mddev->private;
4692         if (conf)
4693                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4694         else
4695                 return 0;
4696 }
4697
4698 int
4699 raid5_set_cache_size(struct mddev *mddev, int size)
4700 {
4701         struct r5conf *conf = mddev->private;
4702         int err;
4703
4704         if (size <= 16 || size > 32768)
4705                 return -EINVAL;
4706         while (size < conf->max_nr_stripes) {
4707                 if (drop_one_stripe(conf))
4708                         conf->max_nr_stripes--;
4709                 else
4710                         break;
4711         }
4712         err = md_allow_write(mddev);
4713         if (err)
4714                 return err;
4715         while (size > conf->max_nr_stripes) {
4716                 if (grow_one_stripe(conf))
4717                         conf->max_nr_stripes++;
4718                 else break;
4719         }
4720         return 0;
4721 }
4722 EXPORT_SYMBOL(raid5_set_cache_size);
4723
4724 static ssize_t
4725 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4726 {
4727         struct r5conf *conf = mddev->private;
4728         unsigned long new;
4729         int err;
4730
4731         if (len >= PAGE_SIZE)
4732                 return -EINVAL;
4733         if (!conf)
4734                 return -ENODEV;
4735
4736         if (strict_strtoul(page, 10, &new))
4737                 return -EINVAL;
4738         err = raid5_set_cache_size(mddev, new);
4739         if (err)
4740                 return err;
4741         return len;
4742 }
4743
4744 static struct md_sysfs_entry
4745 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4746                                 raid5_show_stripe_cache_size,
4747                                 raid5_store_stripe_cache_size);
4748
4749 static ssize_t
4750 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4751 {
4752         struct r5conf *conf = mddev->private;
4753         if (conf)
4754                 return sprintf(page, "%d\n", conf->bypass_threshold);
4755         else
4756                 return 0;
4757 }
4758
4759 static ssize_t
4760 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4761 {
4762         struct r5conf *conf = mddev->private;
4763         unsigned long new;
4764         if (len >= PAGE_SIZE)
4765                 return -EINVAL;
4766         if (!conf)
4767                 return -ENODEV;
4768
4769         if (strict_strtoul(page, 10, &new))
4770                 return -EINVAL;
4771         if (new > conf->max_nr_stripes)
4772                 return -EINVAL;
4773         conf->bypass_threshold = new;
4774         return len;
4775 }
4776
4777 static struct md_sysfs_entry
4778 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4779                                         S_IRUGO | S_IWUSR,
4780                                         raid5_show_preread_threshold,
4781                                         raid5_store_preread_threshold);
4782
4783 static ssize_t
4784 stripe_cache_active_show(struct mddev *mddev, char *page)
4785 {
4786         struct r5conf *conf = mddev->private;
4787         if (conf)
4788                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4789         else
4790                 return 0;
4791 }
4792
4793 static struct md_sysfs_entry
4794 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4795
4796 static struct attribute *raid5_attrs[] =  {
4797         &raid5_stripecache_size.attr,
4798         &raid5_stripecache_active.attr,
4799         &raid5_preread_bypass_threshold.attr,
4800         NULL,
4801 };
4802 static struct attribute_group raid5_attrs_group = {
4803         .name = NULL,
4804         .attrs = raid5_attrs,
4805 };
4806
4807 static sector_t
4808 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4809 {
4810         struct r5conf *conf = mddev->private;
4811
4812         if (!sectors)
4813                 sectors = mddev->dev_sectors;
4814         if (!raid_disks)
4815                 /* size is defined by the smallest of previous and new size */
4816                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4817
4818         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4819         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4820         return sectors * (raid_disks - conf->max_degraded);
4821 }
4822
4823 static void raid5_free_percpu(struct r5conf *conf)
4824 {
4825         struct raid5_percpu *percpu;
4826         unsigned long cpu;
4827
4828         if (!conf->percpu)
4829                 return;
4830
4831         get_online_cpus();
4832         for_each_possible_cpu(cpu) {
4833                 percpu = per_cpu_ptr(conf->percpu, cpu);
4834                 safe_put_page(percpu->spare_page);
4835                 kfree(percpu->scribble);
4836         }
4837 #ifdef CONFIG_HOTPLUG_CPU
4838         unregister_cpu_notifier(&conf->cpu_notify);
4839 #endif
4840         put_online_cpus();
4841
4842         free_percpu(conf->percpu);
4843 }
4844
4845 static void free_conf(struct r5conf *conf)
4846 {
4847         shrink_stripes(conf);
4848         raid5_free_percpu(conf);
4849         kfree(conf->disks);
4850         kfree(conf->stripe_hashtbl);
4851         kfree(conf);
4852 }
4853
4854 #ifdef CONFIG_HOTPLUG_CPU
4855 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4856                               void *hcpu)
4857 {
4858         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4859         long cpu = (long)hcpu;
4860         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4861
4862         switch (action) {
4863         case CPU_UP_PREPARE:
4864         case CPU_UP_PREPARE_FROZEN:
4865                 if (conf->level == 6 && !percpu->spare_page)
4866                         percpu->spare_page = alloc_page(GFP_KERNEL);
4867                 if (!percpu->scribble)
4868                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4869
4870                 if (!percpu->scribble ||
4871                     (conf->level == 6 && !percpu->spare_page)) {
4872                         safe_put_page(percpu->spare_page);
4873                         kfree(percpu->scribble);
4874                         pr_err("%s: failed memory allocation for cpu%ld\n",
4875                                __func__, cpu);
4876                         return notifier_from_errno(-ENOMEM);
4877                 }
4878                 break;
4879         case CPU_DEAD:
4880         case CPU_DEAD_FROZEN:
4881                 safe_put_page(percpu->spare_page);
4882                 kfree(percpu->scribble);
4883                 percpu->spare_page = NULL;
4884                 percpu->scribble = NULL;
4885                 break;
4886         default:
4887                 break;
4888         }
4889         return NOTIFY_OK;
4890 }
4891 #endif
4892
4893 static int raid5_alloc_percpu(struct r5conf *conf)
4894 {
4895         unsigned long cpu;
4896         struct page *spare_page;
4897         struct raid5_percpu __percpu *allcpus;
4898         void *scribble;
4899         int err;
4900
4901         allcpus = alloc_percpu(struct raid5_percpu);
4902         if (!allcpus)
4903                 return -ENOMEM;
4904         conf->percpu = allcpus;
4905
4906         get_online_cpus();
4907         err = 0;
4908         for_each_present_cpu(cpu) {
4909                 if (conf->level == 6) {
4910                         spare_page = alloc_page(GFP_KERNEL);
4911                         if (!spare_page) {
4912                                 err = -ENOMEM;
4913                                 break;
4914                         }
4915                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4916                 }
4917                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4918                 if (!scribble) {
4919                         err = -ENOMEM;
4920                         break;
4921                 }
4922                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4923         }
4924 #ifdef CONFIG_HOTPLUG_CPU
4925         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4926         conf->cpu_notify.priority = 0;
4927         if (err == 0)
4928                 err = register_cpu_notifier(&conf->cpu_notify);
4929 #endif
4930         put_online_cpus();
4931
4932         return err;
4933 }
4934
4935 static struct r5conf *setup_conf(struct mddev *mddev)
4936 {
4937         struct r5conf *conf;
4938         int raid_disk, memory, max_disks;
4939         struct md_rdev *rdev;
4940         struct disk_info *disk;
4941         char pers_name[6];
4942
4943         if (mddev->new_level != 5
4944             && mddev->new_level != 4
4945             && mddev->new_level != 6) {
4946                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4947                        mdname(mddev), mddev->new_level);
4948                 return ERR_PTR(-EIO);
4949         }
4950         if ((mddev->new_level == 5
4951              && !algorithm_valid_raid5(mddev->new_layout)) ||
4952             (mddev->new_level == 6
4953              && !algorithm_valid_raid6(mddev->new_layout))) {
4954                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4955                        mdname(mddev), mddev->new_layout);
4956                 return ERR_PTR(-EIO);
4957         }
4958         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4959                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4960                        mdname(mddev), mddev->raid_disks);
4961                 return ERR_PTR(-EINVAL);
4962         }
4963
4964         if (!mddev->new_chunk_sectors ||
4965             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4966             !is_power_of_2(mddev->new_chunk_sectors)) {
4967                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4968                        mdname(mddev), mddev->new_chunk_sectors << 9);
4969                 return ERR_PTR(-EINVAL);
4970         }
4971
4972         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4973         if (conf == NULL)
4974                 goto abort;
4975         spin_lock_init(&conf->device_lock);
4976         init_waitqueue_head(&conf->wait_for_stripe);
4977         init_waitqueue_head(&conf->wait_for_overlap);
4978         INIT_LIST_HEAD(&conf->handle_list);
4979         INIT_LIST_HEAD(&conf->hold_list);
4980         INIT_LIST_HEAD(&conf->delayed_list);
4981         INIT_LIST_HEAD(&conf->bitmap_list);
4982         INIT_LIST_HEAD(&conf->inactive_list);
4983         atomic_set(&conf->active_stripes, 0);
4984         atomic_set(&conf->preread_active_stripes, 0);
4985         atomic_set(&conf->active_aligned_reads, 0);
4986         conf->bypass_threshold = BYPASS_THRESHOLD;
4987         conf->recovery_disabled = mddev->recovery_disabled - 1;
4988
4989         conf->raid_disks = mddev->raid_disks;
4990         if (mddev->reshape_position == MaxSector)
4991                 conf->previous_raid_disks = mddev->raid_disks;
4992         else
4993                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4994         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4995         conf->scribble_len = scribble_len(max_disks);
4996
4997         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4998                               GFP_KERNEL);
4999         if (!conf->disks)
5000                 goto abort;
5001
5002         conf->mddev = mddev;
5003
5004         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5005                 goto abort;
5006
5007         conf->level = mddev->new_level;
5008         if (raid5_alloc_percpu(conf) != 0)
5009                 goto abort;
5010
5011         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5012
5013         rdev_for_each(rdev, mddev) {
5014                 raid_disk = rdev->raid_disk;
5015                 if (raid_disk >= max_disks
5016                     || raid_disk < 0)
5017                         continue;
5018                 disk = conf->disks + raid_disk;
5019
5020                 if (test_bit(Replacement, &rdev->flags)) {
5021                         if (disk->replacement)
5022                                 goto abort;
5023                         disk->replacement = rdev;
5024                 } else {
5025                         if (disk->rdev)
5026                                 goto abort;
5027                         disk->rdev = rdev;
5028                 }
5029
5030                 if (test_bit(In_sync, &rdev->flags)) {
5031                         char b[BDEVNAME_SIZE];
5032                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5033                                " disk %d\n",
5034                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5035                 } else if (rdev->saved_raid_disk != raid_disk)
5036                         /* Cannot rely on bitmap to complete recovery */
5037                         conf->fullsync = 1;
5038         }
5039
5040         conf->chunk_sectors = mddev->new_chunk_sectors;
5041         conf->level = mddev->new_level;
5042         if (conf->level == 6)
5043                 conf->max_degraded = 2;
5044         else
5045                 conf->max_degraded = 1;
5046         conf->algorithm = mddev->new_layout;
5047         conf->max_nr_stripes = NR_STRIPES;
5048         conf->reshape_progress = mddev->reshape_position;
5049         if (conf->reshape_progress != MaxSector) {
5050                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5051                 conf->prev_algo = mddev->layout;
5052         }
5053
5054         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5055                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5056         if (grow_stripes(conf, conf->max_nr_stripes)) {
5057                 printk(KERN_ERR
5058                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5059                        mdname(mddev), memory);
5060                 goto abort;
5061         } else
5062                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5063                        mdname(mddev), memory);
5064
5065         sprintf(pers_name, "raid%d", mddev->new_level);
5066         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5067         if (!conf->thread) {
5068                 printk(KERN_ERR
5069                        "md/raid:%s: couldn't allocate thread.\n",
5070                        mdname(mddev));
5071                 goto abort;
5072         }
5073
5074         return conf;
5075
5076  abort:
5077         if (conf) {
5078                 free_conf(conf);
5079                 return ERR_PTR(-EIO);
5080         } else
5081                 return ERR_PTR(-ENOMEM);
5082 }
5083
5084
5085 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5086 {
5087         switch (algo) {
5088         case ALGORITHM_PARITY_0:
5089                 if (raid_disk < max_degraded)
5090                         return 1;
5091                 break;
5092         case ALGORITHM_PARITY_N:
5093                 if (raid_disk >= raid_disks - max_degraded)
5094                         return 1;
5095                 break;
5096         case ALGORITHM_PARITY_0_6:
5097                 if (raid_disk == 0 || 
5098                     raid_disk == raid_disks - 1)
5099                         return 1;
5100                 break;
5101         case ALGORITHM_LEFT_ASYMMETRIC_6:
5102         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5103         case ALGORITHM_LEFT_SYMMETRIC_6:
5104         case ALGORITHM_RIGHT_SYMMETRIC_6:
5105                 if (raid_disk == raid_disks - 1)
5106                         return 1;
5107         }
5108         return 0;
5109 }
5110
5111 static int run(struct mddev *mddev)
5112 {
5113         struct r5conf *conf;
5114         int working_disks = 0;
5115         int dirty_parity_disks = 0;
5116         struct md_rdev *rdev;
5117         sector_t reshape_offset = 0;
5118         int i;
5119         long long min_offset_diff = 0;
5120         int first = 1;
5121
5122         if (mddev->recovery_cp != MaxSector)
5123                 printk(KERN_NOTICE "md/raid:%s: not clean"
5124                        " -- starting background reconstruction\n",
5125                        mdname(mddev));
5126
5127         rdev_for_each(rdev, mddev) {
5128                 long long diff;
5129                 if (rdev->raid_disk < 0)
5130                         continue;
5131                 diff = (rdev->new_data_offset - rdev->data_offset);
5132                 if (first) {
5133                         min_offset_diff = diff;
5134                         first = 0;
5135                 } else if (mddev->reshape_backwards &&
5136                          diff < min_offset_diff)
5137                         min_offset_diff = diff;
5138                 else if (!mddev->reshape_backwards &&
5139                          diff > min_offset_diff)
5140                         min_offset_diff = diff;
5141         }
5142
5143         if (mddev->reshape_position != MaxSector) {
5144                 /* Check that we can continue the reshape.
5145                  * Difficulties arise if the stripe we would write to
5146                  * next is at or after the stripe we would read from next.
5147                  * For a reshape that changes the number of devices, this
5148                  * is only possible for a very short time, and mdadm makes
5149                  * sure that time appears to have past before assembling
5150                  * the array.  So we fail if that time hasn't passed.
5151                  * For a reshape that keeps the number of devices the same
5152                  * mdadm must be monitoring the reshape can keeping the
5153                  * critical areas read-only and backed up.  It will start
5154                  * the array in read-only mode, so we check for that.
5155                  */
5156                 sector_t here_new, here_old;
5157                 int old_disks;
5158                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5159
5160                 if (mddev->new_level != mddev->level) {
5161                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5162                                "required - aborting.\n",
5163                                mdname(mddev));
5164                         return -EINVAL;
5165                 }
5166                 old_disks = mddev->raid_disks - mddev->delta_disks;
5167                 /* reshape_position must be on a new-stripe boundary, and one
5168                  * further up in new geometry must map after here in old
5169                  * geometry.
5170                  */
5171                 here_new = mddev->reshape_position;
5172                 if (sector_div(here_new, mddev->new_chunk_sectors *
5173                                (mddev->raid_disks - max_degraded))) {
5174                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5175                                "on a stripe boundary\n", mdname(mddev));
5176                         return -EINVAL;
5177                 }
5178                 reshape_offset = here_new * mddev->new_chunk_sectors;
5179                 /* here_new is the stripe we will write to */
5180                 here_old = mddev->reshape_position;
5181                 sector_div(here_old, mddev->chunk_sectors *
5182                            (old_disks-max_degraded));
5183                 /* here_old is the first stripe that we might need to read
5184                  * from */
5185                 if (mddev->delta_disks == 0) {
5186                         if ((here_new * mddev->new_chunk_sectors !=
5187                              here_old * mddev->chunk_sectors)) {
5188                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5189                                        " confused - aborting\n", mdname(mddev));
5190                                 return -EINVAL;
5191                         }
5192                         /* We cannot be sure it is safe to start an in-place
5193                          * reshape.  It is only safe if user-space is monitoring
5194                          * and taking constant backups.
5195                          * mdadm always starts a situation like this in
5196                          * readonly mode so it can take control before
5197                          * allowing any writes.  So just check for that.
5198                          */
5199                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5200                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5201                                 /* not really in-place - so OK */;
5202                         else if (mddev->ro == 0) {
5203                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5204                                        "must be started in read-only mode "
5205                                        "- aborting\n",
5206                                        mdname(mddev));
5207                                 return -EINVAL;
5208                         }
5209                 } else if (mddev->reshape_backwards
5210                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5211                        here_old * mddev->chunk_sectors)
5212                     : (here_new * mddev->new_chunk_sectors >=
5213                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5214                         /* Reading from the same stripe as writing to - bad */
5215                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5216                                "auto-recovery - aborting.\n",
5217                                mdname(mddev));
5218                         return -EINVAL;
5219                 }
5220                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5221                        mdname(mddev));
5222                 /* OK, we should be able to continue; */
5223         } else {
5224                 BUG_ON(mddev->level != mddev->new_level);
5225                 BUG_ON(mddev->layout != mddev->new_layout);
5226                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5227                 BUG_ON(mddev->delta_disks != 0);
5228         }
5229
5230         if (mddev->private == NULL)
5231                 conf = setup_conf(mddev);
5232         else
5233                 conf = mddev->private;
5234
5235         if (IS_ERR(conf))
5236                 return PTR_ERR(conf);
5237
5238         conf->min_offset_diff = min_offset_diff;
5239         mddev->thread = conf->thread;
5240         conf->thread = NULL;
5241         mddev->private = conf;
5242
5243         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5244              i++) {
5245                 rdev = conf->disks[i].rdev;
5246                 if (!rdev && conf->disks[i].replacement) {
5247                         /* The replacement is all we have yet */
5248                         rdev = conf->disks[i].replacement;
5249                         conf->disks[i].replacement = NULL;
5250                         clear_bit(Replacement, &rdev->flags);
5251                         conf->disks[i].rdev = rdev;
5252                 }
5253                 if (!rdev)
5254                         continue;
5255                 if (conf->disks[i].replacement &&
5256                     conf->reshape_progress != MaxSector) {
5257                         /* replacements and reshape simply do not mix. */
5258                         printk(KERN_ERR "md: cannot handle concurrent "
5259                                "replacement and reshape.\n");
5260                         goto abort;
5261                 }
5262                 if (test_bit(In_sync, &rdev->flags)) {
5263                         working_disks++;
5264                         continue;
5265                 }
5266                 /* This disc is not fully in-sync.  However if it
5267                  * just stored parity (beyond the recovery_offset),
5268                  * when we don't need to be concerned about the
5269                  * array being dirty.
5270                  * When reshape goes 'backwards', we never have
5271                  * partially completed devices, so we only need
5272                  * to worry about reshape going forwards.
5273                  */
5274                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5275                 if (mddev->major_version == 0 &&
5276                     mddev->minor_version > 90)
5277                         rdev->recovery_offset = reshape_offset;
5278                         
5279                 if (rdev->recovery_offset < reshape_offset) {
5280                         /* We need to check old and new layout */
5281                         if (!only_parity(rdev->raid_disk,
5282                                          conf->algorithm,
5283                                          conf->raid_disks,
5284                                          conf->max_degraded))
5285                                 continue;
5286                 }
5287                 if (!only_parity(rdev->raid_disk,
5288                                  conf->prev_algo,
5289                                  conf->previous_raid_disks,
5290                                  conf->max_degraded))
5291                         continue;
5292                 dirty_parity_disks++;
5293         }
5294
5295         /*
5296          * 0 for a fully functional array, 1 or 2 for a degraded array.
5297          */
5298         mddev->degraded = calc_degraded(conf);
5299
5300         if (has_failed(conf)) {
5301                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5302                         " (%d/%d failed)\n",
5303                         mdname(mddev), mddev->degraded, conf->raid_disks);
5304                 goto abort;
5305         }
5306
5307         /* device size must be a multiple of chunk size */
5308         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5309         mddev->resync_max_sectors = mddev->dev_sectors;
5310
5311         if (mddev->degraded > dirty_parity_disks &&
5312             mddev->recovery_cp != MaxSector) {
5313                 if (mddev->ok_start_degraded)
5314                         printk(KERN_WARNING
5315                                "md/raid:%s: starting dirty degraded array"
5316                                " - data corruption possible.\n",
5317                                mdname(mddev));
5318                 else {
5319                         printk(KERN_ERR
5320                                "md/raid:%s: cannot start dirty degraded array.\n",
5321                                mdname(mddev));
5322                         goto abort;
5323                 }
5324         }
5325
5326         if (mddev->degraded == 0)
5327                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5328                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5329                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5330                        mddev->new_layout);
5331         else
5332                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5333                        " out of %d devices, algorithm %d\n",
5334                        mdname(mddev), conf->level,
5335                        mddev->raid_disks - mddev->degraded,
5336                        mddev->raid_disks, mddev->new_layout);
5337
5338         print_raid5_conf(conf);
5339
5340         if (conf->reshape_progress != MaxSector) {
5341                 conf->reshape_safe = conf->reshape_progress;
5342                 atomic_set(&conf->reshape_stripes, 0);
5343                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5344                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5345                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5346                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5347                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5348                                                         "reshape");
5349         }
5350
5351
5352         /* Ok, everything is just fine now */
5353         if (mddev->to_remove == &raid5_attrs_group)
5354                 mddev->to_remove = NULL;
5355         else if (mddev->kobj.sd &&
5356             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5357                 printk(KERN_WARNING
5358                        "raid5: failed to create sysfs attributes for %s\n",
5359                        mdname(mddev));
5360         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5361
5362         if (mddev->queue) {
5363                 int chunk_size;
5364                 /* read-ahead size must cover two whole stripes, which
5365                  * is 2 * (datadisks) * chunksize where 'n' is the
5366                  * number of raid devices
5367                  */
5368                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5369                 int stripe = data_disks *
5370                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5371                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5372                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5373
5374                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5375
5376                 mddev->queue->backing_dev_info.congested_data = mddev;
5377                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5378
5379                 chunk_size = mddev->chunk_sectors << 9;
5380                 blk_queue_io_min(mddev->queue, chunk_size);
5381                 blk_queue_io_opt(mddev->queue, chunk_size *
5382                                  (conf->raid_disks - conf->max_degraded));
5383
5384                 rdev_for_each(rdev, mddev) {
5385                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5386                                           rdev->data_offset << 9);
5387                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5388                                           rdev->new_data_offset << 9);
5389                 }
5390         }
5391
5392         return 0;
5393 abort:
5394         md_unregister_thread(&mddev->thread);
5395         print_raid5_conf(conf);
5396         free_conf(conf);
5397         mddev->private = NULL;
5398         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5399         return -EIO;
5400 }
5401
5402 static int stop(struct mddev *mddev)
5403 {
5404         struct r5conf *conf = mddev->private;
5405
5406         md_unregister_thread(&mddev->thread);
5407         if (mddev->queue)
5408                 mddev->queue->backing_dev_info.congested_fn = NULL;
5409         free_conf(conf);
5410         mddev->private = NULL;
5411         mddev->to_remove = &raid5_attrs_group;
5412         return 0;
5413 }
5414
5415 static void status(struct seq_file *seq, struct mddev *mddev)
5416 {
5417         struct r5conf *conf = mddev->private;
5418         int i;
5419
5420         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5421                 mddev->chunk_sectors / 2, mddev->layout);
5422         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5423         for (i = 0; i < conf->raid_disks; i++)
5424                 seq_printf (seq, "%s",
5425                                conf->disks[i].rdev &&
5426                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5427         seq_printf (seq, "]");
5428 }
5429
5430 static void print_raid5_conf (struct r5conf *conf)
5431 {
5432         int i;
5433         struct disk_info *tmp;
5434
5435         printk(KERN_DEBUG "RAID conf printout:\n");
5436         if (!conf) {
5437                 printk("(conf==NULL)\n");
5438                 return;
5439         }
5440         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5441                conf->raid_disks,
5442                conf->raid_disks - conf->mddev->degraded);
5443
5444         for (i = 0; i < conf->raid_disks; i++) {
5445                 char b[BDEVNAME_SIZE];
5446                 tmp = conf->disks + i;
5447                 if (tmp->rdev)
5448                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5449                                i, !test_bit(Faulty, &tmp->rdev->flags),
5450                                bdevname(tmp->rdev->bdev, b));
5451         }
5452 }
5453
5454 static int raid5_spare_active(struct mddev *mddev)
5455 {
5456         int i;
5457         struct r5conf *conf = mddev->private;
5458         struct disk_info *tmp;
5459         int count = 0;
5460         unsigned long flags;
5461
5462         for (i = 0; i < conf->raid_disks; i++) {
5463                 tmp = conf->disks + i;
5464                 if (tmp->replacement
5465                     && tmp->replacement->recovery_offset == MaxSector
5466                     && !test_bit(Faulty, &tmp->replacement->flags)
5467                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5468                         /* Replacement has just become active. */
5469                         if (!tmp->rdev
5470                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5471                                 count++;
5472                         if (tmp->rdev) {
5473                                 /* Replaced device not technically faulty,
5474                                  * but we need to be sure it gets removed
5475                                  * and never re-added.
5476                                  */
5477                                 set_bit(Faulty, &tmp->rdev->flags);
5478                                 sysfs_notify_dirent_safe(
5479                                         tmp->rdev->sysfs_state);
5480                         }
5481                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5482                 } else if (tmp->rdev
5483                     && tmp->rdev->recovery_offset == MaxSector
5484                     && !test_bit(Faulty, &tmp->rdev->flags)
5485                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5486                         count++;
5487                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5488                 }
5489         }
5490         spin_lock_irqsave(&conf->device_lock, flags);
5491         mddev->degraded = calc_degraded(conf);
5492         spin_unlock_irqrestore(&conf->device_lock, flags);
5493         print_raid5_conf(conf);
5494         return count;
5495 }
5496
5497 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5498 {
5499         struct r5conf *conf = mddev->private;
5500         int err = 0;
5501         int number = rdev->raid_disk;
5502         struct md_rdev **rdevp;
5503         struct disk_info *p = conf->disks + number;
5504
5505         print_raid5_conf(conf);
5506         if (rdev == p->rdev)
5507                 rdevp = &p->rdev;
5508         else if (rdev == p->replacement)
5509                 rdevp = &p->replacement;
5510         else
5511                 return 0;
5512
5513         if (number >= conf->raid_disks &&
5514             conf->reshape_progress == MaxSector)
5515                 clear_bit(In_sync, &rdev->flags);
5516
5517         if (test_bit(In_sync, &rdev->flags) ||
5518             atomic_read(&rdev->nr_pending)) {
5519                 err = -EBUSY;
5520                 goto abort;
5521         }
5522         /* Only remove non-faulty devices if recovery
5523          * isn't possible.
5524          */
5525         if (!test_bit(Faulty, &rdev->flags) &&
5526             mddev->recovery_disabled != conf->recovery_disabled &&
5527             !has_failed(conf) &&
5528             (!p->replacement || p->replacement == rdev) &&
5529             number < conf->raid_disks) {
5530                 err = -EBUSY;
5531                 goto abort;
5532         }
5533         *rdevp = NULL;
5534         synchronize_rcu();
5535         if (atomic_read(&rdev->nr_pending)) {
5536                 /* lost the race, try later */
5537                 err = -EBUSY;
5538                 *rdevp = rdev;
5539         } else if (p->replacement) {
5540                 /* We must have just cleared 'rdev' */
5541                 p->rdev = p->replacement;
5542                 clear_bit(Replacement, &p->replacement->flags);
5543                 smp_mb(); /* Make sure other CPUs may see both as identical
5544                            * but will never see neither - if they are careful
5545                            */
5546                 p->replacement = NULL;
5547                 clear_bit(WantReplacement, &rdev->flags);
5548         } else
5549                 /* We might have just removed the Replacement as faulty-
5550                  * clear the bit just in case
5551                  */
5552                 clear_bit(WantReplacement, &rdev->flags);
5553 abort:
5554
5555         print_raid5_conf(conf);
5556         return err;
5557 }
5558
5559 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5560 {
5561         struct r5conf *conf = mddev->private;
5562         int err = -EEXIST;
5563         int disk;
5564         struct disk_info *p;
5565         int first = 0;
5566         int last = conf->raid_disks - 1;
5567
5568         if (mddev->recovery_disabled == conf->recovery_disabled)
5569                 return -EBUSY;
5570
5571         if (rdev->saved_raid_disk < 0 && has_failed(conf))
5572                 /* no point adding a device */
5573                 return -EINVAL;
5574
5575         if (rdev->raid_disk >= 0)
5576                 first = last = rdev->raid_disk;
5577
5578         /*
5579          * find the disk ... but prefer rdev->saved_raid_disk
5580          * if possible.
5581          */
5582         if (rdev->saved_raid_disk >= 0 &&
5583             rdev->saved_raid_disk >= first &&
5584             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5585                 first = rdev->saved_raid_disk;
5586
5587         for (disk = first; disk <= last; disk++) {
5588                 p = conf->disks + disk;
5589                 if (p->rdev == NULL) {
5590                         clear_bit(In_sync, &rdev->flags);
5591                         rdev->raid_disk = disk;
5592                         err = 0;
5593                         if (rdev->saved_raid_disk != disk)
5594                                 conf->fullsync = 1;
5595                         rcu_assign_pointer(p->rdev, rdev);
5596                         goto out;
5597                 }
5598         }
5599         for (disk = first; disk <= last; disk++) {
5600                 p = conf->disks + disk;
5601                 if (test_bit(WantReplacement, &p->rdev->flags) &&
5602                     p->replacement == NULL) {
5603                         clear_bit(In_sync, &rdev->flags);
5604                         set_bit(Replacement, &rdev->flags);
5605                         rdev->raid_disk = disk;
5606                         err = 0;
5607                         conf->fullsync = 1;
5608                         rcu_assign_pointer(p->replacement, rdev);
5609                         break;
5610                 }
5611         }
5612 out:
5613         print_raid5_conf(conf);
5614         return err;
5615 }
5616
5617 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5618 {
5619         /* no resync is happening, and there is enough space
5620          * on all devices, so we can resize.
5621          * We need to make sure resync covers any new space.
5622          * If the array is shrinking we should possibly wait until
5623          * any io in the removed space completes, but it hardly seems
5624          * worth it.
5625          */
5626         sector_t newsize;
5627         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5628         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5629         if (mddev->external_size &&
5630             mddev->array_sectors > newsize)
5631                 return -EINVAL;
5632         if (mddev->bitmap) {
5633                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5634                 if (ret)
5635                         return ret;
5636         }
5637         md_set_array_sectors(mddev, newsize);
5638         set_capacity(mddev->gendisk, mddev->array_sectors);
5639         revalidate_disk(mddev->gendisk);
5640         if (sectors > mddev->dev_sectors &&
5641             mddev->recovery_cp > mddev->dev_sectors) {
5642                 mddev->recovery_cp = mddev->dev_sectors;
5643                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5644         }
5645         mddev->dev_sectors = sectors;
5646         mddev->resync_max_sectors = sectors;
5647         return 0;
5648 }
5649
5650 static int check_stripe_cache(struct mddev *mddev)
5651 {
5652         /* Can only proceed if there are plenty of stripe_heads.
5653          * We need a minimum of one full stripe,, and for sensible progress
5654          * it is best to have about 4 times that.
5655          * If we require 4 times, then the default 256 4K stripe_heads will
5656          * allow for chunk sizes up to 256K, which is probably OK.
5657          * If the chunk size is greater, user-space should request more
5658          * stripe_heads first.
5659          */
5660         struct r5conf *conf = mddev->private;
5661         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5662             > conf->max_nr_stripes ||
5663             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5664             > conf->max_nr_stripes) {
5665                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5666                        mdname(mddev),
5667                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5668                         / STRIPE_SIZE)*4);
5669                 return 0;
5670         }
5671         return 1;
5672 }
5673
5674 static int check_reshape(struct mddev *mddev)
5675 {
5676         struct r5conf *conf = mddev->private;
5677
5678         if (mddev->delta_disks == 0 &&
5679             mddev->new_layout == mddev->layout &&
5680             mddev->new_chunk_sectors == mddev->chunk_sectors)
5681                 return 0; /* nothing to do */
5682         if (has_failed(conf))
5683                 return -EINVAL;
5684         if (mddev->delta_disks < 0) {
5685                 /* We might be able to shrink, but the devices must
5686                  * be made bigger first.
5687                  * For raid6, 4 is the minimum size.
5688                  * Otherwise 2 is the minimum
5689                  */
5690                 int min = 2;
5691                 if (mddev->level == 6)
5692                         min = 4;
5693                 if (mddev->raid_disks + mddev->delta_disks < min)
5694                         return -EINVAL;
5695         }
5696
5697         if (!check_stripe_cache(mddev))
5698                 return -ENOSPC;
5699
5700         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5701 }
5702
5703 static int raid5_start_reshape(struct mddev *mddev)
5704 {
5705         struct r5conf *conf = mddev->private;
5706         struct md_rdev *rdev;
5707         int spares = 0;
5708         unsigned long flags;
5709
5710         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5711                 return -EBUSY;
5712
5713         if (!check_stripe_cache(mddev))
5714                 return -ENOSPC;
5715
5716         if (has_failed(conf))
5717                 return -EINVAL;
5718
5719         rdev_for_each(rdev, mddev) {
5720                 if (!test_bit(In_sync, &rdev->flags)
5721                     && !test_bit(Faulty, &rdev->flags))
5722                         spares++;
5723         }
5724
5725         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5726                 /* Not enough devices even to make a degraded array
5727                  * of that size
5728                  */
5729                 return -EINVAL;
5730
5731         /* Refuse to reduce size of the array.  Any reductions in
5732          * array size must be through explicit setting of array_size
5733          * attribute.
5734          */
5735         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5736             < mddev->array_sectors) {
5737                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5738                        "before number of disks\n", mdname(mddev));
5739                 return -EINVAL;
5740         }
5741
5742         atomic_set(&conf->reshape_stripes, 0);
5743         spin_lock_irq(&conf->device_lock);
5744         conf->previous_raid_disks = conf->raid_disks;
5745         conf->raid_disks += mddev->delta_disks;
5746         conf->prev_chunk_sectors = conf->chunk_sectors;
5747         conf->chunk_sectors = mddev->new_chunk_sectors;
5748         conf->prev_algo = conf->algorithm;
5749         conf->algorithm = mddev->new_layout;
5750         conf->generation++;
5751         /* Code that selects data_offset needs to see the generation update
5752          * if reshape_progress has been set - so a memory barrier needed.
5753          */
5754         smp_mb();
5755         if (mddev->reshape_backwards)
5756                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5757         else
5758                 conf->reshape_progress = 0;
5759         conf->reshape_safe = conf->reshape_progress;
5760         spin_unlock_irq(&conf->device_lock);
5761
5762         /* Add some new drives, as many as will fit.
5763          * We know there are enough to make the newly sized array work.
5764          * Don't add devices if we are reducing the number of
5765          * devices in the array.  This is because it is not possible
5766          * to correctly record the "partially reconstructed" state of
5767          * such devices during the reshape and confusion could result.
5768          */
5769         if (mddev->delta_disks >= 0) {
5770                 rdev_for_each(rdev, mddev)
5771                         if (rdev->raid_disk < 0 &&
5772                             !test_bit(Faulty, &rdev->flags)) {
5773                                 if (raid5_add_disk(mddev, rdev) == 0) {
5774                                         if (rdev->raid_disk
5775                                             >= conf->previous_raid_disks)
5776                                                 set_bit(In_sync, &rdev->flags);
5777                                         else
5778                                                 rdev->recovery_offset = 0;
5779
5780                                         if (sysfs_link_rdev(mddev, rdev))
5781                                                 /* Failure here is OK */;
5782                                 }
5783                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5784                                    && !test_bit(Faulty, &rdev->flags)) {
5785                                 /* This is a spare that was manually added */
5786                                 set_bit(In_sync, &rdev->flags);
5787                         }
5788
5789                 /* When a reshape changes the number of devices,
5790                  * ->degraded is measured against the larger of the
5791                  * pre and post number of devices.
5792                  */
5793                 spin_lock_irqsave(&conf->device_lock, flags);
5794                 mddev->degraded = calc_degraded(conf);
5795                 spin_unlock_irqrestore(&conf->device_lock, flags);
5796         }
5797         mddev->raid_disks = conf->raid_disks;
5798         mddev->reshape_position = conf->reshape_progress;
5799         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5800
5801         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5802         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5803         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5804         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5805         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5806                                                 "reshape");
5807         if (!mddev->sync_thread) {
5808                 mddev->recovery = 0;
5809                 spin_lock_irq(&conf->device_lock);
5810                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5811                 rdev_for_each(rdev, mddev)
5812                         rdev->new_data_offset = rdev->data_offset;
5813                 smp_wmb();
5814                 conf->reshape_progress = MaxSector;
5815                 mddev->reshape_position = MaxSector;
5816                 spin_unlock_irq(&conf->device_lock);
5817                 return -EAGAIN;
5818         }
5819         conf->reshape_checkpoint = jiffies;
5820         md_wakeup_thread(mddev->sync_thread);
5821         md_new_event(mddev);
5822         return 0;
5823 }
5824
5825 /* This is called from the reshape thread and should make any
5826  * changes needed in 'conf'
5827  */
5828 static void end_reshape(struct r5conf *conf)
5829 {
5830
5831         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5832                 struct md_rdev *rdev;
5833
5834                 spin_lock_irq(&conf->device_lock);
5835                 conf->previous_raid_disks = conf->raid_disks;
5836                 rdev_for_each(rdev, conf->mddev)
5837                         rdev->data_offset = rdev->new_data_offset;
5838                 smp_wmb();
5839                 conf->reshape_progress = MaxSector;
5840                 spin_unlock_irq(&conf->device_lock);
5841                 wake_up(&conf->wait_for_overlap);
5842
5843                 /* read-ahead size must cover two whole stripes, which is
5844                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5845                  */
5846                 if (conf->mddev->queue) {
5847                         int data_disks = conf->raid_disks - conf->max_degraded;
5848                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5849                                                    / PAGE_SIZE);
5850                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5851                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5852                 }
5853         }
5854 }
5855
5856 /* This is called from the raid5d thread with mddev_lock held.
5857  * It makes config changes to the device.
5858  */
5859 static void raid5_finish_reshape(struct mddev *mddev)
5860 {
5861         struct r5conf *conf = mddev->private;
5862
5863         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5864
5865                 if (mddev->delta_disks > 0) {
5866                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5867                         set_capacity(mddev->gendisk, mddev->array_sectors);
5868                         revalidate_disk(mddev->gendisk);
5869                 } else {
5870                         int d;
5871                         spin_lock_irq(&conf->device_lock);
5872                         mddev->degraded = calc_degraded(conf);
5873                         spin_unlock_irq(&conf->device_lock);
5874                         for (d = conf->raid_disks ;
5875                              d < conf->raid_disks - mddev->delta_disks;
5876                              d++) {
5877                                 struct md_rdev *rdev = conf->disks[d].rdev;
5878                                 if (rdev)
5879                                         clear_bit(In_sync, &rdev->flags);
5880                                 rdev = conf->disks[d].replacement;
5881                                 if (rdev)
5882                                         clear_bit(In_sync, &rdev->flags);
5883                         }
5884                 }
5885                 mddev->layout = conf->algorithm;
5886                 mddev->chunk_sectors = conf->chunk_sectors;
5887                 mddev->reshape_position = MaxSector;
5888                 mddev->delta_disks = 0;
5889                 mddev->reshape_backwards = 0;
5890         }
5891 }
5892
5893 static void raid5_quiesce(struct mddev *mddev, int state)
5894 {
5895         struct r5conf *conf = mddev->private;
5896
5897         switch(state) {
5898         case 2: /* resume for a suspend */
5899                 wake_up(&conf->wait_for_overlap);
5900                 break;
5901
5902         case 1: /* stop all writes */
5903                 spin_lock_irq(&conf->device_lock);
5904                 /* '2' tells resync/reshape to pause so that all
5905                  * active stripes can drain
5906                  */
5907                 conf->quiesce = 2;
5908                 wait_event_lock_irq(conf->wait_for_stripe,
5909                                     atomic_read(&conf->active_stripes) == 0 &&
5910                                     atomic_read(&conf->active_aligned_reads) == 0,
5911                                     conf->device_lock, /* nothing */);
5912                 conf->quiesce = 1;
5913                 spin_unlock_irq(&conf->device_lock);
5914                 /* allow reshape to continue */
5915                 wake_up(&conf->wait_for_overlap);
5916                 break;
5917
5918         case 0: /* re-enable writes */
5919                 spin_lock_irq(&conf->device_lock);
5920                 conf->quiesce = 0;
5921                 wake_up(&conf->wait_for_stripe);
5922                 wake_up(&conf->wait_for_overlap);
5923                 spin_unlock_irq(&conf->device_lock);
5924                 break;
5925         }
5926 }
5927
5928
5929 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5930 {
5931         struct r0conf *raid0_conf = mddev->private;
5932         sector_t sectors;
5933
5934         /* for raid0 takeover only one zone is supported */
5935         if (raid0_conf->nr_strip_zones > 1) {
5936                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5937                        mdname(mddev));
5938                 return ERR_PTR(-EINVAL);
5939         }
5940
5941         sectors = raid0_conf->strip_zone[0].zone_end;
5942         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5943         mddev->dev_sectors = sectors;
5944         mddev->new_level = level;
5945         mddev->new_layout = ALGORITHM_PARITY_N;
5946         mddev->new_chunk_sectors = mddev->chunk_sectors;
5947         mddev->raid_disks += 1;
5948         mddev->delta_disks = 1;
5949         /* make sure it will be not marked as dirty */
5950         mddev->recovery_cp = MaxSector;
5951
5952         return setup_conf(mddev);
5953 }
5954
5955
5956 static void *raid5_takeover_raid1(struct mddev *mddev)
5957 {
5958         int chunksect;
5959
5960         if (mddev->raid_disks != 2 ||
5961             mddev->degraded > 1)
5962                 return ERR_PTR(-EINVAL);
5963
5964         /* Should check if there are write-behind devices? */
5965
5966         chunksect = 64*2; /* 64K by default */
5967
5968         /* The array must be an exact multiple of chunksize */
5969         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5970                 chunksect >>= 1;
5971
5972         if ((chunksect<<9) < STRIPE_SIZE)
5973                 /* array size does not allow a suitable chunk size */
5974                 return ERR_PTR(-EINVAL);
5975
5976         mddev->new_level = 5;
5977         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5978         mddev->new_chunk_sectors = chunksect;
5979
5980         return setup_conf(mddev);
5981 }
5982
5983 static void *raid5_takeover_raid6(struct mddev *mddev)
5984 {
5985         int new_layout;
5986
5987         switch (mddev->layout) {
5988         case ALGORITHM_LEFT_ASYMMETRIC_6:
5989                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5990                 break;
5991         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5992                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5993                 break;
5994         case ALGORITHM_LEFT_SYMMETRIC_6:
5995                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5996                 break;
5997         case ALGORITHM_RIGHT_SYMMETRIC_6:
5998                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5999                 break;
6000         case ALGORITHM_PARITY_0_6:
6001                 new_layout = ALGORITHM_PARITY_0;
6002                 break;
6003         case ALGORITHM_PARITY_N:
6004                 new_layout = ALGORITHM_PARITY_N;
6005                 break;
6006         default:
6007                 return ERR_PTR(-EINVAL);
6008         }
6009         mddev->new_level = 5;
6010         mddev->new_layout = new_layout;
6011         mddev->delta_disks = -1;
6012         mddev->raid_disks -= 1;
6013         return setup_conf(mddev);
6014 }
6015
6016
6017 static int raid5_check_reshape(struct mddev *mddev)
6018 {
6019         /* For a 2-drive array, the layout and chunk size can be changed
6020          * immediately as not restriping is needed.
6021          * For larger arrays we record the new value - after validation
6022          * to be used by a reshape pass.
6023          */
6024         struct r5conf *conf = mddev->private;
6025         int new_chunk = mddev->new_chunk_sectors;
6026
6027         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6028                 return -EINVAL;
6029         if (new_chunk > 0) {
6030                 if (!is_power_of_2(new_chunk))
6031                         return -EINVAL;
6032                 if (new_chunk < (PAGE_SIZE>>9))
6033                         return -EINVAL;
6034                 if (mddev->array_sectors & (new_chunk-1))
6035                         /* not factor of array size */
6036                         return -EINVAL;
6037         }
6038
6039         /* They look valid */
6040
6041         if (mddev->raid_disks == 2) {
6042                 /* can make the change immediately */
6043                 if (mddev->new_layout >= 0) {
6044                         conf->algorithm = mddev->new_layout;
6045                         mddev->layout = mddev->new_layout;
6046                 }
6047                 if (new_chunk > 0) {
6048                         conf->chunk_sectors = new_chunk ;
6049                         mddev->chunk_sectors = new_chunk;
6050                 }
6051                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6052                 md_wakeup_thread(mddev->thread);
6053         }
6054         return check_reshape(mddev);
6055 }
6056
6057 static int raid6_check_reshape(struct mddev *mddev)
6058 {
6059         int new_chunk = mddev->new_chunk_sectors;
6060
6061         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6062                 return -EINVAL;
6063         if (new_chunk > 0) {
6064                 if (!is_power_of_2(new_chunk))
6065                         return -EINVAL;
6066                 if (new_chunk < (PAGE_SIZE >> 9))
6067                         return -EINVAL;
6068                 if (mddev->array_sectors & (new_chunk-1))
6069                         /* not factor of array size */
6070                         return -EINVAL;
6071         }
6072
6073         /* They look valid */
6074         return check_reshape(mddev);
6075 }
6076
6077 static void *raid5_takeover(struct mddev *mddev)
6078 {
6079         /* raid5 can take over:
6080          *  raid0 - if there is only one strip zone - make it a raid4 layout
6081          *  raid1 - if there are two drives.  We need to know the chunk size
6082          *  raid4 - trivial - just use a raid4 layout.
6083          *  raid6 - Providing it is a *_6 layout
6084          */
6085         if (mddev->level == 0)
6086                 return raid45_takeover_raid0(mddev, 5);
6087         if (mddev->level == 1)
6088                 return raid5_takeover_raid1(mddev);
6089         if (mddev->level == 4) {
6090                 mddev->new_layout = ALGORITHM_PARITY_N;
6091                 mddev->new_level = 5;
6092                 return setup_conf(mddev);
6093         }
6094         if (mddev->level == 6)
6095                 return raid5_takeover_raid6(mddev);
6096
6097         return ERR_PTR(-EINVAL);
6098 }
6099
6100 static void *raid4_takeover(struct mddev *mddev)
6101 {
6102         /* raid4 can take over:
6103          *  raid0 - if there is only one strip zone
6104          *  raid5 - if layout is right
6105          */
6106         if (mddev->level == 0)
6107                 return raid45_takeover_raid0(mddev, 4);
6108         if (mddev->level == 5 &&
6109             mddev->layout == ALGORITHM_PARITY_N) {
6110                 mddev->new_layout = 0;
6111                 mddev->new_level = 4;
6112                 return setup_conf(mddev);
6113         }
6114         return ERR_PTR(-EINVAL);
6115 }
6116
6117 static struct md_personality raid5_personality;
6118
6119 static void *raid6_takeover(struct mddev *mddev)
6120 {
6121         /* Currently can only take over a raid5.  We map the
6122          * personality to an equivalent raid6 personality
6123          * with the Q block at the end.
6124          */
6125         int new_layout;
6126
6127         if (mddev->pers != &raid5_personality)
6128                 return ERR_PTR(-EINVAL);
6129         if (mddev->degraded > 1)
6130                 return ERR_PTR(-EINVAL);
6131         if (mddev->raid_disks > 253)
6132                 return ERR_PTR(-EINVAL);
6133         if (mddev->raid_disks < 3)
6134                 return ERR_PTR(-EINVAL);
6135
6136         switch (mddev->layout) {
6137         case ALGORITHM_LEFT_ASYMMETRIC:
6138                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6139                 break;
6140         case ALGORITHM_RIGHT_ASYMMETRIC:
6141                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6142                 break;
6143         case ALGORITHM_LEFT_SYMMETRIC:
6144                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6145                 break;
6146         case ALGORITHM_RIGHT_SYMMETRIC:
6147                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6148                 break;
6149         case ALGORITHM_PARITY_0:
6150                 new_layout = ALGORITHM_PARITY_0_6;
6151                 break;
6152         case ALGORITHM_PARITY_N:
6153                 new_layout = ALGORITHM_PARITY_N;
6154                 break;
6155         default:
6156                 return ERR_PTR(-EINVAL);
6157         }
6158         mddev->new_level = 6;
6159         mddev->new_layout = new_layout;
6160         mddev->delta_disks = 1;
6161         mddev->raid_disks += 1;
6162         return setup_conf(mddev);
6163 }
6164
6165
6166 static struct md_personality raid6_personality =
6167 {
6168         .name           = "raid6",
6169         .level          = 6,
6170         .owner          = THIS_MODULE,
6171         .make_request   = make_request,
6172         .run            = run,
6173         .stop           = stop,
6174         .status         = status,
6175         .error_handler  = error,
6176         .hot_add_disk   = raid5_add_disk,
6177         .hot_remove_disk= raid5_remove_disk,
6178         .spare_active   = raid5_spare_active,
6179         .sync_request   = sync_request,
6180         .resize         = raid5_resize,
6181         .size           = raid5_size,
6182         .check_reshape  = raid6_check_reshape,
6183         .start_reshape  = raid5_start_reshape,
6184         .finish_reshape = raid5_finish_reshape,
6185         .quiesce        = raid5_quiesce,
6186         .takeover       = raid6_takeover,
6187 };
6188 static struct md_personality raid5_personality =
6189 {
6190         .name           = "raid5",
6191         .level          = 5,
6192         .owner          = THIS_MODULE,
6193         .make_request   = make_request,
6194         .run            = run,
6195         .stop           = stop,
6196         .status         = status,
6197         .error_handler  = error,
6198         .hot_add_disk   = raid5_add_disk,
6199         .hot_remove_disk= raid5_remove_disk,
6200         .spare_active   = raid5_spare_active,
6201         .sync_request   = sync_request,
6202         .resize         = raid5_resize,
6203         .size           = raid5_size,
6204         .check_reshape  = raid5_check_reshape,
6205         .start_reshape  = raid5_start_reshape,
6206         .finish_reshape = raid5_finish_reshape,
6207         .quiesce        = raid5_quiesce,
6208         .takeover       = raid5_takeover,
6209 };
6210
6211 static struct md_personality raid4_personality =
6212 {
6213         .name           = "raid4",
6214         .level          = 4,
6215         .owner          = THIS_MODULE,
6216         .make_request   = make_request,
6217         .run            = run,
6218         .stop           = stop,
6219         .status         = status,
6220         .error_handler  = error,
6221         .hot_add_disk   = raid5_add_disk,
6222         .hot_remove_disk= raid5_remove_disk,
6223         .spare_active   = raid5_spare_active,
6224         .sync_request   = sync_request,
6225         .resize         = raid5_resize,
6226         .size           = raid5_size,
6227         .check_reshape  = raid5_check_reshape,
6228         .start_reshape  = raid5_start_reshape,
6229         .finish_reshape = raid5_finish_reshape,
6230         .quiesce        = raid5_quiesce,
6231         .takeover       = raid4_takeover,
6232 };
6233
6234 static int __init raid5_init(void)
6235 {
6236         register_md_personality(&raid6_personality);
6237         register_md_personality(&raid5_personality);
6238         register_md_personality(&raid4_personality);
6239         return 0;
6240 }
6241
6242 static void raid5_exit(void)
6243 {
6244         unregister_md_personality(&raid6_personality);
6245         unregister_md_personality(&raid5_personality);
6246         unregister_md_personality(&raid4_personality);
6247 }
6248
6249 module_init(raid5_init);
6250 module_exit(raid5_exit);
6251 MODULE_LICENSE("GPL");
6252 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6253 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6254 MODULE_ALIAS("md-raid5");
6255 MODULE_ALIAS("md-raid4");
6256 MODULE_ALIAS("md-level-5");
6257 MODULE_ALIAS("md-level-4");
6258 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6259 MODULE_ALIAS("md-raid6");
6260 MODULE_ALIAS("md-level-6");
6261
6262 /* This used to be two separate modules, they were: */
6263 MODULE_ALIAS("raid5");
6264 MODULE_ALIAS("raid6");