Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
58
59 /*
60  * Stripe cache
61  */
62
63 #define NR_STRIPES              256
64 #define STRIPE_SIZE             PAGE_SIZE
65 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
67 #define IO_THRESHOLD            1
68 #define BYPASS_THRESHOLD        1
69 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK               (NR_HASH - 1)
71
72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
73
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75  * order without overlap.  There may be several bio's per stripe+device, and
76  * a bio could span several devices.
77  * When walking this list for a particular stripe+device, we must never proceed
78  * beyond a bio that extends past this device, as the next bio might no longer
79  * be valid.
80  * This macro is used to determine the 'next' bio in the list, given the sector
81  * of the current stripe+device
82  */
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84 /*
85  * The following can be used to debug the driver
86  */
87 #define RAID5_PARANOIA  1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
93
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
98
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100
101 /*
102  * We maintain a biased count of active stripes in the bottom 16 bits of
103  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104  */
105 static inline int raid5_bi_phys_segments(struct bio *bio)
106 {
107         return bio->bi_phys_segments & 0xffff;
108 }
109
110 static inline int raid5_bi_hw_segments(struct bio *bio)
111 {
112         return (bio->bi_phys_segments >> 16) & 0xffff;
113 }
114
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116 {
117         --bio->bi_phys_segments;
118         return raid5_bi_phys_segments(bio);
119 }
120
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122 {
123         unsigned short val = raid5_bi_hw_segments(bio);
124
125         --val;
126         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127         return val;
128 }
129
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131 {
132         bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
133 }
134
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
137 {
138         if (sh->ddf_layout)
139                 /* ddf always start from first device */
140                 return 0;
141         /* md starts just after Q block */
142         if (sh->qd_idx == sh->disks - 1)
143                 return 0;
144         else
145                 return sh->qd_idx + 1;
146 }
147 static inline int raid6_next_disk(int disk, int raid_disks)
148 {
149         disk++;
150         return (disk < raid_disks) ? disk : 0;
151 }
152
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154  * We need to map each disk to a 'slot', where the data disks are slot
155  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156  * is raid_disks-1.  This help does that mapping.
157  */
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159                              int *count, int syndrome_disks)
160 {
161         int slot = *count;
162
163         if (sh->ddf_layout)
164                 (*count)++;
165         if (idx == sh->pd_idx)
166                 return syndrome_disks;
167         if (idx == sh->qd_idx)
168                 return syndrome_disks + 1;
169         if (!sh->ddf_layout)
170                 (*count)++;
171         return slot;
172 }
173
174 static void return_io(struct bio *return_bi)
175 {
176         struct bio *bi = return_bi;
177         while (bi) {
178
179                 return_bi = bi->bi_next;
180                 bi->bi_next = NULL;
181                 bi->bi_size = 0;
182                 bio_endio(bi, 0);
183                 bi = return_bi;
184         }
185 }
186
187 static void print_raid5_conf (raid5_conf_t *conf);
188
189 static int stripe_operations_active(struct stripe_head *sh)
190 {
191         return sh->check_state || sh->reconstruct_state ||
192                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194 }
195
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
197 {
198         if (atomic_dec_and_test(&sh->count)) {
199                 BUG_ON(!list_empty(&sh->lru));
200                 BUG_ON(atomic_read(&conf->active_stripes)==0);
201                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
202                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
203                                 list_add_tail(&sh->lru, &conf->delayed_list);
204                                 blk_plug_device(conf->mddev->queue);
205                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
206                                    sh->bm_seq - conf->seq_write > 0) {
207                                 list_add_tail(&sh->lru, &conf->bitmap_list);
208                                 blk_plug_device(conf->mddev->queue);
209                         } else {
210                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
211                                 list_add_tail(&sh->lru, &conf->handle_list);
212                         }
213                         md_wakeup_thread(conf->mddev->thread);
214                 } else {
215                         BUG_ON(stripe_operations_active(sh));
216                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
217                                 atomic_dec(&conf->preread_active_stripes);
218                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
219                                         md_wakeup_thread(conf->mddev->thread);
220                         }
221                         atomic_dec(&conf->active_stripes);
222                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
223                                 list_add_tail(&sh->lru, &conf->inactive_list);
224                                 wake_up(&conf->wait_for_stripe);
225                                 if (conf->retry_read_aligned)
226                                         md_wakeup_thread(conf->mddev->thread);
227                         }
228                 }
229         }
230 }
231
232 static void release_stripe(struct stripe_head *sh)
233 {
234         raid5_conf_t *conf = sh->raid_conf;
235         unsigned long flags;
236
237         spin_lock_irqsave(&conf->device_lock, flags);
238         __release_stripe(conf, sh);
239         spin_unlock_irqrestore(&conf->device_lock, flags);
240 }
241
242 static inline void remove_hash(struct stripe_head *sh)
243 {
244         pr_debug("remove_hash(), stripe %llu\n",
245                 (unsigned long long)sh->sector);
246
247         hlist_del_init(&sh->hash);
248 }
249
250 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
251 {
252         struct hlist_head *hp = stripe_hash(conf, sh->sector);
253
254         pr_debug("insert_hash(), stripe %llu\n",
255                 (unsigned long long)sh->sector);
256
257         CHECK_DEVLOCK();
258         hlist_add_head(&sh->hash, hp);
259 }
260
261
262 /* find an idle stripe, make sure it is unhashed, and return it. */
263 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
264 {
265         struct stripe_head *sh = NULL;
266         struct list_head *first;
267
268         CHECK_DEVLOCK();
269         if (list_empty(&conf->inactive_list))
270                 goto out;
271         first = conf->inactive_list.next;
272         sh = list_entry(first, struct stripe_head, lru);
273         list_del_init(first);
274         remove_hash(sh);
275         atomic_inc(&conf->active_stripes);
276 out:
277         return sh;
278 }
279
280 static void shrink_buffers(struct stripe_head *sh)
281 {
282         struct page *p;
283         int i;
284         int num = sh->raid_conf->pool_size;
285
286         for (i = 0; i < num ; i++) {
287                 p = sh->dev[i].page;
288                 if (!p)
289                         continue;
290                 sh->dev[i].page = NULL;
291                 put_page(p);
292         }
293 }
294
295 static int grow_buffers(struct stripe_head *sh)
296 {
297         int i;
298         int num = sh->raid_conf->pool_size;
299
300         for (i = 0; i < num; i++) {
301                 struct page *page;
302
303                 if (!(page = alloc_page(GFP_KERNEL))) {
304                         return 1;
305                 }
306                 sh->dev[i].page = page;
307         }
308         return 0;
309 }
310
311 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
312 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
313                             struct stripe_head *sh);
314
315 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
316 {
317         raid5_conf_t *conf = sh->raid_conf;
318         int i;
319
320         BUG_ON(atomic_read(&sh->count) != 0);
321         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
322         BUG_ON(stripe_operations_active(sh));
323
324         CHECK_DEVLOCK();
325         pr_debug("init_stripe called, stripe %llu\n",
326                 (unsigned long long)sh->sector);
327
328         remove_hash(sh);
329
330         sh->generation = conf->generation - previous;
331         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
332         sh->sector = sector;
333         stripe_set_idx(sector, conf, previous, sh);
334         sh->state = 0;
335
336
337         for (i = sh->disks; i--; ) {
338                 struct r5dev *dev = &sh->dev[i];
339
340                 if (dev->toread || dev->read || dev->towrite || dev->written ||
341                     test_bit(R5_LOCKED, &dev->flags)) {
342                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
343                                (unsigned long long)sh->sector, i, dev->toread,
344                                dev->read, dev->towrite, dev->written,
345                                test_bit(R5_LOCKED, &dev->flags));
346                         BUG();
347                 }
348                 dev->flags = 0;
349                 raid5_build_block(sh, i, previous);
350         }
351         insert_hash(conf, sh);
352 }
353
354 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
355                                          short generation)
356 {
357         struct stripe_head *sh;
358         struct hlist_node *hn;
359
360         CHECK_DEVLOCK();
361         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
362         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
363                 if (sh->sector == sector && sh->generation == generation)
364                         return sh;
365         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
366         return NULL;
367 }
368
369 /*
370  * Need to check if array has failed when deciding whether to:
371  *  - start an array
372  *  - remove non-faulty devices
373  *  - add a spare
374  *  - allow a reshape
375  * This determination is simple when no reshape is happening.
376  * However if there is a reshape, we need to carefully check
377  * both the before and after sections.
378  * This is because some failed devices may only affect one
379  * of the two sections, and some non-in_sync devices may
380  * be insync in the section most affected by failed devices.
381  */
382 static int has_failed(raid5_conf_t *conf)
383 {
384         int degraded;
385         int i;
386         if (conf->mddev->reshape_position == MaxSector)
387                 return conf->mddev->degraded > conf->max_degraded;
388
389         rcu_read_lock();
390         degraded = 0;
391         for (i = 0; i < conf->previous_raid_disks; i++) {
392                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
393                 if (!rdev || test_bit(Faulty, &rdev->flags))
394                         degraded++;
395                 else if (test_bit(In_sync, &rdev->flags))
396                         ;
397                 else
398                         /* not in-sync or faulty.
399                          * If the reshape increases the number of devices,
400                          * this is being recovered by the reshape, so
401                          * this 'previous' section is not in_sync.
402                          * If the number of devices is being reduced however,
403                          * the device can only be part of the array if
404                          * we are reverting a reshape, so this section will
405                          * be in-sync.
406                          */
407                         if (conf->raid_disks >= conf->previous_raid_disks)
408                                 degraded++;
409         }
410         rcu_read_unlock();
411         if (degraded > conf->max_degraded)
412                 return 1;
413         rcu_read_lock();
414         degraded = 0;
415         for (i = 0; i < conf->raid_disks; i++) {
416                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
417                 if (!rdev || test_bit(Faulty, &rdev->flags))
418                         degraded++;
419                 else if (test_bit(In_sync, &rdev->flags))
420                         ;
421                 else
422                         /* not in-sync or faulty.
423                          * If reshape increases the number of devices, this
424                          * section has already been recovered, else it
425                          * almost certainly hasn't.
426                          */
427                         if (conf->raid_disks <= conf->previous_raid_disks)
428                                 degraded++;
429         }
430         rcu_read_unlock();
431         if (degraded > conf->max_degraded)
432                 return 1;
433         return 0;
434 }
435
436 static void unplug_slaves(mddev_t *mddev);
437 static void raid5_unplug_device(struct request_queue *q);
438
439 static struct stripe_head *
440 get_active_stripe(raid5_conf_t *conf, sector_t sector,
441                   int previous, int noblock, int noquiesce)
442 {
443         struct stripe_head *sh;
444
445         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
446
447         spin_lock_irq(&conf->device_lock);
448
449         do {
450                 wait_event_lock_irq(conf->wait_for_stripe,
451                                     conf->quiesce == 0 || noquiesce,
452                                     conf->device_lock, /* nothing */);
453                 sh = __find_stripe(conf, sector, conf->generation - previous);
454                 if (!sh) {
455                         if (!conf->inactive_blocked)
456                                 sh = get_free_stripe(conf);
457                         if (noblock && sh == NULL)
458                                 break;
459                         if (!sh) {
460                                 conf->inactive_blocked = 1;
461                                 wait_event_lock_irq(conf->wait_for_stripe,
462                                                     !list_empty(&conf->inactive_list) &&
463                                                     (atomic_read(&conf->active_stripes)
464                                                      < (conf->max_nr_stripes *3/4)
465                                                      || !conf->inactive_blocked),
466                                                     conf->device_lock,
467                                                     raid5_unplug_device(conf->mddev->queue)
468                                         );
469                                 conf->inactive_blocked = 0;
470                         } else
471                                 init_stripe(sh, sector, previous);
472                 } else {
473                         if (atomic_read(&sh->count)) {
474                                 BUG_ON(!list_empty(&sh->lru)
475                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
476                         } else {
477                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
478                                         atomic_inc(&conf->active_stripes);
479                                 if (list_empty(&sh->lru) &&
480                                     !test_bit(STRIPE_EXPANDING, &sh->state))
481                                         BUG();
482                                 list_del_init(&sh->lru);
483                         }
484                 }
485         } while (sh == NULL);
486
487         if (sh)
488                 atomic_inc(&sh->count);
489
490         spin_unlock_irq(&conf->device_lock);
491         return sh;
492 }
493
494 static void
495 raid5_end_read_request(struct bio *bi, int error);
496 static void
497 raid5_end_write_request(struct bio *bi, int error);
498
499 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
500 {
501         raid5_conf_t *conf = sh->raid_conf;
502         int i, disks = sh->disks;
503
504         might_sleep();
505
506         for (i = disks; i--; ) {
507                 int rw;
508                 struct bio *bi;
509                 mdk_rdev_t *rdev;
510                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
511                         rw = WRITE;
512                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
513                         rw = READ;
514                 else
515                         continue;
516
517                 bi = &sh->dev[i].req;
518
519                 bi->bi_rw = rw;
520                 if (rw == WRITE)
521                         bi->bi_end_io = raid5_end_write_request;
522                 else
523                         bi->bi_end_io = raid5_end_read_request;
524
525                 rcu_read_lock();
526                 rdev = rcu_dereference(conf->disks[i].rdev);
527                 if (rdev && test_bit(Faulty, &rdev->flags))
528                         rdev = NULL;
529                 if (rdev)
530                         atomic_inc(&rdev->nr_pending);
531                 rcu_read_unlock();
532
533                 if (rdev) {
534                         if (s->syncing || s->expanding || s->expanded)
535                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
536
537                         set_bit(STRIPE_IO_STARTED, &sh->state);
538
539                         bi->bi_bdev = rdev->bdev;
540                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
541                                 __func__, (unsigned long long)sh->sector,
542                                 bi->bi_rw, i);
543                         atomic_inc(&sh->count);
544                         bi->bi_sector = sh->sector + rdev->data_offset;
545                         bi->bi_flags = 1 << BIO_UPTODATE;
546                         bi->bi_vcnt = 1;
547                         bi->bi_max_vecs = 1;
548                         bi->bi_idx = 0;
549                         bi->bi_io_vec = &sh->dev[i].vec;
550                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
551                         bi->bi_io_vec[0].bv_offset = 0;
552                         bi->bi_size = STRIPE_SIZE;
553                         bi->bi_next = NULL;
554                         if (rw == WRITE &&
555                             test_bit(R5_ReWrite, &sh->dev[i].flags))
556                                 atomic_add(STRIPE_SECTORS,
557                                         &rdev->corrected_errors);
558                         generic_make_request(bi);
559                 } else {
560                         if (rw == WRITE)
561                                 set_bit(STRIPE_DEGRADED, &sh->state);
562                         pr_debug("skip op %ld on disc %d for sector %llu\n",
563                                 bi->bi_rw, i, (unsigned long long)sh->sector);
564                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
565                         set_bit(STRIPE_HANDLE, &sh->state);
566                 }
567         }
568 }
569
570 static struct dma_async_tx_descriptor *
571 async_copy_data(int frombio, struct bio *bio, struct page *page,
572         sector_t sector, struct dma_async_tx_descriptor *tx)
573 {
574         struct bio_vec *bvl;
575         struct page *bio_page;
576         int i;
577         int page_offset;
578         struct async_submit_ctl submit;
579         enum async_tx_flags flags = 0;
580
581         if (bio->bi_sector >= sector)
582                 page_offset = (signed)(bio->bi_sector - sector) * 512;
583         else
584                 page_offset = (signed)(sector - bio->bi_sector) * -512;
585
586         if (frombio)
587                 flags |= ASYNC_TX_FENCE;
588         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
589
590         bio_for_each_segment(bvl, bio, i) {
591                 int len = bio_iovec_idx(bio, i)->bv_len;
592                 int clen;
593                 int b_offset = 0;
594
595                 if (page_offset < 0) {
596                         b_offset = -page_offset;
597                         page_offset += b_offset;
598                         len -= b_offset;
599                 }
600
601                 if (len > 0 && page_offset + len > STRIPE_SIZE)
602                         clen = STRIPE_SIZE - page_offset;
603                 else
604                         clen = len;
605
606                 if (clen > 0) {
607                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
608                         bio_page = bio_iovec_idx(bio, i)->bv_page;
609                         if (frombio)
610                                 tx = async_memcpy(page, bio_page, page_offset,
611                                                   b_offset, clen, &submit);
612                         else
613                                 tx = async_memcpy(bio_page, page, b_offset,
614                                                   page_offset, clen, &submit);
615                 }
616                 /* chain the operations */
617                 submit.depend_tx = tx;
618
619                 if (clen < len) /* hit end of page */
620                         break;
621                 page_offset +=  len;
622         }
623
624         return tx;
625 }
626
627 static void ops_complete_biofill(void *stripe_head_ref)
628 {
629         struct stripe_head *sh = stripe_head_ref;
630         struct bio *return_bi = NULL;
631         raid5_conf_t *conf = sh->raid_conf;
632         int i;
633
634         pr_debug("%s: stripe %llu\n", __func__,
635                 (unsigned long long)sh->sector);
636
637         /* clear completed biofills */
638         spin_lock_irq(&conf->device_lock);
639         for (i = sh->disks; i--; ) {
640                 struct r5dev *dev = &sh->dev[i];
641
642                 /* acknowledge completion of a biofill operation */
643                 /* and check if we need to reply to a read request,
644                  * new R5_Wantfill requests are held off until
645                  * !STRIPE_BIOFILL_RUN
646                  */
647                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
648                         struct bio *rbi, *rbi2;
649
650                         BUG_ON(!dev->read);
651                         rbi = dev->read;
652                         dev->read = NULL;
653                         while (rbi && rbi->bi_sector <
654                                 dev->sector + STRIPE_SECTORS) {
655                                 rbi2 = r5_next_bio(rbi, dev->sector);
656                                 if (!raid5_dec_bi_phys_segments(rbi)) {
657                                         rbi->bi_next = return_bi;
658                                         return_bi = rbi;
659                                 }
660                                 rbi = rbi2;
661                         }
662                 }
663         }
664         spin_unlock_irq(&conf->device_lock);
665         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
666
667         return_io(return_bi);
668
669         set_bit(STRIPE_HANDLE, &sh->state);
670         release_stripe(sh);
671 }
672
673 static void ops_run_biofill(struct stripe_head *sh)
674 {
675         struct dma_async_tx_descriptor *tx = NULL;
676         raid5_conf_t *conf = sh->raid_conf;
677         struct async_submit_ctl submit;
678         int i;
679
680         pr_debug("%s: stripe %llu\n", __func__,
681                 (unsigned long long)sh->sector);
682
683         for (i = sh->disks; i--; ) {
684                 struct r5dev *dev = &sh->dev[i];
685                 if (test_bit(R5_Wantfill, &dev->flags)) {
686                         struct bio *rbi;
687                         spin_lock_irq(&conf->device_lock);
688                         dev->read = rbi = dev->toread;
689                         dev->toread = NULL;
690                         spin_unlock_irq(&conf->device_lock);
691                         while (rbi && rbi->bi_sector <
692                                 dev->sector + STRIPE_SECTORS) {
693                                 tx = async_copy_data(0, rbi, dev->page,
694                                         dev->sector, tx);
695                                 rbi = r5_next_bio(rbi, dev->sector);
696                         }
697                 }
698         }
699
700         atomic_inc(&sh->count);
701         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
702         async_trigger_callback(&submit);
703 }
704
705 static void mark_target_uptodate(struct stripe_head *sh, int target)
706 {
707         struct r5dev *tgt;
708
709         if (target < 0)
710                 return;
711
712         tgt = &sh->dev[target];
713         set_bit(R5_UPTODATE, &tgt->flags);
714         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
715         clear_bit(R5_Wantcompute, &tgt->flags);
716 }
717
718 static void ops_complete_compute(void *stripe_head_ref)
719 {
720         struct stripe_head *sh = stripe_head_ref;
721
722         pr_debug("%s: stripe %llu\n", __func__,
723                 (unsigned long long)sh->sector);
724
725         /* mark the computed target(s) as uptodate */
726         mark_target_uptodate(sh, sh->ops.target);
727         mark_target_uptodate(sh, sh->ops.target2);
728
729         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
730         if (sh->check_state == check_state_compute_run)
731                 sh->check_state = check_state_compute_result;
732         set_bit(STRIPE_HANDLE, &sh->state);
733         release_stripe(sh);
734 }
735
736 /* return a pointer to the address conversion region of the scribble buffer */
737 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
738                                  struct raid5_percpu *percpu)
739 {
740         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
741 }
742
743 static struct dma_async_tx_descriptor *
744 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
745 {
746         int disks = sh->disks;
747         struct page **xor_srcs = percpu->scribble;
748         int target = sh->ops.target;
749         struct r5dev *tgt = &sh->dev[target];
750         struct page *xor_dest = tgt->page;
751         int count = 0;
752         struct dma_async_tx_descriptor *tx;
753         struct async_submit_ctl submit;
754         int i;
755
756         pr_debug("%s: stripe %llu block: %d\n",
757                 __func__, (unsigned long long)sh->sector, target);
758         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
759
760         for (i = disks; i--; )
761                 if (i != target)
762                         xor_srcs[count++] = sh->dev[i].page;
763
764         atomic_inc(&sh->count);
765
766         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
767                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
768         if (unlikely(count == 1))
769                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
770         else
771                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
772
773         return tx;
774 }
775
776 /* set_syndrome_sources - populate source buffers for gen_syndrome
777  * @srcs - (struct page *) array of size sh->disks
778  * @sh - stripe_head to parse
779  *
780  * Populates srcs in proper layout order for the stripe and returns the
781  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
782  * destination buffer is recorded in srcs[count] and the Q destination
783  * is recorded in srcs[count+1]].
784  */
785 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
786 {
787         int disks = sh->disks;
788         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
789         int d0_idx = raid6_d0(sh);
790         int count;
791         int i;
792
793         for (i = 0; i < disks; i++)
794                 srcs[i] = NULL;
795
796         count = 0;
797         i = d0_idx;
798         do {
799                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
800
801                 srcs[slot] = sh->dev[i].page;
802                 i = raid6_next_disk(i, disks);
803         } while (i != d0_idx);
804
805         return syndrome_disks;
806 }
807
808 static struct dma_async_tx_descriptor *
809 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
810 {
811         int disks = sh->disks;
812         struct page **blocks = percpu->scribble;
813         int target;
814         int qd_idx = sh->qd_idx;
815         struct dma_async_tx_descriptor *tx;
816         struct async_submit_ctl submit;
817         struct r5dev *tgt;
818         struct page *dest;
819         int i;
820         int count;
821
822         if (sh->ops.target < 0)
823                 target = sh->ops.target2;
824         else if (sh->ops.target2 < 0)
825                 target = sh->ops.target;
826         else
827                 /* we should only have one valid target */
828                 BUG();
829         BUG_ON(target < 0);
830         pr_debug("%s: stripe %llu block: %d\n",
831                 __func__, (unsigned long long)sh->sector, target);
832
833         tgt = &sh->dev[target];
834         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
835         dest = tgt->page;
836
837         atomic_inc(&sh->count);
838
839         if (target == qd_idx) {
840                 count = set_syndrome_sources(blocks, sh);
841                 blocks[count] = NULL; /* regenerating p is not necessary */
842                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
843                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
844                                   ops_complete_compute, sh,
845                                   to_addr_conv(sh, percpu));
846                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
847         } else {
848                 /* Compute any data- or p-drive using XOR */
849                 count = 0;
850                 for (i = disks; i-- ; ) {
851                         if (i == target || i == qd_idx)
852                                 continue;
853                         blocks[count++] = sh->dev[i].page;
854                 }
855
856                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
857                                   NULL, ops_complete_compute, sh,
858                                   to_addr_conv(sh, percpu));
859                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
860         }
861
862         return tx;
863 }
864
865 static struct dma_async_tx_descriptor *
866 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
867 {
868         int i, count, disks = sh->disks;
869         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
870         int d0_idx = raid6_d0(sh);
871         int faila = -1, failb = -1;
872         int target = sh->ops.target;
873         int target2 = sh->ops.target2;
874         struct r5dev *tgt = &sh->dev[target];
875         struct r5dev *tgt2 = &sh->dev[target2];
876         struct dma_async_tx_descriptor *tx;
877         struct page **blocks = percpu->scribble;
878         struct async_submit_ctl submit;
879
880         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
881                  __func__, (unsigned long long)sh->sector, target, target2);
882         BUG_ON(target < 0 || target2 < 0);
883         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
884         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
885
886         /* we need to open-code set_syndrome_sources to handle the
887          * slot number conversion for 'faila' and 'failb'
888          */
889         for (i = 0; i < disks ; i++)
890                 blocks[i] = NULL;
891         count = 0;
892         i = d0_idx;
893         do {
894                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
895
896                 blocks[slot] = sh->dev[i].page;
897
898                 if (i == target)
899                         faila = slot;
900                 if (i == target2)
901                         failb = slot;
902                 i = raid6_next_disk(i, disks);
903         } while (i != d0_idx);
904
905         BUG_ON(faila == failb);
906         if (failb < faila)
907                 swap(faila, failb);
908         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
909                  __func__, (unsigned long long)sh->sector, faila, failb);
910
911         atomic_inc(&sh->count);
912
913         if (failb == syndrome_disks+1) {
914                 /* Q disk is one of the missing disks */
915                 if (faila == syndrome_disks) {
916                         /* Missing P+Q, just recompute */
917                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
918                                           ops_complete_compute, sh,
919                                           to_addr_conv(sh, percpu));
920                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
921                                                   STRIPE_SIZE, &submit);
922                 } else {
923                         struct page *dest;
924                         int data_target;
925                         int qd_idx = sh->qd_idx;
926
927                         /* Missing D+Q: recompute D from P, then recompute Q */
928                         if (target == qd_idx)
929                                 data_target = target2;
930                         else
931                                 data_target = target;
932
933                         count = 0;
934                         for (i = disks; i-- ; ) {
935                                 if (i == data_target || i == qd_idx)
936                                         continue;
937                                 blocks[count++] = sh->dev[i].page;
938                         }
939                         dest = sh->dev[data_target].page;
940                         init_async_submit(&submit,
941                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
942                                           NULL, NULL, NULL,
943                                           to_addr_conv(sh, percpu));
944                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
945                                        &submit);
946
947                         count = set_syndrome_sources(blocks, sh);
948                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
949                                           ops_complete_compute, sh,
950                                           to_addr_conv(sh, percpu));
951                         return async_gen_syndrome(blocks, 0, count+2,
952                                                   STRIPE_SIZE, &submit);
953                 }
954         } else {
955                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
956                                   ops_complete_compute, sh,
957                                   to_addr_conv(sh, percpu));
958                 if (failb == syndrome_disks) {
959                         /* We're missing D+P. */
960                         return async_raid6_datap_recov(syndrome_disks+2,
961                                                        STRIPE_SIZE, faila,
962                                                        blocks, &submit);
963                 } else {
964                         /* We're missing D+D. */
965                         return async_raid6_2data_recov(syndrome_disks+2,
966                                                        STRIPE_SIZE, faila, failb,
967                                                        blocks, &submit);
968                 }
969         }
970 }
971
972
973 static void ops_complete_prexor(void *stripe_head_ref)
974 {
975         struct stripe_head *sh = stripe_head_ref;
976
977         pr_debug("%s: stripe %llu\n", __func__,
978                 (unsigned long long)sh->sector);
979 }
980
981 static struct dma_async_tx_descriptor *
982 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
983                struct dma_async_tx_descriptor *tx)
984 {
985         int disks = sh->disks;
986         struct page **xor_srcs = percpu->scribble;
987         int count = 0, pd_idx = sh->pd_idx, i;
988         struct async_submit_ctl submit;
989
990         /* existing parity data subtracted */
991         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
992
993         pr_debug("%s: stripe %llu\n", __func__,
994                 (unsigned long long)sh->sector);
995
996         for (i = disks; i--; ) {
997                 struct r5dev *dev = &sh->dev[i];
998                 /* Only process blocks that are known to be uptodate */
999                 if (test_bit(R5_Wantdrain, &dev->flags))
1000                         xor_srcs[count++] = dev->page;
1001         }
1002
1003         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1004                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1005         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1006
1007         return tx;
1008 }
1009
1010 static struct dma_async_tx_descriptor *
1011 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1012 {
1013         int disks = sh->disks;
1014         int i;
1015
1016         pr_debug("%s: stripe %llu\n", __func__,
1017                 (unsigned long long)sh->sector);
1018
1019         for (i = disks; i--; ) {
1020                 struct r5dev *dev = &sh->dev[i];
1021                 struct bio *chosen;
1022
1023                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1024                         struct bio *wbi;
1025
1026                         spin_lock(&sh->lock);
1027                         chosen = dev->towrite;
1028                         dev->towrite = NULL;
1029                         BUG_ON(dev->written);
1030                         wbi = dev->written = chosen;
1031                         spin_unlock(&sh->lock);
1032
1033                         while (wbi && wbi->bi_sector <
1034                                 dev->sector + STRIPE_SECTORS) {
1035                                 tx = async_copy_data(1, wbi, dev->page,
1036                                         dev->sector, tx);
1037                                 wbi = r5_next_bio(wbi, dev->sector);
1038                         }
1039                 }
1040         }
1041
1042         return tx;
1043 }
1044
1045 static void ops_complete_reconstruct(void *stripe_head_ref)
1046 {
1047         struct stripe_head *sh = stripe_head_ref;
1048         int disks = sh->disks;
1049         int pd_idx = sh->pd_idx;
1050         int qd_idx = sh->qd_idx;
1051         int i;
1052
1053         pr_debug("%s: stripe %llu\n", __func__,
1054                 (unsigned long long)sh->sector);
1055
1056         for (i = disks; i--; ) {
1057                 struct r5dev *dev = &sh->dev[i];
1058
1059                 if (dev->written || i == pd_idx || i == qd_idx)
1060                         set_bit(R5_UPTODATE, &dev->flags);
1061         }
1062
1063         if (sh->reconstruct_state == reconstruct_state_drain_run)
1064                 sh->reconstruct_state = reconstruct_state_drain_result;
1065         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1066                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1067         else {
1068                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1069                 sh->reconstruct_state = reconstruct_state_result;
1070         }
1071
1072         set_bit(STRIPE_HANDLE, &sh->state);
1073         release_stripe(sh);
1074 }
1075
1076 static void
1077 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1078                      struct dma_async_tx_descriptor *tx)
1079 {
1080         int disks = sh->disks;
1081         struct page **xor_srcs = percpu->scribble;
1082         struct async_submit_ctl submit;
1083         int count = 0, pd_idx = sh->pd_idx, i;
1084         struct page *xor_dest;
1085         int prexor = 0;
1086         unsigned long flags;
1087
1088         pr_debug("%s: stripe %llu\n", __func__,
1089                 (unsigned long long)sh->sector);
1090
1091         /* check if prexor is active which means only process blocks
1092          * that are part of a read-modify-write (written)
1093          */
1094         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1095                 prexor = 1;
1096                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1097                 for (i = disks; i--; ) {
1098                         struct r5dev *dev = &sh->dev[i];
1099                         if (dev->written)
1100                                 xor_srcs[count++] = dev->page;
1101                 }
1102         } else {
1103                 xor_dest = sh->dev[pd_idx].page;
1104                 for (i = disks; i--; ) {
1105                         struct r5dev *dev = &sh->dev[i];
1106                         if (i != pd_idx)
1107                                 xor_srcs[count++] = dev->page;
1108                 }
1109         }
1110
1111         /* 1/ if we prexor'd then the dest is reused as a source
1112          * 2/ if we did not prexor then we are redoing the parity
1113          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1114          * for the synchronous xor case
1115          */
1116         flags = ASYNC_TX_ACK |
1117                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1118
1119         atomic_inc(&sh->count);
1120
1121         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1122                           to_addr_conv(sh, percpu));
1123         if (unlikely(count == 1))
1124                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1125         else
1126                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1127 }
1128
1129 static void
1130 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1131                      struct dma_async_tx_descriptor *tx)
1132 {
1133         struct async_submit_ctl submit;
1134         struct page **blocks = percpu->scribble;
1135         int count;
1136
1137         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1138
1139         count = set_syndrome_sources(blocks, sh);
1140
1141         atomic_inc(&sh->count);
1142
1143         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1144                           sh, to_addr_conv(sh, percpu));
1145         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1146 }
1147
1148 static void ops_complete_check(void *stripe_head_ref)
1149 {
1150         struct stripe_head *sh = stripe_head_ref;
1151
1152         pr_debug("%s: stripe %llu\n", __func__,
1153                 (unsigned long long)sh->sector);
1154
1155         sh->check_state = check_state_check_result;
1156         set_bit(STRIPE_HANDLE, &sh->state);
1157         release_stripe(sh);
1158 }
1159
1160 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1161 {
1162         int disks = sh->disks;
1163         int pd_idx = sh->pd_idx;
1164         int qd_idx = sh->qd_idx;
1165         struct page *xor_dest;
1166         struct page **xor_srcs = percpu->scribble;
1167         struct dma_async_tx_descriptor *tx;
1168         struct async_submit_ctl submit;
1169         int count;
1170         int i;
1171
1172         pr_debug("%s: stripe %llu\n", __func__,
1173                 (unsigned long long)sh->sector);
1174
1175         count = 0;
1176         xor_dest = sh->dev[pd_idx].page;
1177         xor_srcs[count++] = xor_dest;
1178         for (i = disks; i--; ) {
1179                 if (i == pd_idx || i == qd_idx)
1180                         continue;
1181                 xor_srcs[count++] = sh->dev[i].page;
1182         }
1183
1184         init_async_submit(&submit, 0, NULL, NULL, NULL,
1185                           to_addr_conv(sh, percpu));
1186         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1187                            &sh->ops.zero_sum_result, &submit);
1188
1189         atomic_inc(&sh->count);
1190         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1191         tx = async_trigger_callback(&submit);
1192 }
1193
1194 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1195 {
1196         struct page **srcs = percpu->scribble;
1197         struct async_submit_ctl submit;
1198         int count;
1199
1200         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1201                 (unsigned long long)sh->sector, checkp);
1202
1203         count = set_syndrome_sources(srcs, sh);
1204         if (!checkp)
1205                 srcs[count] = NULL;
1206
1207         atomic_inc(&sh->count);
1208         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1209                           sh, to_addr_conv(sh, percpu));
1210         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1211                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1212 }
1213
1214 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1215 {
1216         int overlap_clear = 0, i, disks = sh->disks;
1217         struct dma_async_tx_descriptor *tx = NULL;
1218         raid5_conf_t *conf = sh->raid_conf;
1219         int level = conf->level;
1220         struct raid5_percpu *percpu;
1221         unsigned long cpu;
1222
1223         cpu = get_cpu();
1224         percpu = per_cpu_ptr(conf->percpu, cpu);
1225         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1226                 ops_run_biofill(sh);
1227                 overlap_clear++;
1228         }
1229
1230         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1231                 if (level < 6)
1232                         tx = ops_run_compute5(sh, percpu);
1233                 else {
1234                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1235                                 tx = ops_run_compute6_1(sh, percpu);
1236                         else
1237                                 tx = ops_run_compute6_2(sh, percpu);
1238                 }
1239                 /* terminate the chain if reconstruct is not set to be run */
1240                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1241                         async_tx_ack(tx);
1242         }
1243
1244         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1245                 tx = ops_run_prexor(sh, percpu, tx);
1246
1247         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1248                 tx = ops_run_biodrain(sh, tx);
1249                 overlap_clear++;
1250         }
1251
1252         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1253                 if (level < 6)
1254                         ops_run_reconstruct5(sh, percpu, tx);
1255                 else
1256                         ops_run_reconstruct6(sh, percpu, tx);
1257         }
1258
1259         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1260                 if (sh->check_state == check_state_run)
1261                         ops_run_check_p(sh, percpu);
1262                 else if (sh->check_state == check_state_run_q)
1263                         ops_run_check_pq(sh, percpu, 0);
1264                 else if (sh->check_state == check_state_run_pq)
1265                         ops_run_check_pq(sh, percpu, 1);
1266                 else
1267                         BUG();
1268         }
1269
1270         if (overlap_clear)
1271                 for (i = disks; i--; ) {
1272                         struct r5dev *dev = &sh->dev[i];
1273                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1274                                 wake_up(&sh->raid_conf->wait_for_overlap);
1275                 }
1276         put_cpu();
1277 }
1278
1279 #ifdef CONFIG_MULTICORE_RAID456
1280 static void async_run_ops(void *param, async_cookie_t cookie)
1281 {
1282         struct stripe_head *sh = param;
1283         unsigned long ops_request = sh->ops.request;
1284
1285         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1286         wake_up(&sh->ops.wait_for_ops);
1287
1288         __raid_run_ops(sh, ops_request);
1289         release_stripe(sh);
1290 }
1291
1292 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1293 {
1294         /* since handle_stripe can be called outside of raid5d context
1295          * we need to ensure sh->ops.request is de-staged before another
1296          * request arrives
1297          */
1298         wait_event(sh->ops.wait_for_ops,
1299                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1300         sh->ops.request = ops_request;
1301
1302         atomic_inc(&sh->count);
1303         async_schedule(async_run_ops, sh);
1304 }
1305 #else
1306 #define raid_run_ops __raid_run_ops
1307 #endif
1308
1309 static int grow_one_stripe(raid5_conf_t *conf)
1310 {
1311         struct stripe_head *sh;
1312         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1313         if (!sh)
1314                 return 0;
1315         memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
1316         sh->raid_conf = conf;
1317         spin_lock_init(&sh->lock);
1318         #ifdef CONFIG_MULTICORE_RAID456
1319         init_waitqueue_head(&sh->ops.wait_for_ops);
1320         #endif
1321
1322         if (grow_buffers(sh)) {
1323                 shrink_buffers(sh);
1324                 kmem_cache_free(conf->slab_cache, sh);
1325                 return 0;
1326         }
1327         /* we just created an active stripe so... */
1328         atomic_set(&sh->count, 1);
1329         atomic_inc(&conf->active_stripes);
1330         INIT_LIST_HEAD(&sh->lru);
1331         release_stripe(sh);
1332         return 1;
1333 }
1334
1335 static int grow_stripes(raid5_conf_t *conf, int num)
1336 {
1337         struct kmem_cache *sc;
1338         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1339
1340         sprintf(conf->cache_name[0],
1341                 "raid%d-%s", conf->level, mdname(conf->mddev));
1342         sprintf(conf->cache_name[1],
1343                 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
1344         conf->active_name = 0;
1345         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1346                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1347                                0, 0, NULL);
1348         if (!sc)
1349                 return 1;
1350         conf->slab_cache = sc;
1351         conf->pool_size = devs;
1352         while (num--)
1353                 if (!grow_one_stripe(conf))
1354                         return 1;
1355         return 0;
1356 }
1357
1358 /**
1359  * scribble_len - return the required size of the scribble region
1360  * @num - total number of disks in the array
1361  *
1362  * The size must be enough to contain:
1363  * 1/ a struct page pointer for each device in the array +2
1364  * 2/ room to convert each entry in (1) to its corresponding dma
1365  *    (dma_map_page()) or page (page_address()) address.
1366  *
1367  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1368  * calculate over all devices (not just the data blocks), using zeros in place
1369  * of the P and Q blocks.
1370  */
1371 static size_t scribble_len(int num)
1372 {
1373         size_t len;
1374
1375         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1376
1377         return len;
1378 }
1379
1380 static int resize_stripes(raid5_conf_t *conf, int newsize)
1381 {
1382         /* Make all the stripes able to hold 'newsize' devices.
1383          * New slots in each stripe get 'page' set to a new page.
1384          *
1385          * This happens in stages:
1386          * 1/ create a new kmem_cache and allocate the required number of
1387          *    stripe_heads.
1388          * 2/ gather all the old stripe_heads and tranfer the pages across
1389          *    to the new stripe_heads.  This will have the side effect of
1390          *    freezing the array as once all stripe_heads have been collected,
1391          *    no IO will be possible.  Old stripe heads are freed once their
1392          *    pages have been transferred over, and the old kmem_cache is
1393          *    freed when all stripes are done.
1394          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1395          *    we simple return a failre status - no need to clean anything up.
1396          * 4/ allocate new pages for the new slots in the new stripe_heads.
1397          *    If this fails, we don't bother trying the shrink the
1398          *    stripe_heads down again, we just leave them as they are.
1399          *    As each stripe_head is processed the new one is released into
1400          *    active service.
1401          *
1402          * Once step2 is started, we cannot afford to wait for a write,
1403          * so we use GFP_NOIO allocations.
1404          */
1405         struct stripe_head *osh, *nsh;
1406         LIST_HEAD(newstripes);
1407         struct disk_info *ndisks;
1408         unsigned long cpu;
1409         int err;
1410         struct kmem_cache *sc;
1411         int i;
1412
1413         if (newsize <= conf->pool_size)
1414                 return 0; /* never bother to shrink */
1415
1416         err = md_allow_write(conf->mddev);
1417         if (err)
1418                 return err;
1419
1420         /* Step 1 */
1421         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1422                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1423                                0, 0, NULL);
1424         if (!sc)
1425                 return -ENOMEM;
1426
1427         for (i = conf->max_nr_stripes; i; i--) {
1428                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1429                 if (!nsh)
1430                         break;
1431
1432                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1433
1434                 nsh->raid_conf = conf;
1435                 spin_lock_init(&nsh->lock);
1436                 #ifdef CONFIG_MULTICORE_RAID456
1437                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1438                 #endif
1439
1440                 list_add(&nsh->lru, &newstripes);
1441         }
1442         if (i) {
1443                 /* didn't get enough, give up */
1444                 while (!list_empty(&newstripes)) {
1445                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1446                         list_del(&nsh->lru);
1447                         kmem_cache_free(sc, nsh);
1448                 }
1449                 kmem_cache_destroy(sc);
1450                 return -ENOMEM;
1451         }
1452         /* Step 2 - Must use GFP_NOIO now.
1453          * OK, we have enough stripes, start collecting inactive
1454          * stripes and copying them over
1455          */
1456         list_for_each_entry(nsh, &newstripes, lru) {
1457                 spin_lock_irq(&conf->device_lock);
1458                 wait_event_lock_irq(conf->wait_for_stripe,
1459                                     !list_empty(&conf->inactive_list),
1460                                     conf->device_lock,
1461                                     unplug_slaves(conf->mddev)
1462                         );
1463                 osh = get_free_stripe(conf);
1464                 spin_unlock_irq(&conf->device_lock);
1465                 atomic_set(&nsh->count, 1);
1466                 for(i=0; i<conf->pool_size; i++)
1467                         nsh->dev[i].page = osh->dev[i].page;
1468                 for( ; i<newsize; i++)
1469                         nsh->dev[i].page = NULL;
1470                 kmem_cache_free(conf->slab_cache, osh);
1471         }
1472         kmem_cache_destroy(conf->slab_cache);
1473
1474         /* Step 3.
1475          * At this point, we are holding all the stripes so the array
1476          * is completely stalled, so now is a good time to resize
1477          * conf->disks and the scribble region
1478          */
1479         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1480         if (ndisks) {
1481                 for (i=0; i<conf->raid_disks; i++)
1482                         ndisks[i] = conf->disks[i];
1483                 kfree(conf->disks);
1484                 conf->disks = ndisks;
1485         } else
1486                 err = -ENOMEM;
1487
1488         get_online_cpus();
1489         conf->scribble_len = scribble_len(newsize);
1490         for_each_present_cpu(cpu) {
1491                 struct raid5_percpu *percpu;
1492                 void *scribble;
1493
1494                 percpu = per_cpu_ptr(conf->percpu, cpu);
1495                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1496
1497                 if (scribble) {
1498                         kfree(percpu->scribble);
1499                         percpu->scribble = scribble;
1500                 } else {
1501                         err = -ENOMEM;
1502                         break;
1503                 }
1504         }
1505         put_online_cpus();
1506
1507         /* Step 4, return new stripes to service */
1508         while(!list_empty(&newstripes)) {
1509                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1510                 list_del_init(&nsh->lru);
1511
1512                 for (i=conf->raid_disks; i < newsize; i++)
1513                         if (nsh->dev[i].page == NULL) {
1514                                 struct page *p = alloc_page(GFP_NOIO);
1515                                 nsh->dev[i].page = p;
1516                                 if (!p)
1517                                         err = -ENOMEM;
1518                         }
1519                 release_stripe(nsh);
1520         }
1521         /* critical section pass, GFP_NOIO no longer needed */
1522
1523         conf->slab_cache = sc;
1524         conf->active_name = 1-conf->active_name;
1525         conf->pool_size = newsize;
1526         return err;
1527 }
1528
1529 static int drop_one_stripe(raid5_conf_t *conf)
1530 {
1531         struct stripe_head *sh;
1532
1533         spin_lock_irq(&conf->device_lock);
1534         sh = get_free_stripe(conf);
1535         spin_unlock_irq(&conf->device_lock);
1536         if (!sh)
1537                 return 0;
1538         BUG_ON(atomic_read(&sh->count));
1539         shrink_buffers(sh);
1540         kmem_cache_free(conf->slab_cache, sh);
1541         atomic_dec(&conf->active_stripes);
1542         return 1;
1543 }
1544
1545 static void shrink_stripes(raid5_conf_t *conf)
1546 {
1547         while (drop_one_stripe(conf))
1548                 ;
1549
1550         if (conf->slab_cache)
1551                 kmem_cache_destroy(conf->slab_cache);
1552         conf->slab_cache = NULL;
1553 }
1554
1555 static void raid5_end_read_request(struct bio * bi, int error)
1556 {
1557         struct stripe_head *sh = bi->bi_private;
1558         raid5_conf_t *conf = sh->raid_conf;
1559         int disks = sh->disks, i;
1560         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1561         char b[BDEVNAME_SIZE];
1562         mdk_rdev_t *rdev;
1563
1564
1565         for (i=0 ; i<disks; i++)
1566                 if (bi == &sh->dev[i].req)
1567                         break;
1568
1569         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1570                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1571                 uptodate);
1572         if (i == disks) {
1573                 BUG();
1574                 return;
1575         }
1576
1577         if (uptodate) {
1578                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1579                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1580                         rdev = conf->disks[i].rdev;
1581                         printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1582                                   " (%lu sectors at %llu on %s)\n",
1583                                   mdname(conf->mddev), STRIPE_SECTORS,
1584                                   (unsigned long long)(sh->sector
1585                                                        + rdev->data_offset),
1586                                   bdevname(rdev->bdev, b));
1587                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1588                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1589                 }
1590                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1591                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1592         } else {
1593                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1594                 int retry = 0;
1595                 rdev = conf->disks[i].rdev;
1596
1597                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1598                 atomic_inc(&rdev->read_errors);
1599                 if (conf->mddev->degraded >= conf->max_degraded)
1600                         printk_rl(KERN_WARNING
1601                                   "md/raid:%s: read error not correctable "
1602                                   "(sector %llu on %s).\n",
1603                                   mdname(conf->mddev),
1604                                   (unsigned long long)(sh->sector
1605                                                        + rdev->data_offset),
1606                                   bdn);
1607                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1608                         /* Oh, no!!! */
1609                         printk_rl(KERN_WARNING
1610                                   "md/raid:%s: read error NOT corrected!! "
1611                                   "(sector %llu on %s).\n",
1612                                   mdname(conf->mddev),
1613                                   (unsigned long long)(sh->sector
1614                                                        + rdev->data_offset),
1615                                   bdn);
1616                 else if (atomic_read(&rdev->read_errors)
1617                          > conf->max_nr_stripes)
1618                         printk(KERN_WARNING
1619                                "md/raid:%s: Too many read errors, failing device %s.\n",
1620                                mdname(conf->mddev), bdn);
1621                 else
1622                         retry = 1;
1623                 if (retry)
1624                         set_bit(R5_ReadError, &sh->dev[i].flags);
1625                 else {
1626                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1627                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1628                         md_error(conf->mddev, rdev);
1629                 }
1630         }
1631         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1632         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1633         set_bit(STRIPE_HANDLE, &sh->state);
1634         release_stripe(sh);
1635 }
1636
1637 static void raid5_end_write_request(struct bio *bi, int error)
1638 {
1639         struct stripe_head *sh = bi->bi_private;
1640         raid5_conf_t *conf = sh->raid_conf;
1641         int disks = sh->disks, i;
1642         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1643
1644         for (i=0 ; i<disks; i++)
1645                 if (bi == &sh->dev[i].req)
1646                         break;
1647
1648         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1649                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1650                 uptodate);
1651         if (i == disks) {
1652                 BUG();
1653                 return;
1654         }
1655
1656         if (!uptodate)
1657                 md_error(conf->mddev, conf->disks[i].rdev);
1658
1659         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1660         
1661         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1662         set_bit(STRIPE_HANDLE, &sh->state);
1663         release_stripe(sh);
1664 }
1665
1666
1667 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1668         
1669 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1670 {
1671         struct r5dev *dev = &sh->dev[i];
1672
1673         bio_init(&dev->req);
1674         dev->req.bi_io_vec = &dev->vec;
1675         dev->req.bi_vcnt++;
1676         dev->req.bi_max_vecs++;
1677         dev->vec.bv_page = dev->page;
1678         dev->vec.bv_len = STRIPE_SIZE;
1679         dev->vec.bv_offset = 0;
1680
1681         dev->req.bi_sector = sh->sector;
1682         dev->req.bi_private = sh;
1683
1684         dev->flags = 0;
1685         dev->sector = compute_blocknr(sh, i, previous);
1686 }
1687
1688 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1689 {
1690         char b[BDEVNAME_SIZE];
1691         raid5_conf_t *conf = mddev->private;
1692         pr_debug("raid456: error called\n");
1693
1694         if (!test_bit(Faulty, &rdev->flags)) {
1695                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1696                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1697                         unsigned long flags;
1698                         spin_lock_irqsave(&conf->device_lock, flags);
1699                         mddev->degraded++;
1700                         spin_unlock_irqrestore(&conf->device_lock, flags);
1701                         /*
1702                          * if recovery was running, make sure it aborts.
1703                          */
1704                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1705                 }
1706                 set_bit(Faulty, &rdev->flags);
1707                 printk(KERN_ALERT
1708                        "md/raid:%s: Disk failure on %s, disabling device.\n"
1709                        KERN_ALERT
1710                        "md/raid:%s: Operation continuing on %d devices.\n",
1711                        mdname(mddev),
1712                        bdevname(rdev->bdev, b),
1713                        mdname(mddev),
1714                        conf->raid_disks - mddev->degraded);
1715         }
1716 }
1717
1718 /*
1719  * Input: a 'big' sector number,
1720  * Output: index of the data and parity disk, and the sector # in them.
1721  */
1722 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1723                                      int previous, int *dd_idx,
1724                                      struct stripe_head *sh)
1725 {
1726         sector_t stripe, stripe2;
1727         sector_t chunk_number;
1728         unsigned int chunk_offset;
1729         int pd_idx, qd_idx;
1730         int ddf_layout = 0;
1731         sector_t new_sector;
1732         int algorithm = previous ? conf->prev_algo
1733                                  : conf->algorithm;
1734         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1735                                          : conf->chunk_sectors;
1736         int raid_disks = previous ? conf->previous_raid_disks
1737                                   : conf->raid_disks;
1738         int data_disks = raid_disks - conf->max_degraded;
1739
1740         /* First compute the information on this sector */
1741
1742         /*
1743          * Compute the chunk number and the sector offset inside the chunk
1744          */
1745         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1746         chunk_number = r_sector;
1747
1748         /*
1749          * Compute the stripe number
1750          */
1751         stripe = chunk_number;
1752         *dd_idx = sector_div(stripe, data_disks);
1753         stripe2 = stripe;
1754         /*
1755          * Select the parity disk based on the user selected algorithm.
1756          */
1757         pd_idx = qd_idx = ~0;
1758         switch(conf->level) {
1759         case 4:
1760                 pd_idx = data_disks;
1761                 break;
1762         case 5:
1763                 switch (algorithm) {
1764                 case ALGORITHM_LEFT_ASYMMETRIC:
1765                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1766                         if (*dd_idx >= pd_idx)
1767                                 (*dd_idx)++;
1768                         break;
1769                 case ALGORITHM_RIGHT_ASYMMETRIC:
1770                         pd_idx = sector_div(stripe2, raid_disks);
1771                         if (*dd_idx >= pd_idx)
1772                                 (*dd_idx)++;
1773                         break;
1774                 case ALGORITHM_LEFT_SYMMETRIC:
1775                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1776                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1777                         break;
1778                 case ALGORITHM_RIGHT_SYMMETRIC:
1779                         pd_idx = sector_div(stripe2, raid_disks);
1780                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1781                         break;
1782                 case ALGORITHM_PARITY_0:
1783                         pd_idx = 0;
1784                         (*dd_idx)++;
1785                         break;
1786                 case ALGORITHM_PARITY_N:
1787                         pd_idx = data_disks;
1788                         break;
1789                 default:
1790                         BUG();
1791                 }
1792                 break;
1793         case 6:
1794
1795                 switch (algorithm) {
1796                 case ALGORITHM_LEFT_ASYMMETRIC:
1797                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1798                         qd_idx = pd_idx + 1;
1799                         if (pd_idx == raid_disks-1) {
1800                                 (*dd_idx)++;    /* Q D D D P */
1801                                 qd_idx = 0;
1802                         } else if (*dd_idx >= pd_idx)
1803                                 (*dd_idx) += 2; /* D D P Q D */
1804                         break;
1805                 case ALGORITHM_RIGHT_ASYMMETRIC:
1806                         pd_idx = sector_div(stripe2, raid_disks);
1807                         qd_idx = pd_idx + 1;
1808                         if (pd_idx == raid_disks-1) {
1809                                 (*dd_idx)++;    /* Q D D D P */
1810                                 qd_idx = 0;
1811                         } else if (*dd_idx >= pd_idx)
1812                                 (*dd_idx) += 2; /* D D P Q D */
1813                         break;
1814                 case ALGORITHM_LEFT_SYMMETRIC:
1815                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1816                         qd_idx = (pd_idx + 1) % raid_disks;
1817                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1818                         break;
1819                 case ALGORITHM_RIGHT_SYMMETRIC:
1820                         pd_idx = sector_div(stripe2, raid_disks);
1821                         qd_idx = (pd_idx + 1) % raid_disks;
1822                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1823                         break;
1824
1825                 case ALGORITHM_PARITY_0:
1826                         pd_idx = 0;
1827                         qd_idx = 1;
1828                         (*dd_idx) += 2;
1829                         break;
1830                 case ALGORITHM_PARITY_N:
1831                         pd_idx = data_disks;
1832                         qd_idx = data_disks + 1;
1833                         break;
1834
1835                 case ALGORITHM_ROTATING_ZERO_RESTART:
1836                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1837                          * of blocks for computing Q is different.
1838                          */
1839                         pd_idx = sector_div(stripe2, raid_disks);
1840                         qd_idx = pd_idx + 1;
1841                         if (pd_idx == raid_disks-1) {
1842                                 (*dd_idx)++;    /* Q D D D P */
1843                                 qd_idx = 0;
1844                         } else if (*dd_idx >= pd_idx)
1845                                 (*dd_idx) += 2; /* D D P Q D */
1846                         ddf_layout = 1;
1847                         break;
1848
1849                 case ALGORITHM_ROTATING_N_RESTART:
1850                         /* Same a left_asymmetric, by first stripe is
1851                          * D D D P Q  rather than
1852                          * Q D D D P
1853                          */
1854                         stripe2 += 1;
1855                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1856                         qd_idx = pd_idx + 1;
1857                         if (pd_idx == raid_disks-1) {
1858                                 (*dd_idx)++;    /* Q D D D P */
1859                                 qd_idx = 0;
1860                         } else if (*dd_idx >= pd_idx)
1861                                 (*dd_idx) += 2; /* D D P Q D */
1862                         ddf_layout = 1;
1863                         break;
1864
1865                 case ALGORITHM_ROTATING_N_CONTINUE:
1866                         /* Same as left_symmetric but Q is before P */
1867                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1868                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1869                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1870                         ddf_layout = 1;
1871                         break;
1872
1873                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1874                         /* RAID5 left_asymmetric, with Q on last device */
1875                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1876                         if (*dd_idx >= pd_idx)
1877                                 (*dd_idx)++;
1878                         qd_idx = raid_disks - 1;
1879                         break;
1880
1881                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1882                         pd_idx = sector_div(stripe2, raid_disks-1);
1883                         if (*dd_idx >= pd_idx)
1884                                 (*dd_idx)++;
1885                         qd_idx = raid_disks - 1;
1886                         break;
1887
1888                 case ALGORITHM_LEFT_SYMMETRIC_6:
1889                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1890                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1891                         qd_idx = raid_disks - 1;
1892                         break;
1893
1894                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1895                         pd_idx = sector_div(stripe2, raid_disks-1);
1896                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1897                         qd_idx = raid_disks - 1;
1898                         break;
1899
1900                 case ALGORITHM_PARITY_0_6:
1901                         pd_idx = 0;
1902                         (*dd_idx)++;
1903                         qd_idx = raid_disks - 1;
1904                         break;
1905
1906                 default:
1907                         BUG();
1908                 }
1909                 break;
1910         }
1911
1912         if (sh) {
1913                 sh->pd_idx = pd_idx;
1914                 sh->qd_idx = qd_idx;
1915                 sh->ddf_layout = ddf_layout;
1916         }
1917         /*
1918          * Finally, compute the new sector number
1919          */
1920         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1921         return new_sector;
1922 }
1923
1924
1925 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1926 {
1927         raid5_conf_t *conf = sh->raid_conf;
1928         int raid_disks = sh->disks;
1929         int data_disks = raid_disks - conf->max_degraded;
1930         sector_t new_sector = sh->sector, check;
1931         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1932                                          : conf->chunk_sectors;
1933         int algorithm = previous ? conf->prev_algo
1934                                  : conf->algorithm;
1935         sector_t stripe;
1936         int chunk_offset;
1937         sector_t chunk_number;
1938         int dummy1, dd_idx = i;
1939         sector_t r_sector;
1940         struct stripe_head sh2;
1941
1942
1943         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1944         stripe = new_sector;
1945
1946         if (i == sh->pd_idx)
1947                 return 0;
1948         switch(conf->level) {
1949         case 4: break;
1950         case 5:
1951                 switch (algorithm) {
1952                 case ALGORITHM_LEFT_ASYMMETRIC:
1953                 case ALGORITHM_RIGHT_ASYMMETRIC:
1954                         if (i > sh->pd_idx)
1955                                 i--;
1956                         break;
1957                 case ALGORITHM_LEFT_SYMMETRIC:
1958                 case ALGORITHM_RIGHT_SYMMETRIC:
1959                         if (i < sh->pd_idx)
1960                                 i += raid_disks;
1961                         i -= (sh->pd_idx + 1);
1962                         break;
1963                 case ALGORITHM_PARITY_0:
1964                         i -= 1;
1965                         break;
1966                 case ALGORITHM_PARITY_N:
1967                         break;
1968                 default:
1969                         BUG();
1970                 }
1971                 break;
1972         case 6:
1973                 if (i == sh->qd_idx)
1974                         return 0; /* It is the Q disk */
1975                 switch (algorithm) {
1976                 case ALGORITHM_LEFT_ASYMMETRIC:
1977                 case ALGORITHM_RIGHT_ASYMMETRIC:
1978                 case ALGORITHM_ROTATING_ZERO_RESTART:
1979                 case ALGORITHM_ROTATING_N_RESTART:
1980                         if (sh->pd_idx == raid_disks-1)
1981                                 i--;    /* Q D D D P */
1982                         else if (i > sh->pd_idx)
1983                                 i -= 2; /* D D P Q D */
1984                         break;
1985                 case ALGORITHM_LEFT_SYMMETRIC:
1986                 case ALGORITHM_RIGHT_SYMMETRIC:
1987                         if (sh->pd_idx == raid_disks-1)
1988                                 i--; /* Q D D D P */
1989                         else {
1990                                 /* D D P Q D */
1991                                 if (i < sh->pd_idx)
1992                                         i += raid_disks;
1993                                 i -= (sh->pd_idx + 2);
1994                         }
1995                         break;
1996                 case ALGORITHM_PARITY_0:
1997                         i -= 2;
1998                         break;
1999                 case ALGORITHM_PARITY_N:
2000                         break;
2001                 case ALGORITHM_ROTATING_N_CONTINUE:
2002                         /* Like left_symmetric, but P is before Q */
2003                         if (sh->pd_idx == 0)
2004                                 i--;    /* P D D D Q */
2005                         else {
2006                                 /* D D Q P D */
2007                                 if (i < sh->pd_idx)
2008                                         i += raid_disks;
2009                                 i -= (sh->pd_idx + 1);
2010                         }
2011                         break;
2012                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2013                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2014                         if (i > sh->pd_idx)
2015                                 i--;
2016                         break;
2017                 case ALGORITHM_LEFT_SYMMETRIC_6:
2018                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2019                         if (i < sh->pd_idx)
2020                                 i += data_disks + 1;
2021                         i -= (sh->pd_idx + 1);
2022                         break;
2023                 case ALGORITHM_PARITY_0_6:
2024                         i -= 1;
2025                         break;
2026                 default:
2027                         BUG();
2028                 }
2029                 break;
2030         }
2031
2032         chunk_number = stripe * data_disks + i;
2033         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2034
2035         check = raid5_compute_sector(conf, r_sector,
2036                                      previous, &dummy1, &sh2);
2037         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2038                 || sh2.qd_idx != sh->qd_idx) {
2039                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2040                        mdname(conf->mddev));
2041                 return 0;
2042         }
2043         return r_sector;
2044 }
2045
2046
2047 static void
2048 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2049                          int rcw, int expand)
2050 {
2051         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2052         raid5_conf_t *conf = sh->raid_conf;
2053         int level = conf->level;
2054
2055         if (rcw) {
2056                 /* if we are not expanding this is a proper write request, and
2057                  * there will be bios with new data to be drained into the
2058                  * stripe cache
2059                  */
2060                 if (!expand) {
2061                         sh->reconstruct_state = reconstruct_state_drain_run;
2062                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2063                 } else
2064                         sh->reconstruct_state = reconstruct_state_run;
2065
2066                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2067
2068                 for (i = disks; i--; ) {
2069                         struct r5dev *dev = &sh->dev[i];
2070
2071                         if (dev->towrite) {
2072                                 set_bit(R5_LOCKED, &dev->flags);
2073                                 set_bit(R5_Wantdrain, &dev->flags);
2074                                 if (!expand)
2075                                         clear_bit(R5_UPTODATE, &dev->flags);
2076                                 s->locked++;
2077                         }
2078                 }
2079                 if (s->locked + conf->max_degraded == disks)
2080                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2081                                 atomic_inc(&conf->pending_full_writes);
2082         } else {
2083                 BUG_ON(level == 6);
2084                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2085                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2086
2087                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2088                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2089                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2090                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2091
2092                 for (i = disks; i--; ) {
2093                         struct r5dev *dev = &sh->dev[i];
2094                         if (i == pd_idx)
2095                                 continue;
2096
2097                         if (dev->towrite &&
2098                             (test_bit(R5_UPTODATE, &dev->flags) ||
2099                              test_bit(R5_Wantcompute, &dev->flags))) {
2100                                 set_bit(R5_Wantdrain, &dev->flags);
2101                                 set_bit(R5_LOCKED, &dev->flags);
2102                                 clear_bit(R5_UPTODATE, &dev->flags);
2103                                 s->locked++;
2104                         }
2105                 }
2106         }
2107
2108         /* keep the parity disk(s) locked while asynchronous operations
2109          * are in flight
2110          */
2111         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2112         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2113         s->locked++;
2114
2115         if (level == 6) {
2116                 int qd_idx = sh->qd_idx;
2117                 struct r5dev *dev = &sh->dev[qd_idx];
2118
2119                 set_bit(R5_LOCKED, &dev->flags);
2120                 clear_bit(R5_UPTODATE, &dev->flags);
2121                 s->locked++;
2122         }
2123
2124         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2125                 __func__, (unsigned long long)sh->sector,
2126                 s->locked, s->ops_request);
2127 }
2128
2129 /*
2130  * Each stripe/dev can have one or more bion attached.
2131  * toread/towrite point to the first in a chain.
2132  * The bi_next chain must be in order.
2133  */
2134 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2135 {
2136         struct bio **bip;
2137         raid5_conf_t *conf = sh->raid_conf;
2138         int firstwrite=0;
2139
2140         pr_debug("adding bh b#%llu to stripe s#%llu\n",
2141                 (unsigned long long)bi->bi_sector,
2142                 (unsigned long long)sh->sector);
2143
2144
2145         spin_lock(&sh->lock);
2146         spin_lock_irq(&conf->device_lock);
2147         if (forwrite) {
2148                 bip = &sh->dev[dd_idx].towrite;
2149                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2150                         firstwrite = 1;
2151         } else
2152                 bip = &sh->dev[dd_idx].toread;
2153         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2154                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2155                         goto overlap;
2156                 bip = & (*bip)->bi_next;
2157         }
2158         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2159                 goto overlap;
2160
2161         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2162         if (*bip)
2163                 bi->bi_next = *bip;
2164         *bip = bi;
2165         bi->bi_phys_segments++;
2166         spin_unlock_irq(&conf->device_lock);
2167         spin_unlock(&sh->lock);
2168
2169         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2170                 (unsigned long long)bi->bi_sector,
2171                 (unsigned long long)sh->sector, dd_idx);
2172
2173         if (conf->mddev->bitmap && firstwrite) {
2174                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2175                                   STRIPE_SECTORS, 0);
2176                 sh->bm_seq = conf->seq_flush+1;
2177                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2178         }
2179
2180         if (forwrite) {
2181                 /* check if page is covered */
2182                 sector_t sector = sh->dev[dd_idx].sector;
2183                 for (bi=sh->dev[dd_idx].towrite;
2184                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2185                              bi && bi->bi_sector <= sector;
2186                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2187                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2188                                 sector = bi->bi_sector + (bi->bi_size>>9);
2189                 }
2190                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2191                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2192         }
2193         return 1;
2194
2195  overlap:
2196         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2197         spin_unlock_irq(&conf->device_lock);
2198         spin_unlock(&sh->lock);
2199         return 0;
2200 }
2201
2202 static void end_reshape(raid5_conf_t *conf);
2203
2204 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2205                             struct stripe_head *sh)
2206 {
2207         int sectors_per_chunk =
2208                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2209         int dd_idx;
2210         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2211         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2212
2213         raid5_compute_sector(conf,
2214                              stripe * (disks - conf->max_degraded)
2215                              *sectors_per_chunk + chunk_offset,
2216                              previous,
2217                              &dd_idx, sh);
2218 }
2219
2220 static void
2221 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2222                                 struct stripe_head_state *s, int disks,
2223                                 struct bio **return_bi)
2224 {
2225         int i;
2226         for (i = disks; i--; ) {
2227                 struct bio *bi;
2228                 int bitmap_end = 0;
2229
2230                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2231                         mdk_rdev_t *rdev;
2232                         rcu_read_lock();
2233                         rdev = rcu_dereference(conf->disks[i].rdev);
2234                         if (rdev && test_bit(In_sync, &rdev->flags))
2235                                 /* multiple read failures in one stripe */
2236                                 md_error(conf->mddev, rdev);
2237                         rcu_read_unlock();
2238                 }
2239                 spin_lock_irq(&conf->device_lock);
2240                 /* fail all writes first */
2241                 bi = sh->dev[i].towrite;
2242                 sh->dev[i].towrite = NULL;
2243                 if (bi) {
2244                         s->to_write--;
2245                         bitmap_end = 1;
2246                 }
2247
2248                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2249                         wake_up(&conf->wait_for_overlap);
2250
2251                 while (bi && bi->bi_sector <
2252                         sh->dev[i].sector + STRIPE_SECTORS) {
2253                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2254                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2255                         if (!raid5_dec_bi_phys_segments(bi)) {
2256                                 md_write_end(conf->mddev);
2257                                 bi->bi_next = *return_bi;
2258                                 *return_bi = bi;
2259                         }
2260                         bi = nextbi;
2261                 }
2262                 /* and fail all 'written' */
2263                 bi = sh->dev[i].written;
2264                 sh->dev[i].written = NULL;
2265                 if (bi) bitmap_end = 1;
2266                 while (bi && bi->bi_sector <
2267                        sh->dev[i].sector + STRIPE_SECTORS) {
2268                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2269                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2270                         if (!raid5_dec_bi_phys_segments(bi)) {
2271                                 md_write_end(conf->mddev);
2272                                 bi->bi_next = *return_bi;
2273                                 *return_bi = bi;
2274                         }
2275                         bi = bi2;
2276                 }
2277
2278                 /* fail any reads if this device is non-operational and
2279                  * the data has not reached the cache yet.
2280                  */
2281                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2282                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2283                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2284                         bi = sh->dev[i].toread;
2285                         sh->dev[i].toread = NULL;
2286                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2287                                 wake_up(&conf->wait_for_overlap);
2288                         if (bi) s->to_read--;
2289                         while (bi && bi->bi_sector <
2290                                sh->dev[i].sector + STRIPE_SECTORS) {
2291                                 struct bio *nextbi =
2292                                         r5_next_bio(bi, sh->dev[i].sector);
2293                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2294                                 if (!raid5_dec_bi_phys_segments(bi)) {
2295                                         bi->bi_next = *return_bi;
2296                                         *return_bi = bi;
2297                                 }
2298                                 bi = nextbi;
2299                         }
2300                 }
2301                 spin_unlock_irq(&conf->device_lock);
2302                 if (bitmap_end)
2303                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2304                                         STRIPE_SECTORS, 0, 0);
2305         }
2306
2307         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2308                 if (atomic_dec_and_test(&conf->pending_full_writes))
2309                         md_wakeup_thread(conf->mddev->thread);
2310 }
2311
2312 /* fetch_block5 - checks the given member device to see if its data needs
2313  * to be read or computed to satisfy a request.
2314  *
2315  * Returns 1 when no more member devices need to be checked, otherwise returns
2316  * 0 to tell the loop in handle_stripe_fill5 to continue
2317  */
2318 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2319                         int disk_idx, int disks)
2320 {
2321         struct r5dev *dev = &sh->dev[disk_idx];
2322         struct r5dev *failed_dev = &sh->dev[s->failed_num];
2323
2324         /* is the data in this block needed, and can we get it? */
2325         if (!test_bit(R5_LOCKED, &dev->flags) &&
2326             !test_bit(R5_UPTODATE, &dev->flags) &&
2327             (dev->toread ||
2328              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2329              s->syncing || s->expanding ||
2330              (s->failed &&
2331               (failed_dev->toread ||
2332                (failed_dev->towrite &&
2333                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2334                 /* We would like to get this block, possibly by computing it,
2335                  * otherwise read it if the backing disk is insync
2336                  */
2337                 if ((s->uptodate == disks - 1) &&
2338                     (s->failed && disk_idx == s->failed_num)) {
2339                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2340                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2341                         set_bit(R5_Wantcompute, &dev->flags);
2342                         sh->ops.target = disk_idx;
2343                         sh->ops.target2 = -1;
2344                         s->req_compute = 1;
2345                         /* Careful: from this point on 'uptodate' is in the eye
2346                          * of raid_run_ops which services 'compute' operations
2347                          * before writes. R5_Wantcompute flags a block that will
2348                          * be R5_UPTODATE by the time it is needed for a
2349                          * subsequent operation.
2350                          */
2351                         s->uptodate++;
2352                         return 1; /* uptodate + compute == disks */
2353                 } else if (test_bit(R5_Insync, &dev->flags)) {
2354                         set_bit(R5_LOCKED, &dev->flags);
2355                         set_bit(R5_Wantread, &dev->flags);
2356                         s->locked++;
2357                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2358                                 s->syncing);
2359                 }
2360         }
2361
2362         return 0;
2363 }
2364
2365 /**
2366  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2367  */
2368 static void handle_stripe_fill5(struct stripe_head *sh,
2369                         struct stripe_head_state *s, int disks)
2370 {
2371         int i;
2372
2373         /* look for blocks to read/compute, skip this if a compute
2374          * is already in flight, or if the stripe contents are in the
2375          * midst of changing due to a write
2376          */
2377         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2378             !sh->reconstruct_state)
2379                 for (i = disks; i--; )
2380                         if (fetch_block5(sh, s, i, disks))
2381                                 break;
2382         set_bit(STRIPE_HANDLE, &sh->state);
2383 }
2384
2385 /* fetch_block6 - checks the given member device to see if its data needs
2386  * to be read or computed to satisfy a request.
2387  *
2388  * Returns 1 when no more member devices need to be checked, otherwise returns
2389  * 0 to tell the loop in handle_stripe_fill6 to continue
2390  */
2391 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2392                          struct r6_state *r6s, int disk_idx, int disks)
2393 {
2394         struct r5dev *dev = &sh->dev[disk_idx];
2395         struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2396                                   &sh->dev[r6s->failed_num[1]] };
2397
2398         if (!test_bit(R5_LOCKED, &dev->flags) &&
2399             !test_bit(R5_UPTODATE, &dev->flags) &&
2400             (dev->toread ||
2401              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2402              s->syncing || s->expanding ||
2403              (s->failed >= 1 &&
2404               (fdev[0]->toread || s->to_write)) ||
2405              (s->failed >= 2 &&
2406               (fdev[1]->toread || s->to_write)))) {
2407                 /* we would like to get this block, possibly by computing it,
2408                  * otherwise read it if the backing disk is insync
2409                  */
2410                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2411                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2412                 if ((s->uptodate == disks - 1) &&
2413                     (s->failed && (disk_idx == r6s->failed_num[0] ||
2414                                    disk_idx == r6s->failed_num[1]))) {
2415                         /* have disk failed, and we're requested to fetch it;
2416                          * do compute it
2417                          */
2418                         pr_debug("Computing stripe %llu block %d\n",
2419                                (unsigned long long)sh->sector, disk_idx);
2420                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2421                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2422                         set_bit(R5_Wantcompute, &dev->flags);
2423                         sh->ops.target = disk_idx;
2424                         sh->ops.target2 = -1; /* no 2nd target */
2425                         s->req_compute = 1;
2426                         s->uptodate++;
2427                         return 1;
2428                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2429                         /* Computing 2-failure is *very* expensive; only
2430                          * do it if failed >= 2
2431                          */
2432                         int other;
2433                         for (other = disks; other--; ) {
2434                                 if (other == disk_idx)
2435                                         continue;
2436                                 if (!test_bit(R5_UPTODATE,
2437                                       &sh->dev[other].flags))
2438                                         break;
2439                         }
2440                         BUG_ON(other < 0);
2441                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2442                                (unsigned long long)sh->sector,
2443                                disk_idx, other);
2444                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2445                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2446                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2447                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2448                         sh->ops.target = disk_idx;
2449                         sh->ops.target2 = other;
2450                         s->uptodate += 2;
2451                         s->req_compute = 1;
2452                         return 1;
2453                 } else if (test_bit(R5_Insync, &dev->flags)) {
2454                         set_bit(R5_LOCKED, &dev->flags);
2455                         set_bit(R5_Wantread, &dev->flags);
2456                         s->locked++;
2457                         pr_debug("Reading block %d (sync=%d)\n",
2458                                 disk_idx, s->syncing);
2459                 }
2460         }
2461
2462         return 0;
2463 }
2464
2465 /**
2466  * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2467  */
2468 static void handle_stripe_fill6(struct stripe_head *sh,
2469                         struct stripe_head_state *s, struct r6_state *r6s,
2470                         int disks)
2471 {
2472         int i;
2473
2474         /* look for blocks to read/compute, skip this if a compute
2475          * is already in flight, or if the stripe contents are in the
2476          * midst of changing due to a write
2477          */
2478         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2479             !sh->reconstruct_state)
2480                 for (i = disks; i--; )
2481                         if (fetch_block6(sh, s, r6s, i, disks))
2482                                 break;
2483         set_bit(STRIPE_HANDLE, &sh->state);
2484 }
2485
2486
2487 /* handle_stripe_clean_event
2488  * any written block on an uptodate or failed drive can be returned.
2489  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2490  * never LOCKED, so we don't need to test 'failed' directly.
2491  */
2492 static void handle_stripe_clean_event(raid5_conf_t *conf,
2493         struct stripe_head *sh, int disks, struct bio **return_bi)
2494 {
2495         int i;
2496         struct r5dev *dev;
2497
2498         for (i = disks; i--; )
2499                 if (sh->dev[i].written) {
2500                         dev = &sh->dev[i];
2501                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2502                                 test_bit(R5_UPTODATE, &dev->flags)) {
2503                                 /* We can return any write requests */
2504                                 struct bio *wbi, *wbi2;
2505                                 int bitmap_end = 0;
2506                                 pr_debug("Return write for disc %d\n", i);
2507                                 spin_lock_irq(&conf->device_lock);
2508                                 wbi = dev->written;
2509                                 dev->written = NULL;
2510                                 while (wbi && wbi->bi_sector <
2511                                         dev->sector + STRIPE_SECTORS) {
2512                                         wbi2 = r5_next_bio(wbi, dev->sector);
2513                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2514                                                 md_write_end(conf->mddev);
2515                                                 wbi->bi_next = *return_bi;
2516                                                 *return_bi = wbi;
2517                                         }
2518                                         wbi = wbi2;
2519                                 }
2520                                 if (dev->towrite == NULL)
2521                                         bitmap_end = 1;
2522                                 spin_unlock_irq(&conf->device_lock);
2523                                 if (bitmap_end)
2524                                         bitmap_endwrite(conf->mddev->bitmap,
2525                                                         sh->sector,
2526                                                         STRIPE_SECTORS,
2527                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2528                                                         0);
2529                         }
2530                 }
2531
2532         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2533                 if (atomic_dec_and_test(&conf->pending_full_writes))
2534                         md_wakeup_thread(conf->mddev->thread);
2535 }
2536
2537 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2538                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2539 {
2540         int rmw = 0, rcw = 0, i;
2541         for (i = disks; i--; ) {
2542                 /* would I have to read this buffer for read_modify_write */
2543                 struct r5dev *dev = &sh->dev[i];
2544                 if ((dev->towrite || i == sh->pd_idx) &&
2545                     !test_bit(R5_LOCKED, &dev->flags) &&
2546                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2547                       test_bit(R5_Wantcompute, &dev->flags))) {
2548                         if (test_bit(R5_Insync, &dev->flags))
2549                                 rmw++;
2550                         else
2551                                 rmw += 2*disks;  /* cannot read it */
2552                 }
2553                 /* Would I have to read this buffer for reconstruct_write */
2554                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2555                     !test_bit(R5_LOCKED, &dev->flags) &&
2556                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2557                     test_bit(R5_Wantcompute, &dev->flags))) {
2558                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2559                         else
2560                                 rcw += 2*disks;
2561                 }
2562         }
2563         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2564                 (unsigned long long)sh->sector, rmw, rcw);
2565         set_bit(STRIPE_HANDLE, &sh->state);
2566         if (rmw < rcw && rmw > 0)
2567                 /* prefer read-modify-write, but need to get some data */
2568                 for (i = disks; i--; ) {
2569                         struct r5dev *dev = &sh->dev[i];
2570                         if ((dev->towrite || i == sh->pd_idx) &&
2571                             !test_bit(R5_LOCKED, &dev->flags) &&
2572                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2573                             test_bit(R5_Wantcompute, &dev->flags)) &&
2574                             test_bit(R5_Insync, &dev->flags)) {
2575                                 if (
2576                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2577                                         pr_debug("Read_old block "
2578                                                 "%d for r-m-w\n", i);
2579                                         set_bit(R5_LOCKED, &dev->flags);
2580                                         set_bit(R5_Wantread, &dev->flags);
2581                                         s->locked++;
2582                                 } else {
2583                                         set_bit(STRIPE_DELAYED, &sh->state);
2584                                         set_bit(STRIPE_HANDLE, &sh->state);
2585                                 }
2586                         }
2587                 }
2588         if (rcw <= rmw && rcw > 0)
2589                 /* want reconstruct write, but need to get some data */
2590                 for (i = disks; i--; ) {
2591                         struct r5dev *dev = &sh->dev[i];
2592                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2593                             i != sh->pd_idx &&
2594                             !test_bit(R5_LOCKED, &dev->flags) &&
2595                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2596                             test_bit(R5_Wantcompute, &dev->flags)) &&
2597                             test_bit(R5_Insync, &dev->flags)) {
2598                                 if (
2599                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2600                                         pr_debug("Read_old block "
2601                                                 "%d for Reconstruct\n", i);
2602                                         set_bit(R5_LOCKED, &dev->flags);
2603                                         set_bit(R5_Wantread, &dev->flags);
2604                                         s->locked++;
2605                                 } else {
2606                                         set_bit(STRIPE_DELAYED, &sh->state);
2607                                         set_bit(STRIPE_HANDLE, &sh->state);
2608                                 }
2609                         }
2610                 }
2611         /* now if nothing is locked, and if we have enough data,
2612          * we can start a write request
2613          */
2614         /* since handle_stripe can be called at any time we need to handle the
2615          * case where a compute block operation has been submitted and then a
2616          * subsequent call wants to start a write request.  raid_run_ops only
2617          * handles the case where compute block and reconstruct are requested
2618          * simultaneously.  If this is not the case then new writes need to be
2619          * held off until the compute completes.
2620          */
2621         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2622             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2623             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2624                 schedule_reconstruction(sh, s, rcw == 0, 0);
2625 }
2626
2627 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2628                 struct stripe_head *sh, struct stripe_head_state *s,
2629                 struct r6_state *r6s, int disks)
2630 {
2631         int rcw = 0, pd_idx = sh->pd_idx, i;
2632         int qd_idx = sh->qd_idx;
2633
2634         set_bit(STRIPE_HANDLE, &sh->state);
2635         for (i = disks; i--; ) {
2636                 struct r5dev *dev = &sh->dev[i];
2637                 /* check if we haven't enough data */
2638                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2639                     i != pd_idx && i != qd_idx &&
2640                     !test_bit(R5_LOCKED, &dev->flags) &&
2641                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2642                       test_bit(R5_Wantcompute, &dev->flags))) {
2643                         rcw++;
2644                         if (!test_bit(R5_Insync, &dev->flags))
2645                                 continue; /* it's a failed drive */
2646
2647                         if (
2648                           test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2649                                 pr_debug("Read_old stripe %llu "
2650                                         "block %d for Reconstruct\n",
2651                                      (unsigned long long)sh->sector, i);
2652                                 set_bit(R5_LOCKED, &dev->flags);
2653                                 set_bit(R5_Wantread, &dev->flags);
2654                                 s->locked++;
2655                         } else {
2656                                 pr_debug("Request delayed stripe %llu "
2657                                         "block %d for Reconstruct\n",
2658                                      (unsigned long long)sh->sector, i);
2659                                 set_bit(STRIPE_DELAYED, &sh->state);
2660                                 set_bit(STRIPE_HANDLE, &sh->state);
2661                         }
2662                 }
2663         }
2664         /* now if nothing is locked, and if we have enough data, we can start a
2665          * write request
2666          */
2667         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2668             s->locked == 0 && rcw == 0 &&
2669             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2670                 schedule_reconstruction(sh, s, 1, 0);
2671         }
2672 }
2673
2674 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2675                                 struct stripe_head_state *s, int disks)
2676 {
2677         struct r5dev *dev = NULL;
2678
2679         set_bit(STRIPE_HANDLE, &sh->state);
2680
2681         switch (sh->check_state) {
2682         case check_state_idle:
2683                 /* start a new check operation if there are no failures */
2684                 if (s->failed == 0) {
2685                         BUG_ON(s->uptodate != disks);
2686                         sh->check_state = check_state_run;
2687                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2688                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2689                         s->uptodate--;
2690                         break;
2691                 }
2692                 dev = &sh->dev[s->failed_num];
2693                 /* fall through */
2694         case check_state_compute_result:
2695                 sh->check_state = check_state_idle;
2696                 if (!dev)
2697                         dev = &sh->dev[sh->pd_idx];
2698
2699                 /* check that a write has not made the stripe insync */
2700                 if (test_bit(STRIPE_INSYNC, &sh->state))
2701                         break;
2702
2703                 /* either failed parity check, or recovery is happening */
2704                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2705                 BUG_ON(s->uptodate != disks);
2706
2707                 set_bit(R5_LOCKED, &dev->flags);
2708                 s->locked++;
2709                 set_bit(R5_Wantwrite, &dev->flags);
2710
2711                 clear_bit(STRIPE_DEGRADED, &sh->state);
2712                 set_bit(STRIPE_INSYNC, &sh->state);
2713                 break;
2714         case check_state_run:
2715                 break; /* we will be called again upon completion */
2716         case check_state_check_result:
2717                 sh->check_state = check_state_idle;
2718
2719                 /* if a failure occurred during the check operation, leave
2720                  * STRIPE_INSYNC not set and let the stripe be handled again
2721                  */
2722                 if (s->failed)
2723                         break;
2724
2725                 /* handle a successful check operation, if parity is correct
2726                  * we are done.  Otherwise update the mismatch count and repair
2727                  * parity if !MD_RECOVERY_CHECK
2728                  */
2729                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2730                         /* parity is correct (on disc,
2731                          * not in buffer any more)
2732                          */
2733                         set_bit(STRIPE_INSYNC, &sh->state);
2734                 else {
2735                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2736                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2737                                 /* don't try to repair!! */
2738                                 set_bit(STRIPE_INSYNC, &sh->state);
2739                         else {
2740                                 sh->check_state = check_state_compute_run;
2741                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2742                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2743                                 set_bit(R5_Wantcompute,
2744                                         &sh->dev[sh->pd_idx].flags);
2745                                 sh->ops.target = sh->pd_idx;
2746                                 sh->ops.target2 = -1;
2747                                 s->uptodate++;
2748                         }
2749                 }
2750                 break;
2751         case check_state_compute_run:
2752                 break;
2753         default:
2754                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2755                        __func__, sh->check_state,
2756                        (unsigned long long) sh->sector);
2757                 BUG();
2758         }
2759 }
2760
2761
2762 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2763                                   struct stripe_head_state *s,
2764                                   struct r6_state *r6s, int disks)
2765 {
2766         int pd_idx = sh->pd_idx;
2767         int qd_idx = sh->qd_idx;
2768         struct r5dev *dev;
2769
2770         set_bit(STRIPE_HANDLE, &sh->state);
2771
2772         BUG_ON(s->failed > 2);
2773
2774         /* Want to check and possibly repair P and Q.
2775          * However there could be one 'failed' device, in which
2776          * case we can only check one of them, possibly using the
2777          * other to generate missing data
2778          */
2779
2780         switch (sh->check_state) {
2781         case check_state_idle:
2782                 /* start a new check operation if there are < 2 failures */
2783                 if (s->failed == r6s->q_failed) {
2784                         /* The only possible failed device holds Q, so it
2785                          * makes sense to check P (If anything else were failed,
2786                          * we would have used P to recreate it).
2787                          */
2788                         sh->check_state = check_state_run;
2789                 }
2790                 if (!r6s->q_failed && s->failed < 2) {
2791                         /* Q is not failed, and we didn't use it to generate
2792                          * anything, so it makes sense to check it
2793                          */
2794                         if (sh->check_state == check_state_run)
2795                                 sh->check_state = check_state_run_pq;
2796                         else
2797                                 sh->check_state = check_state_run_q;
2798                 }
2799
2800                 /* discard potentially stale zero_sum_result */
2801                 sh->ops.zero_sum_result = 0;
2802
2803                 if (sh->check_state == check_state_run) {
2804                         /* async_xor_zero_sum destroys the contents of P */
2805                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2806                         s->uptodate--;
2807                 }
2808                 if (sh->check_state >= check_state_run &&
2809                     sh->check_state <= check_state_run_pq) {
2810                         /* async_syndrome_zero_sum preserves P and Q, so
2811                          * no need to mark them !uptodate here
2812                          */
2813                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2814                         break;
2815                 }
2816
2817                 /* we have 2-disk failure */
2818                 BUG_ON(s->failed != 2);
2819                 /* fall through */
2820         case check_state_compute_result:
2821                 sh->check_state = check_state_idle;
2822
2823                 /* check that a write has not made the stripe insync */
2824                 if (test_bit(STRIPE_INSYNC, &sh->state))
2825                         break;
2826
2827                 /* now write out any block on a failed drive,
2828                  * or P or Q if they were recomputed
2829                  */
2830                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2831                 if (s->failed == 2) {
2832                         dev = &sh->dev[r6s->failed_num[1]];
2833                         s->locked++;
2834                         set_bit(R5_LOCKED, &dev->flags);
2835                         set_bit(R5_Wantwrite, &dev->flags);
2836                 }
2837                 if (s->failed >= 1) {
2838                         dev = &sh->dev[r6s->failed_num[0]];
2839                         s->locked++;
2840                         set_bit(R5_LOCKED, &dev->flags);
2841                         set_bit(R5_Wantwrite, &dev->flags);
2842                 }
2843                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2844                         dev = &sh->dev[pd_idx];
2845                         s->locked++;
2846                         set_bit(R5_LOCKED, &dev->flags);
2847                         set_bit(R5_Wantwrite, &dev->flags);
2848                 }
2849                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2850                         dev = &sh->dev[qd_idx];
2851                         s->locked++;
2852                         set_bit(R5_LOCKED, &dev->flags);
2853                         set_bit(R5_Wantwrite, &dev->flags);
2854                 }
2855                 clear_bit(STRIPE_DEGRADED, &sh->state);
2856
2857                 set_bit(STRIPE_INSYNC, &sh->state);
2858                 break;
2859         case check_state_run:
2860         case check_state_run_q:
2861         case check_state_run_pq:
2862                 break; /* we will be called again upon completion */
2863         case check_state_check_result:
2864                 sh->check_state = check_state_idle;
2865
2866                 /* handle a successful check operation, if parity is correct
2867                  * we are done.  Otherwise update the mismatch count and repair
2868                  * parity if !MD_RECOVERY_CHECK
2869                  */
2870                 if (sh->ops.zero_sum_result == 0) {
2871                         /* both parities are correct */
2872                         if (!s->failed)
2873                                 set_bit(STRIPE_INSYNC, &sh->state);
2874                         else {
2875                                 /* in contrast to the raid5 case we can validate
2876                                  * parity, but still have a failure to write
2877                                  * back
2878                                  */
2879                                 sh->check_state = check_state_compute_result;
2880                                 /* Returning at this point means that we may go
2881                                  * off and bring p and/or q uptodate again so
2882                                  * we make sure to check zero_sum_result again
2883                                  * to verify if p or q need writeback
2884                                  */
2885                         }
2886                 } else {
2887                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2888                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2889                                 /* don't try to repair!! */
2890                                 set_bit(STRIPE_INSYNC, &sh->state);
2891                         else {
2892                                 int *target = &sh->ops.target;
2893
2894                                 sh->ops.target = -1;
2895                                 sh->ops.target2 = -1;
2896                                 sh->check_state = check_state_compute_run;
2897                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2898                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2899                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2900                                         set_bit(R5_Wantcompute,
2901                                                 &sh->dev[pd_idx].flags);
2902                                         *target = pd_idx;
2903                                         target = &sh->ops.target2;
2904                                         s->uptodate++;
2905                                 }
2906                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2907                                         set_bit(R5_Wantcompute,
2908                                                 &sh->dev[qd_idx].flags);
2909                                         *target = qd_idx;
2910                                         s->uptodate++;
2911                                 }
2912                         }
2913                 }
2914                 break;
2915         case check_state_compute_run:
2916                 break;
2917         default:
2918                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2919                        __func__, sh->check_state,
2920                        (unsigned long long) sh->sector);
2921                 BUG();
2922         }
2923 }
2924
2925 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2926                                 struct r6_state *r6s)
2927 {
2928         int i;
2929
2930         /* We have read all the blocks in this stripe and now we need to
2931          * copy some of them into a target stripe for expand.
2932          */
2933         struct dma_async_tx_descriptor *tx = NULL;
2934         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2935         for (i = 0; i < sh->disks; i++)
2936                 if (i != sh->pd_idx && i != sh->qd_idx) {
2937                         int dd_idx, j;
2938                         struct stripe_head *sh2;
2939                         struct async_submit_ctl submit;
2940
2941                         sector_t bn = compute_blocknr(sh, i, 1);
2942                         sector_t s = raid5_compute_sector(conf, bn, 0,
2943                                                           &dd_idx, NULL);
2944                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
2945                         if (sh2 == NULL)
2946                                 /* so far only the early blocks of this stripe
2947                                  * have been requested.  When later blocks
2948                                  * get requested, we will try again
2949                                  */
2950                                 continue;
2951                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2952                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2953                                 /* must have already done this block */
2954                                 release_stripe(sh2);
2955                                 continue;
2956                         }
2957
2958                         /* place all the copies on one channel */
2959                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2960                         tx = async_memcpy(sh2->dev[dd_idx].page,
2961                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2962                                           &submit);
2963
2964                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2965                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2966                         for (j = 0; j < conf->raid_disks; j++)
2967                                 if (j != sh2->pd_idx &&
2968                                     (!r6s || j != sh2->qd_idx) &&
2969                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2970                                         break;
2971                         if (j == conf->raid_disks) {
2972                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2973                                 set_bit(STRIPE_HANDLE, &sh2->state);
2974                         }
2975                         release_stripe(sh2);
2976
2977                 }
2978         /* done submitting copies, wait for them to complete */
2979         if (tx) {
2980                 async_tx_ack(tx);
2981                 dma_wait_for_async_tx(tx);
2982         }
2983 }
2984
2985
2986 /*
2987  * handle_stripe - do things to a stripe.
2988  *
2989  * We lock the stripe and then examine the state of various bits
2990  * to see what needs to be done.
2991  * Possible results:
2992  *    return some read request which now have data
2993  *    return some write requests which are safely on disc
2994  *    schedule a read on some buffers
2995  *    schedule a write of some buffers
2996  *    return confirmation of parity correctness
2997  *
2998  * buffers are taken off read_list or write_list, and bh_cache buffers
2999  * get BH_Lock set before the stripe lock is released.
3000  *
3001  */
3002
3003 static void handle_stripe5(struct stripe_head *sh)
3004 {
3005         raid5_conf_t *conf = sh->raid_conf;
3006         int disks = sh->disks, i;
3007         struct bio *return_bi = NULL;
3008         struct stripe_head_state s;
3009         struct r5dev *dev;
3010         mdk_rdev_t *blocked_rdev = NULL;
3011         int prexor;
3012         int dec_preread_active = 0;
3013
3014         memset(&s, 0, sizeof(s));
3015         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3016                  "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3017                  atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3018                  sh->reconstruct_state);
3019
3020         spin_lock(&sh->lock);
3021         clear_bit(STRIPE_HANDLE, &sh->state);
3022         clear_bit(STRIPE_DELAYED, &sh->state);
3023
3024         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3025         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3026         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3027
3028         /* Now to look around and see what can be done */
3029         rcu_read_lock();
3030         for (i=disks; i--; ) {
3031                 mdk_rdev_t *rdev;
3032
3033                 dev = &sh->dev[i];
3034
3035                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3036                         "written %p\n", i, dev->flags, dev->toread, dev->read,
3037                         dev->towrite, dev->written);
3038
3039                 /* maybe we can request a biofill operation
3040                  *
3041                  * new wantfill requests are only permitted while
3042                  * ops_complete_biofill is guaranteed to be inactive
3043                  */
3044                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3045                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3046                         set_bit(R5_Wantfill, &dev->flags);
3047
3048                 /* now count some things */
3049                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3050                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3051                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
3052
3053                 if (test_bit(R5_Wantfill, &dev->flags))
3054                         s.to_fill++;
3055                 else if (dev->toread)
3056                         s.to_read++;
3057                 if (dev->towrite) {
3058                         s.to_write++;
3059                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3060                                 s.non_overwrite++;
3061                 }
3062                 if (dev->written)
3063                         s.written++;
3064                 rdev = rcu_dereference(conf->disks[i].rdev);
3065                 if (blocked_rdev == NULL &&
3066                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3067                         blocked_rdev = rdev;
3068                         atomic_inc(&rdev->nr_pending);
3069                 }
3070                 clear_bit(R5_Insync, &dev->flags);
3071                 if (!rdev)
3072                         /* Not in-sync */;
3073                 else if (test_bit(In_sync, &rdev->flags))
3074                         set_bit(R5_Insync, &dev->flags);
3075                 else {
3076                         /* could be in-sync depending on recovery/reshape status */
3077                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3078                                 set_bit(R5_Insync, &dev->flags);
3079                 }
3080                 if (!test_bit(R5_Insync, &dev->flags)) {
3081                         /* The ReadError flag will just be confusing now */
3082                         clear_bit(R5_ReadError, &dev->flags);
3083                         clear_bit(R5_ReWrite, &dev->flags);
3084                 }
3085                 if (test_bit(R5_ReadError, &dev->flags))
3086                         clear_bit(R5_Insync, &dev->flags);
3087                 if (!test_bit(R5_Insync, &dev->flags)) {
3088                         s.failed++;
3089                         s.failed_num = i;
3090                 }
3091         }
3092         rcu_read_unlock();
3093
3094         if (unlikely(blocked_rdev)) {
3095                 if (s.syncing || s.expanding || s.expanded ||
3096                     s.to_write || s.written) {
3097                         set_bit(STRIPE_HANDLE, &sh->state);
3098                         goto unlock;
3099                 }
3100                 /* There is nothing for the blocked_rdev to block */
3101                 rdev_dec_pending(blocked_rdev, conf->mddev);
3102                 blocked_rdev = NULL;
3103         }
3104
3105         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3106                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3107                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3108         }
3109
3110         pr_debug("locked=%d uptodate=%d to_read=%d"
3111                 " to_write=%d failed=%d failed_num=%d\n",
3112                 s.locked, s.uptodate, s.to_read, s.to_write,
3113                 s.failed, s.failed_num);
3114         /* check if the array has lost two devices and, if so, some requests might
3115          * need to be failed
3116          */
3117         if (s.failed > 1 && s.to_read+s.to_write+s.written)
3118                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3119         if (s.failed > 1 && s.syncing) {
3120                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3121                 clear_bit(STRIPE_SYNCING, &sh->state);
3122                 s.syncing = 0;
3123         }
3124
3125         /* might be able to return some write requests if the parity block
3126          * is safe, or on a failed drive
3127          */
3128         dev = &sh->dev[sh->pd_idx];
3129         if ( s.written &&
3130              ((test_bit(R5_Insync, &dev->flags) &&
3131                !test_bit(R5_LOCKED, &dev->flags) &&
3132                test_bit(R5_UPTODATE, &dev->flags)) ||
3133                (s.failed == 1 && s.failed_num == sh->pd_idx)))
3134                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3135
3136         /* Now we might consider reading some blocks, either to check/generate
3137          * parity, or to satisfy requests
3138          * or to load a block that is being partially written.
3139          */
3140         if (s.to_read || s.non_overwrite ||
3141             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3142                 handle_stripe_fill5(sh, &s, disks);
3143
3144         /* Now we check to see if any write operations have recently
3145          * completed
3146          */
3147         prexor = 0;
3148         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3149                 prexor = 1;
3150         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3151             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3152                 sh->reconstruct_state = reconstruct_state_idle;
3153
3154                 /* All the 'written' buffers and the parity block are ready to
3155                  * be written back to disk
3156                  */
3157                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3158                 for (i = disks; i--; ) {
3159                         dev = &sh->dev[i];
3160                         if (test_bit(R5_LOCKED, &dev->flags) &&
3161                                 (i == sh->pd_idx || dev->written)) {
3162                                 pr_debug("Writing block %d\n", i);
3163                                 set_bit(R5_Wantwrite, &dev->flags);
3164                                 if (prexor)
3165                                         continue;
3166                                 if (!test_bit(R5_Insync, &dev->flags) ||
3167                                     (i == sh->pd_idx && s.failed == 0))
3168                                         set_bit(STRIPE_INSYNC, &sh->state);
3169                         }
3170                 }
3171                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3172                         dec_preread_active = 1;
3173         }
3174
3175         /* Now to consider new write requests and what else, if anything
3176          * should be read.  We do not handle new writes when:
3177          * 1/ A 'write' operation (copy+xor) is already in flight.
3178          * 2/ A 'check' operation is in flight, as it may clobber the parity
3179          *    block.
3180          */
3181         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3182                 handle_stripe_dirtying5(conf, sh, &s, disks);
3183
3184         /* maybe we need to check and possibly fix the parity for this stripe
3185          * Any reads will already have been scheduled, so we just see if enough
3186          * data is available.  The parity check is held off while parity
3187          * dependent operations are in flight.
3188          */
3189         if (sh->check_state ||
3190             (s.syncing && s.locked == 0 &&
3191              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3192              !test_bit(STRIPE_INSYNC, &sh->state)))
3193                 handle_parity_checks5(conf, sh, &s, disks);
3194
3195         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3196                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3197                 clear_bit(STRIPE_SYNCING, &sh->state);
3198         }
3199
3200         /* If the failed drive is just a ReadError, then we might need to progress
3201          * the repair/check process
3202          */
3203         if (s.failed == 1 && !conf->mddev->ro &&
3204             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3205             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3206             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3207                 ) {
3208                 dev = &sh->dev[s.failed_num];
3209                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3210                         set_bit(R5_Wantwrite, &dev->flags);
3211                         set_bit(R5_ReWrite, &dev->flags);
3212                         set_bit(R5_LOCKED, &dev->flags);
3213                         s.locked++;
3214                 } else {
3215                         /* let's read it back */
3216                         set_bit(R5_Wantread, &dev->flags);
3217                         set_bit(R5_LOCKED, &dev->flags);
3218                         s.locked++;
3219                 }
3220         }
3221
3222         /* Finish reconstruct operations initiated by the expansion process */
3223         if (sh->reconstruct_state == reconstruct_state_result) {
3224                 struct stripe_head *sh2
3225                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3226                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3227                         /* sh cannot be written until sh2 has been read.
3228                          * so arrange for sh to be delayed a little
3229                          */
3230                         set_bit(STRIPE_DELAYED, &sh->state);
3231                         set_bit(STRIPE_HANDLE, &sh->state);
3232                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3233                                               &sh2->state))
3234                                 atomic_inc(&conf->preread_active_stripes);
3235                         release_stripe(sh2);
3236                         goto unlock;
3237                 }
3238                 if (sh2)
3239                         release_stripe(sh2);
3240
3241                 sh->reconstruct_state = reconstruct_state_idle;
3242                 clear_bit(STRIPE_EXPANDING, &sh->state);
3243                 for (i = conf->raid_disks; i--; ) {
3244                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3245                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3246                         s.locked++;
3247                 }
3248         }
3249
3250         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3251             !sh->reconstruct_state) {
3252                 /* Need to write out all blocks after computing parity */
3253                 sh->disks = conf->raid_disks;
3254                 stripe_set_idx(sh->sector, conf, 0, sh);
3255                 schedule_reconstruction(sh, &s, 1, 1);
3256         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3257                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3258                 atomic_dec(&conf->reshape_stripes);
3259                 wake_up(&conf->wait_for_overlap);
3260                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3261         }
3262
3263         if (s.expanding && s.locked == 0 &&
3264             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3265                 handle_stripe_expansion(conf, sh, NULL);
3266
3267  unlock:
3268         spin_unlock(&sh->lock);
3269
3270         /* wait for this device to become unblocked */
3271         if (unlikely(blocked_rdev))
3272                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3273
3274         if (s.ops_request)
3275                 raid_run_ops(sh, s.ops_request);
3276
3277         ops_run_io(sh, &s);
3278
3279         if (dec_preread_active) {
3280                 /* We delay this until after ops_run_io so that if make_request
3281                  * is waiting on a barrier, it won't continue until the writes
3282                  * have actually been submitted.
3283                  */
3284                 atomic_dec(&conf->preread_active_stripes);
3285                 if (atomic_read(&conf->preread_active_stripes) <
3286                     IO_THRESHOLD)
3287                         md_wakeup_thread(conf->mddev->thread);
3288         }
3289         return_io(return_bi);
3290 }
3291
3292 static void handle_stripe6(struct stripe_head *sh)
3293 {
3294         raid5_conf_t *conf = sh->raid_conf;
3295         int disks = sh->disks;
3296         struct bio *return_bi = NULL;
3297         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3298         struct stripe_head_state s;
3299         struct r6_state r6s;
3300         struct r5dev *dev, *pdev, *qdev;
3301         mdk_rdev_t *blocked_rdev = NULL;
3302         int dec_preread_active = 0;
3303
3304         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3305                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3306                (unsigned long long)sh->sector, sh->state,
3307                atomic_read(&sh->count), pd_idx, qd_idx,
3308                sh->check_state, sh->reconstruct_state);
3309         memset(&s, 0, sizeof(s));
3310
3311         spin_lock(&sh->lock);
3312         clear_bit(STRIPE_HANDLE, &sh->state);
3313         clear_bit(STRIPE_DELAYED, &sh->state);
3314
3315         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3316         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3317         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3318         /* Now to look around and see what can be done */
3319
3320         rcu_read_lock();
3321         for (i=disks; i--; ) {
3322                 mdk_rdev_t *rdev;
3323                 dev = &sh->dev[i];
3324
3325                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3326                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3327                 /* maybe we can reply to a read
3328                  *
3329                  * new wantfill requests are only permitted while
3330                  * ops_complete_biofill is guaranteed to be inactive
3331                  */
3332                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3333                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3334                         set_bit(R5_Wantfill, &dev->flags);
3335
3336                 /* now count some things */
3337                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3338                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3339                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3340                         s.compute++;
3341                         BUG_ON(s.compute > 2);
3342                 }
3343
3344                 if (test_bit(R5_Wantfill, &dev->flags)) {
3345                         s.to_fill++;
3346                 } else if (dev->toread)
3347                         s.to_read++;
3348                 if (dev->towrite) {
3349                         s.to_write++;
3350                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3351                                 s.non_overwrite++;
3352                 }
3353                 if (dev->written)
3354                         s.written++;
3355                 rdev = rcu_dereference(conf->disks[i].rdev);
3356                 if (blocked_rdev == NULL &&
3357                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3358                         blocked_rdev = rdev;
3359                         atomic_inc(&rdev->nr_pending);
3360                 }
3361                 clear_bit(R5_Insync, &dev->flags);
3362                 if (!rdev)
3363                         /* Not in-sync */;
3364                 else if (test_bit(In_sync, &rdev->flags))
3365                         set_bit(R5_Insync, &dev->flags);
3366                 else {
3367                         /* in sync if before recovery_offset */
3368                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3369                                 set_bit(R5_Insync, &dev->flags);
3370                 }
3371                 if (!test_bit(R5_Insync, &dev->flags)) {
3372                         /* The ReadError flag will just be confusing now */
3373                         clear_bit(R5_ReadError, &dev->flags);
3374                         clear_bit(R5_ReWrite, &dev->flags);
3375                 }
3376                 if (test_bit(R5_ReadError, &dev->flags))
3377                         clear_bit(R5_Insync, &dev->flags);
3378                 if (!test_bit(R5_Insync, &dev->flags)) {
3379                         if (s.failed < 2)
3380                                 r6s.failed_num[s.failed] = i;
3381                         s.failed++;
3382                 }
3383         }
3384         rcu_read_unlock();
3385
3386         if (unlikely(blocked_rdev)) {
3387                 if (s.syncing || s.expanding || s.expanded ||
3388                     s.to_write || s.written) {
3389                         set_bit(STRIPE_HANDLE, &sh->state);
3390                         goto unlock;
3391                 }
3392                 /* There is nothing for the blocked_rdev to block */
3393                 rdev_dec_pending(blocked_rdev, conf->mddev);
3394                 blocked_rdev = NULL;
3395         }
3396
3397         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3398                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3399                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3400         }
3401
3402         pr_debug("locked=%d uptodate=%d to_read=%d"
3403                " to_write=%d failed=%d failed_num=%d,%d\n",
3404                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3405                r6s.failed_num[0], r6s.failed_num[1]);
3406         /* check if the array has lost >2 devices and, if so, some requests
3407          * might need to be failed
3408          */
3409         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3410                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3411         if (s.failed > 2 && s.syncing) {
3412                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3413                 clear_bit(STRIPE_SYNCING, &sh->state);
3414                 s.syncing = 0;
3415         }
3416
3417         /*
3418          * might be able to return some write requests if the parity blocks
3419          * are safe, or on a failed drive
3420          */
3421         pdev = &sh->dev[pd_idx];
3422         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3423                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3424         qdev = &sh->dev[qd_idx];
3425         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3426                 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3427
3428         if ( s.written &&
3429              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3430                              && !test_bit(R5_LOCKED, &pdev->flags)
3431                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3432              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3433                              && !test_bit(R5_LOCKED, &qdev->flags)
3434                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3435                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3436
3437         /* Now we might consider reading some blocks, either to check/generate
3438          * parity, or to satisfy requests
3439          * or to load a block that is being partially written.
3440          */
3441         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3442             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3443                 handle_stripe_fill6(sh, &s, &r6s, disks);
3444
3445         /* Now we check to see if any write operations have recently
3446          * completed
3447          */
3448         if (sh->reconstruct_state == reconstruct_state_drain_result) {
3449
3450                 sh->reconstruct_state = reconstruct_state_idle;
3451                 /* All the 'written' buffers and the parity blocks are ready to
3452                  * be written back to disk
3453                  */
3454                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3455                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3456                 for (i = disks; i--; ) {
3457                         dev = &sh->dev[i];
3458                         if (test_bit(R5_LOCKED, &dev->flags) &&
3459                             (i == sh->pd_idx || i == qd_idx ||
3460                              dev->written)) {
3461                                 pr_debug("Writing block %d\n", i);
3462                                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3463                                 set_bit(R5_Wantwrite, &dev->flags);
3464                                 if (!test_bit(R5_Insync, &dev->flags) ||
3465                                     ((i == sh->pd_idx || i == qd_idx) &&
3466                                       s.failed == 0))
3467                                         set_bit(STRIPE_INSYNC, &sh->state);
3468                         }
3469                 }
3470                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3471                         dec_preread_active = 1;
3472         }
3473
3474         /* Now to consider new write requests and what else, if anything
3475          * should be read.  We do not handle new writes when:
3476          * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3477          * 2/ A 'check' operation is in flight, as it may clobber the parity
3478          *    block.
3479          */
3480         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3481                 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3482
3483         /* maybe we need to check and possibly fix the parity for this stripe
3484          * Any reads will already have been scheduled, so we just see if enough
3485          * data is available.  The parity check is held off while parity
3486          * dependent operations are in flight.
3487          */
3488         if (sh->check_state ||
3489             (s.syncing && s.locked == 0 &&
3490              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3491              !test_bit(STRIPE_INSYNC, &sh->state)))
3492                 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3493
3494         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3495                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3496                 clear_bit(STRIPE_SYNCING, &sh->state);
3497         }
3498
3499         /* If the failed drives are just a ReadError, then we might need
3500          * to progress the repair/check process
3501          */
3502         if (s.failed <= 2 && !conf->mddev->ro)
3503                 for (i = 0; i < s.failed; i++) {
3504                         dev = &sh->dev[r6s.failed_num[i]];
3505                         if (test_bit(R5_ReadError, &dev->flags)
3506                             && !test_bit(R5_LOCKED, &dev->flags)
3507                             && test_bit(R5_UPTODATE, &dev->flags)
3508                                 ) {
3509                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3510                                         set_bit(R5_Wantwrite, &dev->flags);
3511                                         set_bit(R5_ReWrite, &dev->flags);
3512                                         set_bit(R5_LOCKED, &dev->flags);
3513                                         s.locked++;
3514                                 } else {
3515                                         /* let's read it back */
3516                                         set_bit(R5_Wantread, &dev->flags);
3517                                         set_bit(R5_LOCKED, &dev->flags);
3518                                         s.locked++;
3519                                 }
3520                         }
3521                 }
3522
3523         /* Finish reconstruct operations initiated by the expansion process */
3524         if (sh->reconstruct_state == reconstruct_state_result) {
3525                 sh->reconstruct_state = reconstruct_state_idle;
3526                 clear_bit(STRIPE_EXPANDING, &sh->state);
3527                 for (i = conf->raid_disks; i--; ) {
3528                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3529                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3530                         s.locked++;
3531                 }
3532         }
3533
3534         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3535             !sh->reconstruct_state) {
3536                 struct stripe_head *sh2
3537                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3538                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3539                         /* sh cannot be written until sh2 has been read.
3540                          * so arrange for sh to be delayed a little
3541                          */
3542                         set_bit(STRIPE_DELAYED, &sh->state);
3543                         set_bit(STRIPE_HANDLE, &sh->state);
3544                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3545                                               &sh2->state))
3546                                 atomic_inc(&conf->preread_active_stripes);
3547                         release_stripe(sh2);
3548                         goto unlock;
3549                 }
3550                 if (sh2)
3551                         release_stripe(sh2);
3552
3553                 /* Need to write out all blocks after computing P&Q */
3554                 sh->disks = conf->raid_disks;
3555                 stripe_set_idx(sh->sector, conf, 0, sh);
3556                 schedule_reconstruction(sh, &s, 1, 1);
3557         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3558                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3559                 atomic_dec(&conf->reshape_stripes);
3560                 wake_up(&conf->wait_for_overlap);
3561                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3562         }
3563
3564         if (s.expanding && s.locked == 0 &&
3565             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3566                 handle_stripe_expansion(conf, sh, &r6s);
3567
3568  unlock:
3569         spin_unlock(&sh->lock);
3570
3571         /* wait for this device to become unblocked */
3572         if (unlikely(blocked_rdev))
3573                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3574
3575         if (s.ops_request)
3576                 raid_run_ops(sh, s.ops_request);
3577
3578         ops_run_io(sh, &s);
3579
3580
3581         if (dec_preread_active) {
3582                 /* We delay this until after ops_run_io so that if make_request
3583                  * is waiting on a barrier, it won't continue until the writes
3584                  * have actually been submitted.
3585                  */
3586                 atomic_dec(&conf->preread_active_stripes);
3587                 if (atomic_read(&conf->preread_active_stripes) <
3588                     IO_THRESHOLD)
3589                         md_wakeup_thread(conf->mddev->thread);
3590         }
3591
3592         return_io(return_bi);
3593 }
3594
3595 static void handle_stripe(struct stripe_head *sh)
3596 {
3597         if (sh->raid_conf->level == 6)
3598                 handle_stripe6(sh);
3599         else
3600                 handle_stripe5(sh);
3601 }
3602
3603 static void raid5_activate_delayed(raid5_conf_t *conf)
3604 {
3605         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3606                 while (!list_empty(&conf->delayed_list)) {
3607                         struct list_head *l = conf->delayed_list.next;
3608                         struct stripe_head *sh;
3609                         sh = list_entry(l, struct stripe_head, lru);
3610                         list_del_init(l);
3611                         clear_bit(STRIPE_DELAYED, &sh->state);
3612                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3613                                 atomic_inc(&conf->preread_active_stripes);
3614                         list_add_tail(&sh->lru, &conf->hold_list);
3615                 }
3616         } else
3617                 blk_plug_device(conf->mddev->queue);
3618 }
3619
3620 static void activate_bit_delay(raid5_conf_t *conf)
3621 {
3622         /* device_lock is held */
3623         struct list_head head;
3624         list_add(&head, &conf->bitmap_list);
3625         list_del_init(&conf->bitmap_list);
3626         while (!list_empty(&head)) {
3627                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3628                 list_del_init(&sh->lru);
3629                 atomic_inc(&sh->count);
3630                 __release_stripe(conf, sh);
3631         }
3632 }
3633
3634 static void unplug_slaves(mddev_t *mddev)
3635 {
3636         raid5_conf_t *conf = mddev->private;
3637         int i;
3638         int devs = max(conf->raid_disks, conf->previous_raid_disks);
3639
3640         rcu_read_lock();
3641         for (i = 0; i < devs; i++) {
3642                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3643                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3644                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3645
3646                         atomic_inc(&rdev->nr_pending);
3647                         rcu_read_unlock();
3648
3649                         blk_unplug(r_queue);
3650
3651                         rdev_dec_pending(rdev, mddev);
3652                         rcu_read_lock();
3653                 }
3654         }
3655         rcu_read_unlock();
3656 }
3657
3658 static void raid5_unplug_device(struct request_queue *q)
3659 {
3660         mddev_t *mddev = q->queuedata;
3661         raid5_conf_t *conf = mddev->private;
3662         unsigned long flags;
3663
3664         spin_lock_irqsave(&conf->device_lock, flags);
3665
3666         if (blk_remove_plug(q)) {
3667                 conf->seq_flush++;
3668                 raid5_activate_delayed(conf);
3669         }
3670         md_wakeup_thread(mddev->thread);
3671
3672         spin_unlock_irqrestore(&conf->device_lock, flags);
3673
3674         unplug_slaves(mddev);
3675 }
3676
3677 static int raid5_congested(void *data, int bits)
3678 {
3679         mddev_t *mddev = data;
3680         raid5_conf_t *conf = mddev->private;
3681
3682         /* No difference between reads and writes.  Just check
3683          * how busy the stripe_cache is
3684          */
3685
3686         if (mddev_congested(mddev, bits))
3687                 return 1;
3688         if (conf->inactive_blocked)
3689                 return 1;
3690         if (conf->quiesce)
3691                 return 1;
3692         if (list_empty_careful(&conf->inactive_list))
3693                 return 1;
3694
3695         return 0;
3696 }
3697
3698 /* We want read requests to align with chunks where possible,
3699  * but write requests don't need to.
3700  */
3701 static int raid5_mergeable_bvec(struct request_queue *q,
3702                                 struct bvec_merge_data *bvm,
3703                                 struct bio_vec *biovec)
3704 {
3705         mddev_t *mddev = q->queuedata;
3706         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3707         int max;
3708         unsigned int chunk_sectors = mddev->chunk_sectors;
3709         unsigned int bio_sectors = bvm->bi_size >> 9;
3710
3711         if ((bvm->bi_rw & 1) == WRITE)
3712                 return biovec->bv_len; /* always allow writes to be mergeable */
3713
3714         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3715                 chunk_sectors = mddev->new_chunk_sectors;
3716         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3717         if (max < 0) max = 0;
3718         if (max <= biovec->bv_len && bio_sectors == 0)
3719                 return biovec->bv_len;
3720         else
3721                 return max;
3722 }
3723
3724
3725 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3726 {
3727         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3728         unsigned int chunk_sectors = mddev->chunk_sectors;
3729         unsigned int bio_sectors = bio->bi_size >> 9;
3730
3731         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3732                 chunk_sectors = mddev->new_chunk_sectors;
3733         return  chunk_sectors >=
3734                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3735 }
3736
3737 /*
3738  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3739  *  later sampled by raid5d.
3740  */
3741 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3742 {
3743         unsigned long flags;
3744
3745         spin_lock_irqsave(&conf->device_lock, flags);
3746
3747         bi->bi_next = conf->retry_read_aligned_list;
3748         conf->retry_read_aligned_list = bi;
3749
3750         spin_unlock_irqrestore(&conf->device_lock, flags);
3751         md_wakeup_thread(conf->mddev->thread);
3752 }
3753
3754
3755 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3756 {
3757         struct bio *bi;
3758
3759         bi = conf->retry_read_aligned;
3760         if (bi) {
3761                 conf->retry_read_aligned = NULL;
3762                 return bi;
3763         }
3764         bi = conf->retry_read_aligned_list;
3765         if(bi) {
3766                 conf->retry_read_aligned_list = bi->bi_next;
3767                 bi->bi_next = NULL;
3768                 /*
3769                  * this sets the active strip count to 1 and the processed
3770                  * strip count to zero (upper 8 bits)
3771                  */
3772                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3773         }
3774
3775         return bi;
3776 }
3777
3778
3779 /*
3780  *  The "raid5_align_endio" should check if the read succeeded and if it
3781  *  did, call bio_endio on the original bio (having bio_put the new bio
3782  *  first).
3783  *  If the read failed..
3784  */
3785 static void raid5_align_endio(struct bio *bi, int error)
3786 {
3787         struct bio* raid_bi  = bi->bi_private;
3788         mddev_t *mddev;
3789         raid5_conf_t *conf;
3790         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3791         mdk_rdev_t *rdev;
3792
3793         bio_put(bi);
3794
3795         rdev = (void*)raid_bi->bi_next;
3796         raid_bi->bi_next = NULL;
3797         mddev = rdev->mddev;
3798         conf = mddev->private;
3799
3800         rdev_dec_pending(rdev, conf->mddev);
3801
3802         if (!error && uptodate) {
3803                 bio_endio(raid_bi, 0);
3804                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3805                         wake_up(&conf->wait_for_stripe);
3806                 return;
3807         }
3808
3809
3810         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3811
3812         add_bio_to_retry(raid_bi, conf);
3813 }
3814
3815 static int bio_fits_rdev(struct bio *bi)
3816 {
3817         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3818
3819         if ((bi->bi_size>>9) > queue_max_sectors(q))
3820                 return 0;
3821         blk_recount_segments(q, bi);
3822         if (bi->bi_phys_segments > queue_max_segments(q))
3823                 return 0;
3824
3825         if (q->merge_bvec_fn)
3826                 /* it's too hard to apply the merge_bvec_fn at this stage,
3827                  * just just give up
3828                  */
3829                 return 0;
3830
3831         return 1;
3832 }
3833
3834
3835 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3836 {
3837         raid5_conf_t *conf = mddev->private;
3838         int dd_idx;
3839         struct bio* align_bi;
3840         mdk_rdev_t *rdev;
3841
3842         if (!in_chunk_boundary(mddev, raid_bio)) {
3843                 pr_debug("chunk_aligned_read : non aligned\n");
3844                 return 0;
3845         }
3846         /*
3847          * use bio_clone to make a copy of the bio
3848          */
3849         align_bi = bio_clone(raid_bio, GFP_NOIO);
3850         if (!align_bi)
3851                 return 0;
3852         /*
3853          *   set bi_end_io to a new function, and set bi_private to the
3854          *     original bio.
3855          */
3856         align_bi->bi_end_io  = raid5_align_endio;
3857         align_bi->bi_private = raid_bio;
3858         /*
3859          *      compute position
3860          */
3861         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3862                                                     0,
3863                                                     &dd_idx, NULL);
3864
3865         rcu_read_lock();
3866         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3867         if (rdev && test_bit(In_sync, &rdev->flags)) {
3868                 atomic_inc(&rdev->nr_pending);
3869                 rcu_read_unlock();
3870                 raid_bio->bi_next = (void*)rdev;
3871                 align_bi->bi_bdev =  rdev->bdev;
3872                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3873                 align_bi->bi_sector += rdev->data_offset;
3874
3875                 if (!bio_fits_rdev(align_bi)) {
3876                         /* too big in some way */
3877                         bio_put(align_bi);
3878                         rdev_dec_pending(rdev, mddev);
3879                         return 0;
3880                 }
3881
3882                 spin_lock_irq(&conf->device_lock);
3883                 wait_event_lock_irq(conf->wait_for_stripe,
3884                                     conf->quiesce == 0,
3885                                     conf->device_lock, /* nothing */);
3886                 atomic_inc(&conf->active_aligned_reads);
3887                 spin_unlock_irq(&conf->device_lock);
3888
3889                 generic_make_request(align_bi);
3890                 return 1;
3891         } else {
3892                 rcu_read_unlock();
3893                 bio_put(align_bi);
3894                 return 0;
3895         }
3896 }
3897
3898 /* __get_priority_stripe - get the next stripe to process
3899  *
3900  * Full stripe writes are allowed to pass preread active stripes up until
3901  * the bypass_threshold is exceeded.  In general the bypass_count
3902  * increments when the handle_list is handled before the hold_list; however, it
3903  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3904  * stripe with in flight i/o.  The bypass_count will be reset when the
3905  * head of the hold_list has changed, i.e. the head was promoted to the
3906  * handle_list.
3907  */
3908 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3909 {
3910         struct stripe_head *sh;
3911
3912         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3913                   __func__,
3914                   list_empty(&conf->handle_list) ? "empty" : "busy",
3915                   list_empty(&conf->hold_list) ? "empty" : "busy",
3916                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3917
3918         if (!list_empty(&conf->handle_list)) {
3919                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3920
3921                 if (list_empty(&conf->hold_list))
3922                         conf->bypass_count = 0;
3923                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3924                         if (conf->hold_list.next == conf->last_hold)
3925                                 conf->bypass_count++;
3926                         else {
3927                                 conf->last_hold = conf->hold_list.next;
3928                                 conf->bypass_count -= conf->bypass_threshold;
3929                                 if (conf->bypass_count < 0)
3930                                         conf->bypass_count = 0;
3931                         }
3932                 }
3933         } else if (!list_empty(&conf->hold_list) &&
3934                    ((conf->bypass_threshold &&
3935                      conf->bypass_count > conf->bypass_threshold) ||
3936                     atomic_read(&conf->pending_full_writes) == 0)) {
3937                 sh = list_entry(conf->hold_list.next,
3938                                 typeof(*sh), lru);
3939                 conf->bypass_count -= conf->bypass_threshold;
3940                 if (conf->bypass_count < 0)
3941                         conf->bypass_count = 0;
3942         } else
3943                 return NULL;
3944
3945         list_del_init(&sh->lru);
3946         atomic_inc(&sh->count);
3947         BUG_ON(atomic_read(&sh->count) != 1);
3948         return sh;
3949 }
3950
3951 static int make_request(mddev_t *mddev, struct bio * bi)
3952 {
3953         raid5_conf_t *conf = mddev->private;
3954         int dd_idx;
3955         sector_t new_sector;
3956         sector_t logical_sector, last_sector;
3957         struct stripe_head *sh;
3958         const int rw = bio_data_dir(bi);
3959         int remaining;
3960
3961         if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3962                 /* Drain all pending writes.  We only really need
3963                  * to ensure they have been submitted, but this is
3964                  * easier.
3965                  */
3966                 mddev->pers->quiesce(mddev, 1);
3967                 mddev->pers->quiesce(mddev, 0);
3968                 md_barrier_request(mddev, bi);
3969                 return 0;
3970         }
3971
3972         md_write_start(mddev, bi);
3973
3974         if (rw == READ &&
3975              mddev->reshape_position == MaxSector &&
3976              chunk_aligned_read(mddev,bi))
3977                 return 0;
3978
3979         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3980         last_sector = bi->bi_sector + (bi->bi_size>>9);
3981         bi->bi_next = NULL;
3982         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3983
3984         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3985                 DEFINE_WAIT(w);
3986                 int disks, data_disks;
3987                 int previous;
3988
3989         retry:
3990                 previous = 0;
3991                 disks = conf->raid_disks;
3992                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3993                 if (unlikely(conf->reshape_progress != MaxSector)) {
3994                         /* spinlock is needed as reshape_progress may be
3995                          * 64bit on a 32bit platform, and so it might be
3996                          * possible to see a half-updated value
3997                          * Ofcourse reshape_progress could change after
3998                          * the lock is dropped, so once we get a reference
3999                          * to the stripe that we think it is, we will have
4000                          * to check again.
4001                          */
4002                         spin_lock_irq(&conf->device_lock);
4003                         if (mddev->delta_disks < 0
4004                             ? logical_sector < conf->reshape_progress
4005                             : logical_sector >= conf->reshape_progress) {
4006                                 disks = conf->previous_raid_disks;
4007                                 previous = 1;
4008                         } else {
4009                                 if (mddev->delta_disks < 0
4010                                     ? logical_sector < conf->reshape_safe
4011                                     : logical_sector >= conf->reshape_safe) {
4012                                         spin_unlock_irq(&conf->device_lock);
4013                                         schedule();
4014                                         goto retry;
4015                                 }
4016                         }
4017                         spin_unlock_irq(&conf->device_lock);
4018                 }
4019                 data_disks = disks - conf->max_degraded;
4020
4021                 new_sector = raid5_compute_sector(conf, logical_sector,
4022                                                   previous,
4023                                                   &dd_idx, NULL);
4024                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4025                         (unsigned long long)new_sector, 
4026                         (unsigned long long)logical_sector);
4027
4028                 sh = get_active_stripe(conf, new_sector, previous,
4029                                        (bi->bi_rw&RWA_MASK), 0);
4030                 if (sh) {
4031                         if (unlikely(previous)) {
4032                                 /* expansion might have moved on while waiting for a
4033                                  * stripe, so we must do the range check again.
4034                                  * Expansion could still move past after this
4035                                  * test, but as we are holding a reference to
4036                                  * 'sh', we know that if that happens,
4037                                  *  STRIPE_EXPANDING will get set and the expansion
4038                                  * won't proceed until we finish with the stripe.
4039                                  */
4040                                 int must_retry = 0;
4041                                 spin_lock_irq(&conf->device_lock);
4042                                 if (mddev->delta_disks < 0
4043                                     ? logical_sector >= conf->reshape_progress
4044                                     : logical_sector < conf->reshape_progress)
4045                                         /* mismatch, need to try again */
4046                                         must_retry = 1;
4047                                 spin_unlock_irq(&conf->device_lock);
4048                                 if (must_retry) {
4049                                         release_stripe(sh);
4050                                         schedule();
4051                                         goto retry;
4052                                 }
4053                         }
4054
4055                         if (bio_data_dir(bi) == WRITE &&
4056                             logical_sector >= mddev->suspend_lo &&
4057                             logical_sector < mddev->suspend_hi) {
4058                                 release_stripe(sh);
4059                                 /* As the suspend_* range is controlled by
4060                                  * userspace, we want an interruptible
4061                                  * wait.
4062                                  */
4063                                 flush_signals(current);
4064                                 prepare_to_wait(&conf->wait_for_overlap,
4065                                                 &w, TASK_INTERRUPTIBLE);
4066                                 if (logical_sector >= mddev->suspend_lo &&
4067                                     logical_sector < mddev->suspend_hi)
4068                                         schedule();
4069                                 goto retry;
4070                         }
4071
4072                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4073                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
4074                                 /* Stripe is busy expanding or
4075                                  * add failed due to overlap.  Flush everything
4076                                  * and wait a while
4077                                  */
4078                                 raid5_unplug_device(mddev->queue);
4079                                 release_stripe(sh);
4080                                 schedule();
4081                                 goto retry;
4082                         }
4083                         finish_wait(&conf->wait_for_overlap, &w);
4084                         set_bit(STRIPE_HANDLE, &sh->state);
4085                         clear_bit(STRIPE_DELAYED, &sh->state);
4086                         if (mddev->barrier && 
4087                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4088                                 atomic_inc(&conf->preread_active_stripes);
4089                         release_stripe(sh);
4090                 } else {
4091                         /* cannot get stripe for read-ahead, just give-up */
4092                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4093                         finish_wait(&conf->wait_for_overlap, &w);
4094                         break;
4095                 }
4096                         
4097         }
4098         spin_lock_irq(&conf->device_lock);
4099         remaining = raid5_dec_bi_phys_segments(bi);
4100         spin_unlock_irq(&conf->device_lock);
4101         if (remaining == 0) {
4102
4103                 if ( rw == WRITE )
4104                         md_write_end(mddev);
4105
4106                 bio_endio(bi, 0);
4107         }
4108
4109         if (mddev->barrier) {
4110                 /* We need to wait for the stripes to all be handled.
4111                  * So: wait for preread_active_stripes to drop to 0.
4112                  */
4113                 wait_event(mddev->thread->wqueue,
4114                            atomic_read(&conf->preread_active_stripes) == 0);
4115         }
4116         return 0;
4117 }
4118
4119 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4120
4121 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4122 {
4123         /* reshaping is quite different to recovery/resync so it is
4124          * handled quite separately ... here.
4125          *
4126          * On each call to sync_request, we gather one chunk worth of
4127          * destination stripes and flag them as expanding.
4128          * Then we find all the source stripes and request reads.
4129          * As the reads complete, handle_stripe will copy the data
4130          * into the destination stripe and release that stripe.
4131          */
4132         raid5_conf_t *conf = mddev->private;
4133         struct stripe_head *sh;
4134         sector_t first_sector, last_sector;
4135         int raid_disks = conf->previous_raid_disks;
4136         int data_disks = raid_disks - conf->max_degraded;
4137         int new_data_disks = conf->raid_disks - conf->max_degraded;
4138         int i;
4139         int dd_idx;
4140         sector_t writepos, readpos, safepos;
4141         sector_t stripe_addr;
4142         int reshape_sectors;
4143         struct list_head stripes;
4144
4145         if (sector_nr == 0) {
4146                 /* If restarting in the middle, skip the initial sectors */
4147                 if (mddev->delta_disks < 0 &&
4148                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4149                         sector_nr = raid5_size(mddev, 0, 0)
4150                                 - conf->reshape_progress;
4151                 } else if (mddev->delta_disks >= 0 &&
4152                            conf->reshape_progress > 0)
4153                         sector_nr = conf->reshape_progress;
4154                 sector_div(sector_nr, new_data_disks);
4155                 if (sector_nr) {
4156                         mddev->curr_resync_completed = sector_nr;
4157                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4158                         *skipped = 1;
4159                         return sector_nr;
4160                 }
4161         }
4162
4163         /* We need to process a full chunk at a time.
4164          * If old and new chunk sizes differ, we need to process the
4165          * largest of these
4166          */
4167         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4168                 reshape_sectors = mddev->new_chunk_sectors;
4169         else
4170                 reshape_sectors = mddev->chunk_sectors;
4171
4172         /* we update the metadata when there is more than 3Meg
4173          * in the block range (that is rather arbitrary, should
4174          * probably be time based) or when the data about to be
4175          * copied would over-write the source of the data at
4176          * the front of the range.
4177          * i.e. one new_stripe along from reshape_progress new_maps
4178          * to after where reshape_safe old_maps to
4179          */
4180         writepos = conf->reshape_progress;
4181         sector_div(writepos, new_data_disks);
4182         readpos = conf->reshape_progress;
4183         sector_div(readpos, data_disks);
4184         safepos = conf->reshape_safe;
4185         sector_div(safepos, data_disks);
4186         if (mddev->delta_disks < 0) {
4187                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4188                 readpos += reshape_sectors;
4189                 safepos += reshape_sectors;
4190         } else {
4191                 writepos += reshape_sectors;
4192                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4193                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4194         }
4195
4196         /* 'writepos' is the most advanced device address we might write.
4197          * 'readpos' is the least advanced device address we might read.
4198          * 'safepos' is the least address recorded in the metadata as having
4199          *     been reshaped.
4200          * If 'readpos' is behind 'writepos', then there is no way that we can
4201          * ensure safety in the face of a crash - that must be done by userspace
4202          * making a backup of the data.  So in that case there is no particular
4203          * rush to update metadata.
4204          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4205          * update the metadata to advance 'safepos' to match 'readpos' so that
4206          * we can be safe in the event of a crash.
4207          * So we insist on updating metadata if safepos is behind writepos and
4208          * readpos is beyond writepos.
4209          * In any case, update the metadata every 10 seconds.
4210          * Maybe that number should be configurable, but I'm not sure it is
4211          * worth it.... maybe it could be a multiple of safemode_delay???
4212          */
4213         if ((mddev->delta_disks < 0
4214              ? (safepos > writepos && readpos < writepos)
4215              : (safepos < writepos && readpos > writepos)) ||
4216             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4217                 /* Cannot proceed until we've updated the superblock... */
4218                 wait_event(conf->wait_for_overlap,
4219                            atomic_read(&conf->reshape_stripes)==0);
4220                 mddev->reshape_position = conf->reshape_progress;
4221                 mddev->curr_resync_completed = mddev->curr_resync;
4222                 conf->reshape_checkpoint = jiffies;
4223                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4224                 md_wakeup_thread(mddev->thread);
4225                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4226                            kthread_should_stop());
4227                 spin_lock_irq(&conf->device_lock);
4228                 conf->reshape_safe = mddev->reshape_position;
4229                 spin_unlock_irq(&conf->device_lock);
4230                 wake_up(&conf->wait_for_overlap);
4231                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4232         }
4233
4234         if (mddev->delta_disks < 0) {
4235                 BUG_ON(conf->reshape_progress == 0);
4236                 stripe_addr = writepos;
4237                 BUG_ON((mddev->dev_sectors &
4238                         ~((sector_t)reshape_sectors - 1))
4239                        - reshape_sectors - stripe_addr
4240                        != sector_nr);
4241         } else {
4242                 BUG_ON(writepos != sector_nr + reshape_sectors);
4243                 stripe_addr = sector_nr;
4244         }
4245         INIT_LIST_HEAD(&stripes);
4246         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4247                 int j;
4248                 int skipped_disk = 0;
4249                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4250                 set_bit(STRIPE_EXPANDING, &sh->state);
4251                 atomic_inc(&conf->reshape_stripes);
4252                 /* If any of this stripe is beyond the end of the old
4253                  * array, then we need to zero those blocks
4254                  */
4255                 for (j=sh->disks; j--;) {
4256                         sector_t s;
4257                         if (j == sh->pd_idx)
4258                                 continue;
4259                         if (conf->level == 6 &&
4260                             j == sh->qd_idx)
4261                                 continue;
4262                         s = compute_blocknr(sh, j, 0);
4263                         if (s < raid5_size(mddev, 0, 0)) {
4264                                 skipped_disk = 1;
4265                                 continue;
4266                         }
4267                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4268                         set_bit(R5_Expanded, &sh->dev[j].flags);
4269                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4270                 }
4271                 if (!skipped_disk) {
4272                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4273                         set_bit(STRIPE_HANDLE, &sh->state);
4274                 }
4275                 list_add(&sh->lru, &stripes);
4276         }
4277         spin_lock_irq(&conf->device_lock);
4278         if (mddev->delta_disks < 0)
4279                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4280         else
4281                 conf->reshape_progress += reshape_sectors * new_data_disks;
4282         spin_unlock_irq(&conf->device_lock);
4283         /* Ok, those stripe are ready. We can start scheduling
4284          * reads on the source stripes.
4285          * The source stripes are determined by mapping the first and last
4286          * block on the destination stripes.
4287          */
4288         first_sector =
4289                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4290                                      1, &dd_idx, NULL);
4291         last_sector =
4292                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4293                                             * new_data_disks - 1),
4294                                      1, &dd_idx, NULL);
4295         if (last_sector >= mddev->dev_sectors)
4296                 last_sector = mddev->dev_sectors - 1;
4297         while (first_sector <= last_sector) {
4298                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4299                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4300                 set_bit(STRIPE_HANDLE, &sh->state);
4301                 release_stripe(sh);
4302                 first_sector += STRIPE_SECTORS;
4303         }
4304         /* Now that the sources are clearly marked, we can release
4305          * the destination stripes
4306          */
4307         while (!list_empty(&stripes)) {
4308                 sh = list_entry(stripes.next, struct stripe_head, lru);
4309                 list_del_init(&sh->lru);
4310                 release_stripe(sh);
4311         }
4312         /* If this takes us to the resync_max point where we have to pause,
4313          * then we need to write out the superblock.
4314          */
4315         sector_nr += reshape_sectors;
4316         if ((sector_nr - mddev->curr_resync_completed) * 2
4317             >= mddev->resync_max - mddev->curr_resync_completed) {
4318                 /* Cannot proceed until we've updated the superblock... */
4319                 wait_event(conf->wait_for_overlap,
4320                            atomic_read(&conf->reshape_stripes) == 0);
4321                 mddev->reshape_position = conf->reshape_progress;
4322                 mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4323                 conf->reshape_checkpoint = jiffies;
4324                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4325                 md_wakeup_thread(mddev->thread);
4326                 wait_event(mddev->sb_wait,
4327                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4328                            || kthread_should_stop());
4329                 spin_lock_irq(&conf->device_lock);
4330                 conf->reshape_safe = mddev->reshape_position;
4331                 spin_unlock_irq(&conf->device_lock);
4332                 wake_up(&conf->wait_for_overlap);
4333                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4334         }
4335         return reshape_sectors;
4336 }
4337
4338 /* FIXME go_faster isn't used */
4339 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4340 {
4341         raid5_conf_t *conf = mddev->private;
4342         struct stripe_head *sh;
4343         sector_t max_sector = mddev->dev_sectors;
4344         int sync_blocks;
4345         int still_degraded = 0;
4346         int i;
4347
4348         if (sector_nr >= max_sector) {
4349                 /* just being told to finish up .. nothing much to do */
4350                 unplug_slaves(mddev);
4351
4352                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4353                         end_reshape(conf);
4354                         return 0;
4355                 }
4356
4357                 if (mddev->curr_resync < max_sector) /* aborted */
4358                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4359                                         &sync_blocks, 1);
4360                 else /* completed sync */
4361                         conf->fullsync = 0;
4362                 bitmap_close_sync(mddev->bitmap);
4363
4364                 return 0;
4365         }
4366
4367         /* Allow raid5_quiesce to complete */
4368         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4369
4370         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4371                 return reshape_request(mddev, sector_nr, skipped);
4372
4373         /* No need to check resync_max as we never do more than one
4374          * stripe, and as resync_max will always be on a chunk boundary,
4375          * if the check in md_do_sync didn't fire, there is no chance
4376          * of overstepping resync_max here
4377          */
4378
4379         /* if there is too many failed drives and we are trying
4380          * to resync, then assert that we are finished, because there is
4381          * nothing we can do.
4382          */
4383         if (mddev->degraded >= conf->max_degraded &&
4384             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4385                 sector_t rv = mddev->dev_sectors - sector_nr;
4386                 *skipped = 1;
4387                 return rv;
4388         }
4389         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4390             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4391             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4392                 /* we can skip this block, and probably more */
4393                 sync_blocks /= STRIPE_SECTORS;
4394                 *skipped = 1;
4395                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4396         }
4397
4398
4399         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4400
4401         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4402         if (sh == NULL) {
4403                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4404                 /* make sure we don't swamp the stripe cache if someone else
4405                  * is trying to get access
4406                  */
4407                 schedule_timeout_uninterruptible(1);
4408         }
4409         /* Need to check if array will still be degraded after recovery/resync
4410          * We don't need to check the 'failed' flag as when that gets set,
4411          * recovery aborts.
4412          */
4413         for (i = 0; i < conf->raid_disks; i++)
4414                 if (conf->disks[i].rdev == NULL)
4415                         still_degraded = 1;
4416
4417         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4418
4419         spin_lock(&sh->lock);
4420         set_bit(STRIPE_SYNCING, &sh->state);
4421         clear_bit(STRIPE_INSYNC, &sh->state);
4422         spin_unlock(&sh->lock);
4423
4424         handle_stripe(sh);
4425         release_stripe(sh);
4426
4427         return STRIPE_SECTORS;
4428 }
4429
4430 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4431 {
4432         /* We may not be able to submit a whole bio at once as there
4433          * may not be enough stripe_heads available.
4434          * We cannot pre-allocate enough stripe_heads as we may need
4435          * more than exist in the cache (if we allow ever large chunks).
4436          * So we do one stripe head at a time and record in
4437          * ->bi_hw_segments how many have been done.
4438          *
4439          * We *know* that this entire raid_bio is in one chunk, so
4440          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4441          */
4442         struct stripe_head *sh;
4443         int dd_idx;
4444         sector_t sector, logical_sector, last_sector;
4445         int scnt = 0;
4446         int remaining;
4447         int handled = 0;
4448
4449         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4450         sector = raid5_compute_sector(conf, logical_sector,
4451                                       0, &dd_idx, NULL);
4452         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4453
4454         for (; logical_sector < last_sector;
4455              logical_sector += STRIPE_SECTORS,
4456                      sector += STRIPE_SECTORS,
4457                      scnt++) {
4458
4459                 if (scnt < raid5_bi_hw_segments(raid_bio))
4460                         /* already done this stripe */
4461                         continue;
4462
4463                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4464
4465                 if (!sh) {
4466                         /* failed to get a stripe - must wait */
4467                         raid5_set_bi_hw_segments(raid_bio, scnt);
4468                         conf->retry_read_aligned = raid_bio;
4469                         return handled;
4470                 }
4471
4472                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4473                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4474                         release_stripe(sh);
4475                         raid5_set_bi_hw_segments(raid_bio, scnt);
4476                         conf->retry_read_aligned = raid_bio;
4477                         return handled;
4478                 }
4479
4480                 handle_stripe(sh);
4481                 release_stripe(sh);
4482                 handled++;
4483         }
4484         spin_lock_irq(&conf->device_lock);
4485         remaining = raid5_dec_bi_phys_segments(raid_bio);
4486         spin_unlock_irq(&conf->device_lock);
4487         if (remaining == 0)
4488                 bio_endio(raid_bio, 0);
4489         if (atomic_dec_and_test(&conf->active_aligned_reads))
4490                 wake_up(&conf->wait_for_stripe);
4491         return handled;
4492 }
4493
4494
4495 /*
4496  * This is our raid5 kernel thread.
4497  *
4498  * We scan the hash table for stripes which can be handled now.
4499  * During the scan, completed stripes are saved for us by the interrupt
4500  * handler, so that they will not have to wait for our next wakeup.
4501  */
4502 static void raid5d(mddev_t *mddev)
4503 {
4504         struct stripe_head *sh;
4505         raid5_conf_t *conf = mddev->private;
4506         int handled;
4507
4508         pr_debug("+++ raid5d active\n");
4509
4510         md_check_recovery(mddev);
4511
4512         handled = 0;
4513         spin_lock_irq(&conf->device_lock);
4514         while (1) {
4515                 struct bio *bio;
4516
4517                 if (conf->seq_flush != conf->seq_write) {
4518                         int seq = conf->seq_flush;
4519                         spin_unlock_irq(&conf->device_lock);
4520                         bitmap_unplug(mddev->bitmap);
4521                         spin_lock_irq(&conf->device_lock);
4522                         conf->seq_write = seq;
4523                         activate_bit_delay(conf);
4524                 }
4525
4526                 while ((bio = remove_bio_from_retry(conf))) {
4527                         int ok;
4528                         spin_unlock_irq(&conf->device_lock);
4529                         ok = retry_aligned_read(conf, bio);
4530                         spin_lock_irq(&conf->device_lock);
4531                         if (!ok)
4532                                 break;
4533                         handled++;
4534                 }
4535
4536                 sh = __get_priority_stripe(conf);
4537
4538                 if (!sh)
4539                         break;
4540                 spin_unlock_irq(&conf->device_lock);
4541                 
4542                 handled++;
4543                 handle_stripe(sh);
4544                 release_stripe(sh);
4545                 cond_resched();
4546
4547                 spin_lock_irq(&conf->device_lock);
4548         }
4549         pr_debug("%d stripes handled\n", handled);
4550
4551         spin_unlock_irq(&conf->device_lock);
4552
4553         async_tx_issue_pending_all();
4554         unplug_slaves(mddev);
4555
4556         pr_debug("--- raid5d inactive\n");
4557 }
4558
4559 static ssize_t
4560 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4561 {
4562         raid5_conf_t *conf = mddev->private;
4563         if (conf)
4564                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4565         else
4566                 return 0;
4567 }
4568
4569 static ssize_t
4570 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4571 {
4572         raid5_conf_t *conf = mddev->private;
4573         unsigned long new;
4574         int err;
4575
4576         if (len >= PAGE_SIZE)
4577                 return -EINVAL;
4578         if (!conf)
4579                 return -ENODEV;
4580
4581         if (strict_strtoul(page, 10, &new))
4582                 return -EINVAL;
4583         if (new <= 16 || new > 32768)
4584                 return -EINVAL;
4585         while (new < conf->max_nr_stripes) {
4586                 if (drop_one_stripe(conf))
4587                         conf->max_nr_stripes--;
4588                 else
4589                         break;
4590         }
4591         err = md_allow_write(mddev);
4592         if (err)
4593                 return err;
4594         while (new > conf->max_nr_stripes) {
4595                 if (grow_one_stripe(conf))
4596                         conf->max_nr_stripes++;
4597                 else break;
4598         }
4599         return len;
4600 }
4601
4602 static struct md_sysfs_entry
4603 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4604                                 raid5_show_stripe_cache_size,
4605                                 raid5_store_stripe_cache_size);
4606
4607 static ssize_t
4608 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4609 {
4610         raid5_conf_t *conf = mddev->private;
4611         if (conf)
4612                 return sprintf(page, "%d\n", conf->bypass_threshold);
4613         else
4614                 return 0;
4615 }
4616
4617 static ssize_t
4618 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4619 {
4620         raid5_conf_t *conf = mddev->private;
4621         unsigned long new;
4622         if (len >= PAGE_SIZE)
4623                 return -EINVAL;
4624         if (!conf)
4625                 return -ENODEV;
4626
4627         if (strict_strtoul(page, 10, &new))
4628                 return -EINVAL;
4629         if (new > conf->max_nr_stripes)
4630                 return -EINVAL;
4631         conf->bypass_threshold = new;
4632         return len;
4633 }
4634
4635 static struct md_sysfs_entry
4636 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4637                                         S_IRUGO | S_IWUSR,
4638                                         raid5_show_preread_threshold,
4639                                         raid5_store_preread_threshold);
4640
4641 static ssize_t
4642 stripe_cache_active_show(mddev_t *mddev, char *page)
4643 {
4644         raid5_conf_t *conf = mddev->private;
4645         if (conf)
4646                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4647         else
4648                 return 0;
4649 }
4650
4651 static struct md_sysfs_entry
4652 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4653
4654 static struct attribute *raid5_attrs[] =  {
4655         &raid5_stripecache_size.attr,
4656         &raid5_stripecache_active.attr,
4657         &raid5_preread_bypass_threshold.attr,
4658         NULL,
4659 };
4660 static struct attribute_group raid5_attrs_group = {
4661         .name = NULL,
4662         .attrs = raid5_attrs,
4663 };
4664
4665 static sector_t
4666 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4667 {
4668         raid5_conf_t *conf = mddev->private;
4669
4670         if (!sectors)
4671                 sectors = mddev->dev_sectors;
4672         if (!raid_disks)
4673                 /* size is defined by the smallest of previous and new size */
4674                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4675
4676         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4677         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4678         return sectors * (raid_disks - conf->max_degraded);
4679 }
4680
4681 static void raid5_free_percpu(raid5_conf_t *conf)
4682 {
4683         struct raid5_percpu *percpu;
4684         unsigned long cpu;
4685
4686         if (!conf->percpu)
4687                 return;
4688
4689         get_online_cpus();
4690         for_each_possible_cpu(cpu) {
4691                 percpu = per_cpu_ptr(conf->percpu, cpu);
4692                 safe_put_page(percpu->spare_page);
4693                 kfree(percpu->scribble);
4694         }
4695 #ifdef CONFIG_HOTPLUG_CPU
4696         unregister_cpu_notifier(&conf->cpu_notify);
4697 #endif
4698         put_online_cpus();
4699
4700         free_percpu(conf->percpu);
4701 }
4702
4703 static void free_conf(raid5_conf_t *conf)
4704 {
4705         shrink_stripes(conf);
4706         raid5_free_percpu(conf);
4707         kfree(conf->disks);
4708         kfree(conf->stripe_hashtbl);
4709         kfree(conf);
4710 }
4711
4712 #ifdef CONFIG_HOTPLUG_CPU
4713 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4714                               void *hcpu)
4715 {
4716         raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4717         long cpu = (long)hcpu;
4718         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4719
4720         switch (action) {
4721         case CPU_UP_PREPARE:
4722         case CPU_UP_PREPARE_FROZEN:
4723                 if (conf->level == 6 && !percpu->spare_page)
4724                         percpu->spare_page = alloc_page(GFP_KERNEL);
4725                 if (!percpu->scribble)
4726                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4727
4728                 if (!percpu->scribble ||
4729                     (conf->level == 6 && !percpu->spare_page)) {
4730                         safe_put_page(percpu->spare_page);
4731                         kfree(percpu->scribble);
4732                         pr_err("%s: failed memory allocation for cpu%ld\n",
4733                                __func__, cpu);
4734                         return notifier_from_errno(-ENOMEM);
4735                 }
4736                 break;
4737         case CPU_DEAD:
4738         case CPU_DEAD_FROZEN:
4739                 safe_put_page(percpu->spare_page);
4740                 kfree(percpu->scribble);
4741                 percpu->spare_page = NULL;
4742                 percpu->scribble = NULL;
4743                 break;
4744         default:
4745                 break;
4746         }
4747         return NOTIFY_OK;
4748 }
4749 #endif
4750
4751 static int raid5_alloc_percpu(raid5_conf_t *conf)
4752 {
4753         unsigned long cpu;
4754         struct page *spare_page;
4755         struct raid5_percpu __percpu *allcpus;
4756         void *scribble;
4757         int err;
4758
4759         allcpus = alloc_percpu(struct raid5_percpu);
4760         if (!allcpus)
4761                 return -ENOMEM;
4762         conf->percpu = allcpus;
4763
4764         get_online_cpus();
4765         err = 0;
4766         for_each_present_cpu(cpu) {
4767                 if (conf->level == 6) {
4768                         spare_page = alloc_page(GFP_KERNEL);
4769                         if (!spare_page) {
4770                                 err = -ENOMEM;
4771                                 break;
4772                         }
4773                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4774                 }
4775                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4776                 if (!scribble) {
4777                         err = -ENOMEM;
4778                         break;
4779                 }
4780                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4781         }
4782 #ifdef CONFIG_HOTPLUG_CPU
4783         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4784         conf->cpu_notify.priority = 0;
4785         if (err == 0)
4786                 err = register_cpu_notifier(&conf->cpu_notify);
4787 #endif
4788         put_online_cpus();
4789
4790         return err;
4791 }
4792
4793 static raid5_conf_t *setup_conf(mddev_t *mddev)
4794 {
4795         raid5_conf_t *conf;
4796         int raid_disk, memory, max_disks;
4797         mdk_rdev_t *rdev;
4798         struct disk_info *disk;
4799
4800         if (mddev->new_level != 5
4801             && mddev->new_level != 4
4802             && mddev->new_level != 6) {
4803                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4804                        mdname(mddev), mddev->new_level);
4805                 return ERR_PTR(-EIO);
4806         }
4807         if ((mddev->new_level == 5
4808              && !algorithm_valid_raid5(mddev->new_layout)) ||
4809             (mddev->new_level == 6
4810              && !algorithm_valid_raid6(mddev->new_layout))) {
4811                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4812                        mdname(mddev), mddev->new_layout);
4813                 return ERR_PTR(-EIO);
4814         }
4815         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4816                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4817                        mdname(mddev), mddev->raid_disks);
4818                 return ERR_PTR(-EINVAL);
4819         }
4820
4821         if (!mddev->new_chunk_sectors ||
4822             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4823             !is_power_of_2(mddev->new_chunk_sectors)) {
4824                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4825                        mdname(mddev), mddev->new_chunk_sectors << 9);
4826                 return ERR_PTR(-EINVAL);
4827         }
4828
4829         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4830         if (conf == NULL)
4831                 goto abort;
4832         spin_lock_init(&conf->device_lock);
4833         init_waitqueue_head(&conf->wait_for_stripe);
4834         init_waitqueue_head(&conf->wait_for_overlap);
4835         INIT_LIST_HEAD(&conf->handle_list);
4836         INIT_LIST_HEAD(&conf->hold_list);
4837         INIT_LIST_HEAD(&conf->delayed_list);
4838         INIT_LIST_HEAD(&conf->bitmap_list);
4839         INIT_LIST_HEAD(&conf->inactive_list);
4840         atomic_set(&conf->active_stripes, 0);
4841         atomic_set(&conf->preread_active_stripes, 0);
4842         atomic_set(&conf->active_aligned_reads, 0);
4843         conf->bypass_threshold = BYPASS_THRESHOLD;
4844
4845         conf->raid_disks = mddev->raid_disks;
4846         if (mddev->reshape_position == MaxSector)
4847                 conf->previous_raid_disks = mddev->raid_disks;
4848         else
4849                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4850         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4851         conf->scribble_len = scribble_len(max_disks);
4852
4853         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4854                               GFP_KERNEL);
4855         if (!conf->disks)
4856                 goto abort;
4857
4858         conf->mddev = mddev;
4859
4860         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4861                 goto abort;
4862
4863         conf->level = mddev->new_level;
4864         if (raid5_alloc_percpu(conf) != 0)
4865                 goto abort;
4866
4867         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4868
4869         list_for_each_entry(rdev, &mddev->disks, same_set) {
4870                 raid_disk = rdev->raid_disk;
4871                 if (raid_disk >= max_disks
4872                     || raid_disk < 0)
4873                         continue;
4874                 disk = conf->disks + raid_disk;
4875
4876                 disk->rdev = rdev;
4877
4878                 if (test_bit(In_sync, &rdev->flags)) {
4879                         char b[BDEVNAME_SIZE];
4880                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4881                                " disk %d\n",
4882                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4883                 } else
4884                         /* Cannot rely on bitmap to complete recovery */
4885                         conf->fullsync = 1;
4886         }
4887
4888         conf->chunk_sectors = mddev->new_chunk_sectors;
4889         conf->level = mddev->new_level;
4890         if (conf->level == 6)
4891                 conf->max_degraded = 2;
4892         else
4893                 conf->max_degraded = 1;
4894         conf->algorithm = mddev->new_layout;
4895         conf->max_nr_stripes = NR_STRIPES;
4896         conf->reshape_progress = mddev->reshape_position;
4897         if (conf->reshape_progress != MaxSector) {
4898                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4899                 conf->prev_algo = mddev->layout;
4900         }
4901
4902         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4903                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4904         if (grow_stripes(conf, conf->max_nr_stripes)) {
4905                 printk(KERN_ERR
4906                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4907                        mdname(mddev), memory);
4908                 goto abort;
4909         } else
4910                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4911                        mdname(mddev), memory);
4912
4913         conf->thread = md_register_thread(raid5d, mddev, NULL);
4914         if (!conf->thread) {
4915                 printk(KERN_ERR
4916                        "md/raid:%s: couldn't allocate thread.\n",
4917                        mdname(mddev));
4918                 goto abort;
4919         }
4920
4921         return conf;
4922
4923  abort:
4924         if (conf) {
4925                 free_conf(conf);
4926                 return ERR_PTR(-EIO);
4927         } else
4928                 return ERR_PTR(-ENOMEM);
4929 }
4930
4931
4932 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4933 {
4934         switch (algo) {
4935         case ALGORITHM_PARITY_0:
4936                 if (raid_disk < max_degraded)
4937                         return 1;
4938                 break;
4939         case ALGORITHM_PARITY_N:
4940                 if (raid_disk >= raid_disks - max_degraded)
4941                         return 1;
4942                 break;
4943         case ALGORITHM_PARITY_0_6:
4944                 if (raid_disk == 0 || 
4945                     raid_disk == raid_disks - 1)
4946                         return 1;
4947                 break;
4948         case ALGORITHM_LEFT_ASYMMETRIC_6:
4949         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4950         case ALGORITHM_LEFT_SYMMETRIC_6:
4951         case ALGORITHM_RIGHT_SYMMETRIC_6:
4952                 if (raid_disk == raid_disks - 1)
4953                         return 1;
4954         }
4955         return 0;
4956 }
4957
4958 static int run(mddev_t *mddev)
4959 {
4960         raid5_conf_t *conf;
4961         int working_disks = 0, chunk_size;
4962         int dirty_parity_disks = 0;
4963         mdk_rdev_t *rdev;
4964         sector_t reshape_offset = 0;
4965
4966         if (mddev->recovery_cp != MaxSector)
4967                 printk(KERN_NOTICE "md/raid:%s: not clean"
4968                        " -- starting background reconstruction\n",
4969                        mdname(mddev));
4970         if (mddev->reshape_position != MaxSector) {
4971                 /* Check that we can continue the reshape.
4972                  * Currently only disks can change, it must
4973                  * increase, and we must be past the point where
4974                  * a stripe over-writes itself
4975                  */
4976                 sector_t here_new, here_old;
4977                 int old_disks;
4978                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4979
4980                 if (mddev->new_level != mddev->level) {
4981                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
4982                                "required - aborting.\n",
4983                                mdname(mddev));
4984                         return -EINVAL;
4985                 }
4986                 old_disks = mddev->raid_disks - mddev->delta_disks;
4987                 /* reshape_position must be on a new-stripe boundary, and one
4988                  * further up in new geometry must map after here in old
4989                  * geometry.
4990                  */
4991                 here_new = mddev->reshape_position;
4992                 if (sector_div(here_new, mddev->new_chunk_sectors *
4993                                (mddev->raid_disks - max_degraded))) {
4994                         printk(KERN_ERR "md/raid:%s: reshape_position not "
4995                                "on a stripe boundary\n", mdname(mddev));
4996                         return -EINVAL;
4997                 }
4998                 reshape_offset = here_new * mddev->new_chunk_sectors;
4999                 /* here_new is the stripe we will write to */
5000                 here_old = mddev->reshape_position;
5001                 sector_div(here_old, mddev->chunk_sectors *
5002                            (old_disks-max_degraded));
5003                 /* here_old is the first stripe that we might need to read
5004                  * from */
5005                 if (mddev->delta_disks == 0) {
5006                         /* We cannot be sure it is safe to start an in-place
5007                          * reshape.  It is only safe if user-space if monitoring
5008                          * and taking constant backups.
5009                          * mdadm always starts a situation like this in
5010                          * readonly mode so it can take control before
5011                          * allowing any writes.  So just check for that.
5012                          */
5013                         if ((here_new * mddev->new_chunk_sectors != 
5014                              here_old * mddev->chunk_sectors) ||
5015                             mddev->ro == 0) {
5016                                 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5017                                        " in read-only mode - aborting\n",
5018                                        mdname(mddev));
5019                                 return -EINVAL;
5020                         }
5021                 } else if (mddev->delta_disks < 0
5022                     ? (here_new * mddev->new_chunk_sectors <=
5023                        here_old * mddev->chunk_sectors)
5024                     : (here_new * mddev->new_chunk_sectors >=
5025                        here_old * mddev->chunk_sectors)) {
5026                         /* Reading from the same stripe as writing to - bad */
5027                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5028                                "auto-recovery - aborting.\n",
5029                                mdname(mddev));
5030                         return -EINVAL;
5031                 }
5032                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5033                        mdname(mddev));
5034                 /* OK, we should be able to continue; */
5035         } else {
5036                 BUG_ON(mddev->level != mddev->new_level);
5037                 BUG_ON(mddev->layout != mddev->new_layout);
5038                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5039                 BUG_ON(mddev->delta_disks != 0);
5040         }
5041
5042         if (mddev->private == NULL)
5043                 conf = setup_conf(mddev);
5044         else
5045                 conf = mddev->private;
5046
5047         if (IS_ERR(conf))
5048                 return PTR_ERR(conf);
5049
5050         mddev->thread = conf->thread;
5051         conf->thread = NULL;
5052         mddev->private = conf;
5053
5054         /*
5055          * 0 for a fully functional array, 1 or 2 for a degraded array.
5056          */
5057         list_for_each_entry(rdev, &mddev->disks, same_set) {
5058                 if (rdev->raid_disk < 0)
5059                         continue;
5060                 if (test_bit(In_sync, &rdev->flags)) {
5061                         working_disks++;
5062                         continue;
5063                 }
5064                 /* This disc is not fully in-sync.  However if it
5065                  * just stored parity (beyond the recovery_offset),
5066                  * when we don't need to be concerned about the
5067                  * array being dirty.
5068                  * When reshape goes 'backwards', we never have
5069                  * partially completed devices, so we only need
5070                  * to worry about reshape going forwards.
5071                  */
5072                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5073                 if (mddev->major_version == 0 &&
5074                     mddev->minor_version > 90)
5075                         rdev->recovery_offset = reshape_offset;
5076                         
5077                 if (rdev->recovery_offset < reshape_offset) {
5078                         /* We need to check old and new layout */
5079                         if (!only_parity(rdev->raid_disk,
5080                                          conf->algorithm,
5081                                          conf->raid_disks,
5082                                          conf->max_degraded))
5083                                 continue;
5084                 }
5085                 if (!only_parity(rdev->raid_disk,
5086                                  conf->prev_algo,
5087                                  conf->previous_raid_disks,
5088                                  conf->max_degraded))
5089                         continue;
5090                 dirty_parity_disks++;
5091         }
5092
5093         mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5094                            - working_disks);
5095
5096         if (has_failed(conf)) {
5097                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5098                         " (%d/%d failed)\n",
5099                         mdname(mddev), mddev->degraded, conf->raid_disks);
5100                 goto abort;
5101         }
5102
5103         /* device size must be a multiple of chunk size */
5104         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5105         mddev->resync_max_sectors = mddev->dev_sectors;
5106
5107         if (mddev->degraded > dirty_parity_disks &&
5108             mddev->recovery_cp != MaxSector) {
5109                 if (mddev->ok_start_degraded)
5110                         printk(KERN_WARNING
5111                                "md/raid:%s: starting dirty degraded array"
5112                                " - data corruption possible.\n",
5113                                mdname(mddev));
5114                 else {
5115                         printk(KERN_ERR
5116                                "md/raid:%s: cannot start dirty degraded array.\n",
5117                                mdname(mddev));
5118                         goto abort;
5119                 }
5120         }
5121
5122         if (mddev->degraded == 0)
5123                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5124                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5125                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5126                        mddev->new_layout);
5127         else
5128                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5129                        " out of %d devices, algorithm %d\n",
5130                        mdname(mddev), conf->level,
5131                        mddev->raid_disks - mddev->degraded,
5132                        mddev->raid_disks, mddev->new_layout);
5133
5134         print_raid5_conf(conf);
5135
5136         if (conf->reshape_progress != MaxSector) {
5137                 conf->reshape_safe = conf->reshape_progress;
5138                 atomic_set(&conf->reshape_stripes, 0);
5139                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5140                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5141                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5142                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5143                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5144                                                         "reshape");
5145         }
5146
5147         /* read-ahead size must cover two whole stripes, which is
5148          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5149          */
5150         {
5151                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5152                 int stripe = data_disks *
5153                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5154                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5155                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5156         }
5157
5158         /* Ok, everything is just fine now */
5159         if (mddev->to_remove == &raid5_attrs_group)
5160                 mddev->to_remove = NULL;
5161         else if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5162                 printk(KERN_WARNING
5163                        "md/raid:%s: failed to create sysfs attributes.\n",
5164                        mdname(mddev));
5165
5166         mddev->queue->queue_lock = &conf->device_lock;
5167
5168         mddev->queue->unplug_fn = raid5_unplug_device;
5169         mddev->queue->backing_dev_info.congested_data = mddev;
5170         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5171
5172         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5173
5174         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5175         chunk_size = mddev->chunk_sectors << 9;
5176         blk_queue_io_min(mddev->queue, chunk_size);
5177         blk_queue_io_opt(mddev->queue, chunk_size *
5178                          (conf->raid_disks - conf->max_degraded));
5179
5180         list_for_each_entry(rdev, &mddev->disks, same_set)
5181                 disk_stack_limits(mddev->gendisk, rdev->bdev,
5182                                   rdev->data_offset << 9);
5183
5184         return 0;
5185 abort:
5186         md_unregister_thread(mddev->thread);
5187         mddev->thread = NULL;
5188         if (conf) {
5189                 print_raid5_conf(conf);
5190                 free_conf(conf);
5191         }
5192         mddev->private = NULL;
5193         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5194         return -EIO;
5195 }
5196
5197 static int stop(mddev_t *mddev)
5198 {
5199         raid5_conf_t *conf = mddev->private;
5200
5201         md_unregister_thread(mddev->thread);
5202         mddev->thread = NULL;
5203         mddev->queue->backing_dev_info.congested_fn = NULL;
5204         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5205         free_conf(conf);
5206         mddev->private = NULL;
5207         mddev->to_remove = &raid5_attrs_group;
5208         return 0;
5209 }
5210
5211 #ifdef DEBUG
5212 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5213 {
5214         int i;
5215
5216         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5217                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5218         seq_printf(seq, "sh %llu,  count %d.\n",
5219                    (unsigned long long)sh->sector, atomic_read(&sh->count));
5220         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5221         for (i = 0; i < sh->disks; i++) {
5222                 seq_printf(seq, "(cache%d: %p %ld) ",
5223                            i, sh->dev[i].page, sh->dev[i].flags);
5224         }
5225         seq_printf(seq, "\n");
5226 }
5227
5228 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5229 {
5230         struct stripe_head *sh;
5231         struct hlist_node *hn;
5232         int i;
5233
5234         spin_lock_irq(&conf->device_lock);
5235         for (i = 0; i < NR_HASH; i++) {
5236                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5237                         if (sh->raid_conf != conf)
5238                                 continue;
5239                         print_sh(seq, sh);
5240                 }
5241         }
5242         spin_unlock_irq(&conf->device_lock);
5243 }
5244 #endif
5245
5246 static void status(struct seq_file *seq, mddev_t *mddev)
5247 {
5248         raid5_conf_t *conf = mddev->private;
5249         int i;
5250
5251         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5252                 mddev->chunk_sectors / 2, mddev->layout);
5253         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5254         for (i = 0; i < conf->raid_disks; i++)
5255                 seq_printf (seq, "%s",
5256                                conf->disks[i].rdev &&
5257                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5258         seq_printf (seq, "]");
5259 #ifdef DEBUG
5260         seq_printf (seq, "\n");
5261         printall(seq, conf);
5262 #endif
5263 }
5264
5265 static void print_raid5_conf (raid5_conf_t *conf)
5266 {
5267         int i;
5268         struct disk_info *tmp;
5269
5270         printk(KERN_DEBUG "RAID conf printout:\n");
5271         if (!conf) {
5272                 printk("(conf==NULL)\n");
5273                 return;
5274         }
5275         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5276                conf->raid_disks,
5277                conf->raid_disks - conf->mddev->degraded);
5278
5279         for (i = 0; i < conf->raid_disks; i++) {
5280                 char b[BDEVNAME_SIZE];
5281                 tmp = conf->disks + i;
5282                 if (tmp->rdev)
5283                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5284                                i, !test_bit(Faulty, &tmp->rdev->flags),
5285                                bdevname(tmp->rdev->bdev, b));
5286         }
5287 }
5288
5289 static int raid5_spare_active(mddev_t *mddev)
5290 {
5291         int i;
5292         raid5_conf_t *conf = mddev->private;
5293         struct disk_info *tmp;
5294
5295         for (i = 0; i < conf->raid_disks; i++) {
5296                 tmp = conf->disks + i;
5297                 if (tmp->rdev
5298                     && tmp->rdev->recovery_offset == MaxSector
5299                     && !test_bit(Faulty, &tmp->rdev->flags)
5300                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5301                         unsigned long flags;
5302                         spin_lock_irqsave(&conf->device_lock, flags);
5303                         mddev->degraded--;
5304                         spin_unlock_irqrestore(&conf->device_lock, flags);
5305                 }
5306         }
5307         print_raid5_conf(conf);
5308         return 0;
5309 }
5310
5311 static int raid5_remove_disk(mddev_t *mddev, int number)
5312 {
5313         raid5_conf_t *conf = mddev->private;
5314         int err = 0;
5315         mdk_rdev_t *rdev;
5316         struct disk_info *p = conf->disks + number;
5317
5318         print_raid5_conf(conf);
5319         rdev = p->rdev;
5320         if (rdev) {
5321                 if (number >= conf->raid_disks &&
5322                     conf->reshape_progress == MaxSector)
5323                         clear_bit(In_sync, &rdev->flags);
5324
5325                 if (test_bit(In_sync, &rdev->flags) ||
5326                     atomic_read(&rdev->nr_pending)) {
5327                         err = -EBUSY;
5328                         goto abort;
5329                 }
5330                 /* Only remove non-faulty devices if recovery
5331                  * isn't possible.
5332                  */
5333                 if (!test_bit(Faulty, &rdev->flags) &&
5334                     !has_failed(conf) &&
5335                     number < conf->raid_disks) {
5336                         err = -EBUSY;
5337                         goto abort;
5338                 }
5339                 p->rdev = NULL;
5340                 synchronize_rcu();
5341                 if (atomic_read(&rdev->nr_pending)) {
5342                         /* lost the race, try later */
5343                         err = -EBUSY;
5344                         p->rdev = rdev;
5345                 }
5346         }
5347 abort:
5348
5349         print_raid5_conf(conf);
5350         return err;
5351 }
5352
5353 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5354 {
5355         raid5_conf_t *conf = mddev->private;
5356         int err = -EEXIST;
5357         int disk;
5358         struct disk_info *p;
5359         int first = 0;
5360         int last = conf->raid_disks - 1;
5361
5362         if (has_failed(conf))
5363                 /* no point adding a device */
5364                 return -EINVAL;
5365
5366         if (rdev->raid_disk >= 0)
5367                 first = last = rdev->raid_disk;
5368
5369         /*
5370          * find the disk ... but prefer rdev->saved_raid_disk
5371          * if possible.
5372          */
5373         if (rdev->saved_raid_disk >= 0 &&
5374             rdev->saved_raid_disk >= first &&
5375             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5376                 disk = rdev->saved_raid_disk;
5377         else
5378                 disk = first;
5379         for ( ; disk <= last ; disk++)
5380                 if ((p=conf->disks + disk)->rdev == NULL) {
5381                         clear_bit(In_sync, &rdev->flags);
5382                         rdev->raid_disk = disk;
5383                         err = 0;
5384                         if (rdev->saved_raid_disk != disk)
5385                                 conf->fullsync = 1;
5386                         rcu_assign_pointer(p->rdev, rdev);
5387                         break;
5388                 }
5389         print_raid5_conf(conf);
5390         return err;
5391 }
5392
5393 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5394 {
5395         /* no resync is happening, and there is enough space
5396          * on all devices, so we can resize.
5397          * We need to make sure resync covers any new space.
5398          * If the array is shrinking we should possibly wait until
5399          * any io in the removed space completes, but it hardly seems
5400          * worth it.
5401          */
5402         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5403         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5404                                                mddev->raid_disks));
5405         if (mddev->array_sectors >
5406             raid5_size(mddev, sectors, mddev->raid_disks))
5407                 return -EINVAL;
5408         set_capacity(mddev->gendisk, mddev->array_sectors);
5409         revalidate_disk(mddev->gendisk);
5410         if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5411                 mddev->recovery_cp = mddev->dev_sectors;
5412                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5413         }
5414         mddev->dev_sectors = sectors;
5415         mddev->resync_max_sectors = sectors;
5416         return 0;
5417 }
5418
5419 static int check_stripe_cache(mddev_t *mddev)
5420 {
5421         /* Can only proceed if there are plenty of stripe_heads.
5422          * We need a minimum of one full stripe,, and for sensible progress
5423          * it is best to have about 4 times that.
5424          * If we require 4 times, then the default 256 4K stripe_heads will
5425          * allow for chunk sizes up to 256K, which is probably OK.
5426          * If the chunk size is greater, user-space should request more
5427          * stripe_heads first.
5428          */
5429         raid5_conf_t *conf = mddev->private;
5430         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5431             > conf->max_nr_stripes ||
5432             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5433             > conf->max_nr_stripes) {
5434                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5435                        mdname(mddev),
5436                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5437                         / STRIPE_SIZE)*4);
5438                 return 0;
5439         }
5440         return 1;
5441 }
5442
5443 static int check_reshape(mddev_t *mddev)
5444 {
5445         raid5_conf_t *conf = mddev->private;
5446
5447         if (mddev->delta_disks == 0 &&
5448             mddev->new_layout == mddev->layout &&
5449             mddev->new_chunk_sectors == mddev->chunk_sectors)
5450                 return 0; /* nothing to do */
5451         if (mddev->bitmap)
5452                 /* Cannot grow a bitmap yet */
5453                 return -EBUSY;
5454         if (has_failed(conf))
5455                 return -EINVAL;
5456         if (mddev->delta_disks < 0) {
5457                 /* We might be able to shrink, but the devices must
5458                  * be made bigger first.
5459                  * For raid6, 4 is the minimum size.
5460                  * Otherwise 2 is the minimum
5461                  */
5462                 int min = 2;
5463                 if (mddev->level == 6)
5464                         min = 4;
5465                 if (mddev->raid_disks + mddev->delta_disks < min)
5466                         return -EINVAL;
5467         }
5468
5469         if (!check_stripe_cache(mddev))
5470                 return -ENOSPC;
5471
5472         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5473 }
5474
5475 static int raid5_start_reshape(mddev_t *mddev)
5476 {
5477         raid5_conf_t *conf = mddev->private;
5478         mdk_rdev_t *rdev;
5479         int spares = 0;
5480         int added_devices = 0;
5481         unsigned long flags;
5482
5483         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5484                 return -EBUSY;
5485
5486         if (!check_stripe_cache(mddev))
5487                 return -ENOSPC;
5488
5489         list_for_each_entry(rdev, &mddev->disks, same_set)
5490                 if (rdev->raid_disk < 0 &&
5491                     !test_bit(Faulty, &rdev->flags))
5492                         spares++;
5493
5494         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5495                 /* Not enough devices even to make a degraded array
5496                  * of that size
5497                  */
5498                 return -EINVAL;
5499
5500         /* Refuse to reduce size of the array.  Any reductions in
5501          * array size must be through explicit setting of array_size
5502          * attribute.
5503          */
5504         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5505             < mddev->array_sectors) {
5506                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5507                        "before number of disks\n", mdname(mddev));
5508                 return -EINVAL;
5509         }
5510
5511         atomic_set(&conf->reshape_stripes, 0);
5512         spin_lock_irq(&conf->device_lock);
5513         conf->previous_raid_disks = conf->raid_disks;
5514         conf->raid_disks += mddev->delta_disks;
5515         conf->prev_chunk_sectors = conf->chunk_sectors;
5516         conf->chunk_sectors = mddev->new_chunk_sectors;
5517         conf->prev_algo = conf->algorithm;
5518         conf->algorithm = mddev->new_layout;
5519         if (mddev->delta_disks < 0)
5520                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5521         else
5522                 conf->reshape_progress = 0;
5523         conf->reshape_safe = conf->reshape_progress;
5524         conf->generation++;
5525         spin_unlock_irq(&conf->device_lock);
5526
5527         /* Add some new drives, as many as will fit.
5528          * We know there are enough to make the newly sized array work.
5529          * Don't add devices if we are reducing the number of
5530          * devices in the array.  This is because it is not possible
5531          * to correctly record the "partially reconstructed" state of
5532          * such devices during the reshape and confusion could result.
5533          */
5534         if (mddev->delta_disks >= 0)
5535             list_for_each_entry(rdev, &mddev->disks, same_set)
5536                 if (rdev->raid_disk < 0 &&
5537                     !test_bit(Faulty, &rdev->flags)) {
5538                         if (raid5_add_disk(mddev, rdev) == 0) {
5539                                 char nm[20];
5540                                 if (rdev->raid_disk >= conf->previous_raid_disks) {
5541                                         set_bit(In_sync, &rdev->flags);
5542                                         added_devices++;
5543                                 } else
5544                                         rdev->recovery_offset = 0;
5545                                 sprintf(nm, "rd%d", rdev->raid_disk);
5546                                 if (sysfs_create_link(&mddev->kobj,
5547                                                       &rdev->kobj, nm))
5548                                         printk(KERN_WARNING
5549                                                "md/raid:%s: failed to create "
5550                                                " link %s\n",
5551                                                mdname(mddev), nm);
5552                         } else
5553                                 break;
5554                 }
5555
5556         /* When a reshape changes the number of devices, ->degraded
5557          * is measured against the larger of the pre and post number of
5558          * devices.*/
5559         if (mddev->delta_disks > 0) {
5560                 spin_lock_irqsave(&conf->device_lock, flags);
5561                 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5562                         - added_devices;
5563                 spin_unlock_irqrestore(&conf->device_lock, flags);
5564         }
5565         mddev->raid_disks = conf->raid_disks;
5566         mddev->reshape_position = conf->reshape_progress;
5567         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5568
5569         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5570         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5571         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5572         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5573         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5574                                                 "reshape");
5575         if (!mddev->sync_thread) {
5576                 mddev->recovery = 0;
5577                 spin_lock_irq(&conf->device_lock);
5578                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5579                 conf->reshape_progress = MaxSector;
5580                 spin_unlock_irq(&conf->device_lock);
5581                 return -EAGAIN;
5582         }
5583         conf->reshape_checkpoint = jiffies;
5584         md_wakeup_thread(mddev->sync_thread);
5585         md_new_event(mddev);
5586         return 0;
5587 }
5588
5589 /* This is called from the reshape thread and should make any
5590  * changes needed in 'conf'
5591  */
5592 static void end_reshape(raid5_conf_t *conf)
5593 {
5594
5595         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5596
5597                 spin_lock_irq(&conf->device_lock);
5598                 conf->previous_raid_disks = conf->raid_disks;
5599                 conf->reshape_progress = MaxSector;
5600                 spin_unlock_irq(&conf->device_lock);
5601                 wake_up(&conf->wait_for_overlap);
5602
5603                 /* read-ahead size must cover two whole stripes, which is
5604                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5605                  */
5606                 {
5607                         int data_disks = conf->raid_disks - conf->max_degraded;
5608                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5609                                                    / PAGE_SIZE);
5610                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5611                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5612                 }
5613         }
5614 }
5615
5616 /* This is called from the raid5d thread with mddev_lock held.
5617  * It makes config changes to the device.
5618  */
5619 static void raid5_finish_reshape(mddev_t *mddev)
5620 {
5621         raid5_conf_t *conf = mddev->private;
5622
5623         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5624
5625                 if (mddev->delta_disks > 0) {
5626                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5627                         set_capacity(mddev->gendisk, mddev->array_sectors);
5628                         revalidate_disk(mddev->gendisk);
5629                 } else {
5630                         int d;
5631                         mddev->degraded = conf->raid_disks;
5632                         for (d = 0; d < conf->raid_disks ; d++)
5633                                 if (conf->disks[d].rdev &&
5634                                     test_bit(In_sync,
5635                                              &conf->disks[d].rdev->flags))
5636                                         mddev->degraded--;
5637                         for (d = conf->raid_disks ;
5638                              d < conf->raid_disks - mddev->delta_disks;
5639                              d++) {
5640                                 mdk_rdev_t *rdev = conf->disks[d].rdev;
5641                                 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5642                                         char nm[20];
5643                                         sprintf(nm, "rd%d", rdev->raid_disk);
5644                                         sysfs_remove_link(&mddev->kobj, nm);
5645                                         rdev->raid_disk = -1;
5646                                 }
5647                         }
5648                 }
5649                 mddev->layout = conf->algorithm;
5650                 mddev->chunk_sectors = conf->chunk_sectors;
5651                 mddev->reshape_position = MaxSector;
5652                 mddev->delta_disks = 0;
5653         }
5654 }
5655
5656 static void raid5_quiesce(mddev_t *mddev, int state)
5657 {
5658         raid5_conf_t *conf = mddev->private;
5659
5660         switch(state) {
5661         case 2: /* resume for a suspend */
5662                 wake_up(&conf->wait_for_overlap);
5663                 break;
5664
5665         case 1: /* stop all writes */
5666                 spin_lock_irq(&conf->device_lock);
5667                 /* '2' tells resync/reshape to pause so that all
5668                  * active stripes can drain
5669                  */
5670                 conf->quiesce = 2;
5671                 wait_event_lock_irq(conf->wait_for_stripe,
5672                                     atomic_read(&conf->active_stripes) == 0 &&
5673                                     atomic_read(&conf->active_aligned_reads) == 0,
5674                                     conf->device_lock, /* nothing */);
5675                 conf->quiesce = 1;
5676                 spin_unlock_irq(&conf->device_lock);
5677                 /* allow reshape to continue */
5678                 wake_up(&conf->wait_for_overlap);
5679                 break;
5680
5681         case 0: /* re-enable writes */
5682                 spin_lock_irq(&conf->device_lock);
5683                 conf->quiesce = 0;
5684                 wake_up(&conf->wait_for_stripe);
5685                 wake_up(&conf->wait_for_overlap);
5686                 spin_unlock_irq(&conf->device_lock);
5687                 break;
5688         }
5689 }
5690
5691
5692 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5693 {
5694         struct raid0_private_data *raid0_priv = mddev->private;
5695
5696         /* for raid0 takeover only one zone is supported */
5697         if (raid0_priv->nr_strip_zones > 1) {
5698                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5699                        mdname(mddev));
5700                 return ERR_PTR(-EINVAL);
5701         }
5702
5703         mddev->new_level = level;
5704         mddev->new_layout = ALGORITHM_PARITY_N;
5705         mddev->new_chunk_sectors = mddev->chunk_sectors;
5706         mddev->raid_disks += 1;
5707         mddev->delta_disks = 1;
5708         /* make sure it will be not marked as dirty */
5709         mddev->recovery_cp = MaxSector;
5710
5711         return setup_conf(mddev);
5712 }
5713
5714
5715 static void *raid5_takeover_raid1(mddev_t *mddev)
5716 {
5717         int chunksect;
5718
5719         if (mddev->raid_disks != 2 ||
5720             mddev->degraded > 1)
5721                 return ERR_PTR(-EINVAL);
5722
5723         /* Should check if there are write-behind devices? */
5724
5725         chunksect = 64*2; /* 64K by default */
5726
5727         /* The array must be an exact multiple of chunksize */
5728         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5729                 chunksect >>= 1;
5730
5731         if ((chunksect<<9) < STRIPE_SIZE)
5732                 /* array size does not allow a suitable chunk size */
5733                 return ERR_PTR(-EINVAL);
5734
5735         mddev->new_level = 5;
5736         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5737         mddev->new_chunk_sectors = chunksect;
5738
5739         return setup_conf(mddev);
5740 }
5741
5742 static void *raid5_takeover_raid6(mddev_t *mddev)
5743 {
5744         int new_layout;
5745
5746         switch (mddev->layout) {
5747         case ALGORITHM_LEFT_ASYMMETRIC_6:
5748                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5749                 break;
5750         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5751                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5752                 break;
5753         case ALGORITHM_LEFT_SYMMETRIC_6:
5754                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5755                 break;
5756         case ALGORITHM_RIGHT_SYMMETRIC_6:
5757                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5758                 break;
5759         case ALGORITHM_PARITY_0_6:
5760                 new_layout = ALGORITHM_PARITY_0;
5761                 break;
5762         case ALGORITHM_PARITY_N:
5763                 new_layout = ALGORITHM_PARITY_N;
5764                 break;
5765         default:
5766                 return ERR_PTR(-EINVAL);
5767         }
5768         mddev->new_level = 5;
5769         mddev->new_layout = new_layout;
5770         mddev->delta_disks = -1;
5771         mddev->raid_disks -= 1;
5772         return setup_conf(mddev);
5773 }
5774
5775
5776 static int raid5_check_reshape(mddev_t *mddev)
5777 {
5778         /* For a 2-drive array, the layout and chunk size can be changed
5779          * immediately as not restriping is needed.
5780          * For larger arrays we record the new value - after validation
5781          * to be used by a reshape pass.
5782          */
5783         raid5_conf_t *conf = mddev->private;
5784         int new_chunk = mddev->new_chunk_sectors;
5785
5786         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5787                 return -EINVAL;
5788         if (new_chunk > 0) {
5789                 if (!is_power_of_2(new_chunk))
5790                         return -EINVAL;
5791                 if (new_chunk < (PAGE_SIZE>>9))
5792                         return -EINVAL;
5793                 if (mddev->array_sectors & (new_chunk-1))
5794                         /* not factor of array size */
5795                         return -EINVAL;
5796         }
5797
5798         /* They look valid */
5799
5800         if (mddev->raid_disks == 2) {
5801                 /* can make the change immediately */
5802                 if (mddev->new_layout >= 0) {
5803                         conf->algorithm = mddev->new_layout;
5804                         mddev->layout = mddev->new_layout;
5805                 }
5806                 if (new_chunk > 0) {
5807                         conf->chunk_sectors = new_chunk ;
5808                         mddev->chunk_sectors = new_chunk;
5809                 }
5810                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5811                 md_wakeup_thread(mddev->thread);
5812         }
5813         return check_reshape(mddev);
5814 }
5815
5816 static int raid6_check_reshape(mddev_t *mddev)
5817 {
5818         int new_chunk = mddev->new_chunk_sectors;
5819
5820         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5821                 return -EINVAL;
5822         if (new_chunk > 0) {
5823                 if (!is_power_of_2(new_chunk))
5824                         return -EINVAL;
5825                 if (new_chunk < (PAGE_SIZE >> 9))
5826                         return -EINVAL;
5827                 if (mddev->array_sectors & (new_chunk-1))
5828                         /* not factor of array size */
5829                         return -EINVAL;
5830         }
5831
5832         /* They look valid */
5833         return check_reshape(mddev);
5834 }
5835
5836 static void *raid5_takeover(mddev_t *mddev)
5837 {
5838         /* raid5 can take over:
5839          *  raid0 - if there is only one strip zone - make it a raid4 layout
5840          *  raid1 - if there are two drives.  We need to know the chunk size
5841          *  raid4 - trivial - just use a raid4 layout.
5842          *  raid6 - Providing it is a *_6 layout
5843          */
5844         if (mddev->level == 0)
5845                 return raid45_takeover_raid0(mddev, 5);
5846         if (mddev->level == 1)
5847                 return raid5_takeover_raid1(mddev);
5848         if (mddev->level == 4) {
5849                 mddev->new_layout = ALGORITHM_PARITY_N;
5850                 mddev->new_level = 5;
5851                 return setup_conf(mddev);
5852         }
5853         if (mddev->level == 6)
5854                 return raid5_takeover_raid6(mddev);
5855
5856         return ERR_PTR(-EINVAL);
5857 }
5858
5859 static void *raid4_takeover(mddev_t *mddev)
5860 {
5861         /* raid4 can take over:
5862          *  raid0 - if there is only one strip zone
5863          *  raid5 - if layout is right
5864          */
5865         if (mddev->level == 0)
5866                 return raid45_takeover_raid0(mddev, 4);
5867         if (mddev->level == 5 &&
5868             mddev->layout == ALGORITHM_PARITY_N) {
5869                 mddev->new_layout = 0;
5870                 mddev->new_level = 4;
5871                 return setup_conf(mddev);
5872         }
5873         return ERR_PTR(-EINVAL);
5874 }
5875
5876 static struct mdk_personality raid5_personality;
5877
5878 static void *raid6_takeover(mddev_t *mddev)
5879 {
5880         /* Currently can only take over a raid5.  We map the
5881          * personality to an equivalent raid6 personality
5882          * with the Q block at the end.
5883          */
5884         int new_layout;
5885
5886         if (mddev->pers != &raid5_personality)
5887                 return ERR_PTR(-EINVAL);
5888         if (mddev->degraded > 1)
5889                 return ERR_PTR(-EINVAL);
5890         if (mddev->raid_disks > 253)
5891                 return ERR_PTR(-EINVAL);
5892         if (mddev->raid_disks < 3)
5893                 return ERR_PTR(-EINVAL);
5894
5895         switch (mddev->layout) {
5896         case ALGORITHM_LEFT_ASYMMETRIC:
5897                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5898                 break;
5899         case ALGORITHM_RIGHT_ASYMMETRIC:
5900                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5901                 break;
5902         case ALGORITHM_LEFT_SYMMETRIC:
5903                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5904                 break;
5905         case ALGORITHM_RIGHT_SYMMETRIC:
5906                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5907                 break;
5908         case ALGORITHM_PARITY_0:
5909                 new_layout = ALGORITHM_PARITY_0_6;
5910                 break;
5911         case ALGORITHM_PARITY_N:
5912                 new_layout = ALGORITHM_PARITY_N;
5913                 break;
5914         default:
5915                 return ERR_PTR(-EINVAL);
5916         }
5917         mddev->new_level = 6;
5918         mddev->new_layout = new_layout;
5919         mddev->delta_disks = 1;
5920         mddev->raid_disks += 1;
5921         return setup_conf(mddev);
5922 }
5923
5924
5925 static struct mdk_personality raid6_personality =
5926 {
5927         .name           = "raid6",
5928         .level          = 6,
5929         .owner          = THIS_MODULE,
5930         .make_request   = make_request,
5931         .run            = run,
5932         .stop           = stop,
5933         .status         = status,
5934         .error_handler  = error,
5935         .hot_add_disk   = raid5_add_disk,
5936         .hot_remove_disk= raid5_remove_disk,
5937         .spare_active   = raid5_spare_active,
5938         .sync_request   = sync_request,
5939         .resize         = raid5_resize,
5940         .size           = raid5_size,
5941         .check_reshape  = raid6_check_reshape,
5942         .start_reshape  = raid5_start_reshape,
5943         .finish_reshape = raid5_finish_reshape,
5944         .quiesce        = raid5_quiesce,
5945         .takeover       = raid6_takeover,
5946 };
5947 static struct mdk_personality raid5_personality =
5948 {
5949         .name           = "raid5",
5950         .level          = 5,
5951         .owner          = THIS_MODULE,
5952         .make_request   = make_request,
5953         .run            = run,
5954         .stop           = stop,
5955         .status         = status,
5956         .error_handler  = error,
5957         .hot_add_disk   = raid5_add_disk,
5958         .hot_remove_disk= raid5_remove_disk,
5959         .spare_active   = raid5_spare_active,
5960         .sync_request   = sync_request,
5961         .resize         = raid5_resize,
5962         .size           = raid5_size,
5963         .check_reshape  = raid5_check_reshape,
5964         .start_reshape  = raid5_start_reshape,
5965         .finish_reshape = raid5_finish_reshape,
5966         .quiesce        = raid5_quiesce,
5967         .takeover       = raid5_takeover,
5968 };
5969
5970 static struct mdk_personality raid4_personality =
5971 {
5972         .name           = "raid4",
5973         .level          = 4,
5974         .owner          = THIS_MODULE,
5975         .make_request   = make_request,
5976         .run            = run,
5977         .stop           = stop,
5978         .status         = status,
5979         .error_handler  = error,
5980         .hot_add_disk   = raid5_add_disk,
5981         .hot_remove_disk= raid5_remove_disk,
5982         .spare_active   = raid5_spare_active,
5983         .sync_request   = sync_request,
5984         .resize         = raid5_resize,
5985         .size           = raid5_size,
5986         .check_reshape  = raid5_check_reshape,
5987         .start_reshape  = raid5_start_reshape,
5988         .finish_reshape = raid5_finish_reshape,
5989         .quiesce        = raid5_quiesce,
5990         .takeover       = raid4_takeover,
5991 };
5992
5993 static int __init raid5_init(void)
5994 {
5995         register_md_personality(&raid6_personality);
5996         register_md_personality(&raid5_personality);
5997         register_md_personality(&raid4_personality);
5998         return 0;
5999 }
6000
6001 static void raid5_exit(void)
6002 {
6003         unregister_md_personality(&raid6_personality);
6004         unregister_md_personality(&raid5_personality);
6005         unregister_md_personality(&raid4_personality);
6006 }
6007
6008 module_init(raid5_init);
6009 module_exit(raid5_exit);
6010 MODULE_LICENSE("GPL");
6011 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6012 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6013 MODULE_ALIAS("md-raid5");
6014 MODULE_ALIAS("md-raid4");
6015 MODULE_ALIAS("md-level-5");
6016 MODULE_ALIAS("md-level-4");
6017 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6018 MODULE_ALIAS("md-raid6");
6019 MODULE_ALIAS("md-level-6");
6020
6021 /* This used to be two separate modules, they were: */
6022 MODULE_ALIAS("raid5");
6023 MODULE_ALIAS("raid6");