2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
63 #define NR_STRIPES 256
64 #define STRIPE_SIZE PAGE_SIZE
65 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
67 #define IO_THRESHOLD 1
68 #define BYPASS_THRESHOLD 1
69 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK (NR_HASH - 1)
72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75 * order without overlap. There may be several bio's per stripe+device, and
76 * a bio could span several devices.
77 * When walking this list for a particular stripe+device, we must never proceed
78 * beyond a bio that extends past this device, as the next bio might no longer
80 * This macro is used to determine the 'next' bio in the list, given the sector
81 * of the current stripe+device
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
85 * The following can be used to debug the driver
87 #define RAID5_PARANOIA 1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
91 # define CHECK_DEVLOCK()
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
102 * We maintain a biased count of active stripes in the bottom 16 bits of
103 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
105 static inline int raid5_bi_phys_segments(struct bio *bio)
107 return bio->bi_phys_segments & 0xffff;
110 static inline int raid5_bi_hw_segments(struct bio *bio)
112 return (bio->bi_phys_segments >> 16) & 0xffff;
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
117 --bio->bi_phys_segments;
118 return raid5_bi_phys_segments(bio);
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
123 unsigned short val = raid5_bi_hw_segments(bio);
126 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
132 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
139 /* ddf always start from first device */
141 /* md starts just after Q block */
142 if (sh->qd_idx == sh->disks - 1)
145 return sh->qd_idx + 1;
147 static inline int raid6_next_disk(int disk, int raid_disks)
150 return (disk < raid_disks) ? disk : 0;
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154 * We need to map each disk to a 'slot', where the data disks are slot
155 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156 * is raid_disks-1. This help does that mapping.
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159 int *count, int syndrome_disks)
165 if (idx == sh->pd_idx)
166 return syndrome_disks;
167 if (idx == sh->qd_idx)
168 return syndrome_disks + 1;
174 static void return_io(struct bio *return_bi)
176 struct bio *bi = return_bi;
179 return_bi = bi->bi_next;
187 static void print_raid5_conf (raid5_conf_t *conf);
189 static int stripe_operations_active(struct stripe_head *sh)
191 return sh->check_state || sh->reconstruct_state ||
192 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
198 if (atomic_dec_and_test(&sh->count)) {
199 BUG_ON(!list_empty(&sh->lru));
200 BUG_ON(atomic_read(&conf->active_stripes)==0);
201 if (test_bit(STRIPE_HANDLE, &sh->state)) {
202 if (test_bit(STRIPE_DELAYED, &sh->state)) {
203 list_add_tail(&sh->lru, &conf->delayed_list);
204 blk_plug_device(conf->mddev->queue);
205 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
206 sh->bm_seq - conf->seq_write > 0) {
207 list_add_tail(&sh->lru, &conf->bitmap_list);
208 blk_plug_device(conf->mddev->queue);
210 clear_bit(STRIPE_BIT_DELAY, &sh->state);
211 list_add_tail(&sh->lru, &conf->handle_list);
213 md_wakeup_thread(conf->mddev->thread);
215 BUG_ON(stripe_operations_active(sh));
216 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
217 atomic_dec(&conf->preread_active_stripes);
218 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
219 md_wakeup_thread(conf->mddev->thread);
221 atomic_dec(&conf->active_stripes);
222 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
223 list_add_tail(&sh->lru, &conf->inactive_list);
224 wake_up(&conf->wait_for_stripe);
225 if (conf->retry_read_aligned)
226 md_wakeup_thread(conf->mddev->thread);
232 static void release_stripe(struct stripe_head *sh)
234 raid5_conf_t *conf = sh->raid_conf;
237 spin_lock_irqsave(&conf->device_lock, flags);
238 __release_stripe(conf, sh);
239 spin_unlock_irqrestore(&conf->device_lock, flags);
242 static inline void remove_hash(struct stripe_head *sh)
244 pr_debug("remove_hash(), stripe %llu\n",
245 (unsigned long long)sh->sector);
247 hlist_del_init(&sh->hash);
250 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
252 struct hlist_head *hp = stripe_hash(conf, sh->sector);
254 pr_debug("insert_hash(), stripe %llu\n",
255 (unsigned long long)sh->sector);
258 hlist_add_head(&sh->hash, hp);
262 /* find an idle stripe, make sure it is unhashed, and return it. */
263 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
265 struct stripe_head *sh = NULL;
266 struct list_head *first;
269 if (list_empty(&conf->inactive_list))
271 first = conf->inactive_list.next;
272 sh = list_entry(first, struct stripe_head, lru);
273 list_del_init(first);
275 atomic_inc(&conf->active_stripes);
280 static void shrink_buffers(struct stripe_head *sh)
284 int num = sh->raid_conf->pool_size;
286 for (i = 0; i < num ; i++) {
290 sh->dev[i].page = NULL;
295 static int grow_buffers(struct stripe_head *sh)
298 int num = sh->raid_conf->pool_size;
300 for (i = 0; i < num; i++) {
303 if (!(page = alloc_page(GFP_KERNEL))) {
306 sh->dev[i].page = page;
311 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
312 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
313 struct stripe_head *sh);
315 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
317 raid5_conf_t *conf = sh->raid_conf;
320 BUG_ON(atomic_read(&sh->count) != 0);
321 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
322 BUG_ON(stripe_operations_active(sh));
325 pr_debug("init_stripe called, stripe %llu\n",
326 (unsigned long long)sh->sector);
330 sh->generation = conf->generation - previous;
331 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
333 stripe_set_idx(sector, conf, previous, sh);
337 for (i = sh->disks; i--; ) {
338 struct r5dev *dev = &sh->dev[i];
340 if (dev->toread || dev->read || dev->towrite || dev->written ||
341 test_bit(R5_LOCKED, &dev->flags)) {
342 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
343 (unsigned long long)sh->sector, i, dev->toread,
344 dev->read, dev->towrite, dev->written,
345 test_bit(R5_LOCKED, &dev->flags));
349 raid5_build_block(sh, i, previous);
351 insert_hash(conf, sh);
354 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
357 struct stripe_head *sh;
358 struct hlist_node *hn;
361 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
362 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
363 if (sh->sector == sector && sh->generation == generation)
365 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
370 * Need to check if array has failed when deciding whether to:
372 * - remove non-faulty devices
375 * This determination is simple when no reshape is happening.
376 * However if there is a reshape, we need to carefully check
377 * both the before and after sections.
378 * This is because some failed devices may only affect one
379 * of the two sections, and some non-in_sync devices may
380 * be insync in the section most affected by failed devices.
382 static int has_failed(raid5_conf_t *conf)
386 if (conf->mddev->reshape_position == MaxSector)
387 return conf->mddev->degraded > conf->max_degraded;
391 for (i = 0; i < conf->previous_raid_disks; i++) {
392 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
393 if (!rdev || test_bit(Faulty, &rdev->flags))
395 else if (test_bit(In_sync, &rdev->flags))
398 /* not in-sync or faulty.
399 * If the reshape increases the number of devices,
400 * this is being recovered by the reshape, so
401 * this 'previous' section is not in_sync.
402 * If the number of devices is being reduced however,
403 * the device can only be part of the array if
404 * we are reverting a reshape, so this section will
407 if (conf->raid_disks >= conf->previous_raid_disks)
411 if (degraded > conf->max_degraded)
415 for (i = 0; i < conf->raid_disks; i++) {
416 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
417 if (!rdev || test_bit(Faulty, &rdev->flags))
419 else if (test_bit(In_sync, &rdev->flags))
422 /* not in-sync or faulty.
423 * If reshape increases the number of devices, this
424 * section has already been recovered, else it
425 * almost certainly hasn't.
427 if (conf->raid_disks <= conf->previous_raid_disks)
431 if (degraded > conf->max_degraded)
436 static void unplug_slaves(mddev_t *mddev);
437 static void raid5_unplug_device(struct request_queue *q);
439 static struct stripe_head *
440 get_active_stripe(raid5_conf_t *conf, sector_t sector,
441 int previous, int noblock, int noquiesce)
443 struct stripe_head *sh;
445 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
447 spin_lock_irq(&conf->device_lock);
450 wait_event_lock_irq(conf->wait_for_stripe,
451 conf->quiesce == 0 || noquiesce,
452 conf->device_lock, /* nothing */);
453 sh = __find_stripe(conf, sector, conf->generation - previous);
455 if (!conf->inactive_blocked)
456 sh = get_free_stripe(conf);
457 if (noblock && sh == NULL)
460 conf->inactive_blocked = 1;
461 wait_event_lock_irq(conf->wait_for_stripe,
462 !list_empty(&conf->inactive_list) &&
463 (atomic_read(&conf->active_stripes)
464 < (conf->max_nr_stripes *3/4)
465 || !conf->inactive_blocked),
467 raid5_unplug_device(conf->mddev->queue)
469 conf->inactive_blocked = 0;
471 init_stripe(sh, sector, previous);
473 if (atomic_read(&sh->count)) {
474 BUG_ON(!list_empty(&sh->lru)
475 && !test_bit(STRIPE_EXPANDING, &sh->state));
477 if (!test_bit(STRIPE_HANDLE, &sh->state))
478 atomic_inc(&conf->active_stripes);
479 if (list_empty(&sh->lru) &&
480 !test_bit(STRIPE_EXPANDING, &sh->state))
482 list_del_init(&sh->lru);
485 } while (sh == NULL);
488 atomic_inc(&sh->count);
490 spin_unlock_irq(&conf->device_lock);
495 raid5_end_read_request(struct bio *bi, int error);
497 raid5_end_write_request(struct bio *bi, int error);
499 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
501 raid5_conf_t *conf = sh->raid_conf;
502 int i, disks = sh->disks;
506 for (i = disks; i--; ) {
510 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
512 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
517 bi = &sh->dev[i].req;
521 bi->bi_end_io = raid5_end_write_request;
523 bi->bi_end_io = raid5_end_read_request;
526 rdev = rcu_dereference(conf->disks[i].rdev);
527 if (rdev && test_bit(Faulty, &rdev->flags))
530 atomic_inc(&rdev->nr_pending);
534 if (s->syncing || s->expanding || s->expanded)
535 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
537 set_bit(STRIPE_IO_STARTED, &sh->state);
539 bi->bi_bdev = rdev->bdev;
540 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
541 __func__, (unsigned long long)sh->sector,
543 atomic_inc(&sh->count);
544 bi->bi_sector = sh->sector + rdev->data_offset;
545 bi->bi_flags = 1 << BIO_UPTODATE;
549 bi->bi_io_vec = &sh->dev[i].vec;
550 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
551 bi->bi_io_vec[0].bv_offset = 0;
552 bi->bi_size = STRIPE_SIZE;
555 test_bit(R5_ReWrite, &sh->dev[i].flags))
556 atomic_add(STRIPE_SECTORS,
557 &rdev->corrected_errors);
558 generic_make_request(bi);
561 set_bit(STRIPE_DEGRADED, &sh->state);
562 pr_debug("skip op %ld on disc %d for sector %llu\n",
563 bi->bi_rw, i, (unsigned long long)sh->sector);
564 clear_bit(R5_LOCKED, &sh->dev[i].flags);
565 set_bit(STRIPE_HANDLE, &sh->state);
570 static struct dma_async_tx_descriptor *
571 async_copy_data(int frombio, struct bio *bio, struct page *page,
572 sector_t sector, struct dma_async_tx_descriptor *tx)
575 struct page *bio_page;
578 struct async_submit_ctl submit;
579 enum async_tx_flags flags = 0;
581 if (bio->bi_sector >= sector)
582 page_offset = (signed)(bio->bi_sector - sector) * 512;
584 page_offset = (signed)(sector - bio->bi_sector) * -512;
587 flags |= ASYNC_TX_FENCE;
588 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
590 bio_for_each_segment(bvl, bio, i) {
591 int len = bio_iovec_idx(bio, i)->bv_len;
595 if (page_offset < 0) {
596 b_offset = -page_offset;
597 page_offset += b_offset;
601 if (len > 0 && page_offset + len > STRIPE_SIZE)
602 clen = STRIPE_SIZE - page_offset;
607 b_offset += bio_iovec_idx(bio, i)->bv_offset;
608 bio_page = bio_iovec_idx(bio, i)->bv_page;
610 tx = async_memcpy(page, bio_page, page_offset,
611 b_offset, clen, &submit);
613 tx = async_memcpy(bio_page, page, b_offset,
614 page_offset, clen, &submit);
616 /* chain the operations */
617 submit.depend_tx = tx;
619 if (clen < len) /* hit end of page */
627 static void ops_complete_biofill(void *stripe_head_ref)
629 struct stripe_head *sh = stripe_head_ref;
630 struct bio *return_bi = NULL;
631 raid5_conf_t *conf = sh->raid_conf;
634 pr_debug("%s: stripe %llu\n", __func__,
635 (unsigned long long)sh->sector);
637 /* clear completed biofills */
638 spin_lock_irq(&conf->device_lock);
639 for (i = sh->disks; i--; ) {
640 struct r5dev *dev = &sh->dev[i];
642 /* acknowledge completion of a biofill operation */
643 /* and check if we need to reply to a read request,
644 * new R5_Wantfill requests are held off until
645 * !STRIPE_BIOFILL_RUN
647 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
648 struct bio *rbi, *rbi2;
653 while (rbi && rbi->bi_sector <
654 dev->sector + STRIPE_SECTORS) {
655 rbi2 = r5_next_bio(rbi, dev->sector);
656 if (!raid5_dec_bi_phys_segments(rbi)) {
657 rbi->bi_next = return_bi;
664 spin_unlock_irq(&conf->device_lock);
665 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
667 return_io(return_bi);
669 set_bit(STRIPE_HANDLE, &sh->state);
673 static void ops_run_biofill(struct stripe_head *sh)
675 struct dma_async_tx_descriptor *tx = NULL;
676 raid5_conf_t *conf = sh->raid_conf;
677 struct async_submit_ctl submit;
680 pr_debug("%s: stripe %llu\n", __func__,
681 (unsigned long long)sh->sector);
683 for (i = sh->disks; i--; ) {
684 struct r5dev *dev = &sh->dev[i];
685 if (test_bit(R5_Wantfill, &dev->flags)) {
687 spin_lock_irq(&conf->device_lock);
688 dev->read = rbi = dev->toread;
690 spin_unlock_irq(&conf->device_lock);
691 while (rbi && rbi->bi_sector <
692 dev->sector + STRIPE_SECTORS) {
693 tx = async_copy_data(0, rbi, dev->page,
695 rbi = r5_next_bio(rbi, dev->sector);
700 atomic_inc(&sh->count);
701 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
702 async_trigger_callback(&submit);
705 static void mark_target_uptodate(struct stripe_head *sh, int target)
712 tgt = &sh->dev[target];
713 set_bit(R5_UPTODATE, &tgt->flags);
714 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
715 clear_bit(R5_Wantcompute, &tgt->flags);
718 static void ops_complete_compute(void *stripe_head_ref)
720 struct stripe_head *sh = stripe_head_ref;
722 pr_debug("%s: stripe %llu\n", __func__,
723 (unsigned long long)sh->sector);
725 /* mark the computed target(s) as uptodate */
726 mark_target_uptodate(sh, sh->ops.target);
727 mark_target_uptodate(sh, sh->ops.target2);
729 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
730 if (sh->check_state == check_state_compute_run)
731 sh->check_state = check_state_compute_result;
732 set_bit(STRIPE_HANDLE, &sh->state);
736 /* return a pointer to the address conversion region of the scribble buffer */
737 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
738 struct raid5_percpu *percpu)
740 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
743 static struct dma_async_tx_descriptor *
744 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
746 int disks = sh->disks;
747 struct page **xor_srcs = percpu->scribble;
748 int target = sh->ops.target;
749 struct r5dev *tgt = &sh->dev[target];
750 struct page *xor_dest = tgt->page;
752 struct dma_async_tx_descriptor *tx;
753 struct async_submit_ctl submit;
756 pr_debug("%s: stripe %llu block: %d\n",
757 __func__, (unsigned long long)sh->sector, target);
758 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
760 for (i = disks; i--; )
762 xor_srcs[count++] = sh->dev[i].page;
764 atomic_inc(&sh->count);
766 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
767 ops_complete_compute, sh, to_addr_conv(sh, percpu));
768 if (unlikely(count == 1))
769 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
771 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
776 /* set_syndrome_sources - populate source buffers for gen_syndrome
777 * @srcs - (struct page *) array of size sh->disks
778 * @sh - stripe_head to parse
780 * Populates srcs in proper layout order for the stripe and returns the
781 * 'count' of sources to be used in a call to async_gen_syndrome. The P
782 * destination buffer is recorded in srcs[count] and the Q destination
783 * is recorded in srcs[count+1]].
785 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
787 int disks = sh->disks;
788 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
789 int d0_idx = raid6_d0(sh);
793 for (i = 0; i < disks; i++)
799 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
801 srcs[slot] = sh->dev[i].page;
802 i = raid6_next_disk(i, disks);
803 } while (i != d0_idx);
805 return syndrome_disks;
808 static struct dma_async_tx_descriptor *
809 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
811 int disks = sh->disks;
812 struct page **blocks = percpu->scribble;
814 int qd_idx = sh->qd_idx;
815 struct dma_async_tx_descriptor *tx;
816 struct async_submit_ctl submit;
822 if (sh->ops.target < 0)
823 target = sh->ops.target2;
824 else if (sh->ops.target2 < 0)
825 target = sh->ops.target;
827 /* we should only have one valid target */
830 pr_debug("%s: stripe %llu block: %d\n",
831 __func__, (unsigned long long)sh->sector, target);
833 tgt = &sh->dev[target];
834 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
837 atomic_inc(&sh->count);
839 if (target == qd_idx) {
840 count = set_syndrome_sources(blocks, sh);
841 blocks[count] = NULL; /* regenerating p is not necessary */
842 BUG_ON(blocks[count+1] != dest); /* q should already be set */
843 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
844 ops_complete_compute, sh,
845 to_addr_conv(sh, percpu));
846 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
848 /* Compute any data- or p-drive using XOR */
850 for (i = disks; i-- ; ) {
851 if (i == target || i == qd_idx)
853 blocks[count++] = sh->dev[i].page;
856 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
857 NULL, ops_complete_compute, sh,
858 to_addr_conv(sh, percpu));
859 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
865 static struct dma_async_tx_descriptor *
866 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
868 int i, count, disks = sh->disks;
869 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
870 int d0_idx = raid6_d0(sh);
871 int faila = -1, failb = -1;
872 int target = sh->ops.target;
873 int target2 = sh->ops.target2;
874 struct r5dev *tgt = &sh->dev[target];
875 struct r5dev *tgt2 = &sh->dev[target2];
876 struct dma_async_tx_descriptor *tx;
877 struct page **blocks = percpu->scribble;
878 struct async_submit_ctl submit;
880 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
881 __func__, (unsigned long long)sh->sector, target, target2);
882 BUG_ON(target < 0 || target2 < 0);
883 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
884 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
886 /* we need to open-code set_syndrome_sources to handle the
887 * slot number conversion for 'faila' and 'failb'
889 for (i = 0; i < disks ; i++)
894 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
896 blocks[slot] = sh->dev[i].page;
902 i = raid6_next_disk(i, disks);
903 } while (i != d0_idx);
905 BUG_ON(faila == failb);
908 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
909 __func__, (unsigned long long)sh->sector, faila, failb);
911 atomic_inc(&sh->count);
913 if (failb == syndrome_disks+1) {
914 /* Q disk is one of the missing disks */
915 if (faila == syndrome_disks) {
916 /* Missing P+Q, just recompute */
917 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
918 ops_complete_compute, sh,
919 to_addr_conv(sh, percpu));
920 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
921 STRIPE_SIZE, &submit);
925 int qd_idx = sh->qd_idx;
927 /* Missing D+Q: recompute D from P, then recompute Q */
928 if (target == qd_idx)
929 data_target = target2;
931 data_target = target;
934 for (i = disks; i-- ; ) {
935 if (i == data_target || i == qd_idx)
937 blocks[count++] = sh->dev[i].page;
939 dest = sh->dev[data_target].page;
940 init_async_submit(&submit,
941 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
943 to_addr_conv(sh, percpu));
944 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
947 count = set_syndrome_sources(blocks, sh);
948 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
949 ops_complete_compute, sh,
950 to_addr_conv(sh, percpu));
951 return async_gen_syndrome(blocks, 0, count+2,
952 STRIPE_SIZE, &submit);
955 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
956 ops_complete_compute, sh,
957 to_addr_conv(sh, percpu));
958 if (failb == syndrome_disks) {
959 /* We're missing D+P. */
960 return async_raid6_datap_recov(syndrome_disks+2,
964 /* We're missing D+D. */
965 return async_raid6_2data_recov(syndrome_disks+2,
966 STRIPE_SIZE, faila, failb,
973 static void ops_complete_prexor(void *stripe_head_ref)
975 struct stripe_head *sh = stripe_head_ref;
977 pr_debug("%s: stripe %llu\n", __func__,
978 (unsigned long long)sh->sector);
981 static struct dma_async_tx_descriptor *
982 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
983 struct dma_async_tx_descriptor *tx)
985 int disks = sh->disks;
986 struct page **xor_srcs = percpu->scribble;
987 int count = 0, pd_idx = sh->pd_idx, i;
988 struct async_submit_ctl submit;
990 /* existing parity data subtracted */
991 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
993 pr_debug("%s: stripe %llu\n", __func__,
994 (unsigned long long)sh->sector);
996 for (i = disks; i--; ) {
997 struct r5dev *dev = &sh->dev[i];
998 /* Only process blocks that are known to be uptodate */
999 if (test_bit(R5_Wantdrain, &dev->flags))
1000 xor_srcs[count++] = dev->page;
1003 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1004 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1005 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1010 static struct dma_async_tx_descriptor *
1011 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1013 int disks = sh->disks;
1016 pr_debug("%s: stripe %llu\n", __func__,
1017 (unsigned long long)sh->sector);
1019 for (i = disks; i--; ) {
1020 struct r5dev *dev = &sh->dev[i];
1023 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1026 spin_lock(&sh->lock);
1027 chosen = dev->towrite;
1028 dev->towrite = NULL;
1029 BUG_ON(dev->written);
1030 wbi = dev->written = chosen;
1031 spin_unlock(&sh->lock);
1033 while (wbi && wbi->bi_sector <
1034 dev->sector + STRIPE_SECTORS) {
1035 tx = async_copy_data(1, wbi, dev->page,
1037 wbi = r5_next_bio(wbi, dev->sector);
1045 static void ops_complete_reconstruct(void *stripe_head_ref)
1047 struct stripe_head *sh = stripe_head_ref;
1048 int disks = sh->disks;
1049 int pd_idx = sh->pd_idx;
1050 int qd_idx = sh->qd_idx;
1053 pr_debug("%s: stripe %llu\n", __func__,
1054 (unsigned long long)sh->sector);
1056 for (i = disks; i--; ) {
1057 struct r5dev *dev = &sh->dev[i];
1059 if (dev->written || i == pd_idx || i == qd_idx)
1060 set_bit(R5_UPTODATE, &dev->flags);
1063 if (sh->reconstruct_state == reconstruct_state_drain_run)
1064 sh->reconstruct_state = reconstruct_state_drain_result;
1065 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1066 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1068 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1069 sh->reconstruct_state = reconstruct_state_result;
1072 set_bit(STRIPE_HANDLE, &sh->state);
1077 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1078 struct dma_async_tx_descriptor *tx)
1080 int disks = sh->disks;
1081 struct page **xor_srcs = percpu->scribble;
1082 struct async_submit_ctl submit;
1083 int count = 0, pd_idx = sh->pd_idx, i;
1084 struct page *xor_dest;
1086 unsigned long flags;
1088 pr_debug("%s: stripe %llu\n", __func__,
1089 (unsigned long long)sh->sector);
1091 /* check if prexor is active which means only process blocks
1092 * that are part of a read-modify-write (written)
1094 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1096 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1097 for (i = disks; i--; ) {
1098 struct r5dev *dev = &sh->dev[i];
1100 xor_srcs[count++] = dev->page;
1103 xor_dest = sh->dev[pd_idx].page;
1104 for (i = disks; i--; ) {
1105 struct r5dev *dev = &sh->dev[i];
1107 xor_srcs[count++] = dev->page;
1111 /* 1/ if we prexor'd then the dest is reused as a source
1112 * 2/ if we did not prexor then we are redoing the parity
1113 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1114 * for the synchronous xor case
1116 flags = ASYNC_TX_ACK |
1117 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1119 atomic_inc(&sh->count);
1121 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1122 to_addr_conv(sh, percpu));
1123 if (unlikely(count == 1))
1124 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1126 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1130 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1131 struct dma_async_tx_descriptor *tx)
1133 struct async_submit_ctl submit;
1134 struct page **blocks = percpu->scribble;
1137 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1139 count = set_syndrome_sources(blocks, sh);
1141 atomic_inc(&sh->count);
1143 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1144 sh, to_addr_conv(sh, percpu));
1145 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1148 static void ops_complete_check(void *stripe_head_ref)
1150 struct stripe_head *sh = stripe_head_ref;
1152 pr_debug("%s: stripe %llu\n", __func__,
1153 (unsigned long long)sh->sector);
1155 sh->check_state = check_state_check_result;
1156 set_bit(STRIPE_HANDLE, &sh->state);
1160 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1162 int disks = sh->disks;
1163 int pd_idx = sh->pd_idx;
1164 int qd_idx = sh->qd_idx;
1165 struct page *xor_dest;
1166 struct page **xor_srcs = percpu->scribble;
1167 struct dma_async_tx_descriptor *tx;
1168 struct async_submit_ctl submit;
1172 pr_debug("%s: stripe %llu\n", __func__,
1173 (unsigned long long)sh->sector);
1176 xor_dest = sh->dev[pd_idx].page;
1177 xor_srcs[count++] = xor_dest;
1178 for (i = disks; i--; ) {
1179 if (i == pd_idx || i == qd_idx)
1181 xor_srcs[count++] = sh->dev[i].page;
1184 init_async_submit(&submit, 0, NULL, NULL, NULL,
1185 to_addr_conv(sh, percpu));
1186 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1187 &sh->ops.zero_sum_result, &submit);
1189 atomic_inc(&sh->count);
1190 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1191 tx = async_trigger_callback(&submit);
1194 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1196 struct page **srcs = percpu->scribble;
1197 struct async_submit_ctl submit;
1200 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1201 (unsigned long long)sh->sector, checkp);
1203 count = set_syndrome_sources(srcs, sh);
1207 atomic_inc(&sh->count);
1208 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1209 sh, to_addr_conv(sh, percpu));
1210 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1211 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1214 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1216 int overlap_clear = 0, i, disks = sh->disks;
1217 struct dma_async_tx_descriptor *tx = NULL;
1218 raid5_conf_t *conf = sh->raid_conf;
1219 int level = conf->level;
1220 struct raid5_percpu *percpu;
1224 percpu = per_cpu_ptr(conf->percpu, cpu);
1225 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1226 ops_run_biofill(sh);
1230 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1232 tx = ops_run_compute5(sh, percpu);
1234 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1235 tx = ops_run_compute6_1(sh, percpu);
1237 tx = ops_run_compute6_2(sh, percpu);
1239 /* terminate the chain if reconstruct is not set to be run */
1240 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1244 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1245 tx = ops_run_prexor(sh, percpu, tx);
1247 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1248 tx = ops_run_biodrain(sh, tx);
1252 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1254 ops_run_reconstruct5(sh, percpu, tx);
1256 ops_run_reconstruct6(sh, percpu, tx);
1259 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1260 if (sh->check_state == check_state_run)
1261 ops_run_check_p(sh, percpu);
1262 else if (sh->check_state == check_state_run_q)
1263 ops_run_check_pq(sh, percpu, 0);
1264 else if (sh->check_state == check_state_run_pq)
1265 ops_run_check_pq(sh, percpu, 1);
1271 for (i = disks; i--; ) {
1272 struct r5dev *dev = &sh->dev[i];
1273 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1274 wake_up(&sh->raid_conf->wait_for_overlap);
1279 #ifdef CONFIG_MULTICORE_RAID456
1280 static void async_run_ops(void *param, async_cookie_t cookie)
1282 struct stripe_head *sh = param;
1283 unsigned long ops_request = sh->ops.request;
1285 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1286 wake_up(&sh->ops.wait_for_ops);
1288 __raid_run_ops(sh, ops_request);
1292 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1294 /* since handle_stripe can be called outside of raid5d context
1295 * we need to ensure sh->ops.request is de-staged before another
1298 wait_event(sh->ops.wait_for_ops,
1299 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1300 sh->ops.request = ops_request;
1302 atomic_inc(&sh->count);
1303 async_schedule(async_run_ops, sh);
1306 #define raid_run_ops __raid_run_ops
1309 static int grow_one_stripe(raid5_conf_t *conf)
1311 struct stripe_head *sh;
1312 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1315 memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
1316 sh->raid_conf = conf;
1317 spin_lock_init(&sh->lock);
1318 #ifdef CONFIG_MULTICORE_RAID456
1319 init_waitqueue_head(&sh->ops.wait_for_ops);
1322 if (grow_buffers(sh)) {
1324 kmem_cache_free(conf->slab_cache, sh);
1327 /* we just created an active stripe so... */
1328 atomic_set(&sh->count, 1);
1329 atomic_inc(&conf->active_stripes);
1330 INIT_LIST_HEAD(&sh->lru);
1335 static int grow_stripes(raid5_conf_t *conf, int num)
1337 struct kmem_cache *sc;
1338 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1340 sprintf(conf->cache_name[0],
1341 "raid%d-%s", conf->level, mdname(conf->mddev));
1342 sprintf(conf->cache_name[1],
1343 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
1344 conf->active_name = 0;
1345 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1346 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1350 conf->slab_cache = sc;
1351 conf->pool_size = devs;
1353 if (!grow_one_stripe(conf))
1359 * scribble_len - return the required size of the scribble region
1360 * @num - total number of disks in the array
1362 * The size must be enough to contain:
1363 * 1/ a struct page pointer for each device in the array +2
1364 * 2/ room to convert each entry in (1) to its corresponding dma
1365 * (dma_map_page()) or page (page_address()) address.
1367 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1368 * calculate over all devices (not just the data blocks), using zeros in place
1369 * of the P and Q blocks.
1371 static size_t scribble_len(int num)
1375 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1380 static int resize_stripes(raid5_conf_t *conf, int newsize)
1382 /* Make all the stripes able to hold 'newsize' devices.
1383 * New slots in each stripe get 'page' set to a new page.
1385 * This happens in stages:
1386 * 1/ create a new kmem_cache and allocate the required number of
1388 * 2/ gather all the old stripe_heads and tranfer the pages across
1389 * to the new stripe_heads. This will have the side effect of
1390 * freezing the array as once all stripe_heads have been collected,
1391 * no IO will be possible. Old stripe heads are freed once their
1392 * pages have been transferred over, and the old kmem_cache is
1393 * freed when all stripes are done.
1394 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1395 * we simple return a failre status - no need to clean anything up.
1396 * 4/ allocate new pages for the new slots in the new stripe_heads.
1397 * If this fails, we don't bother trying the shrink the
1398 * stripe_heads down again, we just leave them as they are.
1399 * As each stripe_head is processed the new one is released into
1402 * Once step2 is started, we cannot afford to wait for a write,
1403 * so we use GFP_NOIO allocations.
1405 struct stripe_head *osh, *nsh;
1406 LIST_HEAD(newstripes);
1407 struct disk_info *ndisks;
1410 struct kmem_cache *sc;
1413 if (newsize <= conf->pool_size)
1414 return 0; /* never bother to shrink */
1416 err = md_allow_write(conf->mddev);
1421 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1422 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1427 for (i = conf->max_nr_stripes; i; i--) {
1428 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1432 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1434 nsh->raid_conf = conf;
1435 spin_lock_init(&nsh->lock);
1436 #ifdef CONFIG_MULTICORE_RAID456
1437 init_waitqueue_head(&nsh->ops.wait_for_ops);
1440 list_add(&nsh->lru, &newstripes);
1443 /* didn't get enough, give up */
1444 while (!list_empty(&newstripes)) {
1445 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1446 list_del(&nsh->lru);
1447 kmem_cache_free(sc, nsh);
1449 kmem_cache_destroy(sc);
1452 /* Step 2 - Must use GFP_NOIO now.
1453 * OK, we have enough stripes, start collecting inactive
1454 * stripes and copying them over
1456 list_for_each_entry(nsh, &newstripes, lru) {
1457 spin_lock_irq(&conf->device_lock);
1458 wait_event_lock_irq(conf->wait_for_stripe,
1459 !list_empty(&conf->inactive_list),
1461 unplug_slaves(conf->mddev)
1463 osh = get_free_stripe(conf);
1464 spin_unlock_irq(&conf->device_lock);
1465 atomic_set(&nsh->count, 1);
1466 for(i=0; i<conf->pool_size; i++)
1467 nsh->dev[i].page = osh->dev[i].page;
1468 for( ; i<newsize; i++)
1469 nsh->dev[i].page = NULL;
1470 kmem_cache_free(conf->slab_cache, osh);
1472 kmem_cache_destroy(conf->slab_cache);
1475 * At this point, we are holding all the stripes so the array
1476 * is completely stalled, so now is a good time to resize
1477 * conf->disks and the scribble region
1479 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1481 for (i=0; i<conf->raid_disks; i++)
1482 ndisks[i] = conf->disks[i];
1484 conf->disks = ndisks;
1489 conf->scribble_len = scribble_len(newsize);
1490 for_each_present_cpu(cpu) {
1491 struct raid5_percpu *percpu;
1494 percpu = per_cpu_ptr(conf->percpu, cpu);
1495 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1498 kfree(percpu->scribble);
1499 percpu->scribble = scribble;
1507 /* Step 4, return new stripes to service */
1508 while(!list_empty(&newstripes)) {
1509 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1510 list_del_init(&nsh->lru);
1512 for (i=conf->raid_disks; i < newsize; i++)
1513 if (nsh->dev[i].page == NULL) {
1514 struct page *p = alloc_page(GFP_NOIO);
1515 nsh->dev[i].page = p;
1519 release_stripe(nsh);
1521 /* critical section pass, GFP_NOIO no longer needed */
1523 conf->slab_cache = sc;
1524 conf->active_name = 1-conf->active_name;
1525 conf->pool_size = newsize;
1529 static int drop_one_stripe(raid5_conf_t *conf)
1531 struct stripe_head *sh;
1533 spin_lock_irq(&conf->device_lock);
1534 sh = get_free_stripe(conf);
1535 spin_unlock_irq(&conf->device_lock);
1538 BUG_ON(atomic_read(&sh->count));
1540 kmem_cache_free(conf->slab_cache, sh);
1541 atomic_dec(&conf->active_stripes);
1545 static void shrink_stripes(raid5_conf_t *conf)
1547 while (drop_one_stripe(conf))
1550 if (conf->slab_cache)
1551 kmem_cache_destroy(conf->slab_cache);
1552 conf->slab_cache = NULL;
1555 static void raid5_end_read_request(struct bio * bi, int error)
1557 struct stripe_head *sh = bi->bi_private;
1558 raid5_conf_t *conf = sh->raid_conf;
1559 int disks = sh->disks, i;
1560 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1561 char b[BDEVNAME_SIZE];
1565 for (i=0 ; i<disks; i++)
1566 if (bi == &sh->dev[i].req)
1569 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1570 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1578 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1579 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1580 rdev = conf->disks[i].rdev;
1581 printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1582 " (%lu sectors at %llu on %s)\n",
1583 mdname(conf->mddev), STRIPE_SECTORS,
1584 (unsigned long long)(sh->sector
1585 + rdev->data_offset),
1586 bdevname(rdev->bdev, b));
1587 clear_bit(R5_ReadError, &sh->dev[i].flags);
1588 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1590 if (atomic_read(&conf->disks[i].rdev->read_errors))
1591 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1593 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1595 rdev = conf->disks[i].rdev;
1597 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1598 atomic_inc(&rdev->read_errors);
1599 if (conf->mddev->degraded >= conf->max_degraded)
1600 printk_rl(KERN_WARNING
1601 "md/raid:%s: read error not correctable "
1602 "(sector %llu on %s).\n",
1603 mdname(conf->mddev),
1604 (unsigned long long)(sh->sector
1605 + rdev->data_offset),
1607 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1609 printk_rl(KERN_WARNING
1610 "md/raid:%s: read error NOT corrected!! "
1611 "(sector %llu on %s).\n",
1612 mdname(conf->mddev),
1613 (unsigned long long)(sh->sector
1614 + rdev->data_offset),
1616 else if (atomic_read(&rdev->read_errors)
1617 > conf->max_nr_stripes)
1619 "md/raid:%s: Too many read errors, failing device %s.\n",
1620 mdname(conf->mddev), bdn);
1624 set_bit(R5_ReadError, &sh->dev[i].flags);
1626 clear_bit(R5_ReadError, &sh->dev[i].flags);
1627 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1628 md_error(conf->mddev, rdev);
1631 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1632 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1633 set_bit(STRIPE_HANDLE, &sh->state);
1637 static void raid5_end_write_request(struct bio *bi, int error)
1639 struct stripe_head *sh = bi->bi_private;
1640 raid5_conf_t *conf = sh->raid_conf;
1641 int disks = sh->disks, i;
1642 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1644 for (i=0 ; i<disks; i++)
1645 if (bi == &sh->dev[i].req)
1648 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1649 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1657 md_error(conf->mddev, conf->disks[i].rdev);
1659 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1661 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1662 set_bit(STRIPE_HANDLE, &sh->state);
1667 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1669 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1671 struct r5dev *dev = &sh->dev[i];
1673 bio_init(&dev->req);
1674 dev->req.bi_io_vec = &dev->vec;
1676 dev->req.bi_max_vecs++;
1677 dev->vec.bv_page = dev->page;
1678 dev->vec.bv_len = STRIPE_SIZE;
1679 dev->vec.bv_offset = 0;
1681 dev->req.bi_sector = sh->sector;
1682 dev->req.bi_private = sh;
1685 dev->sector = compute_blocknr(sh, i, previous);
1688 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1690 char b[BDEVNAME_SIZE];
1691 raid5_conf_t *conf = mddev->private;
1692 pr_debug("raid456: error called\n");
1694 if (!test_bit(Faulty, &rdev->flags)) {
1695 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1696 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1697 unsigned long flags;
1698 spin_lock_irqsave(&conf->device_lock, flags);
1700 spin_unlock_irqrestore(&conf->device_lock, flags);
1702 * if recovery was running, make sure it aborts.
1704 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1706 set_bit(Faulty, &rdev->flags);
1708 "md/raid:%s: Disk failure on %s, disabling device.\n"
1710 "md/raid:%s: Operation continuing on %d devices.\n",
1712 bdevname(rdev->bdev, b),
1714 conf->raid_disks - mddev->degraded);
1719 * Input: a 'big' sector number,
1720 * Output: index of the data and parity disk, and the sector # in them.
1722 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1723 int previous, int *dd_idx,
1724 struct stripe_head *sh)
1726 sector_t stripe, stripe2;
1727 sector_t chunk_number;
1728 unsigned int chunk_offset;
1731 sector_t new_sector;
1732 int algorithm = previous ? conf->prev_algo
1734 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1735 : conf->chunk_sectors;
1736 int raid_disks = previous ? conf->previous_raid_disks
1738 int data_disks = raid_disks - conf->max_degraded;
1740 /* First compute the information on this sector */
1743 * Compute the chunk number and the sector offset inside the chunk
1745 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1746 chunk_number = r_sector;
1749 * Compute the stripe number
1751 stripe = chunk_number;
1752 *dd_idx = sector_div(stripe, data_disks);
1755 * Select the parity disk based on the user selected algorithm.
1757 pd_idx = qd_idx = ~0;
1758 switch(conf->level) {
1760 pd_idx = data_disks;
1763 switch (algorithm) {
1764 case ALGORITHM_LEFT_ASYMMETRIC:
1765 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1766 if (*dd_idx >= pd_idx)
1769 case ALGORITHM_RIGHT_ASYMMETRIC:
1770 pd_idx = sector_div(stripe2, raid_disks);
1771 if (*dd_idx >= pd_idx)
1774 case ALGORITHM_LEFT_SYMMETRIC:
1775 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1776 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1778 case ALGORITHM_RIGHT_SYMMETRIC:
1779 pd_idx = sector_div(stripe2, raid_disks);
1780 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1782 case ALGORITHM_PARITY_0:
1786 case ALGORITHM_PARITY_N:
1787 pd_idx = data_disks;
1795 switch (algorithm) {
1796 case ALGORITHM_LEFT_ASYMMETRIC:
1797 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1798 qd_idx = pd_idx + 1;
1799 if (pd_idx == raid_disks-1) {
1800 (*dd_idx)++; /* Q D D D P */
1802 } else if (*dd_idx >= pd_idx)
1803 (*dd_idx) += 2; /* D D P Q D */
1805 case ALGORITHM_RIGHT_ASYMMETRIC:
1806 pd_idx = sector_div(stripe2, raid_disks);
1807 qd_idx = pd_idx + 1;
1808 if (pd_idx == raid_disks-1) {
1809 (*dd_idx)++; /* Q D D D P */
1811 } else if (*dd_idx >= pd_idx)
1812 (*dd_idx) += 2; /* D D P Q D */
1814 case ALGORITHM_LEFT_SYMMETRIC:
1815 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1816 qd_idx = (pd_idx + 1) % raid_disks;
1817 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1819 case ALGORITHM_RIGHT_SYMMETRIC:
1820 pd_idx = sector_div(stripe2, raid_disks);
1821 qd_idx = (pd_idx + 1) % raid_disks;
1822 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1825 case ALGORITHM_PARITY_0:
1830 case ALGORITHM_PARITY_N:
1831 pd_idx = data_disks;
1832 qd_idx = data_disks + 1;
1835 case ALGORITHM_ROTATING_ZERO_RESTART:
1836 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1837 * of blocks for computing Q is different.
1839 pd_idx = sector_div(stripe2, raid_disks);
1840 qd_idx = pd_idx + 1;
1841 if (pd_idx == raid_disks-1) {
1842 (*dd_idx)++; /* Q D D D P */
1844 } else if (*dd_idx >= pd_idx)
1845 (*dd_idx) += 2; /* D D P Q D */
1849 case ALGORITHM_ROTATING_N_RESTART:
1850 /* Same a left_asymmetric, by first stripe is
1851 * D D D P Q rather than
1855 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1856 qd_idx = pd_idx + 1;
1857 if (pd_idx == raid_disks-1) {
1858 (*dd_idx)++; /* Q D D D P */
1860 } else if (*dd_idx >= pd_idx)
1861 (*dd_idx) += 2; /* D D P Q D */
1865 case ALGORITHM_ROTATING_N_CONTINUE:
1866 /* Same as left_symmetric but Q is before P */
1867 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1868 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1869 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1873 case ALGORITHM_LEFT_ASYMMETRIC_6:
1874 /* RAID5 left_asymmetric, with Q on last device */
1875 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1876 if (*dd_idx >= pd_idx)
1878 qd_idx = raid_disks - 1;
1881 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1882 pd_idx = sector_div(stripe2, raid_disks-1);
1883 if (*dd_idx >= pd_idx)
1885 qd_idx = raid_disks - 1;
1888 case ALGORITHM_LEFT_SYMMETRIC_6:
1889 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1890 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1891 qd_idx = raid_disks - 1;
1894 case ALGORITHM_RIGHT_SYMMETRIC_6:
1895 pd_idx = sector_div(stripe2, raid_disks-1);
1896 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1897 qd_idx = raid_disks - 1;
1900 case ALGORITHM_PARITY_0_6:
1903 qd_idx = raid_disks - 1;
1913 sh->pd_idx = pd_idx;
1914 sh->qd_idx = qd_idx;
1915 sh->ddf_layout = ddf_layout;
1918 * Finally, compute the new sector number
1920 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1925 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1927 raid5_conf_t *conf = sh->raid_conf;
1928 int raid_disks = sh->disks;
1929 int data_disks = raid_disks - conf->max_degraded;
1930 sector_t new_sector = sh->sector, check;
1931 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1932 : conf->chunk_sectors;
1933 int algorithm = previous ? conf->prev_algo
1937 sector_t chunk_number;
1938 int dummy1, dd_idx = i;
1940 struct stripe_head sh2;
1943 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1944 stripe = new_sector;
1946 if (i == sh->pd_idx)
1948 switch(conf->level) {
1951 switch (algorithm) {
1952 case ALGORITHM_LEFT_ASYMMETRIC:
1953 case ALGORITHM_RIGHT_ASYMMETRIC:
1957 case ALGORITHM_LEFT_SYMMETRIC:
1958 case ALGORITHM_RIGHT_SYMMETRIC:
1961 i -= (sh->pd_idx + 1);
1963 case ALGORITHM_PARITY_0:
1966 case ALGORITHM_PARITY_N:
1973 if (i == sh->qd_idx)
1974 return 0; /* It is the Q disk */
1975 switch (algorithm) {
1976 case ALGORITHM_LEFT_ASYMMETRIC:
1977 case ALGORITHM_RIGHT_ASYMMETRIC:
1978 case ALGORITHM_ROTATING_ZERO_RESTART:
1979 case ALGORITHM_ROTATING_N_RESTART:
1980 if (sh->pd_idx == raid_disks-1)
1981 i--; /* Q D D D P */
1982 else if (i > sh->pd_idx)
1983 i -= 2; /* D D P Q D */
1985 case ALGORITHM_LEFT_SYMMETRIC:
1986 case ALGORITHM_RIGHT_SYMMETRIC:
1987 if (sh->pd_idx == raid_disks-1)
1988 i--; /* Q D D D P */
1993 i -= (sh->pd_idx + 2);
1996 case ALGORITHM_PARITY_0:
1999 case ALGORITHM_PARITY_N:
2001 case ALGORITHM_ROTATING_N_CONTINUE:
2002 /* Like left_symmetric, but P is before Q */
2003 if (sh->pd_idx == 0)
2004 i--; /* P D D D Q */
2009 i -= (sh->pd_idx + 1);
2012 case ALGORITHM_LEFT_ASYMMETRIC_6:
2013 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2017 case ALGORITHM_LEFT_SYMMETRIC_6:
2018 case ALGORITHM_RIGHT_SYMMETRIC_6:
2020 i += data_disks + 1;
2021 i -= (sh->pd_idx + 1);
2023 case ALGORITHM_PARITY_0_6:
2032 chunk_number = stripe * data_disks + i;
2033 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2035 check = raid5_compute_sector(conf, r_sector,
2036 previous, &dummy1, &sh2);
2037 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2038 || sh2.qd_idx != sh->qd_idx) {
2039 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2040 mdname(conf->mddev));
2048 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2049 int rcw, int expand)
2051 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2052 raid5_conf_t *conf = sh->raid_conf;
2053 int level = conf->level;
2056 /* if we are not expanding this is a proper write request, and
2057 * there will be bios with new data to be drained into the
2061 sh->reconstruct_state = reconstruct_state_drain_run;
2062 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2064 sh->reconstruct_state = reconstruct_state_run;
2066 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2068 for (i = disks; i--; ) {
2069 struct r5dev *dev = &sh->dev[i];
2072 set_bit(R5_LOCKED, &dev->flags);
2073 set_bit(R5_Wantdrain, &dev->flags);
2075 clear_bit(R5_UPTODATE, &dev->flags);
2079 if (s->locked + conf->max_degraded == disks)
2080 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2081 atomic_inc(&conf->pending_full_writes);
2084 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2085 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2087 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2088 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2089 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2090 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2092 for (i = disks; i--; ) {
2093 struct r5dev *dev = &sh->dev[i];
2098 (test_bit(R5_UPTODATE, &dev->flags) ||
2099 test_bit(R5_Wantcompute, &dev->flags))) {
2100 set_bit(R5_Wantdrain, &dev->flags);
2101 set_bit(R5_LOCKED, &dev->flags);
2102 clear_bit(R5_UPTODATE, &dev->flags);
2108 /* keep the parity disk(s) locked while asynchronous operations
2111 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2112 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2116 int qd_idx = sh->qd_idx;
2117 struct r5dev *dev = &sh->dev[qd_idx];
2119 set_bit(R5_LOCKED, &dev->flags);
2120 clear_bit(R5_UPTODATE, &dev->flags);
2124 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2125 __func__, (unsigned long long)sh->sector,
2126 s->locked, s->ops_request);
2130 * Each stripe/dev can have one or more bion attached.
2131 * toread/towrite point to the first in a chain.
2132 * The bi_next chain must be in order.
2134 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2137 raid5_conf_t *conf = sh->raid_conf;
2140 pr_debug("adding bh b#%llu to stripe s#%llu\n",
2141 (unsigned long long)bi->bi_sector,
2142 (unsigned long long)sh->sector);
2145 spin_lock(&sh->lock);
2146 spin_lock_irq(&conf->device_lock);
2148 bip = &sh->dev[dd_idx].towrite;
2149 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2152 bip = &sh->dev[dd_idx].toread;
2153 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2154 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2156 bip = & (*bip)->bi_next;
2158 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2161 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2165 bi->bi_phys_segments++;
2166 spin_unlock_irq(&conf->device_lock);
2167 spin_unlock(&sh->lock);
2169 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2170 (unsigned long long)bi->bi_sector,
2171 (unsigned long long)sh->sector, dd_idx);
2173 if (conf->mddev->bitmap && firstwrite) {
2174 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2176 sh->bm_seq = conf->seq_flush+1;
2177 set_bit(STRIPE_BIT_DELAY, &sh->state);
2181 /* check if page is covered */
2182 sector_t sector = sh->dev[dd_idx].sector;
2183 for (bi=sh->dev[dd_idx].towrite;
2184 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2185 bi && bi->bi_sector <= sector;
2186 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2187 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2188 sector = bi->bi_sector + (bi->bi_size>>9);
2190 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2191 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2196 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2197 spin_unlock_irq(&conf->device_lock);
2198 spin_unlock(&sh->lock);
2202 static void end_reshape(raid5_conf_t *conf);
2204 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2205 struct stripe_head *sh)
2207 int sectors_per_chunk =
2208 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2210 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2211 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2213 raid5_compute_sector(conf,
2214 stripe * (disks - conf->max_degraded)
2215 *sectors_per_chunk + chunk_offset,
2221 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2222 struct stripe_head_state *s, int disks,
2223 struct bio **return_bi)
2226 for (i = disks; i--; ) {
2230 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2233 rdev = rcu_dereference(conf->disks[i].rdev);
2234 if (rdev && test_bit(In_sync, &rdev->flags))
2235 /* multiple read failures in one stripe */
2236 md_error(conf->mddev, rdev);
2239 spin_lock_irq(&conf->device_lock);
2240 /* fail all writes first */
2241 bi = sh->dev[i].towrite;
2242 sh->dev[i].towrite = NULL;
2248 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2249 wake_up(&conf->wait_for_overlap);
2251 while (bi && bi->bi_sector <
2252 sh->dev[i].sector + STRIPE_SECTORS) {
2253 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2254 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2255 if (!raid5_dec_bi_phys_segments(bi)) {
2256 md_write_end(conf->mddev);
2257 bi->bi_next = *return_bi;
2262 /* and fail all 'written' */
2263 bi = sh->dev[i].written;
2264 sh->dev[i].written = NULL;
2265 if (bi) bitmap_end = 1;
2266 while (bi && bi->bi_sector <
2267 sh->dev[i].sector + STRIPE_SECTORS) {
2268 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2269 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2270 if (!raid5_dec_bi_phys_segments(bi)) {
2271 md_write_end(conf->mddev);
2272 bi->bi_next = *return_bi;
2278 /* fail any reads if this device is non-operational and
2279 * the data has not reached the cache yet.
2281 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2282 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2283 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2284 bi = sh->dev[i].toread;
2285 sh->dev[i].toread = NULL;
2286 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2287 wake_up(&conf->wait_for_overlap);
2288 if (bi) s->to_read--;
2289 while (bi && bi->bi_sector <
2290 sh->dev[i].sector + STRIPE_SECTORS) {
2291 struct bio *nextbi =
2292 r5_next_bio(bi, sh->dev[i].sector);
2293 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2294 if (!raid5_dec_bi_phys_segments(bi)) {
2295 bi->bi_next = *return_bi;
2301 spin_unlock_irq(&conf->device_lock);
2303 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2304 STRIPE_SECTORS, 0, 0);
2307 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2308 if (atomic_dec_and_test(&conf->pending_full_writes))
2309 md_wakeup_thread(conf->mddev->thread);
2312 /* fetch_block5 - checks the given member device to see if its data needs
2313 * to be read or computed to satisfy a request.
2315 * Returns 1 when no more member devices need to be checked, otherwise returns
2316 * 0 to tell the loop in handle_stripe_fill5 to continue
2318 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2319 int disk_idx, int disks)
2321 struct r5dev *dev = &sh->dev[disk_idx];
2322 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2324 /* is the data in this block needed, and can we get it? */
2325 if (!test_bit(R5_LOCKED, &dev->flags) &&
2326 !test_bit(R5_UPTODATE, &dev->flags) &&
2328 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2329 s->syncing || s->expanding ||
2331 (failed_dev->toread ||
2332 (failed_dev->towrite &&
2333 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2334 /* We would like to get this block, possibly by computing it,
2335 * otherwise read it if the backing disk is insync
2337 if ((s->uptodate == disks - 1) &&
2338 (s->failed && disk_idx == s->failed_num)) {
2339 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2340 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2341 set_bit(R5_Wantcompute, &dev->flags);
2342 sh->ops.target = disk_idx;
2343 sh->ops.target2 = -1;
2345 /* Careful: from this point on 'uptodate' is in the eye
2346 * of raid_run_ops which services 'compute' operations
2347 * before writes. R5_Wantcompute flags a block that will
2348 * be R5_UPTODATE by the time it is needed for a
2349 * subsequent operation.
2352 return 1; /* uptodate + compute == disks */
2353 } else if (test_bit(R5_Insync, &dev->flags)) {
2354 set_bit(R5_LOCKED, &dev->flags);
2355 set_bit(R5_Wantread, &dev->flags);
2357 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2366 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2368 static void handle_stripe_fill5(struct stripe_head *sh,
2369 struct stripe_head_state *s, int disks)
2373 /* look for blocks to read/compute, skip this if a compute
2374 * is already in flight, or if the stripe contents are in the
2375 * midst of changing due to a write
2377 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2378 !sh->reconstruct_state)
2379 for (i = disks; i--; )
2380 if (fetch_block5(sh, s, i, disks))
2382 set_bit(STRIPE_HANDLE, &sh->state);
2385 /* fetch_block6 - checks the given member device to see if its data needs
2386 * to be read or computed to satisfy a request.
2388 * Returns 1 when no more member devices need to be checked, otherwise returns
2389 * 0 to tell the loop in handle_stripe_fill6 to continue
2391 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2392 struct r6_state *r6s, int disk_idx, int disks)
2394 struct r5dev *dev = &sh->dev[disk_idx];
2395 struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2396 &sh->dev[r6s->failed_num[1]] };
2398 if (!test_bit(R5_LOCKED, &dev->flags) &&
2399 !test_bit(R5_UPTODATE, &dev->flags) &&
2401 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2402 s->syncing || s->expanding ||
2404 (fdev[0]->toread || s->to_write)) ||
2406 (fdev[1]->toread || s->to_write)))) {
2407 /* we would like to get this block, possibly by computing it,
2408 * otherwise read it if the backing disk is insync
2410 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2411 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2412 if ((s->uptodate == disks - 1) &&
2413 (s->failed && (disk_idx == r6s->failed_num[0] ||
2414 disk_idx == r6s->failed_num[1]))) {
2415 /* have disk failed, and we're requested to fetch it;
2418 pr_debug("Computing stripe %llu block %d\n",
2419 (unsigned long long)sh->sector, disk_idx);
2420 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2421 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2422 set_bit(R5_Wantcompute, &dev->flags);
2423 sh->ops.target = disk_idx;
2424 sh->ops.target2 = -1; /* no 2nd target */
2428 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2429 /* Computing 2-failure is *very* expensive; only
2430 * do it if failed >= 2
2433 for (other = disks; other--; ) {
2434 if (other == disk_idx)
2436 if (!test_bit(R5_UPTODATE,
2437 &sh->dev[other].flags))
2441 pr_debug("Computing stripe %llu blocks %d,%d\n",
2442 (unsigned long long)sh->sector,
2444 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2445 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2446 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2447 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2448 sh->ops.target = disk_idx;
2449 sh->ops.target2 = other;
2453 } else if (test_bit(R5_Insync, &dev->flags)) {
2454 set_bit(R5_LOCKED, &dev->flags);
2455 set_bit(R5_Wantread, &dev->flags);
2457 pr_debug("Reading block %d (sync=%d)\n",
2458 disk_idx, s->syncing);
2466 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2468 static void handle_stripe_fill6(struct stripe_head *sh,
2469 struct stripe_head_state *s, struct r6_state *r6s,
2474 /* look for blocks to read/compute, skip this if a compute
2475 * is already in flight, or if the stripe contents are in the
2476 * midst of changing due to a write
2478 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2479 !sh->reconstruct_state)
2480 for (i = disks; i--; )
2481 if (fetch_block6(sh, s, r6s, i, disks))
2483 set_bit(STRIPE_HANDLE, &sh->state);
2487 /* handle_stripe_clean_event
2488 * any written block on an uptodate or failed drive can be returned.
2489 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2490 * never LOCKED, so we don't need to test 'failed' directly.
2492 static void handle_stripe_clean_event(raid5_conf_t *conf,
2493 struct stripe_head *sh, int disks, struct bio **return_bi)
2498 for (i = disks; i--; )
2499 if (sh->dev[i].written) {
2501 if (!test_bit(R5_LOCKED, &dev->flags) &&
2502 test_bit(R5_UPTODATE, &dev->flags)) {
2503 /* We can return any write requests */
2504 struct bio *wbi, *wbi2;
2506 pr_debug("Return write for disc %d\n", i);
2507 spin_lock_irq(&conf->device_lock);
2509 dev->written = NULL;
2510 while (wbi && wbi->bi_sector <
2511 dev->sector + STRIPE_SECTORS) {
2512 wbi2 = r5_next_bio(wbi, dev->sector);
2513 if (!raid5_dec_bi_phys_segments(wbi)) {
2514 md_write_end(conf->mddev);
2515 wbi->bi_next = *return_bi;
2520 if (dev->towrite == NULL)
2522 spin_unlock_irq(&conf->device_lock);
2524 bitmap_endwrite(conf->mddev->bitmap,
2527 !test_bit(STRIPE_DEGRADED, &sh->state),
2532 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2533 if (atomic_dec_and_test(&conf->pending_full_writes))
2534 md_wakeup_thread(conf->mddev->thread);
2537 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2538 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2540 int rmw = 0, rcw = 0, i;
2541 for (i = disks; i--; ) {
2542 /* would I have to read this buffer for read_modify_write */
2543 struct r5dev *dev = &sh->dev[i];
2544 if ((dev->towrite || i == sh->pd_idx) &&
2545 !test_bit(R5_LOCKED, &dev->flags) &&
2546 !(test_bit(R5_UPTODATE, &dev->flags) ||
2547 test_bit(R5_Wantcompute, &dev->flags))) {
2548 if (test_bit(R5_Insync, &dev->flags))
2551 rmw += 2*disks; /* cannot read it */
2553 /* Would I have to read this buffer for reconstruct_write */
2554 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2555 !test_bit(R5_LOCKED, &dev->flags) &&
2556 !(test_bit(R5_UPTODATE, &dev->flags) ||
2557 test_bit(R5_Wantcompute, &dev->flags))) {
2558 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2563 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2564 (unsigned long long)sh->sector, rmw, rcw);
2565 set_bit(STRIPE_HANDLE, &sh->state);
2566 if (rmw < rcw && rmw > 0)
2567 /* prefer read-modify-write, but need to get some data */
2568 for (i = disks; i--; ) {
2569 struct r5dev *dev = &sh->dev[i];
2570 if ((dev->towrite || i == sh->pd_idx) &&
2571 !test_bit(R5_LOCKED, &dev->flags) &&
2572 !(test_bit(R5_UPTODATE, &dev->flags) ||
2573 test_bit(R5_Wantcompute, &dev->flags)) &&
2574 test_bit(R5_Insync, &dev->flags)) {
2576 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2577 pr_debug("Read_old block "
2578 "%d for r-m-w\n", i);
2579 set_bit(R5_LOCKED, &dev->flags);
2580 set_bit(R5_Wantread, &dev->flags);
2583 set_bit(STRIPE_DELAYED, &sh->state);
2584 set_bit(STRIPE_HANDLE, &sh->state);
2588 if (rcw <= rmw && rcw > 0)
2589 /* want reconstruct write, but need to get some data */
2590 for (i = disks; i--; ) {
2591 struct r5dev *dev = &sh->dev[i];
2592 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2594 !test_bit(R5_LOCKED, &dev->flags) &&
2595 !(test_bit(R5_UPTODATE, &dev->flags) ||
2596 test_bit(R5_Wantcompute, &dev->flags)) &&
2597 test_bit(R5_Insync, &dev->flags)) {
2599 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2600 pr_debug("Read_old block "
2601 "%d for Reconstruct\n", i);
2602 set_bit(R5_LOCKED, &dev->flags);
2603 set_bit(R5_Wantread, &dev->flags);
2606 set_bit(STRIPE_DELAYED, &sh->state);
2607 set_bit(STRIPE_HANDLE, &sh->state);
2611 /* now if nothing is locked, and if we have enough data,
2612 * we can start a write request
2614 /* since handle_stripe can be called at any time we need to handle the
2615 * case where a compute block operation has been submitted and then a
2616 * subsequent call wants to start a write request. raid_run_ops only
2617 * handles the case where compute block and reconstruct are requested
2618 * simultaneously. If this is not the case then new writes need to be
2619 * held off until the compute completes.
2621 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2622 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2623 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2624 schedule_reconstruction(sh, s, rcw == 0, 0);
2627 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2628 struct stripe_head *sh, struct stripe_head_state *s,
2629 struct r6_state *r6s, int disks)
2631 int rcw = 0, pd_idx = sh->pd_idx, i;
2632 int qd_idx = sh->qd_idx;
2634 set_bit(STRIPE_HANDLE, &sh->state);
2635 for (i = disks; i--; ) {
2636 struct r5dev *dev = &sh->dev[i];
2637 /* check if we haven't enough data */
2638 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2639 i != pd_idx && i != qd_idx &&
2640 !test_bit(R5_LOCKED, &dev->flags) &&
2641 !(test_bit(R5_UPTODATE, &dev->flags) ||
2642 test_bit(R5_Wantcompute, &dev->flags))) {
2644 if (!test_bit(R5_Insync, &dev->flags))
2645 continue; /* it's a failed drive */
2648 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2649 pr_debug("Read_old stripe %llu "
2650 "block %d for Reconstruct\n",
2651 (unsigned long long)sh->sector, i);
2652 set_bit(R5_LOCKED, &dev->flags);
2653 set_bit(R5_Wantread, &dev->flags);
2656 pr_debug("Request delayed stripe %llu "
2657 "block %d for Reconstruct\n",
2658 (unsigned long long)sh->sector, i);
2659 set_bit(STRIPE_DELAYED, &sh->state);
2660 set_bit(STRIPE_HANDLE, &sh->state);
2664 /* now if nothing is locked, and if we have enough data, we can start a
2667 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2668 s->locked == 0 && rcw == 0 &&
2669 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2670 schedule_reconstruction(sh, s, 1, 0);
2674 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2675 struct stripe_head_state *s, int disks)
2677 struct r5dev *dev = NULL;
2679 set_bit(STRIPE_HANDLE, &sh->state);
2681 switch (sh->check_state) {
2682 case check_state_idle:
2683 /* start a new check operation if there are no failures */
2684 if (s->failed == 0) {
2685 BUG_ON(s->uptodate != disks);
2686 sh->check_state = check_state_run;
2687 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2688 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2692 dev = &sh->dev[s->failed_num];
2694 case check_state_compute_result:
2695 sh->check_state = check_state_idle;
2697 dev = &sh->dev[sh->pd_idx];
2699 /* check that a write has not made the stripe insync */
2700 if (test_bit(STRIPE_INSYNC, &sh->state))
2703 /* either failed parity check, or recovery is happening */
2704 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2705 BUG_ON(s->uptodate != disks);
2707 set_bit(R5_LOCKED, &dev->flags);
2709 set_bit(R5_Wantwrite, &dev->flags);
2711 clear_bit(STRIPE_DEGRADED, &sh->state);
2712 set_bit(STRIPE_INSYNC, &sh->state);
2714 case check_state_run:
2715 break; /* we will be called again upon completion */
2716 case check_state_check_result:
2717 sh->check_state = check_state_idle;
2719 /* if a failure occurred during the check operation, leave
2720 * STRIPE_INSYNC not set and let the stripe be handled again
2725 /* handle a successful check operation, if parity is correct
2726 * we are done. Otherwise update the mismatch count and repair
2727 * parity if !MD_RECOVERY_CHECK
2729 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2730 /* parity is correct (on disc,
2731 * not in buffer any more)
2733 set_bit(STRIPE_INSYNC, &sh->state);
2735 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2736 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2737 /* don't try to repair!! */
2738 set_bit(STRIPE_INSYNC, &sh->state);
2740 sh->check_state = check_state_compute_run;
2741 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2742 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2743 set_bit(R5_Wantcompute,
2744 &sh->dev[sh->pd_idx].flags);
2745 sh->ops.target = sh->pd_idx;
2746 sh->ops.target2 = -1;
2751 case check_state_compute_run:
2754 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2755 __func__, sh->check_state,
2756 (unsigned long long) sh->sector);
2762 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2763 struct stripe_head_state *s,
2764 struct r6_state *r6s, int disks)
2766 int pd_idx = sh->pd_idx;
2767 int qd_idx = sh->qd_idx;
2770 set_bit(STRIPE_HANDLE, &sh->state);
2772 BUG_ON(s->failed > 2);
2774 /* Want to check and possibly repair P and Q.
2775 * However there could be one 'failed' device, in which
2776 * case we can only check one of them, possibly using the
2777 * other to generate missing data
2780 switch (sh->check_state) {
2781 case check_state_idle:
2782 /* start a new check operation if there are < 2 failures */
2783 if (s->failed == r6s->q_failed) {
2784 /* The only possible failed device holds Q, so it
2785 * makes sense to check P (If anything else were failed,
2786 * we would have used P to recreate it).
2788 sh->check_state = check_state_run;
2790 if (!r6s->q_failed && s->failed < 2) {
2791 /* Q is not failed, and we didn't use it to generate
2792 * anything, so it makes sense to check it
2794 if (sh->check_state == check_state_run)
2795 sh->check_state = check_state_run_pq;
2797 sh->check_state = check_state_run_q;
2800 /* discard potentially stale zero_sum_result */
2801 sh->ops.zero_sum_result = 0;
2803 if (sh->check_state == check_state_run) {
2804 /* async_xor_zero_sum destroys the contents of P */
2805 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2808 if (sh->check_state >= check_state_run &&
2809 sh->check_state <= check_state_run_pq) {
2810 /* async_syndrome_zero_sum preserves P and Q, so
2811 * no need to mark them !uptodate here
2813 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2817 /* we have 2-disk failure */
2818 BUG_ON(s->failed != 2);
2820 case check_state_compute_result:
2821 sh->check_state = check_state_idle;
2823 /* check that a write has not made the stripe insync */
2824 if (test_bit(STRIPE_INSYNC, &sh->state))
2827 /* now write out any block on a failed drive,
2828 * or P or Q if they were recomputed
2830 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2831 if (s->failed == 2) {
2832 dev = &sh->dev[r6s->failed_num[1]];
2834 set_bit(R5_LOCKED, &dev->flags);
2835 set_bit(R5_Wantwrite, &dev->flags);
2837 if (s->failed >= 1) {
2838 dev = &sh->dev[r6s->failed_num[0]];
2840 set_bit(R5_LOCKED, &dev->flags);
2841 set_bit(R5_Wantwrite, &dev->flags);
2843 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2844 dev = &sh->dev[pd_idx];
2846 set_bit(R5_LOCKED, &dev->flags);
2847 set_bit(R5_Wantwrite, &dev->flags);
2849 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2850 dev = &sh->dev[qd_idx];
2852 set_bit(R5_LOCKED, &dev->flags);
2853 set_bit(R5_Wantwrite, &dev->flags);
2855 clear_bit(STRIPE_DEGRADED, &sh->state);
2857 set_bit(STRIPE_INSYNC, &sh->state);
2859 case check_state_run:
2860 case check_state_run_q:
2861 case check_state_run_pq:
2862 break; /* we will be called again upon completion */
2863 case check_state_check_result:
2864 sh->check_state = check_state_idle;
2866 /* handle a successful check operation, if parity is correct
2867 * we are done. Otherwise update the mismatch count and repair
2868 * parity if !MD_RECOVERY_CHECK
2870 if (sh->ops.zero_sum_result == 0) {
2871 /* both parities are correct */
2873 set_bit(STRIPE_INSYNC, &sh->state);
2875 /* in contrast to the raid5 case we can validate
2876 * parity, but still have a failure to write
2879 sh->check_state = check_state_compute_result;
2880 /* Returning at this point means that we may go
2881 * off and bring p and/or q uptodate again so
2882 * we make sure to check zero_sum_result again
2883 * to verify if p or q need writeback
2887 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2888 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2889 /* don't try to repair!! */
2890 set_bit(STRIPE_INSYNC, &sh->state);
2892 int *target = &sh->ops.target;
2894 sh->ops.target = -1;
2895 sh->ops.target2 = -1;
2896 sh->check_state = check_state_compute_run;
2897 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2898 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2899 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2900 set_bit(R5_Wantcompute,
2901 &sh->dev[pd_idx].flags);
2903 target = &sh->ops.target2;
2906 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2907 set_bit(R5_Wantcompute,
2908 &sh->dev[qd_idx].flags);
2915 case check_state_compute_run:
2918 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2919 __func__, sh->check_state,
2920 (unsigned long long) sh->sector);
2925 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2926 struct r6_state *r6s)
2930 /* We have read all the blocks in this stripe and now we need to
2931 * copy some of them into a target stripe for expand.
2933 struct dma_async_tx_descriptor *tx = NULL;
2934 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2935 for (i = 0; i < sh->disks; i++)
2936 if (i != sh->pd_idx && i != sh->qd_idx) {
2938 struct stripe_head *sh2;
2939 struct async_submit_ctl submit;
2941 sector_t bn = compute_blocknr(sh, i, 1);
2942 sector_t s = raid5_compute_sector(conf, bn, 0,
2944 sh2 = get_active_stripe(conf, s, 0, 1, 1);
2946 /* so far only the early blocks of this stripe
2947 * have been requested. When later blocks
2948 * get requested, we will try again
2951 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2952 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2953 /* must have already done this block */
2954 release_stripe(sh2);
2958 /* place all the copies on one channel */
2959 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2960 tx = async_memcpy(sh2->dev[dd_idx].page,
2961 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2964 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2965 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2966 for (j = 0; j < conf->raid_disks; j++)
2967 if (j != sh2->pd_idx &&
2968 (!r6s || j != sh2->qd_idx) &&
2969 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2971 if (j == conf->raid_disks) {
2972 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2973 set_bit(STRIPE_HANDLE, &sh2->state);
2975 release_stripe(sh2);
2978 /* done submitting copies, wait for them to complete */
2981 dma_wait_for_async_tx(tx);
2987 * handle_stripe - do things to a stripe.
2989 * We lock the stripe and then examine the state of various bits
2990 * to see what needs to be done.
2992 * return some read request which now have data
2993 * return some write requests which are safely on disc
2994 * schedule a read on some buffers
2995 * schedule a write of some buffers
2996 * return confirmation of parity correctness
2998 * buffers are taken off read_list or write_list, and bh_cache buffers
2999 * get BH_Lock set before the stripe lock is released.
3003 static void handle_stripe5(struct stripe_head *sh)
3005 raid5_conf_t *conf = sh->raid_conf;
3006 int disks = sh->disks, i;
3007 struct bio *return_bi = NULL;
3008 struct stripe_head_state s;
3010 mdk_rdev_t *blocked_rdev = NULL;
3012 int dec_preread_active = 0;
3014 memset(&s, 0, sizeof(s));
3015 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3016 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3017 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3018 sh->reconstruct_state);
3020 spin_lock(&sh->lock);
3021 clear_bit(STRIPE_HANDLE, &sh->state);
3022 clear_bit(STRIPE_DELAYED, &sh->state);
3024 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3025 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3026 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3028 /* Now to look around and see what can be done */
3030 for (i=disks; i--; ) {
3035 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3036 "written %p\n", i, dev->flags, dev->toread, dev->read,
3037 dev->towrite, dev->written);
3039 /* maybe we can request a biofill operation
3041 * new wantfill requests are only permitted while
3042 * ops_complete_biofill is guaranteed to be inactive
3044 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3045 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3046 set_bit(R5_Wantfill, &dev->flags);
3048 /* now count some things */
3049 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3050 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3051 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
3053 if (test_bit(R5_Wantfill, &dev->flags))
3055 else if (dev->toread)
3059 if (!test_bit(R5_OVERWRITE, &dev->flags))
3064 rdev = rcu_dereference(conf->disks[i].rdev);
3065 if (blocked_rdev == NULL &&
3066 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3067 blocked_rdev = rdev;
3068 atomic_inc(&rdev->nr_pending);
3070 clear_bit(R5_Insync, &dev->flags);
3073 else if (test_bit(In_sync, &rdev->flags))
3074 set_bit(R5_Insync, &dev->flags);
3076 /* could be in-sync depending on recovery/reshape status */
3077 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3078 set_bit(R5_Insync, &dev->flags);
3080 if (!test_bit(R5_Insync, &dev->flags)) {
3081 /* The ReadError flag will just be confusing now */
3082 clear_bit(R5_ReadError, &dev->flags);
3083 clear_bit(R5_ReWrite, &dev->flags);
3085 if (test_bit(R5_ReadError, &dev->flags))
3086 clear_bit(R5_Insync, &dev->flags);
3087 if (!test_bit(R5_Insync, &dev->flags)) {
3094 if (unlikely(blocked_rdev)) {
3095 if (s.syncing || s.expanding || s.expanded ||
3096 s.to_write || s.written) {
3097 set_bit(STRIPE_HANDLE, &sh->state);
3100 /* There is nothing for the blocked_rdev to block */
3101 rdev_dec_pending(blocked_rdev, conf->mddev);
3102 blocked_rdev = NULL;
3105 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3106 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3107 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3110 pr_debug("locked=%d uptodate=%d to_read=%d"
3111 " to_write=%d failed=%d failed_num=%d\n",
3112 s.locked, s.uptodate, s.to_read, s.to_write,
3113 s.failed, s.failed_num);
3114 /* check if the array has lost two devices and, if so, some requests might
3117 if (s.failed > 1 && s.to_read+s.to_write+s.written)
3118 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3119 if (s.failed > 1 && s.syncing) {
3120 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3121 clear_bit(STRIPE_SYNCING, &sh->state);
3125 /* might be able to return some write requests if the parity block
3126 * is safe, or on a failed drive
3128 dev = &sh->dev[sh->pd_idx];
3130 ((test_bit(R5_Insync, &dev->flags) &&
3131 !test_bit(R5_LOCKED, &dev->flags) &&
3132 test_bit(R5_UPTODATE, &dev->flags)) ||
3133 (s.failed == 1 && s.failed_num == sh->pd_idx)))
3134 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3136 /* Now we might consider reading some blocks, either to check/generate
3137 * parity, or to satisfy requests
3138 * or to load a block that is being partially written.
3140 if (s.to_read || s.non_overwrite ||
3141 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3142 handle_stripe_fill5(sh, &s, disks);
3144 /* Now we check to see if any write operations have recently
3148 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3150 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3151 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3152 sh->reconstruct_state = reconstruct_state_idle;
3154 /* All the 'written' buffers and the parity block are ready to
3155 * be written back to disk
3157 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3158 for (i = disks; i--; ) {
3160 if (test_bit(R5_LOCKED, &dev->flags) &&
3161 (i == sh->pd_idx || dev->written)) {
3162 pr_debug("Writing block %d\n", i);
3163 set_bit(R5_Wantwrite, &dev->flags);
3166 if (!test_bit(R5_Insync, &dev->flags) ||
3167 (i == sh->pd_idx && s.failed == 0))
3168 set_bit(STRIPE_INSYNC, &sh->state);
3171 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3172 dec_preread_active = 1;
3175 /* Now to consider new write requests and what else, if anything
3176 * should be read. We do not handle new writes when:
3177 * 1/ A 'write' operation (copy+xor) is already in flight.
3178 * 2/ A 'check' operation is in flight, as it may clobber the parity
3181 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3182 handle_stripe_dirtying5(conf, sh, &s, disks);
3184 /* maybe we need to check and possibly fix the parity for this stripe
3185 * Any reads will already have been scheduled, so we just see if enough
3186 * data is available. The parity check is held off while parity
3187 * dependent operations are in flight.
3189 if (sh->check_state ||
3190 (s.syncing && s.locked == 0 &&
3191 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3192 !test_bit(STRIPE_INSYNC, &sh->state)))
3193 handle_parity_checks5(conf, sh, &s, disks);
3195 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3196 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3197 clear_bit(STRIPE_SYNCING, &sh->state);
3200 /* If the failed drive is just a ReadError, then we might need to progress
3201 * the repair/check process
3203 if (s.failed == 1 && !conf->mddev->ro &&
3204 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3205 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3206 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3208 dev = &sh->dev[s.failed_num];
3209 if (!test_bit(R5_ReWrite, &dev->flags)) {
3210 set_bit(R5_Wantwrite, &dev->flags);
3211 set_bit(R5_ReWrite, &dev->flags);
3212 set_bit(R5_LOCKED, &dev->flags);
3215 /* let's read it back */
3216 set_bit(R5_Wantread, &dev->flags);
3217 set_bit(R5_LOCKED, &dev->flags);
3222 /* Finish reconstruct operations initiated by the expansion process */
3223 if (sh->reconstruct_state == reconstruct_state_result) {
3224 struct stripe_head *sh2
3225 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3226 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3227 /* sh cannot be written until sh2 has been read.
3228 * so arrange for sh to be delayed a little
3230 set_bit(STRIPE_DELAYED, &sh->state);
3231 set_bit(STRIPE_HANDLE, &sh->state);
3232 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3234 atomic_inc(&conf->preread_active_stripes);
3235 release_stripe(sh2);
3239 release_stripe(sh2);
3241 sh->reconstruct_state = reconstruct_state_idle;
3242 clear_bit(STRIPE_EXPANDING, &sh->state);
3243 for (i = conf->raid_disks; i--; ) {
3244 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3245 set_bit(R5_LOCKED, &sh->dev[i].flags);
3250 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3251 !sh->reconstruct_state) {
3252 /* Need to write out all blocks after computing parity */
3253 sh->disks = conf->raid_disks;
3254 stripe_set_idx(sh->sector, conf, 0, sh);
3255 schedule_reconstruction(sh, &s, 1, 1);
3256 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3257 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3258 atomic_dec(&conf->reshape_stripes);
3259 wake_up(&conf->wait_for_overlap);
3260 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3263 if (s.expanding && s.locked == 0 &&
3264 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3265 handle_stripe_expansion(conf, sh, NULL);
3268 spin_unlock(&sh->lock);
3270 /* wait for this device to become unblocked */
3271 if (unlikely(blocked_rdev))
3272 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3275 raid_run_ops(sh, s.ops_request);
3279 if (dec_preread_active) {
3280 /* We delay this until after ops_run_io so that if make_request
3281 * is waiting on a barrier, it won't continue until the writes
3282 * have actually been submitted.
3284 atomic_dec(&conf->preread_active_stripes);
3285 if (atomic_read(&conf->preread_active_stripes) <
3287 md_wakeup_thread(conf->mddev->thread);
3289 return_io(return_bi);
3292 static void handle_stripe6(struct stripe_head *sh)
3294 raid5_conf_t *conf = sh->raid_conf;
3295 int disks = sh->disks;
3296 struct bio *return_bi = NULL;
3297 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3298 struct stripe_head_state s;
3299 struct r6_state r6s;
3300 struct r5dev *dev, *pdev, *qdev;
3301 mdk_rdev_t *blocked_rdev = NULL;
3302 int dec_preread_active = 0;
3304 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3305 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3306 (unsigned long long)sh->sector, sh->state,
3307 atomic_read(&sh->count), pd_idx, qd_idx,
3308 sh->check_state, sh->reconstruct_state);
3309 memset(&s, 0, sizeof(s));
3311 spin_lock(&sh->lock);
3312 clear_bit(STRIPE_HANDLE, &sh->state);
3313 clear_bit(STRIPE_DELAYED, &sh->state);
3315 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3316 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3317 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3318 /* Now to look around and see what can be done */
3321 for (i=disks; i--; ) {
3325 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3326 i, dev->flags, dev->toread, dev->towrite, dev->written);
3327 /* maybe we can reply to a read
3329 * new wantfill requests are only permitted while
3330 * ops_complete_biofill is guaranteed to be inactive
3332 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3333 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3334 set_bit(R5_Wantfill, &dev->flags);
3336 /* now count some things */
3337 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3338 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3339 if (test_bit(R5_Wantcompute, &dev->flags)) {
3341 BUG_ON(s.compute > 2);
3344 if (test_bit(R5_Wantfill, &dev->flags)) {
3346 } else if (dev->toread)
3350 if (!test_bit(R5_OVERWRITE, &dev->flags))
3355 rdev = rcu_dereference(conf->disks[i].rdev);
3356 if (blocked_rdev == NULL &&
3357 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3358 blocked_rdev = rdev;
3359 atomic_inc(&rdev->nr_pending);
3361 clear_bit(R5_Insync, &dev->flags);
3364 else if (test_bit(In_sync, &rdev->flags))
3365 set_bit(R5_Insync, &dev->flags);
3367 /* in sync if before recovery_offset */
3368 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3369 set_bit(R5_Insync, &dev->flags);
3371 if (!test_bit(R5_Insync, &dev->flags)) {
3372 /* The ReadError flag will just be confusing now */
3373 clear_bit(R5_ReadError, &dev->flags);
3374 clear_bit(R5_ReWrite, &dev->flags);
3376 if (test_bit(R5_ReadError, &dev->flags))
3377 clear_bit(R5_Insync, &dev->flags);
3378 if (!test_bit(R5_Insync, &dev->flags)) {
3380 r6s.failed_num[s.failed] = i;
3386 if (unlikely(blocked_rdev)) {
3387 if (s.syncing || s.expanding || s.expanded ||
3388 s.to_write || s.written) {
3389 set_bit(STRIPE_HANDLE, &sh->state);
3392 /* There is nothing for the blocked_rdev to block */
3393 rdev_dec_pending(blocked_rdev, conf->mddev);
3394 blocked_rdev = NULL;
3397 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3398 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3399 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3402 pr_debug("locked=%d uptodate=%d to_read=%d"
3403 " to_write=%d failed=%d failed_num=%d,%d\n",
3404 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3405 r6s.failed_num[0], r6s.failed_num[1]);
3406 /* check if the array has lost >2 devices and, if so, some requests
3407 * might need to be failed
3409 if (s.failed > 2 && s.to_read+s.to_write+s.written)
3410 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3411 if (s.failed > 2 && s.syncing) {
3412 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3413 clear_bit(STRIPE_SYNCING, &sh->state);
3418 * might be able to return some write requests if the parity blocks
3419 * are safe, or on a failed drive
3421 pdev = &sh->dev[pd_idx];
3422 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3423 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3424 qdev = &sh->dev[qd_idx];
3425 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3426 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3429 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3430 && !test_bit(R5_LOCKED, &pdev->flags)
3431 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3432 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3433 && !test_bit(R5_LOCKED, &qdev->flags)
3434 && test_bit(R5_UPTODATE, &qdev->flags)))))
3435 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3437 /* Now we might consider reading some blocks, either to check/generate
3438 * parity, or to satisfy requests
3439 * or to load a block that is being partially written.
3441 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3442 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3443 handle_stripe_fill6(sh, &s, &r6s, disks);
3445 /* Now we check to see if any write operations have recently
3448 if (sh->reconstruct_state == reconstruct_state_drain_result) {
3450 sh->reconstruct_state = reconstruct_state_idle;
3451 /* All the 'written' buffers and the parity blocks are ready to
3452 * be written back to disk
3454 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3455 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3456 for (i = disks; i--; ) {
3458 if (test_bit(R5_LOCKED, &dev->flags) &&
3459 (i == sh->pd_idx || i == qd_idx ||
3461 pr_debug("Writing block %d\n", i);
3462 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3463 set_bit(R5_Wantwrite, &dev->flags);
3464 if (!test_bit(R5_Insync, &dev->flags) ||
3465 ((i == sh->pd_idx || i == qd_idx) &&
3467 set_bit(STRIPE_INSYNC, &sh->state);
3470 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3471 dec_preread_active = 1;
3474 /* Now to consider new write requests and what else, if anything
3475 * should be read. We do not handle new writes when:
3476 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3477 * 2/ A 'check' operation is in flight, as it may clobber the parity
3480 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3481 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3483 /* maybe we need to check and possibly fix the parity for this stripe
3484 * Any reads will already have been scheduled, so we just see if enough
3485 * data is available. The parity check is held off while parity
3486 * dependent operations are in flight.
3488 if (sh->check_state ||
3489 (s.syncing && s.locked == 0 &&
3490 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3491 !test_bit(STRIPE_INSYNC, &sh->state)))
3492 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3494 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3495 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3496 clear_bit(STRIPE_SYNCING, &sh->state);
3499 /* If the failed drives are just a ReadError, then we might need
3500 * to progress the repair/check process
3502 if (s.failed <= 2 && !conf->mddev->ro)
3503 for (i = 0; i < s.failed; i++) {
3504 dev = &sh->dev[r6s.failed_num[i]];
3505 if (test_bit(R5_ReadError, &dev->flags)
3506 && !test_bit(R5_LOCKED, &dev->flags)
3507 && test_bit(R5_UPTODATE, &dev->flags)
3509 if (!test_bit(R5_ReWrite, &dev->flags)) {
3510 set_bit(R5_Wantwrite, &dev->flags);
3511 set_bit(R5_ReWrite, &dev->flags);
3512 set_bit(R5_LOCKED, &dev->flags);
3515 /* let's read it back */
3516 set_bit(R5_Wantread, &dev->flags);
3517 set_bit(R5_LOCKED, &dev->flags);
3523 /* Finish reconstruct operations initiated by the expansion process */
3524 if (sh->reconstruct_state == reconstruct_state_result) {
3525 sh->reconstruct_state = reconstruct_state_idle;
3526 clear_bit(STRIPE_EXPANDING, &sh->state);
3527 for (i = conf->raid_disks; i--; ) {
3528 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3529 set_bit(R5_LOCKED, &sh->dev[i].flags);
3534 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3535 !sh->reconstruct_state) {
3536 struct stripe_head *sh2
3537 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3538 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3539 /* sh cannot be written until sh2 has been read.
3540 * so arrange for sh to be delayed a little
3542 set_bit(STRIPE_DELAYED, &sh->state);
3543 set_bit(STRIPE_HANDLE, &sh->state);
3544 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3546 atomic_inc(&conf->preread_active_stripes);
3547 release_stripe(sh2);
3551 release_stripe(sh2);
3553 /* Need to write out all blocks after computing P&Q */
3554 sh->disks = conf->raid_disks;
3555 stripe_set_idx(sh->sector, conf, 0, sh);
3556 schedule_reconstruction(sh, &s, 1, 1);
3557 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3558 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3559 atomic_dec(&conf->reshape_stripes);
3560 wake_up(&conf->wait_for_overlap);
3561 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3564 if (s.expanding && s.locked == 0 &&
3565 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3566 handle_stripe_expansion(conf, sh, &r6s);
3569 spin_unlock(&sh->lock);
3571 /* wait for this device to become unblocked */
3572 if (unlikely(blocked_rdev))
3573 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3576 raid_run_ops(sh, s.ops_request);
3581 if (dec_preread_active) {
3582 /* We delay this until after ops_run_io so that if make_request
3583 * is waiting on a barrier, it won't continue until the writes
3584 * have actually been submitted.
3586 atomic_dec(&conf->preread_active_stripes);
3587 if (atomic_read(&conf->preread_active_stripes) <
3589 md_wakeup_thread(conf->mddev->thread);
3592 return_io(return_bi);
3595 static void handle_stripe(struct stripe_head *sh)
3597 if (sh->raid_conf->level == 6)
3603 static void raid5_activate_delayed(raid5_conf_t *conf)
3605 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3606 while (!list_empty(&conf->delayed_list)) {
3607 struct list_head *l = conf->delayed_list.next;
3608 struct stripe_head *sh;
3609 sh = list_entry(l, struct stripe_head, lru);
3611 clear_bit(STRIPE_DELAYED, &sh->state);
3612 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3613 atomic_inc(&conf->preread_active_stripes);
3614 list_add_tail(&sh->lru, &conf->hold_list);
3617 blk_plug_device(conf->mddev->queue);
3620 static void activate_bit_delay(raid5_conf_t *conf)
3622 /* device_lock is held */
3623 struct list_head head;
3624 list_add(&head, &conf->bitmap_list);
3625 list_del_init(&conf->bitmap_list);
3626 while (!list_empty(&head)) {
3627 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3628 list_del_init(&sh->lru);
3629 atomic_inc(&sh->count);
3630 __release_stripe(conf, sh);
3634 static void unplug_slaves(mddev_t *mddev)
3636 raid5_conf_t *conf = mddev->private;
3638 int devs = max(conf->raid_disks, conf->previous_raid_disks);
3641 for (i = 0; i < devs; i++) {
3642 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3643 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3644 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3646 atomic_inc(&rdev->nr_pending);
3649 blk_unplug(r_queue);
3651 rdev_dec_pending(rdev, mddev);
3658 static void raid5_unplug_device(struct request_queue *q)
3660 mddev_t *mddev = q->queuedata;
3661 raid5_conf_t *conf = mddev->private;
3662 unsigned long flags;
3664 spin_lock_irqsave(&conf->device_lock, flags);
3666 if (blk_remove_plug(q)) {
3668 raid5_activate_delayed(conf);
3670 md_wakeup_thread(mddev->thread);
3672 spin_unlock_irqrestore(&conf->device_lock, flags);
3674 unplug_slaves(mddev);
3677 static int raid5_congested(void *data, int bits)
3679 mddev_t *mddev = data;
3680 raid5_conf_t *conf = mddev->private;
3682 /* No difference between reads and writes. Just check
3683 * how busy the stripe_cache is
3686 if (mddev_congested(mddev, bits))
3688 if (conf->inactive_blocked)
3692 if (list_empty_careful(&conf->inactive_list))
3698 /* We want read requests to align with chunks where possible,
3699 * but write requests don't need to.
3701 static int raid5_mergeable_bvec(struct request_queue *q,
3702 struct bvec_merge_data *bvm,
3703 struct bio_vec *biovec)
3705 mddev_t *mddev = q->queuedata;
3706 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3708 unsigned int chunk_sectors = mddev->chunk_sectors;
3709 unsigned int bio_sectors = bvm->bi_size >> 9;
3711 if ((bvm->bi_rw & 1) == WRITE)
3712 return biovec->bv_len; /* always allow writes to be mergeable */
3714 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3715 chunk_sectors = mddev->new_chunk_sectors;
3716 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3717 if (max < 0) max = 0;
3718 if (max <= biovec->bv_len && bio_sectors == 0)
3719 return biovec->bv_len;
3725 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3727 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3728 unsigned int chunk_sectors = mddev->chunk_sectors;
3729 unsigned int bio_sectors = bio->bi_size >> 9;
3731 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3732 chunk_sectors = mddev->new_chunk_sectors;
3733 return chunk_sectors >=
3734 ((sector & (chunk_sectors - 1)) + bio_sectors);
3738 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3739 * later sampled by raid5d.
3741 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3743 unsigned long flags;
3745 spin_lock_irqsave(&conf->device_lock, flags);
3747 bi->bi_next = conf->retry_read_aligned_list;
3748 conf->retry_read_aligned_list = bi;
3750 spin_unlock_irqrestore(&conf->device_lock, flags);
3751 md_wakeup_thread(conf->mddev->thread);
3755 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3759 bi = conf->retry_read_aligned;
3761 conf->retry_read_aligned = NULL;
3764 bi = conf->retry_read_aligned_list;
3766 conf->retry_read_aligned_list = bi->bi_next;
3769 * this sets the active strip count to 1 and the processed
3770 * strip count to zero (upper 8 bits)
3772 bi->bi_phys_segments = 1; /* biased count of active stripes */
3780 * The "raid5_align_endio" should check if the read succeeded and if it
3781 * did, call bio_endio on the original bio (having bio_put the new bio
3783 * If the read failed..
3785 static void raid5_align_endio(struct bio *bi, int error)
3787 struct bio* raid_bi = bi->bi_private;
3790 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3795 rdev = (void*)raid_bi->bi_next;
3796 raid_bi->bi_next = NULL;
3797 mddev = rdev->mddev;
3798 conf = mddev->private;
3800 rdev_dec_pending(rdev, conf->mddev);
3802 if (!error && uptodate) {
3803 bio_endio(raid_bi, 0);
3804 if (atomic_dec_and_test(&conf->active_aligned_reads))
3805 wake_up(&conf->wait_for_stripe);
3810 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3812 add_bio_to_retry(raid_bi, conf);
3815 static int bio_fits_rdev(struct bio *bi)
3817 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3819 if ((bi->bi_size>>9) > queue_max_sectors(q))
3821 blk_recount_segments(q, bi);
3822 if (bi->bi_phys_segments > queue_max_segments(q))
3825 if (q->merge_bvec_fn)
3826 /* it's too hard to apply the merge_bvec_fn at this stage,
3835 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3837 raid5_conf_t *conf = mddev->private;
3839 struct bio* align_bi;
3842 if (!in_chunk_boundary(mddev, raid_bio)) {
3843 pr_debug("chunk_aligned_read : non aligned\n");
3847 * use bio_clone to make a copy of the bio
3849 align_bi = bio_clone(raid_bio, GFP_NOIO);
3853 * set bi_end_io to a new function, and set bi_private to the
3856 align_bi->bi_end_io = raid5_align_endio;
3857 align_bi->bi_private = raid_bio;
3861 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3866 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3867 if (rdev && test_bit(In_sync, &rdev->flags)) {
3868 atomic_inc(&rdev->nr_pending);
3870 raid_bio->bi_next = (void*)rdev;
3871 align_bi->bi_bdev = rdev->bdev;
3872 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3873 align_bi->bi_sector += rdev->data_offset;
3875 if (!bio_fits_rdev(align_bi)) {
3876 /* too big in some way */
3878 rdev_dec_pending(rdev, mddev);
3882 spin_lock_irq(&conf->device_lock);
3883 wait_event_lock_irq(conf->wait_for_stripe,
3885 conf->device_lock, /* nothing */);
3886 atomic_inc(&conf->active_aligned_reads);
3887 spin_unlock_irq(&conf->device_lock);
3889 generic_make_request(align_bi);
3898 /* __get_priority_stripe - get the next stripe to process
3900 * Full stripe writes are allowed to pass preread active stripes up until
3901 * the bypass_threshold is exceeded. In general the bypass_count
3902 * increments when the handle_list is handled before the hold_list; however, it
3903 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3904 * stripe with in flight i/o. The bypass_count will be reset when the
3905 * head of the hold_list has changed, i.e. the head was promoted to the
3908 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3910 struct stripe_head *sh;
3912 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3914 list_empty(&conf->handle_list) ? "empty" : "busy",
3915 list_empty(&conf->hold_list) ? "empty" : "busy",
3916 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3918 if (!list_empty(&conf->handle_list)) {
3919 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3921 if (list_empty(&conf->hold_list))
3922 conf->bypass_count = 0;
3923 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3924 if (conf->hold_list.next == conf->last_hold)
3925 conf->bypass_count++;
3927 conf->last_hold = conf->hold_list.next;
3928 conf->bypass_count -= conf->bypass_threshold;
3929 if (conf->bypass_count < 0)
3930 conf->bypass_count = 0;
3933 } else if (!list_empty(&conf->hold_list) &&
3934 ((conf->bypass_threshold &&
3935 conf->bypass_count > conf->bypass_threshold) ||
3936 atomic_read(&conf->pending_full_writes) == 0)) {
3937 sh = list_entry(conf->hold_list.next,
3939 conf->bypass_count -= conf->bypass_threshold;
3940 if (conf->bypass_count < 0)
3941 conf->bypass_count = 0;
3945 list_del_init(&sh->lru);
3946 atomic_inc(&sh->count);
3947 BUG_ON(atomic_read(&sh->count) != 1);
3951 static int make_request(mddev_t *mddev, struct bio * bi)
3953 raid5_conf_t *conf = mddev->private;
3955 sector_t new_sector;
3956 sector_t logical_sector, last_sector;
3957 struct stripe_head *sh;
3958 const int rw = bio_data_dir(bi);
3961 if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3962 /* Drain all pending writes. We only really need
3963 * to ensure they have been submitted, but this is
3966 mddev->pers->quiesce(mddev, 1);
3967 mddev->pers->quiesce(mddev, 0);
3968 md_barrier_request(mddev, bi);
3972 md_write_start(mddev, bi);
3975 mddev->reshape_position == MaxSector &&
3976 chunk_aligned_read(mddev,bi))
3979 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3980 last_sector = bi->bi_sector + (bi->bi_size>>9);
3982 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3984 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3986 int disks, data_disks;
3991 disks = conf->raid_disks;
3992 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3993 if (unlikely(conf->reshape_progress != MaxSector)) {
3994 /* spinlock is needed as reshape_progress may be
3995 * 64bit on a 32bit platform, and so it might be
3996 * possible to see a half-updated value
3997 * Ofcourse reshape_progress could change after
3998 * the lock is dropped, so once we get a reference
3999 * to the stripe that we think it is, we will have
4002 spin_lock_irq(&conf->device_lock);
4003 if (mddev->delta_disks < 0
4004 ? logical_sector < conf->reshape_progress
4005 : logical_sector >= conf->reshape_progress) {
4006 disks = conf->previous_raid_disks;
4009 if (mddev->delta_disks < 0
4010 ? logical_sector < conf->reshape_safe
4011 : logical_sector >= conf->reshape_safe) {
4012 spin_unlock_irq(&conf->device_lock);
4017 spin_unlock_irq(&conf->device_lock);
4019 data_disks = disks - conf->max_degraded;
4021 new_sector = raid5_compute_sector(conf, logical_sector,
4024 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4025 (unsigned long long)new_sector,
4026 (unsigned long long)logical_sector);
4028 sh = get_active_stripe(conf, new_sector, previous,
4029 (bi->bi_rw&RWA_MASK), 0);
4031 if (unlikely(previous)) {
4032 /* expansion might have moved on while waiting for a
4033 * stripe, so we must do the range check again.
4034 * Expansion could still move past after this
4035 * test, but as we are holding a reference to
4036 * 'sh', we know that if that happens,
4037 * STRIPE_EXPANDING will get set and the expansion
4038 * won't proceed until we finish with the stripe.
4041 spin_lock_irq(&conf->device_lock);
4042 if (mddev->delta_disks < 0
4043 ? logical_sector >= conf->reshape_progress
4044 : logical_sector < conf->reshape_progress)
4045 /* mismatch, need to try again */
4047 spin_unlock_irq(&conf->device_lock);
4055 if (bio_data_dir(bi) == WRITE &&
4056 logical_sector >= mddev->suspend_lo &&
4057 logical_sector < mddev->suspend_hi) {
4059 /* As the suspend_* range is controlled by
4060 * userspace, we want an interruptible
4063 flush_signals(current);
4064 prepare_to_wait(&conf->wait_for_overlap,
4065 &w, TASK_INTERRUPTIBLE);
4066 if (logical_sector >= mddev->suspend_lo &&
4067 logical_sector < mddev->suspend_hi)
4072 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4073 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
4074 /* Stripe is busy expanding or
4075 * add failed due to overlap. Flush everything
4078 raid5_unplug_device(mddev->queue);
4083 finish_wait(&conf->wait_for_overlap, &w);
4084 set_bit(STRIPE_HANDLE, &sh->state);
4085 clear_bit(STRIPE_DELAYED, &sh->state);
4086 if (mddev->barrier &&
4087 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4088 atomic_inc(&conf->preread_active_stripes);
4091 /* cannot get stripe for read-ahead, just give-up */
4092 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4093 finish_wait(&conf->wait_for_overlap, &w);
4098 spin_lock_irq(&conf->device_lock);
4099 remaining = raid5_dec_bi_phys_segments(bi);
4100 spin_unlock_irq(&conf->device_lock);
4101 if (remaining == 0) {
4104 md_write_end(mddev);
4109 if (mddev->barrier) {
4110 /* We need to wait for the stripes to all be handled.
4111 * So: wait for preread_active_stripes to drop to 0.
4113 wait_event(mddev->thread->wqueue,
4114 atomic_read(&conf->preread_active_stripes) == 0);
4119 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4121 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4123 /* reshaping is quite different to recovery/resync so it is
4124 * handled quite separately ... here.
4126 * On each call to sync_request, we gather one chunk worth of
4127 * destination stripes and flag them as expanding.
4128 * Then we find all the source stripes and request reads.
4129 * As the reads complete, handle_stripe will copy the data
4130 * into the destination stripe and release that stripe.
4132 raid5_conf_t *conf = mddev->private;
4133 struct stripe_head *sh;
4134 sector_t first_sector, last_sector;
4135 int raid_disks = conf->previous_raid_disks;
4136 int data_disks = raid_disks - conf->max_degraded;
4137 int new_data_disks = conf->raid_disks - conf->max_degraded;
4140 sector_t writepos, readpos, safepos;
4141 sector_t stripe_addr;
4142 int reshape_sectors;
4143 struct list_head stripes;
4145 if (sector_nr == 0) {
4146 /* If restarting in the middle, skip the initial sectors */
4147 if (mddev->delta_disks < 0 &&
4148 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4149 sector_nr = raid5_size(mddev, 0, 0)
4150 - conf->reshape_progress;
4151 } else if (mddev->delta_disks >= 0 &&
4152 conf->reshape_progress > 0)
4153 sector_nr = conf->reshape_progress;
4154 sector_div(sector_nr, new_data_disks);
4156 mddev->curr_resync_completed = sector_nr;
4157 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4163 /* We need to process a full chunk at a time.
4164 * If old and new chunk sizes differ, we need to process the
4167 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4168 reshape_sectors = mddev->new_chunk_sectors;
4170 reshape_sectors = mddev->chunk_sectors;
4172 /* we update the metadata when there is more than 3Meg
4173 * in the block range (that is rather arbitrary, should
4174 * probably be time based) or when the data about to be
4175 * copied would over-write the source of the data at
4176 * the front of the range.
4177 * i.e. one new_stripe along from reshape_progress new_maps
4178 * to after where reshape_safe old_maps to
4180 writepos = conf->reshape_progress;
4181 sector_div(writepos, new_data_disks);
4182 readpos = conf->reshape_progress;
4183 sector_div(readpos, data_disks);
4184 safepos = conf->reshape_safe;
4185 sector_div(safepos, data_disks);
4186 if (mddev->delta_disks < 0) {
4187 writepos -= min_t(sector_t, reshape_sectors, writepos);
4188 readpos += reshape_sectors;
4189 safepos += reshape_sectors;
4191 writepos += reshape_sectors;
4192 readpos -= min_t(sector_t, reshape_sectors, readpos);
4193 safepos -= min_t(sector_t, reshape_sectors, safepos);
4196 /* 'writepos' is the most advanced device address we might write.
4197 * 'readpos' is the least advanced device address we might read.
4198 * 'safepos' is the least address recorded in the metadata as having
4200 * If 'readpos' is behind 'writepos', then there is no way that we can
4201 * ensure safety in the face of a crash - that must be done by userspace
4202 * making a backup of the data. So in that case there is no particular
4203 * rush to update metadata.
4204 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4205 * update the metadata to advance 'safepos' to match 'readpos' so that
4206 * we can be safe in the event of a crash.
4207 * So we insist on updating metadata if safepos is behind writepos and
4208 * readpos is beyond writepos.
4209 * In any case, update the metadata every 10 seconds.
4210 * Maybe that number should be configurable, but I'm not sure it is
4211 * worth it.... maybe it could be a multiple of safemode_delay???
4213 if ((mddev->delta_disks < 0
4214 ? (safepos > writepos && readpos < writepos)
4215 : (safepos < writepos && readpos > writepos)) ||
4216 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4217 /* Cannot proceed until we've updated the superblock... */
4218 wait_event(conf->wait_for_overlap,
4219 atomic_read(&conf->reshape_stripes)==0);
4220 mddev->reshape_position = conf->reshape_progress;
4221 mddev->curr_resync_completed = mddev->curr_resync;
4222 conf->reshape_checkpoint = jiffies;
4223 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4224 md_wakeup_thread(mddev->thread);
4225 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4226 kthread_should_stop());
4227 spin_lock_irq(&conf->device_lock);
4228 conf->reshape_safe = mddev->reshape_position;
4229 spin_unlock_irq(&conf->device_lock);
4230 wake_up(&conf->wait_for_overlap);
4231 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4234 if (mddev->delta_disks < 0) {
4235 BUG_ON(conf->reshape_progress == 0);
4236 stripe_addr = writepos;
4237 BUG_ON((mddev->dev_sectors &
4238 ~((sector_t)reshape_sectors - 1))
4239 - reshape_sectors - stripe_addr
4242 BUG_ON(writepos != sector_nr + reshape_sectors);
4243 stripe_addr = sector_nr;
4245 INIT_LIST_HEAD(&stripes);
4246 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4248 int skipped_disk = 0;
4249 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4250 set_bit(STRIPE_EXPANDING, &sh->state);
4251 atomic_inc(&conf->reshape_stripes);
4252 /* If any of this stripe is beyond the end of the old
4253 * array, then we need to zero those blocks
4255 for (j=sh->disks; j--;) {
4257 if (j == sh->pd_idx)
4259 if (conf->level == 6 &&
4262 s = compute_blocknr(sh, j, 0);
4263 if (s < raid5_size(mddev, 0, 0)) {
4267 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4268 set_bit(R5_Expanded, &sh->dev[j].flags);
4269 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4271 if (!skipped_disk) {
4272 set_bit(STRIPE_EXPAND_READY, &sh->state);
4273 set_bit(STRIPE_HANDLE, &sh->state);
4275 list_add(&sh->lru, &stripes);
4277 spin_lock_irq(&conf->device_lock);
4278 if (mddev->delta_disks < 0)
4279 conf->reshape_progress -= reshape_sectors * new_data_disks;
4281 conf->reshape_progress += reshape_sectors * new_data_disks;
4282 spin_unlock_irq(&conf->device_lock);
4283 /* Ok, those stripe are ready. We can start scheduling
4284 * reads on the source stripes.
4285 * The source stripes are determined by mapping the first and last
4286 * block on the destination stripes.
4289 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4292 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4293 * new_data_disks - 1),
4295 if (last_sector >= mddev->dev_sectors)
4296 last_sector = mddev->dev_sectors - 1;
4297 while (first_sector <= last_sector) {
4298 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4299 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4300 set_bit(STRIPE_HANDLE, &sh->state);
4302 first_sector += STRIPE_SECTORS;
4304 /* Now that the sources are clearly marked, we can release
4305 * the destination stripes
4307 while (!list_empty(&stripes)) {
4308 sh = list_entry(stripes.next, struct stripe_head, lru);
4309 list_del_init(&sh->lru);
4312 /* If this takes us to the resync_max point where we have to pause,
4313 * then we need to write out the superblock.
4315 sector_nr += reshape_sectors;
4316 if ((sector_nr - mddev->curr_resync_completed) * 2
4317 >= mddev->resync_max - mddev->curr_resync_completed) {
4318 /* Cannot proceed until we've updated the superblock... */
4319 wait_event(conf->wait_for_overlap,
4320 atomic_read(&conf->reshape_stripes) == 0);
4321 mddev->reshape_position = conf->reshape_progress;
4322 mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4323 conf->reshape_checkpoint = jiffies;
4324 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4325 md_wakeup_thread(mddev->thread);
4326 wait_event(mddev->sb_wait,
4327 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4328 || kthread_should_stop());
4329 spin_lock_irq(&conf->device_lock);
4330 conf->reshape_safe = mddev->reshape_position;
4331 spin_unlock_irq(&conf->device_lock);
4332 wake_up(&conf->wait_for_overlap);
4333 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4335 return reshape_sectors;
4338 /* FIXME go_faster isn't used */
4339 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4341 raid5_conf_t *conf = mddev->private;
4342 struct stripe_head *sh;
4343 sector_t max_sector = mddev->dev_sectors;
4345 int still_degraded = 0;
4348 if (sector_nr >= max_sector) {
4349 /* just being told to finish up .. nothing much to do */
4350 unplug_slaves(mddev);
4352 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4357 if (mddev->curr_resync < max_sector) /* aborted */
4358 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4360 else /* completed sync */
4362 bitmap_close_sync(mddev->bitmap);
4367 /* Allow raid5_quiesce to complete */
4368 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4370 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4371 return reshape_request(mddev, sector_nr, skipped);
4373 /* No need to check resync_max as we never do more than one
4374 * stripe, and as resync_max will always be on a chunk boundary,
4375 * if the check in md_do_sync didn't fire, there is no chance
4376 * of overstepping resync_max here
4379 /* if there is too many failed drives and we are trying
4380 * to resync, then assert that we are finished, because there is
4381 * nothing we can do.
4383 if (mddev->degraded >= conf->max_degraded &&
4384 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4385 sector_t rv = mddev->dev_sectors - sector_nr;
4389 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4390 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4391 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4392 /* we can skip this block, and probably more */
4393 sync_blocks /= STRIPE_SECTORS;
4395 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4399 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4401 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4403 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4404 /* make sure we don't swamp the stripe cache if someone else
4405 * is trying to get access
4407 schedule_timeout_uninterruptible(1);
4409 /* Need to check if array will still be degraded after recovery/resync
4410 * We don't need to check the 'failed' flag as when that gets set,
4413 for (i = 0; i < conf->raid_disks; i++)
4414 if (conf->disks[i].rdev == NULL)
4417 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4419 spin_lock(&sh->lock);
4420 set_bit(STRIPE_SYNCING, &sh->state);
4421 clear_bit(STRIPE_INSYNC, &sh->state);
4422 spin_unlock(&sh->lock);
4427 return STRIPE_SECTORS;
4430 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4432 /* We may not be able to submit a whole bio at once as there
4433 * may not be enough stripe_heads available.
4434 * We cannot pre-allocate enough stripe_heads as we may need
4435 * more than exist in the cache (if we allow ever large chunks).
4436 * So we do one stripe head at a time and record in
4437 * ->bi_hw_segments how many have been done.
4439 * We *know* that this entire raid_bio is in one chunk, so
4440 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4442 struct stripe_head *sh;
4444 sector_t sector, logical_sector, last_sector;
4449 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4450 sector = raid5_compute_sector(conf, logical_sector,
4452 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4454 for (; logical_sector < last_sector;
4455 logical_sector += STRIPE_SECTORS,
4456 sector += STRIPE_SECTORS,
4459 if (scnt < raid5_bi_hw_segments(raid_bio))
4460 /* already done this stripe */
4463 sh = get_active_stripe(conf, sector, 0, 1, 0);
4466 /* failed to get a stripe - must wait */
4467 raid5_set_bi_hw_segments(raid_bio, scnt);
4468 conf->retry_read_aligned = raid_bio;
4472 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4473 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4475 raid5_set_bi_hw_segments(raid_bio, scnt);
4476 conf->retry_read_aligned = raid_bio;
4484 spin_lock_irq(&conf->device_lock);
4485 remaining = raid5_dec_bi_phys_segments(raid_bio);
4486 spin_unlock_irq(&conf->device_lock);
4488 bio_endio(raid_bio, 0);
4489 if (atomic_dec_and_test(&conf->active_aligned_reads))
4490 wake_up(&conf->wait_for_stripe);
4496 * This is our raid5 kernel thread.
4498 * We scan the hash table for stripes which can be handled now.
4499 * During the scan, completed stripes are saved for us by the interrupt
4500 * handler, so that they will not have to wait for our next wakeup.
4502 static void raid5d(mddev_t *mddev)
4504 struct stripe_head *sh;
4505 raid5_conf_t *conf = mddev->private;
4508 pr_debug("+++ raid5d active\n");
4510 md_check_recovery(mddev);
4513 spin_lock_irq(&conf->device_lock);
4517 if (conf->seq_flush != conf->seq_write) {
4518 int seq = conf->seq_flush;
4519 spin_unlock_irq(&conf->device_lock);
4520 bitmap_unplug(mddev->bitmap);
4521 spin_lock_irq(&conf->device_lock);
4522 conf->seq_write = seq;
4523 activate_bit_delay(conf);
4526 while ((bio = remove_bio_from_retry(conf))) {
4528 spin_unlock_irq(&conf->device_lock);
4529 ok = retry_aligned_read(conf, bio);
4530 spin_lock_irq(&conf->device_lock);
4536 sh = __get_priority_stripe(conf);
4540 spin_unlock_irq(&conf->device_lock);
4547 spin_lock_irq(&conf->device_lock);
4549 pr_debug("%d stripes handled\n", handled);
4551 spin_unlock_irq(&conf->device_lock);
4553 async_tx_issue_pending_all();
4554 unplug_slaves(mddev);
4556 pr_debug("--- raid5d inactive\n");
4560 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4562 raid5_conf_t *conf = mddev->private;
4564 return sprintf(page, "%d\n", conf->max_nr_stripes);
4570 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4572 raid5_conf_t *conf = mddev->private;
4576 if (len >= PAGE_SIZE)
4581 if (strict_strtoul(page, 10, &new))
4583 if (new <= 16 || new > 32768)
4585 while (new < conf->max_nr_stripes) {
4586 if (drop_one_stripe(conf))
4587 conf->max_nr_stripes--;
4591 err = md_allow_write(mddev);
4594 while (new > conf->max_nr_stripes) {
4595 if (grow_one_stripe(conf))
4596 conf->max_nr_stripes++;
4602 static struct md_sysfs_entry
4603 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4604 raid5_show_stripe_cache_size,
4605 raid5_store_stripe_cache_size);
4608 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4610 raid5_conf_t *conf = mddev->private;
4612 return sprintf(page, "%d\n", conf->bypass_threshold);
4618 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4620 raid5_conf_t *conf = mddev->private;
4622 if (len >= PAGE_SIZE)
4627 if (strict_strtoul(page, 10, &new))
4629 if (new > conf->max_nr_stripes)
4631 conf->bypass_threshold = new;
4635 static struct md_sysfs_entry
4636 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4638 raid5_show_preread_threshold,
4639 raid5_store_preread_threshold);
4642 stripe_cache_active_show(mddev_t *mddev, char *page)
4644 raid5_conf_t *conf = mddev->private;
4646 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4651 static struct md_sysfs_entry
4652 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4654 static struct attribute *raid5_attrs[] = {
4655 &raid5_stripecache_size.attr,
4656 &raid5_stripecache_active.attr,
4657 &raid5_preread_bypass_threshold.attr,
4660 static struct attribute_group raid5_attrs_group = {
4662 .attrs = raid5_attrs,
4666 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4668 raid5_conf_t *conf = mddev->private;
4671 sectors = mddev->dev_sectors;
4673 /* size is defined by the smallest of previous and new size */
4674 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4676 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4677 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4678 return sectors * (raid_disks - conf->max_degraded);
4681 static void raid5_free_percpu(raid5_conf_t *conf)
4683 struct raid5_percpu *percpu;
4690 for_each_possible_cpu(cpu) {
4691 percpu = per_cpu_ptr(conf->percpu, cpu);
4692 safe_put_page(percpu->spare_page);
4693 kfree(percpu->scribble);
4695 #ifdef CONFIG_HOTPLUG_CPU
4696 unregister_cpu_notifier(&conf->cpu_notify);
4700 free_percpu(conf->percpu);
4703 static void free_conf(raid5_conf_t *conf)
4705 shrink_stripes(conf);
4706 raid5_free_percpu(conf);
4708 kfree(conf->stripe_hashtbl);
4712 #ifdef CONFIG_HOTPLUG_CPU
4713 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4716 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4717 long cpu = (long)hcpu;
4718 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4721 case CPU_UP_PREPARE:
4722 case CPU_UP_PREPARE_FROZEN:
4723 if (conf->level == 6 && !percpu->spare_page)
4724 percpu->spare_page = alloc_page(GFP_KERNEL);
4725 if (!percpu->scribble)
4726 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4728 if (!percpu->scribble ||
4729 (conf->level == 6 && !percpu->spare_page)) {
4730 safe_put_page(percpu->spare_page);
4731 kfree(percpu->scribble);
4732 pr_err("%s: failed memory allocation for cpu%ld\n",
4734 return notifier_from_errno(-ENOMEM);
4738 case CPU_DEAD_FROZEN:
4739 safe_put_page(percpu->spare_page);
4740 kfree(percpu->scribble);
4741 percpu->spare_page = NULL;
4742 percpu->scribble = NULL;
4751 static int raid5_alloc_percpu(raid5_conf_t *conf)
4754 struct page *spare_page;
4755 struct raid5_percpu __percpu *allcpus;
4759 allcpus = alloc_percpu(struct raid5_percpu);
4762 conf->percpu = allcpus;
4766 for_each_present_cpu(cpu) {
4767 if (conf->level == 6) {
4768 spare_page = alloc_page(GFP_KERNEL);
4773 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4775 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4780 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4782 #ifdef CONFIG_HOTPLUG_CPU
4783 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4784 conf->cpu_notify.priority = 0;
4786 err = register_cpu_notifier(&conf->cpu_notify);
4793 static raid5_conf_t *setup_conf(mddev_t *mddev)
4796 int raid_disk, memory, max_disks;
4798 struct disk_info *disk;
4800 if (mddev->new_level != 5
4801 && mddev->new_level != 4
4802 && mddev->new_level != 6) {
4803 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4804 mdname(mddev), mddev->new_level);
4805 return ERR_PTR(-EIO);
4807 if ((mddev->new_level == 5
4808 && !algorithm_valid_raid5(mddev->new_layout)) ||
4809 (mddev->new_level == 6
4810 && !algorithm_valid_raid6(mddev->new_layout))) {
4811 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4812 mdname(mddev), mddev->new_layout);
4813 return ERR_PTR(-EIO);
4815 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4816 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4817 mdname(mddev), mddev->raid_disks);
4818 return ERR_PTR(-EINVAL);
4821 if (!mddev->new_chunk_sectors ||
4822 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4823 !is_power_of_2(mddev->new_chunk_sectors)) {
4824 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4825 mdname(mddev), mddev->new_chunk_sectors << 9);
4826 return ERR_PTR(-EINVAL);
4829 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4832 spin_lock_init(&conf->device_lock);
4833 init_waitqueue_head(&conf->wait_for_stripe);
4834 init_waitqueue_head(&conf->wait_for_overlap);
4835 INIT_LIST_HEAD(&conf->handle_list);
4836 INIT_LIST_HEAD(&conf->hold_list);
4837 INIT_LIST_HEAD(&conf->delayed_list);
4838 INIT_LIST_HEAD(&conf->bitmap_list);
4839 INIT_LIST_HEAD(&conf->inactive_list);
4840 atomic_set(&conf->active_stripes, 0);
4841 atomic_set(&conf->preread_active_stripes, 0);
4842 atomic_set(&conf->active_aligned_reads, 0);
4843 conf->bypass_threshold = BYPASS_THRESHOLD;
4845 conf->raid_disks = mddev->raid_disks;
4846 if (mddev->reshape_position == MaxSector)
4847 conf->previous_raid_disks = mddev->raid_disks;
4849 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4850 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4851 conf->scribble_len = scribble_len(max_disks);
4853 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4858 conf->mddev = mddev;
4860 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4863 conf->level = mddev->new_level;
4864 if (raid5_alloc_percpu(conf) != 0)
4867 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4869 list_for_each_entry(rdev, &mddev->disks, same_set) {
4870 raid_disk = rdev->raid_disk;
4871 if (raid_disk >= max_disks
4874 disk = conf->disks + raid_disk;
4878 if (test_bit(In_sync, &rdev->flags)) {
4879 char b[BDEVNAME_SIZE];
4880 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4882 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4884 /* Cannot rely on bitmap to complete recovery */
4888 conf->chunk_sectors = mddev->new_chunk_sectors;
4889 conf->level = mddev->new_level;
4890 if (conf->level == 6)
4891 conf->max_degraded = 2;
4893 conf->max_degraded = 1;
4894 conf->algorithm = mddev->new_layout;
4895 conf->max_nr_stripes = NR_STRIPES;
4896 conf->reshape_progress = mddev->reshape_position;
4897 if (conf->reshape_progress != MaxSector) {
4898 conf->prev_chunk_sectors = mddev->chunk_sectors;
4899 conf->prev_algo = mddev->layout;
4902 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4903 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4904 if (grow_stripes(conf, conf->max_nr_stripes)) {
4906 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4907 mdname(mddev), memory);
4910 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4911 mdname(mddev), memory);
4913 conf->thread = md_register_thread(raid5d, mddev, NULL);
4914 if (!conf->thread) {
4916 "md/raid:%s: couldn't allocate thread.\n",
4926 return ERR_PTR(-EIO);
4928 return ERR_PTR(-ENOMEM);
4932 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4935 case ALGORITHM_PARITY_0:
4936 if (raid_disk < max_degraded)
4939 case ALGORITHM_PARITY_N:
4940 if (raid_disk >= raid_disks - max_degraded)
4943 case ALGORITHM_PARITY_0_6:
4944 if (raid_disk == 0 ||
4945 raid_disk == raid_disks - 1)
4948 case ALGORITHM_LEFT_ASYMMETRIC_6:
4949 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4950 case ALGORITHM_LEFT_SYMMETRIC_6:
4951 case ALGORITHM_RIGHT_SYMMETRIC_6:
4952 if (raid_disk == raid_disks - 1)
4958 static int run(mddev_t *mddev)
4961 int working_disks = 0, chunk_size;
4962 int dirty_parity_disks = 0;
4964 sector_t reshape_offset = 0;
4966 if (mddev->recovery_cp != MaxSector)
4967 printk(KERN_NOTICE "md/raid:%s: not clean"
4968 " -- starting background reconstruction\n",
4970 if (mddev->reshape_position != MaxSector) {
4971 /* Check that we can continue the reshape.
4972 * Currently only disks can change, it must
4973 * increase, and we must be past the point where
4974 * a stripe over-writes itself
4976 sector_t here_new, here_old;
4978 int max_degraded = (mddev->level == 6 ? 2 : 1);
4980 if (mddev->new_level != mddev->level) {
4981 printk(KERN_ERR "md/raid:%s: unsupported reshape "
4982 "required - aborting.\n",
4986 old_disks = mddev->raid_disks - mddev->delta_disks;
4987 /* reshape_position must be on a new-stripe boundary, and one
4988 * further up in new geometry must map after here in old
4991 here_new = mddev->reshape_position;
4992 if (sector_div(here_new, mddev->new_chunk_sectors *
4993 (mddev->raid_disks - max_degraded))) {
4994 printk(KERN_ERR "md/raid:%s: reshape_position not "
4995 "on a stripe boundary\n", mdname(mddev));
4998 reshape_offset = here_new * mddev->new_chunk_sectors;
4999 /* here_new is the stripe we will write to */
5000 here_old = mddev->reshape_position;
5001 sector_div(here_old, mddev->chunk_sectors *
5002 (old_disks-max_degraded));
5003 /* here_old is the first stripe that we might need to read
5005 if (mddev->delta_disks == 0) {
5006 /* We cannot be sure it is safe to start an in-place
5007 * reshape. It is only safe if user-space if monitoring
5008 * and taking constant backups.
5009 * mdadm always starts a situation like this in
5010 * readonly mode so it can take control before
5011 * allowing any writes. So just check for that.
5013 if ((here_new * mddev->new_chunk_sectors !=
5014 here_old * mddev->chunk_sectors) ||
5016 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5017 " in read-only mode - aborting\n",
5021 } else if (mddev->delta_disks < 0
5022 ? (here_new * mddev->new_chunk_sectors <=
5023 here_old * mddev->chunk_sectors)
5024 : (here_new * mddev->new_chunk_sectors >=
5025 here_old * mddev->chunk_sectors)) {
5026 /* Reading from the same stripe as writing to - bad */
5027 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5028 "auto-recovery - aborting.\n",
5032 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5034 /* OK, we should be able to continue; */
5036 BUG_ON(mddev->level != mddev->new_level);
5037 BUG_ON(mddev->layout != mddev->new_layout);
5038 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5039 BUG_ON(mddev->delta_disks != 0);
5042 if (mddev->private == NULL)
5043 conf = setup_conf(mddev);
5045 conf = mddev->private;
5048 return PTR_ERR(conf);
5050 mddev->thread = conf->thread;
5051 conf->thread = NULL;
5052 mddev->private = conf;
5055 * 0 for a fully functional array, 1 or 2 for a degraded array.
5057 list_for_each_entry(rdev, &mddev->disks, same_set) {
5058 if (rdev->raid_disk < 0)
5060 if (test_bit(In_sync, &rdev->flags)) {
5064 /* This disc is not fully in-sync. However if it
5065 * just stored parity (beyond the recovery_offset),
5066 * when we don't need to be concerned about the
5067 * array being dirty.
5068 * When reshape goes 'backwards', we never have
5069 * partially completed devices, so we only need
5070 * to worry about reshape going forwards.
5072 /* Hack because v0.91 doesn't store recovery_offset properly. */
5073 if (mddev->major_version == 0 &&
5074 mddev->minor_version > 90)
5075 rdev->recovery_offset = reshape_offset;
5077 if (rdev->recovery_offset < reshape_offset) {
5078 /* We need to check old and new layout */
5079 if (!only_parity(rdev->raid_disk,
5082 conf->max_degraded))
5085 if (!only_parity(rdev->raid_disk,
5087 conf->previous_raid_disks,
5088 conf->max_degraded))
5090 dirty_parity_disks++;
5093 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5096 if (has_failed(conf)) {
5097 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5098 " (%d/%d failed)\n",
5099 mdname(mddev), mddev->degraded, conf->raid_disks);
5103 /* device size must be a multiple of chunk size */
5104 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5105 mddev->resync_max_sectors = mddev->dev_sectors;
5107 if (mddev->degraded > dirty_parity_disks &&
5108 mddev->recovery_cp != MaxSector) {
5109 if (mddev->ok_start_degraded)
5111 "md/raid:%s: starting dirty degraded array"
5112 " - data corruption possible.\n",
5116 "md/raid:%s: cannot start dirty degraded array.\n",
5122 if (mddev->degraded == 0)
5123 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5124 " devices, algorithm %d\n", mdname(mddev), conf->level,
5125 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5128 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5129 " out of %d devices, algorithm %d\n",
5130 mdname(mddev), conf->level,
5131 mddev->raid_disks - mddev->degraded,
5132 mddev->raid_disks, mddev->new_layout);
5134 print_raid5_conf(conf);
5136 if (conf->reshape_progress != MaxSector) {
5137 conf->reshape_safe = conf->reshape_progress;
5138 atomic_set(&conf->reshape_stripes, 0);
5139 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5140 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5141 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5142 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5143 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5147 /* read-ahead size must cover two whole stripes, which is
5148 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5151 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5152 int stripe = data_disks *
5153 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5154 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5155 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5158 /* Ok, everything is just fine now */
5159 if (mddev->to_remove == &raid5_attrs_group)
5160 mddev->to_remove = NULL;
5161 else if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5163 "md/raid:%s: failed to create sysfs attributes.\n",
5166 mddev->queue->queue_lock = &conf->device_lock;
5168 mddev->queue->unplug_fn = raid5_unplug_device;
5169 mddev->queue->backing_dev_info.congested_data = mddev;
5170 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5172 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5174 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5175 chunk_size = mddev->chunk_sectors << 9;
5176 blk_queue_io_min(mddev->queue, chunk_size);
5177 blk_queue_io_opt(mddev->queue, chunk_size *
5178 (conf->raid_disks - conf->max_degraded));
5180 list_for_each_entry(rdev, &mddev->disks, same_set)
5181 disk_stack_limits(mddev->gendisk, rdev->bdev,
5182 rdev->data_offset << 9);
5186 md_unregister_thread(mddev->thread);
5187 mddev->thread = NULL;
5189 print_raid5_conf(conf);
5192 mddev->private = NULL;
5193 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5197 static int stop(mddev_t *mddev)
5199 raid5_conf_t *conf = mddev->private;
5201 md_unregister_thread(mddev->thread);
5202 mddev->thread = NULL;
5203 mddev->queue->backing_dev_info.congested_fn = NULL;
5204 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5206 mddev->private = NULL;
5207 mddev->to_remove = &raid5_attrs_group;
5212 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5216 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5217 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5218 seq_printf(seq, "sh %llu, count %d.\n",
5219 (unsigned long long)sh->sector, atomic_read(&sh->count));
5220 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5221 for (i = 0; i < sh->disks; i++) {
5222 seq_printf(seq, "(cache%d: %p %ld) ",
5223 i, sh->dev[i].page, sh->dev[i].flags);
5225 seq_printf(seq, "\n");
5228 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5230 struct stripe_head *sh;
5231 struct hlist_node *hn;
5234 spin_lock_irq(&conf->device_lock);
5235 for (i = 0; i < NR_HASH; i++) {
5236 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5237 if (sh->raid_conf != conf)
5242 spin_unlock_irq(&conf->device_lock);
5246 static void status(struct seq_file *seq, mddev_t *mddev)
5248 raid5_conf_t *conf = mddev->private;
5251 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5252 mddev->chunk_sectors / 2, mddev->layout);
5253 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5254 for (i = 0; i < conf->raid_disks; i++)
5255 seq_printf (seq, "%s",
5256 conf->disks[i].rdev &&
5257 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5258 seq_printf (seq, "]");
5260 seq_printf (seq, "\n");
5261 printall(seq, conf);
5265 static void print_raid5_conf (raid5_conf_t *conf)
5268 struct disk_info *tmp;
5270 printk(KERN_DEBUG "RAID conf printout:\n");
5272 printk("(conf==NULL)\n");
5275 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5277 conf->raid_disks - conf->mddev->degraded);
5279 for (i = 0; i < conf->raid_disks; i++) {
5280 char b[BDEVNAME_SIZE];
5281 tmp = conf->disks + i;
5283 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5284 i, !test_bit(Faulty, &tmp->rdev->flags),
5285 bdevname(tmp->rdev->bdev, b));
5289 static int raid5_spare_active(mddev_t *mddev)
5292 raid5_conf_t *conf = mddev->private;
5293 struct disk_info *tmp;
5295 for (i = 0; i < conf->raid_disks; i++) {
5296 tmp = conf->disks + i;
5298 && tmp->rdev->recovery_offset == MaxSector
5299 && !test_bit(Faulty, &tmp->rdev->flags)
5300 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5301 unsigned long flags;
5302 spin_lock_irqsave(&conf->device_lock, flags);
5304 spin_unlock_irqrestore(&conf->device_lock, flags);
5307 print_raid5_conf(conf);
5311 static int raid5_remove_disk(mddev_t *mddev, int number)
5313 raid5_conf_t *conf = mddev->private;
5316 struct disk_info *p = conf->disks + number;
5318 print_raid5_conf(conf);
5321 if (number >= conf->raid_disks &&
5322 conf->reshape_progress == MaxSector)
5323 clear_bit(In_sync, &rdev->flags);
5325 if (test_bit(In_sync, &rdev->flags) ||
5326 atomic_read(&rdev->nr_pending)) {
5330 /* Only remove non-faulty devices if recovery
5333 if (!test_bit(Faulty, &rdev->flags) &&
5334 !has_failed(conf) &&
5335 number < conf->raid_disks) {
5341 if (atomic_read(&rdev->nr_pending)) {
5342 /* lost the race, try later */
5349 print_raid5_conf(conf);
5353 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5355 raid5_conf_t *conf = mddev->private;
5358 struct disk_info *p;
5360 int last = conf->raid_disks - 1;
5362 if (has_failed(conf))
5363 /* no point adding a device */
5366 if (rdev->raid_disk >= 0)
5367 first = last = rdev->raid_disk;
5370 * find the disk ... but prefer rdev->saved_raid_disk
5373 if (rdev->saved_raid_disk >= 0 &&
5374 rdev->saved_raid_disk >= first &&
5375 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5376 disk = rdev->saved_raid_disk;
5379 for ( ; disk <= last ; disk++)
5380 if ((p=conf->disks + disk)->rdev == NULL) {
5381 clear_bit(In_sync, &rdev->flags);
5382 rdev->raid_disk = disk;
5384 if (rdev->saved_raid_disk != disk)
5386 rcu_assign_pointer(p->rdev, rdev);
5389 print_raid5_conf(conf);
5393 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5395 /* no resync is happening, and there is enough space
5396 * on all devices, so we can resize.
5397 * We need to make sure resync covers any new space.
5398 * If the array is shrinking we should possibly wait until
5399 * any io in the removed space completes, but it hardly seems
5402 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5403 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5404 mddev->raid_disks));
5405 if (mddev->array_sectors >
5406 raid5_size(mddev, sectors, mddev->raid_disks))
5408 set_capacity(mddev->gendisk, mddev->array_sectors);
5409 revalidate_disk(mddev->gendisk);
5410 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5411 mddev->recovery_cp = mddev->dev_sectors;
5412 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5414 mddev->dev_sectors = sectors;
5415 mddev->resync_max_sectors = sectors;
5419 static int check_stripe_cache(mddev_t *mddev)
5421 /* Can only proceed if there are plenty of stripe_heads.
5422 * We need a minimum of one full stripe,, and for sensible progress
5423 * it is best to have about 4 times that.
5424 * If we require 4 times, then the default 256 4K stripe_heads will
5425 * allow for chunk sizes up to 256K, which is probably OK.
5426 * If the chunk size is greater, user-space should request more
5427 * stripe_heads first.
5429 raid5_conf_t *conf = mddev->private;
5430 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5431 > conf->max_nr_stripes ||
5432 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5433 > conf->max_nr_stripes) {
5434 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5436 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5443 static int check_reshape(mddev_t *mddev)
5445 raid5_conf_t *conf = mddev->private;
5447 if (mddev->delta_disks == 0 &&
5448 mddev->new_layout == mddev->layout &&
5449 mddev->new_chunk_sectors == mddev->chunk_sectors)
5450 return 0; /* nothing to do */
5452 /* Cannot grow a bitmap yet */
5454 if (has_failed(conf))
5456 if (mddev->delta_disks < 0) {
5457 /* We might be able to shrink, but the devices must
5458 * be made bigger first.
5459 * For raid6, 4 is the minimum size.
5460 * Otherwise 2 is the minimum
5463 if (mddev->level == 6)
5465 if (mddev->raid_disks + mddev->delta_disks < min)
5469 if (!check_stripe_cache(mddev))
5472 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5475 static int raid5_start_reshape(mddev_t *mddev)
5477 raid5_conf_t *conf = mddev->private;
5480 int added_devices = 0;
5481 unsigned long flags;
5483 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5486 if (!check_stripe_cache(mddev))
5489 list_for_each_entry(rdev, &mddev->disks, same_set)
5490 if (rdev->raid_disk < 0 &&
5491 !test_bit(Faulty, &rdev->flags))
5494 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5495 /* Not enough devices even to make a degraded array
5500 /* Refuse to reduce size of the array. Any reductions in
5501 * array size must be through explicit setting of array_size
5504 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5505 < mddev->array_sectors) {
5506 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5507 "before number of disks\n", mdname(mddev));
5511 atomic_set(&conf->reshape_stripes, 0);
5512 spin_lock_irq(&conf->device_lock);
5513 conf->previous_raid_disks = conf->raid_disks;
5514 conf->raid_disks += mddev->delta_disks;
5515 conf->prev_chunk_sectors = conf->chunk_sectors;
5516 conf->chunk_sectors = mddev->new_chunk_sectors;
5517 conf->prev_algo = conf->algorithm;
5518 conf->algorithm = mddev->new_layout;
5519 if (mddev->delta_disks < 0)
5520 conf->reshape_progress = raid5_size(mddev, 0, 0);
5522 conf->reshape_progress = 0;
5523 conf->reshape_safe = conf->reshape_progress;
5525 spin_unlock_irq(&conf->device_lock);
5527 /* Add some new drives, as many as will fit.
5528 * We know there are enough to make the newly sized array work.
5529 * Don't add devices if we are reducing the number of
5530 * devices in the array. This is because it is not possible
5531 * to correctly record the "partially reconstructed" state of
5532 * such devices during the reshape and confusion could result.
5534 if (mddev->delta_disks >= 0)
5535 list_for_each_entry(rdev, &mddev->disks, same_set)
5536 if (rdev->raid_disk < 0 &&
5537 !test_bit(Faulty, &rdev->flags)) {
5538 if (raid5_add_disk(mddev, rdev) == 0) {
5540 if (rdev->raid_disk >= conf->previous_raid_disks) {
5541 set_bit(In_sync, &rdev->flags);
5544 rdev->recovery_offset = 0;
5545 sprintf(nm, "rd%d", rdev->raid_disk);
5546 if (sysfs_create_link(&mddev->kobj,
5549 "md/raid:%s: failed to create "
5556 /* When a reshape changes the number of devices, ->degraded
5557 * is measured against the larger of the pre and post number of
5559 if (mddev->delta_disks > 0) {
5560 spin_lock_irqsave(&conf->device_lock, flags);
5561 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5563 spin_unlock_irqrestore(&conf->device_lock, flags);
5565 mddev->raid_disks = conf->raid_disks;
5566 mddev->reshape_position = conf->reshape_progress;
5567 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5569 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5570 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5571 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5572 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5573 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5575 if (!mddev->sync_thread) {
5576 mddev->recovery = 0;
5577 spin_lock_irq(&conf->device_lock);
5578 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5579 conf->reshape_progress = MaxSector;
5580 spin_unlock_irq(&conf->device_lock);
5583 conf->reshape_checkpoint = jiffies;
5584 md_wakeup_thread(mddev->sync_thread);
5585 md_new_event(mddev);
5589 /* This is called from the reshape thread and should make any
5590 * changes needed in 'conf'
5592 static void end_reshape(raid5_conf_t *conf)
5595 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5597 spin_lock_irq(&conf->device_lock);
5598 conf->previous_raid_disks = conf->raid_disks;
5599 conf->reshape_progress = MaxSector;
5600 spin_unlock_irq(&conf->device_lock);
5601 wake_up(&conf->wait_for_overlap);
5603 /* read-ahead size must cover two whole stripes, which is
5604 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5607 int data_disks = conf->raid_disks - conf->max_degraded;
5608 int stripe = data_disks * ((conf->chunk_sectors << 9)
5610 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5611 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5616 /* This is called from the raid5d thread with mddev_lock held.
5617 * It makes config changes to the device.
5619 static void raid5_finish_reshape(mddev_t *mddev)
5621 raid5_conf_t *conf = mddev->private;
5623 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5625 if (mddev->delta_disks > 0) {
5626 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5627 set_capacity(mddev->gendisk, mddev->array_sectors);
5628 revalidate_disk(mddev->gendisk);
5631 mddev->degraded = conf->raid_disks;
5632 for (d = 0; d < conf->raid_disks ; d++)
5633 if (conf->disks[d].rdev &&
5635 &conf->disks[d].rdev->flags))
5637 for (d = conf->raid_disks ;
5638 d < conf->raid_disks - mddev->delta_disks;
5640 mdk_rdev_t *rdev = conf->disks[d].rdev;
5641 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5643 sprintf(nm, "rd%d", rdev->raid_disk);
5644 sysfs_remove_link(&mddev->kobj, nm);
5645 rdev->raid_disk = -1;
5649 mddev->layout = conf->algorithm;
5650 mddev->chunk_sectors = conf->chunk_sectors;
5651 mddev->reshape_position = MaxSector;
5652 mddev->delta_disks = 0;
5656 static void raid5_quiesce(mddev_t *mddev, int state)
5658 raid5_conf_t *conf = mddev->private;
5661 case 2: /* resume for a suspend */
5662 wake_up(&conf->wait_for_overlap);
5665 case 1: /* stop all writes */
5666 spin_lock_irq(&conf->device_lock);
5667 /* '2' tells resync/reshape to pause so that all
5668 * active stripes can drain
5671 wait_event_lock_irq(conf->wait_for_stripe,
5672 atomic_read(&conf->active_stripes) == 0 &&
5673 atomic_read(&conf->active_aligned_reads) == 0,
5674 conf->device_lock, /* nothing */);
5676 spin_unlock_irq(&conf->device_lock);
5677 /* allow reshape to continue */
5678 wake_up(&conf->wait_for_overlap);
5681 case 0: /* re-enable writes */
5682 spin_lock_irq(&conf->device_lock);
5684 wake_up(&conf->wait_for_stripe);
5685 wake_up(&conf->wait_for_overlap);
5686 spin_unlock_irq(&conf->device_lock);
5692 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5694 struct raid0_private_data *raid0_priv = mddev->private;
5696 /* for raid0 takeover only one zone is supported */
5697 if (raid0_priv->nr_strip_zones > 1) {
5698 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5700 return ERR_PTR(-EINVAL);
5703 mddev->new_level = level;
5704 mddev->new_layout = ALGORITHM_PARITY_N;
5705 mddev->new_chunk_sectors = mddev->chunk_sectors;
5706 mddev->raid_disks += 1;
5707 mddev->delta_disks = 1;
5708 /* make sure it will be not marked as dirty */
5709 mddev->recovery_cp = MaxSector;
5711 return setup_conf(mddev);
5715 static void *raid5_takeover_raid1(mddev_t *mddev)
5719 if (mddev->raid_disks != 2 ||
5720 mddev->degraded > 1)
5721 return ERR_PTR(-EINVAL);
5723 /* Should check if there are write-behind devices? */
5725 chunksect = 64*2; /* 64K by default */
5727 /* The array must be an exact multiple of chunksize */
5728 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5731 if ((chunksect<<9) < STRIPE_SIZE)
5732 /* array size does not allow a suitable chunk size */
5733 return ERR_PTR(-EINVAL);
5735 mddev->new_level = 5;
5736 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5737 mddev->new_chunk_sectors = chunksect;
5739 return setup_conf(mddev);
5742 static void *raid5_takeover_raid6(mddev_t *mddev)
5746 switch (mddev->layout) {
5747 case ALGORITHM_LEFT_ASYMMETRIC_6:
5748 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5750 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5751 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5753 case ALGORITHM_LEFT_SYMMETRIC_6:
5754 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5756 case ALGORITHM_RIGHT_SYMMETRIC_6:
5757 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5759 case ALGORITHM_PARITY_0_6:
5760 new_layout = ALGORITHM_PARITY_0;
5762 case ALGORITHM_PARITY_N:
5763 new_layout = ALGORITHM_PARITY_N;
5766 return ERR_PTR(-EINVAL);
5768 mddev->new_level = 5;
5769 mddev->new_layout = new_layout;
5770 mddev->delta_disks = -1;
5771 mddev->raid_disks -= 1;
5772 return setup_conf(mddev);
5776 static int raid5_check_reshape(mddev_t *mddev)
5778 /* For a 2-drive array, the layout and chunk size can be changed
5779 * immediately as not restriping is needed.
5780 * For larger arrays we record the new value - after validation
5781 * to be used by a reshape pass.
5783 raid5_conf_t *conf = mddev->private;
5784 int new_chunk = mddev->new_chunk_sectors;
5786 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5788 if (new_chunk > 0) {
5789 if (!is_power_of_2(new_chunk))
5791 if (new_chunk < (PAGE_SIZE>>9))
5793 if (mddev->array_sectors & (new_chunk-1))
5794 /* not factor of array size */
5798 /* They look valid */
5800 if (mddev->raid_disks == 2) {
5801 /* can make the change immediately */
5802 if (mddev->new_layout >= 0) {
5803 conf->algorithm = mddev->new_layout;
5804 mddev->layout = mddev->new_layout;
5806 if (new_chunk > 0) {
5807 conf->chunk_sectors = new_chunk ;
5808 mddev->chunk_sectors = new_chunk;
5810 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5811 md_wakeup_thread(mddev->thread);
5813 return check_reshape(mddev);
5816 static int raid6_check_reshape(mddev_t *mddev)
5818 int new_chunk = mddev->new_chunk_sectors;
5820 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5822 if (new_chunk > 0) {
5823 if (!is_power_of_2(new_chunk))
5825 if (new_chunk < (PAGE_SIZE >> 9))
5827 if (mddev->array_sectors & (new_chunk-1))
5828 /* not factor of array size */
5832 /* They look valid */
5833 return check_reshape(mddev);
5836 static void *raid5_takeover(mddev_t *mddev)
5838 /* raid5 can take over:
5839 * raid0 - if there is only one strip zone - make it a raid4 layout
5840 * raid1 - if there are two drives. We need to know the chunk size
5841 * raid4 - trivial - just use a raid4 layout.
5842 * raid6 - Providing it is a *_6 layout
5844 if (mddev->level == 0)
5845 return raid45_takeover_raid0(mddev, 5);
5846 if (mddev->level == 1)
5847 return raid5_takeover_raid1(mddev);
5848 if (mddev->level == 4) {
5849 mddev->new_layout = ALGORITHM_PARITY_N;
5850 mddev->new_level = 5;
5851 return setup_conf(mddev);
5853 if (mddev->level == 6)
5854 return raid5_takeover_raid6(mddev);
5856 return ERR_PTR(-EINVAL);
5859 static void *raid4_takeover(mddev_t *mddev)
5861 /* raid4 can take over:
5862 * raid0 - if there is only one strip zone
5863 * raid5 - if layout is right
5865 if (mddev->level == 0)
5866 return raid45_takeover_raid0(mddev, 4);
5867 if (mddev->level == 5 &&
5868 mddev->layout == ALGORITHM_PARITY_N) {
5869 mddev->new_layout = 0;
5870 mddev->new_level = 4;
5871 return setup_conf(mddev);
5873 return ERR_PTR(-EINVAL);
5876 static struct mdk_personality raid5_personality;
5878 static void *raid6_takeover(mddev_t *mddev)
5880 /* Currently can only take over a raid5. We map the
5881 * personality to an equivalent raid6 personality
5882 * with the Q block at the end.
5886 if (mddev->pers != &raid5_personality)
5887 return ERR_PTR(-EINVAL);
5888 if (mddev->degraded > 1)
5889 return ERR_PTR(-EINVAL);
5890 if (mddev->raid_disks > 253)
5891 return ERR_PTR(-EINVAL);
5892 if (mddev->raid_disks < 3)
5893 return ERR_PTR(-EINVAL);
5895 switch (mddev->layout) {
5896 case ALGORITHM_LEFT_ASYMMETRIC:
5897 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5899 case ALGORITHM_RIGHT_ASYMMETRIC:
5900 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5902 case ALGORITHM_LEFT_SYMMETRIC:
5903 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5905 case ALGORITHM_RIGHT_SYMMETRIC:
5906 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5908 case ALGORITHM_PARITY_0:
5909 new_layout = ALGORITHM_PARITY_0_6;
5911 case ALGORITHM_PARITY_N:
5912 new_layout = ALGORITHM_PARITY_N;
5915 return ERR_PTR(-EINVAL);
5917 mddev->new_level = 6;
5918 mddev->new_layout = new_layout;
5919 mddev->delta_disks = 1;
5920 mddev->raid_disks += 1;
5921 return setup_conf(mddev);
5925 static struct mdk_personality raid6_personality =
5929 .owner = THIS_MODULE,
5930 .make_request = make_request,
5934 .error_handler = error,
5935 .hot_add_disk = raid5_add_disk,
5936 .hot_remove_disk= raid5_remove_disk,
5937 .spare_active = raid5_spare_active,
5938 .sync_request = sync_request,
5939 .resize = raid5_resize,
5941 .check_reshape = raid6_check_reshape,
5942 .start_reshape = raid5_start_reshape,
5943 .finish_reshape = raid5_finish_reshape,
5944 .quiesce = raid5_quiesce,
5945 .takeover = raid6_takeover,
5947 static struct mdk_personality raid5_personality =
5951 .owner = THIS_MODULE,
5952 .make_request = make_request,
5956 .error_handler = error,
5957 .hot_add_disk = raid5_add_disk,
5958 .hot_remove_disk= raid5_remove_disk,
5959 .spare_active = raid5_spare_active,
5960 .sync_request = sync_request,
5961 .resize = raid5_resize,
5963 .check_reshape = raid5_check_reshape,
5964 .start_reshape = raid5_start_reshape,
5965 .finish_reshape = raid5_finish_reshape,
5966 .quiesce = raid5_quiesce,
5967 .takeover = raid5_takeover,
5970 static struct mdk_personality raid4_personality =
5974 .owner = THIS_MODULE,
5975 .make_request = make_request,
5979 .error_handler = error,
5980 .hot_add_disk = raid5_add_disk,
5981 .hot_remove_disk= raid5_remove_disk,
5982 .spare_active = raid5_spare_active,
5983 .sync_request = sync_request,
5984 .resize = raid5_resize,
5986 .check_reshape = raid5_check_reshape,
5987 .start_reshape = raid5_start_reshape,
5988 .finish_reshape = raid5_finish_reshape,
5989 .quiesce = raid5_quiesce,
5990 .takeover = raid4_takeover,
5993 static int __init raid5_init(void)
5995 register_md_personality(&raid6_personality);
5996 register_md_personality(&raid5_personality);
5997 register_md_personality(&raid4_personality);
6001 static void raid5_exit(void)
6003 unregister_md_personality(&raid6_personality);
6004 unregister_md_personality(&raid5_personality);
6005 unregister_md_personality(&raid4_personality);
6008 module_init(raid5_init);
6009 module_exit(raid5_exit);
6010 MODULE_LICENSE("GPL");
6011 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6012 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6013 MODULE_ALIAS("md-raid5");
6014 MODULE_ALIAS("md-raid4");
6015 MODULE_ALIAS("md-level-5");
6016 MODULE_ALIAS("md-level-4");
6017 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6018 MODULE_ALIAS("md-raid6");
6019 MODULE_ALIAS("md-level-6");
6021 /* This used to be two separate modules, they were: */
6022 MODULE_ALIAS("raid5");
6023 MODULE_ALIAS("raid6");