2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
67 static bool devices_handle_discard_safely = false;
68 module_param(devices_handle_discard_safely, bool, 0644);
69 MODULE_PARM_DESC(devices_handle_discard_safely,
70 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
71 static struct workqueue_struct *raid5_wq;
76 #define NR_STRIPES 256
77 #define STRIPE_SIZE PAGE_SIZE
78 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
79 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
80 #define IO_THRESHOLD 1
81 #define BYPASS_THRESHOLD 1
82 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
83 #define HASH_MASK (NR_HASH - 1)
84 #define MAX_STRIPE_BATCH 8
86 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
89 return &conf->stripe_hashtbl[hash];
92 static inline int stripe_hash_locks_hash(sector_t sect)
94 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
97 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 spin_lock_irq(conf->hash_locks + hash);
100 spin_lock(&conf->device_lock);
103 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 spin_unlock(&conf->device_lock);
106 spin_unlock_irq(conf->hash_locks + hash);
109 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
113 spin_lock(conf->hash_locks);
114 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
115 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
116 spin_lock(&conf->device_lock);
119 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
122 spin_unlock(&conf->device_lock);
123 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
124 spin_unlock(conf->hash_locks + i - 1);
128 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
129 * order without overlap. There may be several bio's per stripe+device, and
130 * a bio could span several devices.
131 * When walking this list for a particular stripe+device, we must never proceed
132 * beyond a bio that extends past this device, as the next bio might no longer
134 * This function is used to determine the 'next' bio in the list, given the sector
135 * of the current stripe+device
137 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 int sectors = bio_sectors(bio);
140 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
147 * We maintain a biased count of active stripes in the bottom 16 bits of
148 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
153 return (atomic_read(segments) >> 16) & 0xffff;
156 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
159 return atomic_sub_return(1, segments) & 0xffff;
162 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
165 atomic_inc(segments);
168 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
171 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
175 old = atomic_read(segments);
176 new = (old & 0xffff) | (cnt << 16);
177 } while (atomic_cmpxchg(segments, old, new) != old);
180 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
183 atomic_set(segments, cnt);
186 /* Find first data disk in a raid6 stripe */
187 static inline int raid6_d0(struct stripe_head *sh)
190 /* ddf always start from first device */
192 /* md starts just after Q block */
193 if (sh->qd_idx == sh->disks - 1)
196 return sh->qd_idx + 1;
198 static inline int raid6_next_disk(int disk, int raid_disks)
201 return (disk < raid_disks) ? disk : 0;
204 /* When walking through the disks in a raid5, starting at raid6_d0,
205 * We need to map each disk to a 'slot', where the data disks are slot
206 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
207 * is raid_disks-1. This help does that mapping.
209 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
210 int *count, int syndrome_disks)
216 if (idx == sh->pd_idx)
217 return syndrome_disks;
218 if (idx == sh->qd_idx)
219 return syndrome_disks + 1;
225 static void return_io(struct bio *return_bi)
227 struct bio *bi = return_bi;
230 return_bi = bi->bi_next;
232 bi->bi_iter.bi_size = 0;
233 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
240 static void print_raid5_conf (struct r5conf *conf);
242 static int stripe_operations_active(struct stripe_head *sh)
244 return sh->check_state || sh->reconstruct_state ||
245 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
246 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
249 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251 struct r5conf *conf = sh->raid_conf;
252 struct r5worker_group *group;
254 int i, cpu = sh->cpu;
256 if (!cpu_online(cpu)) {
257 cpu = cpumask_any(cpu_online_mask);
261 if (list_empty(&sh->lru)) {
262 struct r5worker_group *group;
263 group = conf->worker_groups + cpu_to_group(cpu);
264 list_add_tail(&sh->lru, &group->handle_list);
265 group->stripes_cnt++;
269 if (conf->worker_cnt_per_group == 0) {
270 md_wakeup_thread(conf->mddev->thread);
274 group = conf->worker_groups + cpu_to_group(sh->cpu);
276 group->workers[0].working = true;
277 /* at least one worker should run to avoid race */
278 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
281 /* wakeup more workers */
282 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
283 if (group->workers[i].working == false) {
284 group->workers[i].working = true;
285 queue_work_on(sh->cpu, raid5_wq,
286 &group->workers[i].work);
292 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
293 struct list_head *temp_inactive_list)
295 BUG_ON(!list_empty(&sh->lru));
296 BUG_ON(atomic_read(&conf->active_stripes)==0);
297 if (test_bit(STRIPE_HANDLE, &sh->state)) {
298 if (test_bit(STRIPE_DELAYED, &sh->state) &&
299 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
300 list_add_tail(&sh->lru, &conf->delayed_list);
301 if (atomic_read(&conf->preread_active_stripes)
303 md_wakeup_thread(conf->mddev->thread);
304 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
305 sh->bm_seq - conf->seq_write > 0)
306 list_add_tail(&sh->lru, &conf->bitmap_list);
308 clear_bit(STRIPE_DELAYED, &sh->state);
309 clear_bit(STRIPE_BIT_DELAY, &sh->state);
310 if (conf->worker_cnt_per_group == 0) {
311 list_add_tail(&sh->lru, &conf->handle_list);
313 raid5_wakeup_stripe_thread(sh);
317 md_wakeup_thread(conf->mddev->thread);
319 BUG_ON(stripe_operations_active(sh));
320 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
321 if (atomic_dec_return(&conf->preread_active_stripes)
323 md_wakeup_thread(conf->mddev->thread);
324 atomic_dec(&conf->active_stripes);
325 if (!test_bit(STRIPE_EXPANDING, &sh->state))
326 list_add_tail(&sh->lru, temp_inactive_list);
330 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
331 struct list_head *temp_inactive_list)
333 if (atomic_dec_and_test(&sh->count))
334 do_release_stripe(conf, sh, temp_inactive_list);
338 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
340 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
341 * given time. Adding stripes only takes device lock, while deleting stripes
342 * only takes hash lock.
344 static void release_inactive_stripe_list(struct r5conf *conf,
345 struct list_head *temp_inactive_list,
349 bool do_wakeup = false;
352 if (hash == NR_STRIPE_HASH_LOCKS) {
353 size = NR_STRIPE_HASH_LOCKS;
354 hash = NR_STRIPE_HASH_LOCKS - 1;
358 struct list_head *list = &temp_inactive_list[size - 1];
361 * We don't hold any lock here yet, get_active_stripe() might
362 * remove stripes from the list
364 if (!list_empty_careful(list)) {
365 spin_lock_irqsave(conf->hash_locks + hash, flags);
366 if (list_empty(conf->inactive_list + hash) &&
368 atomic_dec(&conf->empty_inactive_list_nr);
369 list_splice_tail_init(list, conf->inactive_list + hash);
371 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
378 wake_up(&conf->wait_for_stripe);
379 if (conf->retry_read_aligned)
380 md_wakeup_thread(conf->mddev->thread);
384 /* should hold conf->device_lock already */
385 static int release_stripe_list(struct r5conf *conf,
386 struct list_head *temp_inactive_list)
388 struct stripe_head *sh;
390 struct llist_node *head;
392 head = llist_del_all(&conf->released_stripes);
393 head = llist_reverse_order(head);
397 sh = llist_entry(head, struct stripe_head, release_list);
398 head = llist_next(head);
399 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
401 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
403 * Don't worry the bit is set here, because if the bit is set
404 * again, the count is always > 1. This is true for
405 * STRIPE_ON_UNPLUG_LIST bit too.
407 hash = sh->hash_lock_index;
408 __release_stripe(conf, sh, &temp_inactive_list[hash]);
415 static void release_stripe(struct stripe_head *sh)
417 struct r5conf *conf = sh->raid_conf;
419 struct list_head list;
423 /* Avoid release_list until the last reference.
425 if (atomic_add_unless(&sh->count, -1, 1))
428 if (unlikely(!conf->mddev->thread) ||
429 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
431 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
433 md_wakeup_thread(conf->mddev->thread);
436 local_irq_save(flags);
437 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
438 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
439 INIT_LIST_HEAD(&list);
440 hash = sh->hash_lock_index;
441 do_release_stripe(conf, sh, &list);
442 spin_unlock(&conf->device_lock);
443 release_inactive_stripe_list(conf, &list, hash);
445 local_irq_restore(flags);
448 static inline void remove_hash(struct stripe_head *sh)
450 pr_debug("remove_hash(), stripe %llu\n",
451 (unsigned long long)sh->sector);
453 hlist_del_init(&sh->hash);
456 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
458 struct hlist_head *hp = stripe_hash(conf, sh->sector);
460 pr_debug("insert_hash(), stripe %llu\n",
461 (unsigned long long)sh->sector);
463 hlist_add_head(&sh->hash, hp);
466 /* find an idle stripe, make sure it is unhashed, and return it. */
467 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
469 struct stripe_head *sh = NULL;
470 struct list_head *first;
472 if (list_empty(conf->inactive_list + hash))
474 first = (conf->inactive_list + hash)->next;
475 sh = list_entry(first, struct stripe_head, lru);
476 list_del_init(first);
478 atomic_inc(&conf->active_stripes);
479 BUG_ON(hash != sh->hash_lock_index);
480 if (list_empty(conf->inactive_list + hash))
481 atomic_inc(&conf->empty_inactive_list_nr);
486 static void shrink_buffers(struct stripe_head *sh)
490 int num = sh->raid_conf->pool_size;
492 for (i = 0; i < num ; i++) {
493 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
497 sh->dev[i].page = NULL;
502 static int grow_buffers(struct stripe_head *sh)
505 int num = sh->raid_conf->pool_size;
507 for (i = 0; i < num; i++) {
510 if (!(page = alloc_page(GFP_KERNEL))) {
513 sh->dev[i].page = page;
514 sh->dev[i].orig_page = page;
519 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
520 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
521 struct stripe_head *sh);
523 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
525 struct r5conf *conf = sh->raid_conf;
528 BUG_ON(atomic_read(&sh->count) != 0);
529 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
530 BUG_ON(stripe_operations_active(sh));
532 pr_debug("init_stripe called, stripe %llu\n",
533 (unsigned long long)sector);
535 seq = read_seqcount_begin(&conf->gen_lock);
536 sh->generation = conf->generation - previous;
537 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
539 stripe_set_idx(sector, conf, previous, sh);
542 for (i = sh->disks; i--; ) {
543 struct r5dev *dev = &sh->dev[i];
545 if (dev->toread || dev->read || dev->towrite || dev->written ||
546 test_bit(R5_LOCKED, &dev->flags)) {
547 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
548 (unsigned long long)sh->sector, i, dev->toread,
549 dev->read, dev->towrite, dev->written,
550 test_bit(R5_LOCKED, &dev->flags));
554 raid5_build_block(sh, i, previous);
556 if (read_seqcount_retry(&conf->gen_lock, seq))
558 insert_hash(conf, sh);
559 sh->cpu = smp_processor_id();
562 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
565 struct stripe_head *sh;
567 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
568 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
569 if (sh->sector == sector && sh->generation == generation)
571 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
576 * Need to check if array has failed when deciding whether to:
578 * - remove non-faulty devices
581 * This determination is simple when no reshape is happening.
582 * However if there is a reshape, we need to carefully check
583 * both the before and after sections.
584 * This is because some failed devices may only affect one
585 * of the two sections, and some non-in_sync devices may
586 * be insync in the section most affected by failed devices.
588 static int calc_degraded(struct r5conf *conf)
590 int degraded, degraded2;
595 for (i = 0; i < conf->previous_raid_disks; i++) {
596 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
597 if (rdev && test_bit(Faulty, &rdev->flags))
598 rdev = rcu_dereference(conf->disks[i].replacement);
599 if (!rdev || test_bit(Faulty, &rdev->flags))
601 else if (test_bit(In_sync, &rdev->flags))
604 /* not in-sync or faulty.
605 * If the reshape increases the number of devices,
606 * this is being recovered by the reshape, so
607 * this 'previous' section is not in_sync.
608 * If the number of devices is being reduced however,
609 * the device can only be part of the array if
610 * we are reverting a reshape, so this section will
613 if (conf->raid_disks >= conf->previous_raid_disks)
617 if (conf->raid_disks == conf->previous_raid_disks)
621 for (i = 0; i < conf->raid_disks; i++) {
622 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
623 if (rdev && test_bit(Faulty, &rdev->flags))
624 rdev = rcu_dereference(conf->disks[i].replacement);
625 if (!rdev || test_bit(Faulty, &rdev->flags))
627 else if (test_bit(In_sync, &rdev->flags))
630 /* not in-sync or faulty.
631 * If reshape increases the number of devices, this
632 * section has already been recovered, else it
633 * almost certainly hasn't.
635 if (conf->raid_disks <= conf->previous_raid_disks)
639 if (degraded2 > degraded)
644 static int has_failed(struct r5conf *conf)
648 if (conf->mddev->reshape_position == MaxSector)
649 return conf->mddev->degraded > conf->max_degraded;
651 degraded = calc_degraded(conf);
652 if (degraded > conf->max_degraded)
657 static struct stripe_head *
658 get_active_stripe(struct r5conf *conf, sector_t sector,
659 int previous, int noblock, int noquiesce)
661 struct stripe_head *sh;
662 int hash = stripe_hash_locks_hash(sector);
664 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
666 spin_lock_irq(conf->hash_locks + hash);
669 wait_event_lock_irq(conf->wait_for_stripe,
670 conf->quiesce == 0 || noquiesce,
671 *(conf->hash_locks + hash));
672 sh = __find_stripe(conf, sector, conf->generation - previous);
674 if (!conf->inactive_blocked)
675 sh = get_free_stripe(conf, hash);
676 if (noblock && sh == NULL)
679 conf->inactive_blocked = 1;
681 conf->wait_for_stripe,
682 !list_empty(conf->inactive_list + hash) &&
683 (atomic_read(&conf->active_stripes)
684 < (conf->max_nr_stripes * 3 / 4)
685 || !conf->inactive_blocked),
686 *(conf->hash_locks + hash));
687 conf->inactive_blocked = 0;
689 init_stripe(sh, sector, previous);
690 atomic_inc(&sh->count);
692 } else if (!atomic_inc_not_zero(&sh->count)) {
693 spin_lock(&conf->device_lock);
694 if (!atomic_read(&sh->count)) {
695 if (!test_bit(STRIPE_HANDLE, &sh->state))
696 atomic_inc(&conf->active_stripes);
697 BUG_ON(list_empty(&sh->lru) &&
698 !test_bit(STRIPE_EXPANDING, &sh->state));
699 list_del_init(&sh->lru);
701 sh->group->stripes_cnt--;
705 atomic_inc(&sh->count);
706 spin_unlock(&conf->device_lock);
708 } while (sh == NULL);
710 spin_unlock_irq(conf->hash_locks + hash);
714 /* Determine if 'data_offset' or 'new_data_offset' should be used
715 * in this stripe_head.
717 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
719 sector_t progress = conf->reshape_progress;
720 /* Need a memory barrier to make sure we see the value
721 * of conf->generation, or ->data_offset that was set before
722 * reshape_progress was updated.
725 if (progress == MaxSector)
727 if (sh->generation == conf->generation - 1)
729 /* We are in a reshape, and this is a new-generation stripe,
730 * so use new_data_offset.
736 raid5_end_read_request(struct bio *bi, int error);
738 raid5_end_write_request(struct bio *bi, int error);
740 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
742 struct r5conf *conf = sh->raid_conf;
743 int i, disks = sh->disks;
747 for (i = disks; i--; ) {
749 int replace_only = 0;
750 struct bio *bi, *rbi;
751 struct md_rdev *rdev, *rrdev = NULL;
752 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
753 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
757 if (test_bit(R5_Discard, &sh->dev[i].flags))
759 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
761 else if (test_and_clear_bit(R5_WantReplace,
762 &sh->dev[i].flags)) {
767 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
770 bi = &sh->dev[i].req;
771 rbi = &sh->dev[i].rreq; /* For writing to replacement */
774 rrdev = rcu_dereference(conf->disks[i].replacement);
775 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
776 rdev = rcu_dereference(conf->disks[i].rdev);
785 /* We raced and saw duplicates */
788 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
793 if (rdev && test_bit(Faulty, &rdev->flags))
796 atomic_inc(&rdev->nr_pending);
797 if (rrdev && test_bit(Faulty, &rrdev->flags))
800 atomic_inc(&rrdev->nr_pending);
803 /* We have already checked bad blocks for reads. Now
804 * need to check for writes. We never accept write errors
805 * on the replacement, so we don't to check rrdev.
807 while ((rw & WRITE) && rdev &&
808 test_bit(WriteErrorSeen, &rdev->flags)) {
811 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
812 &first_bad, &bad_sectors);
817 set_bit(BlockedBadBlocks, &rdev->flags);
818 if (!conf->mddev->external &&
819 conf->mddev->flags) {
820 /* It is very unlikely, but we might
821 * still need to write out the
822 * bad block log - better give it
824 md_check_recovery(conf->mddev);
827 * Because md_wait_for_blocked_rdev
828 * will dec nr_pending, we must
829 * increment it first.
831 atomic_inc(&rdev->nr_pending);
832 md_wait_for_blocked_rdev(rdev, conf->mddev);
834 /* Acknowledged bad block - skip the write */
835 rdev_dec_pending(rdev, conf->mddev);
841 if (s->syncing || s->expanding || s->expanded
843 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
845 set_bit(STRIPE_IO_STARTED, &sh->state);
848 bi->bi_bdev = rdev->bdev;
850 bi->bi_end_io = (rw & WRITE)
851 ? raid5_end_write_request
852 : raid5_end_read_request;
855 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
856 __func__, (unsigned long long)sh->sector,
858 atomic_inc(&sh->count);
859 if (use_new_offset(conf, sh))
860 bi->bi_iter.bi_sector = (sh->sector
861 + rdev->new_data_offset);
863 bi->bi_iter.bi_sector = (sh->sector
864 + rdev->data_offset);
865 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
866 bi->bi_rw |= REQ_NOMERGE;
868 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
869 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
870 sh->dev[i].vec.bv_page = sh->dev[i].page;
872 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
873 bi->bi_io_vec[0].bv_offset = 0;
874 bi->bi_iter.bi_size = STRIPE_SIZE;
876 * If this is discard request, set bi_vcnt 0. We don't
877 * want to confuse SCSI because SCSI will replace payload
879 if (rw & REQ_DISCARD)
882 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
884 if (conf->mddev->gendisk)
885 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
886 bi, disk_devt(conf->mddev->gendisk),
888 generic_make_request(bi);
891 if (s->syncing || s->expanding || s->expanded
893 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
895 set_bit(STRIPE_IO_STARTED, &sh->state);
898 rbi->bi_bdev = rrdev->bdev;
900 BUG_ON(!(rw & WRITE));
901 rbi->bi_end_io = raid5_end_write_request;
902 rbi->bi_private = sh;
904 pr_debug("%s: for %llu schedule op %ld on "
905 "replacement disc %d\n",
906 __func__, (unsigned long long)sh->sector,
908 atomic_inc(&sh->count);
909 if (use_new_offset(conf, sh))
910 rbi->bi_iter.bi_sector = (sh->sector
911 + rrdev->new_data_offset);
913 rbi->bi_iter.bi_sector = (sh->sector
914 + rrdev->data_offset);
915 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
916 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
917 sh->dev[i].rvec.bv_page = sh->dev[i].page;
919 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
920 rbi->bi_io_vec[0].bv_offset = 0;
921 rbi->bi_iter.bi_size = STRIPE_SIZE;
923 * If this is discard request, set bi_vcnt 0. We don't
924 * want to confuse SCSI because SCSI will replace payload
926 if (rw & REQ_DISCARD)
928 if (conf->mddev->gendisk)
929 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
930 rbi, disk_devt(conf->mddev->gendisk),
932 generic_make_request(rbi);
934 if (!rdev && !rrdev) {
936 set_bit(STRIPE_DEGRADED, &sh->state);
937 pr_debug("skip op %ld on disc %d for sector %llu\n",
938 bi->bi_rw, i, (unsigned long long)sh->sector);
939 clear_bit(R5_LOCKED, &sh->dev[i].flags);
940 set_bit(STRIPE_HANDLE, &sh->state);
945 static struct dma_async_tx_descriptor *
946 async_copy_data(int frombio, struct bio *bio, struct page **page,
947 sector_t sector, struct dma_async_tx_descriptor *tx,
948 struct stripe_head *sh)
951 struct bvec_iter iter;
952 struct page *bio_page;
954 struct async_submit_ctl submit;
955 enum async_tx_flags flags = 0;
957 if (bio->bi_iter.bi_sector >= sector)
958 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
960 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
963 flags |= ASYNC_TX_FENCE;
964 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
966 bio_for_each_segment(bvl, bio, iter) {
967 int len = bvl.bv_len;
971 if (page_offset < 0) {
972 b_offset = -page_offset;
973 page_offset += b_offset;
977 if (len > 0 && page_offset + len > STRIPE_SIZE)
978 clen = STRIPE_SIZE - page_offset;
983 b_offset += bvl.bv_offset;
984 bio_page = bvl.bv_page;
986 if (sh->raid_conf->skip_copy &&
987 b_offset == 0 && page_offset == 0 &&
991 tx = async_memcpy(*page, bio_page, page_offset,
992 b_offset, clen, &submit);
994 tx = async_memcpy(bio_page, *page, b_offset,
995 page_offset, clen, &submit);
997 /* chain the operations */
998 submit.depend_tx = tx;
1000 if (clen < len) /* hit end of page */
1008 static void ops_complete_biofill(void *stripe_head_ref)
1010 struct stripe_head *sh = stripe_head_ref;
1011 struct bio *return_bi = NULL;
1014 pr_debug("%s: stripe %llu\n", __func__,
1015 (unsigned long long)sh->sector);
1017 /* clear completed biofills */
1018 for (i = sh->disks; i--; ) {
1019 struct r5dev *dev = &sh->dev[i];
1021 /* acknowledge completion of a biofill operation */
1022 /* and check if we need to reply to a read request,
1023 * new R5_Wantfill requests are held off until
1024 * !STRIPE_BIOFILL_RUN
1026 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1027 struct bio *rbi, *rbi2;
1032 while (rbi && rbi->bi_iter.bi_sector <
1033 dev->sector + STRIPE_SECTORS) {
1034 rbi2 = r5_next_bio(rbi, dev->sector);
1035 if (!raid5_dec_bi_active_stripes(rbi)) {
1036 rbi->bi_next = return_bi;
1043 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1045 return_io(return_bi);
1047 set_bit(STRIPE_HANDLE, &sh->state);
1051 static void ops_run_biofill(struct stripe_head *sh)
1053 struct dma_async_tx_descriptor *tx = NULL;
1054 struct async_submit_ctl submit;
1057 pr_debug("%s: stripe %llu\n", __func__,
1058 (unsigned long long)sh->sector);
1060 for (i = sh->disks; i--; ) {
1061 struct r5dev *dev = &sh->dev[i];
1062 if (test_bit(R5_Wantfill, &dev->flags)) {
1064 spin_lock_irq(&sh->stripe_lock);
1065 dev->read = rbi = dev->toread;
1067 spin_unlock_irq(&sh->stripe_lock);
1068 while (rbi && rbi->bi_iter.bi_sector <
1069 dev->sector + STRIPE_SECTORS) {
1070 tx = async_copy_data(0, rbi, &dev->page,
1071 dev->sector, tx, sh);
1072 rbi = r5_next_bio(rbi, dev->sector);
1077 atomic_inc(&sh->count);
1078 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1079 async_trigger_callback(&submit);
1082 static void mark_target_uptodate(struct stripe_head *sh, int target)
1089 tgt = &sh->dev[target];
1090 set_bit(R5_UPTODATE, &tgt->flags);
1091 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1092 clear_bit(R5_Wantcompute, &tgt->flags);
1095 static void ops_complete_compute(void *stripe_head_ref)
1097 struct stripe_head *sh = stripe_head_ref;
1099 pr_debug("%s: stripe %llu\n", __func__,
1100 (unsigned long long)sh->sector);
1102 /* mark the computed target(s) as uptodate */
1103 mark_target_uptodate(sh, sh->ops.target);
1104 mark_target_uptodate(sh, sh->ops.target2);
1106 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1107 if (sh->check_state == check_state_compute_run)
1108 sh->check_state = check_state_compute_result;
1109 set_bit(STRIPE_HANDLE, &sh->state);
1113 /* return a pointer to the address conversion region of the scribble buffer */
1114 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1115 struct raid5_percpu *percpu)
1117 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1120 static struct dma_async_tx_descriptor *
1121 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1123 int disks = sh->disks;
1124 struct page **xor_srcs = percpu->scribble;
1125 int target = sh->ops.target;
1126 struct r5dev *tgt = &sh->dev[target];
1127 struct page *xor_dest = tgt->page;
1129 struct dma_async_tx_descriptor *tx;
1130 struct async_submit_ctl submit;
1133 pr_debug("%s: stripe %llu block: %d\n",
1134 __func__, (unsigned long long)sh->sector, target);
1135 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1137 for (i = disks; i--; )
1139 xor_srcs[count++] = sh->dev[i].page;
1141 atomic_inc(&sh->count);
1143 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1144 ops_complete_compute, sh, to_addr_conv(sh, percpu));
1145 if (unlikely(count == 1))
1146 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1148 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1153 /* set_syndrome_sources - populate source buffers for gen_syndrome
1154 * @srcs - (struct page *) array of size sh->disks
1155 * @sh - stripe_head to parse
1157 * Populates srcs in proper layout order for the stripe and returns the
1158 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1159 * destination buffer is recorded in srcs[count] and the Q destination
1160 * is recorded in srcs[count+1]].
1162 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1164 int disks = sh->disks;
1165 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1166 int d0_idx = raid6_d0(sh);
1170 for (i = 0; i < disks; i++)
1176 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1178 srcs[slot] = sh->dev[i].page;
1179 i = raid6_next_disk(i, disks);
1180 } while (i != d0_idx);
1182 return syndrome_disks;
1185 static struct dma_async_tx_descriptor *
1186 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1188 int disks = sh->disks;
1189 struct page **blocks = percpu->scribble;
1191 int qd_idx = sh->qd_idx;
1192 struct dma_async_tx_descriptor *tx;
1193 struct async_submit_ctl submit;
1199 if (sh->ops.target < 0)
1200 target = sh->ops.target2;
1201 else if (sh->ops.target2 < 0)
1202 target = sh->ops.target;
1204 /* we should only have one valid target */
1207 pr_debug("%s: stripe %llu block: %d\n",
1208 __func__, (unsigned long long)sh->sector, target);
1210 tgt = &sh->dev[target];
1211 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1214 atomic_inc(&sh->count);
1216 if (target == qd_idx) {
1217 count = set_syndrome_sources(blocks, sh);
1218 blocks[count] = NULL; /* regenerating p is not necessary */
1219 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1220 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1221 ops_complete_compute, sh,
1222 to_addr_conv(sh, percpu));
1223 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1225 /* Compute any data- or p-drive using XOR */
1227 for (i = disks; i-- ; ) {
1228 if (i == target || i == qd_idx)
1230 blocks[count++] = sh->dev[i].page;
1233 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1234 NULL, ops_complete_compute, sh,
1235 to_addr_conv(sh, percpu));
1236 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1242 static struct dma_async_tx_descriptor *
1243 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1245 int i, count, disks = sh->disks;
1246 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1247 int d0_idx = raid6_d0(sh);
1248 int faila = -1, failb = -1;
1249 int target = sh->ops.target;
1250 int target2 = sh->ops.target2;
1251 struct r5dev *tgt = &sh->dev[target];
1252 struct r5dev *tgt2 = &sh->dev[target2];
1253 struct dma_async_tx_descriptor *tx;
1254 struct page **blocks = percpu->scribble;
1255 struct async_submit_ctl submit;
1257 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1258 __func__, (unsigned long long)sh->sector, target, target2);
1259 BUG_ON(target < 0 || target2 < 0);
1260 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1261 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1263 /* we need to open-code set_syndrome_sources to handle the
1264 * slot number conversion for 'faila' and 'failb'
1266 for (i = 0; i < disks ; i++)
1271 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1273 blocks[slot] = sh->dev[i].page;
1279 i = raid6_next_disk(i, disks);
1280 } while (i != d0_idx);
1282 BUG_ON(faila == failb);
1285 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1286 __func__, (unsigned long long)sh->sector, faila, failb);
1288 atomic_inc(&sh->count);
1290 if (failb == syndrome_disks+1) {
1291 /* Q disk is one of the missing disks */
1292 if (faila == syndrome_disks) {
1293 /* Missing P+Q, just recompute */
1294 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1295 ops_complete_compute, sh,
1296 to_addr_conv(sh, percpu));
1297 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1298 STRIPE_SIZE, &submit);
1302 int qd_idx = sh->qd_idx;
1304 /* Missing D+Q: recompute D from P, then recompute Q */
1305 if (target == qd_idx)
1306 data_target = target2;
1308 data_target = target;
1311 for (i = disks; i-- ; ) {
1312 if (i == data_target || i == qd_idx)
1314 blocks[count++] = sh->dev[i].page;
1316 dest = sh->dev[data_target].page;
1317 init_async_submit(&submit,
1318 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1320 to_addr_conv(sh, percpu));
1321 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1324 count = set_syndrome_sources(blocks, sh);
1325 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1326 ops_complete_compute, sh,
1327 to_addr_conv(sh, percpu));
1328 return async_gen_syndrome(blocks, 0, count+2,
1329 STRIPE_SIZE, &submit);
1332 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1333 ops_complete_compute, sh,
1334 to_addr_conv(sh, percpu));
1335 if (failb == syndrome_disks) {
1336 /* We're missing D+P. */
1337 return async_raid6_datap_recov(syndrome_disks+2,
1341 /* We're missing D+D. */
1342 return async_raid6_2data_recov(syndrome_disks+2,
1343 STRIPE_SIZE, faila, failb,
1349 static void ops_complete_prexor(void *stripe_head_ref)
1351 struct stripe_head *sh = stripe_head_ref;
1353 pr_debug("%s: stripe %llu\n", __func__,
1354 (unsigned long long)sh->sector);
1357 static struct dma_async_tx_descriptor *
1358 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1359 struct dma_async_tx_descriptor *tx)
1361 int disks = sh->disks;
1362 struct page **xor_srcs = percpu->scribble;
1363 int count = 0, pd_idx = sh->pd_idx, i;
1364 struct async_submit_ctl submit;
1366 /* existing parity data subtracted */
1367 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1369 pr_debug("%s: stripe %llu\n", __func__,
1370 (unsigned long long)sh->sector);
1372 for (i = disks; i--; ) {
1373 struct r5dev *dev = &sh->dev[i];
1374 /* Only process blocks that are known to be uptodate */
1375 if (test_bit(R5_Wantdrain, &dev->flags))
1376 xor_srcs[count++] = dev->page;
1379 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1380 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1381 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1386 static struct dma_async_tx_descriptor *
1387 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1389 int disks = sh->disks;
1392 pr_debug("%s: stripe %llu\n", __func__,
1393 (unsigned long long)sh->sector);
1395 for (i = disks; i--; ) {
1396 struct r5dev *dev = &sh->dev[i];
1399 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1402 spin_lock_irq(&sh->stripe_lock);
1403 chosen = dev->towrite;
1404 dev->towrite = NULL;
1405 BUG_ON(dev->written);
1406 wbi = dev->written = chosen;
1407 spin_unlock_irq(&sh->stripe_lock);
1408 WARN_ON(dev->page != dev->orig_page);
1410 while (wbi && wbi->bi_iter.bi_sector <
1411 dev->sector + STRIPE_SECTORS) {
1412 if (wbi->bi_rw & REQ_FUA)
1413 set_bit(R5_WantFUA, &dev->flags);
1414 if (wbi->bi_rw & REQ_SYNC)
1415 set_bit(R5_SyncIO, &dev->flags);
1416 if (wbi->bi_rw & REQ_DISCARD)
1417 set_bit(R5_Discard, &dev->flags);
1419 tx = async_copy_data(1, wbi, &dev->page,
1420 dev->sector, tx, sh);
1421 if (dev->page != dev->orig_page) {
1422 set_bit(R5_SkipCopy, &dev->flags);
1423 clear_bit(R5_UPTODATE, &dev->flags);
1424 clear_bit(R5_OVERWRITE, &dev->flags);
1427 wbi = r5_next_bio(wbi, dev->sector);
1435 static void ops_complete_reconstruct(void *stripe_head_ref)
1437 struct stripe_head *sh = stripe_head_ref;
1438 int disks = sh->disks;
1439 int pd_idx = sh->pd_idx;
1440 int qd_idx = sh->qd_idx;
1442 bool fua = false, sync = false, discard = false;
1444 pr_debug("%s: stripe %llu\n", __func__,
1445 (unsigned long long)sh->sector);
1447 for (i = disks; i--; ) {
1448 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1449 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1450 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1453 for (i = disks; i--; ) {
1454 struct r5dev *dev = &sh->dev[i];
1456 if (dev->written || i == pd_idx || i == qd_idx) {
1457 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1458 set_bit(R5_UPTODATE, &dev->flags);
1460 set_bit(R5_WantFUA, &dev->flags);
1462 set_bit(R5_SyncIO, &dev->flags);
1466 if (sh->reconstruct_state == reconstruct_state_drain_run)
1467 sh->reconstruct_state = reconstruct_state_drain_result;
1468 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1469 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1471 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1472 sh->reconstruct_state = reconstruct_state_result;
1475 set_bit(STRIPE_HANDLE, &sh->state);
1480 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1481 struct dma_async_tx_descriptor *tx)
1483 int disks = sh->disks;
1484 struct page **xor_srcs = percpu->scribble;
1485 struct async_submit_ctl submit;
1486 int count = 0, pd_idx = sh->pd_idx, i;
1487 struct page *xor_dest;
1489 unsigned long flags;
1491 pr_debug("%s: stripe %llu\n", __func__,
1492 (unsigned long long)sh->sector);
1494 for (i = 0; i < sh->disks; i++) {
1497 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1500 if (i >= sh->disks) {
1501 atomic_inc(&sh->count);
1502 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1503 ops_complete_reconstruct(sh);
1506 /* check if prexor is active which means only process blocks
1507 * that are part of a read-modify-write (written)
1509 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1511 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1512 for (i = disks; i--; ) {
1513 struct r5dev *dev = &sh->dev[i];
1515 xor_srcs[count++] = dev->page;
1518 xor_dest = sh->dev[pd_idx].page;
1519 for (i = disks; i--; ) {
1520 struct r5dev *dev = &sh->dev[i];
1522 xor_srcs[count++] = dev->page;
1526 /* 1/ if we prexor'd then the dest is reused as a source
1527 * 2/ if we did not prexor then we are redoing the parity
1528 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1529 * for the synchronous xor case
1531 flags = ASYNC_TX_ACK |
1532 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1534 atomic_inc(&sh->count);
1536 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1537 to_addr_conv(sh, percpu));
1538 if (unlikely(count == 1))
1539 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1541 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1545 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1546 struct dma_async_tx_descriptor *tx)
1548 struct async_submit_ctl submit;
1549 struct page **blocks = percpu->scribble;
1552 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1554 for (i = 0; i < sh->disks; i++) {
1555 if (sh->pd_idx == i || sh->qd_idx == i)
1557 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1560 if (i >= sh->disks) {
1561 atomic_inc(&sh->count);
1562 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1563 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1564 ops_complete_reconstruct(sh);
1568 count = set_syndrome_sources(blocks, sh);
1570 atomic_inc(&sh->count);
1572 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1573 sh, to_addr_conv(sh, percpu));
1574 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1577 static void ops_complete_check(void *stripe_head_ref)
1579 struct stripe_head *sh = stripe_head_ref;
1581 pr_debug("%s: stripe %llu\n", __func__,
1582 (unsigned long long)sh->sector);
1584 sh->check_state = check_state_check_result;
1585 set_bit(STRIPE_HANDLE, &sh->state);
1589 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1591 int disks = sh->disks;
1592 int pd_idx = sh->pd_idx;
1593 int qd_idx = sh->qd_idx;
1594 struct page *xor_dest;
1595 struct page **xor_srcs = percpu->scribble;
1596 struct dma_async_tx_descriptor *tx;
1597 struct async_submit_ctl submit;
1601 pr_debug("%s: stripe %llu\n", __func__,
1602 (unsigned long long)sh->sector);
1605 xor_dest = sh->dev[pd_idx].page;
1606 xor_srcs[count++] = xor_dest;
1607 for (i = disks; i--; ) {
1608 if (i == pd_idx || i == qd_idx)
1610 xor_srcs[count++] = sh->dev[i].page;
1613 init_async_submit(&submit, 0, NULL, NULL, NULL,
1614 to_addr_conv(sh, percpu));
1615 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1616 &sh->ops.zero_sum_result, &submit);
1618 atomic_inc(&sh->count);
1619 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1620 tx = async_trigger_callback(&submit);
1623 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1625 struct page **srcs = percpu->scribble;
1626 struct async_submit_ctl submit;
1629 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1630 (unsigned long long)sh->sector, checkp);
1632 count = set_syndrome_sources(srcs, sh);
1636 atomic_inc(&sh->count);
1637 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1638 sh, to_addr_conv(sh, percpu));
1639 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1640 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1643 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1645 int overlap_clear = 0, i, disks = sh->disks;
1646 struct dma_async_tx_descriptor *tx = NULL;
1647 struct r5conf *conf = sh->raid_conf;
1648 int level = conf->level;
1649 struct raid5_percpu *percpu;
1653 percpu = per_cpu_ptr(conf->percpu, cpu);
1654 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1655 ops_run_biofill(sh);
1659 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1661 tx = ops_run_compute5(sh, percpu);
1663 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1664 tx = ops_run_compute6_1(sh, percpu);
1666 tx = ops_run_compute6_2(sh, percpu);
1668 /* terminate the chain if reconstruct is not set to be run */
1669 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1673 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1674 tx = ops_run_prexor(sh, percpu, tx);
1676 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1677 tx = ops_run_biodrain(sh, tx);
1681 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1683 ops_run_reconstruct5(sh, percpu, tx);
1685 ops_run_reconstruct6(sh, percpu, tx);
1688 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1689 if (sh->check_state == check_state_run)
1690 ops_run_check_p(sh, percpu);
1691 else if (sh->check_state == check_state_run_q)
1692 ops_run_check_pq(sh, percpu, 0);
1693 else if (sh->check_state == check_state_run_pq)
1694 ops_run_check_pq(sh, percpu, 1);
1700 for (i = disks; i--; ) {
1701 struct r5dev *dev = &sh->dev[i];
1702 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1703 wake_up(&sh->raid_conf->wait_for_overlap);
1708 static int grow_one_stripe(struct r5conf *conf, int hash)
1710 struct stripe_head *sh;
1711 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1715 sh->raid_conf = conf;
1717 spin_lock_init(&sh->stripe_lock);
1719 if (grow_buffers(sh)) {
1721 kmem_cache_free(conf->slab_cache, sh);
1724 sh->hash_lock_index = hash;
1725 /* we just created an active stripe so... */
1726 atomic_set(&sh->count, 1);
1727 atomic_inc(&conf->active_stripes);
1728 INIT_LIST_HEAD(&sh->lru);
1733 static int grow_stripes(struct r5conf *conf, int num)
1735 struct kmem_cache *sc;
1736 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1739 if (conf->mddev->gendisk)
1740 sprintf(conf->cache_name[0],
1741 "raid%d-%s", conf->level, mdname(conf->mddev));
1743 sprintf(conf->cache_name[0],
1744 "raid%d-%p", conf->level, conf->mddev);
1745 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1747 conf->active_name = 0;
1748 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1749 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1753 conf->slab_cache = sc;
1754 conf->pool_size = devs;
1755 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1757 if (!grow_one_stripe(conf, hash))
1759 conf->max_nr_stripes++;
1760 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1766 * scribble_len - return the required size of the scribble region
1767 * @num - total number of disks in the array
1769 * The size must be enough to contain:
1770 * 1/ a struct page pointer for each device in the array +2
1771 * 2/ room to convert each entry in (1) to its corresponding dma
1772 * (dma_map_page()) or page (page_address()) address.
1774 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1775 * calculate over all devices (not just the data blocks), using zeros in place
1776 * of the P and Q blocks.
1778 static size_t scribble_len(int num)
1782 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1787 static int resize_stripes(struct r5conf *conf, int newsize)
1789 /* Make all the stripes able to hold 'newsize' devices.
1790 * New slots in each stripe get 'page' set to a new page.
1792 * This happens in stages:
1793 * 1/ create a new kmem_cache and allocate the required number of
1795 * 2/ gather all the old stripe_heads and transfer the pages across
1796 * to the new stripe_heads. This will have the side effect of
1797 * freezing the array as once all stripe_heads have been collected,
1798 * no IO will be possible. Old stripe heads are freed once their
1799 * pages have been transferred over, and the old kmem_cache is
1800 * freed when all stripes are done.
1801 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1802 * we simple return a failre status - no need to clean anything up.
1803 * 4/ allocate new pages for the new slots in the new stripe_heads.
1804 * If this fails, we don't bother trying the shrink the
1805 * stripe_heads down again, we just leave them as they are.
1806 * As each stripe_head is processed the new one is released into
1809 * Once step2 is started, we cannot afford to wait for a write,
1810 * so we use GFP_NOIO allocations.
1812 struct stripe_head *osh, *nsh;
1813 LIST_HEAD(newstripes);
1814 struct disk_info *ndisks;
1817 struct kmem_cache *sc;
1821 if (newsize <= conf->pool_size)
1822 return 0; /* never bother to shrink */
1824 err = md_allow_write(conf->mddev);
1829 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1830 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1835 for (i = conf->max_nr_stripes; i; i--) {
1836 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1840 nsh->raid_conf = conf;
1841 spin_lock_init(&nsh->stripe_lock);
1843 list_add(&nsh->lru, &newstripes);
1846 /* didn't get enough, give up */
1847 while (!list_empty(&newstripes)) {
1848 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1849 list_del(&nsh->lru);
1850 kmem_cache_free(sc, nsh);
1852 kmem_cache_destroy(sc);
1855 /* Step 2 - Must use GFP_NOIO now.
1856 * OK, we have enough stripes, start collecting inactive
1857 * stripes and copying them over
1861 list_for_each_entry(nsh, &newstripes, lru) {
1862 lock_device_hash_lock(conf, hash);
1863 wait_event_cmd(conf->wait_for_stripe,
1864 !list_empty(conf->inactive_list + hash),
1865 unlock_device_hash_lock(conf, hash),
1866 lock_device_hash_lock(conf, hash));
1867 osh = get_free_stripe(conf, hash);
1868 unlock_device_hash_lock(conf, hash);
1869 atomic_set(&nsh->count, 1);
1870 for(i=0; i<conf->pool_size; i++) {
1871 nsh->dev[i].page = osh->dev[i].page;
1872 nsh->dev[i].orig_page = osh->dev[i].page;
1874 for( ; i<newsize; i++)
1875 nsh->dev[i].page = NULL;
1876 nsh->hash_lock_index = hash;
1877 kmem_cache_free(conf->slab_cache, osh);
1879 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1880 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1885 kmem_cache_destroy(conf->slab_cache);
1888 * At this point, we are holding all the stripes so the array
1889 * is completely stalled, so now is a good time to resize
1890 * conf->disks and the scribble region
1892 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1894 for (i=0; i<conf->raid_disks; i++)
1895 ndisks[i] = conf->disks[i];
1897 conf->disks = ndisks;
1902 conf->scribble_len = scribble_len(newsize);
1903 for_each_present_cpu(cpu) {
1904 struct raid5_percpu *percpu;
1907 percpu = per_cpu_ptr(conf->percpu, cpu);
1908 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1911 kfree(percpu->scribble);
1912 percpu->scribble = scribble;
1920 /* Step 4, return new stripes to service */
1921 while(!list_empty(&newstripes)) {
1922 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1923 list_del_init(&nsh->lru);
1925 for (i=conf->raid_disks; i < newsize; i++)
1926 if (nsh->dev[i].page == NULL) {
1927 struct page *p = alloc_page(GFP_NOIO);
1928 nsh->dev[i].page = p;
1929 nsh->dev[i].orig_page = p;
1933 release_stripe(nsh);
1935 /* critical section pass, GFP_NOIO no longer needed */
1937 conf->slab_cache = sc;
1938 conf->active_name = 1-conf->active_name;
1939 conf->pool_size = newsize;
1943 static int drop_one_stripe(struct r5conf *conf, int hash)
1945 struct stripe_head *sh;
1947 spin_lock_irq(conf->hash_locks + hash);
1948 sh = get_free_stripe(conf, hash);
1949 spin_unlock_irq(conf->hash_locks + hash);
1952 BUG_ON(atomic_read(&sh->count));
1954 kmem_cache_free(conf->slab_cache, sh);
1955 atomic_dec(&conf->active_stripes);
1959 static void shrink_stripes(struct r5conf *conf)
1962 for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1963 while (drop_one_stripe(conf, hash))
1966 if (conf->slab_cache)
1967 kmem_cache_destroy(conf->slab_cache);
1968 conf->slab_cache = NULL;
1971 static void raid5_end_read_request(struct bio * bi, int error)
1973 struct stripe_head *sh = bi->bi_private;
1974 struct r5conf *conf = sh->raid_conf;
1975 int disks = sh->disks, i;
1976 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1977 char b[BDEVNAME_SIZE];
1978 struct md_rdev *rdev = NULL;
1981 for (i=0 ; i<disks; i++)
1982 if (bi == &sh->dev[i].req)
1985 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1986 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1992 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1993 /* If replacement finished while this request was outstanding,
1994 * 'replacement' might be NULL already.
1995 * In that case it moved down to 'rdev'.
1996 * rdev is not removed until all requests are finished.
1998 rdev = conf->disks[i].replacement;
2000 rdev = conf->disks[i].rdev;
2002 if (use_new_offset(conf, sh))
2003 s = sh->sector + rdev->new_data_offset;
2005 s = sh->sector + rdev->data_offset;
2007 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2008 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2009 /* Note that this cannot happen on a
2010 * replacement device. We just fail those on
2015 "md/raid:%s: read error corrected"
2016 " (%lu sectors at %llu on %s)\n",
2017 mdname(conf->mddev), STRIPE_SECTORS,
2018 (unsigned long long)s,
2019 bdevname(rdev->bdev, b));
2020 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2021 clear_bit(R5_ReadError, &sh->dev[i].flags);
2022 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2023 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2024 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2026 if (atomic_read(&rdev->read_errors))
2027 atomic_set(&rdev->read_errors, 0);
2029 const char *bdn = bdevname(rdev->bdev, b);
2033 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2034 atomic_inc(&rdev->read_errors);
2035 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2038 "md/raid:%s: read error on replacement device "
2039 "(sector %llu on %s).\n",
2040 mdname(conf->mddev),
2041 (unsigned long long)s,
2043 else if (conf->mddev->degraded >= conf->max_degraded) {
2047 "md/raid:%s: read error not correctable "
2048 "(sector %llu on %s).\n",
2049 mdname(conf->mddev),
2050 (unsigned long long)s,
2052 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2057 "md/raid:%s: read error NOT corrected!! "
2058 "(sector %llu on %s).\n",
2059 mdname(conf->mddev),
2060 (unsigned long long)s,
2062 } else if (atomic_read(&rdev->read_errors)
2063 > conf->max_nr_stripes)
2065 "md/raid:%s: Too many read errors, failing device %s.\n",
2066 mdname(conf->mddev), bdn);
2069 if (set_bad && test_bit(In_sync, &rdev->flags)
2070 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2073 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2074 set_bit(R5_ReadError, &sh->dev[i].flags);
2075 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2077 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2079 clear_bit(R5_ReadError, &sh->dev[i].flags);
2080 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2082 && test_bit(In_sync, &rdev->flags)
2083 && rdev_set_badblocks(
2084 rdev, sh->sector, STRIPE_SECTORS, 0)))
2085 md_error(conf->mddev, rdev);
2088 rdev_dec_pending(rdev, conf->mddev);
2089 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2090 set_bit(STRIPE_HANDLE, &sh->state);
2094 static void raid5_end_write_request(struct bio *bi, int error)
2096 struct stripe_head *sh = bi->bi_private;
2097 struct r5conf *conf = sh->raid_conf;
2098 int disks = sh->disks, i;
2099 struct md_rdev *uninitialized_var(rdev);
2100 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2103 int replacement = 0;
2105 for (i = 0 ; i < disks; i++) {
2106 if (bi == &sh->dev[i].req) {
2107 rdev = conf->disks[i].rdev;
2110 if (bi == &sh->dev[i].rreq) {
2111 rdev = conf->disks[i].replacement;
2115 /* rdev was removed and 'replacement'
2116 * replaced it. rdev is not removed
2117 * until all requests are finished.
2119 rdev = conf->disks[i].rdev;
2123 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2124 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2133 md_error(conf->mddev, rdev);
2134 else if (is_badblock(rdev, sh->sector,
2136 &first_bad, &bad_sectors))
2137 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2140 set_bit(STRIPE_DEGRADED, &sh->state);
2141 set_bit(WriteErrorSeen, &rdev->flags);
2142 set_bit(R5_WriteError, &sh->dev[i].flags);
2143 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2144 set_bit(MD_RECOVERY_NEEDED,
2145 &rdev->mddev->recovery);
2146 } else if (is_badblock(rdev, sh->sector,
2148 &first_bad, &bad_sectors)) {
2149 set_bit(R5_MadeGood, &sh->dev[i].flags);
2150 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2151 /* That was a successful write so make
2152 * sure it looks like we already did
2155 set_bit(R5_ReWrite, &sh->dev[i].flags);
2158 rdev_dec_pending(rdev, conf->mddev);
2160 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2161 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2162 set_bit(STRIPE_HANDLE, &sh->state);
2166 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2168 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2170 struct r5dev *dev = &sh->dev[i];
2172 bio_init(&dev->req);
2173 dev->req.bi_io_vec = &dev->vec;
2174 dev->req.bi_max_vecs = 1;
2175 dev->req.bi_private = sh;
2177 bio_init(&dev->rreq);
2178 dev->rreq.bi_io_vec = &dev->rvec;
2179 dev->rreq.bi_max_vecs = 1;
2180 dev->rreq.bi_private = sh;
2183 dev->sector = compute_blocknr(sh, i, previous);
2186 static void error(struct mddev *mddev, struct md_rdev *rdev)
2188 char b[BDEVNAME_SIZE];
2189 struct r5conf *conf = mddev->private;
2190 unsigned long flags;
2191 pr_debug("raid456: error called\n");
2193 spin_lock_irqsave(&conf->device_lock, flags);
2194 clear_bit(In_sync, &rdev->flags);
2195 mddev->degraded = calc_degraded(conf);
2196 spin_unlock_irqrestore(&conf->device_lock, flags);
2197 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2199 set_bit(Blocked, &rdev->flags);
2200 set_bit(Faulty, &rdev->flags);
2201 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2203 "md/raid:%s: Disk failure on %s, disabling device.\n"
2204 "md/raid:%s: Operation continuing on %d devices.\n",
2206 bdevname(rdev->bdev, b),
2208 conf->raid_disks - mddev->degraded);
2212 * Input: a 'big' sector number,
2213 * Output: index of the data and parity disk, and the sector # in them.
2215 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2216 int previous, int *dd_idx,
2217 struct stripe_head *sh)
2219 sector_t stripe, stripe2;
2220 sector_t chunk_number;
2221 unsigned int chunk_offset;
2224 sector_t new_sector;
2225 int algorithm = previous ? conf->prev_algo
2227 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2228 : conf->chunk_sectors;
2229 int raid_disks = previous ? conf->previous_raid_disks
2231 int data_disks = raid_disks - conf->max_degraded;
2233 /* First compute the information on this sector */
2236 * Compute the chunk number and the sector offset inside the chunk
2238 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2239 chunk_number = r_sector;
2242 * Compute the stripe number
2244 stripe = chunk_number;
2245 *dd_idx = sector_div(stripe, data_disks);
2248 * Select the parity disk based on the user selected algorithm.
2250 pd_idx = qd_idx = -1;
2251 switch(conf->level) {
2253 pd_idx = data_disks;
2256 switch (algorithm) {
2257 case ALGORITHM_LEFT_ASYMMETRIC:
2258 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2259 if (*dd_idx >= pd_idx)
2262 case ALGORITHM_RIGHT_ASYMMETRIC:
2263 pd_idx = sector_div(stripe2, raid_disks);
2264 if (*dd_idx >= pd_idx)
2267 case ALGORITHM_LEFT_SYMMETRIC:
2268 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2269 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2271 case ALGORITHM_RIGHT_SYMMETRIC:
2272 pd_idx = sector_div(stripe2, raid_disks);
2273 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2275 case ALGORITHM_PARITY_0:
2279 case ALGORITHM_PARITY_N:
2280 pd_idx = data_disks;
2288 switch (algorithm) {
2289 case ALGORITHM_LEFT_ASYMMETRIC:
2290 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2291 qd_idx = pd_idx + 1;
2292 if (pd_idx == raid_disks-1) {
2293 (*dd_idx)++; /* Q D D D P */
2295 } else if (*dd_idx >= pd_idx)
2296 (*dd_idx) += 2; /* D D P Q D */
2298 case ALGORITHM_RIGHT_ASYMMETRIC:
2299 pd_idx = sector_div(stripe2, raid_disks);
2300 qd_idx = pd_idx + 1;
2301 if (pd_idx == raid_disks-1) {
2302 (*dd_idx)++; /* Q D D D P */
2304 } else if (*dd_idx >= pd_idx)
2305 (*dd_idx) += 2; /* D D P Q D */
2307 case ALGORITHM_LEFT_SYMMETRIC:
2308 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2309 qd_idx = (pd_idx + 1) % raid_disks;
2310 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2312 case ALGORITHM_RIGHT_SYMMETRIC:
2313 pd_idx = sector_div(stripe2, raid_disks);
2314 qd_idx = (pd_idx + 1) % raid_disks;
2315 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2318 case ALGORITHM_PARITY_0:
2323 case ALGORITHM_PARITY_N:
2324 pd_idx = data_disks;
2325 qd_idx = data_disks + 1;
2328 case ALGORITHM_ROTATING_ZERO_RESTART:
2329 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2330 * of blocks for computing Q is different.
2332 pd_idx = sector_div(stripe2, raid_disks);
2333 qd_idx = pd_idx + 1;
2334 if (pd_idx == raid_disks-1) {
2335 (*dd_idx)++; /* Q D D D P */
2337 } else if (*dd_idx >= pd_idx)
2338 (*dd_idx) += 2; /* D D P Q D */
2342 case ALGORITHM_ROTATING_N_RESTART:
2343 /* Same a left_asymmetric, by first stripe is
2344 * D D D P Q rather than
2348 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2349 qd_idx = pd_idx + 1;
2350 if (pd_idx == raid_disks-1) {
2351 (*dd_idx)++; /* Q D D D P */
2353 } else if (*dd_idx >= pd_idx)
2354 (*dd_idx) += 2; /* D D P Q D */
2358 case ALGORITHM_ROTATING_N_CONTINUE:
2359 /* Same as left_symmetric but Q is before P */
2360 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2361 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2362 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2366 case ALGORITHM_LEFT_ASYMMETRIC_6:
2367 /* RAID5 left_asymmetric, with Q on last device */
2368 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2369 if (*dd_idx >= pd_idx)
2371 qd_idx = raid_disks - 1;
2374 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2375 pd_idx = sector_div(stripe2, raid_disks-1);
2376 if (*dd_idx >= pd_idx)
2378 qd_idx = raid_disks - 1;
2381 case ALGORITHM_LEFT_SYMMETRIC_6:
2382 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2383 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2384 qd_idx = raid_disks - 1;
2387 case ALGORITHM_RIGHT_SYMMETRIC_6:
2388 pd_idx = sector_div(stripe2, raid_disks-1);
2389 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2390 qd_idx = raid_disks - 1;
2393 case ALGORITHM_PARITY_0_6:
2396 qd_idx = raid_disks - 1;
2406 sh->pd_idx = pd_idx;
2407 sh->qd_idx = qd_idx;
2408 sh->ddf_layout = ddf_layout;
2411 * Finally, compute the new sector number
2413 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2417 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2419 struct r5conf *conf = sh->raid_conf;
2420 int raid_disks = sh->disks;
2421 int data_disks = raid_disks - conf->max_degraded;
2422 sector_t new_sector = sh->sector, check;
2423 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2424 : conf->chunk_sectors;
2425 int algorithm = previous ? conf->prev_algo
2429 sector_t chunk_number;
2430 int dummy1, dd_idx = i;
2432 struct stripe_head sh2;
2434 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2435 stripe = new_sector;
2437 if (i == sh->pd_idx)
2439 switch(conf->level) {
2442 switch (algorithm) {
2443 case ALGORITHM_LEFT_ASYMMETRIC:
2444 case ALGORITHM_RIGHT_ASYMMETRIC:
2448 case ALGORITHM_LEFT_SYMMETRIC:
2449 case ALGORITHM_RIGHT_SYMMETRIC:
2452 i -= (sh->pd_idx + 1);
2454 case ALGORITHM_PARITY_0:
2457 case ALGORITHM_PARITY_N:
2464 if (i == sh->qd_idx)
2465 return 0; /* It is the Q disk */
2466 switch (algorithm) {
2467 case ALGORITHM_LEFT_ASYMMETRIC:
2468 case ALGORITHM_RIGHT_ASYMMETRIC:
2469 case ALGORITHM_ROTATING_ZERO_RESTART:
2470 case ALGORITHM_ROTATING_N_RESTART:
2471 if (sh->pd_idx == raid_disks-1)
2472 i--; /* Q D D D P */
2473 else if (i > sh->pd_idx)
2474 i -= 2; /* D D P Q D */
2476 case ALGORITHM_LEFT_SYMMETRIC:
2477 case ALGORITHM_RIGHT_SYMMETRIC:
2478 if (sh->pd_idx == raid_disks-1)
2479 i--; /* Q D D D P */
2484 i -= (sh->pd_idx + 2);
2487 case ALGORITHM_PARITY_0:
2490 case ALGORITHM_PARITY_N:
2492 case ALGORITHM_ROTATING_N_CONTINUE:
2493 /* Like left_symmetric, but P is before Q */
2494 if (sh->pd_idx == 0)
2495 i--; /* P D D D Q */
2500 i -= (sh->pd_idx + 1);
2503 case ALGORITHM_LEFT_ASYMMETRIC_6:
2504 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2508 case ALGORITHM_LEFT_SYMMETRIC_6:
2509 case ALGORITHM_RIGHT_SYMMETRIC_6:
2511 i += data_disks + 1;
2512 i -= (sh->pd_idx + 1);
2514 case ALGORITHM_PARITY_0_6:
2523 chunk_number = stripe * data_disks + i;
2524 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2526 check = raid5_compute_sector(conf, r_sector,
2527 previous, &dummy1, &sh2);
2528 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2529 || sh2.qd_idx != sh->qd_idx) {
2530 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2531 mdname(conf->mddev));
2538 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2539 int rcw, int expand)
2541 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2542 struct r5conf *conf = sh->raid_conf;
2543 int level = conf->level;
2547 for (i = disks; i--; ) {
2548 struct r5dev *dev = &sh->dev[i];
2551 set_bit(R5_LOCKED, &dev->flags);
2552 set_bit(R5_Wantdrain, &dev->flags);
2554 clear_bit(R5_UPTODATE, &dev->flags);
2558 /* if we are not expanding this is a proper write request, and
2559 * there will be bios with new data to be drained into the
2564 /* False alarm, nothing to do */
2566 sh->reconstruct_state = reconstruct_state_drain_run;
2567 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2569 sh->reconstruct_state = reconstruct_state_run;
2571 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2573 if (s->locked + conf->max_degraded == disks)
2574 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2575 atomic_inc(&conf->pending_full_writes);
2578 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2579 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2581 for (i = disks; i--; ) {
2582 struct r5dev *dev = &sh->dev[i];
2587 (test_bit(R5_UPTODATE, &dev->flags) ||
2588 test_bit(R5_Wantcompute, &dev->flags))) {
2589 set_bit(R5_Wantdrain, &dev->flags);
2590 set_bit(R5_LOCKED, &dev->flags);
2591 clear_bit(R5_UPTODATE, &dev->flags);
2596 /* False alarm - nothing to do */
2598 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2599 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2600 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2601 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2604 /* keep the parity disk(s) locked while asynchronous operations
2607 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2608 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2612 int qd_idx = sh->qd_idx;
2613 struct r5dev *dev = &sh->dev[qd_idx];
2615 set_bit(R5_LOCKED, &dev->flags);
2616 clear_bit(R5_UPTODATE, &dev->flags);
2620 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2621 __func__, (unsigned long long)sh->sector,
2622 s->locked, s->ops_request);
2626 * Each stripe/dev can have one or more bion attached.
2627 * toread/towrite point to the first in a chain.
2628 * The bi_next chain must be in order.
2630 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2633 struct r5conf *conf = sh->raid_conf;
2636 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2637 (unsigned long long)bi->bi_iter.bi_sector,
2638 (unsigned long long)sh->sector);
2641 * If several bio share a stripe. The bio bi_phys_segments acts as a
2642 * reference count to avoid race. The reference count should already be
2643 * increased before this function is called (for example, in
2644 * make_request()), so other bio sharing this stripe will not free the
2645 * stripe. If a stripe is owned by one stripe, the stripe lock will
2648 spin_lock_irq(&sh->stripe_lock);
2650 bip = &sh->dev[dd_idx].towrite;
2654 bip = &sh->dev[dd_idx].toread;
2655 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2656 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2658 bip = & (*bip)->bi_next;
2660 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2663 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2667 raid5_inc_bi_active_stripes(bi);
2670 /* check if page is covered */
2671 sector_t sector = sh->dev[dd_idx].sector;
2672 for (bi=sh->dev[dd_idx].towrite;
2673 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2674 bi && bi->bi_iter.bi_sector <= sector;
2675 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2676 if (bio_end_sector(bi) >= sector)
2677 sector = bio_end_sector(bi);
2679 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2680 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2683 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2684 (unsigned long long)(*bip)->bi_iter.bi_sector,
2685 (unsigned long long)sh->sector, dd_idx);
2686 spin_unlock_irq(&sh->stripe_lock);
2688 if (conf->mddev->bitmap && firstwrite) {
2689 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2691 sh->bm_seq = conf->seq_flush+1;
2692 set_bit(STRIPE_BIT_DELAY, &sh->state);
2697 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2698 spin_unlock_irq(&sh->stripe_lock);
2702 static void end_reshape(struct r5conf *conf);
2704 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2705 struct stripe_head *sh)
2707 int sectors_per_chunk =
2708 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2710 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2711 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2713 raid5_compute_sector(conf,
2714 stripe * (disks - conf->max_degraded)
2715 *sectors_per_chunk + chunk_offset,
2721 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2722 struct stripe_head_state *s, int disks,
2723 struct bio **return_bi)
2726 for (i = disks; i--; ) {
2730 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2731 struct md_rdev *rdev;
2733 rdev = rcu_dereference(conf->disks[i].rdev);
2734 if (rdev && test_bit(In_sync, &rdev->flags))
2735 atomic_inc(&rdev->nr_pending);
2740 if (!rdev_set_badblocks(
2744 md_error(conf->mddev, rdev);
2745 rdev_dec_pending(rdev, conf->mddev);
2748 spin_lock_irq(&sh->stripe_lock);
2749 /* fail all writes first */
2750 bi = sh->dev[i].towrite;
2751 sh->dev[i].towrite = NULL;
2752 spin_unlock_irq(&sh->stripe_lock);
2756 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2757 wake_up(&conf->wait_for_overlap);
2759 while (bi && bi->bi_iter.bi_sector <
2760 sh->dev[i].sector + STRIPE_SECTORS) {
2761 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2762 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2763 if (!raid5_dec_bi_active_stripes(bi)) {
2764 md_write_end(conf->mddev);
2765 bi->bi_next = *return_bi;
2771 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2772 STRIPE_SECTORS, 0, 0);
2774 /* and fail all 'written' */
2775 bi = sh->dev[i].written;
2776 sh->dev[i].written = NULL;
2777 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
2778 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
2779 sh->dev[i].page = sh->dev[i].orig_page;
2782 if (bi) bitmap_end = 1;
2783 while (bi && bi->bi_iter.bi_sector <
2784 sh->dev[i].sector + STRIPE_SECTORS) {
2785 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2786 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2787 if (!raid5_dec_bi_active_stripes(bi)) {
2788 md_write_end(conf->mddev);
2789 bi->bi_next = *return_bi;
2795 /* fail any reads if this device is non-operational and
2796 * the data has not reached the cache yet.
2798 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2799 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2800 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2801 spin_lock_irq(&sh->stripe_lock);
2802 bi = sh->dev[i].toread;
2803 sh->dev[i].toread = NULL;
2804 spin_unlock_irq(&sh->stripe_lock);
2805 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2806 wake_up(&conf->wait_for_overlap);
2807 while (bi && bi->bi_iter.bi_sector <
2808 sh->dev[i].sector + STRIPE_SECTORS) {
2809 struct bio *nextbi =
2810 r5_next_bio(bi, sh->dev[i].sector);
2811 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2812 if (!raid5_dec_bi_active_stripes(bi)) {
2813 bi->bi_next = *return_bi;
2820 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2821 STRIPE_SECTORS, 0, 0);
2822 /* If we were in the middle of a write the parity block might
2823 * still be locked - so just clear all R5_LOCKED flags
2825 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2828 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2829 if (atomic_dec_and_test(&conf->pending_full_writes))
2830 md_wakeup_thread(conf->mddev->thread);
2834 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2835 struct stripe_head_state *s)
2840 clear_bit(STRIPE_SYNCING, &sh->state);
2841 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2842 wake_up(&conf->wait_for_overlap);
2845 /* There is nothing more to do for sync/check/repair.
2846 * Don't even need to abort as that is handled elsewhere
2847 * if needed, and not always wanted e.g. if there is a known
2849 * For recover/replace we need to record a bad block on all
2850 * non-sync devices, or abort the recovery
2852 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2853 /* During recovery devices cannot be removed, so
2854 * locking and refcounting of rdevs is not needed
2856 for (i = 0; i < conf->raid_disks; i++) {
2857 struct md_rdev *rdev = conf->disks[i].rdev;
2859 && !test_bit(Faulty, &rdev->flags)
2860 && !test_bit(In_sync, &rdev->flags)
2861 && !rdev_set_badblocks(rdev, sh->sector,
2864 rdev = conf->disks[i].replacement;
2866 && !test_bit(Faulty, &rdev->flags)
2867 && !test_bit(In_sync, &rdev->flags)
2868 && !rdev_set_badblocks(rdev, sh->sector,
2873 conf->recovery_disabled =
2874 conf->mddev->recovery_disabled;
2876 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2879 static int want_replace(struct stripe_head *sh, int disk_idx)
2881 struct md_rdev *rdev;
2883 /* Doing recovery so rcu locking not required */
2884 rdev = sh->raid_conf->disks[disk_idx].replacement;
2886 && !test_bit(Faulty, &rdev->flags)
2887 && !test_bit(In_sync, &rdev->flags)
2888 && (rdev->recovery_offset <= sh->sector
2889 || rdev->mddev->recovery_cp <= sh->sector))
2895 /* fetch_block - checks the given member device to see if its data needs
2896 * to be read or computed to satisfy a request.
2898 * Returns 1 when no more member devices need to be checked, otherwise returns
2899 * 0 to tell the loop in handle_stripe_fill to continue
2901 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2902 int disk_idx, int disks)
2904 struct r5dev *dev = &sh->dev[disk_idx];
2905 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2906 &sh->dev[s->failed_num[1]] };
2908 /* is the data in this block needed, and can we get it? */
2909 if (!test_bit(R5_LOCKED, &dev->flags) &&
2910 !test_bit(R5_UPTODATE, &dev->flags) &&
2912 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2913 s->syncing || s->expanding ||
2914 (s->replacing && want_replace(sh, disk_idx)) ||
2915 (s->failed >= 1 && fdev[0]->toread) ||
2916 (s->failed >= 2 && fdev[1]->toread) ||
2917 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2918 (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) &&
2919 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2920 (sh->raid_conf->level == 6 && s->failed && s->to_write &&
2921 s->to_write - s->non_overwrite < sh->raid_conf->raid_disks - 2 &&
2922 (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))))) {
2923 /* we would like to get this block, possibly by computing it,
2924 * otherwise read it if the backing disk is insync
2926 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2927 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2928 if ((s->uptodate == disks - 1) &&
2929 (s->failed && (disk_idx == s->failed_num[0] ||
2930 disk_idx == s->failed_num[1]))) {
2931 /* have disk failed, and we're requested to fetch it;
2934 pr_debug("Computing stripe %llu block %d\n",
2935 (unsigned long long)sh->sector, disk_idx);
2936 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2937 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2938 set_bit(R5_Wantcompute, &dev->flags);
2939 sh->ops.target = disk_idx;
2940 sh->ops.target2 = -1; /* no 2nd target */
2942 /* Careful: from this point on 'uptodate' is in the eye
2943 * of raid_run_ops which services 'compute' operations
2944 * before writes. R5_Wantcompute flags a block that will
2945 * be R5_UPTODATE by the time it is needed for a
2946 * subsequent operation.
2950 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2951 /* Computing 2-failure is *very* expensive; only
2952 * do it if failed >= 2
2955 for (other = disks; other--; ) {
2956 if (other == disk_idx)
2958 if (!test_bit(R5_UPTODATE,
2959 &sh->dev[other].flags))
2963 pr_debug("Computing stripe %llu blocks %d,%d\n",
2964 (unsigned long long)sh->sector,
2966 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2967 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2968 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2969 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2970 sh->ops.target = disk_idx;
2971 sh->ops.target2 = other;
2975 } else if (test_bit(R5_Insync, &dev->flags)) {
2976 set_bit(R5_LOCKED, &dev->flags);
2977 set_bit(R5_Wantread, &dev->flags);
2979 pr_debug("Reading block %d (sync=%d)\n",
2980 disk_idx, s->syncing);
2988 * handle_stripe_fill - read or compute data to satisfy pending requests.
2990 static void handle_stripe_fill(struct stripe_head *sh,
2991 struct stripe_head_state *s,
2996 /* look for blocks to read/compute, skip this if a compute
2997 * is already in flight, or if the stripe contents are in the
2998 * midst of changing due to a write
3000 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3001 !sh->reconstruct_state)
3002 for (i = disks; i--; )
3003 if (fetch_block(sh, s, i, disks))
3005 set_bit(STRIPE_HANDLE, &sh->state);
3008 /* handle_stripe_clean_event
3009 * any written block on an uptodate or failed drive can be returned.
3010 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3011 * never LOCKED, so we don't need to test 'failed' directly.
3013 static void handle_stripe_clean_event(struct r5conf *conf,
3014 struct stripe_head *sh, int disks, struct bio **return_bi)
3018 int discard_pending = 0;
3020 for (i = disks; i--; )
3021 if (sh->dev[i].written) {
3023 if (!test_bit(R5_LOCKED, &dev->flags) &&
3024 (test_bit(R5_UPTODATE, &dev->flags) ||
3025 test_bit(R5_Discard, &dev->flags) ||
3026 test_bit(R5_SkipCopy, &dev->flags))) {
3027 /* We can return any write requests */
3028 struct bio *wbi, *wbi2;
3029 pr_debug("Return write for disc %d\n", i);
3030 if (test_and_clear_bit(R5_Discard, &dev->flags))
3031 clear_bit(R5_UPTODATE, &dev->flags);
3032 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3033 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3034 dev->page = dev->orig_page;
3037 dev->written = NULL;
3038 while (wbi && wbi->bi_iter.bi_sector <
3039 dev->sector + STRIPE_SECTORS) {
3040 wbi2 = r5_next_bio(wbi, dev->sector);
3041 if (!raid5_dec_bi_active_stripes(wbi)) {
3042 md_write_end(conf->mddev);
3043 wbi->bi_next = *return_bi;
3048 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3050 !test_bit(STRIPE_DEGRADED, &sh->state),
3052 } else if (test_bit(R5_Discard, &dev->flags))
3053 discard_pending = 1;
3054 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3055 WARN_ON(dev->page != dev->orig_page);
3057 if (!discard_pending &&
3058 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3059 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3060 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3061 if (sh->qd_idx >= 0) {
3062 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3063 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3065 /* now that discard is done we can proceed with any sync */
3066 clear_bit(STRIPE_DISCARD, &sh->state);
3068 * SCSI discard will change some bio fields and the stripe has
3069 * no updated data, so remove it from hash list and the stripe
3070 * will be reinitialized
3072 spin_lock_irq(&conf->device_lock);
3074 spin_unlock_irq(&conf->device_lock);
3075 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3076 set_bit(STRIPE_HANDLE, &sh->state);
3080 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3081 if (atomic_dec_and_test(&conf->pending_full_writes))
3082 md_wakeup_thread(conf->mddev->thread);
3085 static void handle_stripe_dirtying(struct r5conf *conf,
3086 struct stripe_head *sh,
3087 struct stripe_head_state *s,
3090 int rmw = 0, rcw = 0, i;
3091 sector_t recovery_cp = conf->mddev->recovery_cp;
3093 /* RAID6 requires 'rcw' in current implementation.
3094 * Otherwise, check whether resync is now happening or should start.
3095 * If yes, then the array is dirty (after unclean shutdown or
3096 * initial creation), so parity in some stripes might be inconsistent.
3097 * In this case, we need to always do reconstruct-write, to ensure
3098 * that in case of drive failure or read-error correction, we
3099 * generate correct data from the parity.
3101 if (conf->max_degraded == 2 ||
3102 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3103 /* Calculate the real rcw later - for now make it
3104 * look like rcw is cheaper
3107 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3108 conf->max_degraded, (unsigned long long)recovery_cp,
3109 (unsigned long long)sh->sector);
3110 } else for (i = disks; i--; ) {
3111 /* would I have to read this buffer for read_modify_write */
3112 struct r5dev *dev = &sh->dev[i];
3113 if ((dev->towrite || i == sh->pd_idx) &&
3114 !test_bit(R5_LOCKED, &dev->flags) &&
3115 !(test_bit(R5_UPTODATE, &dev->flags) ||
3116 test_bit(R5_Wantcompute, &dev->flags))) {
3117 if (test_bit(R5_Insync, &dev->flags))
3120 rmw += 2*disks; /* cannot read it */
3122 /* Would I have to read this buffer for reconstruct_write */
3123 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3124 !test_bit(R5_LOCKED, &dev->flags) &&
3125 !(test_bit(R5_UPTODATE, &dev->flags) ||
3126 test_bit(R5_Wantcompute, &dev->flags))) {
3127 if (test_bit(R5_Insync, &dev->flags))
3133 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3134 (unsigned long long)sh->sector, rmw, rcw);
3135 set_bit(STRIPE_HANDLE, &sh->state);
3136 if (rmw < rcw && rmw > 0) {
3137 /* prefer read-modify-write, but need to get some data */
3138 if (conf->mddev->queue)
3139 blk_add_trace_msg(conf->mddev->queue,
3140 "raid5 rmw %llu %d",
3141 (unsigned long long)sh->sector, rmw);
3142 for (i = disks; i--; ) {
3143 struct r5dev *dev = &sh->dev[i];
3144 if ((dev->towrite || i == sh->pd_idx) &&
3145 !test_bit(R5_LOCKED, &dev->flags) &&
3146 !(test_bit(R5_UPTODATE, &dev->flags) ||
3147 test_bit(R5_Wantcompute, &dev->flags)) &&
3148 test_bit(R5_Insync, &dev->flags)) {
3149 if (test_bit(STRIPE_PREREAD_ACTIVE,
3151 pr_debug("Read_old block %d for r-m-w\n",
3153 set_bit(R5_LOCKED, &dev->flags);
3154 set_bit(R5_Wantread, &dev->flags);
3157 set_bit(STRIPE_DELAYED, &sh->state);
3158 set_bit(STRIPE_HANDLE, &sh->state);
3163 if (rcw <= rmw && rcw > 0) {
3164 /* want reconstruct write, but need to get some data */
3167 for (i = disks; i--; ) {
3168 struct r5dev *dev = &sh->dev[i];
3169 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3170 i != sh->pd_idx && i != sh->qd_idx &&
3171 !test_bit(R5_LOCKED, &dev->flags) &&
3172 !(test_bit(R5_UPTODATE, &dev->flags) ||
3173 test_bit(R5_Wantcompute, &dev->flags))) {
3175 if (test_bit(R5_Insync, &dev->flags) &&
3176 test_bit(STRIPE_PREREAD_ACTIVE,
3178 pr_debug("Read_old block "
3179 "%d for Reconstruct\n", i);
3180 set_bit(R5_LOCKED, &dev->flags);
3181 set_bit(R5_Wantread, &dev->flags);
3185 set_bit(STRIPE_DELAYED, &sh->state);
3186 set_bit(STRIPE_HANDLE, &sh->state);
3190 if (rcw && conf->mddev->queue)
3191 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3192 (unsigned long long)sh->sector,
3193 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3195 /* now if nothing is locked, and if we have enough data,
3196 * we can start a write request
3198 /* since handle_stripe can be called at any time we need to handle the
3199 * case where a compute block operation has been submitted and then a
3200 * subsequent call wants to start a write request. raid_run_ops only
3201 * handles the case where compute block and reconstruct are requested
3202 * simultaneously. If this is not the case then new writes need to be
3203 * held off until the compute completes.
3205 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3206 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3207 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3208 schedule_reconstruction(sh, s, rcw == 0, 0);
3211 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3212 struct stripe_head_state *s, int disks)
3214 struct r5dev *dev = NULL;
3216 set_bit(STRIPE_HANDLE, &sh->state);
3218 switch (sh->check_state) {
3219 case check_state_idle:
3220 /* start a new check operation if there are no failures */
3221 if (s->failed == 0) {
3222 BUG_ON(s->uptodate != disks);
3223 sh->check_state = check_state_run;
3224 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3225 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3229 dev = &sh->dev[s->failed_num[0]];
3231 case check_state_compute_result:
3232 sh->check_state = check_state_idle;
3234 dev = &sh->dev[sh->pd_idx];
3236 /* check that a write has not made the stripe insync */
3237 if (test_bit(STRIPE_INSYNC, &sh->state))
3240 /* either failed parity check, or recovery is happening */
3241 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3242 BUG_ON(s->uptodate != disks);
3244 set_bit(R5_LOCKED, &dev->flags);
3246 set_bit(R5_Wantwrite, &dev->flags);
3248 clear_bit(STRIPE_DEGRADED, &sh->state);
3249 set_bit(STRIPE_INSYNC, &sh->state);
3251 case check_state_run:
3252 break; /* we will be called again upon completion */
3253 case check_state_check_result:
3254 sh->check_state = check_state_idle;
3256 /* if a failure occurred during the check operation, leave
3257 * STRIPE_INSYNC not set and let the stripe be handled again
3262 /* handle a successful check operation, if parity is correct
3263 * we are done. Otherwise update the mismatch count and repair
3264 * parity if !MD_RECOVERY_CHECK
3266 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3267 /* parity is correct (on disc,
3268 * not in buffer any more)
3270 set_bit(STRIPE_INSYNC, &sh->state);
3272 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3273 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3274 /* don't try to repair!! */
3275 set_bit(STRIPE_INSYNC, &sh->state);
3277 sh->check_state = check_state_compute_run;
3278 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3279 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3280 set_bit(R5_Wantcompute,
3281 &sh->dev[sh->pd_idx].flags);
3282 sh->ops.target = sh->pd_idx;
3283 sh->ops.target2 = -1;
3288 case check_state_compute_run:
3291 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3292 __func__, sh->check_state,
3293 (unsigned long long) sh->sector);
3298 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3299 struct stripe_head_state *s,
3302 int pd_idx = sh->pd_idx;
3303 int qd_idx = sh->qd_idx;
3306 set_bit(STRIPE_HANDLE, &sh->state);
3308 BUG_ON(s->failed > 2);
3310 /* Want to check and possibly repair P and Q.
3311 * However there could be one 'failed' device, in which
3312 * case we can only check one of them, possibly using the
3313 * other to generate missing data
3316 switch (sh->check_state) {
3317 case check_state_idle:
3318 /* start a new check operation if there are < 2 failures */
3319 if (s->failed == s->q_failed) {
3320 /* The only possible failed device holds Q, so it
3321 * makes sense to check P (If anything else were failed,
3322 * we would have used P to recreate it).
3324 sh->check_state = check_state_run;
3326 if (!s->q_failed && s->failed < 2) {
3327 /* Q is not failed, and we didn't use it to generate
3328 * anything, so it makes sense to check it
3330 if (sh->check_state == check_state_run)
3331 sh->check_state = check_state_run_pq;
3333 sh->check_state = check_state_run_q;
3336 /* discard potentially stale zero_sum_result */
3337 sh->ops.zero_sum_result = 0;
3339 if (sh->check_state == check_state_run) {
3340 /* async_xor_zero_sum destroys the contents of P */
3341 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3344 if (sh->check_state >= check_state_run &&
3345 sh->check_state <= check_state_run_pq) {
3346 /* async_syndrome_zero_sum preserves P and Q, so
3347 * no need to mark them !uptodate here
3349 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3353 /* we have 2-disk failure */
3354 BUG_ON(s->failed != 2);
3356 case check_state_compute_result:
3357 sh->check_state = check_state_idle;
3359 /* check that a write has not made the stripe insync */
3360 if (test_bit(STRIPE_INSYNC, &sh->state))
3363 /* now write out any block on a failed drive,
3364 * or P or Q if they were recomputed
3366 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3367 if (s->failed == 2) {
3368 dev = &sh->dev[s->failed_num[1]];
3370 set_bit(R5_LOCKED, &dev->flags);
3371 set_bit(R5_Wantwrite, &dev->flags);
3373 if (s->failed >= 1) {
3374 dev = &sh->dev[s->failed_num[0]];
3376 set_bit(R5_LOCKED, &dev->flags);
3377 set_bit(R5_Wantwrite, &dev->flags);
3379 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3380 dev = &sh->dev[pd_idx];
3382 set_bit(R5_LOCKED, &dev->flags);
3383 set_bit(R5_Wantwrite, &dev->flags);
3385 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3386 dev = &sh->dev[qd_idx];
3388 set_bit(R5_LOCKED, &dev->flags);
3389 set_bit(R5_Wantwrite, &dev->flags);
3391 clear_bit(STRIPE_DEGRADED, &sh->state);
3393 set_bit(STRIPE_INSYNC, &sh->state);
3395 case check_state_run:
3396 case check_state_run_q:
3397 case check_state_run_pq:
3398 break; /* we will be called again upon completion */
3399 case check_state_check_result:
3400 sh->check_state = check_state_idle;
3402 /* handle a successful check operation, if parity is correct
3403 * we are done. Otherwise update the mismatch count and repair
3404 * parity if !MD_RECOVERY_CHECK
3406 if (sh->ops.zero_sum_result == 0) {
3407 /* both parities are correct */
3409 set_bit(STRIPE_INSYNC, &sh->state);
3411 /* in contrast to the raid5 case we can validate
3412 * parity, but still have a failure to write
3415 sh->check_state = check_state_compute_result;
3416 /* Returning at this point means that we may go
3417 * off and bring p and/or q uptodate again so
3418 * we make sure to check zero_sum_result again
3419 * to verify if p or q need writeback
3423 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3424 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3425 /* don't try to repair!! */
3426 set_bit(STRIPE_INSYNC, &sh->state);
3428 int *target = &sh->ops.target;
3430 sh->ops.target = -1;
3431 sh->ops.target2 = -1;
3432 sh->check_state = check_state_compute_run;
3433 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3434 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3435 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3436 set_bit(R5_Wantcompute,
3437 &sh->dev[pd_idx].flags);
3439 target = &sh->ops.target2;
3442 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3443 set_bit(R5_Wantcompute,
3444 &sh->dev[qd_idx].flags);
3451 case check_state_compute_run:
3454 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3455 __func__, sh->check_state,
3456 (unsigned long long) sh->sector);
3461 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3465 /* We have read all the blocks in this stripe and now we need to
3466 * copy some of them into a target stripe for expand.
3468 struct dma_async_tx_descriptor *tx = NULL;
3469 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3470 for (i = 0; i < sh->disks; i++)
3471 if (i != sh->pd_idx && i != sh->qd_idx) {
3473 struct stripe_head *sh2;
3474 struct async_submit_ctl submit;
3476 sector_t bn = compute_blocknr(sh, i, 1);
3477 sector_t s = raid5_compute_sector(conf, bn, 0,
3479 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3481 /* so far only the early blocks of this stripe
3482 * have been requested. When later blocks
3483 * get requested, we will try again
3486 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3487 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3488 /* must have already done this block */
3489 release_stripe(sh2);
3493 /* place all the copies on one channel */
3494 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3495 tx = async_memcpy(sh2->dev[dd_idx].page,
3496 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3499 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3500 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3501 for (j = 0; j < conf->raid_disks; j++)
3502 if (j != sh2->pd_idx &&
3504 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3506 if (j == conf->raid_disks) {
3507 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3508 set_bit(STRIPE_HANDLE, &sh2->state);
3510 release_stripe(sh2);
3513 /* done submitting copies, wait for them to complete */
3514 async_tx_quiesce(&tx);
3518 * handle_stripe - do things to a stripe.
3520 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3521 * state of various bits to see what needs to be done.
3523 * return some read requests which now have data
3524 * return some write requests which are safely on storage
3525 * schedule a read on some buffers
3526 * schedule a write of some buffers
3527 * return confirmation of parity correctness
3531 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3533 struct r5conf *conf = sh->raid_conf;
3534 int disks = sh->disks;
3537 int do_recovery = 0;
3539 memset(s, 0, sizeof(*s));
3541 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3542 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3543 s->failed_num[0] = -1;
3544 s->failed_num[1] = -1;
3546 /* Now to look around and see what can be done */
3548 for (i=disks; i--; ) {
3549 struct md_rdev *rdev;
3556 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3558 dev->toread, dev->towrite, dev->written);
3559 /* maybe we can reply to a read
3561 * new wantfill requests are only permitted while
3562 * ops_complete_biofill is guaranteed to be inactive
3564 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3565 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3566 set_bit(R5_Wantfill, &dev->flags);
3568 /* now count some things */
3569 if (test_bit(R5_LOCKED, &dev->flags))
3571 if (test_bit(R5_UPTODATE, &dev->flags))
3573 if (test_bit(R5_Wantcompute, &dev->flags)) {
3575 BUG_ON(s->compute > 2);
3578 if (test_bit(R5_Wantfill, &dev->flags))
3580 else if (dev->toread)
3584 if (!test_bit(R5_OVERWRITE, &dev->flags))
3589 /* Prefer to use the replacement for reads, but only
3590 * if it is recovered enough and has no bad blocks.
3592 rdev = rcu_dereference(conf->disks[i].replacement);
3593 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3594 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3595 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3596 &first_bad, &bad_sectors))
3597 set_bit(R5_ReadRepl, &dev->flags);
3600 set_bit(R5_NeedReplace, &dev->flags);
3601 rdev = rcu_dereference(conf->disks[i].rdev);
3602 clear_bit(R5_ReadRepl, &dev->flags);
3604 if (rdev && test_bit(Faulty, &rdev->flags))
3607 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3608 &first_bad, &bad_sectors);
3609 if (s->blocked_rdev == NULL
3610 && (test_bit(Blocked, &rdev->flags)
3613 set_bit(BlockedBadBlocks,
3615 s->blocked_rdev = rdev;
3616 atomic_inc(&rdev->nr_pending);
3619 clear_bit(R5_Insync, &dev->flags);
3623 /* also not in-sync */
3624 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3625 test_bit(R5_UPTODATE, &dev->flags)) {
3626 /* treat as in-sync, but with a read error
3627 * which we can now try to correct
3629 set_bit(R5_Insync, &dev->flags);
3630 set_bit(R5_ReadError, &dev->flags);
3632 } else if (test_bit(In_sync, &rdev->flags))
3633 set_bit(R5_Insync, &dev->flags);
3634 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3635 /* in sync if before recovery_offset */
3636 set_bit(R5_Insync, &dev->flags);
3637 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3638 test_bit(R5_Expanded, &dev->flags))
3639 /* If we've reshaped into here, we assume it is Insync.
3640 * We will shortly update recovery_offset to make
3643 set_bit(R5_Insync, &dev->flags);
3645 if (test_bit(R5_WriteError, &dev->flags)) {
3646 /* This flag does not apply to '.replacement'
3647 * only to .rdev, so make sure to check that*/
3648 struct md_rdev *rdev2 = rcu_dereference(
3649 conf->disks[i].rdev);
3651 clear_bit(R5_Insync, &dev->flags);
3652 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3653 s->handle_bad_blocks = 1;
3654 atomic_inc(&rdev2->nr_pending);
3656 clear_bit(R5_WriteError, &dev->flags);
3658 if (test_bit(R5_MadeGood, &dev->flags)) {
3659 /* This flag does not apply to '.replacement'
3660 * only to .rdev, so make sure to check that*/
3661 struct md_rdev *rdev2 = rcu_dereference(
3662 conf->disks[i].rdev);
3663 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3664 s->handle_bad_blocks = 1;
3665 atomic_inc(&rdev2->nr_pending);
3667 clear_bit(R5_MadeGood, &dev->flags);
3669 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3670 struct md_rdev *rdev2 = rcu_dereference(
3671 conf->disks[i].replacement);
3672 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3673 s->handle_bad_blocks = 1;
3674 atomic_inc(&rdev2->nr_pending);
3676 clear_bit(R5_MadeGoodRepl, &dev->flags);
3678 if (!test_bit(R5_Insync, &dev->flags)) {
3679 /* The ReadError flag will just be confusing now */
3680 clear_bit(R5_ReadError, &dev->flags);
3681 clear_bit(R5_ReWrite, &dev->flags);
3683 if (test_bit(R5_ReadError, &dev->flags))
3684 clear_bit(R5_Insync, &dev->flags);
3685 if (!test_bit(R5_Insync, &dev->flags)) {
3687 s->failed_num[s->failed] = i;
3689 if (rdev && !test_bit(Faulty, &rdev->flags))
3693 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3694 /* If there is a failed device being replaced,
3695 * we must be recovering.
3696 * else if we are after recovery_cp, we must be syncing
3697 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3698 * else we can only be replacing
3699 * sync and recovery both need to read all devices, and so
3700 * use the same flag.
3703 sh->sector >= conf->mddev->recovery_cp ||
3704 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3712 static void handle_stripe(struct stripe_head *sh)
3714 struct stripe_head_state s;
3715 struct r5conf *conf = sh->raid_conf;
3718 int disks = sh->disks;
3719 struct r5dev *pdev, *qdev;
3721 clear_bit(STRIPE_HANDLE, &sh->state);
3722 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3723 /* already being handled, ensure it gets handled
3724 * again when current action finishes */
3725 set_bit(STRIPE_HANDLE, &sh->state);
3729 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3730 spin_lock(&sh->stripe_lock);
3731 /* Cannot process 'sync' concurrently with 'discard' */
3732 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3733 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3734 set_bit(STRIPE_SYNCING, &sh->state);
3735 clear_bit(STRIPE_INSYNC, &sh->state);
3736 clear_bit(STRIPE_REPLACED, &sh->state);
3738 spin_unlock(&sh->stripe_lock);
3740 clear_bit(STRIPE_DELAYED, &sh->state);
3742 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3743 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3744 (unsigned long long)sh->sector, sh->state,
3745 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3746 sh->check_state, sh->reconstruct_state);
3748 analyse_stripe(sh, &s);
3750 if (s.handle_bad_blocks) {
3751 set_bit(STRIPE_HANDLE, &sh->state);
3755 if (unlikely(s.blocked_rdev)) {
3756 if (s.syncing || s.expanding || s.expanded ||
3757 s.replacing || s.to_write || s.written) {
3758 set_bit(STRIPE_HANDLE, &sh->state);
3761 /* There is nothing for the blocked_rdev to block */
3762 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3763 s.blocked_rdev = NULL;
3766 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3767 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3768 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3771 pr_debug("locked=%d uptodate=%d to_read=%d"
3772 " to_write=%d failed=%d failed_num=%d,%d\n",
3773 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3774 s.failed_num[0], s.failed_num[1]);
3775 /* check if the array has lost more than max_degraded devices and,
3776 * if so, some requests might need to be failed.
3778 if (s.failed > conf->max_degraded) {
3779 sh->check_state = 0;
3780 sh->reconstruct_state = 0;
3781 if (s.to_read+s.to_write+s.written)
3782 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3783 if (s.syncing + s.replacing)
3784 handle_failed_sync(conf, sh, &s);
3787 /* Now we check to see if any write operations have recently
3791 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3793 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3794 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3795 sh->reconstruct_state = reconstruct_state_idle;
3797 /* All the 'written' buffers and the parity block are ready to
3798 * be written back to disk
3800 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3801 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3802 BUG_ON(sh->qd_idx >= 0 &&
3803 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3804 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3805 for (i = disks; i--; ) {
3806 struct r5dev *dev = &sh->dev[i];
3807 if (test_bit(R5_LOCKED, &dev->flags) &&
3808 (i == sh->pd_idx || i == sh->qd_idx ||
3810 pr_debug("Writing block %d\n", i);
3811 set_bit(R5_Wantwrite, &dev->flags);
3816 if (!test_bit(R5_Insync, &dev->flags) ||
3817 ((i == sh->pd_idx || i == sh->qd_idx) &&
3819 set_bit(STRIPE_INSYNC, &sh->state);
3822 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3823 s.dec_preread_active = 1;
3827 * might be able to return some write requests if the parity blocks
3828 * are safe, or on a failed drive
3830 pdev = &sh->dev[sh->pd_idx];
3831 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3832 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3833 qdev = &sh->dev[sh->qd_idx];
3834 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3835 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3839 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3840 && !test_bit(R5_LOCKED, &pdev->flags)
3841 && (test_bit(R5_UPTODATE, &pdev->flags) ||
3842 test_bit(R5_Discard, &pdev->flags))))) &&
3843 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3844 && !test_bit(R5_LOCKED, &qdev->flags)
3845 && (test_bit(R5_UPTODATE, &qdev->flags) ||
3846 test_bit(R5_Discard, &qdev->flags))))))
3847 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3849 /* Now we might consider reading some blocks, either to check/generate
3850 * parity, or to satisfy requests
3851 * or to load a block that is being partially written.
3853 if (s.to_read || s.non_overwrite
3854 || (conf->level == 6 && s.to_write && s.failed)
3855 || (s.syncing && (s.uptodate + s.compute < disks))
3858 handle_stripe_fill(sh, &s, disks);
3860 /* Now to consider new write requests and what else, if anything
3861 * should be read. We do not handle new writes when:
3862 * 1/ A 'write' operation (copy+xor) is already in flight.
3863 * 2/ A 'check' operation is in flight, as it may clobber the parity
3866 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3867 handle_stripe_dirtying(conf, sh, &s, disks);
3869 /* maybe we need to check and possibly fix the parity for this stripe
3870 * Any reads will already have been scheduled, so we just see if enough
3871 * data is available. The parity check is held off while parity
3872 * dependent operations are in flight.
3874 if (sh->check_state ||
3875 (s.syncing && s.locked == 0 &&
3876 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3877 !test_bit(STRIPE_INSYNC, &sh->state))) {
3878 if (conf->level == 6)
3879 handle_parity_checks6(conf, sh, &s, disks);
3881 handle_parity_checks5(conf, sh, &s, disks);
3884 if ((s.replacing || s.syncing) && s.locked == 0
3885 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3886 && !test_bit(STRIPE_REPLACED, &sh->state)) {
3887 /* Write out to replacement devices where possible */
3888 for (i = 0; i < conf->raid_disks; i++)
3889 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3890 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3891 set_bit(R5_WantReplace, &sh->dev[i].flags);
3892 set_bit(R5_LOCKED, &sh->dev[i].flags);
3896 set_bit(STRIPE_INSYNC, &sh->state);
3897 set_bit(STRIPE_REPLACED, &sh->state);
3899 if ((s.syncing || s.replacing) && s.locked == 0 &&
3900 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3901 test_bit(STRIPE_INSYNC, &sh->state)) {
3902 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3903 clear_bit(STRIPE_SYNCING, &sh->state);
3904 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3905 wake_up(&conf->wait_for_overlap);
3908 /* If the failed drives are just a ReadError, then we might need
3909 * to progress the repair/check process
3911 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3912 for (i = 0; i < s.failed; i++) {
3913 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3914 if (test_bit(R5_ReadError, &dev->flags)
3915 && !test_bit(R5_LOCKED, &dev->flags)
3916 && test_bit(R5_UPTODATE, &dev->flags)
3918 if (!test_bit(R5_ReWrite, &dev->flags)) {
3919 set_bit(R5_Wantwrite, &dev->flags);
3920 set_bit(R5_ReWrite, &dev->flags);
3921 set_bit(R5_LOCKED, &dev->flags);
3924 /* let's read it back */
3925 set_bit(R5_Wantread, &dev->flags);
3926 set_bit(R5_LOCKED, &dev->flags);
3932 /* Finish reconstruct operations initiated by the expansion process */
3933 if (sh->reconstruct_state == reconstruct_state_result) {
3934 struct stripe_head *sh_src
3935 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3936 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3937 /* sh cannot be written until sh_src has been read.
3938 * so arrange for sh to be delayed a little
3940 set_bit(STRIPE_DELAYED, &sh->state);
3941 set_bit(STRIPE_HANDLE, &sh->state);
3942 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3944 atomic_inc(&conf->preread_active_stripes);
3945 release_stripe(sh_src);
3949 release_stripe(sh_src);
3951 sh->reconstruct_state = reconstruct_state_idle;
3952 clear_bit(STRIPE_EXPANDING, &sh->state);
3953 for (i = conf->raid_disks; i--; ) {
3954 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3955 set_bit(R5_LOCKED, &sh->dev[i].flags);
3960 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3961 !sh->reconstruct_state) {
3962 /* Need to write out all blocks after computing parity */
3963 sh->disks = conf->raid_disks;
3964 stripe_set_idx(sh->sector, conf, 0, sh);
3965 schedule_reconstruction(sh, &s, 1, 1);
3966 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3967 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3968 atomic_dec(&conf->reshape_stripes);
3969 wake_up(&conf->wait_for_overlap);
3970 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3973 if (s.expanding && s.locked == 0 &&
3974 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3975 handle_stripe_expansion(conf, sh);
3978 /* wait for this device to become unblocked */
3979 if (unlikely(s.blocked_rdev)) {
3980 if (conf->mddev->external)
3981 md_wait_for_blocked_rdev(s.blocked_rdev,
3984 /* Internal metadata will immediately
3985 * be written by raid5d, so we don't
3986 * need to wait here.
3988 rdev_dec_pending(s.blocked_rdev,
3992 if (s.handle_bad_blocks)
3993 for (i = disks; i--; ) {
3994 struct md_rdev *rdev;
3995 struct r5dev *dev = &sh->dev[i];
3996 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3997 /* We own a safe reference to the rdev */
3998 rdev = conf->disks[i].rdev;
3999 if (!rdev_set_badblocks(rdev, sh->sector,
4001 md_error(conf->mddev, rdev);
4002 rdev_dec_pending(rdev, conf->mddev);
4004 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4005 rdev = conf->disks[i].rdev;
4006 rdev_clear_badblocks(rdev, sh->sector,
4008 rdev_dec_pending(rdev, conf->mddev);
4010 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4011 rdev = conf->disks[i].replacement;
4013 /* rdev have been moved down */
4014 rdev = conf->disks[i].rdev;
4015 rdev_clear_badblocks(rdev, sh->sector,
4017 rdev_dec_pending(rdev, conf->mddev);
4022 raid_run_ops(sh, s.ops_request);
4026 if (s.dec_preread_active) {
4027 /* We delay this until after ops_run_io so that if make_request
4028 * is waiting on a flush, it won't continue until the writes
4029 * have actually been submitted.
4031 atomic_dec(&conf->preread_active_stripes);
4032 if (atomic_read(&conf->preread_active_stripes) <
4034 md_wakeup_thread(conf->mddev->thread);
4037 return_io(s.return_bi);
4039 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4042 static void raid5_activate_delayed(struct r5conf *conf)
4044 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4045 while (!list_empty(&conf->delayed_list)) {
4046 struct list_head *l = conf->delayed_list.next;
4047 struct stripe_head *sh;
4048 sh = list_entry(l, struct stripe_head, lru);
4050 clear_bit(STRIPE_DELAYED, &sh->state);
4051 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4052 atomic_inc(&conf->preread_active_stripes);
4053 list_add_tail(&sh->lru, &conf->hold_list);
4054 raid5_wakeup_stripe_thread(sh);
4059 static void activate_bit_delay(struct r5conf *conf,
4060 struct list_head *temp_inactive_list)
4062 /* device_lock is held */
4063 struct list_head head;
4064 list_add(&head, &conf->bitmap_list);
4065 list_del_init(&conf->bitmap_list);
4066 while (!list_empty(&head)) {
4067 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4069 list_del_init(&sh->lru);
4070 atomic_inc(&sh->count);
4071 hash = sh->hash_lock_index;
4072 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4076 int md_raid5_congested(struct mddev *mddev, int bits)
4078 struct r5conf *conf = mddev->private;
4080 /* No difference between reads and writes. Just check
4081 * how busy the stripe_cache is
4084 if (conf->inactive_blocked)
4088 if (atomic_read(&conf->empty_inactive_list_nr))
4093 EXPORT_SYMBOL_GPL(md_raid5_congested);
4095 static int raid5_congested(void *data, int bits)
4097 struct mddev *mddev = data;
4099 return mddev_congested(mddev, bits) ||
4100 md_raid5_congested(mddev, bits);
4103 /* We want read requests to align with chunks where possible,
4104 * but write requests don't need to.
4106 static int raid5_mergeable_bvec(struct request_queue *q,
4107 struct bvec_merge_data *bvm,
4108 struct bio_vec *biovec)
4110 struct mddev *mddev = q->queuedata;
4111 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4113 unsigned int chunk_sectors = mddev->chunk_sectors;
4114 unsigned int bio_sectors = bvm->bi_size >> 9;
4116 if ((bvm->bi_rw & 1) == WRITE)
4117 return biovec->bv_len; /* always allow writes to be mergeable */
4119 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4120 chunk_sectors = mddev->new_chunk_sectors;
4121 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4122 if (max < 0) max = 0;
4123 if (max <= biovec->bv_len && bio_sectors == 0)
4124 return biovec->bv_len;
4129 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4131 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4132 unsigned int chunk_sectors = mddev->chunk_sectors;
4133 unsigned int bio_sectors = bio_sectors(bio);
4135 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4136 chunk_sectors = mddev->new_chunk_sectors;
4137 return chunk_sectors >=
4138 ((sector & (chunk_sectors - 1)) + bio_sectors);
4142 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4143 * later sampled by raid5d.
4145 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4147 unsigned long flags;
4149 spin_lock_irqsave(&conf->device_lock, flags);
4151 bi->bi_next = conf->retry_read_aligned_list;
4152 conf->retry_read_aligned_list = bi;
4154 spin_unlock_irqrestore(&conf->device_lock, flags);
4155 md_wakeup_thread(conf->mddev->thread);
4158 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4162 bi = conf->retry_read_aligned;
4164 conf->retry_read_aligned = NULL;
4167 bi = conf->retry_read_aligned_list;
4169 conf->retry_read_aligned_list = bi->bi_next;
4172 * this sets the active strip count to 1 and the processed
4173 * strip count to zero (upper 8 bits)
4175 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4182 * The "raid5_align_endio" should check if the read succeeded and if it
4183 * did, call bio_endio on the original bio (having bio_put the new bio
4185 * If the read failed..
4187 static void raid5_align_endio(struct bio *bi, int error)
4189 struct bio* raid_bi = bi->bi_private;
4190 struct mddev *mddev;
4191 struct r5conf *conf;
4192 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4193 struct md_rdev *rdev;
4197 rdev = (void*)raid_bi->bi_next;
4198 raid_bi->bi_next = NULL;
4199 mddev = rdev->mddev;
4200 conf = mddev->private;
4202 rdev_dec_pending(rdev, conf->mddev);
4204 if (!error && uptodate) {
4205 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4207 bio_endio(raid_bi, 0);
4208 if (atomic_dec_and_test(&conf->active_aligned_reads))
4209 wake_up(&conf->wait_for_stripe);
4213 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4215 add_bio_to_retry(raid_bi, conf);
4218 static int bio_fits_rdev(struct bio *bi)
4220 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4222 if (bio_sectors(bi) > queue_max_sectors(q))
4224 blk_recount_segments(q, bi);
4225 if (bi->bi_phys_segments > queue_max_segments(q))
4228 if (q->merge_bvec_fn)
4229 /* it's too hard to apply the merge_bvec_fn at this stage,
4237 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4239 struct r5conf *conf = mddev->private;
4241 struct bio* align_bi;
4242 struct md_rdev *rdev;
4243 sector_t end_sector;
4245 if (!in_chunk_boundary(mddev, raid_bio)) {
4246 pr_debug("chunk_aligned_read : non aligned\n");
4250 * use bio_clone_mddev to make a copy of the bio
4252 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4256 * set bi_end_io to a new function, and set bi_private to the
4259 align_bi->bi_end_io = raid5_align_endio;
4260 align_bi->bi_private = raid_bio;
4264 align_bi->bi_iter.bi_sector =
4265 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4268 end_sector = bio_end_sector(align_bi);
4270 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4271 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4272 rdev->recovery_offset < end_sector) {
4273 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4275 (test_bit(Faulty, &rdev->flags) ||
4276 !(test_bit(In_sync, &rdev->flags) ||
4277 rdev->recovery_offset >= end_sector)))
4284 atomic_inc(&rdev->nr_pending);
4286 raid_bio->bi_next = (void*)rdev;
4287 align_bi->bi_bdev = rdev->bdev;
4288 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4290 if (!bio_fits_rdev(align_bi) ||
4291 is_badblock(rdev, align_bi->bi_iter.bi_sector,
4292 bio_sectors(align_bi),
4293 &first_bad, &bad_sectors)) {
4294 /* too big in some way, or has a known bad block */
4296 rdev_dec_pending(rdev, mddev);
4300 /* No reshape active, so we can trust rdev->data_offset */
4301 align_bi->bi_iter.bi_sector += rdev->data_offset;
4303 spin_lock_irq(&conf->device_lock);
4304 wait_event_lock_irq(conf->wait_for_stripe,
4307 atomic_inc(&conf->active_aligned_reads);
4308 spin_unlock_irq(&conf->device_lock);
4311 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4312 align_bi, disk_devt(mddev->gendisk),
4313 raid_bio->bi_iter.bi_sector);
4314 generic_make_request(align_bi);
4323 /* __get_priority_stripe - get the next stripe to process
4325 * Full stripe writes are allowed to pass preread active stripes up until
4326 * the bypass_threshold is exceeded. In general the bypass_count
4327 * increments when the handle_list is handled before the hold_list; however, it
4328 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4329 * stripe with in flight i/o. The bypass_count will be reset when the
4330 * head of the hold_list has changed, i.e. the head was promoted to the
4333 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4335 struct stripe_head *sh = NULL, *tmp;
4336 struct list_head *handle_list = NULL;
4337 struct r5worker_group *wg = NULL;
4339 if (conf->worker_cnt_per_group == 0) {
4340 handle_list = &conf->handle_list;
4341 } else if (group != ANY_GROUP) {
4342 handle_list = &conf->worker_groups[group].handle_list;
4343 wg = &conf->worker_groups[group];
4346 for (i = 0; i < conf->group_cnt; i++) {
4347 handle_list = &conf->worker_groups[i].handle_list;
4348 wg = &conf->worker_groups[i];
4349 if (!list_empty(handle_list))
4354 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4356 list_empty(handle_list) ? "empty" : "busy",
4357 list_empty(&conf->hold_list) ? "empty" : "busy",
4358 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4360 if (!list_empty(handle_list)) {
4361 sh = list_entry(handle_list->next, typeof(*sh), lru);
4363 if (list_empty(&conf->hold_list))
4364 conf->bypass_count = 0;
4365 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4366 if (conf->hold_list.next == conf->last_hold)
4367 conf->bypass_count++;
4369 conf->last_hold = conf->hold_list.next;
4370 conf->bypass_count -= conf->bypass_threshold;
4371 if (conf->bypass_count < 0)
4372 conf->bypass_count = 0;
4375 } else if (!list_empty(&conf->hold_list) &&
4376 ((conf->bypass_threshold &&
4377 conf->bypass_count > conf->bypass_threshold) ||
4378 atomic_read(&conf->pending_full_writes) == 0)) {
4380 list_for_each_entry(tmp, &conf->hold_list, lru) {
4381 if (conf->worker_cnt_per_group == 0 ||
4382 group == ANY_GROUP ||
4383 !cpu_online(tmp->cpu) ||
4384 cpu_to_group(tmp->cpu) == group) {
4391 conf->bypass_count -= conf->bypass_threshold;
4392 if (conf->bypass_count < 0)
4393 conf->bypass_count = 0;
4405 list_del_init(&sh->lru);
4406 BUG_ON(atomic_inc_return(&sh->count) != 1);
4410 struct raid5_plug_cb {
4411 struct blk_plug_cb cb;
4412 struct list_head list;
4413 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4416 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4418 struct raid5_plug_cb *cb = container_of(
4419 blk_cb, struct raid5_plug_cb, cb);
4420 struct stripe_head *sh;
4421 struct mddev *mddev = cb->cb.data;
4422 struct r5conf *conf = mddev->private;
4426 if (cb->list.next && !list_empty(&cb->list)) {
4427 spin_lock_irq(&conf->device_lock);
4428 while (!list_empty(&cb->list)) {
4429 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4430 list_del_init(&sh->lru);
4432 * avoid race release_stripe_plug() sees
4433 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4434 * is still in our list
4436 smp_mb__before_atomic();
4437 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4439 * STRIPE_ON_RELEASE_LIST could be set here. In that
4440 * case, the count is always > 1 here
4442 hash = sh->hash_lock_index;
4443 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4446 spin_unlock_irq(&conf->device_lock);
4448 release_inactive_stripe_list(conf, cb->temp_inactive_list,
4449 NR_STRIPE_HASH_LOCKS);
4451 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4455 static void release_stripe_plug(struct mddev *mddev,
4456 struct stripe_head *sh)
4458 struct blk_plug_cb *blk_cb = blk_check_plugged(
4459 raid5_unplug, mddev,
4460 sizeof(struct raid5_plug_cb));
4461 struct raid5_plug_cb *cb;
4468 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4470 if (cb->list.next == NULL) {
4472 INIT_LIST_HEAD(&cb->list);
4473 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4474 INIT_LIST_HEAD(cb->temp_inactive_list + i);
4477 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4478 list_add_tail(&sh->lru, &cb->list);
4483 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4485 struct r5conf *conf = mddev->private;
4486 sector_t logical_sector, last_sector;
4487 struct stripe_head *sh;
4491 if (mddev->reshape_position != MaxSector)
4492 /* Skip discard while reshape is happening */
4495 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4496 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4499 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4501 stripe_sectors = conf->chunk_sectors *
4502 (conf->raid_disks - conf->max_degraded);
4503 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4505 sector_div(last_sector, stripe_sectors);
4507 logical_sector *= conf->chunk_sectors;
4508 last_sector *= conf->chunk_sectors;
4510 for (; logical_sector < last_sector;
4511 logical_sector += STRIPE_SECTORS) {
4515 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4516 prepare_to_wait(&conf->wait_for_overlap, &w,
4517 TASK_UNINTERRUPTIBLE);
4518 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4519 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4524 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4525 spin_lock_irq(&sh->stripe_lock);
4526 for (d = 0; d < conf->raid_disks; d++) {
4527 if (d == sh->pd_idx || d == sh->qd_idx)
4529 if (sh->dev[d].towrite || sh->dev[d].toread) {
4530 set_bit(R5_Overlap, &sh->dev[d].flags);
4531 spin_unlock_irq(&sh->stripe_lock);
4537 set_bit(STRIPE_DISCARD, &sh->state);
4538 finish_wait(&conf->wait_for_overlap, &w);
4539 for (d = 0; d < conf->raid_disks; d++) {
4540 if (d == sh->pd_idx || d == sh->qd_idx)
4542 sh->dev[d].towrite = bi;
4543 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4544 raid5_inc_bi_active_stripes(bi);
4546 spin_unlock_irq(&sh->stripe_lock);
4547 if (conf->mddev->bitmap) {
4549 d < conf->raid_disks - conf->max_degraded;
4551 bitmap_startwrite(mddev->bitmap,
4555 sh->bm_seq = conf->seq_flush + 1;
4556 set_bit(STRIPE_BIT_DELAY, &sh->state);
4559 set_bit(STRIPE_HANDLE, &sh->state);
4560 clear_bit(STRIPE_DELAYED, &sh->state);
4561 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4562 atomic_inc(&conf->preread_active_stripes);
4563 release_stripe_plug(mddev, sh);
4566 remaining = raid5_dec_bi_active_stripes(bi);
4567 if (remaining == 0) {
4568 md_write_end(mddev);
4573 static void make_request(struct mddev *mddev, struct bio * bi)
4575 struct r5conf *conf = mddev->private;
4577 sector_t new_sector;
4578 sector_t logical_sector, last_sector;
4579 struct stripe_head *sh;
4580 const int rw = bio_data_dir(bi);
4585 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4586 md_flush_request(mddev, bi);
4590 md_write_start(mddev, bi);
4593 mddev->reshape_position == MaxSector &&
4594 chunk_aligned_read(mddev,bi))
4597 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4598 make_discard_request(mddev, bi);
4602 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4603 last_sector = bio_end_sector(bi);
4605 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4607 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4608 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4614 seq = read_seqcount_begin(&conf->gen_lock);
4617 prepare_to_wait(&conf->wait_for_overlap, &w,
4618 TASK_UNINTERRUPTIBLE);
4619 if (unlikely(conf->reshape_progress != MaxSector)) {
4620 /* spinlock is needed as reshape_progress may be
4621 * 64bit on a 32bit platform, and so it might be
4622 * possible to see a half-updated value
4623 * Of course reshape_progress could change after
4624 * the lock is dropped, so once we get a reference
4625 * to the stripe that we think it is, we will have
4628 spin_lock_irq(&conf->device_lock);
4629 if (mddev->reshape_backwards
4630 ? logical_sector < conf->reshape_progress
4631 : logical_sector >= conf->reshape_progress) {
4634 if (mddev->reshape_backwards
4635 ? logical_sector < conf->reshape_safe
4636 : logical_sector >= conf->reshape_safe) {
4637 spin_unlock_irq(&conf->device_lock);
4643 spin_unlock_irq(&conf->device_lock);
4646 new_sector = raid5_compute_sector(conf, logical_sector,
4649 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4650 (unsigned long long)new_sector,
4651 (unsigned long long)logical_sector);
4653 sh = get_active_stripe(conf, new_sector, previous,
4654 (bi->bi_rw&RWA_MASK), 0);
4656 if (unlikely(previous)) {
4657 /* expansion might have moved on while waiting for a
4658 * stripe, so we must do the range check again.
4659 * Expansion could still move past after this
4660 * test, but as we are holding a reference to
4661 * 'sh', we know that if that happens,
4662 * STRIPE_EXPANDING will get set and the expansion
4663 * won't proceed until we finish with the stripe.
4666 spin_lock_irq(&conf->device_lock);
4667 if (mddev->reshape_backwards
4668 ? logical_sector >= conf->reshape_progress
4669 : logical_sector < conf->reshape_progress)
4670 /* mismatch, need to try again */
4672 spin_unlock_irq(&conf->device_lock);
4680 if (read_seqcount_retry(&conf->gen_lock, seq)) {
4681 /* Might have got the wrong stripe_head
4689 logical_sector >= mddev->suspend_lo &&
4690 logical_sector < mddev->suspend_hi) {
4692 /* As the suspend_* range is controlled by
4693 * userspace, we want an interruptible
4696 flush_signals(current);
4697 prepare_to_wait(&conf->wait_for_overlap,
4698 &w, TASK_INTERRUPTIBLE);
4699 if (logical_sector >= mddev->suspend_lo &&
4700 logical_sector < mddev->suspend_hi) {
4707 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4708 !add_stripe_bio(sh, bi, dd_idx, rw)) {
4709 /* Stripe is busy expanding or
4710 * add failed due to overlap. Flush everything
4713 md_wakeup_thread(mddev->thread);
4719 set_bit(STRIPE_HANDLE, &sh->state);
4720 clear_bit(STRIPE_DELAYED, &sh->state);
4721 if ((bi->bi_rw & REQ_SYNC) &&
4722 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4723 atomic_inc(&conf->preread_active_stripes);
4724 release_stripe_plug(mddev, sh);
4726 /* cannot get stripe for read-ahead, just give-up */
4727 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4731 finish_wait(&conf->wait_for_overlap, &w);
4733 remaining = raid5_dec_bi_active_stripes(bi);
4734 if (remaining == 0) {
4737 md_write_end(mddev);
4739 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4745 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4747 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4749 /* reshaping is quite different to recovery/resync so it is
4750 * handled quite separately ... here.
4752 * On each call to sync_request, we gather one chunk worth of
4753 * destination stripes and flag them as expanding.
4754 * Then we find all the source stripes and request reads.
4755 * As the reads complete, handle_stripe will copy the data
4756 * into the destination stripe and release that stripe.
4758 struct r5conf *conf = mddev->private;
4759 struct stripe_head *sh;
4760 sector_t first_sector, last_sector;
4761 int raid_disks = conf->previous_raid_disks;
4762 int data_disks = raid_disks - conf->max_degraded;
4763 int new_data_disks = conf->raid_disks - conf->max_degraded;
4766 sector_t writepos, readpos, safepos;
4767 sector_t stripe_addr;
4768 int reshape_sectors;
4769 struct list_head stripes;
4771 if (sector_nr == 0) {
4772 /* If restarting in the middle, skip the initial sectors */
4773 if (mddev->reshape_backwards &&
4774 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4775 sector_nr = raid5_size(mddev, 0, 0)
4776 - conf->reshape_progress;
4777 } else if (!mddev->reshape_backwards &&
4778 conf->reshape_progress > 0)
4779 sector_nr = conf->reshape_progress;
4780 sector_div(sector_nr, new_data_disks);
4782 mddev->curr_resync_completed = sector_nr;
4783 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4789 /* We need to process a full chunk at a time.
4790 * If old and new chunk sizes differ, we need to process the
4793 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4794 reshape_sectors = mddev->new_chunk_sectors;
4796 reshape_sectors = mddev->chunk_sectors;
4798 /* We update the metadata at least every 10 seconds, or when
4799 * the data about to be copied would over-write the source of
4800 * the data at the front of the range. i.e. one new_stripe
4801 * along from reshape_progress new_maps to after where
4802 * reshape_safe old_maps to
4804 writepos = conf->reshape_progress;
4805 sector_div(writepos, new_data_disks);
4806 readpos = conf->reshape_progress;
4807 sector_div(readpos, data_disks);
4808 safepos = conf->reshape_safe;
4809 sector_div(safepos, data_disks);
4810 if (mddev->reshape_backwards) {
4811 writepos -= min_t(sector_t, reshape_sectors, writepos);
4812 readpos += reshape_sectors;
4813 safepos += reshape_sectors;
4815 writepos += reshape_sectors;
4816 readpos -= min_t(sector_t, reshape_sectors, readpos);
4817 safepos -= min_t(sector_t, reshape_sectors, safepos);
4820 /* Having calculated the 'writepos' possibly use it
4821 * to set 'stripe_addr' which is where we will write to.
4823 if (mddev->reshape_backwards) {
4824 BUG_ON(conf->reshape_progress == 0);
4825 stripe_addr = writepos;
4826 BUG_ON((mddev->dev_sectors &
4827 ~((sector_t)reshape_sectors - 1))
4828 - reshape_sectors - stripe_addr
4831 BUG_ON(writepos != sector_nr + reshape_sectors);
4832 stripe_addr = sector_nr;
4835 /* 'writepos' is the most advanced device address we might write.
4836 * 'readpos' is the least advanced device address we might read.
4837 * 'safepos' is the least address recorded in the metadata as having
4839 * If there is a min_offset_diff, these are adjusted either by
4840 * increasing the safepos/readpos if diff is negative, or
4841 * increasing writepos if diff is positive.
4842 * If 'readpos' is then behind 'writepos', there is no way that we can
4843 * ensure safety in the face of a crash - that must be done by userspace
4844 * making a backup of the data. So in that case there is no particular
4845 * rush to update metadata.
4846 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4847 * update the metadata to advance 'safepos' to match 'readpos' so that
4848 * we can be safe in the event of a crash.
4849 * So we insist on updating metadata if safepos is behind writepos and
4850 * readpos is beyond writepos.
4851 * In any case, update the metadata every 10 seconds.
4852 * Maybe that number should be configurable, but I'm not sure it is
4853 * worth it.... maybe it could be a multiple of safemode_delay???
4855 if (conf->min_offset_diff < 0) {
4856 safepos += -conf->min_offset_diff;
4857 readpos += -conf->min_offset_diff;
4859 writepos += conf->min_offset_diff;
4861 if ((mddev->reshape_backwards
4862 ? (safepos > writepos && readpos < writepos)
4863 : (safepos < writepos && readpos > writepos)) ||
4864 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4865 /* Cannot proceed until we've updated the superblock... */
4866 wait_event(conf->wait_for_overlap,
4867 atomic_read(&conf->reshape_stripes)==0
4868 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4869 if (atomic_read(&conf->reshape_stripes) != 0)
4871 mddev->reshape_position = conf->reshape_progress;
4872 mddev->curr_resync_completed = sector_nr;
4873 conf->reshape_checkpoint = jiffies;
4874 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4875 md_wakeup_thread(mddev->thread);
4876 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4877 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4878 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4880 spin_lock_irq(&conf->device_lock);
4881 conf->reshape_safe = mddev->reshape_position;
4882 spin_unlock_irq(&conf->device_lock);
4883 wake_up(&conf->wait_for_overlap);
4884 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4887 INIT_LIST_HEAD(&stripes);
4888 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4890 int skipped_disk = 0;
4891 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4892 set_bit(STRIPE_EXPANDING, &sh->state);
4893 atomic_inc(&conf->reshape_stripes);
4894 /* If any of this stripe is beyond the end of the old
4895 * array, then we need to zero those blocks
4897 for (j=sh->disks; j--;) {
4899 if (j == sh->pd_idx)
4901 if (conf->level == 6 &&
4904 s = compute_blocknr(sh, j, 0);
4905 if (s < raid5_size(mddev, 0, 0)) {
4909 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4910 set_bit(R5_Expanded, &sh->dev[j].flags);
4911 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4913 if (!skipped_disk) {
4914 set_bit(STRIPE_EXPAND_READY, &sh->state);
4915 set_bit(STRIPE_HANDLE, &sh->state);
4917 list_add(&sh->lru, &stripes);
4919 spin_lock_irq(&conf->device_lock);
4920 if (mddev->reshape_backwards)
4921 conf->reshape_progress -= reshape_sectors * new_data_disks;
4923 conf->reshape_progress += reshape_sectors * new_data_disks;
4924 spin_unlock_irq(&conf->device_lock);
4925 /* Ok, those stripe are ready. We can start scheduling
4926 * reads on the source stripes.
4927 * The source stripes are determined by mapping the first and last
4928 * block on the destination stripes.
4931 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4934 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4935 * new_data_disks - 1),
4937 if (last_sector >= mddev->dev_sectors)
4938 last_sector = mddev->dev_sectors - 1;
4939 while (first_sector <= last_sector) {
4940 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4941 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4942 set_bit(STRIPE_HANDLE, &sh->state);
4944 first_sector += STRIPE_SECTORS;
4946 /* Now that the sources are clearly marked, we can release
4947 * the destination stripes
4949 while (!list_empty(&stripes)) {
4950 sh = list_entry(stripes.next, struct stripe_head, lru);
4951 list_del_init(&sh->lru);
4954 /* If this takes us to the resync_max point where we have to pause,
4955 * then we need to write out the superblock.
4957 sector_nr += reshape_sectors;
4958 if ((sector_nr - mddev->curr_resync_completed) * 2
4959 >= mddev->resync_max - mddev->curr_resync_completed) {
4960 /* Cannot proceed until we've updated the superblock... */
4961 wait_event(conf->wait_for_overlap,
4962 atomic_read(&conf->reshape_stripes) == 0
4963 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4964 if (atomic_read(&conf->reshape_stripes) != 0)
4966 mddev->reshape_position = conf->reshape_progress;
4967 mddev->curr_resync_completed = sector_nr;
4968 conf->reshape_checkpoint = jiffies;
4969 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4970 md_wakeup_thread(mddev->thread);
4971 wait_event(mddev->sb_wait,
4972 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4973 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4974 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4976 spin_lock_irq(&conf->device_lock);
4977 conf->reshape_safe = mddev->reshape_position;
4978 spin_unlock_irq(&conf->device_lock);
4979 wake_up(&conf->wait_for_overlap);
4980 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4983 return reshape_sectors;
4986 /* FIXME go_faster isn't used */
4987 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4989 struct r5conf *conf = mddev->private;
4990 struct stripe_head *sh;
4991 sector_t max_sector = mddev->dev_sectors;
4992 sector_t sync_blocks;
4993 int still_degraded = 0;
4996 if (sector_nr >= max_sector) {
4997 /* just being told to finish up .. nothing much to do */
4999 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5004 if (mddev->curr_resync < max_sector) /* aborted */
5005 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5007 else /* completed sync */
5009 bitmap_close_sync(mddev->bitmap);
5014 /* Allow raid5_quiesce to complete */
5015 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5017 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5018 return reshape_request(mddev, sector_nr, skipped);
5020 /* No need to check resync_max as we never do more than one
5021 * stripe, and as resync_max will always be on a chunk boundary,
5022 * if the check in md_do_sync didn't fire, there is no chance
5023 * of overstepping resync_max here
5026 /* if there is too many failed drives and we are trying
5027 * to resync, then assert that we are finished, because there is
5028 * nothing we can do.
5030 if (mddev->degraded >= conf->max_degraded &&
5031 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5032 sector_t rv = mddev->dev_sectors - sector_nr;
5036 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5038 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5039 sync_blocks >= STRIPE_SECTORS) {
5040 /* we can skip this block, and probably more */
5041 sync_blocks /= STRIPE_SECTORS;
5043 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5046 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5048 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5050 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5051 /* make sure we don't swamp the stripe cache if someone else
5052 * is trying to get access
5054 schedule_timeout_uninterruptible(1);
5056 /* Need to check if array will still be degraded after recovery/resync
5057 * We don't need to check the 'failed' flag as when that gets set,
5060 for (i = 0; i < conf->raid_disks; i++)
5061 if (conf->disks[i].rdev == NULL)
5064 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5066 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5067 set_bit(STRIPE_HANDLE, &sh->state);
5071 return STRIPE_SECTORS;
5074 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5076 /* We may not be able to submit a whole bio at once as there
5077 * may not be enough stripe_heads available.
5078 * We cannot pre-allocate enough stripe_heads as we may need
5079 * more than exist in the cache (if we allow ever large chunks).
5080 * So we do one stripe head at a time and record in
5081 * ->bi_hw_segments how many have been done.
5083 * We *know* that this entire raid_bio is in one chunk, so
5084 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5086 struct stripe_head *sh;
5088 sector_t sector, logical_sector, last_sector;
5093 logical_sector = raid_bio->bi_iter.bi_sector &
5094 ~((sector_t)STRIPE_SECTORS-1);
5095 sector = raid5_compute_sector(conf, logical_sector,
5097 last_sector = bio_end_sector(raid_bio);
5099 for (; logical_sector < last_sector;
5100 logical_sector += STRIPE_SECTORS,
5101 sector += STRIPE_SECTORS,
5104 if (scnt < raid5_bi_processed_stripes(raid_bio))
5105 /* already done this stripe */
5108 sh = get_active_stripe(conf, sector, 0, 1, 1);
5111 /* failed to get a stripe - must wait */
5112 raid5_set_bi_processed_stripes(raid_bio, scnt);
5113 conf->retry_read_aligned = raid_bio;
5117 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5119 raid5_set_bi_processed_stripes(raid_bio, scnt);
5120 conf->retry_read_aligned = raid_bio;
5124 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5129 remaining = raid5_dec_bi_active_stripes(raid_bio);
5130 if (remaining == 0) {
5131 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5133 bio_endio(raid_bio, 0);
5135 if (atomic_dec_and_test(&conf->active_aligned_reads))
5136 wake_up(&conf->wait_for_stripe);
5140 static int handle_active_stripes(struct r5conf *conf, int group,
5141 struct r5worker *worker,
5142 struct list_head *temp_inactive_list)
5144 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5145 int i, batch_size = 0, hash;
5146 bool release_inactive = false;
5148 while (batch_size < MAX_STRIPE_BATCH &&
5149 (sh = __get_priority_stripe(conf, group)) != NULL)
5150 batch[batch_size++] = sh;
5152 if (batch_size == 0) {
5153 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5154 if (!list_empty(temp_inactive_list + i))
5156 if (i == NR_STRIPE_HASH_LOCKS)
5158 release_inactive = true;
5160 spin_unlock_irq(&conf->device_lock);
5162 release_inactive_stripe_list(conf, temp_inactive_list,
5163 NR_STRIPE_HASH_LOCKS);
5165 if (release_inactive) {
5166 spin_lock_irq(&conf->device_lock);
5170 for (i = 0; i < batch_size; i++)
5171 handle_stripe(batch[i]);
5175 spin_lock_irq(&conf->device_lock);
5176 for (i = 0; i < batch_size; i++) {
5177 hash = batch[i]->hash_lock_index;
5178 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5183 static void raid5_do_work(struct work_struct *work)
5185 struct r5worker *worker = container_of(work, struct r5worker, work);
5186 struct r5worker_group *group = worker->group;
5187 struct r5conf *conf = group->conf;
5188 int group_id = group - conf->worker_groups;
5190 struct blk_plug plug;
5192 pr_debug("+++ raid5worker active\n");
5194 blk_start_plug(&plug);
5196 spin_lock_irq(&conf->device_lock);
5198 int batch_size, released;
5200 released = release_stripe_list(conf, worker->temp_inactive_list);
5202 batch_size = handle_active_stripes(conf, group_id, worker,
5203 worker->temp_inactive_list);
5204 worker->working = false;
5205 if (!batch_size && !released)
5207 handled += batch_size;
5209 pr_debug("%d stripes handled\n", handled);
5211 spin_unlock_irq(&conf->device_lock);
5212 blk_finish_plug(&plug);
5214 pr_debug("--- raid5worker inactive\n");
5218 * This is our raid5 kernel thread.
5220 * We scan the hash table for stripes which can be handled now.
5221 * During the scan, completed stripes are saved for us by the interrupt
5222 * handler, so that they will not have to wait for our next wakeup.
5224 static void raid5d(struct md_thread *thread)
5226 struct mddev *mddev = thread->mddev;
5227 struct r5conf *conf = mddev->private;
5229 struct blk_plug plug;
5231 pr_debug("+++ raid5d active\n");
5233 md_check_recovery(mddev);
5235 blk_start_plug(&plug);
5237 spin_lock_irq(&conf->device_lock);
5240 int batch_size, released;
5242 released = release_stripe_list(conf, conf->temp_inactive_list);
5245 !list_empty(&conf->bitmap_list)) {
5246 /* Now is a good time to flush some bitmap updates */
5248 spin_unlock_irq(&conf->device_lock);
5249 bitmap_unplug(mddev->bitmap);
5250 spin_lock_irq(&conf->device_lock);
5251 conf->seq_write = conf->seq_flush;
5252 activate_bit_delay(conf, conf->temp_inactive_list);
5254 raid5_activate_delayed(conf);
5256 while ((bio = remove_bio_from_retry(conf))) {
5258 spin_unlock_irq(&conf->device_lock);
5259 ok = retry_aligned_read(conf, bio);
5260 spin_lock_irq(&conf->device_lock);
5266 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5267 conf->temp_inactive_list);
5268 if (!batch_size && !released)
5270 handled += batch_size;
5272 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5273 spin_unlock_irq(&conf->device_lock);
5274 md_check_recovery(mddev);
5275 spin_lock_irq(&conf->device_lock);
5278 pr_debug("%d stripes handled\n", handled);
5280 spin_unlock_irq(&conf->device_lock);
5282 async_tx_issue_pending_all();
5283 blk_finish_plug(&plug);
5285 pr_debug("--- raid5d inactive\n");
5289 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5291 struct r5conf *conf = mddev->private;
5293 return sprintf(page, "%d\n", conf->max_nr_stripes);
5299 raid5_set_cache_size(struct mddev *mddev, int size)
5301 struct r5conf *conf = mddev->private;
5305 if (size <= 16 || size > 32768)
5307 hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5308 while (size < conf->max_nr_stripes) {
5309 if (drop_one_stripe(conf, hash))
5310 conf->max_nr_stripes--;
5315 hash = NR_STRIPE_HASH_LOCKS - 1;
5317 err = md_allow_write(mddev);
5320 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5321 while (size > conf->max_nr_stripes) {
5322 if (grow_one_stripe(conf, hash))
5323 conf->max_nr_stripes++;
5325 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5329 EXPORT_SYMBOL(raid5_set_cache_size);
5332 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5334 struct r5conf *conf = mddev->private;
5338 if (len >= PAGE_SIZE)
5343 if (kstrtoul(page, 10, &new))
5345 err = raid5_set_cache_size(mddev, new);
5351 static struct md_sysfs_entry
5352 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5353 raid5_show_stripe_cache_size,
5354 raid5_store_stripe_cache_size);
5357 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5359 struct r5conf *conf = mddev->private;
5361 return sprintf(page, "%d\n", conf->bypass_threshold);
5367 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5369 struct r5conf *conf = mddev->private;
5371 if (len >= PAGE_SIZE)
5376 if (kstrtoul(page, 10, &new))
5378 if (new > conf->max_nr_stripes)
5380 conf->bypass_threshold = new;
5384 static struct md_sysfs_entry
5385 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5387 raid5_show_preread_threshold,
5388 raid5_store_preread_threshold);
5391 raid5_show_skip_copy(struct mddev *mddev, char *page)
5393 struct r5conf *conf = mddev->private;
5395 return sprintf(page, "%d\n", conf->skip_copy);
5401 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
5403 struct r5conf *conf = mddev->private;
5405 if (len >= PAGE_SIZE)
5410 if (kstrtoul(page, 10, &new))
5413 if (new == conf->skip_copy)
5416 mddev_suspend(mddev);
5417 conf->skip_copy = new;
5419 mddev->queue->backing_dev_info.capabilities |=
5420 BDI_CAP_STABLE_WRITES;
5422 mddev->queue->backing_dev_info.capabilities &=
5423 ~BDI_CAP_STABLE_WRITES;
5424 mddev_resume(mddev);
5428 static struct md_sysfs_entry
5429 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
5430 raid5_show_skip_copy,
5431 raid5_store_skip_copy);
5434 stripe_cache_active_show(struct mddev *mddev, char *page)
5436 struct r5conf *conf = mddev->private;
5438 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5443 static struct md_sysfs_entry
5444 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5447 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5449 struct r5conf *conf = mddev->private;
5451 return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5456 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5458 int *worker_cnt_per_group,
5459 struct r5worker_group **worker_groups);
5461 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5463 struct r5conf *conf = mddev->private;
5466 struct r5worker_group *new_groups, *old_groups;
5467 int group_cnt, worker_cnt_per_group;
5469 if (len >= PAGE_SIZE)
5474 if (kstrtoul(page, 10, &new))
5477 if (new == conf->worker_cnt_per_group)
5480 mddev_suspend(mddev);
5482 old_groups = conf->worker_groups;
5484 flush_workqueue(raid5_wq);
5486 err = alloc_thread_groups(conf, new,
5487 &group_cnt, &worker_cnt_per_group,
5490 spin_lock_irq(&conf->device_lock);
5491 conf->group_cnt = group_cnt;
5492 conf->worker_cnt_per_group = worker_cnt_per_group;
5493 conf->worker_groups = new_groups;
5494 spin_unlock_irq(&conf->device_lock);
5497 kfree(old_groups[0].workers);
5501 mddev_resume(mddev);
5508 static struct md_sysfs_entry
5509 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5510 raid5_show_group_thread_cnt,
5511 raid5_store_group_thread_cnt);
5513 static struct attribute *raid5_attrs[] = {
5514 &raid5_stripecache_size.attr,
5515 &raid5_stripecache_active.attr,
5516 &raid5_preread_bypass_threshold.attr,
5517 &raid5_group_thread_cnt.attr,
5518 &raid5_skip_copy.attr,
5521 static struct attribute_group raid5_attrs_group = {
5523 .attrs = raid5_attrs,
5526 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5528 int *worker_cnt_per_group,
5529 struct r5worker_group **worker_groups)
5533 struct r5worker *workers;
5535 *worker_cnt_per_group = cnt;
5538 *worker_groups = NULL;
5541 *group_cnt = num_possible_nodes();
5542 size = sizeof(struct r5worker) * cnt;
5543 workers = kzalloc(size * *group_cnt, GFP_NOIO);
5544 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
5545 *group_cnt, GFP_NOIO);
5546 if (!*worker_groups || !workers) {
5548 kfree(*worker_groups);
5552 for (i = 0; i < *group_cnt; i++) {
5553 struct r5worker_group *group;
5555 group = &(*worker_groups)[i];
5556 INIT_LIST_HEAD(&group->handle_list);
5558 group->workers = workers + i * cnt;
5560 for (j = 0; j < cnt; j++) {
5561 struct r5worker *worker = group->workers + j;
5562 worker->group = group;
5563 INIT_WORK(&worker->work, raid5_do_work);
5565 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5566 INIT_LIST_HEAD(worker->temp_inactive_list + k);
5573 static void free_thread_groups(struct r5conf *conf)
5575 if (conf->worker_groups)
5576 kfree(conf->worker_groups[0].workers);
5577 kfree(conf->worker_groups);
5578 conf->worker_groups = NULL;
5582 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5584 struct r5conf *conf = mddev->private;
5587 sectors = mddev->dev_sectors;
5589 /* size is defined by the smallest of previous and new size */
5590 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5592 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5593 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5594 return sectors * (raid_disks - conf->max_degraded);
5597 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5599 safe_put_page(percpu->spare_page);
5600 kfree(percpu->scribble);
5601 percpu->spare_page = NULL;
5602 percpu->scribble = NULL;
5605 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5607 if (conf->level == 6 && !percpu->spare_page)
5608 percpu->spare_page = alloc_page(GFP_KERNEL);
5609 if (!percpu->scribble)
5610 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5612 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5613 free_scratch_buffer(conf, percpu);
5620 static void raid5_free_percpu(struct r5conf *conf)
5627 #ifdef CONFIG_HOTPLUG_CPU
5628 unregister_cpu_notifier(&conf->cpu_notify);
5632 for_each_possible_cpu(cpu)
5633 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5636 free_percpu(conf->percpu);
5639 static void free_conf(struct r5conf *conf)
5641 free_thread_groups(conf);
5642 shrink_stripes(conf);
5643 raid5_free_percpu(conf);
5645 kfree(conf->stripe_hashtbl);
5649 #ifdef CONFIG_HOTPLUG_CPU
5650 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5653 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5654 long cpu = (long)hcpu;
5655 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5658 case CPU_UP_PREPARE:
5659 case CPU_UP_PREPARE_FROZEN:
5660 if (alloc_scratch_buffer(conf, percpu)) {
5661 pr_err("%s: failed memory allocation for cpu%ld\n",
5663 return notifier_from_errno(-ENOMEM);
5667 case CPU_DEAD_FROZEN:
5668 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5677 static int raid5_alloc_percpu(struct r5conf *conf)
5682 conf->percpu = alloc_percpu(struct raid5_percpu);
5686 #ifdef CONFIG_HOTPLUG_CPU
5687 conf->cpu_notify.notifier_call = raid456_cpu_notify;
5688 conf->cpu_notify.priority = 0;
5689 err = register_cpu_notifier(&conf->cpu_notify);
5695 for_each_present_cpu(cpu) {
5696 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5698 pr_err("%s: failed memory allocation for cpu%ld\n",
5708 static struct r5conf *setup_conf(struct mddev *mddev)
5710 struct r5conf *conf;
5711 int raid_disk, memory, max_disks;
5712 struct md_rdev *rdev;
5713 struct disk_info *disk;
5716 int group_cnt, worker_cnt_per_group;
5717 struct r5worker_group *new_group;
5719 if (mddev->new_level != 5
5720 && mddev->new_level != 4
5721 && mddev->new_level != 6) {
5722 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5723 mdname(mddev), mddev->new_level);
5724 return ERR_PTR(-EIO);
5726 if ((mddev->new_level == 5
5727 && !algorithm_valid_raid5(mddev->new_layout)) ||
5728 (mddev->new_level == 6
5729 && !algorithm_valid_raid6(mddev->new_layout))) {
5730 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5731 mdname(mddev), mddev->new_layout);
5732 return ERR_PTR(-EIO);
5734 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5735 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5736 mdname(mddev), mddev->raid_disks);
5737 return ERR_PTR(-EINVAL);
5740 if (!mddev->new_chunk_sectors ||
5741 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5742 !is_power_of_2(mddev->new_chunk_sectors)) {
5743 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5744 mdname(mddev), mddev->new_chunk_sectors << 9);
5745 return ERR_PTR(-EINVAL);
5748 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5751 /* Don't enable multi-threading by default*/
5752 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5754 conf->group_cnt = group_cnt;
5755 conf->worker_cnt_per_group = worker_cnt_per_group;
5756 conf->worker_groups = new_group;
5759 spin_lock_init(&conf->device_lock);
5760 seqcount_init(&conf->gen_lock);
5761 init_waitqueue_head(&conf->wait_for_stripe);
5762 init_waitqueue_head(&conf->wait_for_overlap);
5763 INIT_LIST_HEAD(&conf->handle_list);
5764 INIT_LIST_HEAD(&conf->hold_list);
5765 INIT_LIST_HEAD(&conf->delayed_list);
5766 INIT_LIST_HEAD(&conf->bitmap_list);
5767 init_llist_head(&conf->released_stripes);
5768 atomic_set(&conf->active_stripes, 0);
5769 atomic_set(&conf->preread_active_stripes, 0);
5770 atomic_set(&conf->active_aligned_reads, 0);
5771 conf->bypass_threshold = BYPASS_THRESHOLD;
5772 conf->recovery_disabled = mddev->recovery_disabled - 1;
5774 conf->raid_disks = mddev->raid_disks;
5775 if (mddev->reshape_position == MaxSector)
5776 conf->previous_raid_disks = mddev->raid_disks;
5778 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5779 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5780 conf->scribble_len = scribble_len(max_disks);
5782 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5787 conf->mddev = mddev;
5789 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5792 /* We init hash_locks[0] separately to that it can be used
5793 * as the reference lock in the spin_lock_nest_lock() call
5794 * in lock_all_device_hash_locks_irq in order to convince
5795 * lockdep that we know what we are doing.
5797 spin_lock_init(conf->hash_locks);
5798 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5799 spin_lock_init(conf->hash_locks + i);
5801 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5802 INIT_LIST_HEAD(conf->inactive_list + i);
5804 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5805 INIT_LIST_HEAD(conf->temp_inactive_list + i);
5807 conf->level = mddev->new_level;
5808 if (raid5_alloc_percpu(conf) != 0)
5811 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5813 rdev_for_each(rdev, mddev) {
5814 raid_disk = rdev->raid_disk;
5815 if (raid_disk >= max_disks
5818 disk = conf->disks + raid_disk;
5820 if (test_bit(Replacement, &rdev->flags)) {
5821 if (disk->replacement)
5823 disk->replacement = rdev;
5830 if (test_bit(In_sync, &rdev->flags)) {
5831 char b[BDEVNAME_SIZE];
5832 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5834 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5835 } else if (rdev->saved_raid_disk != raid_disk)
5836 /* Cannot rely on bitmap to complete recovery */
5840 conf->chunk_sectors = mddev->new_chunk_sectors;
5841 conf->level = mddev->new_level;
5842 if (conf->level == 6)
5843 conf->max_degraded = 2;
5845 conf->max_degraded = 1;
5846 conf->algorithm = mddev->new_layout;
5847 conf->reshape_progress = mddev->reshape_position;
5848 if (conf->reshape_progress != MaxSector) {
5849 conf->prev_chunk_sectors = mddev->chunk_sectors;
5850 conf->prev_algo = mddev->layout;
5853 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5854 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5855 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5856 if (grow_stripes(conf, NR_STRIPES)) {
5858 "md/raid:%s: couldn't allocate %dkB for buffers\n",
5859 mdname(mddev), memory);
5862 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5863 mdname(mddev), memory);
5865 sprintf(pers_name, "raid%d", mddev->new_level);
5866 conf->thread = md_register_thread(raid5d, mddev, pers_name);
5867 if (!conf->thread) {
5869 "md/raid:%s: couldn't allocate thread.\n",
5879 return ERR_PTR(-EIO);
5881 return ERR_PTR(-ENOMEM);
5884 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5887 case ALGORITHM_PARITY_0:
5888 if (raid_disk < max_degraded)
5891 case ALGORITHM_PARITY_N:
5892 if (raid_disk >= raid_disks - max_degraded)
5895 case ALGORITHM_PARITY_0_6:
5896 if (raid_disk == 0 ||
5897 raid_disk == raid_disks - 1)
5900 case ALGORITHM_LEFT_ASYMMETRIC_6:
5901 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5902 case ALGORITHM_LEFT_SYMMETRIC_6:
5903 case ALGORITHM_RIGHT_SYMMETRIC_6:
5904 if (raid_disk == raid_disks - 1)
5910 static int run(struct mddev *mddev)
5912 struct r5conf *conf;
5913 int working_disks = 0;
5914 int dirty_parity_disks = 0;
5915 struct md_rdev *rdev;
5916 sector_t reshape_offset = 0;
5918 long long min_offset_diff = 0;
5921 if (mddev->recovery_cp != MaxSector)
5922 printk(KERN_NOTICE "md/raid:%s: not clean"
5923 " -- starting background reconstruction\n",
5926 rdev_for_each(rdev, mddev) {
5928 if (rdev->raid_disk < 0)
5930 diff = (rdev->new_data_offset - rdev->data_offset);
5932 min_offset_diff = diff;
5934 } else if (mddev->reshape_backwards &&
5935 diff < min_offset_diff)
5936 min_offset_diff = diff;
5937 else if (!mddev->reshape_backwards &&
5938 diff > min_offset_diff)
5939 min_offset_diff = diff;
5942 if (mddev->reshape_position != MaxSector) {
5943 /* Check that we can continue the reshape.
5944 * Difficulties arise if the stripe we would write to
5945 * next is at or after the stripe we would read from next.
5946 * For a reshape that changes the number of devices, this
5947 * is only possible for a very short time, and mdadm makes
5948 * sure that time appears to have past before assembling
5949 * the array. So we fail if that time hasn't passed.
5950 * For a reshape that keeps the number of devices the same
5951 * mdadm must be monitoring the reshape can keeping the
5952 * critical areas read-only and backed up. It will start
5953 * the array in read-only mode, so we check for that.
5955 sector_t here_new, here_old;
5957 int max_degraded = (mddev->level == 6 ? 2 : 1);
5959 if (mddev->new_level != mddev->level) {
5960 printk(KERN_ERR "md/raid:%s: unsupported reshape "
5961 "required - aborting.\n",
5965 old_disks = mddev->raid_disks - mddev->delta_disks;
5966 /* reshape_position must be on a new-stripe boundary, and one
5967 * further up in new geometry must map after here in old
5970 here_new = mddev->reshape_position;
5971 if (sector_div(here_new, mddev->new_chunk_sectors *
5972 (mddev->raid_disks - max_degraded))) {
5973 printk(KERN_ERR "md/raid:%s: reshape_position not "
5974 "on a stripe boundary\n", mdname(mddev));
5977 reshape_offset = here_new * mddev->new_chunk_sectors;
5978 /* here_new is the stripe we will write to */
5979 here_old = mddev->reshape_position;
5980 sector_div(here_old, mddev->chunk_sectors *
5981 (old_disks-max_degraded));
5982 /* here_old is the first stripe that we might need to read
5984 if (mddev->delta_disks == 0) {
5985 if ((here_new * mddev->new_chunk_sectors !=
5986 here_old * mddev->chunk_sectors)) {
5987 printk(KERN_ERR "md/raid:%s: reshape position is"
5988 " confused - aborting\n", mdname(mddev));
5991 /* We cannot be sure it is safe to start an in-place
5992 * reshape. It is only safe if user-space is monitoring
5993 * and taking constant backups.
5994 * mdadm always starts a situation like this in
5995 * readonly mode so it can take control before
5996 * allowing any writes. So just check for that.
5998 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5999 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6000 /* not really in-place - so OK */;
6001 else if (mddev->ro == 0) {
6002 printk(KERN_ERR "md/raid:%s: in-place reshape "
6003 "must be started in read-only mode "
6008 } else if (mddev->reshape_backwards
6009 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6010 here_old * mddev->chunk_sectors)
6011 : (here_new * mddev->new_chunk_sectors >=
6012 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6013 /* Reading from the same stripe as writing to - bad */
6014 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6015 "auto-recovery - aborting.\n",
6019 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6021 /* OK, we should be able to continue; */
6023 BUG_ON(mddev->level != mddev->new_level);
6024 BUG_ON(mddev->layout != mddev->new_layout);
6025 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6026 BUG_ON(mddev->delta_disks != 0);
6029 if (mddev->private == NULL)
6030 conf = setup_conf(mddev);
6032 conf = mddev->private;
6035 return PTR_ERR(conf);
6037 conf->min_offset_diff = min_offset_diff;
6038 mddev->thread = conf->thread;
6039 conf->thread = NULL;
6040 mddev->private = conf;
6042 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6044 rdev = conf->disks[i].rdev;
6045 if (!rdev && conf->disks[i].replacement) {
6046 /* The replacement is all we have yet */
6047 rdev = conf->disks[i].replacement;
6048 conf->disks[i].replacement = NULL;
6049 clear_bit(Replacement, &rdev->flags);
6050 conf->disks[i].rdev = rdev;
6054 if (conf->disks[i].replacement &&
6055 conf->reshape_progress != MaxSector) {
6056 /* replacements and reshape simply do not mix. */
6057 printk(KERN_ERR "md: cannot handle concurrent "
6058 "replacement and reshape.\n");
6061 if (test_bit(In_sync, &rdev->flags)) {
6065 /* This disc is not fully in-sync. However if it
6066 * just stored parity (beyond the recovery_offset),
6067 * when we don't need to be concerned about the
6068 * array being dirty.
6069 * When reshape goes 'backwards', we never have
6070 * partially completed devices, so we only need
6071 * to worry about reshape going forwards.
6073 /* Hack because v0.91 doesn't store recovery_offset properly. */
6074 if (mddev->major_version == 0 &&
6075 mddev->minor_version > 90)
6076 rdev->recovery_offset = reshape_offset;
6078 if (rdev->recovery_offset < reshape_offset) {
6079 /* We need to check old and new layout */
6080 if (!only_parity(rdev->raid_disk,
6083 conf->max_degraded))
6086 if (!only_parity(rdev->raid_disk,
6088 conf->previous_raid_disks,
6089 conf->max_degraded))
6091 dirty_parity_disks++;
6095 * 0 for a fully functional array, 1 or 2 for a degraded array.
6097 mddev->degraded = calc_degraded(conf);
6099 if (has_failed(conf)) {
6100 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6101 " (%d/%d failed)\n",
6102 mdname(mddev), mddev->degraded, conf->raid_disks);
6106 /* device size must be a multiple of chunk size */
6107 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6108 mddev->resync_max_sectors = mddev->dev_sectors;
6110 if (mddev->degraded > dirty_parity_disks &&
6111 mddev->recovery_cp != MaxSector) {
6112 if (mddev->ok_start_degraded)
6114 "md/raid:%s: starting dirty degraded array"
6115 " - data corruption possible.\n",
6119 "md/raid:%s: cannot start dirty degraded array.\n",
6125 if (mddev->degraded == 0)
6126 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6127 " devices, algorithm %d\n", mdname(mddev), conf->level,
6128 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6131 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6132 " out of %d devices, algorithm %d\n",
6133 mdname(mddev), conf->level,
6134 mddev->raid_disks - mddev->degraded,
6135 mddev->raid_disks, mddev->new_layout);
6137 print_raid5_conf(conf);
6139 if (conf->reshape_progress != MaxSector) {
6140 conf->reshape_safe = conf->reshape_progress;
6141 atomic_set(&conf->reshape_stripes, 0);
6142 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6143 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6144 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6145 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6146 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6150 /* Ok, everything is just fine now */
6151 if (mddev->to_remove == &raid5_attrs_group)
6152 mddev->to_remove = NULL;
6153 else if (mddev->kobj.sd &&
6154 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6156 "raid5: failed to create sysfs attributes for %s\n",
6158 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6162 bool discard_supported = true;
6163 /* read-ahead size must cover two whole stripes, which
6164 * is 2 * (datadisks) * chunksize where 'n' is the
6165 * number of raid devices
6167 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6168 int stripe = data_disks *
6169 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6170 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6171 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6173 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6175 mddev->queue->backing_dev_info.congested_data = mddev;
6176 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6178 chunk_size = mddev->chunk_sectors << 9;
6179 blk_queue_io_min(mddev->queue, chunk_size);
6180 blk_queue_io_opt(mddev->queue, chunk_size *
6181 (conf->raid_disks - conf->max_degraded));
6182 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6184 * We can only discard a whole stripe. It doesn't make sense to
6185 * discard data disk but write parity disk
6187 stripe = stripe * PAGE_SIZE;
6188 /* Round up to power of 2, as discard handling
6189 * currently assumes that */
6190 while ((stripe-1) & stripe)
6191 stripe = (stripe | (stripe-1)) + 1;
6192 mddev->queue->limits.discard_alignment = stripe;
6193 mddev->queue->limits.discard_granularity = stripe;
6195 * unaligned part of discard request will be ignored, so can't
6196 * guarantee discard_zeroes_data
6198 mddev->queue->limits.discard_zeroes_data = 0;
6200 blk_queue_max_write_same_sectors(mddev->queue, 0);
6202 rdev_for_each(rdev, mddev) {
6203 disk_stack_limits(mddev->gendisk, rdev->bdev,
6204 rdev->data_offset << 9);
6205 disk_stack_limits(mddev->gendisk, rdev->bdev,
6206 rdev->new_data_offset << 9);
6208 * discard_zeroes_data is required, otherwise data
6209 * could be lost. Consider a scenario: discard a stripe
6210 * (the stripe could be inconsistent if
6211 * discard_zeroes_data is 0); write one disk of the
6212 * stripe (the stripe could be inconsistent again
6213 * depending on which disks are used to calculate
6214 * parity); the disk is broken; The stripe data of this
6217 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6218 !bdev_get_queue(rdev->bdev)->
6219 limits.discard_zeroes_data)
6220 discard_supported = false;
6221 /* Unfortunately, discard_zeroes_data is not currently
6222 * a guarantee - just a hint. So we only allow DISCARD
6223 * if the sysadmin has confirmed that only safe devices
6224 * are in use by setting a module parameter.
6226 if (!devices_handle_discard_safely) {
6227 if (discard_supported) {
6228 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6229 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6231 discard_supported = false;
6235 if (discard_supported &&
6236 mddev->queue->limits.max_discard_sectors >= stripe &&
6237 mddev->queue->limits.discard_granularity >= stripe)
6238 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6241 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6247 md_unregister_thread(&mddev->thread);
6248 print_raid5_conf(conf);
6250 mddev->private = NULL;
6251 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6255 static int stop(struct mddev *mddev)
6257 struct r5conf *conf = mddev->private;
6259 md_unregister_thread(&mddev->thread);
6261 mddev->queue->backing_dev_info.congested_fn = NULL;
6263 mddev->private = NULL;
6264 mddev->to_remove = &raid5_attrs_group;
6268 static void status(struct seq_file *seq, struct mddev *mddev)
6270 struct r5conf *conf = mddev->private;
6273 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6274 mddev->chunk_sectors / 2, mddev->layout);
6275 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6276 for (i = 0; i < conf->raid_disks; i++)
6277 seq_printf (seq, "%s",
6278 conf->disks[i].rdev &&
6279 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6280 seq_printf (seq, "]");
6283 static void print_raid5_conf (struct r5conf *conf)
6286 struct disk_info *tmp;
6288 printk(KERN_DEBUG "RAID conf printout:\n");
6290 printk("(conf==NULL)\n");
6293 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6295 conf->raid_disks - conf->mddev->degraded);
6297 for (i = 0; i < conf->raid_disks; i++) {
6298 char b[BDEVNAME_SIZE];
6299 tmp = conf->disks + i;
6301 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6302 i, !test_bit(Faulty, &tmp->rdev->flags),
6303 bdevname(tmp->rdev->bdev, b));
6307 static int raid5_spare_active(struct mddev *mddev)
6310 struct r5conf *conf = mddev->private;
6311 struct disk_info *tmp;
6313 unsigned long flags;
6315 for (i = 0; i < conf->raid_disks; i++) {
6316 tmp = conf->disks + i;
6317 if (tmp->replacement
6318 && tmp->replacement->recovery_offset == MaxSector
6319 && !test_bit(Faulty, &tmp->replacement->flags)
6320 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6321 /* Replacement has just become active. */
6323 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6326 /* Replaced device not technically faulty,
6327 * but we need to be sure it gets removed
6328 * and never re-added.
6330 set_bit(Faulty, &tmp->rdev->flags);
6331 sysfs_notify_dirent_safe(
6332 tmp->rdev->sysfs_state);
6334 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6335 } else if (tmp->rdev
6336 && tmp->rdev->recovery_offset == MaxSector
6337 && !test_bit(Faulty, &tmp->rdev->flags)
6338 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6340 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6343 spin_lock_irqsave(&conf->device_lock, flags);
6344 mddev->degraded = calc_degraded(conf);
6345 spin_unlock_irqrestore(&conf->device_lock, flags);
6346 print_raid5_conf(conf);
6350 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6352 struct r5conf *conf = mddev->private;
6354 int number = rdev->raid_disk;
6355 struct md_rdev **rdevp;
6356 struct disk_info *p = conf->disks + number;
6358 print_raid5_conf(conf);
6359 if (rdev == p->rdev)
6361 else if (rdev == p->replacement)
6362 rdevp = &p->replacement;
6366 if (number >= conf->raid_disks &&
6367 conf->reshape_progress == MaxSector)
6368 clear_bit(In_sync, &rdev->flags);
6370 if (test_bit(In_sync, &rdev->flags) ||
6371 atomic_read(&rdev->nr_pending)) {
6375 /* Only remove non-faulty devices if recovery
6378 if (!test_bit(Faulty, &rdev->flags) &&
6379 mddev->recovery_disabled != conf->recovery_disabled &&
6380 !has_failed(conf) &&
6381 (!p->replacement || p->replacement == rdev) &&
6382 number < conf->raid_disks) {
6388 if (atomic_read(&rdev->nr_pending)) {
6389 /* lost the race, try later */
6392 } else if (p->replacement) {
6393 /* We must have just cleared 'rdev' */
6394 p->rdev = p->replacement;
6395 clear_bit(Replacement, &p->replacement->flags);
6396 smp_mb(); /* Make sure other CPUs may see both as identical
6397 * but will never see neither - if they are careful
6399 p->replacement = NULL;
6400 clear_bit(WantReplacement, &rdev->flags);
6402 /* We might have just removed the Replacement as faulty-
6403 * clear the bit just in case
6405 clear_bit(WantReplacement, &rdev->flags);
6408 print_raid5_conf(conf);
6412 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6414 struct r5conf *conf = mddev->private;
6417 struct disk_info *p;
6419 int last = conf->raid_disks - 1;
6421 if (mddev->recovery_disabled == conf->recovery_disabled)
6424 if (rdev->saved_raid_disk < 0 && has_failed(conf))
6425 /* no point adding a device */
6428 if (rdev->raid_disk >= 0)
6429 first = last = rdev->raid_disk;
6432 * find the disk ... but prefer rdev->saved_raid_disk
6435 if (rdev->saved_raid_disk >= 0 &&
6436 rdev->saved_raid_disk >= first &&
6437 conf->disks[rdev->saved_raid_disk].rdev == NULL)
6438 first = rdev->saved_raid_disk;
6440 for (disk = first; disk <= last; disk++) {
6441 p = conf->disks + disk;
6442 if (p->rdev == NULL) {
6443 clear_bit(In_sync, &rdev->flags);
6444 rdev->raid_disk = disk;
6446 if (rdev->saved_raid_disk != disk)
6448 rcu_assign_pointer(p->rdev, rdev);
6452 for (disk = first; disk <= last; disk++) {
6453 p = conf->disks + disk;
6454 if (test_bit(WantReplacement, &p->rdev->flags) &&
6455 p->replacement == NULL) {
6456 clear_bit(In_sync, &rdev->flags);
6457 set_bit(Replacement, &rdev->flags);
6458 rdev->raid_disk = disk;
6461 rcu_assign_pointer(p->replacement, rdev);
6466 print_raid5_conf(conf);
6470 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6472 /* no resync is happening, and there is enough space
6473 * on all devices, so we can resize.
6474 * We need to make sure resync covers any new space.
6475 * If the array is shrinking we should possibly wait until
6476 * any io in the removed space completes, but it hardly seems
6480 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6481 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6482 if (mddev->external_size &&
6483 mddev->array_sectors > newsize)
6485 if (mddev->bitmap) {
6486 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6490 md_set_array_sectors(mddev, newsize);
6491 set_capacity(mddev->gendisk, mddev->array_sectors);
6492 revalidate_disk(mddev->gendisk);
6493 if (sectors > mddev->dev_sectors &&
6494 mddev->recovery_cp > mddev->dev_sectors) {
6495 mddev->recovery_cp = mddev->dev_sectors;
6496 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6498 mddev->dev_sectors = sectors;
6499 mddev->resync_max_sectors = sectors;
6503 static int check_stripe_cache(struct mddev *mddev)
6505 /* Can only proceed if there are plenty of stripe_heads.
6506 * We need a minimum of one full stripe,, and for sensible progress
6507 * it is best to have about 4 times that.
6508 * If we require 4 times, then the default 256 4K stripe_heads will
6509 * allow for chunk sizes up to 256K, which is probably OK.
6510 * If the chunk size is greater, user-space should request more
6511 * stripe_heads first.
6513 struct r5conf *conf = mddev->private;
6514 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6515 > conf->max_nr_stripes ||
6516 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6517 > conf->max_nr_stripes) {
6518 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
6520 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6527 static int check_reshape(struct mddev *mddev)
6529 struct r5conf *conf = mddev->private;
6531 if (mddev->delta_disks == 0 &&
6532 mddev->new_layout == mddev->layout &&
6533 mddev->new_chunk_sectors == mddev->chunk_sectors)
6534 return 0; /* nothing to do */
6535 if (has_failed(conf))
6537 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6538 /* We might be able to shrink, but the devices must
6539 * be made bigger first.
6540 * For raid6, 4 is the minimum size.
6541 * Otherwise 2 is the minimum
6544 if (mddev->level == 6)
6546 if (mddev->raid_disks + mddev->delta_disks < min)
6550 if (!check_stripe_cache(mddev))
6553 return resize_stripes(conf, (conf->previous_raid_disks
6554 + mddev->delta_disks));
6557 static int raid5_start_reshape(struct mddev *mddev)
6559 struct r5conf *conf = mddev->private;
6560 struct md_rdev *rdev;
6562 unsigned long flags;
6564 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6567 if (!check_stripe_cache(mddev))
6570 if (has_failed(conf))
6573 rdev_for_each(rdev, mddev) {
6574 if (!test_bit(In_sync, &rdev->flags)
6575 && !test_bit(Faulty, &rdev->flags))
6579 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6580 /* Not enough devices even to make a degraded array
6585 /* Refuse to reduce size of the array. Any reductions in
6586 * array size must be through explicit setting of array_size
6589 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6590 < mddev->array_sectors) {
6591 printk(KERN_ERR "md/raid:%s: array size must be reduced "
6592 "before number of disks\n", mdname(mddev));
6596 atomic_set(&conf->reshape_stripes, 0);
6597 spin_lock_irq(&conf->device_lock);
6598 write_seqcount_begin(&conf->gen_lock);
6599 conf->previous_raid_disks = conf->raid_disks;
6600 conf->raid_disks += mddev->delta_disks;
6601 conf->prev_chunk_sectors = conf->chunk_sectors;
6602 conf->chunk_sectors = mddev->new_chunk_sectors;
6603 conf->prev_algo = conf->algorithm;
6604 conf->algorithm = mddev->new_layout;
6606 /* Code that selects data_offset needs to see the generation update
6607 * if reshape_progress has been set - so a memory barrier needed.
6610 if (mddev->reshape_backwards)
6611 conf->reshape_progress = raid5_size(mddev, 0, 0);
6613 conf->reshape_progress = 0;
6614 conf->reshape_safe = conf->reshape_progress;
6615 write_seqcount_end(&conf->gen_lock);
6616 spin_unlock_irq(&conf->device_lock);
6618 /* Now make sure any requests that proceeded on the assumption
6619 * the reshape wasn't running - like Discard or Read - have
6622 mddev_suspend(mddev);
6623 mddev_resume(mddev);
6625 /* Add some new drives, as many as will fit.
6626 * We know there are enough to make the newly sized array work.
6627 * Don't add devices if we are reducing the number of
6628 * devices in the array. This is because it is not possible
6629 * to correctly record the "partially reconstructed" state of
6630 * such devices during the reshape and confusion could result.
6632 if (mddev->delta_disks >= 0) {
6633 rdev_for_each(rdev, mddev)
6634 if (rdev->raid_disk < 0 &&
6635 !test_bit(Faulty, &rdev->flags)) {
6636 if (raid5_add_disk(mddev, rdev) == 0) {
6638 >= conf->previous_raid_disks)
6639 set_bit(In_sync, &rdev->flags);
6641 rdev->recovery_offset = 0;
6643 if (sysfs_link_rdev(mddev, rdev))
6644 /* Failure here is OK */;
6646 } else if (rdev->raid_disk >= conf->previous_raid_disks
6647 && !test_bit(Faulty, &rdev->flags)) {
6648 /* This is a spare that was manually added */
6649 set_bit(In_sync, &rdev->flags);
6652 /* When a reshape changes the number of devices,
6653 * ->degraded is measured against the larger of the
6654 * pre and post number of devices.
6656 spin_lock_irqsave(&conf->device_lock, flags);
6657 mddev->degraded = calc_degraded(conf);
6658 spin_unlock_irqrestore(&conf->device_lock, flags);
6660 mddev->raid_disks = conf->raid_disks;
6661 mddev->reshape_position = conf->reshape_progress;
6662 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6664 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6665 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6666 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6667 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6668 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6670 if (!mddev->sync_thread) {
6671 mddev->recovery = 0;
6672 spin_lock_irq(&conf->device_lock);
6673 write_seqcount_begin(&conf->gen_lock);
6674 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6675 mddev->new_chunk_sectors =
6676 conf->chunk_sectors = conf->prev_chunk_sectors;
6677 mddev->new_layout = conf->algorithm = conf->prev_algo;
6678 rdev_for_each(rdev, mddev)
6679 rdev->new_data_offset = rdev->data_offset;
6681 conf->generation --;
6682 conf->reshape_progress = MaxSector;
6683 mddev->reshape_position = MaxSector;
6684 write_seqcount_end(&conf->gen_lock);
6685 spin_unlock_irq(&conf->device_lock);
6688 conf->reshape_checkpoint = jiffies;
6689 md_wakeup_thread(mddev->sync_thread);
6690 md_new_event(mddev);
6694 /* This is called from the reshape thread and should make any
6695 * changes needed in 'conf'
6697 static void end_reshape(struct r5conf *conf)
6700 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6701 struct md_rdev *rdev;
6703 spin_lock_irq(&conf->device_lock);
6704 conf->previous_raid_disks = conf->raid_disks;
6705 rdev_for_each(rdev, conf->mddev)
6706 rdev->data_offset = rdev->new_data_offset;
6708 conf->reshape_progress = MaxSector;
6709 spin_unlock_irq(&conf->device_lock);
6710 wake_up(&conf->wait_for_overlap);
6712 /* read-ahead size must cover two whole stripes, which is
6713 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6715 if (conf->mddev->queue) {
6716 int data_disks = conf->raid_disks - conf->max_degraded;
6717 int stripe = data_disks * ((conf->chunk_sectors << 9)
6719 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6720 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6725 /* This is called from the raid5d thread with mddev_lock held.
6726 * It makes config changes to the device.
6728 static void raid5_finish_reshape(struct mddev *mddev)
6730 struct r5conf *conf = mddev->private;
6732 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6734 if (mddev->delta_disks > 0) {
6735 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6736 set_capacity(mddev->gendisk, mddev->array_sectors);
6737 revalidate_disk(mddev->gendisk);
6740 spin_lock_irq(&conf->device_lock);
6741 mddev->degraded = calc_degraded(conf);
6742 spin_unlock_irq(&conf->device_lock);
6743 for (d = conf->raid_disks ;
6744 d < conf->raid_disks - mddev->delta_disks;
6746 struct md_rdev *rdev = conf->disks[d].rdev;
6748 clear_bit(In_sync, &rdev->flags);
6749 rdev = conf->disks[d].replacement;
6751 clear_bit(In_sync, &rdev->flags);
6754 mddev->layout = conf->algorithm;
6755 mddev->chunk_sectors = conf->chunk_sectors;
6756 mddev->reshape_position = MaxSector;
6757 mddev->delta_disks = 0;
6758 mddev->reshape_backwards = 0;
6762 static void raid5_quiesce(struct mddev *mddev, int state)
6764 struct r5conf *conf = mddev->private;
6767 case 2: /* resume for a suspend */
6768 wake_up(&conf->wait_for_overlap);
6771 case 1: /* stop all writes */
6772 lock_all_device_hash_locks_irq(conf);
6773 /* '2' tells resync/reshape to pause so that all
6774 * active stripes can drain
6777 wait_event_cmd(conf->wait_for_stripe,
6778 atomic_read(&conf->active_stripes) == 0 &&
6779 atomic_read(&conf->active_aligned_reads) == 0,
6780 unlock_all_device_hash_locks_irq(conf),
6781 lock_all_device_hash_locks_irq(conf));
6783 unlock_all_device_hash_locks_irq(conf);
6784 /* allow reshape to continue */
6785 wake_up(&conf->wait_for_overlap);
6788 case 0: /* re-enable writes */
6789 lock_all_device_hash_locks_irq(conf);
6791 wake_up(&conf->wait_for_stripe);
6792 wake_up(&conf->wait_for_overlap);
6793 unlock_all_device_hash_locks_irq(conf);
6798 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6800 struct r0conf *raid0_conf = mddev->private;
6803 /* for raid0 takeover only one zone is supported */
6804 if (raid0_conf->nr_strip_zones > 1) {
6805 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6807 return ERR_PTR(-EINVAL);
6810 sectors = raid0_conf->strip_zone[0].zone_end;
6811 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6812 mddev->dev_sectors = sectors;
6813 mddev->new_level = level;
6814 mddev->new_layout = ALGORITHM_PARITY_N;
6815 mddev->new_chunk_sectors = mddev->chunk_sectors;
6816 mddev->raid_disks += 1;
6817 mddev->delta_disks = 1;
6818 /* make sure it will be not marked as dirty */
6819 mddev->recovery_cp = MaxSector;
6821 return setup_conf(mddev);
6824 static void *raid5_takeover_raid1(struct mddev *mddev)
6828 if (mddev->raid_disks != 2 ||
6829 mddev->degraded > 1)
6830 return ERR_PTR(-EINVAL);
6832 /* Should check if there are write-behind devices? */
6834 chunksect = 64*2; /* 64K by default */
6836 /* The array must be an exact multiple of chunksize */
6837 while (chunksect && (mddev->array_sectors & (chunksect-1)))
6840 if ((chunksect<<9) < STRIPE_SIZE)
6841 /* array size does not allow a suitable chunk size */
6842 return ERR_PTR(-EINVAL);
6844 mddev->new_level = 5;
6845 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6846 mddev->new_chunk_sectors = chunksect;
6848 return setup_conf(mddev);
6851 static void *raid5_takeover_raid6(struct mddev *mddev)
6855 switch (mddev->layout) {
6856 case ALGORITHM_LEFT_ASYMMETRIC_6:
6857 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6859 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6860 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6862 case ALGORITHM_LEFT_SYMMETRIC_6:
6863 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6865 case ALGORITHM_RIGHT_SYMMETRIC_6:
6866 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6868 case ALGORITHM_PARITY_0_6:
6869 new_layout = ALGORITHM_PARITY_0;
6871 case ALGORITHM_PARITY_N:
6872 new_layout = ALGORITHM_PARITY_N;
6875 return ERR_PTR(-EINVAL);
6877 mddev->new_level = 5;
6878 mddev->new_layout = new_layout;
6879 mddev->delta_disks = -1;
6880 mddev->raid_disks -= 1;
6881 return setup_conf(mddev);
6884 static int raid5_check_reshape(struct mddev *mddev)
6886 /* For a 2-drive array, the layout and chunk size can be changed
6887 * immediately as not restriping is needed.
6888 * For larger arrays we record the new value - after validation
6889 * to be used by a reshape pass.
6891 struct r5conf *conf = mddev->private;
6892 int new_chunk = mddev->new_chunk_sectors;
6894 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6896 if (new_chunk > 0) {
6897 if (!is_power_of_2(new_chunk))
6899 if (new_chunk < (PAGE_SIZE>>9))
6901 if (mddev->array_sectors & (new_chunk-1))
6902 /* not factor of array size */
6906 /* They look valid */
6908 if (mddev->raid_disks == 2) {
6909 /* can make the change immediately */
6910 if (mddev->new_layout >= 0) {
6911 conf->algorithm = mddev->new_layout;
6912 mddev->layout = mddev->new_layout;
6914 if (new_chunk > 0) {
6915 conf->chunk_sectors = new_chunk ;
6916 mddev->chunk_sectors = new_chunk;
6918 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6919 md_wakeup_thread(mddev->thread);
6921 return check_reshape(mddev);
6924 static int raid6_check_reshape(struct mddev *mddev)
6926 int new_chunk = mddev->new_chunk_sectors;
6928 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6930 if (new_chunk > 0) {
6931 if (!is_power_of_2(new_chunk))
6933 if (new_chunk < (PAGE_SIZE >> 9))
6935 if (mddev->array_sectors & (new_chunk-1))
6936 /* not factor of array size */
6940 /* They look valid */
6941 return check_reshape(mddev);
6944 static void *raid5_takeover(struct mddev *mddev)
6946 /* raid5 can take over:
6947 * raid0 - if there is only one strip zone - make it a raid4 layout
6948 * raid1 - if there are two drives. We need to know the chunk size
6949 * raid4 - trivial - just use a raid4 layout.
6950 * raid6 - Providing it is a *_6 layout
6952 if (mddev->level == 0)
6953 return raid45_takeover_raid0(mddev, 5);
6954 if (mddev->level == 1)
6955 return raid5_takeover_raid1(mddev);
6956 if (mddev->level == 4) {
6957 mddev->new_layout = ALGORITHM_PARITY_N;
6958 mddev->new_level = 5;
6959 return setup_conf(mddev);
6961 if (mddev->level == 6)
6962 return raid5_takeover_raid6(mddev);
6964 return ERR_PTR(-EINVAL);
6967 static void *raid4_takeover(struct mddev *mddev)
6969 /* raid4 can take over:
6970 * raid0 - if there is only one strip zone
6971 * raid5 - if layout is right
6973 if (mddev->level == 0)
6974 return raid45_takeover_raid0(mddev, 4);
6975 if (mddev->level == 5 &&
6976 mddev->layout == ALGORITHM_PARITY_N) {
6977 mddev->new_layout = 0;
6978 mddev->new_level = 4;
6979 return setup_conf(mddev);
6981 return ERR_PTR(-EINVAL);
6984 static struct md_personality raid5_personality;
6986 static void *raid6_takeover(struct mddev *mddev)
6988 /* Currently can only take over a raid5. We map the
6989 * personality to an equivalent raid6 personality
6990 * with the Q block at the end.
6994 if (mddev->pers != &raid5_personality)
6995 return ERR_PTR(-EINVAL);
6996 if (mddev->degraded > 1)
6997 return ERR_PTR(-EINVAL);
6998 if (mddev->raid_disks > 253)
6999 return ERR_PTR(-EINVAL);
7000 if (mddev->raid_disks < 3)
7001 return ERR_PTR(-EINVAL);
7003 switch (mddev->layout) {
7004 case ALGORITHM_LEFT_ASYMMETRIC:
7005 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7007 case ALGORITHM_RIGHT_ASYMMETRIC:
7008 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7010 case ALGORITHM_LEFT_SYMMETRIC:
7011 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7013 case ALGORITHM_RIGHT_SYMMETRIC:
7014 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7016 case ALGORITHM_PARITY_0:
7017 new_layout = ALGORITHM_PARITY_0_6;
7019 case ALGORITHM_PARITY_N:
7020 new_layout = ALGORITHM_PARITY_N;
7023 return ERR_PTR(-EINVAL);
7025 mddev->new_level = 6;
7026 mddev->new_layout = new_layout;
7027 mddev->delta_disks = 1;
7028 mddev->raid_disks += 1;
7029 return setup_conf(mddev);
7032 static struct md_personality raid6_personality =
7036 .owner = THIS_MODULE,
7037 .make_request = make_request,
7041 .error_handler = error,
7042 .hot_add_disk = raid5_add_disk,
7043 .hot_remove_disk= raid5_remove_disk,
7044 .spare_active = raid5_spare_active,
7045 .sync_request = sync_request,
7046 .resize = raid5_resize,
7048 .check_reshape = raid6_check_reshape,
7049 .start_reshape = raid5_start_reshape,
7050 .finish_reshape = raid5_finish_reshape,
7051 .quiesce = raid5_quiesce,
7052 .takeover = raid6_takeover,
7054 static struct md_personality raid5_personality =
7058 .owner = THIS_MODULE,
7059 .make_request = make_request,
7063 .error_handler = error,
7064 .hot_add_disk = raid5_add_disk,
7065 .hot_remove_disk= raid5_remove_disk,
7066 .spare_active = raid5_spare_active,
7067 .sync_request = sync_request,
7068 .resize = raid5_resize,
7070 .check_reshape = raid5_check_reshape,
7071 .start_reshape = raid5_start_reshape,
7072 .finish_reshape = raid5_finish_reshape,
7073 .quiesce = raid5_quiesce,
7074 .takeover = raid5_takeover,
7077 static struct md_personality raid4_personality =
7081 .owner = THIS_MODULE,
7082 .make_request = make_request,
7086 .error_handler = error,
7087 .hot_add_disk = raid5_add_disk,
7088 .hot_remove_disk= raid5_remove_disk,
7089 .spare_active = raid5_spare_active,
7090 .sync_request = sync_request,
7091 .resize = raid5_resize,
7093 .check_reshape = raid5_check_reshape,
7094 .start_reshape = raid5_start_reshape,
7095 .finish_reshape = raid5_finish_reshape,
7096 .quiesce = raid5_quiesce,
7097 .takeover = raid4_takeover,
7100 static int __init raid5_init(void)
7102 raid5_wq = alloc_workqueue("raid5wq",
7103 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7106 register_md_personality(&raid6_personality);
7107 register_md_personality(&raid5_personality);
7108 register_md_personality(&raid4_personality);
7112 static void raid5_exit(void)
7114 unregister_md_personality(&raid6_personality);
7115 unregister_md_personality(&raid5_personality);
7116 unregister_md_personality(&raid4_personality);
7117 destroy_workqueue(raid5_wq);
7120 module_init(raid5_init);
7121 module_exit(raid5_exit);
7122 MODULE_LICENSE("GPL");
7123 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7124 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7125 MODULE_ALIAS("md-raid5");
7126 MODULE_ALIAS("md-raid4");
7127 MODULE_ALIAS("md-level-5");
7128 MODULE_ALIAS("md-level-4");
7129 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7130 MODULE_ALIAS("md-raid6");
7131 MODULE_ALIAS("md-level-6");
7133 /* This used to be two separate modules, they were: */
7134 MODULE_ALIAS("raid5");
7135 MODULE_ALIAS("raid6");