m68k: Migrate exception table users off module.h and onto extable.h
[platform/kernel/linux-exynos.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio_list *return_bi)
227 {
228         struct bio *bi;
229         while ((bi = bio_list_pop(return_bi)) != NULL) {
230                 bi->bi_iter.bi_size = 0;
231                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232                                          bi, 0);
233                 bio_endio(bi);
234         }
235 }
236
237 static void print_raid5_conf (struct r5conf *conf);
238
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241         return sh->check_state || sh->reconstruct_state ||
242                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248         struct r5conf *conf = sh->raid_conf;
249         struct r5worker_group *group;
250         int thread_cnt;
251         int i, cpu = sh->cpu;
252
253         if (!cpu_online(cpu)) {
254                 cpu = cpumask_any(cpu_online_mask);
255                 sh->cpu = cpu;
256         }
257
258         if (list_empty(&sh->lru)) {
259                 struct r5worker_group *group;
260                 group = conf->worker_groups + cpu_to_group(cpu);
261                 list_add_tail(&sh->lru, &group->handle_list);
262                 group->stripes_cnt++;
263                 sh->group = group;
264         }
265
266         if (conf->worker_cnt_per_group == 0) {
267                 md_wakeup_thread(conf->mddev->thread);
268                 return;
269         }
270
271         group = conf->worker_groups + cpu_to_group(sh->cpu);
272
273         group->workers[0].working = true;
274         /* at least one worker should run to avoid race */
275         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278         /* wakeup more workers */
279         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280                 if (group->workers[i].working == false) {
281                         group->workers[i].working = true;
282                         queue_work_on(sh->cpu, raid5_wq,
283                                       &group->workers[i].work);
284                         thread_cnt--;
285                 }
286         }
287 }
288
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290                               struct list_head *temp_inactive_list)
291 {
292         BUG_ON(!list_empty(&sh->lru));
293         BUG_ON(atomic_read(&conf->active_stripes)==0);
294         if (test_bit(STRIPE_HANDLE, &sh->state)) {
295                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
296                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297                         list_add_tail(&sh->lru, &conf->delayed_list);
298                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299                            sh->bm_seq - conf->seq_write > 0)
300                         list_add_tail(&sh->lru, &conf->bitmap_list);
301                 else {
302                         clear_bit(STRIPE_DELAYED, &sh->state);
303                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
304                         if (conf->worker_cnt_per_group == 0) {
305                                 list_add_tail(&sh->lru, &conf->handle_list);
306                         } else {
307                                 raid5_wakeup_stripe_thread(sh);
308                                 return;
309                         }
310                 }
311                 md_wakeup_thread(conf->mddev->thread);
312         } else {
313                 BUG_ON(stripe_operations_active(sh));
314                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315                         if (atomic_dec_return(&conf->preread_active_stripes)
316                             < IO_THRESHOLD)
317                                 md_wakeup_thread(conf->mddev->thread);
318                 atomic_dec(&conf->active_stripes);
319                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320                         list_add_tail(&sh->lru, temp_inactive_list);
321         }
322 }
323
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325                              struct list_head *temp_inactive_list)
326 {
327         if (atomic_dec_and_test(&sh->count))
328                 do_release_stripe(conf, sh, temp_inactive_list);
329 }
330
331 /*
332  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333  *
334  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335  * given time. Adding stripes only takes device lock, while deleting stripes
336  * only takes hash lock.
337  */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339                                          struct list_head *temp_inactive_list,
340                                          int hash)
341 {
342         int size;
343         bool do_wakeup = false;
344         unsigned long flags;
345
346         if (hash == NR_STRIPE_HASH_LOCKS) {
347                 size = NR_STRIPE_HASH_LOCKS;
348                 hash = NR_STRIPE_HASH_LOCKS - 1;
349         } else
350                 size = 1;
351         while (size) {
352                 struct list_head *list = &temp_inactive_list[size - 1];
353
354                 /*
355                  * We don't hold any lock here yet, raid5_get_active_stripe() might
356                  * remove stripes from the list
357                  */
358                 if (!list_empty_careful(list)) {
359                         spin_lock_irqsave(conf->hash_locks + hash, flags);
360                         if (list_empty(conf->inactive_list + hash) &&
361                             !list_empty(list))
362                                 atomic_dec(&conf->empty_inactive_list_nr);
363                         list_splice_tail_init(list, conf->inactive_list + hash);
364                         do_wakeup = true;
365                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
366                 }
367                 size--;
368                 hash--;
369         }
370
371         if (do_wakeup) {
372                 wake_up(&conf->wait_for_stripe);
373                 if (atomic_read(&conf->active_stripes) == 0)
374                         wake_up(&conf->wait_for_quiescent);
375                 if (conf->retry_read_aligned)
376                         md_wakeup_thread(conf->mddev->thread);
377         }
378 }
379
380 /* should hold conf->device_lock already */
381 static int release_stripe_list(struct r5conf *conf,
382                                struct list_head *temp_inactive_list)
383 {
384         struct stripe_head *sh;
385         int count = 0;
386         struct llist_node *head;
387
388         head = llist_del_all(&conf->released_stripes);
389         head = llist_reverse_order(head);
390         while (head) {
391                 int hash;
392
393                 sh = llist_entry(head, struct stripe_head, release_list);
394                 head = llist_next(head);
395                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
396                 smp_mb();
397                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
398                 /*
399                  * Don't worry the bit is set here, because if the bit is set
400                  * again, the count is always > 1. This is true for
401                  * STRIPE_ON_UNPLUG_LIST bit too.
402                  */
403                 hash = sh->hash_lock_index;
404                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
405                 count++;
406         }
407
408         return count;
409 }
410
411 void raid5_release_stripe(struct stripe_head *sh)
412 {
413         struct r5conf *conf = sh->raid_conf;
414         unsigned long flags;
415         struct list_head list;
416         int hash;
417         bool wakeup;
418
419         /* Avoid release_list until the last reference.
420          */
421         if (atomic_add_unless(&sh->count, -1, 1))
422                 return;
423
424         if (unlikely(!conf->mddev->thread) ||
425                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
426                 goto slow_path;
427         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
428         if (wakeup)
429                 md_wakeup_thread(conf->mddev->thread);
430         return;
431 slow_path:
432         local_irq_save(flags);
433         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
434         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
435                 INIT_LIST_HEAD(&list);
436                 hash = sh->hash_lock_index;
437                 do_release_stripe(conf, sh, &list);
438                 spin_unlock(&conf->device_lock);
439                 release_inactive_stripe_list(conf, &list, hash);
440         }
441         local_irq_restore(flags);
442 }
443
444 static inline void remove_hash(struct stripe_head *sh)
445 {
446         pr_debug("remove_hash(), stripe %llu\n",
447                 (unsigned long long)sh->sector);
448
449         hlist_del_init(&sh->hash);
450 }
451
452 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
453 {
454         struct hlist_head *hp = stripe_hash(conf, sh->sector);
455
456         pr_debug("insert_hash(), stripe %llu\n",
457                 (unsigned long long)sh->sector);
458
459         hlist_add_head(&sh->hash, hp);
460 }
461
462 /* find an idle stripe, make sure it is unhashed, and return it. */
463 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
464 {
465         struct stripe_head *sh = NULL;
466         struct list_head *first;
467
468         if (list_empty(conf->inactive_list + hash))
469                 goto out;
470         first = (conf->inactive_list + hash)->next;
471         sh = list_entry(first, struct stripe_head, lru);
472         list_del_init(first);
473         remove_hash(sh);
474         atomic_inc(&conf->active_stripes);
475         BUG_ON(hash != sh->hash_lock_index);
476         if (list_empty(conf->inactive_list + hash))
477                 atomic_inc(&conf->empty_inactive_list_nr);
478 out:
479         return sh;
480 }
481
482 static void shrink_buffers(struct stripe_head *sh)
483 {
484         struct page *p;
485         int i;
486         int num = sh->raid_conf->pool_size;
487
488         for (i = 0; i < num ; i++) {
489                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
490                 p = sh->dev[i].page;
491                 if (!p)
492                         continue;
493                 sh->dev[i].page = NULL;
494                 put_page(p);
495         }
496 }
497
498 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
499 {
500         int i;
501         int num = sh->raid_conf->pool_size;
502
503         for (i = 0; i < num; i++) {
504                 struct page *page;
505
506                 if (!(page = alloc_page(gfp))) {
507                         return 1;
508                 }
509                 sh->dev[i].page = page;
510                 sh->dev[i].orig_page = page;
511         }
512         return 0;
513 }
514
515 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
516 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
517                             struct stripe_head *sh);
518
519 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
520 {
521         struct r5conf *conf = sh->raid_conf;
522         int i, seq;
523
524         BUG_ON(atomic_read(&sh->count) != 0);
525         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
526         BUG_ON(stripe_operations_active(sh));
527         BUG_ON(sh->batch_head);
528
529         pr_debug("init_stripe called, stripe %llu\n",
530                 (unsigned long long)sector);
531 retry:
532         seq = read_seqcount_begin(&conf->gen_lock);
533         sh->generation = conf->generation - previous;
534         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
535         sh->sector = sector;
536         stripe_set_idx(sector, conf, previous, sh);
537         sh->state = 0;
538
539         for (i = sh->disks; i--; ) {
540                 struct r5dev *dev = &sh->dev[i];
541
542                 if (dev->toread || dev->read || dev->towrite || dev->written ||
543                     test_bit(R5_LOCKED, &dev->flags)) {
544                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
545                                (unsigned long long)sh->sector, i, dev->toread,
546                                dev->read, dev->towrite, dev->written,
547                                test_bit(R5_LOCKED, &dev->flags));
548                         WARN_ON(1);
549                 }
550                 dev->flags = 0;
551                 raid5_build_block(sh, i, previous);
552         }
553         if (read_seqcount_retry(&conf->gen_lock, seq))
554                 goto retry;
555         sh->overwrite_disks = 0;
556         insert_hash(conf, sh);
557         sh->cpu = smp_processor_id();
558         set_bit(STRIPE_BATCH_READY, &sh->state);
559 }
560
561 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
562                                          short generation)
563 {
564         struct stripe_head *sh;
565
566         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
567         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
568                 if (sh->sector == sector && sh->generation == generation)
569                         return sh;
570         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
571         return NULL;
572 }
573
574 /*
575  * Need to check if array has failed when deciding whether to:
576  *  - start an array
577  *  - remove non-faulty devices
578  *  - add a spare
579  *  - allow a reshape
580  * This determination is simple when no reshape is happening.
581  * However if there is a reshape, we need to carefully check
582  * both the before and after sections.
583  * This is because some failed devices may only affect one
584  * of the two sections, and some non-in_sync devices may
585  * be insync in the section most affected by failed devices.
586  */
587 static int calc_degraded(struct r5conf *conf)
588 {
589         int degraded, degraded2;
590         int i;
591
592         rcu_read_lock();
593         degraded = 0;
594         for (i = 0; i < conf->previous_raid_disks; i++) {
595                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
596                 if (rdev && test_bit(Faulty, &rdev->flags))
597                         rdev = rcu_dereference(conf->disks[i].replacement);
598                 if (!rdev || test_bit(Faulty, &rdev->flags))
599                         degraded++;
600                 else if (test_bit(In_sync, &rdev->flags))
601                         ;
602                 else
603                         /* not in-sync or faulty.
604                          * If the reshape increases the number of devices,
605                          * this is being recovered by the reshape, so
606                          * this 'previous' section is not in_sync.
607                          * If the number of devices is being reduced however,
608                          * the device can only be part of the array if
609                          * we are reverting a reshape, so this section will
610                          * be in-sync.
611                          */
612                         if (conf->raid_disks >= conf->previous_raid_disks)
613                                 degraded++;
614         }
615         rcu_read_unlock();
616         if (conf->raid_disks == conf->previous_raid_disks)
617                 return degraded;
618         rcu_read_lock();
619         degraded2 = 0;
620         for (i = 0; i < conf->raid_disks; i++) {
621                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
622                 if (rdev && test_bit(Faulty, &rdev->flags))
623                         rdev = rcu_dereference(conf->disks[i].replacement);
624                 if (!rdev || test_bit(Faulty, &rdev->flags))
625                         degraded2++;
626                 else if (test_bit(In_sync, &rdev->flags))
627                         ;
628                 else
629                         /* not in-sync or faulty.
630                          * If reshape increases the number of devices, this
631                          * section has already been recovered, else it
632                          * almost certainly hasn't.
633                          */
634                         if (conf->raid_disks <= conf->previous_raid_disks)
635                                 degraded2++;
636         }
637         rcu_read_unlock();
638         if (degraded2 > degraded)
639                 return degraded2;
640         return degraded;
641 }
642
643 static int has_failed(struct r5conf *conf)
644 {
645         int degraded;
646
647         if (conf->mddev->reshape_position == MaxSector)
648                 return conf->mddev->degraded > conf->max_degraded;
649
650         degraded = calc_degraded(conf);
651         if (degraded > conf->max_degraded)
652                 return 1;
653         return 0;
654 }
655
656 struct stripe_head *
657 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
658                         int previous, int noblock, int noquiesce)
659 {
660         struct stripe_head *sh;
661         int hash = stripe_hash_locks_hash(sector);
662
663         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
664
665         spin_lock_irq(conf->hash_locks + hash);
666
667         do {
668                 wait_event_lock_irq(conf->wait_for_quiescent,
669                                     conf->quiesce == 0 || noquiesce,
670                                     *(conf->hash_locks + hash));
671                 sh = __find_stripe(conf, sector, conf->generation - previous);
672                 if (!sh) {
673                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
674                                 sh = get_free_stripe(conf, hash);
675                                 if (!sh && !test_bit(R5_DID_ALLOC,
676                                                      &conf->cache_state))
677                                         set_bit(R5_ALLOC_MORE,
678                                                 &conf->cache_state);
679                         }
680                         if (noblock && sh == NULL)
681                                 break;
682                         if (!sh) {
683                                 set_bit(R5_INACTIVE_BLOCKED,
684                                         &conf->cache_state);
685                                 wait_event_lock_irq(
686                                         conf->wait_for_stripe,
687                                         !list_empty(conf->inactive_list + hash) &&
688                                         (atomic_read(&conf->active_stripes)
689                                          < (conf->max_nr_stripes * 3 / 4)
690                                          || !test_bit(R5_INACTIVE_BLOCKED,
691                                                       &conf->cache_state)),
692                                         *(conf->hash_locks + hash));
693                                 clear_bit(R5_INACTIVE_BLOCKED,
694                                           &conf->cache_state);
695                         } else {
696                                 init_stripe(sh, sector, previous);
697                                 atomic_inc(&sh->count);
698                         }
699                 } else if (!atomic_inc_not_zero(&sh->count)) {
700                         spin_lock(&conf->device_lock);
701                         if (!atomic_read(&sh->count)) {
702                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
703                                         atomic_inc(&conf->active_stripes);
704                                 BUG_ON(list_empty(&sh->lru) &&
705                                        !test_bit(STRIPE_EXPANDING, &sh->state));
706                                 list_del_init(&sh->lru);
707                                 if (sh->group) {
708                                         sh->group->stripes_cnt--;
709                                         sh->group = NULL;
710                                 }
711                         }
712                         atomic_inc(&sh->count);
713                         spin_unlock(&conf->device_lock);
714                 }
715         } while (sh == NULL);
716
717         spin_unlock_irq(conf->hash_locks + hash);
718         return sh;
719 }
720
721 static bool is_full_stripe_write(struct stripe_head *sh)
722 {
723         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
724         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
725 }
726
727 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
728 {
729         local_irq_disable();
730         if (sh1 > sh2) {
731                 spin_lock(&sh2->stripe_lock);
732                 spin_lock_nested(&sh1->stripe_lock, 1);
733         } else {
734                 spin_lock(&sh1->stripe_lock);
735                 spin_lock_nested(&sh2->stripe_lock, 1);
736         }
737 }
738
739 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
740 {
741         spin_unlock(&sh1->stripe_lock);
742         spin_unlock(&sh2->stripe_lock);
743         local_irq_enable();
744 }
745
746 /* Only freshly new full stripe normal write stripe can be added to a batch list */
747 static bool stripe_can_batch(struct stripe_head *sh)
748 {
749         struct r5conf *conf = sh->raid_conf;
750
751         if (conf->log)
752                 return false;
753         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
754                 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
755                 is_full_stripe_write(sh);
756 }
757
758 /* we only do back search */
759 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
760 {
761         struct stripe_head *head;
762         sector_t head_sector, tmp_sec;
763         int hash;
764         int dd_idx;
765
766         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
767         tmp_sec = sh->sector;
768         if (!sector_div(tmp_sec, conf->chunk_sectors))
769                 return;
770         head_sector = sh->sector - STRIPE_SECTORS;
771
772         hash = stripe_hash_locks_hash(head_sector);
773         spin_lock_irq(conf->hash_locks + hash);
774         head = __find_stripe(conf, head_sector, conf->generation);
775         if (head && !atomic_inc_not_zero(&head->count)) {
776                 spin_lock(&conf->device_lock);
777                 if (!atomic_read(&head->count)) {
778                         if (!test_bit(STRIPE_HANDLE, &head->state))
779                                 atomic_inc(&conf->active_stripes);
780                         BUG_ON(list_empty(&head->lru) &&
781                                !test_bit(STRIPE_EXPANDING, &head->state));
782                         list_del_init(&head->lru);
783                         if (head->group) {
784                                 head->group->stripes_cnt--;
785                                 head->group = NULL;
786                         }
787                 }
788                 atomic_inc(&head->count);
789                 spin_unlock(&conf->device_lock);
790         }
791         spin_unlock_irq(conf->hash_locks + hash);
792
793         if (!head)
794                 return;
795         if (!stripe_can_batch(head))
796                 goto out;
797
798         lock_two_stripes(head, sh);
799         /* clear_batch_ready clear the flag */
800         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
801                 goto unlock_out;
802
803         if (sh->batch_head)
804                 goto unlock_out;
805
806         dd_idx = 0;
807         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
808                 dd_idx++;
809         if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
810             bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
811                 goto unlock_out;
812
813         if (head->batch_head) {
814                 spin_lock(&head->batch_head->batch_lock);
815                 /* This batch list is already running */
816                 if (!stripe_can_batch(head)) {
817                         spin_unlock(&head->batch_head->batch_lock);
818                         goto unlock_out;
819                 }
820
821                 /*
822                  * at this point, head's BATCH_READY could be cleared, but we
823                  * can still add the stripe to batch list
824                  */
825                 list_add(&sh->batch_list, &head->batch_list);
826                 spin_unlock(&head->batch_head->batch_lock);
827
828                 sh->batch_head = head->batch_head;
829         } else {
830                 head->batch_head = head;
831                 sh->batch_head = head->batch_head;
832                 spin_lock(&head->batch_lock);
833                 list_add_tail(&sh->batch_list, &head->batch_list);
834                 spin_unlock(&head->batch_lock);
835         }
836
837         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
838                 if (atomic_dec_return(&conf->preread_active_stripes)
839                     < IO_THRESHOLD)
840                         md_wakeup_thread(conf->mddev->thread);
841
842         if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
843                 int seq = sh->bm_seq;
844                 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
845                     sh->batch_head->bm_seq > seq)
846                         seq = sh->batch_head->bm_seq;
847                 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
848                 sh->batch_head->bm_seq = seq;
849         }
850
851         atomic_inc(&sh->count);
852 unlock_out:
853         unlock_two_stripes(head, sh);
854 out:
855         raid5_release_stripe(head);
856 }
857
858 /* Determine if 'data_offset' or 'new_data_offset' should be used
859  * in this stripe_head.
860  */
861 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
862 {
863         sector_t progress = conf->reshape_progress;
864         /* Need a memory barrier to make sure we see the value
865          * of conf->generation, or ->data_offset that was set before
866          * reshape_progress was updated.
867          */
868         smp_rmb();
869         if (progress == MaxSector)
870                 return 0;
871         if (sh->generation == conf->generation - 1)
872                 return 0;
873         /* We are in a reshape, and this is a new-generation stripe,
874          * so use new_data_offset.
875          */
876         return 1;
877 }
878
879 static void
880 raid5_end_read_request(struct bio *bi);
881 static void
882 raid5_end_write_request(struct bio *bi);
883
884 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
885 {
886         struct r5conf *conf = sh->raid_conf;
887         int i, disks = sh->disks;
888         struct stripe_head *head_sh = sh;
889
890         might_sleep();
891
892         if (r5l_write_stripe(conf->log, sh) == 0)
893                 return;
894         for (i = disks; i--; ) {
895                 int op, op_flags = 0;
896                 int replace_only = 0;
897                 struct bio *bi, *rbi;
898                 struct md_rdev *rdev, *rrdev = NULL;
899
900                 sh = head_sh;
901                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
902                         op = REQ_OP_WRITE;
903                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
904                                 op_flags = WRITE_FUA;
905                         if (test_bit(R5_Discard, &sh->dev[i].flags))
906                                 op = REQ_OP_DISCARD;
907                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
908                         op = REQ_OP_READ;
909                 else if (test_and_clear_bit(R5_WantReplace,
910                                             &sh->dev[i].flags)) {
911                         op = REQ_OP_WRITE;
912                         replace_only = 1;
913                 } else
914                         continue;
915                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
916                         op_flags |= REQ_SYNC;
917
918 again:
919                 bi = &sh->dev[i].req;
920                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
921
922                 rcu_read_lock();
923                 rrdev = rcu_dereference(conf->disks[i].replacement);
924                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
925                 rdev = rcu_dereference(conf->disks[i].rdev);
926                 if (!rdev) {
927                         rdev = rrdev;
928                         rrdev = NULL;
929                 }
930                 if (op_is_write(op)) {
931                         if (replace_only)
932                                 rdev = NULL;
933                         if (rdev == rrdev)
934                                 /* We raced and saw duplicates */
935                                 rrdev = NULL;
936                 } else {
937                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
938                                 rdev = rrdev;
939                         rrdev = NULL;
940                 }
941
942                 if (rdev && test_bit(Faulty, &rdev->flags))
943                         rdev = NULL;
944                 if (rdev)
945                         atomic_inc(&rdev->nr_pending);
946                 if (rrdev && test_bit(Faulty, &rrdev->flags))
947                         rrdev = NULL;
948                 if (rrdev)
949                         atomic_inc(&rrdev->nr_pending);
950                 rcu_read_unlock();
951
952                 /* We have already checked bad blocks for reads.  Now
953                  * need to check for writes.  We never accept write errors
954                  * on the replacement, so we don't to check rrdev.
955                  */
956                 while (op_is_write(op) && rdev &&
957                        test_bit(WriteErrorSeen, &rdev->flags)) {
958                         sector_t first_bad;
959                         int bad_sectors;
960                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
961                                               &first_bad, &bad_sectors);
962                         if (!bad)
963                                 break;
964
965                         if (bad < 0) {
966                                 set_bit(BlockedBadBlocks, &rdev->flags);
967                                 if (!conf->mddev->external &&
968                                     conf->mddev->flags) {
969                                         /* It is very unlikely, but we might
970                                          * still need to write out the
971                                          * bad block log - better give it
972                                          * a chance*/
973                                         md_check_recovery(conf->mddev);
974                                 }
975                                 /*
976                                  * Because md_wait_for_blocked_rdev
977                                  * will dec nr_pending, we must
978                                  * increment it first.
979                                  */
980                                 atomic_inc(&rdev->nr_pending);
981                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
982                         } else {
983                                 /* Acknowledged bad block - skip the write */
984                                 rdev_dec_pending(rdev, conf->mddev);
985                                 rdev = NULL;
986                         }
987                 }
988
989                 if (rdev) {
990                         if (s->syncing || s->expanding || s->expanded
991                             || s->replacing)
992                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
993
994                         set_bit(STRIPE_IO_STARTED, &sh->state);
995
996                         bio_reset(bi);
997                         bi->bi_bdev = rdev->bdev;
998                         bio_set_op_attrs(bi, op, op_flags);
999                         bi->bi_end_io = op_is_write(op)
1000                                 ? raid5_end_write_request
1001                                 : raid5_end_read_request;
1002                         bi->bi_private = sh;
1003
1004                         pr_debug("%s: for %llu schedule op %d on disc %d\n",
1005                                 __func__, (unsigned long long)sh->sector,
1006                                 bi->bi_opf, i);
1007                         atomic_inc(&sh->count);
1008                         if (sh != head_sh)
1009                                 atomic_inc(&head_sh->count);
1010                         if (use_new_offset(conf, sh))
1011                                 bi->bi_iter.bi_sector = (sh->sector
1012                                                  + rdev->new_data_offset);
1013                         else
1014                                 bi->bi_iter.bi_sector = (sh->sector
1015                                                  + rdev->data_offset);
1016                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1017                                 bi->bi_opf |= REQ_NOMERGE;
1018
1019                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1020                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1021                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1022                         bi->bi_vcnt = 1;
1023                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1024                         bi->bi_io_vec[0].bv_offset = 0;
1025                         bi->bi_iter.bi_size = STRIPE_SIZE;
1026                         /*
1027                          * If this is discard request, set bi_vcnt 0. We don't
1028                          * want to confuse SCSI because SCSI will replace payload
1029                          */
1030                         if (op == REQ_OP_DISCARD)
1031                                 bi->bi_vcnt = 0;
1032                         if (rrdev)
1033                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1034
1035                         if (conf->mddev->gendisk)
1036                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1037                                                       bi, disk_devt(conf->mddev->gendisk),
1038                                                       sh->dev[i].sector);
1039                         generic_make_request(bi);
1040                 }
1041                 if (rrdev) {
1042                         if (s->syncing || s->expanding || s->expanded
1043                             || s->replacing)
1044                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1045
1046                         set_bit(STRIPE_IO_STARTED, &sh->state);
1047
1048                         bio_reset(rbi);
1049                         rbi->bi_bdev = rrdev->bdev;
1050                         bio_set_op_attrs(rbi, op, op_flags);
1051                         BUG_ON(!op_is_write(op));
1052                         rbi->bi_end_io = raid5_end_write_request;
1053                         rbi->bi_private = sh;
1054
1055                         pr_debug("%s: for %llu schedule op %d on "
1056                                  "replacement disc %d\n",
1057                                 __func__, (unsigned long long)sh->sector,
1058                                 rbi->bi_opf, i);
1059                         atomic_inc(&sh->count);
1060                         if (sh != head_sh)
1061                                 atomic_inc(&head_sh->count);
1062                         if (use_new_offset(conf, sh))
1063                                 rbi->bi_iter.bi_sector = (sh->sector
1064                                                   + rrdev->new_data_offset);
1065                         else
1066                                 rbi->bi_iter.bi_sector = (sh->sector
1067                                                   + rrdev->data_offset);
1068                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1069                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1070                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1071                         rbi->bi_vcnt = 1;
1072                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1073                         rbi->bi_io_vec[0].bv_offset = 0;
1074                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1075                         /*
1076                          * If this is discard request, set bi_vcnt 0. We don't
1077                          * want to confuse SCSI because SCSI will replace payload
1078                          */
1079                         if (op == REQ_OP_DISCARD)
1080                                 rbi->bi_vcnt = 0;
1081                         if (conf->mddev->gendisk)
1082                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1083                                                       rbi, disk_devt(conf->mddev->gendisk),
1084                                                       sh->dev[i].sector);
1085                         generic_make_request(rbi);
1086                 }
1087                 if (!rdev && !rrdev) {
1088                         if (op_is_write(op))
1089                                 set_bit(STRIPE_DEGRADED, &sh->state);
1090                         pr_debug("skip op %d on disc %d for sector %llu\n",
1091                                 bi->bi_opf, i, (unsigned long long)sh->sector);
1092                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1093                         set_bit(STRIPE_HANDLE, &sh->state);
1094                 }
1095
1096                 if (!head_sh->batch_head)
1097                         continue;
1098                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1099                                       batch_list);
1100                 if (sh != head_sh)
1101                         goto again;
1102         }
1103 }
1104
1105 static struct dma_async_tx_descriptor *
1106 async_copy_data(int frombio, struct bio *bio, struct page **page,
1107         sector_t sector, struct dma_async_tx_descriptor *tx,
1108         struct stripe_head *sh)
1109 {
1110         struct bio_vec bvl;
1111         struct bvec_iter iter;
1112         struct page *bio_page;
1113         int page_offset;
1114         struct async_submit_ctl submit;
1115         enum async_tx_flags flags = 0;
1116
1117         if (bio->bi_iter.bi_sector >= sector)
1118                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1119         else
1120                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1121
1122         if (frombio)
1123                 flags |= ASYNC_TX_FENCE;
1124         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1125
1126         bio_for_each_segment(bvl, bio, iter) {
1127                 int len = bvl.bv_len;
1128                 int clen;
1129                 int b_offset = 0;
1130
1131                 if (page_offset < 0) {
1132                         b_offset = -page_offset;
1133                         page_offset += b_offset;
1134                         len -= b_offset;
1135                 }
1136
1137                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1138                         clen = STRIPE_SIZE - page_offset;
1139                 else
1140                         clen = len;
1141
1142                 if (clen > 0) {
1143                         b_offset += bvl.bv_offset;
1144                         bio_page = bvl.bv_page;
1145                         if (frombio) {
1146                                 if (sh->raid_conf->skip_copy &&
1147                                     b_offset == 0 && page_offset == 0 &&
1148                                     clen == STRIPE_SIZE)
1149                                         *page = bio_page;
1150                                 else
1151                                         tx = async_memcpy(*page, bio_page, page_offset,
1152                                                   b_offset, clen, &submit);
1153                         } else
1154                                 tx = async_memcpy(bio_page, *page, b_offset,
1155                                                   page_offset, clen, &submit);
1156                 }
1157                 /* chain the operations */
1158                 submit.depend_tx = tx;
1159
1160                 if (clen < len) /* hit end of page */
1161                         break;
1162                 page_offset +=  len;
1163         }
1164
1165         return tx;
1166 }
1167
1168 static void ops_complete_biofill(void *stripe_head_ref)
1169 {
1170         struct stripe_head *sh = stripe_head_ref;
1171         struct bio_list return_bi = BIO_EMPTY_LIST;
1172         int i;
1173
1174         pr_debug("%s: stripe %llu\n", __func__,
1175                 (unsigned long long)sh->sector);
1176
1177         /* clear completed biofills */
1178         for (i = sh->disks; i--; ) {
1179                 struct r5dev *dev = &sh->dev[i];
1180
1181                 /* acknowledge completion of a biofill operation */
1182                 /* and check if we need to reply to a read request,
1183                  * new R5_Wantfill requests are held off until
1184                  * !STRIPE_BIOFILL_RUN
1185                  */
1186                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1187                         struct bio *rbi, *rbi2;
1188
1189                         BUG_ON(!dev->read);
1190                         rbi = dev->read;
1191                         dev->read = NULL;
1192                         while (rbi && rbi->bi_iter.bi_sector <
1193                                 dev->sector + STRIPE_SECTORS) {
1194                                 rbi2 = r5_next_bio(rbi, dev->sector);
1195                                 if (!raid5_dec_bi_active_stripes(rbi))
1196                                         bio_list_add(&return_bi, rbi);
1197                                 rbi = rbi2;
1198                         }
1199                 }
1200         }
1201         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1202
1203         return_io(&return_bi);
1204
1205         set_bit(STRIPE_HANDLE, &sh->state);
1206         raid5_release_stripe(sh);
1207 }
1208
1209 static void ops_run_biofill(struct stripe_head *sh)
1210 {
1211         struct dma_async_tx_descriptor *tx = NULL;
1212         struct async_submit_ctl submit;
1213         int i;
1214
1215         BUG_ON(sh->batch_head);
1216         pr_debug("%s: stripe %llu\n", __func__,
1217                 (unsigned long long)sh->sector);
1218
1219         for (i = sh->disks; i--; ) {
1220                 struct r5dev *dev = &sh->dev[i];
1221                 if (test_bit(R5_Wantfill, &dev->flags)) {
1222                         struct bio *rbi;
1223                         spin_lock_irq(&sh->stripe_lock);
1224                         dev->read = rbi = dev->toread;
1225                         dev->toread = NULL;
1226                         spin_unlock_irq(&sh->stripe_lock);
1227                         while (rbi && rbi->bi_iter.bi_sector <
1228                                 dev->sector + STRIPE_SECTORS) {
1229                                 tx = async_copy_data(0, rbi, &dev->page,
1230                                         dev->sector, tx, sh);
1231                                 rbi = r5_next_bio(rbi, dev->sector);
1232                         }
1233                 }
1234         }
1235
1236         atomic_inc(&sh->count);
1237         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1238         async_trigger_callback(&submit);
1239 }
1240
1241 static void mark_target_uptodate(struct stripe_head *sh, int target)
1242 {
1243         struct r5dev *tgt;
1244
1245         if (target < 0)
1246                 return;
1247
1248         tgt = &sh->dev[target];
1249         set_bit(R5_UPTODATE, &tgt->flags);
1250         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1251         clear_bit(R5_Wantcompute, &tgt->flags);
1252 }
1253
1254 static void ops_complete_compute(void *stripe_head_ref)
1255 {
1256         struct stripe_head *sh = stripe_head_ref;
1257
1258         pr_debug("%s: stripe %llu\n", __func__,
1259                 (unsigned long long)sh->sector);
1260
1261         /* mark the computed target(s) as uptodate */
1262         mark_target_uptodate(sh, sh->ops.target);
1263         mark_target_uptodate(sh, sh->ops.target2);
1264
1265         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1266         if (sh->check_state == check_state_compute_run)
1267                 sh->check_state = check_state_compute_result;
1268         set_bit(STRIPE_HANDLE, &sh->state);
1269         raid5_release_stripe(sh);
1270 }
1271
1272 /* return a pointer to the address conversion region of the scribble buffer */
1273 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1274                                  struct raid5_percpu *percpu, int i)
1275 {
1276         void *addr;
1277
1278         addr = flex_array_get(percpu->scribble, i);
1279         return addr + sizeof(struct page *) * (sh->disks + 2);
1280 }
1281
1282 /* return a pointer to the address conversion region of the scribble buffer */
1283 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1284 {
1285         void *addr;
1286
1287         addr = flex_array_get(percpu->scribble, i);
1288         return addr;
1289 }
1290
1291 static struct dma_async_tx_descriptor *
1292 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1293 {
1294         int disks = sh->disks;
1295         struct page **xor_srcs = to_addr_page(percpu, 0);
1296         int target = sh->ops.target;
1297         struct r5dev *tgt = &sh->dev[target];
1298         struct page *xor_dest = tgt->page;
1299         int count = 0;
1300         struct dma_async_tx_descriptor *tx;
1301         struct async_submit_ctl submit;
1302         int i;
1303
1304         BUG_ON(sh->batch_head);
1305
1306         pr_debug("%s: stripe %llu block: %d\n",
1307                 __func__, (unsigned long long)sh->sector, target);
1308         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1309
1310         for (i = disks; i--; )
1311                 if (i != target)
1312                         xor_srcs[count++] = sh->dev[i].page;
1313
1314         atomic_inc(&sh->count);
1315
1316         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1317                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1318         if (unlikely(count == 1))
1319                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1320         else
1321                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1322
1323         return tx;
1324 }
1325
1326 /* set_syndrome_sources - populate source buffers for gen_syndrome
1327  * @srcs - (struct page *) array of size sh->disks
1328  * @sh - stripe_head to parse
1329  *
1330  * Populates srcs in proper layout order for the stripe and returns the
1331  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1332  * destination buffer is recorded in srcs[count] and the Q destination
1333  * is recorded in srcs[count+1]].
1334  */
1335 static int set_syndrome_sources(struct page **srcs,
1336                                 struct stripe_head *sh,
1337                                 int srctype)
1338 {
1339         int disks = sh->disks;
1340         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1341         int d0_idx = raid6_d0(sh);
1342         int count;
1343         int i;
1344
1345         for (i = 0; i < disks; i++)
1346                 srcs[i] = NULL;
1347
1348         count = 0;
1349         i = d0_idx;
1350         do {
1351                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1352                 struct r5dev *dev = &sh->dev[i];
1353
1354                 if (i == sh->qd_idx || i == sh->pd_idx ||
1355                     (srctype == SYNDROME_SRC_ALL) ||
1356                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1357                      test_bit(R5_Wantdrain, &dev->flags)) ||
1358                     (srctype == SYNDROME_SRC_WRITTEN &&
1359                      dev->written))
1360                         srcs[slot] = sh->dev[i].page;
1361                 i = raid6_next_disk(i, disks);
1362         } while (i != d0_idx);
1363
1364         return syndrome_disks;
1365 }
1366
1367 static struct dma_async_tx_descriptor *
1368 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1369 {
1370         int disks = sh->disks;
1371         struct page **blocks = to_addr_page(percpu, 0);
1372         int target;
1373         int qd_idx = sh->qd_idx;
1374         struct dma_async_tx_descriptor *tx;
1375         struct async_submit_ctl submit;
1376         struct r5dev *tgt;
1377         struct page *dest;
1378         int i;
1379         int count;
1380
1381         BUG_ON(sh->batch_head);
1382         if (sh->ops.target < 0)
1383                 target = sh->ops.target2;
1384         else if (sh->ops.target2 < 0)
1385                 target = sh->ops.target;
1386         else
1387                 /* we should only have one valid target */
1388                 BUG();
1389         BUG_ON(target < 0);
1390         pr_debug("%s: stripe %llu block: %d\n",
1391                 __func__, (unsigned long long)sh->sector, target);
1392
1393         tgt = &sh->dev[target];
1394         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1395         dest = tgt->page;
1396
1397         atomic_inc(&sh->count);
1398
1399         if (target == qd_idx) {
1400                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1401                 blocks[count] = NULL; /* regenerating p is not necessary */
1402                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1403                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1404                                   ops_complete_compute, sh,
1405                                   to_addr_conv(sh, percpu, 0));
1406                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1407         } else {
1408                 /* Compute any data- or p-drive using XOR */
1409                 count = 0;
1410                 for (i = disks; i-- ; ) {
1411                         if (i == target || i == qd_idx)
1412                                 continue;
1413                         blocks[count++] = sh->dev[i].page;
1414                 }
1415
1416                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1417                                   NULL, ops_complete_compute, sh,
1418                                   to_addr_conv(sh, percpu, 0));
1419                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1420         }
1421
1422         return tx;
1423 }
1424
1425 static struct dma_async_tx_descriptor *
1426 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1427 {
1428         int i, count, disks = sh->disks;
1429         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1430         int d0_idx = raid6_d0(sh);
1431         int faila = -1, failb = -1;
1432         int target = sh->ops.target;
1433         int target2 = sh->ops.target2;
1434         struct r5dev *tgt = &sh->dev[target];
1435         struct r5dev *tgt2 = &sh->dev[target2];
1436         struct dma_async_tx_descriptor *tx;
1437         struct page **blocks = to_addr_page(percpu, 0);
1438         struct async_submit_ctl submit;
1439
1440         BUG_ON(sh->batch_head);
1441         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1442                  __func__, (unsigned long long)sh->sector, target, target2);
1443         BUG_ON(target < 0 || target2 < 0);
1444         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1445         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1446
1447         /* we need to open-code set_syndrome_sources to handle the
1448          * slot number conversion for 'faila' and 'failb'
1449          */
1450         for (i = 0; i < disks ; i++)
1451                 blocks[i] = NULL;
1452         count = 0;
1453         i = d0_idx;
1454         do {
1455                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1456
1457                 blocks[slot] = sh->dev[i].page;
1458
1459                 if (i == target)
1460                         faila = slot;
1461                 if (i == target2)
1462                         failb = slot;
1463                 i = raid6_next_disk(i, disks);
1464         } while (i != d0_idx);
1465
1466         BUG_ON(faila == failb);
1467         if (failb < faila)
1468                 swap(faila, failb);
1469         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1470                  __func__, (unsigned long long)sh->sector, faila, failb);
1471
1472         atomic_inc(&sh->count);
1473
1474         if (failb == syndrome_disks+1) {
1475                 /* Q disk is one of the missing disks */
1476                 if (faila == syndrome_disks) {
1477                         /* Missing P+Q, just recompute */
1478                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1479                                           ops_complete_compute, sh,
1480                                           to_addr_conv(sh, percpu, 0));
1481                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1482                                                   STRIPE_SIZE, &submit);
1483                 } else {
1484                         struct page *dest;
1485                         int data_target;
1486                         int qd_idx = sh->qd_idx;
1487
1488                         /* Missing D+Q: recompute D from P, then recompute Q */
1489                         if (target == qd_idx)
1490                                 data_target = target2;
1491                         else
1492                                 data_target = target;
1493
1494                         count = 0;
1495                         for (i = disks; i-- ; ) {
1496                                 if (i == data_target || i == qd_idx)
1497                                         continue;
1498                                 blocks[count++] = sh->dev[i].page;
1499                         }
1500                         dest = sh->dev[data_target].page;
1501                         init_async_submit(&submit,
1502                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1503                                           NULL, NULL, NULL,
1504                                           to_addr_conv(sh, percpu, 0));
1505                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1506                                        &submit);
1507
1508                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1509                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1510                                           ops_complete_compute, sh,
1511                                           to_addr_conv(sh, percpu, 0));
1512                         return async_gen_syndrome(blocks, 0, count+2,
1513                                                   STRIPE_SIZE, &submit);
1514                 }
1515         } else {
1516                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1517                                   ops_complete_compute, sh,
1518                                   to_addr_conv(sh, percpu, 0));
1519                 if (failb == syndrome_disks) {
1520                         /* We're missing D+P. */
1521                         return async_raid6_datap_recov(syndrome_disks+2,
1522                                                        STRIPE_SIZE, faila,
1523                                                        blocks, &submit);
1524                 } else {
1525                         /* We're missing D+D. */
1526                         return async_raid6_2data_recov(syndrome_disks+2,
1527                                                        STRIPE_SIZE, faila, failb,
1528                                                        blocks, &submit);
1529                 }
1530         }
1531 }
1532
1533 static void ops_complete_prexor(void *stripe_head_ref)
1534 {
1535         struct stripe_head *sh = stripe_head_ref;
1536
1537         pr_debug("%s: stripe %llu\n", __func__,
1538                 (unsigned long long)sh->sector);
1539 }
1540
1541 static struct dma_async_tx_descriptor *
1542 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1543                 struct dma_async_tx_descriptor *tx)
1544 {
1545         int disks = sh->disks;
1546         struct page **xor_srcs = to_addr_page(percpu, 0);
1547         int count = 0, pd_idx = sh->pd_idx, i;
1548         struct async_submit_ctl submit;
1549
1550         /* existing parity data subtracted */
1551         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1552
1553         BUG_ON(sh->batch_head);
1554         pr_debug("%s: stripe %llu\n", __func__,
1555                 (unsigned long long)sh->sector);
1556
1557         for (i = disks; i--; ) {
1558                 struct r5dev *dev = &sh->dev[i];
1559                 /* Only process blocks that are known to be uptodate */
1560                 if (test_bit(R5_Wantdrain, &dev->flags))
1561                         xor_srcs[count++] = dev->page;
1562         }
1563
1564         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1565                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1566         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1567
1568         return tx;
1569 }
1570
1571 static struct dma_async_tx_descriptor *
1572 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1573                 struct dma_async_tx_descriptor *tx)
1574 {
1575         struct page **blocks = to_addr_page(percpu, 0);
1576         int count;
1577         struct async_submit_ctl submit;
1578
1579         pr_debug("%s: stripe %llu\n", __func__,
1580                 (unsigned long long)sh->sector);
1581
1582         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1583
1584         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1585                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1586         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1587
1588         return tx;
1589 }
1590
1591 static struct dma_async_tx_descriptor *
1592 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1593 {
1594         int disks = sh->disks;
1595         int i;
1596         struct stripe_head *head_sh = sh;
1597
1598         pr_debug("%s: stripe %llu\n", __func__,
1599                 (unsigned long long)sh->sector);
1600
1601         for (i = disks; i--; ) {
1602                 struct r5dev *dev;
1603                 struct bio *chosen;
1604
1605                 sh = head_sh;
1606                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1607                         struct bio *wbi;
1608
1609 again:
1610                         dev = &sh->dev[i];
1611                         spin_lock_irq(&sh->stripe_lock);
1612                         chosen = dev->towrite;
1613                         dev->towrite = NULL;
1614                         sh->overwrite_disks = 0;
1615                         BUG_ON(dev->written);
1616                         wbi = dev->written = chosen;
1617                         spin_unlock_irq(&sh->stripe_lock);
1618                         WARN_ON(dev->page != dev->orig_page);
1619
1620                         while (wbi && wbi->bi_iter.bi_sector <
1621                                 dev->sector + STRIPE_SECTORS) {
1622                                 if (wbi->bi_opf & REQ_FUA)
1623                                         set_bit(R5_WantFUA, &dev->flags);
1624                                 if (wbi->bi_opf & REQ_SYNC)
1625                                         set_bit(R5_SyncIO, &dev->flags);
1626                                 if (bio_op(wbi) == REQ_OP_DISCARD)
1627                                         set_bit(R5_Discard, &dev->flags);
1628                                 else {
1629                                         tx = async_copy_data(1, wbi, &dev->page,
1630                                                 dev->sector, tx, sh);
1631                                         if (dev->page != dev->orig_page) {
1632                                                 set_bit(R5_SkipCopy, &dev->flags);
1633                                                 clear_bit(R5_UPTODATE, &dev->flags);
1634                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1635                                         }
1636                                 }
1637                                 wbi = r5_next_bio(wbi, dev->sector);
1638                         }
1639
1640                         if (head_sh->batch_head) {
1641                                 sh = list_first_entry(&sh->batch_list,
1642                                                       struct stripe_head,
1643                                                       batch_list);
1644                                 if (sh == head_sh)
1645                                         continue;
1646                                 goto again;
1647                         }
1648                 }
1649         }
1650
1651         return tx;
1652 }
1653
1654 static void ops_complete_reconstruct(void *stripe_head_ref)
1655 {
1656         struct stripe_head *sh = stripe_head_ref;
1657         int disks = sh->disks;
1658         int pd_idx = sh->pd_idx;
1659         int qd_idx = sh->qd_idx;
1660         int i;
1661         bool fua = false, sync = false, discard = false;
1662
1663         pr_debug("%s: stripe %llu\n", __func__,
1664                 (unsigned long long)sh->sector);
1665
1666         for (i = disks; i--; ) {
1667                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1668                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1669                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1670         }
1671
1672         for (i = disks; i--; ) {
1673                 struct r5dev *dev = &sh->dev[i];
1674
1675                 if (dev->written || i == pd_idx || i == qd_idx) {
1676                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1677                                 set_bit(R5_UPTODATE, &dev->flags);
1678                         if (fua)
1679                                 set_bit(R5_WantFUA, &dev->flags);
1680                         if (sync)
1681                                 set_bit(R5_SyncIO, &dev->flags);
1682                 }
1683         }
1684
1685         if (sh->reconstruct_state == reconstruct_state_drain_run)
1686                 sh->reconstruct_state = reconstruct_state_drain_result;
1687         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1688                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1689         else {
1690                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1691                 sh->reconstruct_state = reconstruct_state_result;
1692         }
1693
1694         set_bit(STRIPE_HANDLE, &sh->state);
1695         raid5_release_stripe(sh);
1696 }
1697
1698 static void
1699 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1700                      struct dma_async_tx_descriptor *tx)
1701 {
1702         int disks = sh->disks;
1703         struct page **xor_srcs;
1704         struct async_submit_ctl submit;
1705         int count, pd_idx = sh->pd_idx, i;
1706         struct page *xor_dest;
1707         int prexor = 0;
1708         unsigned long flags;
1709         int j = 0;
1710         struct stripe_head *head_sh = sh;
1711         int last_stripe;
1712
1713         pr_debug("%s: stripe %llu\n", __func__,
1714                 (unsigned long long)sh->sector);
1715
1716         for (i = 0; i < sh->disks; i++) {
1717                 if (pd_idx == i)
1718                         continue;
1719                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1720                         break;
1721         }
1722         if (i >= sh->disks) {
1723                 atomic_inc(&sh->count);
1724                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1725                 ops_complete_reconstruct(sh);
1726                 return;
1727         }
1728 again:
1729         count = 0;
1730         xor_srcs = to_addr_page(percpu, j);
1731         /* check if prexor is active which means only process blocks
1732          * that are part of a read-modify-write (written)
1733          */
1734         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1735                 prexor = 1;
1736                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1737                 for (i = disks; i--; ) {
1738                         struct r5dev *dev = &sh->dev[i];
1739                         if (head_sh->dev[i].written)
1740                                 xor_srcs[count++] = dev->page;
1741                 }
1742         } else {
1743                 xor_dest = sh->dev[pd_idx].page;
1744                 for (i = disks; i--; ) {
1745                         struct r5dev *dev = &sh->dev[i];
1746                         if (i != pd_idx)
1747                                 xor_srcs[count++] = dev->page;
1748                 }
1749         }
1750
1751         /* 1/ if we prexor'd then the dest is reused as a source
1752          * 2/ if we did not prexor then we are redoing the parity
1753          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1754          * for the synchronous xor case
1755          */
1756         last_stripe = !head_sh->batch_head ||
1757                 list_first_entry(&sh->batch_list,
1758                                  struct stripe_head, batch_list) == head_sh;
1759         if (last_stripe) {
1760                 flags = ASYNC_TX_ACK |
1761                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1762
1763                 atomic_inc(&head_sh->count);
1764                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1765                                   to_addr_conv(sh, percpu, j));
1766         } else {
1767                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1768                 init_async_submit(&submit, flags, tx, NULL, NULL,
1769                                   to_addr_conv(sh, percpu, j));
1770         }
1771
1772         if (unlikely(count == 1))
1773                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1774         else
1775                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1776         if (!last_stripe) {
1777                 j++;
1778                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1779                                       batch_list);
1780                 goto again;
1781         }
1782 }
1783
1784 static void
1785 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1786                      struct dma_async_tx_descriptor *tx)
1787 {
1788         struct async_submit_ctl submit;
1789         struct page **blocks;
1790         int count, i, j = 0;
1791         struct stripe_head *head_sh = sh;
1792         int last_stripe;
1793         int synflags;
1794         unsigned long txflags;
1795
1796         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1797
1798         for (i = 0; i < sh->disks; i++) {
1799                 if (sh->pd_idx == i || sh->qd_idx == i)
1800                         continue;
1801                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1802                         break;
1803         }
1804         if (i >= sh->disks) {
1805                 atomic_inc(&sh->count);
1806                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1807                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1808                 ops_complete_reconstruct(sh);
1809                 return;
1810         }
1811
1812 again:
1813         blocks = to_addr_page(percpu, j);
1814
1815         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1816                 synflags = SYNDROME_SRC_WRITTEN;
1817                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1818         } else {
1819                 synflags = SYNDROME_SRC_ALL;
1820                 txflags = ASYNC_TX_ACK;
1821         }
1822
1823         count = set_syndrome_sources(blocks, sh, synflags);
1824         last_stripe = !head_sh->batch_head ||
1825                 list_first_entry(&sh->batch_list,
1826                                  struct stripe_head, batch_list) == head_sh;
1827
1828         if (last_stripe) {
1829                 atomic_inc(&head_sh->count);
1830                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1831                                   head_sh, to_addr_conv(sh, percpu, j));
1832         } else
1833                 init_async_submit(&submit, 0, tx, NULL, NULL,
1834                                   to_addr_conv(sh, percpu, j));
1835         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1836         if (!last_stripe) {
1837                 j++;
1838                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1839                                       batch_list);
1840                 goto again;
1841         }
1842 }
1843
1844 static void ops_complete_check(void *stripe_head_ref)
1845 {
1846         struct stripe_head *sh = stripe_head_ref;
1847
1848         pr_debug("%s: stripe %llu\n", __func__,
1849                 (unsigned long long)sh->sector);
1850
1851         sh->check_state = check_state_check_result;
1852         set_bit(STRIPE_HANDLE, &sh->state);
1853         raid5_release_stripe(sh);
1854 }
1855
1856 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1857 {
1858         int disks = sh->disks;
1859         int pd_idx = sh->pd_idx;
1860         int qd_idx = sh->qd_idx;
1861         struct page *xor_dest;
1862         struct page **xor_srcs = to_addr_page(percpu, 0);
1863         struct dma_async_tx_descriptor *tx;
1864         struct async_submit_ctl submit;
1865         int count;
1866         int i;
1867
1868         pr_debug("%s: stripe %llu\n", __func__,
1869                 (unsigned long long)sh->sector);
1870
1871         BUG_ON(sh->batch_head);
1872         count = 0;
1873         xor_dest = sh->dev[pd_idx].page;
1874         xor_srcs[count++] = xor_dest;
1875         for (i = disks; i--; ) {
1876                 if (i == pd_idx || i == qd_idx)
1877                         continue;
1878                 xor_srcs[count++] = sh->dev[i].page;
1879         }
1880
1881         init_async_submit(&submit, 0, NULL, NULL, NULL,
1882                           to_addr_conv(sh, percpu, 0));
1883         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1884                            &sh->ops.zero_sum_result, &submit);
1885
1886         atomic_inc(&sh->count);
1887         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1888         tx = async_trigger_callback(&submit);
1889 }
1890
1891 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1892 {
1893         struct page **srcs = to_addr_page(percpu, 0);
1894         struct async_submit_ctl submit;
1895         int count;
1896
1897         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1898                 (unsigned long long)sh->sector, checkp);
1899
1900         BUG_ON(sh->batch_head);
1901         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1902         if (!checkp)
1903                 srcs[count] = NULL;
1904
1905         atomic_inc(&sh->count);
1906         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1907                           sh, to_addr_conv(sh, percpu, 0));
1908         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1909                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1910 }
1911
1912 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1913 {
1914         int overlap_clear = 0, i, disks = sh->disks;
1915         struct dma_async_tx_descriptor *tx = NULL;
1916         struct r5conf *conf = sh->raid_conf;
1917         int level = conf->level;
1918         struct raid5_percpu *percpu;
1919         unsigned long cpu;
1920
1921         cpu = get_cpu();
1922         percpu = per_cpu_ptr(conf->percpu, cpu);
1923         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1924                 ops_run_biofill(sh);
1925                 overlap_clear++;
1926         }
1927
1928         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1929                 if (level < 6)
1930                         tx = ops_run_compute5(sh, percpu);
1931                 else {
1932                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1933                                 tx = ops_run_compute6_1(sh, percpu);
1934                         else
1935                                 tx = ops_run_compute6_2(sh, percpu);
1936                 }
1937                 /* terminate the chain if reconstruct is not set to be run */
1938                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1939                         async_tx_ack(tx);
1940         }
1941
1942         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1943                 if (level < 6)
1944                         tx = ops_run_prexor5(sh, percpu, tx);
1945                 else
1946                         tx = ops_run_prexor6(sh, percpu, tx);
1947         }
1948
1949         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1950                 tx = ops_run_biodrain(sh, tx);
1951                 overlap_clear++;
1952         }
1953
1954         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1955                 if (level < 6)
1956                         ops_run_reconstruct5(sh, percpu, tx);
1957                 else
1958                         ops_run_reconstruct6(sh, percpu, tx);
1959         }
1960
1961         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1962                 if (sh->check_state == check_state_run)
1963                         ops_run_check_p(sh, percpu);
1964                 else if (sh->check_state == check_state_run_q)
1965                         ops_run_check_pq(sh, percpu, 0);
1966                 else if (sh->check_state == check_state_run_pq)
1967                         ops_run_check_pq(sh, percpu, 1);
1968                 else
1969                         BUG();
1970         }
1971
1972         if (overlap_clear && !sh->batch_head)
1973                 for (i = disks; i--; ) {
1974                         struct r5dev *dev = &sh->dev[i];
1975                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1976                                 wake_up(&sh->raid_conf->wait_for_overlap);
1977                 }
1978         put_cpu();
1979 }
1980
1981 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1982 {
1983         struct stripe_head *sh;
1984
1985         sh = kmem_cache_zalloc(sc, gfp);
1986         if (sh) {
1987                 spin_lock_init(&sh->stripe_lock);
1988                 spin_lock_init(&sh->batch_lock);
1989                 INIT_LIST_HEAD(&sh->batch_list);
1990                 INIT_LIST_HEAD(&sh->lru);
1991                 atomic_set(&sh->count, 1);
1992         }
1993         return sh;
1994 }
1995 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1996 {
1997         struct stripe_head *sh;
1998
1999         sh = alloc_stripe(conf->slab_cache, gfp);
2000         if (!sh)
2001                 return 0;
2002
2003         sh->raid_conf = conf;
2004
2005         if (grow_buffers(sh, gfp)) {
2006                 shrink_buffers(sh);
2007                 kmem_cache_free(conf->slab_cache, sh);
2008                 return 0;
2009         }
2010         sh->hash_lock_index =
2011                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2012         /* we just created an active stripe so... */
2013         atomic_inc(&conf->active_stripes);
2014
2015         raid5_release_stripe(sh);
2016         conf->max_nr_stripes++;
2017         return 1;
2018 }
2019
2020 static int grow_stripes(struct r5conf *conf, int num)
2021 {
2022         struct kmem_cache *sc;
2023         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2024
2025         if (conf->mddev->gendisk)
2026                 sprintf(conf->cache_name[0],
2027                         "raid%d-%s", conf->level, mdname(conf->mddev));
2028         else
2029                 sprintf(conf->cache_name[0],
2030                         "raid%d-%p", conf->level, conf->mddev);
2031         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2032
2033         conf->active_name = 0;
2034         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2035                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2036                                0, 0, NULL);
2037         if (!sc)
2038                 return 1;
2039         conf->slab_cache = sc;
2040         conf->pool_size = devs;
2041         while (num--)
2042                 if (!grow_one_stripe(conf, GFP_KERNEL))
2043                         return 1;
2044
2045         return 0;
2046 }
2047
2048 /**
2049  * scribble_len - return the required size of the scribble region
2050  * @num - total number of disks in the array
2051  *
2052  * The size must be enough to contain:
2053  * 1/ a struct page pointer for each device in the array +2
2054  * 2/ room to convert each entry in (1) to its corresponding dma
2055  *    (dma_map_page()) or page (page_address()) address.
2056  *
2057  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2058  * calculate over all devices (not just the data blocks), using zeros in place
2059  * of the P and Q blocks.
2060  */
2061 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2062 {
2063         struct flex_array *ret;
2064         size_t len;
2065
2066         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2067         ret = flex_array_alloc(len, cnt, flags);
2068         if (!ret)
2069                 return NULL;
2070         /* always prealloc all elements, so no locking is required */
2071         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2072                 flex_array_free(ret);
2073                 return NULL;
2074         }
2075         return ret;
2076 }
2077
2078 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2079 {
2080         unsigned long cpu;
2081         int err = 0;
2082
2083         /*
2084          * Never shrink. And mddev_suspend() could deadlock if this is called
2085          * from raid5d. In that case, scribble_disks and scribble_sectors
2086          * should equal to new_disks and new_sectors
2087          */
2088         if (conf->scribble_disks >= new_disks &&
2089             conf->scribble_sectors >= new_sectors)
2090                 return 0;
2091         mddev_suspend(conf->mddev);
2092         get_online_cpus();
2093         for_each_present_cpu(cpu) {
2094                 struct raid5_percpu *percpu;
2095                 struct flex_array *scribble;
2096
2097                 percpu = per_cpu_ptr(conf->percpu, cpu);
2098                 scribble = scribble_alloc(new_disks,
2099                                           new_sectors / STRIPE_SECTORS,
2100                                           GFP_NOIO);
2101
2102                 if (scribble) {
2103                         flex_array_free(percpu->scribble);
2104                         percpu->scribble = scribble;
2105                 } else {
2106                         err = -ENOMEM;
2107                         break;
2108                 }
2109         }
2110         put_online_cpus();
2111         mddev_resume(conf->mddev);
2112         if (!err) {
2113                 conf->scribble_disks = new_disks;
2114                 conf->scribble_sectors = new_sectors;
2115         }
2116         return err;
2117 }
2118
2119 static int resize_stripes(struct r5conf *conf, int newsize)
2120 {
2121         /* Make all the stripes able to hold 'newsize' devices.
2122          * New slots in each stripe get 'page' set to a new page.
2123          *
2124          * This happens in stages:
2125          * 1/ create a new kmem_cache and allocate the required number of
2126          *    stripe_heads.
2127          * 2/ gather all the old stripe_heads and transfer the pages across
2128          *    to the new stripe_heads.  This will have the side effect of
2129          *    freezing the array as once all stripe_heads have been collected,
2130          *    no IO will be possible.  Old stripe heads are freed once their
2131          *    pages have been transferred over, and the old kmem_cache is
2132          *    freed when all stripes are done.
2133          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2134          *    we simple return a failre status - no need to clean anything up.
2135          * 4/ allocate new pages for the new slots in the new stripe_heads.
2136          *    If this fails, we don't bother trying the shrink the
2137          *    stripe_heads down again, we just leave them as they are.
2138          *    As each stripe_head is processed the new one is released into
2139          *    active service.
2140          *
2141          * Once step2 is started, we cannot afford to wait for a write,
2142          * so we use GFP_NOIO allocations.
2143          */
2144         struct stripe_head *osh, *nsh;
2145         LIST_HEAD(newstripes);
2146         struct disk_info *ndisks;
2147         int err;
2148         struct kmem_cache *sc;
2149         int i;
2150         int hash, cnt;
2151
2152         if (newsize <= conf->pool_size)
2153                 return 0; /* never bother to shrink */
2154
2155         err = md_allow_write(conf->mddev);
2156         if (err)
2157                 return err;
2158
2159         /* Step 1 */
2160         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2161                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2162                                0, 0, NULL);
2163         if (!sc)
2164                 return -ENOMEM;
2165
2166         /* Need to ensure auto-resizing doesn't interfere */
2167         mutex_lock(&conf->cache_size_mutex);
2168
2169         for (i = conf->max_nr_stripes; i; i--) {
2170                 nsh = alloc_stripe(sc, GFP_KERNEL);
2171                 if (!nsh)
2172                         break;
2173
2174                 nsh->raid_conf = conf;
2175                 list_add(&nsh->lru, &newstripes);
2176         }
2177         if (i) {
2178                 /* didn't get enough, give up */
2179                 while (!list_empty(&newstripes)) {
2180                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2181                         list_del(&nsh->lru);
2182                         kmem_cache_free(sc, nsh);
2183                 }
2184                 kmem_cache_destroy(sc);
2185                 mutex_unlock(&conf->cache_size_mutex);
2186                 return -ENOMEM;
2187         }
2188         /* Step 2 - Must use GFP_NOIO now.
2189          * OK, we have enough stripes, start collecting inactive
2190          * stripes and copying them over
2191          */
2192         hash = 0;
2193         cnt = 0;
2194         list_for_each_entry(nsh, &newstripes, lru) {
2195                 lock_device_hash_lock(conf, hash);
2196                 wait_event_cmd(conf->wait_for_stripe,
2197                                     !list_empty(conf->inactive_list + hash),
2198                                     unlock_device_hash_lock(conf, hash),
2199                                     lock_device_hash_lock(conf, hash));
2200                 osh = get_free_stripe(conf, hash);
2201                 unlock_device_hash_lock(conf, hash);
2202
2203                 for(i=0; i<conf->pool_size; i++) {
2204                         nsh->dev[i].page = osh->dev[i].page;
2205                         nsh->dev[i].orig_page = osh->dev[i].page;
2206                 }
2207                 nsh->hash_lock_index = hash;
2208                 kmem_cache_free(conf->slab_cache, osh);
2209                 cnt++;
2210                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2211                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2212                         hash++;
2213                         cnt = 0;
2214                 }
2215         }
2216         kmem_cache_destroy(conf->slab_cache);
2217
2218         /* Step 3.
2219          * At this point, we are holding all the stripes so the array
2220          * is completely stalled, so now is a good time to resize
2221          * conf->disks and the scribble region
2222          */
2223         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2224         if (ndisks) {
2225                 for (i=0; i<conf->raid_disks; i++)
2226                         ndisks[i] = conf->disks[i];
2227                 kfree(conf->disks);
2228                 conf->disks = ndisks;
2229         } else
2230                 err = -ENOMEM;
2231
2232         mutex_unlock(&conf->cache_size_mutex);
2233         /* Step 4, return new stripes to service */
2234         while(!list_empty(&newstripes)) {
2235                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2236                 list_del_init(&nsh->lru);
2237
2238                 for (i=conf->raid_disks; i < newsize; i++)
2239                         if (nsh->dev[i].page == NULL) {
2240                                 struct page *p = alloc_page(GFP_NOIO);
2241                                 nsh->dev[i].page = p;
2242                                 nsh->dev[i].orig_page = p;
2243                                 if (!p)
2244                                         err = -ENOMEM;
2245                         }
2246                 raid5_release_stripe(nsh);
2247         }
2248         /* critical section pass, GFP_NOIO no longer needed */
2249
2250         conf->slab_cache = sc;
2251         conf->active_name = 1-conf->active_name;
2252         if (!err)
2253                 conf->pool_size = newsize;
2254         return err;
2255 }
2256
2257 static int drop_one_stripe(struct r5conf *conf)
2258 {
2259         struct stripe_head *sh;
2260         int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2261
2262         spin_lock_irq(conf->hash_locks + hash);
2263         sh = get_free_stripe(conf, hash);
2264         spin_unlock_irq(conf->hash_locks + hash);
2265         if (!sh)
2266                 return 0;
2267         BUG_ON(atomic_read(&sh->count));
2268         shrink_buffers(sh);
2269         kmem_cache_free(conf->slab_cache, sh);
2270         atomic_dec(&conf->active_stripes);
2271         conf->max_nr_stripes--;
2272         return 1;
2273 }
2274
2275 static void shrink_stripes(struct r5conf *conf)
2276 {
2277         while (conf->max_nr_stripes &&
2278                drop_one_stripe(conf))
2279                 ;
2280
2281         kmem_cache_destroy(conf->slab_cache);
2282         conf->slab_cache = NULL;
2283 }
2284
2285 static void raid5_end_read_request(struct bio * bi)
2286 {
2287         struct stripe_head *sh = bi->bi_private;
2288         struct r5conf *conf = sh->raid_conf;
2289         int disks = sh->disks, i;
2290         char b[BDEVNAME_SIZE];
2291         struct md_rdev *rdev = NULL;
2292         sector_t s;
2293
2294         for (i=0 ; i<disks; i++)
2295                 if (bi == &sh->dev[i].req)
2296                         break;
2297
2298         pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2299                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2300                 bi->bi_error);
2301         if (i == disks) {
2302                 BUG();
2303                 return;
2304         }
2305         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2306                 /* If replacement finished while this request was outstanding,
2307                  * 'replacement' might be NULL already.
2308                  * In that case it moved down to 'rdev'.
2309                  * rdev is not removed until all requests are finished.
2310                  */
2311                 rdev = conf->disks[i].replacement;
2312         if (!rdev)
2313                 rdev = conf->disks[i].rdev;
2314
2315         if (use_new_offset(conf, sh))
2316                 s = sh->sector + rdev->new_data_offset;
2317         else
2318                 s = sh->sector + rdev->data_offset;
2319         if (!bi->bi_error) {
2320                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2321                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2322                         /* Note that this cannot happen on a
2323                          * replacement device.  We just fail those on
2324                          * any error
2325                          */
2326                         printk_ratelimited(
2327                                 KERN_INFO
2328                                 "md/raid:%s: read error corrected"
2329                                 " (%lu sectors at %llu on %s)\n",
2330                                 mdname(conf->mddev), STRIPE_SECTORS,
2331                                 (unsigned long long)s,
2332                                 bdevname(rdev->bdev, b));
2333                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2334                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2335                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2336                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2337                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2338
2339                 if (atomic_read(&rdev->read_errors))
2340                         atomic_set(&rdev->read_errors, 0);
2341         } else {
2342                 const char *bdn = bdevname(rdev->bdev, b);
2343                 int retry = 0;
2344                 int set_bad = 0;
2345
2346                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2347                 atomic_inc(&rdev->read_errors);
2348                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2349                         printk_ratelimited(
2350                                 KERN_WARNING
2351                                 "md/raid:%s: read error on replacement device "
2352                                 "(sector %llu on %s).\n",
2353                                 mdname(conf->mddev),
2354                                 (unsigned long long)s,
2355                                 bdn);
2356                 else if (conf->mddev->degraded >= conf->max_degraded) {
2357                         set_bad = 1;
2358                         printk_ratelimited(
2359                                 KERN_WARNING
2360                                 "md/raid:%s: read error not correctable "
2361                                 "(sector %llu on %s).\n",
2362                                 mdname(conf->mddev),
2363                                 (unsigned long long)s,
2364                                 bdn);
2365                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2366                         /* Oh, no!!! */
2367                         set_bad = 1;
2368                         printk_ratelimited(
2369                                 KERN_WARNING
2370                                 "md/raid:%s: read error NOT corrected!! "
2371                                 "(sector %llu on %s).\n",
2372                                 mdname(conf->mddev),
2373                                 (unsigned long long)s,
2374                                 bdn);
2375                 } else if (atomic_read(&rdev->read_errors)
2376                          > conf->max_nr_stripes)
2377                         printk(KERN_WARNING
2378                                "md/raid:%s: Too many read errors, failing device %s.\n",
2379                                mdname(conf->mddev), bdn);
2380                 else
2381                         retry = 1;
2382                 if (set_bad && test_bit(In_sync, &rdev->flags)
2383                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2384                         retry = 1;
2385                 if (retry)
2386                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2387                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2388                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2389                         } else
2390                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2391                 else {
2392                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2393                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2394                         if (!(set_bad
2395                               && test_bit(In_sync, &rdev->flags)
2396                               && rdev_set_badblocks(
2397                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2398                                 md_error(conf->mddev, rdev);
2399                 }
2400         }
2401         rdev_dec_pending(rdev, conf->mddev);
2402         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2403         set_bit(STRIPE_HANDLE, &sh->state);
2404         raid5_release_stripe(sh);
2405 }
2406
2407 static void raid5_end_write_request(struct bio *bi)
2408 {
2409         struct stripe_head *sh = bi->bi_private;
2410         struct r5conf *conf = sh->raid_conf;
2411         int disks = sh->disks, i;
2412         struct md_rdev *uninitialized_var(rdev);
2413         sector_t first_bad;
2414         int bad_sectors;
2415         int replacement = 0;
2416
2417         for (i = 0 ; i < disks; i++) {
2418                 if (bi == &sh->dev[i].req) {
2419                         rdev = conf->disks[i].rdev;
2420                         break;
2421                 }
2422                 if (bi == &sh->dev[i].rreq) {
2423                         rdev = conf->disks[i].replacement;
2424                         if (rdev)
2425                                 replacement = 1;
2426                         else
2427                                 /* rdev was removed and 'replacement'
2428                                  * replaced it.  rdev is not removed
2429                                  * until all requests are finished.
2430                                  */
2431                                 rdev = conf->disks[i].rdev;
2432                         break;
2433                 }
2434         }
2435         pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2436                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2437                 bi->bi_error);
2438         if (i == disks) {
2439                 BUG();
2440                 return;
2441         }
2442
2443         if (replacement) {
2444                 if (bi->bi_error)
2445                         md_error(conf->mddev, rdev);
2446                 else if (is_badblock(rdev, sh->sector,
2447                                      STRIPE_SECTORS,
2448                                      &first_bad, &bad_sectors))
2449                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2450         } else {
2451                 if (bi->bi_error) {
2452                         set_bit(STRIPE_DEGRADED, &sh->state);
2453                         set_bit(WriteErrorSeen, &rdev->flags);
2454                         set_bit(R5_WriteError, &sh->dev[i].flags);
2455                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2456                                 set_bit(MD_RECOVERY_NEEDED,
2457                                         &rdev->mddev->recovery);
2458                 } else if (is_badblock(rdev, sh->sector,
2459                                        STRIPE_SECTORS,
2460                                        &first_bad, &bad_sectors)) {
2461                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2462                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2463                                 /* That was a successful write so make
2464                                  * sure it looks like we already did
2465                                  * a re-write.
2466                                  */
2467                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2468                 }
2469         }
2470         rdev_dec_pending(rdev, conf->mddev);
2471
2472         if (sh->batch_head && bi->bi_error && !replacement)
2473                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2474
2475         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2476                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2477         set_bit(STRIPE_HANDLE, &sh->state);
2478         raid5_release_stripe(sh);
2479
2480         if (sh->batch_head && sh != sh->batch_head)
2481                 raid5_release_stripe(sh->batch_head);
2482 }
2483
2484 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2485 {
2486         struct r5dev *dev = &sh->dev[i];
2487
2488         bio_init(&dev->req);
2489         dev->req.bi_io_vec = &dev->vec;
2490         dev->req.bi_max_vecs = 1;
2491         dev->req.bi_private = sh;
2492
2493         bio_init(&dev->rreq);
2494         dev->rreq.bi_io_vec = &dev->rvec;
2495         dev->rreq.bi_max_vecs = 1;
2496         dev->rreq.bi_private = sh;
2497
2498         dev->flags = 0;
2499         dev->sector = raid5_compute_blocknr(sh, i, previous);
2500 }
2501
2502 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2503 {
2504         char b[BDEVNAME_SIZE];
2505         struct r5conf *conf = mddev->private;
2506         unsigned long flags;
2507         pr_debug("raid456: error called\n");
2508
2509         spin_lock_irqsave(&conf->device_lock, flags);
2510         clear_bit(In_sync, &rdev->flags);
2511         mddev->degraded = calc_degraded(conf);
2512         spin_unlock_irqrestore(&conf->device_lock, flags);
2513         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2514
2515         set_bit(Blocked, &rdev->flags);
2516         set_bit(Faulty, &rdev->flags);
2517         set_mask_bits(&mddev->flags, 0,
2518                       BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
2519         printk(KERN_ALERT
2520                "md/raid:%s: Disk failure on %s, disabling device.\n"
2521                "md/raid:%s: Operation continuing on %d devices.\n",
2522                mdname(mddev),
2523                bdevname(rdev->bdev, b),
2524                mdname(mddev),
2525                conf->raid_disks - mddev->degraded);
2526 }
2527
2528 /*
2529  * Input: a 'big' sector number,
2530  * Output: index of the data and parity disk, and the sector # in them.
2531  */
2532 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2533                               int previous, int *dd_idx,
2534                               struct stripe_head *sh)
2535 {
2536         sector_t stripe, stripe2;
2537         sector_t chunk_number;
2538         unsigned int chunk_offset;
2539         int pd_idx, qd_idx;
2540         int ddf_layout = 0;
2541         sector_t new_sector;
2542         int algorithm = previous ? conf->prev_algo
2543                                  : conf->algorithm;
2544         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2545                                          : conf->chunk_sectors;
2546         int raid_disks = previous ? conf->previous_raid_disks
2547                                   : conf->raid_disks;
2548         int data_disks = raid_disks - conf->max_degraded;
2549
2550         /* First compute the information on this sector */
2551
2552         /*
2553          * Compute the chunk number and the sector offset inside the chunk
2554          */
2555         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2556         chunk_number = r_sector;
2557
2558         /*
2559          * Compute the stripe number
2560          */
2561         stripe = chunk_number;
2562         *dd_idx = sector_div(stripe, data_disks);
2563         stripe2 = stripe;
2564         /*
2565          * Select the parity disk based on the user selected algorithm.
2566          */
2567         pd_idx = qd_idx = -1;
2568         switch(conf->level) {
2569         case 4:
2570                 pd_idx = data_disks;
2571                 break;
2572         case 5:
2573                 switch (algorithm) {
2574                 case ALGORITHM_LEFT_ASYMMETRIC:
2575                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2576                         if (*dd_idx >= pd_idx)
2577                                 (*dd_idx)++;
2578                         break;
2579                 case ALGORITHM_RIGHT_ASYMMETRIC:
2580                         pd_idx = sector_div(stripe2, raid_disks);
2581                         if (*dd_idx >= pd_idx)
2582                                 (*dd_idx)++;
2583                         break;
2584                 case ALGORITHM_LEFT_SYMMETRIC:
2585                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2586                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2587                         break;
2588                 case ALGORITHM_RIGHT_SYMMETRIC:
2589                         pd_idx = sector_div(stripe2, raid_disks);
2590                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2591                         break;
2592                 case ALGORITHM_PARITY_0:
2593                         pd_idx = 0;
2594                         (*dd_idx)++;
2595                         break;
2596                 case ALGORITHM_PARITY_N:
2597                         pd_idx = data_disks;
2598                         break;
2599                 default:
2600                         BUG();
2601                 }
2602                 break;
2603         case 6:
2604
2605                 switch (algorithm) {
2606                 case ALGORITHM_LEFT_ASYMMETRIC:
2607                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2608                         qd_idx = pd_idx + 1;
2609                         if (pd_idx == raid_disks-1) {
2610                                 (*dd_idx)++;    /* Q D D D P */
2611                                 qd_idx = 0;
2612                         } else if (*dd_idx >= pd_idx)
2613                                 (*dd_idx) += 2; /* D D P Q D */
2614                         break;
2615                 case ALGORITHM_RIGHT_ASYMMETRIC:
2616                         pd_idx = sector_div(stripe2, raid_disks);
2617                         qd_idx = pd_idx + 1;
2618                         if (pd_idx == raid_disks-1) {
2619                                 (*dd_idx)++;    /* Q D D D P */
2620                                 qd_idx = 0;
2621                         } else if (*dd_idx >= pd_idx)
2622                                 (*dd_idx) += 2; /* D D P Q D */
2623                         break;
2624                 case ALGORITHM_LEFT_SYMMETRIC:
2625                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2626                         qd_idx = (pd_idx + 1) % raid_disks;
2627                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2628                         break;
2629                 case ALGORITHM_RIGHT_SYMMETRIC:
2630                         pd_idx = sector_div(stripe2, raid_disks);
2631                         qd_idx = (pd_idx + 1) % raid_disks;
2632                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2633                         break;
2634
2635                 case ALGORITHM_PARITY_0:
2636                         pd_idx = 0;
2637                         qd_idx = 1;
2638                         (*dd_idx) += 2;
2639                         break;
2640                 case ALGORITHM_PARITY_N:
2641                         pd_idx = data_disks;
2642                         qd_idx = data_disks + 1;
2643                         break;
2644
2645                 case ALGORITHM_ROTATING_ZERO_RESTART:
2646                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2647                          * of blocks for computing Q is different.
2648                          */
2649                         pd_idx = sector_div(stripe2, raid_disks);
2650                         qd_idx = pd_idx + 1;
2651                         if (pd_idx == raid_disks-1) {
2652                                 (*dd_idx)++;    /* Q D D D P */
2653                                 qd_idx = 0;
2654                         } else if (*dd_idx >= pd_idx)
2655                                 (*dd_idx) += 2; /* D D P Q D */
2656                         ddf_layout = 1;
2657                         break;
2658
2659                 case ALGORITHM_ROTATING_N_RESTART:
2660                         /* Same a left_asymmetric, by first stripe is
2661                          * D D D P Q  rather than
2662                          * Q D D D P
2663                          */
2664                         stripe2 += 1;
2665                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2666                         qd_idx = pd_idx + 1;
2667                         if (pd_idx == raid_disks-1) {
2668                                 (*dd_idx)++;    /* Q D D D P */
2669                                 qd_idx = 0;
2670                         } else if (*dd_idx >= pd_idx)
2671                                 (*dd_idx) += 2; /* D D P Q D */
2672                         ddf_layout = 1;
2673                         break;
2674
2675                 case ALGORITHM_ROTATING_N_CONTINUE:
2676                         /* Same as left_symmetric but Q is before P */
2677                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2678                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2679                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2680                         ddf_layout = 1;
2681                         break;
2682
2683                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2684                         /* RAID5 left_asymmetric, with Q on last device */
2685                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2686                         if (*dd_idx >= pd_idx)
2687                                 (*dd_idx)++;
2688                         qd_idx = raid_disks - 1;
2689                         break;
2690
2691                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2692                         pd_idx = sector_div(stripe2, raid_disks-1);
2693                         if (*dd_idx >= pd_idx)
2694                                 (*dd_idx)++;
2695                         qd_idx = raid_disks - 1;
2696                         break;
2697
2698                 case ALGORITHM_LEFT_SYMMETRIC_6:
2699                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2700                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2701                         qd_idx = raid_disks - 1;
2702                         break;
2703
2704                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2705                         pd_idx = sector_div(stripe2, raid_disks-1);
2706                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2707                         qd_idx = raid_disks - 1;
2708                         break;
2709
2710                 case ALGORITHM_PARITY_0_6:
2711                         pd_idx = 0;
2712                         (*dd_idx)++;
2713                         qd_idx = raid_disks - 1;
2714                         break;
2715
2716                 default:
2717                         BUG();
2718                 }
2719                 break;
2720         }
2721
2722         if (sh) {
2723                 sh->pd_idx = pd_idx;
2724                 sh->qd_idx = qd_idx;
2725                 sh->ddf_layout = ddf_layout;
2726         }
2727         /*
2728          * Finally, compute the new sector number
2729          */
2730         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2731         return new_sector;
2732 }
2733
2734 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2735 {
2736         struct r5conf *conf = sh->raid_conf;
2737         int raid_disks = sh->disks;
2738         int data_disks = raid_disks - conf->max_degraded;
2739         sector_t new_sector = sh->sector, check;
2740         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2741                                          : conf->chunk_sectors;
2742         int algorithm = previous ? conf->prev_algo
2743                                  : conf->algorithm;
2744         sector_t stripe;
2745         int chunk_offset;
2746         sector_t chunk_number;
2747         int dummy1, dd_idx = i;
2748         sector_t r_sector;
2749         struct stripe_head sh2;
2750
2751         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2752         stripe = new_sector;
2753
2754         if (i == sh->pd_idx)
2755                 return 0;
2756         switch(conf->level) {
2757         case 4: break;
2758         case 5:
2759                 switch (algorithm) {
2760                 case ALGORITHM_LEFT_ASYMMETRIC:
2761                 case ALGORITHM_RIGHT_ASYMMETRIC:
2762                         if (i > sh->pd_idx)
2763                                 i--;
2764                         break;
2765                 case ALGORITHM_LEFT_SYMMETRIC:
2766                 case ALGORITHM_RIGHT_SYMMETRIC:
2767                         if (i < sh->pd_idx)
2768                                 i += raid_disks;
2769                         i -= (sh->pd_idx + 1);
2770                         break;
2771                 case ALGORITHM_PARITY_0:
2772                         i -= 1;
2773                         break;
2774                 case ALGORITHM_PARITY_N:
2775                         break;
2776                 default:
2777                         BUG();
2778                 }
2779                 break;
2780         case 6:
2781                 if (i == sh->qd_idx)
2782                         return 0; /* It is the Q disk */
2783                 switch (algorithm) {
2784                 case ALGORITHM_LEFT_ASYMMETRIC:
2785                 case ALGORITHM_RIGHT_ASYMMETRIC:
2786                 case ALGORITHM_ROTATING_ZERO_RESTART:
2787                 case ALGORITHM_ROTATING_N_RESTART:
2788                         if (sh->pd_idx == raid_disks-1)
2789                                 i--;    /* Q D D D P */
2790                         else if (i > sh->pd_idx)
2791                                 i -= 2; /* D D P Q D */
2792                         break;
2793                 case ALGORITHM_LEFT_SYMMETRIC:
2794                 case ALGORITHM_RIGHT_SYMMETRIC:
2795                         if (sh->pd_idx == raid_disks-1)
2796                                 i--; /* Q D D D P */
2797                         else {
2798                                 /* D D P Q D */
2799                                 if (i < sh->pd_idx)
2800                                         i += raid_disks;
2801                                 i -= (sh->pd_idx + 2);
2802                         }
2803                         break;
2804                 case ALGORITHM_PARITY_0:
2805                         i -= 2;
2806                         break;
2807                 case ALGORITHM_PARITY_N:
2808                         break;
2809                 case ALGORITHM_ROTATING_N_CONTINUE:
2810                         /* Like left_symmetric, but P is before Q */
2811                         if (sh->pd_idx == 0)
2812                                 i--;    /* P D D D Q */
2813                         else {
2814                                 /* D D Q P D */
2815                                 if (i < sh->pd_idx)
2816                                         i += raid_disks;
2817                                 i -= (sh->pd_idx + 1);
2818                         }
2819                         break;
2820                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2821                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2822                         if (i > sh->pd_idx)
2823                                 i--;
2824                         break;
2825                 case ALGORITHM_LEFT_SYMMETRIC_6:
2826                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2827                         if (i < sh->pd_idx)
2828                                 i += data_disks + 1;
2829                         i -= (sh->pd_idx + 1);
2830                         break;
2831                 case ALGORITHM_PARITY_0_6:
2832                         i -= 1;
2833                         break;
2834                 default:
2835                         BUG();
2836                 }
2837                 break;
2838         }
2839
2840         chunk_number = stripe * data_disks + i;
2841         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2842
2843         check = raid5_compute_sector(conf, r_sector,
2844                                      previous, &dummy1, &sh2);
2845         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2846                 || sh2.qd_idx != sh->qd_idx) {
2847                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2848                        mdname(conf->mddev));
2849                 return 0;
2850         }
2851         return r_sector;
2852 }
2853
2854 static void
2855 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2856                          int rcw, int expand)
2857 {
2858         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2859         struct r5conf *conf = sh->raid_conf;
2860         int level = conf->level;
2861
2862         if (rcw) {
2863
2864                 for (i = disks; i--; ) {
2865                         struct r5dev *dev = &sh->dev[i];
2866
2867                         if (dev->towrite) {
2868                                 set_bit(R5_LOCKED, &dev->flags);
2869                                 set_bit(R5_Wantdrain, &dev->flags);
2870                                 if (!expand)
2871                                         clear_bit(R5_UPTODATE, &dev->flags);
2872                                 s->locked++;
2873                         }
2874                 }
2875                 /* if we are not expanding this is a proper write request, and
2876                  * there will be bios with new data to be drained into the
2877                  * stripe cache
2878                  */
2879                 if (!expand) {
2880                         if (!s->locked)
2881                                 /* False alarm, nothing to do */
2882                                 return;
2883                         sh->reconstruct_state = reconstruct_state_drain_run;
2884                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2885                 } else
2886                         sh->reconstruct_state = reconstruct_state_run;
2887
2888                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2889
2890                 if (s->locked + conf->max_degraded == disks)
2891                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2892                                 atomic_inc(&conf->pending_full_writes);
2893         } else {
2894                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2895                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2896                 BUG_ON(level == 6 &&
2897                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2898                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2899
2900                 for (i = disks; i--; ) {
2901                         struct r5dev *dev = &sh->dev[i];
2902                         if (i == pd_idx || i == qd_idx)
2903                                 continue;
2904
2905                         if (dev->towrite &&
2906                             (test_bit(R5_UPTODATE, &dev->flags) ||
2907                              test_bit(R5_Wantcompute, &dev->flags))) {
2908                                 set_bit(R5_Wantdrain, &dev->flags);
2909                                 set_bit(R5_LOCKED, &dev->flags);
2910                                 clear_bit(R5_UPTODATE, &dev->flags);
2911                                 s->locked++;
2912                         }
2913                 }
2914                 if (!s->locked)
2915                         /* False alarm - nothing to do */
2916                         return;
2917                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2918                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2919                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2920                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2921         }
2922
2923         /* keep the parity disk(s) locked while asynchronous operations
2924          * are in flight
2925          */
2926         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2927         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2928         s->locked++;
2929
2930         if (level == 6) {
2931                 int qd_idx = sh->qd_idx;
2932                 struct r5dev *dev = &sh->dev[qd_idx];
2933
2934                 set_bit(R5_LOCKED, &dev->flags);
2935                 clear_bit(R5_UPTODATE, &dev->flags);
2936                 s->locked++;
2937         }
2938
2939         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2940                 __func__, (unsigned long long)sh->sector,
2941                 s->locked, s->ops_request);
2942 }
2943
2944 /*
2945  * Each stripe/dev can have one or more bion attached.
2946  * toread/towrite point to the first in a chain.
2947  * The bi_next chain must be in order.
2948  */
2949 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2950                           int forwrite, int previous)
2951 {
2952         struct bio **bip;
2953         struct r5conf *conf = sh->raid_conf;
2954         int firstwrite=0;
2955
2956         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2957                 (unsigned long long)bi->bi_iter.bi_sector,
2958                 (unsigned long long)sh->sector);
2959
2960         /*
2961          * If several bio share a stripe. The bio bi_phys_segments acts as a
2962          * reference count to avoid race. The reference count should already be
2963          * increased before this function is called (for example, in
2964          * raid5_make_request()), so other bio sharing this stripe will not free the
2965          * stripe. If a stripe is owned by one stripe, the stripe lock will
2966          * protect it.
2967          */
2968         spin_lock_irq(&sh->stripe_lock);
2969         /* Don't allow new IO added to stripes in batch list */
2970         if (sh->batch_head)
2971                 goto overlap;
2972         if (forwrite) {
2973                 bip = &sh->dev[dd_idx].towrite;
2974                 if (*bip == NULL)
2975                         firstwrite = 1;
2976         } else
2977                 bip = &sh->dev[dd_idx].toread;
2978         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2979                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2980                         goto overlap;
2981                 bip = & (*bip)->bi_next;
2982         }
2983         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2984                 goto overlap;
2985
2986         if (!forwrite || previous)
2987                 clear_bit(STRIPE_BATCH_READY, &sh->state);
2988
2989         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2990         if (*bip)
2991                 bi->bi_next = *bip;
2992         *bip = bi;
2993         raid5_inc_bi_active_stripes(bi);
2994
2995         if (forwrite) {
2996                 /* check if page is covered */
2997                 sector_t sector = sh->dev[dd_idx].sector;
2998                 for (bi=sh->dev[dd_idx].towrite;
2999                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3000                              bi && bi->bi_iter.bi_sector <= sector;
3001                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3002                         if (bio_end_sector(bi) >= sector)
3003                                 sector = bio_end_sector(bi);
3004                 }
3005                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3006                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3007                                 sh->overwrite_disks++;
3008         }
3009
3010         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3011                 (unsigned long long)(*bip)->bi_iter.bi_sector,
3012                 (unsigned long long)sh->sector, dd_idx);
3013
3014         if (conf->mddev->bitmap && firstwrite) {
3015                 /* Cannot hold spinlock over bitmap_startwrite,
3016                  * but must ensure this isn't added to a batch until
3017                  * we have added to the bitmap and set bm_seq.
3018                  * So set STRIPE_BITMAP_PENDING to prevent
3019                  * batching.
3020                  * If multiple add_stripe_bio() calls race here they
3021                  * much all set STRIPE_BITMAP_PENDING.  So only the first one
3022                  * to complete "bitmap_startwrite" gets to set
3023                  * STRIPE_BIT_DELAY.  This is important as once a stripe
3024                  * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3025                  * any more.
3026                  */
3027                 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3028                 spin_unlock_irq(&sh->stripe_lock);
3029                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3030                                   STRIPE_SECTORS, 0);
3031                 spin_lock_irq(&sh->stripe_lock);
3032                 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3033                 if (!sh->batch_head) {
3034                         sh->bm_seq = conf->seq_flush+1;
3035                         set_bit(STRIPE_BIT_DELAY, &sh->state);
3036                 }
3037         }
3038         spin_unlock_irq(&sh->stripe_lock);
3039
3040         if (stripe_can_batch(sh))
3041                 stripe_add_to_batch_list(conf, sh);
3042         return 1;
3043
3044  overlap:
3045         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3046         spin_unlock_irq(&sh->stripe_lock);
3047         return 0;
3048 }
3049
3050 static void end_reshape(struct r5conf *conf);
3051
3052 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3053                             struct stripe_head *sh)
3054 {
3055         int sectors_per_chunk =
3056                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3057         int dd_idx;
3058         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3059         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3060
3061         raid5_compute_sector(conf,
3062                              stripe * (disks - conf->max_degraded)
3063                              *sectors_per_chunk + chunk_offset,
3064                              previous,
3065                              &dd_idx, sh);
3066 }
3067
3068 static void
3069 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3070                                 struct stripe_head_state *s, int disks,
3071                                 struct bio_list *return_bi)
3072 {
3073         int i;
3074         BUG_ON(sh->batch_head);
3075         for (i = disks; i--; ) {
3076                 struct bio *bi;
3077                 int bitmap_end = 0;
3078
3079                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3080                         struct md_rdev *rdev;
3081                         rcu_read_lock();
3082                         rdev = rcu_dereference(conf->disks[i].rdev);
3083                         if (rdev && test_bit(In_sync, &rdev->flags) &&
3084                             !test_bit(Faulty, &rdev->flags))
3085                                 atomic_inc(&rdev->nr_pending);
3086                         else
3087                                 rdev = NULL;
3088                         rcu_read_unlock();
3089                         if (rdev) {
3090                                 if (!rdev_set_badblocks(
3091                                             rdev,
3092                                             sh->sector,
3093                                             STRIPE_SECTORS, 0))
3094                                         md_error(conf->mddev, rdev);
3095                                 rdev_dec_pending(rdev, conf->mddev);
3096                         }
3097                 }
3098                 spin_lock_irq(&sh->stripe_lock);
3099                 /* fail all writes first */
3100                 bi = sh->dev[i].towrite;
3101                 sh->dev[i].towrite = NULL;
3102                 sh->overwrite_disks = 0;
3103                 spin_unlock_irq(&sh->stripe_lock);
3104                 if (bi)
3105                         bitmap_end = 1;
3106
3107                 r5l_stripe_write_finished(sh);
3108
3109                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3110                         wake_up(&conf->wait_for_overlap);
3111
3112                 while (bi && bi->bi_iter.bi_sector <
3113                         sh->dev[i].sector + STRIPE_SECTORS) {
3114                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3115
3116                         bi->bi_error = -EIO;
3117                         if (!raid5_dec_bi_active_stripes(bi)) {
3118                                 md_write_end(conf->mddev);
3119                                 bio_list_add(return_bi, bi);
3120                         }
3121                         bi = nextbi;
3122                 }
3123                 if (bitmap_end)
3124                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3125                                 STRIPE_SECTORS, 0, 0);
3126                 bitmap_end = 0;
3127                 /* and fail all 'written' */
3128                 bi = sh->dev[i].written;
3129                 sh->dev[i].written = NULL;
3130                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3131                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3132                         sh->dev[i].page = sh->dev[i].orig_page;
3133                 }
3134
3135                 if (bi) bitmap_end = 1;
3136                 while (bi && bi->bi_iter.bi_sector <
3137                        sh->dev[i].sector + STRIPE_SECTORS) {
3138                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3139
3140                         bi->bi_error = -EIO;
3141                         if (!raid5_dec_bi_active_stripes(bi)) {
3142                                 md_write_end(conf->mddev);
3143                                 bio_list_add(return_bi, bi);
3144                         }
3145                         bi = bi2;
3146                 }
3147
3148                 /* fail any reads if this device is non-operational and
3149                  * the data has not reached the cache yet.
3150                  */
3151                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3152                     s->failed > conf->max_degraded &&
3153                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3154                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3155                         spin_lock_irq(&sh->stripe_lock);
3156                         bi = sh->dev[i].toread;
3157                         sh->dev[i].toread = NULL;
3158                         spin_unlock_irq(&sh->stripe_lock);
3159                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3160                                 wake_up(&conf->wait_for_overlap);
3161                         if (bi)
3162                                 s->to_read--;
3163                         while (bi && bi->bi_iter.bi_sector <
3164                                sh->dev[i].sector + STRIPE_SECTORS) {
3165                                 struct bio *nextbi =
3166                                         r5_next_bio(bi, sh->dev[i].sector);
3167
3168                                 bi->bi_error = -EIO;
3169                                 if (!raid5_dec_bi_active_stripes(bi))
3170                                         bio_list_add(return_bi, bi);
3171                                 bi = nextbi;
3172                         }
3173                 }
3174                 if (bitmap_end)
3175                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3176                                         STRIPE_SECTORS, 0, 0);
3177                 /* If we were in the middle of a write the parity block might
3178                  * still be locked - so just clear all R5_LOCKED flags
3179                  */
3180                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3181         }
3182         s->to_write = 0;
3183         s->written = 0;
3184
3185         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3186                 if (atomic_dec_and_test(&conf->pending_full_writes))
3187                         md_wakeup_thread(conf->mddev->thread);
3188 }
3189
3190 static void
3191 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3192                    struct stripe_head_state *s)
3193 {
3194         int abort = 0;
3195         int i;
3196
3197         BUG_ON(sh->batch_head);
3198         clear_bit(STRIPE_SYNCING, &sh->state);
3199         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3200                 wake_up(&conf->wait_for_overlap);
3201         s->syncing = 0;
3202         s->replacing = 0;
3203         /* There is nothing more to do for sync/check/repair.
3204          * Don't even need to abort as that is handled elsewhere
3205          * if needed, and not always wanted e.g. if there is a known
3206          * bad block here.
3207          * For recover/replace we need to record a bad block on all
3208          * non-sync devices, or abort the recovery
3209          */
3210         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3211                 /* During recovery devices cannot be removed, so
3212                  * locking and refcounting of rdevs is not needed
3213                  */
3214                 rcu_read_lock();
3215                 for (i = 0; i < conf->raid_disks; i++) {
3216                         struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3217                         if (rdev
3218                             && !test_bit(Faulty, &rdev->flags)
3219                             && !test_bit(In_sync, &rdev->flags)
3220                             && !rdev_set_badblocks(rdev, sh->sector,
3221                                                    STRIPE_SECTORS, 0))
3222                                 abort = 1;
3223                         rdev = rcu_dereference(conf->disks[i].replacement);
3224                         if (rdev
3225                             && !test_bit(Faulty, &rdev->flags)
3226                             && !test_bit(In_sync, &rdev->flags)
3227                             && !rdev_set_badblocks(rdev, sh->sector,
3228                                                    STRIPE_SECTORS, 0))
3229                                 abort = 1;
3230                 }
3231                 rcu_read_unlock();
3232                 if (abort)
3233                         conf->recovery_disabled =
3234                                 conf->mddev->recovery_disabled;
3235         }
3236         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3237 }
3238
3239 static int want_replace(struct stripe_head *sh, int disk_idx)
3240 {
3241         struct md_rdev *rdev;
3242         int rv = 0;
3243
3244         rcu_read_lock();
3245         rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3246         if (rdev
3247             && !test_bit(Faulty, &rdev->flags)
3248             && !test_bit(In_sync, &rdev->flags)
3249             && (rdev->recovery_offset <= sh->sector
3250                 || rdev->mddev->recovery_cp <= sh->sector))
3251                 rv = 1;
3252         rcu_read_unlock();
3253         return rv;
3254 }
3255
3256 /* fetch_block - checks the given member device to see if its data needs
3257  * to be read or computed to satisfy a request.
3258  *
3259  * Returns 1 when no more member devices need to be checked, otherwise returns
3260  * 0 to tell the loop in handle_stripe_fill to continue
3261  */
3262
3263 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3264                            int disk_idx, int disks)
3265 {
3266         struct r5dev *dev = &sh->dev[disk_idx];
3267         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3268                                   &sh->dev[s->failed_num[1]] };
3269         int i;
3270
3271
3272         if (test_bit(R5_LOCKED, &dev->flags) ||
3273             test_bit(R5_UPTODATE, &dev->flags))
3274                 /* No point reading this as we already have it or have
3275                  * decided to get it.
3276                  */
3277                 return 0;
3278
3279         if (dev->toread ||
3280             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3281                 /* We need this block to directly satisfy a request */
3282                 return 1;
3283
3284         if (s->syncing || s->expanding ||
3285             (s->replacing && want_replace(sh, disk_idx)))
3286                 /* When syncing, or expanding we read everything.
3287                  * When replacing, we need the replaced block.
3288                  */
3289                 return 1;
3290
3291         if ((s->failed >= 1 && fdev[0]->toread) ||
3292             (s->failed >= 2 && fdev[1]->toread))
3293                 /* If we want to read from a failed device, then
3294                  * we need to actually read every other device.
3295                  */
3296                 return 1;
3297
3298         /* Sometimes neither read-modify-write nor reconstruct-write
3299          * cycles can work.  In those cases we read every block we
3300          * can.  Then the parity-update is certain to have enough to
3301          * work with.
3302          * This can only be a problem when we need to write something,
3303          * and some device has failed.  If either of those tests
3304          * fail we need look no further.
3305          */
3306         if (!s->failed || !s->to_write)
3307                 return 0;
3308
3309         if (test_bit(R5_Insync, &dev->flags) &&
3310             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3311                 /* Pre-reads at not permitted until after short delay
3312                  * to gather multiple requests.  However if this
3313                  * device is no Insync, the block could only be be computed
3314                  * and there is no need to delay that.
3315                  */
3316                 return 0;
3317
3318         for (i = 0; i < s->failed && i < 2; i++) {
3319                 if (fdev[i]->towrite &&
3320                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3321                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3322                         /* If we have a partial write to a failed
3323                          * device, then we will need to reconstruct
3324                          * the content of that device, so all other
3325                          * devices must be read.
3326                          */
3327                         return 1;
3328         }
3329
3330         /* If we are forced to do a reconstruct-write, either because
3331          * the current RAID6 implementation only supports that, or
3332          * or because parity cannot be trusted and we are currently
3333          * recovering it, there is extra need to be careful.
3334          * If one of the devices that we would need to read, because
3335          * it is not being overwritten (and maybe not written at all)
3336          * is missing/faulty, then we need to read everything we can.
3337          */
3338         if (sh->raid_conf->level != 6 &&
3339             sh->sector < sh->raid_conf->mddev->recovery_cp)
3340                 /* reconstruct-write isn't being forced */
3341                 return 0;
3342         for (i = 0; i < s->failed && i < 2; i++) {
3343                 if (s->failed_num[i] != sh->pd_idx &&
3344                     s->failed_num[i] != sh->qd_idx &&
3345                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3346                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3347                         return 1;
3348         }
3349
3350         return 0;
3351 }
3352
3353 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3354                        int disk_idx, int disks)
3355 {
3356         struct r5dev *dev = &sh->dev[disk_idx];
3357
3358         /* is the data in this block needed, and can we get it? */
3359         if (need_this_block(sh, s, disk_idx, disks)) {
3360                 /* we would like to get this block, possibly by computing it,
3361                  * otherwise read it if the backing disk is insync
3362                  */
3363                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3364                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3365                 BUG_ON(sh->batch_head);
3366                 if ((s->uptodate == disks - 1) &&
3367                     (s->failed && (disk_idx == s->failed_num[0] ||
3368                                    disk_idx == s->failed_num[1]))) {
3369                         /* have disk failed, and we're requested to fetch it;
3370                          * do compute it
3371                          */
3372                         pr_debug("Computing stripe %llu block %d\n",
3373                                (unsigned long long)sh->sector, disk_idx);
3374                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3375                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3376                         set_bit(R5_Wantcompute, &dev->flags);
3377                         sh->ops.target = disk_idx;
3378                         sh->ops.target2 = -1; /* no 2nd target */
3379                         s->req_compute = 1;
3380                         /* Careful: from this point on 'uptodate' is in the eye
3381                          * of raid_run_ops which services 'compute' operations
3382                          * before writes. R5_Wantcompute flags a block that will
3383                          * be R5_UPTODATE by the time it is needed for a
3384                          * subsequent operation.
3385                          */
3386                         s->uptodate++;
3387                         return 1;
3388                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3389                         /* Computing 2-failure is *very* expensive; only
3390                          * do it if failed >= 2
3391                          */
3392                         int other;
3393                         for (other = disks; other--; ) {
3394                                 if (other == disk_idx)
3395                                         continue;
3396                                 if (!test_bit(R5_UPTODATE,
3397                                       &sh->dev[other].flags))
3398                                         break;
3399                         }
3400                         BUG_ON(other < 0);
3401                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3402                                (unsigned long long)sh->sector,
3403                                disk_idx, other);
3404                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3405                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3406                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3407                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3408                         sh->ops.target = disk_idx;
3409                         sh->ops.target2 = other;
3410                         s->uptodate += 2;
3411                         s->req_compute = 1;
3412                         return 1;
3413                 } else if (test_bit(R5_Insync, &dev->flags)) {
3414                         set_bit(R5_LOCKED, &dev->flags);
3415                         set_bit(R5_Wantread, &dev->flags);
3416                         s->locked++;
3417                         pr_debug("Reading block %d (sync=%d)\n",
3418                                 disk_idx, s->syncing);
3419                 }
3420         }
3421
3422         return 0;
3423 }
3424
3425 /**
3426  * handle_stripe_fill - read or compute data to satisfy pending requests.
3427  */
3428 static void handle_stripe_fill(struct stripe_head *sh,
3429                                struct stripe_head_state *s,
3430                                int disks)
3431 {
3432         int i;
3433
3434         /* look for blocks to read/compute, skip this if a compute
3435          * is already in flight, or if the stripe contents are in the
3436          * midst of changing due to a write
3437          */
3438         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3439             !sh->reconstruct_state)
3440                 for (i = disks; i--; )
3441                         if (fetch_block(sh, s, i, disks))
3442                                 break;
3443         set_bit(STRIPE_HANDLE, &sh->state);
3444 }
3445
3446 static void break_stripe_batch_list(struct stripe_head *head_sh,
3447                                     unsigned long handle_flags);
3448 /* handle_stripe_clean_event
3449  * any written block on an uptodate or failed drive can be returned.
3450  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3451  * never LOCKED, so we don't need to test 'failed' directly.
3452  */
3453 static void handle_stripe_clean_event(struct r5conf *conf,
3454         struct stripe_head *sh, int disks, struct bio_list *return_bi)
3455 {
3456         int i;
3457         struct r5dev *dev;
3458         int discard_pending = 0;
3459         struct stripe_head *head_sh = sh;
3460         bool do_endio = false;
3461
3462         for (i = disks; i--; )
3463                 if (sh->dev[i].written) {
3464                         dev = &sh->dev[i];
3465                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3466                             (test_bit(R5_UPTODATE, &dev->flags) ||
3467                              test_bit(R5_Discard, &dev->flags) ||
3468                              test_bit(R5_SkipCopy, &dev->flags))) {
3469                                 /* We can return any write requests */
3470                                 struct bio *wbi, *wbi2;
3471                                 pr_debug("Return write for disc %d\n", i);
3472                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3473                                         clear_bit(R5_UPTODATE, &dev->flags);
3474                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3475                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3476                                 }
3477                                 do_endio = true;
3478
3479 returnbi:
3480                                 dev->page = dev->orig_page;
3481                                 wbi = dev->written;
3482                                 dev->written = NULL;
3483                                 while (wbi && wbi->bi_iter.bi_sector <
3484                                         dev->sector + STRIPE_SECTORS) {
3485                                         wbi2 = r5_next_bio(wbi, dev->sector);
3486                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3487                                                 md_write_end(conf->mddev);
3488                                                 bio_list_add(return_bi, wbi);
3489                                         }
3490                                         wbi = wbi2;
3491                                 }
3492                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3493                                                 STRIPE_SECTORS,
3494                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3495                                                 0);
3496                                 if (head_sh->batch_head) {
3497                                         sh = list_first_entry(&sh->batch_list,
3498                                                               struct stripe_head,
3499                                                               batch_list);
3500                                         if (sh != head_sh) {
3501                                                 dev = &sh->dev[i];
3502                                                 goto returnbi;
3503                                         }
3504                                 }
3505                                 sh = head_sh;
3506                                 dev = &sh->dev[i];
3507                         } else if (test_bit(R5_Discard, &dev->flags))
3508                                 discard_pending = 1;
3509                 }
3510
3511         r5l_stripe_write_finished(sh);
3512
3513         if (!discard_pending &&
3514             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3515                 int hash;
3516                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3517                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3518                 if (sh->qd_idx >= 0) {
3519                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3520                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3521                 }
3522                 /* now that discard is done we can proceed with any sync */
3523                 clear_bit(STRIPE_DISCARD, &sh->state);
3524                 /*
3525                  * SCSI discard will change some bio fields and the stripe has
3526                  * no updated data, so remove it from hash list and the stripe
3527                  * will be reinitialized
3528                  */
3529 unhash:
3530                 hash = sh->hash_lock_index;
3531                 spin_lock_irq(conf->hash_locks + hash);
3532                 remove_hash(sh);
3533                 spin_unlock_irq(conf->hash_locks + hash);
3534                 if (head_sh->batch_head) {
3535                         sh = list_first_entry(&sh->batch_list,
3536                                               struct stripe_head, batch_list);
3537                         if (sh != head_sh)
3538                                         goto unhash;
3539                 }
3540                 sh = head_sh;
3541
3542                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3543                         set_bit(STRIPE_HANDLE, &sh->state);
3544
3545         }
3546
3547         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3548                 if (atomic_dec_and_test(&conf->pending_full_writes))
3549                         md_wakeup_thread(conf->mddev->thread);
3550
3551         if (head_sh->batch_head && do_endio)
3552                 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3553 }
3554
3555 static void handle_stripe_dirtying(struct r5conf *conf,
3556                                    struct stripe_head *sh,
3557                                    struct stripe_head_state *s,
3558                                    int disks)
3559 {
3560         int rmw = 0, rcw = 0, i;
3561         sector_t recovery_cp = conf->mddev->recovery_cp;
3562
3563         /* Check whether resync is now happening or should start.
3564          * If yes, then the array is dirty (after unclean shutdown or
3565          * initial creation), so parity in some stripes might be inconsistent.
3566          * In this case, we need to always do reconstruct-write, to ensure
3567          * that in case of drive failure or read-error correction, we
3568          * generate correct data from the parity.
3569          */
3570         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3571             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3572              s->failed == 0)) {
3573                 /* Calculate the real rcw later - for now make it
3574                  * look like rcw is cheaper
3575                  */
3576                 rcw = 1; rmw = 2;
3577                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3578                          conf->rmw_level, (unsigned long long)recovery_cp,
3579                          (unsigned long long)sh->sector);
3580         } else for (i = disks; i--; ) {
3581                 /* would I have to read this buffer for read_modify_write */
3582                 struct r5dev *dev = &sh->dev[i];
3583                 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3584                     !test_bit(R5_LOCKED, &dev->flags) &&
3585                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3586                       test_bit(R5_Wantcompute, &dev->flags))) {
3587                         if (test_bit(R5_Insync, &dev->flags))
3588                                 rmw++;
3589                         else
3590                                 rmw += 2*disks;  /* cannot read it */
3591                 }
3592                 /* Would I have to read this buffer for reconstruct_write */
3593                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3594                     i != sh->pd_idx && i != sh->qd_idx &&
3595                     !test_bit(R5_LOCKED, &dev->flags) &&
3596                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3597                     test_bit(R5_Wantcompute, &dev->flags))) {
3598                         if (test_bit(R5_Insync, &dev->flags))
3599                                 rcw++;
3600                         else
3601                                 rcw += 2*disks;
3602                 }
3603         }
3604         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3605                 (unsigned long long)sh->sector, rmw, rcw);
3606         set_bit(STRIPE_HANDLE, &sh->state);
3607         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3608                 /* prefer read-modify-write, but need to get some data */
3609                 if (conf->mddev->queue)
3610                         blk_add_trace_msg(conf->mddev->queue,
3611                                           "raid5 rmw %llu %d",
3612                                           (unsigned long long)sh->sector, rmw);
3613                 for (i = disks; i--; ) {
3614                         struct r5dev *dev = &sh->dev[i];
3615                         if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3616                             !test_bit(R5_LOCKED, &dev->flags) &&
3617                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3618                             test_bit(R5_Wantcompute, &dev->flags)) &&
3619                             test_bit(R5_Insync, &dev->flags)) {
3620                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3621                                              &sh->state)) {
3622                                         pr_debug("Read_old block %d for r-m-w\n",
3623                                                  i);
3624                                         set_bit(R5_LOCKED, &dev->flags);
3625                                         set_bit(R5_Wantread, &dev->flags);
3626                                         s->locked++;
3627                                 } else {
3628                                         set_bit(STRIPE_DELAYED, &sh->state);
3629                                         set_bit(STRIPE_HANDLE, &sh->state);
3630                                 }
3631                         }
3632                 }
3633         }
3634         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3635                 /* want reconstruct write, but need to get some data */
3636                 int qread =0;
3637                 rcw = 0;
3638                 for (i = disks; i--; ) {
3639                         struct r5dev *dev = &sh->dev[i];
3640                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3641                             i != sh->pd_idx && i != sh->qd_idx &&
3642                             !test_bit(R5_LOCKED, &dev->flags) &&
3643                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3644                               test_bit(R5_Wantcompute, &dev->flags))) {
3645                                 rcw++;
3646                                 if (test_bit(R5_Insync, &dev->flags) &&
3647                                     test_bit(STRIPE_PREREAD_ACTIVE,
3648                                              &sh->state)) {
3649                                         pr_debug("Read_old block "
3650                                                 "%d for Reconstruct\n", i);
3651                                         set_bit(R5_LOCKED, &dev->flags);
3652                                         set_bit(R5_Wantread, &dev->flags);
3653                                         s->locked++;
3654                                         qread++;
3655                                 } else {
3656                                         set_bit(STRIPE_DELAYED, &sh->state);
3657                                         set_bit(STRIPE_HANDLE, &sh->state);
3658                                 }
3659                         }
3660                 }
3661                 if (rcw && conf->mddev->queue)
3662                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3663                                           (unsigned long long)sh->sector,
3664                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3665         }
3666
3667         if (rcw > disks && rmw > disks &&
3668             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3669                 set_bit(STRIPE_DELAYED, &sh->state);
3670
3671         /* now if nothing is locked, and if we have enough data,
3672          * we can start a write request
3673          */
3674         /* since handle_stripe can be called at any time we need to handle the
3675          * case where a compute block operation has been submitted and then a
3676          * subsequent call wants to start a write request.  raid_run_ops only
3677          * handles the case where compute block and reconstruct are requested
3678          * simultaneously.  If this is not the case then new writes need to be
3679          * held off until the compute completes.
3680          */
3681         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3682             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3683             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3684                 schedule_reconstruction(sh, s, rcw == 0, 0);
3685 }
3686
3687 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3688                                 struct stripe_head_state *s, int disks)
3689 {
3690         struct r5dev *dev = NULL;
3691
3692         BUG_ON(sh->batch_head);
3693         set_bit(STRIPE_HANDLE, &sh->state);
3694
3695         switch (sh->check_state) {
3696         case check_state_idle:
3697                 /* start a new check operation if there are no failures */
3698                 if (s->failed == 0) {
3699                         BUG_ON(s->uptodate != disks);
3700                         sh->check_state = check_state_run;
3701                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3702                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3703                         s->uptodate--;
3704                         break;
3705                 }
3706                 dev = &sh->dev[s->failed_num[0]];
3707                 /* fall through */
3708         case check_state_compute_result:
3709                 sh->check_state = check_state_idle;
3710                 if (!dev)
3711                         dev = &sh->dev[sh->pd_idx];
3712
3713                 /* check that a write has not made the stripe insync */
3714                 if (test_bit(STRIPE_INSYNC, &sh->state))
3715                         break;
3716
3717                 /* either failed parity check, or recovery is happening */
3718                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3719                 BUG_ON(s->uptodate != disks);
3720
3721                 set_bit(R5_LOCKED, &dev->flags);
3722                 s->locked++;
3723                 set_bit(R5_Wantwrite, &dev->flags);
3724
3725                 clear_bit(STRIPE_DEGRADED, &sh->state);
3726                 set_bit(STRIPE_INSYNC, &sh->state);
3727                 break;
3728         case check_state_run:
3729                 break; /* we will be called again upon completion */
3730         case check_state_check_result:
3731                 sh->check_state = check_state_idle;
3732
3733                 /* if a failure occurred during the check operation, leave
3734                  * STRIPE_INSYNC not set and let the stripe be handled again
3735                  */
3736                 if (s->failed)
3737                         break;
3738
3739                 /* handle a successful check operation, if parity is correct
3740                  * we are done.  Otherwise update the mismatch count and repair
3741                  * parity if !MD_RECOVERY_CHECK
3742                  */
3743                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3744                         /* parity is correct (on disc,
3745                          * not in buffer any more)
3746                          */
3747                         set_bit(STRIPE_INSYNC, &sh->state);
3748                 else {
3749                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3750                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3751                                 /* don't try to repair!! */
3752                                 set_bit(STRIPE_INSYNC, &sh->state);
3753                         else {
3754                                 sh->check_state = check_state_compute_run;
3755                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3756                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3757                                 set_bit(R5_Wantcompute,
3758                                         &sh->dev[sh->pd_idx].flags);
3759                                 sh->ops.target = sh->pd_idx;
3760                                 sh->ops.target2 = -1;
3761                                 s->uptodate++;
3762                         }
3763                 }
3764                 break;
3765         case check_state_compute_run:
3766                 break;
3767         default:
3768                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3769                        __func__, sh->check_state,
3770                        (unsigned long long) sh->sector);
3771                 BUG();
3772         }
3773 }
3774
3775 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3776                                   struct stripe_head_state *s,
3777                                   int disks)
3778 {
3779         int pd_idx = sh->pd_idx;
3780         int qd_idx = sh->qd_idx;
3781         struct r5dev *dev;
3782
3783         BUG_ON(sh->batch_head);
3784         set_bit(STRIPE_HANDLE, &sh->state);
3785
3786         BUG_ON(s->failed > 2);
3787
3788         /* Want to check and possibly repair P and Q.
3789          * However there could be one 'failed' device, in which
3790          * case we can only check one of them, possibly using the
3791          * other to generate missing data
3792          */
3793
3794         switch (sh->check_state) {
3795         case check_state_idle:
3796                 /* start a new check operation if there are < 2 failures */
3797                 if (s->failed == s->q_failed) {
3798                         /* The only possible failed device holds Q, so it
3799                          * makes sense to check P (If anything else were failed,
3800                          * we would have used P to recreate it).
3801                          */
3802                         sh->check_state = check_state_run;
3803                 }
3804                 if (!s->q_failed && s->failed < 2) {
3805                         /* Q is not failed, and we didn't use it to generate
3806                          * anything, so it makes sense to check it
3807                          */
3808                         if (sh->check_state == check_state_run)
3809                                 sh->check_state = check_state_run_pq;
3810                         else
3811                                 sh->check_state = check_state_run_q;
3812                 }
3813
3814                 /* discard potentially stale zero_sum_result */
3815                 sh->ops.zero_sum_result = 0;
3816
3817                 if (sh->check_state == check_state_run) {
3818                         /* async_xor_zero_sum destroys the contents of P */
3819                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3820                         s->uptodate--;
3821                 }
3822                 if (sh->check_state >= check_state_run &&
3823                     sh->check_state <= check_state_run_pq) {
3824                         /* async_syndrome_zero_sum preserves P and Q, so
3825                          * no need to mark them !uptodate here
3826                          */
3827                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3828                         break;
3829                 }
3830
3831                 /* we have 2-disk failure */
3832                 BUG_ON(s->failed != 2);
3833                 /* fall through */
3834         case check_state_compute_result:
3835                 sh->check_state = check_state_idle;
3836
3837                 /* check that a write has not made the stripe insync */
3838                 if (test_bit(STRIPE_INSYNC, &sh->state))
3839                         break;
3840
3841                 /* now write out any block on a failed drive,
3842                  * or P or Q if they were recomputed
3843                  */
3844                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3845                 if (s->failed == 2) {
3846                         dev = &sh->dev[s->failed_num[1]];
3847                         s->locked++;
3848                         set_bit(R5_LOCKED, &dev->flags);
3849                         set_bit(R5_Wantwrite, &dev->flags);
3850                 }
3851                 if (s->failed >= 1) {
3852                         dev = &sh->dev[s->failed_num[0]];
3853                         s->locked++;
3854                         set_bit(R5_LOCKED, &dev->flags);
3855                         set_bit(R5_Wantwrite, &dev->flags);
3856                 }
3857                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3858                         dev = &sh->dev[pd_idx];
3859                         s->locked++;
3860                         set_bit(R5_LOCKED, &dev->flags);
3861                         set_bit(R5_Wantwrite, &dev->flags);
3862                 }
3863                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3864                         dev = &sh->dev[qd_idx];
3865                         s->locked++;
3866                         set_bit(R5_LOCKED, &dev->flags);
3867                         set_bit(R5_Wantwrite, &dev->flags);
3868                 }
3869                 clear_bit(STRIPE_DEGRADED, &sh->state);
3870
3871                 set_bit(STRIPE_INSYNC, &sh->state);
3872                 break;
3873         case check_state_run:
3874         case check_state_run_q:
3875         case check_state_run_pq:
3876                 break; /* we will be called again upon completion */
3877         case check_state_check_result:
3878                 sh->check_state = check_state_idle;
3879
3880                 /* handle a successful check operation, if parity is correct
3881                  * we are done.  Otherwise update the mismatch count and repair
3882                  * parity if !MD_RECOVERY_CHECK
3883                  */
3884                 if (sh->ops.zero_sum_result == 0) {
3885                         /* both parities are correct */
3886                         if (!s->failed)
3887                                 set_bit(STRIPE_INSYNC, &sh->state);
3888                         else {
3889                                 /* in contrast to the raid5 case we can validate
3890                                  * parity, but still have a failure to write
3891                                  * back
3892                                  */
3893                                 sh->check_state = check_state_compute_result;
3894                                 /* Returning at this point means that we may go
3895                                  * off and bring p and/or q uptodate again so
3896                                  * we make sure to check zero_sum_result again
3897                                  * to verify if p or q need writeback
3898                                  */
3899                         }
3900                 } else {
3901                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3902                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3903                                 /* don't try to repair!! */
3904                                 set_bit(STRIPE_INSYNC, &sh->state);
3905                         else {
3906                                 int *target = &sh->ops.target;
3907
3908                                 sh->ops.target = -1;
3909                                 sh->ops.target2 = -1;
3910                                 sh->check_state = check_state_compute_run;
3911                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3912                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3913                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3914                                         set_bit(R5_Wantcompute,
3915                                                 &sh->dev[pd_idx].flags);
3916                                         *target = pd_idx;
3917                                         target = &sh->ops.target2;
3918                                         s->uptodate++;
3919                                 }
3920                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3921                                         set_bit(R5_Wantcompute,
3922                                                 &sh->dev[qd_idx].flags);
3923                                         *target = qd_idx;
3924                                         s->uptodate++;
3925                                 }
3926                         }
3927                 }
3928                 break;
3929         case check_state_compute_run:
3930                 break;
3931         default:
3932                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3933                        __func__, sh->check_state,
3934                        (unsigned long long) sh->sector);
3935                 BUG();
3936         }
3937 }
3938
3939 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3940 {
3941         int i;
3942
3943         /* We have read all the blocks in this stripe and now we need to
3944          * copy some of them into a target stripe for expand.
3945          */
3946         struct dma_async_tx_descriptor *tx = NULL;
3947         BUG_ON(sh->batch_head);
3948         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3949         for (i = 0; i < sh->disks; i++)
3950                 if (i != sh->pd_idx && i != sh->qd_idx) {
3951                         int dd_idx, j;
3952                         struct stripe_head *sh2;
3953                         struct async_submit_ctl submit;
3954
3955                         sector_t bn = raid5_compute_blocknr(sh, i, 1);
3956                         sector_t s = raid5_compute_sector(conf, bn, 0,
3957                                                           &dd_idx, NULL);
3958                         sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
3959                         if (sh2 == NULL)
3960                                 /* so far only the early blocks of this stripe
3961                                  * have been requested.  When later blocks
3962                                  * get requested, we will try again
3963                                  */
3964                                 continue;
3965                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3966                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3967                                 /* must have already done this block */
3968                                 raid5_release_stripe(sh2);
3969                                 continue;
3970                         }
3971
3972                         /* place all the copies on one channel */
3973                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3974                         tx = async_memcpy(sh2->dev[dd_idx].page,
3975                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3976                                           &submit);
3977
3978                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3979                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3980                         for (j = 0; j < conf->raid_disks; j++)
3981                                 if (j != sh2->pd_idx &&
3982                                     j != sh2->qd_idx &&
3983                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3984                                         break;
3985                         if (j == conf->raid_disks) {
3986                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3987                                 set_bit(STRIPE_HANDLE, &sh2->state);
3988                         }
3989                         raid5_release_stripe(sh2);
3990
3991                 }
3992         /* done submitting copies, wait for them to complete */
3993         async_tx_quiesce(&tx);
3994 }
3995
3996 /*
3997  * handle_stripe - do things to a stripe.
3998  *
3999  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4000  * state of various bits to see what needs to be done.
4001  * Possible results:
4002  *    return some read requests which now have data
4003  *    return some write requests which are safely on storage
4004  *    schedule a read on some buffers
4005  *    schedule a write of some buffers
4006  *    return confirmation of parity correctness
4007  *
4008  */
4009
4010 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4011 {
4012         struct r5conf *conf = sh->raid_conf;
4013         int disks = sh->disks;
4014         struct r5dev *dev;
4015         int i;
4016         int do_recovery = 0;
4017
4018         memset(s, 0, sizeof(*s));
4019
4020         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4021         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4022         s->failed_num[0] = -1;
4023         s->failed_num[1] = -1;
4024         s->log_failed = r5l_log_disk_error(conf);
4025
4026         /* Now to look around and see what can be done */
4027         rcu_read_lock();
4028         for (i=disks; i--; ) {
4029                 struct md_rdev *rdev;
4030                 sector_t first_bad;
4031                 int bad_sectors;
4032                 int is_bad = 0;
4033
4034                 dev = &sh->dev[i];
4035
4036                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4037                          i, dev->flags,
4038                          dev->toread, dev->towrite, dev->written);
4039                 /* maybe we can reply to a read
4040                  *
4041                  * new wantfill requests are only permitted while
4042                  * ops_complete_biofill is guaranteed to be inactive
4043                  */
4044                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4045                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4046                         set_bit(R5_Wantfill, &dev->flags);
4047
4048                 /* now count some things */
4049                 if (test_bit(R5_LOCKED, &dev->flags))
4050                         s->locked++;
4051                 if (test_bit(R5_UPTODATE, &dev->flags))
4052                         s->uptodate++;
4053                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4054                         s->compute++;
4055                         BUG_ON(s->compute > 2);
4056                 }
4057
4058                 if (test_bit(R5_Wantfill, &dev->flags))
4059                         s->to_fill++;
4060                 else if (dev->toread)
4061                         s->to_read++;
4062                 if (dev->towrite) {
4063                         s->to_write++;
4064                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4065                                 s->non_overwrite++;
4066                 }
4067                 if (dev->written)
4068                         s->written++;
4069                 /* Prefer to use the replacement for reads, but only
4070                  * if it is recovered enough and has no bad blocks.
4071                  */
4072                 rdev = rcu_dereference(conf->disks[i].replacement);
4073                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4074                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4075                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4076                                  &first_bad, &bad_sectors))
4077                         set_bit(R5_ReadRepl, &dev->flags);
4078                 else {
4079                         if (rdev && !test_bit(Faulty, &rdev->flags))
4080                                 set_bit(R5_NeedReplace, &dev->flags);
4081                         else
4082                                 clear_bit(R5_NeedReplace, &dev->flags);
4083                         rdev = rcu_dereference(conf->disks[i].rdev);
4084                         clear_bit(R5_ReadRepl, &dev->flags);
4085                 }
4086                 if (rdev && test_bit(Faulty, &rdev->flags))
4087                         rdev = NULL;
4088                 if (rdev) {
4089                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4090                                              &first_bad, &bad_sectors);
4091                         if (s->blocked_rdev == NULL
4092                             && (test_bit(Blocked, &rdev->flags)
4093                                 || is_bad < 0)) {
4094                                 if (is_bad < 0)
4095                                         set_bit(BlockedBadBlocks,
4096                                                 &rdev->flags);
4097                                 s->blocked_rdev = rdev;
4098                                 atomic_inc(&rdev->nr_pending);
4099                         }
4100                 }
4101                 clear_bit(R5_Insync, &dev->flags);
4102                 if (!rdev)
4103                         /* Not in-sync */;
4104                 else if (is_bad) {
4105                         /* also not in-sync */
4106                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4107                             test_bit(R5_UPTODATE, &dev->flags)) {
4108                                 /* treat as in-sync, but with a read error
4109                                  * which we can now try to correct
4110                                  */
4111                                 set_bit(R5_Insync, &dev->flags);
4112                                 set_bit(R5_ReadError, &dev->flags);
4113                         }
4114                 } else if (test_bit(In_sync, &rdev->flags))
4115                         set_bit(R5_Insync, &dev->flags);
4116                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4117                         /* in sync if before recovery_offset */
4118                         set_bit(R5_Insync, &dev->flags);
4119                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4120                          test_bit(R5_Expanded, &dev->flags))
4121                         /* If we've reshaped into here, we assume it is Insync.
4122                          * We will shortly update recovery_offset to make
4123                          * it official.
4124                          */
4125                         set_bit(R5_Insync, &dev->flags);
4126
4127                 if (test_bit(R5_WriteError, &dev->flags)) {
4128                         /* This flag does not apply to '.replacement'
4129                          * only to .rdev, so make sure to check that*/
4130                         struct md_rdev *rdev2 = rcu_dereference(
4131                                 conf->disks[i].rdev);
4132                         if (rdev2 == rdev)
4133                                 clear_bit(R5_Insync, &dev->flags);
4134                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4135                                 s->handle_bad_blocks = 1;
4136                                 atomic_inc(&rdev2->nr_pending);
4137                         } else
4138                                 clear_bit(R5_WriteError, &dev->flags);
4139                 }
4140                 if (test_bit(R5_MadeGood, &dev->flags)) {
4141                         /* This flag does not apply to '.replacement'
4142                          * only to .rdev, so make sure to check that*/
4143                         struct md_rdev *rdev2 = rcu_dereference(
4144                                 conf->disks[i].rdev);
4145                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4146                                 s->handle_bad_blocks = 1;
4147                                 atomic_inc(&rdev2->nr_pending);
4148                         } else
4149                                 clear_bit(R5_MadeGood, &dev->flags);
4150                 }
4151                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4152                         struct md_rdev *rdev2 = rcu_dereference(
4153                                 conf->disks[i].replacement);
4154                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4155                                 s->handle_bad_blocks = 1;
4156                                 atomic_inc(&rdev2->nr_pending);
4157                         } else
4158                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4159                 }
4160                 if (!test_bit(R5_Insync, &dev->flags)) {
4161                         /* The ReadError flag will just be confusing now */
4162                         clear_bit(R5_ReadError, &dev->flags);
4163                         clear_bit(R5_ReWrite, &dev->flags);
4164                 }
4165                 if (test_bit(R5_ReadError, &dev->flags))
4166                         clear_bit(R5_Insync, &dev->flags);
4167                 if (!test_bit(R5_Insync, &dev->flags)) {
4168                         if (s->failed < 2)
4169                                 s->failed_num[s->failed] = i;
4170                         s->failed++;
4171                         if (rdev && !test_bit(Faulty, &rdev->flags))
4172                                 do_recovery = 1;
4173                 }
4174         }
4175         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4176                 /* If there is a failed device being replaced,
4177                  *     we must be recovering.
4178                  * else if we are after recovery_cp, we must be syncing
4179                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4180                  * else we can only be replacing
4181                  * sync and recovery both need to read all devices, and so
4182                  * use the same flag.
4183                  */
4184                 if (do_recovery ||
4185                     sh->sector >= conf->mddev->recovery_cp ||
4186                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4187                         s->syncing = 1;
4188                 else
4189                         s->replacing = 1;
4190         }
4191         rcu_read_unlock();
4192 }
4193
4194 static int clear_batch_ready(struct stripe_head *sh)
4195 {
4196         /* Return '1' if this is a member of batch, or
4197          * '0' if it is a lone stripe or a head which can now be
4198          * handled.
4199          */
4200         struct stripe_head *tmp;
4201         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4202                 return (sh->batch_head && sh->batch_head != sh);
4203         spin_lock(&sh->stripe_lock);
4204         if (!sh->batch_head) {
4205                 spin_unlock(&sh->stripe_lock);
4206                 return 0;
4207         }
4208
4209         /*
4210          * this stripe could be added to a batch list before we check
4211          * BATCH_READY, skips it
4212          */
4213         if (sh->batch_head != sh) {
4214                 spin_unlock(&sh->stripe_lock);
4215                 return 1;
4216         }
4217         spin_lock(&sh->batch_lock);
4218         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4219                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4220         spin_unlock(&sh->batch_lock);
4221         spin_unlock(&sh->stripe_lock);
4222
4223         /*
4224          * BATCH_READY is cleared, no new stripes can be added.
4225          * batch_list can be accessed without lock
4226          */
4227         return 0;
4228 }
4229
4230 static void break_stripe_batch_list(struct stripe_head *head_sh,
4231                                     unsigned long handle_flags)
4232 {
4233         struct stripe_head *sh, *next;
4234         int i;
4235         int do_wakeup = 0;
4236
4237         list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4238
4239                 list_del_init(&sh->batch_list);
4240
4241                 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4242                                           (1 << STRIPE_SYNCING) |
4243                                           (1 << STRIPE_REPLACED) |
4244                                           (1 << STRIPE_DELAYED) |
4245                                           (1 << STRIPE_BIT_DELAY) |
4246                                           (1 << STRIPE_FULL_WRITE) |
4247                                           (1 << STRIPE_BIOFILL_RUN) |
4248                                           (1 << STRIPE_COMPUTE_RUN)  |
4249                                           (1 << STRIPE_OPS_REQ_PENDING) |
4250                                           (1 << STRIPE_DISCARD) |
4251                                           (1 << STRIPE_BATCH_READY) |
4252                                           (1 << STRIPE_BATCH_ERR) |
4253                                           (1 << STRIPE_BITMAP_PENDING)),
4254                         "stripe state: %lx\n", sh->state);
4255                 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4256                                               (1 << STRIPE_REPLACED)),
4257                         "head stripe state: %lx\n", head_sh->state);
4258
4259                 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4260                                             (1 << STRIPE_PREREAD_ACTIVE) |
4261                                             (1 << STRIPE_DEGRADED)),
4262                               head_sh->state & (1 << STRIPE_INSYNC));
4263
4264                 sh->check_state = head_sh->check_state;
4265                 sh->reconstruct_state = head_sh->reconstruct_state;
4266                 for (i = 0; i < sh->disks; i++) {
4267                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4268                                 do_wakeup = 1;
4269                         sh->dev[i].flags = head_sh->dev[i].flags &
4270                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4271                 }
4272                 spin_lock_irq(&sh->stripe_lock);
4273                 sh->batch_head = NULL;
4274                 spin_unlock_irq(&sh->stripe_lock);
4275                 if (handle_flags == 0 ||
4276                     sh->state & handle_flags)
4277                         set_bit(STRIPE_HANDLE, &sh->state);
4278                 raid5_release_stripe(sh);
4279         }
4280         spin_lock_irq(&head_sh->stripe_lock);
4281         head_sh->batch_head = NULL;
4282         spin_unlock_irq(&head_sh->stripe_lock);
4283         for (i = 0; i < head_sh->disks; i++)
4284                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4285                         do_wakeup = 1;
4286         if (head_sh->state & handle_flags)
4287                 set_bit(STRIPE_HANDLE, &head_sh->state);
4288
4289         if (do_wakeup)
4290                 wake_up(&head_sh->raid_conf->wait_for_overlap);
4291 }
4292
4293 static void handle_stripe(struct stripe_head *sh)
4294 {
4295         struct stripe_head_state s;
4296         struct r5conf *conf = sh->raid_conf;
4297         int i;
4298         int prexor;
4299         int disks = sh->disks;
4300         struct r5dev *pdev, *qdev;
4301
4302         clear_bit(STRIPE_HANDLE, &sh->state);
4303         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4304                 /* already being handled, ensure it gets handled
4305                  * again when current action finishes */
4306                 set_bit(STRIPE_HANDLE, &sh->state);
4307                 return;
4308         }
4309
4310         if (clear_batch_ready(sh) ) {
4311                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4312                 return;
4313         }
4314
4315         if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4316                 break_stripe_batch_list(sh, 0);
4317
4318         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4319                 spin_lock(&sh->stripe_lock);
4320                 /* Cannot process 'sync' concurrently with 'discard' */
4321                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4322                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4323                         set_bit(STRIPE_SYNCING, &sh->state);
4324                         clear_bit(STRIPE_INSYNC, &sh->state);
4325                         clear_bit(STRIPE_REPLACED, &sh->state);
4326                 }
4327                 spin_unlock(&sh->stripe_lock);
4328         }
4329         clear_bit(STRIPE_DELAYED, &sh->state);
4330
4331         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4332                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4333                (unsigned long long)sh->sector, sh->state,
4334                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4335                sh->check_state, sh->reconstruct_state);
4336
4337         analyse_stripe(sh, &s);
4338
4339         if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4340                 goto finish;
4341
4342         if (s.handle_bad_blocks) {
4343                 set_bit(STRIPE_HANDLE, &sh->state);
4344                 goto finish;
4345         }
4346
4347         if (unlikely(s.blocked_rdev)) {
4348                 if (s.syncing || s.expanding || s.expanded ||
4349                     s.replacing || s.to_write || s.written) {
4350                         set_bit(STRIPE_HANDLE, &sh->state);
4351                         goto finish;
4352                 }
4353                 /* There is nothing for the blocked_rdev to block */
4354                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4355                 s.blocked_rdev = NULL;
4356         }
4357
4358         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4359                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4360                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4361         }
4362
4363         pr_debug("locked=%d uptodate=%d to_read=%d"
4364                " to_write=%d failed=%d failed_num=%d,%d\n",
4365                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4366                s.failed_num[0], s.failed_num[1]);
4367         /* check if the array has lost more than max_degraded devices and,
4368          * if so, some requests might need to be failed.
4369          */
4370         if (s.failed > conf->max_degraded || s.log_failed) {
4371                 sh->check_state = 0;
4372                 sh->reconstruct_state = 0;
4373                 break_stripe_batch_list(sh, 0);
4374                 if (s.to_read+s.to_write+s.written)
4375                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4376                 if (s.syncing + s.replacing)
4377                         handle_failed_sync(conf, sh, &s);
4378         }
4379
4380         /* Now we check to see if any write operations have recently
4381          * completed
4382          */
4383         prexor = 0;
4384         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4385                 prexor = 1;
4386         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4387             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4388                 sh->reconstruct_state = reconstruct_state_idle;
4389
4390                 /* All the 'written' buffers and the parity block are ready to
4391                  * be written back to disk
4392                  */
4393                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4394                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4395                 BUG_ON(sh->qd_idx >= 0 &&
4396                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4397                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4398                 for (i = disks; i--; ) {
4399                         struct r5dev *dev = &sh->dev[i];
4400                         if (test_bit(R5_LOCKED, &dev->flags) &&
4401                                 (i == sh->pd_idx || i == sh->qd_idx ||
4402                                  dev->written)) {
4403                                 pr_debug("Writing block %d\n", i);
4404                                 set_bit(R5_Wantwrite, &dev->flags);
4405                                 if (prexor)
4406                                         continue;
4407                                 if (s.failed > 1)
4408                                         continue;
4409                                 if (!test_bit(R5_Insync, &dev->flags) ||
4410                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4411                                      s.failed == 0))
4412                                         set_bit(STRIPE_INSYNC, &sh->state);
4413                         }
4414                 }
4415                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4416                         s.dec_preread_active = 1;
4417         }
4418
4419         /*
4420          * might be able to return some write requests if the parity blocks
4421          * are safe, or on a failed drive
4422          */
4423         pdev = &sh->dev[sh->pd_idx];
4424         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4425                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4426         qdev = &sh->dev[sh->qd_idx];
4427         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4428                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4429                 || conf->level < 6;
4430
4431         if (s.written &&
4432             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4433                              && !test_bit(R5_LOCKED, &pdev->flags)
4434                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4435                                  test_bit(R5_Discard, &pdev->flags))))) &&
4436             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4437                              && !test_bit(R5_LOCKED, &qdev->flags)
4438                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4439                                  test_bit(R5_Discard, &qdev->flags))))))
4440                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4441
4442         /* Now we might consider reading some blocks, either to check/generate
4443          * parity, or to satisfy requests
4444          * or to load a block that is being partially written.
4445          */
4446         if (s.to_read || s.non_overwrite
4447             || (conf->level == 6 && s.to_write && s.failed)
4448             || (s.syncing && (s.uptodate + s.compute < disks))
4449             || s.replacing
4450             || s.expanding)
4451                 handle_stripe_fill(sh, &s, disks);
4452
4453         /* Now to consider new write requests and what else, if anything
4454          * should be read.  We do not handle new writes when:
4455          * 1/ A 'write' operation (copy+xor) is already in flight.
4456          * 2/ A 'check' operation is in flight, as it may clobber the parity
4457          *    block.
4458          */
4459         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4460                 handle_stripe_dirtying(conf, sh, &s, disks);
4461
4462         /* maybe we need to check and possibly fix the parity for this stripe
4463          * Any reads will already have been scheduled, so we just see if enough
4464          * data is available.  The parity check is held off while parity
4465          * dependent operations are in flight.
4466          */
4467         if (sh->check_state ||
4468             (s.syncing && s.locked == 0 &&
4469              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4470              !test_bit(STRIPE_INSYNC, &sh->state))) {
4471                 if (conf->level == 6)
4472                         handle_parity_checks6(conf, sh, &s, disks);
4473                 else
4474                         handle_parity_checks5(conf, sh, &s, disks);
4475         }
4476
4477         if ((s.replacing || s.syncing) && s.locked == 0
4478             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4479             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4480                 /* Write out to replacement devices where possible */
4481                 for (i = 0; i < conf->raid_disks; i++)
4482                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4483                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4484                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4485                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4486                                 s.locked++;
4487                         }
4488                 if (s.replacing)
4489                         set_bit(STRIPE_INSYNC, &sh->state);
4490                 set_bit(STRIPE_REPLACED, &sh->state);
4491         }
4492         if ((s.syncing || s.replacing) && s.locked == 0 &&
4493             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4494             test_bit(STRIPE_INSYNC, &sh->state)) {
4495                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4496                 clear_bit(STRIPE_SYNCING, &sh->state);
4497                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4498                         wake_up(&conf->wait_for_overlap);
4499         }
4500
4501         /* If the failed drives are just a ReadError, then we might need
4502          * to progress the repair/check process
4503          */
4504         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4505                 for (i = 0; i < s.failed; i++) {
4506                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4507                         if (test_bit(R5_ReadError, &dev->flags)
4508                             && !test_bit(R5_LOCKED, &dev->flags)
4509                             && test_bit(R5_UPTODATE, &dev->flags)
4510                                 ) {
4511                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4512                                         set_bit(R5_Wantwrite, &dev->flags);
4513                                         set_bit(R5_ReWrite, &dev->flags);
4514                                         set_bit(R5_LOCKED, &dev->flags);
4515                                         s.locked++;
4516                                 } else {
4517                                         /* let's read it back */
4518                                         set_bit(R5_Wantread, &dev->flags);
4519                                         set_bit(R5_LOCKED, &dev->flags);
4520                                         s.locked++;
4521                                 }
4522                         }
4523                 }
4524
4525         /* Finish reconstruct operations initiated by the expansion process */
4526         if (sh->reconstruct_state == reconstruct_state_result) {
4527                 struct stripe_head *sh_src
4528                         = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4529                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4530                         /* sh cannot be written until sh_src has been read.
4531                          * so arrange for sh to be delayed a little
4532                          */
4533                         set_bit(STRIPE_DELAYED, &sh->state);
4534                         set_bit(STRIPE_HANDLE, &sh->state);
4535                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4536                                               &sh_src->state))
4537                                 atomic_inc(&conf->preread_active_stripes);
4538                         raid5_release_stripe(sh_src);
4539                         goto finish;
4540                 }
4541                 if (sh_src)
4542                         raid5_release_stripe(sh_src);
4543
4544                 sh->reconstruct_state = reconstruct_state_idle;
4545                 clear_bit(STRIPE_EXPANDING, &sh->state);
4546                 for (i = conf->raid_disks; i--; ) {
4547                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4548                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4549                         s.locked++;
4550                 }
4551         }
4552
4553         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4554             !sh->reconstruct_state) {
4555                 /* Need to write out all blocks after computing parity */
4556                 sh->disks = conf->raid_disks;
4557                 stripe_set_idx(sh->sector, conf, 0, sh);
4558                 schedule_reconstruction(sh, &s, 1, 1);
4559         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4560                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4561                 atomic_dec(&conf->reshape_stripes);
4562                 wake_up(&conf->wait_for_overlap);
4563                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4564         }
4565
4566         if (s.expanding && s.locked == 0 &&
4567             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4568                 handle_stripe_expansion(conf, sh);
4569
4570 finish:
4571         /* wait for this device to become unblocked */
4572         if (unlikely(s.blocked_rdev)) {
4573                 if (conf->mddev->external)
4574                         md_wait_for_blocked_rdev(s.blocked_rdev,
4575                                                  conf->mddev);
4576                 else
4577                         /* Internal metadata will immediately
4578                          * be written by raid5d, so we don't
4579                          * need to wait here.
4580                          */
4581                         rdev_dec_pending(s.blocked_rdev,
4582                                          conf->mddev);
4583         }
4584
4585         if (s.handle_bad_blocks)
4586                 for (i = disks; i--; ) {
4587                         struct md_rdev *rdev;
4588                         struct r5dev *dev = &sh->dev[i];
4589                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4590                                 /* We own a safe reference to the rdev */
4591                                 rdev = conf->disks[i].rdev;
4592                                 if (!rdev_set_badblocks(rdev, sh->sector,
4593                                                         STRIPE_SECTORS, 0))
4594                                         md_error(conf->mddev, rdev);
4595                                 rdev_dec_pending(rdev, conf->mddev);
4596                         }
4597                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4598                                 rdev = conf->disks[i].rdev;
4599                                 rdev_clear_badblocks(rdev, sh->sector,
4600                                                      STRIPE_SECTORS, 0);
4601                                 rdev_dec_pending(rdev, conf->mddev);
4602                         }
4603                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4604                                 rdev = conf->disks[i].replacement;
4605                                 if (!rdev)
4606                                         /* rdev have been moved down */
4607                                         rdev = conf->disks[i].rdev;
4608                                 rdev_clear_badblocks(rdev, sh->sector,
4609                                                      STRIPE_SECTORS, 0);
4610                                 rdev_dec_pending(rdev, conf->mddev);
4611                         }
4612                 }
4613
4614         if (s.ops_request)
4615                 raid_run_ops(sh, s.ops_request);
4616
4617         ops_run_io(sh, &s);
4618
4619         if (s.dec_preread_active) {
4620                 /* We delay this until after ops_run_io so that if make_request
4621                  * is waiting on a flush, it won't continue until the writes
4622                  * have actually been submitted.
4623                  */
4624                 atomic_dec(&conf->preread_active_stripes);
4625                 if (atomic_read(&conf->preread_active_stripes) <
4626                     IO_THRESHOLD)
4627                         md_wakeup_thread(conf->mddev->thread);
4628         }
4629
4630         if (!bio_list_empty(&s.return_bi)) {
4631                 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4632                         spin_lock_irq(&conf->device_lock);
4633                         bio_list_merge(&conf->return_bi, &s.return_bi);
4634                         spin_unlock_irq(&conf->device_lock);
4635                         md_wakeup_thread(conf->mddev->thread);
4636                 } else
4637                         return_io(&s.return_bi);
4638         }
4639
4640         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4641 }
4642
4643 static void raid5_activate_delayed(struct r5conf *conf)
4644 {
4645         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4646                 while (!list_empty(&conf->delayed_list)) {
4647                         struct list_head *l = conf->delayed_list.next;
4648                         struct stripe_head *sh;
4649                         sh = list_entry(l, struct stripe_head, lru);
4650                         list_del_init(l);
4651                         clear_bit(STRIPE_DELAYED, &sh->state);
4652                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4653                                 atomic_inc(&conf->preread_active_stripes);
4654                         list_add_tail(&sh->lru, &conf->hold_list);
4655                         raid5_wakeup_stripe_thread(sh);
4656                 }
4657         }
4658 }
4659
4660 static void activate_bit_delay(struct r5conf *conf,
4661         struct list_head *temp_inactive_list)
4662 {
4663         /* device_lock is held */
4664         struct list_head head;
4665         list_add(&head, &conf->bitmap_list);
4666         list_del_init(&conf->bitmap_list);
4667         while (!list_empty(&head)) {
4668                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4669                 int hash;
4670                 list_del_init(&sh->lru);
4671                 atomic_inc(&sh->count);
4672                 hash = sh->hash_lock_index;
4673                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4674         }
4675 }
4676
4677 static int raid5_congested(struct mddev *mddev, int bits)
4678 {
4679         struct r5conf *conf = mddev->private;
4680
4681         /* No difference between reads and writes.  Just check
4682          * how busy the stripe_cache is
4683          */
4684
4685         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4686                 return 1;
4687         if (conf->quiesce)
4688                 return 1;
4689         if (atomic_read(&conf->empty_inactive_list_nr))
4690                 return 1;
4691
4692         return 0;
4693 }
4694
4695 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4696 {
4697         struct r5conf *conf = mddev->private;
4698         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4699         unsigned int chunk_sectors;
4700         unsigned int bio_sectors = bio_sectors(bio);
4701
4702         chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4703         return  chunk_sectors >=
4704                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4705 }
4706
4707 /*
4708  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4709  *  later sampled by raid5d.
4710  */
4711 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4712 {
4713         unsigned long flags;
4714
4715         spin_lock_irqsave(&conf->device_lock, flags);
4716
4717         bi->bi_next = conf->retry_read_aligned_list;
4718         conf->retry_read_aligned_list = bi;
4719
4720         spin_unlock_irqrestore(&conf->device_lock, flags);
4721         md_wakeup_thread(conf->mddev->thread);
4722 }
4723
4724 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4725 {
4726         struct bio *bi;
4727
4728         bi = conf->retry_read_aligned;
4729         if (bi) {
4730                 conf->retry_read_aligned = NULL;
4731                 return bi;
4732         }
4733         bi = conf->retry_read_aligned_list;
4734         if(bi) {
4735                 conf->retry_read_aligned_list = bi->bi_next;
4736                 bi->bi_next = NULL;
4737                 /*
4738                  * this sets the active strip count to 1 and the processed
4739                  * strip count to zero (upper 8 bits)
4740                  */
4741                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4742         }
4743
4744         return bi;
4745 }
4746
4747 /*
4748  *  The "raid5_align_endio" should check if the read succeeded and if it
4749  *  did, call bio_endio on the original bio (having bio_put the new bio
4750  *  first).
4751  *  If the read failed..
4752  */
4753 static void raid5_align_endio(struct bio *bi)
4754 {
4755         struct bio* raid_bi  = bi->bi_private;
4756         struct mddev *mddev;
4757         struct r5conf *conf;
4758         struct md_rdev *rdev;
4759         int error = bi->bi_error;
4760
4761         bio_put(bi);
4762
4763         rdev = (void*)raid_bi->bi_next;
4764         raid_bi->bi_next = NULL;
4765         mddev = rdev->mddev;
4766         conf = mddev->private;
4767
4768         rdev_dec_pending(rdev, conf->mddev);
4769
4770         if (!error) {
4771                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4772                                          raid_bi, 0);
4773                 bio_endio(raid_bi);
4774                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4775                         wake_up(&conf->wait_for_quiescent);
4776                 return;
4777         }
4778
4779         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4780
4781         add_bio_to_retry(raid_bi, conf);
4782 }
4783
4784 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4785 {
4786         struct r5conf *conf = mddev->private;
4787         int dd_idx;
4788         struct bio* align_bi;
4789         struct md_rdev *rdev;
4790         sector_t end_sector;
4791
4792         if (!in_chunk_boundary(mddev, raid_bio)) {
4793                 pr_debug("%s: non aligned\n", __func__);
4794                 return 0;
4795         }
4796         /*
4797          * use bio_clone_mddev to make a copy of the bio
4798          */
4799         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4800         if (!align_bi)
4801                 return 0;
4802         /*
4803          *   set bi_end_io to a new function, and set bi_private to the
4804          *     original bio.
4805          */
4806         align_bi->bi_end_io  = raid5_align_endio;
4807         align_bi->bi_private = raid_bio;
4808         /*
4809          *      compute position
4810          */
4811         align_bi->bi_iter.bi_sector =
4812                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4813                                      0, &dd_idx, NULL);
4814
4815         end_sector = bio_end_sector(align_bi);
4816         rcu_read_lock();
4817         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4818         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4819             rdev->recovery_offset < end_sector) {
4820                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4821                 if (rdev &&
4822                     (test_bit(Faulty, &rdev->flags) ||
4823                     !(test_bit(In_sync, &rdev->flags) ||
4824                       rdev->recovery_offset >= end_sector)))
4825                         rdev = NULL;
4826         }
4827         if (rdev) {
4828                 sector_t first_bad;
4829                 int bad_sectors;
4830
4831                 atomic_inc(&rdev->nr_pending);
4832                 rcu_read_unlock();
4833                 raid_bio->bi_next = (void*)rdev;
4834                 align_bi->bi_bdev =  rdev->bdev;
4835                 bio_clear_flag(align_bi, BIO_SEG_VALID);
4836
4837                 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4838                                 bio_sectors(align_bi),
4839                                 &first_bad, &bad_sectors)) {
4840                         bio_put(align_bi);
4841                         rdev_dec_pending(rdev, mddev);
4842                         return 0;
4843                 }
4844
4845                 /* No reshape active, so we can trust rdev->data_offset */
4846                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4847
4848                 spin_lock_irq(&conf->device_lock);
4849                 wait_event_lock_irq(conf->wait_for_quiescent,
4850                                     conf->quiesce == 0,
4851                                     conf->device_lock);
4852                 atomic_inc(&conf->active_aligned_reads);
4853                 spin_unlock_irq(&conf->device_lock);
4854
4855                 if (mddev->gendisk)
4856                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4857                                               align_bi, disk_devt(mddev->gendisk),
4858                                               raid_bio->bi_iter.bi_sector);
4859                 generic_make_request(align_bi);
4860                 return 1;
4861         } else {
4862                 rcu_read_unlock();
4863                 bio_put(align_bi);
4864                 return 0;
4865         }
4866 }
4867
4868 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4869 {
4870         struct bio *split;
4871
4872         do {
4873                 sector_t sector = raid_bio->bi_iter.bi_sector;
4874                 unsigned chunk_sects = mddev->chunk_sectors;
4875                 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4876
4877                 if (sectors < bio_sectors(raid_bio)) {
4878                         split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4879                         bio_chain(split, raid_bio);
4880                 } else
4881                         split = raid_bio;
4882
4883                 if (!raid5_read_one_chunk(mddev, split)) {
4884                         if (split != raid_bio)
4885                                 generic_make_request(raid_bio);
4886                         return split;
4887                 }
4888         } while (split != raid_bio);
4889
4890         return NULL;
4891 }
4892
4893 /* __get_priority_stripe - get the next stripe to process
4894  *
4895  * Full stripe writes are allowed to pass preread active stripes up until
4896  * the bypass_threshold is exceeded.  In general the bypass_count
4897  * increments when the handle_list is handled before the hold_list; however, it
4898  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4899  * stripe with in flight i/o.  The bypass_count will be reset when the
4900  * head of the hold_list has changed, i.e. the head was promoted to the
4901  * handle_list.
4902  */
4903 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4904 {
4905         struct stripe_head *sh = NULL, *tmp;
4906         struct list_head *handle_list = NULL;
4907         struct r5worker_group *wg = NULL;
4908
4909         if (conf->worker_cnt_per_group == 0) {
4910                 handle_list = &conf->handle_list;
4911         } else if (group != ANY_GROUP) {
4912                 handle_list = &conf->worker_groups[group].handle_list;
4913                 wg = &conf->worker_groups[group];
4914         } else {
4915                 int i;
4916                 for (i = 0; i < conf->group_cnt; i++) {
4917                         handle_list = &conf->worker_groups[i].handle_list;
4918                         wg = &conf->worker_groups[i];
4919                         if (!list_empty(handle_list))
4920                                 break;
4921                 }
4922         }
4923
4924         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4925                   __func__,
4926                   list_empty(handle_list) ? "empty" : "busy",
4927                   list_empty(&conf->hold_list) ? "empty" : "busy",
4928                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4929
4930         if (!list_empty(handle_list)) {
4931                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4932
4933                 if (list_empty(&conf->hold_list))
4934                         conf->bypass_count = 0;
4935                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4936                         if (conf->hold_list.next == conf->last_hold)
4937                                 conf->bypass_count++;
4938                         else {
4939                                 conf->last_hold = conf->hold_list.next;
4940                                 conf->bypass_count -= conf->bypass_threshold;
4941                                 if (conf->bypass_count < 0)
4942                                         conf->bypass_count = 0;
4943                         }
4944                 }
4945         } else if (!list_empty(&conf->hold_list) &&
4946                    ((conf->bypass_threshold &&
4947                      conf->bypass_count > conf->bypass_threshold) ||
4948                     atomic_read(&conf->pending_full_writes) == 0)) {
4949
4950                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4951                         if (conf->worker_cnt_per_group == 0 ||
4952                             group == ANY_GROUP ||
4953                             !cpu_online(tmp->cpu) ||
4954                             cpu_to_group(tmp->cpu) == group) {
4955                                 sh = tmp;
4956                                 break;
4957                         }
4958                 }
4959
4960                 if (sh) {
4961                         conf->bypass_count -= conf->bypass_threshold;
4962                         if (conf->bypass_count < 0)
4963                                 conf->bypass_count = 0;
4964                 }
4965                 wg = NULL;
4966         }
4967
4968         if (!sh)
4969                 return NULL;
4970
4971         if (wg) {
4972                 wg->stripes_cnt--;
4973                 sh->group = NULL;
4974         }
4975         list_del_init(&sh->lru);
4976         BUG_ON(atomic_inc_return(&sh->count) != 1);
4977         return sh;
4978 }
4979
4980 struct raid5_plug_cb {
4981         struct blk_plug_cb      cb;
4982         struct list_head        list;
4983         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4984 };
4985
4986 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4987 {
4988         struct raid5_plug_cb *cb = container_of(
4989                 blk_cb, struct raid5_plug_cb, cb);
4990         struct stripe_head *sh;
4991         struct mddev *mddev = cb->cb.data;
4992         struct r5conf *conf = mddev->private;
4993         int cnt = 0;
4994         int hash;
4995
4996         if (cb->list.next && !list_empty(&cb->list)) {
4997                 spin_lock_irq(&conf->device_lock);
4998                 while (!list_empty(&cb->list)) {
4999                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
5000                         list_del_init(&sh->lru);
5001                         /*
5002                          * avoid race release_stripe_plug() sees
5003                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
5004                          * is still in our list
5005                          */
5006                         smp_mb__before_atomic();
5007                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5008                         /*
5009                          * STRIPE_ON_RELEASE_LIST could be set here. In that
5010                          * case, the count is always > 1 here
5011                          */
5012                         hash = sh->hash_lock_index;
5013                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5014                         cnt++;
5015                 }
5016                 spin_unlock_irq(&conf->device_lock);
5017         }
5018         release_inactive_stripe_list(conf, cb->temp_inactive_list,
5019                                      NR_STRIPE_HASH_LOCKS);
5020         if (mddev->queue)
5021                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5022         kfree(cb);
5023 }
5024
5025 static void release_stripe_plug(struct mddev *mddev,
5026                                 struct stripe_head *sh)
5027 {
5028         struct blk_plug_cb *blk_cb = blk_check_plugged(
5029                 raid5_unplug, mddev,
5030                 sizeof(struct raid5_plug_cb));
5031         struct raid5_plug_cb *cb;
5032
5033         if (!blk_cb) {
5034                 raid5_release_stripe(sh);
5035                 return;
5036         }
5037
5038         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5039
5040         if (cb->list.next == NULL) {
5041                 int i;
5042                 INIT_LIST_HEAD(&cb->list);
5043                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5044                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5045         }
5046
5047         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5048                 list_add_tail(&sh->lru, &cb->list);
5049         else
5050                 raid5_release_stripe(sh);
5051 }
5052
5053 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5054 {
5055         struct r5conf *conf = mddev->private;
5056         sector_t logical_sector, last_sector;
5057         struct stripe_head *sh;
5058         int remaining;
5059         int stripe_sectors;
5060
5061         if (mddev->reshape_position != MaxSector)
5062                 /* Skip discard while reshape is happening */
5063                 return;
5064
5065         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5066         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5067
5068         bi->bi_next = NULL;
5069         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5070
5071         stripe_sectors = conf->chunk_sectors *
5072                 (conf->raid_disks - conf->max_degraded);
5073         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5074                                                stripe_sectors);
5075         sector_div(last_sector, stripe_sectors);
5076
5077         logical_sector *= conf->chunk_sectors;
5078         last_sector *= conf->chunk_sectors;
5079
5080         for (; logical_sector < last_sector;
5081              logical_sector += STRIPE_SECTORS) {
5082                 DEFINE_WAIT(w);
5083                 int d;
5084         again:
5085                 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5086                 prepare_to_wait(&conf->wait_for_overlap, &w,
5087                                 TASK_UNINTERRUPTIBLE);
5088                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5089                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5090                         raid5_release_stripe(sh);
5091                         schedule();
5092                         goto again;
5093                 }
5094                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5095                 spin_lock_irq(&sh->stripe_lock);
5096                 for (d = 0; d < conf->raid_disks; d++) {
5097                         if (d == sh->pd_idx || d == sh->qd_idx)
5098                                 continue;
5099                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5100                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5101                                 spin_unlock_irq(&sh->stripe_lock);
5102                                 raid5_release_stripe(sh);
5103                                 schedule();
5104                                 goto again;
5105                         }
5106                 }
5107                 set_bit(STRIPE_DISCARD, &sh->state);
5108                 finish_wait(&conf->wait_for_overlap, &w);
5109                 sh->overwrite_disks = 0;
5110                 for (d = 0; d < conf->raid_disks; d++) {
5111                         if (d == sh->pd_idx || d == sh->qd_idx)
5112                                 continue;
5113                         sh->dev[d].towrite = bi;
5114                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5115                         raid5_inc_bi_active_stripes(bi);
5116                         sh->overwrite_disks++;
5117                 }
5118                 spin_unlock_irq(&sh->stripe_lock);
5119                 if (conf->mddev->bitmap) {
5120                         for (d = 0;
5121                              d < conf->raid_disks - conf->max_degraded;
5122                              d++)
5123                                 bitmap_startwrite(mddev->bitmap,
5124                                                   sh->sector,
5125                                                   STRIPE_SECTORS,
5126                                                   0);
5127                         sh->bm_seq = conf->seq_flush + 1;
5128                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5129                 }
5130
5131                 set_bit(STRIPE_HANDLE, &sh->state);
5132                 clear_bit(STRIPE_DELAYED, &sh->state);
5133                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5134                         atomic_inc(&conf->preread_active_stripes);
5135                 release_stripe_plug(mddev, sh);
5136         }
5137
5138         remaining = raid5_dec_bi_active_stripes(bi);
5139         if (remaining == 0) {
5140                 md_write_end(mddev);
5141                 bio_endio(bi);
5142         }
5143 }
5144
5145 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5146 {
5147         struct r5conf *conf = mddev->private;
5148         int dd_idx;
5149         sector_t new_sector;
5150         sector_t logical_sector, last_sector;
5151         struct stripe_head *sh;
5152         const int rw = bio_data_dir(bi);
5153         int remaining;
5154         DEFINE_WAIT(w);
5155         bool do_prepare;
5156
5157         if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5158                 int ret = r5l_handle_flush_request(conf->log, bi);
5159
5160                 if (ret == 0)
5161                         return;
5162                 if (ret == -ENODEV) {
5163                         md_flush_request(mddev, bi);
5164                         return;
5165                 }
5166                 /* ret == -EAGAIN, fallback */
5167         }
5168
5169         md_write_start(mddev, bi);
5170
5171         /*
5172          * If array is degraded, better not do chunk aligned read because
5173          * later we might have to read it again in order to reconstruct
5174          * data on failed drives.
5175          */
5176         if (rw == READ && mddev->degraded == 0 &&
5177             mddev->reshape_position == MaxSector) {
5178                 bi = chunk_aligned_read(mddev, bi);
5179                 if (!bi)
5180                         return;
5181         }
5182
5183         if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5184                 make_discard_request(mddev, bi);
5185                 return;
5186         }
5187
5188         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5189         last_sector = bio_end_sector(bi);
5190         bi->bi_next = NULL;
5191         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5192
5193         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5194         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5195                 int previous;
5196                 int seq;
5197
5198                 do_prepare = false;
5199         retry:
5200                 seq = read_seqcount_begin(&conf->gen_lock);
5201                 previous = 0;
5202                 if (do_prepare)
5203                         prepare_to_wait(&conf->wait_for_overlap, &w,
5204                                 TASK_UNINTERRUPTIBLE);
5205                 if (unlikely(conf->reshape_progress != MaxSector)) {
5206                         /* spinlock is needed as reshape_progress may be
5207                          * 64bit on a 32bit platform, and so it might be
5208                          * possible to see a half-updated value
5209                          * Of course reshape_progress could change after
5210                          * the lock is dropped, so once we get a reference
5211                          * to the stripe that we think it is, we will have
5212                          * to check again.
5213                          */
5214                         spin_lock_irq(&conf->device_lock);
5215                         if (mddev->reshape_backwards
5216                             ? logical_sector < conf->reshape_progress
5217                             : logical_sector >= conf->reshape_progress) {
5218                                 previous = 1;
5219                         } else {
5220                                 if (mddev->reshape_backwards
5221                                     ? logical_sector < conf->reshape_safe
5222                                     : logical_sector >= conf->reshape_safe) {
5223                                         spin_unlock_irq(&conf->device_lock);
5224                                         schedule();
5225                                         do_prepare = true;
5226                                         goto retry;
5227                                 }
5228                         }
5229                         spin_unlock_irq(&conf->device_lock);
5230                 }
5231
5232                 new_sector = raid5_compute_sector(conf, logical_sector,
5233                                                   previous,
5234                                                   &dd_idx, NULL);
5235                 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5236                         (unsigned long long)new_sector,
5237                         (unsigned long long)logical_sector);
5238
5239                 sh = raid5_get_active_stripe(conf, new_sector, previous,
5240                                        (bi->bi_opf & REQ_RAHEAD), 0);
5241                 if (sh) {
5242                         if (unlikely(previous)) {
5243                                 /* expansion might have moved on while waiting for a
5244                                  * stripe, so we must do the range check again.
5245                                  * Expansion could still move past after this
5246                                  * test, but as we are holding a reference to
5247                                  * 'sh', we know that if that happens,
5248                                  *  STRIPE_EXPANDING will get set and the expansion
5249                                  * won't proceed until we finish with the stripe.
5250                                  */
5251                                 int must_retry = 0;
5252                                 spin_lock_irq(&conf->device_lock);
5253                                 if (mddev->reshape_backwards
5254                                     ? logical_sector >= conf->reshape_progress
5255                                     : logical_sector < conf->reshape_progress)
5256                                         /* mismatch, need to try again */
5257                                         must_retry = 1;
5258                                 spin_unlock_irq(&conf->device_lock);
5259                                 if (must_retry) {
5260                                         raid5_release_stripe(sh);
5261                                         schedule();
5262                                         do_prepare = true;
5263                                         goto retry;
5264                                 }
5265                         }
5266                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5267                                 /* Might have got the wrong stripe_head
5268                                  * by accident
5269                                  */
5270                                 raid5_release_stripe(sh);
5271                                 goto retry;
5272                         }
5273
5274                         if (rw == WRITE &&
5275                             logical_sector >= mddev->suspend_lo &&
5276                             logical_sector < mddev->suspend_hi) {
5277                                 raid5_release_stripe(sh);
5278                                 /* As the suspend_* range is controlled by
5279                                  * userspace, we want an interruptible
5280                                  * wait.
5281                                  */
5282                                 flush_signals(current);
5283                                 prepare_to_wait(&conf->wait_for_overlap,
5284                                                 &w, TASK_INTERRUPTIBLE);
5285                                 if (logical_sector >= mddev->suspend_lo &&
5286                                     logical_sector < mddev->suspend_hi) {
5287                                         schedule();
5288                                         do_prepare = true;
5289                                 }
5290                                 goto retry;
5291                         }
5292
5293                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5294                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5295                                 /* Stripe is busy expanding or
5296                                  * add failed due to overlap.  Flush everything
5297                                  * and wait a while
5298                                  */
5299                                 md_wakeup_thread(mddev->thread);
5300                                 raid5_release_stripe(sh);
5301                                 schedule();
5302                                 do_prepare = true;
5303                                 goto retry;
5304                         }
5305                         set_bit(STRIPE_HANDLE, &sh->state);
5306                         clear_bit(STRIPE_DELAYED, &sh->state);
5307                         if ((!sh->batch_head || sh == sh->batch_head) &&
5308                             (bi->bi_opf & REQ_SYNC) &&
5309                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5310                                 atomic_inc(&conf->preread_active_stripes);
5311                         release_stripe_plug(mddev, sh);
5312                 } else {
5313                         /* cannot get stripe for read-ahead, just give-up */
5314                         bi->bi_error = -EIO;
5315                         break;
5316                 }
5317         }
5318         finish_wait(&conf->wait_for_overlap, &w);
5319
5320         remaining = raid5_dec_bi_active_stripes(bi);
5321         if (remaining == 0) {
5322
5323                 if ( rw == WRITE )
5324                         md_write_end(mddev);
5325
5326                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5327                                          bi, 0);
5328                 bio_endio(bi);
5329         }
5330 }
5331
5332 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5333
5334 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5335 {
5336         /* reshaping is quite different to recovery/resync so it is
5337          * handled quite separately ... here.
5338          *
5339          * On each call to sync_request, we gather one chunk worth of
5340          * destination stripes and flag them as expanding.
5341          * Then we find all the source stripes and request reads.
5342          * As the reads complete, handle_stripe will copy the data
5343          * into the destination stripe and release that stripe.
5344          */
5345         struct r5conf *conf = mddev->private;
5346         struct stripe_head *sh;
5347         sector_t first_sector, last_sector;
5348         int raid_disks = conf->previous_raid_disks;
5349         int data_disks = raid_disks - conf->max_degraded;
5350         int new_data_disks = conf->raid_disks - conf->max_degraded;
5351         int i;
5352         int dd_idx;
5353         sector_t writepos, readpos, safepos;
5354         sector_t stripe_addr;
5355         int reshape_sectors;
5356         struct list_head stripes;
5357         sector_t retn;
5358
5359         if (sector_nr == 0) {
5360                 /* If restarting in the middle, skip the initial sectors */
5361                 if (mddev->reshape_backwards &&
5362                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5363                         sector_nr = raid5_size(mddev, 0, 0)
5364                                 - conf->reshape_progress;
5365                 } else if (mddev->reshape_backwards &&
5366                            conf->reshape_progress == MaxSector) {
5367                         /* shouldn't happen, but just in case, finish up.*/
5368                         sector_nr = MaxSector;
5369                 } else if (!mddev->reshape_backwards &&
5370                            conf->reshape_progress > 0)
5371                         sector_nr = conf->reshape_progress;
5372                 sector_div(sector_nr, new_data_disks);
5373                 if (sector_nr) {
5374                         mddev->curr_resync_completed = sector_nr;
5375                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5376                         *skipped = 1;
5377                         retn = sector_nr;
5378                         goto finish;
5379                 }
5380         }
5381
5382         /* We need to process a full chunk at a time.
5383          * If old and new chunk sizes differ, we need to process the
5384          * largest of these
5385          */
5386
5387         reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5388
5389         /* We update the metadata at least every 10 seconds, or when
5390          * the data about to be copied would over-write the source of
5391          * the data at the front of the range.  i.e. one new_stripe
5392          * along from reshape_progress new_maps to after where
5393          * reshape_safe old_maps to
5394          */
5395         writepos = conf->reshape_progress;
5396         sector_div(writepos, new_data_disks);
5397         readpos = conf->reshape_progress;
5398         sector_div(readpos, data_disks);
5399         safepos = conf->reshape_safe;
5400         sector_div(safepos, data_disks);
5401         if (mddev->reshape_backwards) {
5402                 BUG_ON(writepos < reshape_sectors);
5403                 writepos -= reshape_sectors;
5404                 readpos += reshape_sectors;
5405                 safepos += reshape_sectors;
5406         } else {
5407                 writepos += reshape_sectors;
5408                 /* readpos and safepos are worst-case calculations.
5409                  * A negative number is overly pessimistic, and causes
5410                  * obvious problems for unsigned storage.  So clip to 0.
5411                  */
5412                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5413                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5414         }
5415
5416         /* Having calculated the 'writepos' possibly use it
5417          * to set 'stripe_addr' which is where we will write to.
5418          */
5419         if (mddev->reshape_backwards) {
5420                 BUG_ON(conf->reshape_progress == 0);
5421                 stripe_addr = writepos;
5422                 BUG_ON((mddev->dev_sectors &
5423                         ~((sector_t)reshape_sectors - 1))
5424                        - reshape_sectors - stripe_addr
5425                        != sector_nr);
5426         } else {
5427                 BUG_ON(writepos != sector_nr + reshape_sectors);
5428                 stripe_addr = sector_nr;
5429         }
5430
5431         /* 'writepos' is the most advanced device address we might write.
5432          * 'readpos' is the least advanced device address we might read.
5433          * 'safepos' is the least address recorded in the metadata as having
5434          *     been reshaped.
5435          * If there is a min_offset_diff, these are adjusted either by
5436          * increasing the safepos/readpos if diff is negative, or
5437          * increasing writepos if diff is positive.
5438          * If 'readpos' is then behind 'writepos', there is no way that we can
5439          * ensure safety in the face of a crash - that must be done by userspace
5440          * making a backup of the data.  So in that case there is no particular
5441          * rush to update metadata.
5442          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5443          * update the metadata to advance 'safepos' to match 'readpos' so that
5444          * we can be safe in the event of a crash.
5445          * So we insist on updating metadata if safepos is behind writepos and
5446          * readpos is beyond writepos.
5447          * In any case, update the metadata every 10 seconds.
5448          * Maybe that number should be configurable, but I'm not sure it is
5449          * worth it.... maybe it could be a multiple of safemode_delay???
5450          */
5451         if (conf->min_offset_diff < 0) {
5452                 safepos += -conf->min_offset_diff;
5453                 readpos += -conf->min_offset_diff;
5454         } else
5455                 writepos += conf->min_offset_diff;
5456
5457         if ((mddev->reshape_backwards
5458              ? (safepos > writepos && readpos < writepos)
5459              : (safepos < writepos && readpos > writepos)) ||
5460             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5461                 /* Cannot proceed until we've updated the superblock... */
5462                 wait_event(conf->wait_for_overlap,
5463                            atomic_read(&conf->reshape_stripes)==0
5464                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5465                 if (atomic_read(&conf->reshape_stripes) != 0)
5466                         return 0;
5467                 mddev->reshape_position = conf->reshape_progress;
5468                 mddev->curr_resync_completed = sector_nr;
5469                 conf->reshape_checkpoint = jiffies;
5470                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5471                 md_wakeup_thread(mddev->thread);
5472                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5473                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5474                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5475                         return 0;
5476                 spin_lock_irq(&conf->device_lock);
5477                 conf->reshape_safe = mddev->reshape_position;
5478                 spin_unlock_irq(&conf->device_lock);
5479                 wake_up(&conf->wait_for_overlap);
5480                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5481         }
5482
5483         INIT_LIST_HEAD(&stripes);
5484         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5485                 int j;
5486                 int skipped_disk = 0;
5487                 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5488                 set_bit(STRIPE_EXPANDING, &sh->state);
5489                 atomic_inc(&conf->reshape_stripes);
5490                 /* If any of this stripe is beyond the end of the old
5491                  * array, then we need to zero those blocks
5492                  */
5493                 for (j=sh->disks; j--;) {
5494                         sector_t s;
5495                         if (j == sh->pd_idx)
5496                                 continue;
5497                         if (conf->level == 6 &&
5498                             j == sh->qd_idx)
5499                                 continue;
5500                         s = raid5_compute_blocknr(sh, j, 0);
5501                         if (s < raid5_size(mddev, 0, 0)) {
5502                                 skipped_disk = 1;
5503                                 continue;
5504                         }
5505                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5506                         set_bit(R5_Expanded, &sh->dev[j].flags);
5507                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5508                 }
5509                 if (!skipped_disk) {
5510                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5511                         set_bit(STRIPE_HANDLE, &sh->state);
5512                 }
5513                 list_add(&sh->lru, &stripes);
5514         }
5515         spin_lock_irq(&conf->device_lock);
5516         if (mddev->reshape_backwards)
5517                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5518         else
5519                 conf->reshape_progress += reshape_sectors * new_data_disks;
5520         spin_unlock_irq(&conf->device_lock);
5521         /* Ok, those stripe are ready. We can start scheduling
5522          * reads on the source stripes.
5523          * The source stripes are determined by mapping the first and last
5524          * block on the destination stripes.
5525          */
5526         first_sector =
5527                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5528                                      1, &dd_idx, NULL);
5529         last_sector =
5530                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5531                                             * new_data_disks - 1),
5532                                      1, &dd_idx, NULL);
5533         if (last_sector >= mddev->dev_sectors)
5534                 last_sector = mddev->dev_sectors - 1;
5535         while (first_sector <= last_sector) {
5536                 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5537                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5538                 set_bit(STRIPE_HANDLE, &sh->state);
5539                 raid5_release_stripe(sh);
5540                 first_sector += STRIPE_SECTORS;
5541         }
5542         /* Now that the sources are clearly marked, we can release
5543          * the destination stripes
5544          */
5545         while (!list_empty(&stripes)) {
5546                 sh = list_entry(stripes.next, struct stripe_head, lru);
5547                 list_del_init(&sh->lru);
5548                 raid5_release_stripe(sh);
5549         }
5550         /* If this takes us to the resync_max point where we have to pause,
5551          * then we need to write out the superblock.
5552          */
5553         sector_nr += reshape_sectors;
5554         retn = reshape_sectors;
5555 finish:
5556         if (mddev->curr_resync_completed > mddev->resync_max ||
5557             (sector_nr - mddev->curr_resync_completed) * 2
5558             >= mddev->resync_max - mddev->curr_resync_completed) {
5559                 /* Cannot proceed until we've updated the superblock... */
5560                 wait_event(conf->wait_for_overlap,
5561                            atomic_read(&conf->reshape_stripes) == 0
5562                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5563                 if (atomic_read(&conf->reshape_stripes) != 0)
5564                         goto ret;
5565                 mddev->reshape_position = conf->reshape_progress;
5566                 mddev->curr_resync_completed = sector_nr;
5567                 conf->reshape_checkpoint = jiffies;
5568                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5569                 md_wakeup_thread(mddev->thread);
5570                 wait_event(mddev->sb_wait,
5571                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5572                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5573                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5574                         goto ret;
5575                 spin_lock_irq(&conf->device_lock);
5576                 conf->reshape_safe = mddev->reshape_position;
5577                 spin_unlock_irq(&conf->device_lock);
5578                 wake_up(&conf->wait_for_overlap);
5579                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5580         }
5581 ret:
5582         return retn;
5583 }
5584
5585 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5586                                           int *skipped)
5587 {
5588         struct r5conf *conf = mddev->private;
5589         struct stripe_head *sh;
5590         sector_t max_sector = mddev->dev_sectors;
5591         sector_t sync_blocks;
5592         int still_degraded = 0;
5593         int i;
5594
5595         if (sector_nr >= max_sector) {
5596                 /* just being told to finish up .. nothing much to do */
5597
5598                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5599                         end_reshape(conf);
5600                         return 0;
5601                 }
5602
5603                 if (mddev->curr_resync < max_sector) /* aborted */
5604                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5605                                         &sync_blocks, 1);
5606                 else /* completed sync */
5607                         conf->fullsync = 0;
5608                 bitmap_close_sync(mddev->bitmap);
5609
5610                 return 0;
5611         }
5612
5613         /* Allow raid5_quiesce to complete */
5614         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5615
5616         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5617                 return reshape_request(mddev, sector_nr, skipped);
5618
5619         /* No need to check resync_max as we never do more than one
5620          * stripe, and as resync_max will always be on a chunk boundary,
5621          * if the check in md_do_sync didn't fire, there is no chance
5622          * of overstepping resync_max here
5623          */
5624
5625         /* if there is too many failed drives and we are trying
5626          * to resync, then assert that we are finished, because there is
5627          * nothing we can do.
5628          */
5629         if (mddev->degraded >= conf->max_degraded &&
5630             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5631                 sector_t rv = mddev->dev_sectors - sector_nr;
5632                 *skipped = 1;
5633                 return rv;
5634         }
5635         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5636             !conf->fullsync &&
5637             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5638             sync_blocks >= STRIPE_SECTORS) {
5639                 /* we can skip this block, and probably more */
5640                 sync_blocks /= STRIPE_SECTORS;
5641                 *skipped = 1;
5642                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5643         }
5644
5645         bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5646
5647         sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5648         if (sh == NULL) {
5649                 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5650                 /* make sure we don't swamp the stripe cache if someone else
5651                  * is trying to get access
5652                  */
5653                 schedule_timeout_uninterruptible(1);
5654         }
5655         /* Need to check if array will still be degraded after recovery/resync
5656          * Note in case of > 1 drive failures it's possible we're rebuilding
5657          * one drive while leaving another faulty drive in array.
5658          */
5659         rcu_read_lock();
5660         for (i = 0; i < conf->raid_disks; i++) {
5661                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5662
5663                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5664                         still_degraded = 1;
5665         }
5666         rcu_read_unlock();
5667
5668         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5669
5670         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5671         set_bit(STRIPE_HANDLE, &sh->state);
5672
5673         raid5_release_stripe(sh);
5674
5675         return STRIPE_SECTORS;
5676 }
5677
5678 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5679 {
5680         /* We may not be able to submit a whole bio at once as there
5681          * may not be enough stripe_heads available.
5682          * We cannot pre-allocate enough stripe_heads as we may need
5683          * more than exist in the cache (if we allow ever large chunks).
5684          * So we do one stripe head at a time and record in
5685          * ->bi_hw_segments how many have been done.
5686          *
5687          * We *know* that this entire raid_bio is in one chunk, so
5688          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5689          */
5690         struct stripe_head *sh;
5691         int dd_idx;
5692         sector_t sector, logical_sector, last_sector;
5693         int scnt = 0;
5694         int remaining;
5695         int handled = 0;
5696
5697         logical_sector = raid_bio->bi_iter.bi_sector &
5698                 ~((sector_t)STRIPE_SECTORS-1);
5699         sector = raid5_compute_sector(conf, logical_sector,
5700                                       0, &dd_idx, NULL);
5701         last_sector = bio_end_sector(raid_bio);
5702
5703         for (; logical_sector < last_sector;
5704              logical_sector += STRIPE_SECTORS,
5705                      sector += STRIPE_SECTORS,
5706                      scnt++) {
5707
5708                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5709                         /* already done this stripe */
5710                         continue;
5711
5712                 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5713
5714                 if (!sh) {
5715                         /* failed to get a stripe - must wait */
5716                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5717                         conf->retry_read_aligned = raid_bio;
5718                         return handled;
5719                 }
5720
5721                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5722                         raid5_release_stripe(sh);
5723                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5724                         conf->retry_read_aligned = raid_bio;
5725                         return handled;
5726                 }
5727
5728                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5729                 handle_stripe(sh);
5730                 raid5_release_stripe(sh);
5731                 handled++;
5732         }
5733         remaining = raid5_dec_bi_active_stripes(raid_bio);
5734         if (remaining == 0) {
5735                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5736                                          raid_bio, 0);
5737                 bio_endio(raid_bio);
5738         }
5739         if (atomic_dec_and_test(&conf->active_aligned_reads))
5740                 wake_up(&conf->wait_for_quiescent);
5741         return handled;
5742 }
5743
5744 static int handle_active_stripes(struct r5conf *conf, int group,
5745                                  struct r5worker *worker,
5746                                  struct list_head *temp_inactive_list)
5747 {
5748         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5749         int i, batch_size = 0, hash;
5750         bool release_inactive = false;
5751
5752         while (batch_size < MAX_STRIPE_BATCH &&
5753                         (sh = __get_priority_stripe(conf, group)) != NULL)
5754                 batch[batch_size++] = sh;
5755
5756         if (batch_size == 0) {
5757                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5758                         if (!list_empty(temp_inactive_list + i))
5759                                 break;
5760                 if (i == NR_STRIPE_HASH_LOCKS) {
5761                         spin_unlock_irq(&conf->device_lock);
5762                         r5l_flush_stripe_to_raid(conf->log);
5763                         spin_lock_irq(&conf->device_lock);
5764                         return batch_size;
5765                 }
5766                 release_inactive = true;
5767         }
5768         spin_unlock_irq(&conf->device_lock);
5769
5770         release_inactive_stripe_list(conf, temp_inactive_list,
5771                                      NR_STRIPE_HASH_LOCKS);
5772
5773         r5l_flush_stripe_to_raid(conf->log);
5774         if (release_inactive) {
5775                 spin_lock_irq(&conf->device_lock);
5776                 return 0;
5777         }
5778
5779         for (i = 0; i < batch_size; i++)
5780                 handle_stripe(batch[i]);
5781         r5l_write_stripe_run(conf->log);
5782
5783         cond_resched();
5784
5785         spin_lock_irq(&conf->device_lock);
5786         for (i = 0; i < batch_size; i++) {
5787                 hash = batch[i]->hash_lock_index;
5788                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5789         }
5790         return batch_size;
5791 }
5792
5793 static void raid5_do_work(struct work_struct *work)
5794 {
5795         struct r5worker *worker = container_of(work, struct r5worker, work);
5796         struct r5worker_group *group = worker->group;
5797         struct r5conf *conf = group->conf;
5798         int group_id = group - conf->worker_groups;
5799         int handled;
5800         struct blk_plug plug;
5801
5802         pr_debug("+++ raid5worker active\n");
5803
5804         blk_start_plug(&plug);
5805         handled = 0;
5806         spin_lock_irq(&conf->device_lock);
5807         while (1) {
5808                 int batch_size, released;
5809
5810                 released = release_stripe_list(conf, worker->temp_inactive_list);
5811
5812                 batch_size = handle_active_stripes(conf, group_id, worker,
5813                                                    worker->temp_inactive_list);
5814                 worker->working = false;
5815                 if (!batch_size && !released)
5816                         break;
5817                 handled += batch_size;
5818         }
5819         pr_debug("%d stripes handled\n", handled);
5820
5821         spin_unlock_irq(&conf->device_lock);
5822         blk_finish_plug(&plug);
5823
5824         pr_debug("--- raid5worker inactive\n");
5825 }
5826
5827 /*
5828  * This is our raid5 kernel thread.
5829  *
5830  * We scan the hash table for stripes which can be handled now.
5831  * During the scan, completed stripes are saved for us by the interrupt
5832  * handler, so that they will not have to wait for our next wakeup.
5833  */
5834 static void raid5d(struct md_thread *thread)
5835 {
5836         struct mddev *mddev = thread->mddev;
5837         struct r5conf *conf = mddev->private;
5838         int handled;
5839         struct blk_plug plug;
5840
5841         pr_debug("+++ raid5d active\n");
5842
5843         md_check_recovery(mddev);
5844
5845         if (!bio_list_empty(&conf->return_bi) &&
5846             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5847                 struct bio_list tmp = BIO_EMPTY_LIST;
5848                 spin_lock_irq(&conf->device_lock);
5849                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5850                         bio_list_merge(&tmp, &conf->return_bi);
5851                         bio_list_init(&conf->return_bi);
5852                 }
5853                 spin_unlock_irq(&conf->device_lock);
5854                 return_io(&tmp);
5855         }
5856
5857         blk_start_plug(&plug);
5858         handled = 0;
5859         spin_lock_irq(&conf->device_lock);
5860         while (1) {
5861                 struct bio *bio;
5862                 int batch_size, released;
5863
5864                 released = release_stripe_list(conf, conf->temp_inactive_list);
5865                 if (released)
5866                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
5867
5868                 if (
5869                     !list_empty(&conf->bitmap_list)) {
5870                         /* Now is a good time to flush some bitmap updates */
5871                         conf->seq_flush++;
5872                         spin_unlock_irq(&conf->device_lock);
5873                         bitmap_unplug(mddev->bitmap);
5874                         spin_lock_irq(&conf->device_lock);
5875                         conf->seq_write = conf->seq_flush;
5876                         activate_bit_delay(conf, conf->temp_inactive_list);
5877                 }
5878                 raid5_activate_delayed(conf);
5879
5880                 while ((bio = remove_bio_from_retry(conf))) {
5881                         int ok;
5882                         spin_unlock_irq(&conf->device_lock);
5883                         ok = retry_aligned_read(conf, bio);
5884                         spin_lock_irq(&conf->device_lock);
5885                         if (!ok)
5886                                 break;
5887                         handled++;
5888                 }
5889
5890                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5891                                                    conf->temp_inactive_list);
5892                 if (!batch_size && !released)
5893                         break;
5894                 handled += batch_size;
5895
5896                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5897                         spin_unlock_irq(&conf->device_lock);
5898                         md_check_recovery(mddev);
5899                         spin_lock_irq(&conf->device_lock);
5900                 }
5901         }
5902         pr_debug("%d stripes handled\n", handled);
5903
5904         spin_unlock_irq(&conf->device_lock);
5905         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5906             mutex_trylock(&conf->cache_size_mutex)) {
5907                 grow_one_stripe(conf, __GFP_NOWARN);
5908                 /* Set flag even if allocation failed.  This helps
5909                  * slow down allocation requests when mem is short
5910                  */
5911                 set_bit(R5_DID_ALLOC, &conf->cache_state);
5912                 mutex_unlock(&conf->cache_size_mutex);
5913         }
5914
5915         r5l_flush_stripe_to_raid(conf->log);
5916
5917         async_tx_issue_pending_all();
5918         blk_finish_plug(&plug);
5919
5920         pr_debug("--- raid5d inactive\n");
5921 }
5922
5923 static ssize_t
5924 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5925 {
5926         struct r5conf *conf;
5927         int ret = 0;
5928         spin_lock(&mddev->lock);
5929         conf = mddev->private;
5930         if (conf)
5931                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5932         spin_unlock(&mddev->lock);
5933         return ret;
5934 }
5935
5936 int
5937 raid5_set_cache_size(struct mddev *mddev, int size)
5938 {
5939         struct r5conf *conf = mddev->private;
5940         int err;
5941
5942         if (size <= 16 || size > 32768)
5943                 return -EINVAL;
5944
5945         conf->min_nr_stripes = size;
5946         mutex_lock(&conf->cache_size_mutex);
5947         while (size < conf->max_nr_stripes &&
5948                drop_one_stripe(conf))
5949                 ;
5950         mutex_unlock(&conf->cache_size_mutex);
5951
5952
5953         err = md_allow_write(mddev);
5954         if (err)
5955                 return err;
5956
5957         mutex_lock(&conf->cache_size_mutex);
5958         while (size > conf->max_nr_stripes)
5959                 if (!grow_one_stripe(conf, GFP_KERNEL))
5960                         break;
5961         mutex_unlock(&conf->cache_size_mutex);
5962
5963         return 0;
5964 }
5965 EXPORT_SYMBOL(raid5_set_cache_size);
5966
5967 static ssize_t
5968 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5969 {
5970         struct r5conf *conf;
5971         unsigned long new;
5972         int err;
5973
5974         if (len >= PAGE_SIZE)
5975                 return -EINVAL;
5976         if (kstrtoul(page, 10, &new))
5977                 return -EINVAL;
5978         err = mddev_lock(mddev);
5979         if (err)
5980                 return err;
5981         conf = mddev->private;
5982         if (!conf)
5983                 err = -ENODEV;
5984         else
5985                 err = raid5_set_cache_size(mddev, new);
5986         mddev_unlock(mddev);
5987
5988         return err ?: len;
5989 }
5990
5991 static struct md_sysfs_entry
5992 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5993                                 raid5_show_stripe_cache_size,
5994                                 raid5_store_stripe_cache_size);
5995
5996 static ssize_t
5997 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5998 {
5999         struct r5conf *conf = mddev->private;
6000         if (conf)
6001                 return sprintf(page, "%d\n", conf->rmw_level);
6002         else
6003                 return 0;
6004 }
6005
6006 static ssize_t
6007 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6008 {
6009         struct r5conf *conf = mddev->private;
6010         unsigned long new;
6011
6012         if (!conf)
6013                 return -ENODEV;
6014
6015         if (len >= PAGE_SIZE)
6016                 return -EINVAL;
6017
6018         if (kstrtoul(page, 10, &new))
6019                 return -EINVAL;
6020
6021         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6022                 return -EINVAL;
6023
6024         if (new != PARITY_DISABLE_RMW &&
6025             new != PARITY_ENABLE_RMW &&
6026             new != PARITY_PREFER_RMW)
6027                 return -EINVAL;
6028
6029         conf->rmw_level = new;
6030         return len;
6031 }
6032
6033 static struct md_sysfs_entry
6034 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6035                          raid5_show_rmw_level,
6036                          raid5_store_rmw_level);
6037
6038
6039 static ssize_t
6040 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6041 {
6042         struct r5conf *conf;
6043         int ret = 0;
6044         spin_lock(&mddev->lock);
6045         conf = mddev->private;
6046         if (conf)
6047                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6048         spin_unlock(&mddev->lock);
6049         return ret;
6050 }
6051
6052 static ssize_t
6053 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6054 {
6055         struct r5conf *conf;
6056         unsigned long new;
6057         int err;
6058
6059         if (len >= PAGE_SIZE)
6060                 return -EINVAL;
6061         if (kstrtoul(page, 10, &new))
6062                 return -EINVAL;
6063
6064         err = mddev_lock(mddev);
6065         if (err)
6066                 return err;
6067         conf = mddev->private;
6068         if (!conf)
6069                 err = -ENODEV;
6070         else if (new > conf->min_nr_stripes)
6071                 err = -EINVAL;
6072         else
6073                 conf->bypass_threshold = new;
6074         mddev_unlock(mddev);
6075         return err ?: len;
6076 }
6077
6078 static struct md_sysfs_entry
6079 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6080                                         S_IRUGO | S_IWUSR,
6081                                         raid5_show_preread_threshold,
6082                                         raid5_store_preread_threshold);
6083
6084 static ssize_t
6085 raid5_show_skip_copy(struct mddev *mddev, char *page)
6086 {
6087         struct r5conf *conf;
6088         int ret = 0;
6089         spin_lock(&mddev->lock);
6090         conf = mddev->private;
6091         if (conf)
6092                 ret = sprintf(page, "%d\n", conf->skip_copy);
6093         spin_unlock(&mddev->lock);
6094         return ret;
6095 }
6096
6097 static ssize_t
6098 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6099 {
6100         struct r5conf *conf;
6101         unsigned long new;
6102         int err;
6103
6104         if (len >= PAGE_SIZE)
6105                 return -EINVAL;
6106         if (kstrtoul(page, 10, &new))
6107                 return -EINVAL;
6108         new = !!new;
6109
6110         err = mddev_lock(mddev);
6111         if (err)
6112                 return err;
6113         conf = mddev->private;
6114         if (!conf)
6115                 err = -ENODEV;
6116         else if (new != conf->skip_copy) {
6117                 mddev_suspend(mddev);
6118                 conf->skip_copy = new;
6119                 if (new)
6120                         mddev->queue->backing_dev_info.capabilities |=
6121                                 BDI_CAP_STABLE_WRITES;
6122                 else
6123                         mddev->queue->backing_dev_info.capabilities &=
6124                                 ~BDI_CAP_STABLE_WRITES;
6125                 mddev_resume(mddev);
6126         }
6127         mddev_unlock(mddev);
6128         return err ?: len;
6129 }
6130
6131 static struct md_sysfs_entry
6132 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6133                                         raid5_show_skip_copy,
6134                                         raid5_store_skip_copy);
6135
6136 static ssize_t
6137 stripe_cache_active_show(struct mddev *mddev, char *page)
6138 {
6139         struct r5conf *conf = mddev->private;
6140         if (conf)
6141                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6142         else
6143                 return 0;
6144 }
6145
6146 static struct md_sysfs_entry
6147 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6148
6149 static ssize_t
6150 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6151 {
6152         struct r5conf *conf;
6153         int ret = 0;
6154         spin_lock(&mddev->lock);
6155         conf = mddev->private;
6156         if (conf)
6157                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6158         spin_unlock(&mddev->lock);
6159         return ret;
6160 }
6161
6162 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6163                                int *group_cnt,
6164                                int *worker_cnt_per_group,
6165                                struct r5worker_group **worker_groups);
6166 static ssize_t
6167 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6168 {
6169         struct r5conf *conf;
6170         unsigned long new;
6171         int err;
6172         struct r5worker_group *new_groups, *old_groups;
6173         int group_cnt, worker_cnt_per_group;
6174
6175         if (len >= PAGE_SIZE)
6176                 return -EINVAL;
6177         if (kstrtoul(page, 10, &new))
6178                 return -EINVAL;
6179
6180         err = mddev_lock(mddev);
6181         if (err)
6182                 return err;
6183         conf = mddev->private;
6184         if (!conf)
6185                 err = -ENODEV;
6186         else if (new != conf->worker_cnt_per_group) {
6187                 mddev_suspend(mddev);
6188
6189                 old_groups = conf->worker_groups;
6190                 if (old_groups)
6191                         flush_workqueue(raid5_wq);
6192
6193                 err = alloc_thread_groups(conf, new,
6194                                           &group_cnt, &worker_cnt_per_group,
6195                                           &new_groups);
6196                 if (!err) {
6197                         spin_lock_irq(&conf->device_lock);
6198                         conf->group_cnt = group_cnt;
6199                         conf->worker_cnt_per_group = worker_cnt_per_group;
6200                         conf->worker_groups = new_groups;
6201                         spin_unlock_irq(&conf->device_lock);
6202
6203                         if (old_groups)
6204                                 kfree(old_groups[0].workers);
6205                         kfree(old_groups);
6206                 }
6207                 mddev_resume(mddev);
6208         }
6209         mddev_unlock(mddev);
6210
6211         return err ?: len;
6212 }
6213
6214 static struct md_sysfs_entry
6215 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6216                                 raid5_show_group_thread_cnt,
6217                                 raid5_store_group_thread_cnt);
6218
6219 static struct attribute *raid5_attrs[] =  {
6220         &raid5_stripecache_size.attr,
6221         &raid5_stripecache_active.attr,
6222         &raid5_preread_bypass_threshold.attr,
6223         &raid5_group_thread_cnt.attr,
6224         &raid5_skip_copy.attr,
6225         &raid5_rmw_level.attr,
6226         NULL,
6227 };
6228 static struct attribute_group raid5_attrs_group = {
6229         .name = NULL,
6230         .attrs = raid5_attrs,
6231 };
6232
6233 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6234                                int *group_cnt,
6235                                int *worker_cnt_per_group,
6236                                struct r5worker_group **worker_groups)
6237 {
6238         int i, j, k;
6239         ssize_t size;
6240         struct r5worker *workers;
6241
6242         *worker_cnt_per_group = cnt;
6243         if (cnt == 0) {
6244                 *group_cnt = 0;
6245                 *worker_groups = NULL;
6246                 return 0;
6247         }
6248         *group_cnt = num_possible_nodes();
6249         size = sizeof(struct r5worker) * cnt;
6250         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6251         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6252                                 *group_cnt, GFP_NOIO);
6253         if (!*worker_groups || !workers) {
6254                 kfree(workers);
6255                 kfree(*worker_groups);
6256                 return -ENOMEM;
6257         }
6258
6259         for (i = 0; i < *group_cnt; i++) {
6260                 struct r5worker_group *group;
6261
6262                 group = &(*worker_groups)[i];
6263                 INIT_LIST_HEAD(&group->handle_list);
6264                 group->conf = conf;
6265                 group->workers = workers + i * cnt;
6266
6267                 for (j = 0; j < cnt; j++) {
6268                         struct r5worker *worker = group->workers + j;
6269                         worker->group = group;
6270                         INIT_WORK(&worker->work, raid5_do_work);
6271
6272                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6273                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6274                 }
6275         }
6276
6277         return 0;
6278 }
6279
6280 static void free_thread_groups(struct r5conf *conf)
6281 {
6282         if (conf->worker_groups)
6283                 kfree(conf->worker_groups[0].workers);
6284         kfree(conf->worker_groups);
6285         conf->worker_groups = NULL;
6286 }
6287
6288 static sector_t
6289 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6290 {
6291         struct r5conf *conf = mddev->private;
6292
6293         if (!sectors)
6294                 sectors = mddev->dev_sectors;
6295         if (!raid_disks)
6296                 /* size is defined by the smallest of previous and new size */
6297                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6298
6299         sectors &= ~((sector_t)conf->chunk_sectors - 1);
6300         sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6301         return sectors * (raid_disks - conf->max_degraded);
6302 }
6303
6304 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6305 {
6306         safe_put_page(percpu->spare_page);
6307         if (percpu->scribble)
6308                 flex_array_free(percpu->scribble);
6309         percpu->spare_page = NULL;
6310         percpu->scribble = NULL;
6311 }
6312
6313 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6314 {
6315         if (conf->level == 6 && !percpu->spare_page)
6316                 percpu->spare_page = alloc_page(GFP_KERNEL);
6317         if (!percpu->scribble)
6318                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6319                                                       conf->previous_raid_disks),
6320                                                   max(conf->chunk_sectors,
6321                                                       conf->prev_chunk_sectors)
6322                                                    / STRIPE_SECTORS,
6323                                                   GFP_KERNEL);
6324
6325         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6326                 free_scratch_buffer(conf, percpu);
6327                 return -ENOMEM;
6328         }
6329
6330         return 0;
6331 }
6332
6333 static void raid5_free_percpu(struct r5conf *conf)
6334 {
6335         unsigned long cpu;
6336
6337         if (!conf->percpu)
6338                 return;
6339
6340 #ifdef CONFIG_HOTPLUG_CPU
6341         unregister_cpu_notifier(&conf->cpu_notify);
6342 #endif
6343
6344         get_online_cpus();
6345         for_each_possible_cpu(cpu)
6346                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6347         put_online_cpus();
6348
6349         free_percpu(conf->percpu);
6350 }
6351
6352 static void free_conf(struct r5conf *conf)
6353 {
6354         if (conf->log)
6355                 r5l_exit_log(conf->log);
6356         if (conf->shrinker.seeks)
6357                 unregister_shrinker(&conf->shrinker);
6358
6359         free_thread_groups(conf);
6360         shrink_stripes(conf);
6361         raid5_free_percpu(conf);
6362         kfree(conf->disks);
6363         kfree(conf->stripe_hashtbl);
6364         kfree(conf);
6365 }
6366
6367 #ifdef CONFIG_HOTPLUG_CPU
6368 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6369                               void *hcpu)
6370 {
6371         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6372         long cpu = (long)hcpu;
6373         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6374
6375         switch (action) {
6376         case CPU_UP_PREPARE:
6377         case CPU_UP_PREPARE_FROZEN:
6378                 if (alloc_scratch_buffer(conf, percpu)) {
6379                         pr_err("%s: failed memory allocation for cpu%ld\n",
6380                                __func__, cpu);
6381                         return notifier_from_errno(-ENOMEM);
6382                 }
6383                 break;
6384         case CPU_DEAD:
6385         case CPU_DEAD_FROZEN:
6386         case CPU_UP_CANCELED:
6387         case CPU_UP_CANCELED_FROZEN:
6388                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6389                 break;
6390         default:
6391                 break;
6392         }
6393         return NOTIFY_OK;
6394 }
6395 #endif
6396
6397 static int raid5_alloc_percpu(struct r5conf *conf)
6398 {
6399         unsigned long cpu;
6400         int err = 0;
6401
6402         conf->percpu = alloc_percpu(struct raid5_percpu);
6403         if (!conf->percpu)
6404                 return -ENOMEM;
6405
6406 #ifdef CONFIG_HOTPLUG_CPU
6407         conf->cpu_notify.notifier_call = raid456_cpu_notify;
6408         conf->cpu_notify.priority = 0;
6409         err = register_cpu_notifier(&conf->cpu_notify);
6410         if (err)
6411                 return err;
6412 #endif
6413
6414         get_online_cpus();
6415         for_each_present_cpu(cpu) {
6416                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6417                 if (err) {
6418                         pr_err("%s: failed memory allocation for cpu%ld\n",
6419                                __func__, cpu);
6420                         break;
6421                 }
6422         }
6423         put_online_cpus();
6424
6425         if (!err) {
6426                 conf->scribble_disks = max(conf->raid_disks,
6427                         conf->previous_raid_disks);
6428                 conf->scribble_sectors = max(conf->chunk_sectors,
6429                         conf->prev_chunk_sectors);
6430         }
6431         return err;
6432 }
6433
6434 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6435                                       struct shrink_control *sc)
6436 {
6437         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6438         unsigned long ret = SHRINK_STOP;
6439
6440         if (mutex_trylock(&conf->cache_size_mutex)) {
6441                 ret= 0;
6442                 while (ret < sc->nr_to_scan &&
6443                        conf->max_nr_stripes > conf->min_nr_stripes) {
6444                         if (drop_one_stripe(conf) == 0) {
6445                                 ret = SHRINK_STOP;
6446                                 break;
6447                         }
6448                         ret++;
6449                 }
6450                 mutex_unlock(&conf->cache_size_mutex);
6451         }
6452         return ret;
6453 }
6454
6455 static unsigned long raid5_cache_count(struct shrinker *shrink,
6456                                        struct shrink_control *sc)
6457 {
6458         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6459
6460         if (conf->max_nr_stripes < conf->min_nr_stripes)
6461                 /* unlikely, but not impossible */
6462                 return 0;
6463         return conf->max_nr_stripes - conf->min_nr_stripes;
6464 }
6465
6466 static struct r5conf *setup_conf(struct mddev *mddev)
6467 {
6468         struct r5conf *conf;
6469         int raid_disk, memory, max_disks;
6470         struct md_rdev *rdev;
6471         struct disk_info *disk;
6472         char pers_name[6];
6473         int i;
6474         int group_cnt, worker_cnt_per_group;
6475         struct r5worker_group *new_group;
6476
6477         if (mddev->new_level != 5
6478             && mddev->new_level != 4
6479             && mddev->new_level != 6) {
6480                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6481                        mdname(mddev), mddev->new_level);
6482                 return ERR_PTR(-EIO);
6483         }
6484         if ((mddev->new_level == 5
6485              && !algorithm_valid_raid5(mddev->new_layout)) ||
6486             (mddev->new_level == 6
6487              && !algorithm_valid_raid6(mddev->new_layout))) {
6488                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6489                        mdname(mddev), mddev->new_layout);
6490                 return ERR_PTR(-EIO);
6491         }
6492         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6493                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6494                        mdname(mddev), mddev->raid_disks);
6495                 return ERR_PTR(-EINVAL);
6496         }
6497
6498         if (!mddev->new_chunk_sectors ||
6499             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6500             !is_power_of_2(mddev->new_chunk_sectors)) {
6501                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6502                        mdname(mddev), mddev->new_chunk_sectors << 9);
6503                 return ERR_PTR(-EINVAL);
6504         }
6505
6506         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6507         if (conf == NULL)
6508                 goto abort;
6509         /* Don't enable multi-threading by default*/
6510         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6511                                  &new_group)) {
6512                 conf->group_cnt = group_cnt;
6513                 conf->worker_cnt_per_group = worker_cnt_per_group;
6514                 conf->worker_groups = new_group;
6515         } else
6516                 goto abort;
6517         spin_lock_init(&conf->device_lock);
6518         seqcount_init(&conf->gen_lock);
6519         mutex_init(&conf->cache_size_mutex);
6520         init_waitqueue_head(&conf->wait_for_quiescent);
6521         init_waitqueue_head(&conf->wait_for_stripe);
6522         init_waitqueue_head(&conf->wait_for_overlap);
6523         INIT_LIST_HEAD(&conf->handle_list);
6524         INIT_LIST_HEAD(&conf->hold_list);
6525         INIT_LIST_HEAD(&conf->delayed_list);
6526         INIT_LIST_HEAD(&conf->bitmap_list);
6527         bio_list_init(&conf->return_bi);
6528         init_llist_head(&conf->released_stripes);
6529         atomic_set(&conf->active_stripes, 0);
6530         atomic_set(&conf->preread_active_stripes, 0);
6531         atomic_set(&conf->active_aligned_reads, 0);
6532         conf->bypass_threshold = BYPASS_THRESHOLD;
6533         conf->recovery_disabled = mddev->recovery_disabled - 1;
6534
6535         conf->raid_disks = mddev->raid_disks;
6536         if (mddev->reshape_position == MaxSector)
6537                 conf->previous_raid_disks = mddev->raid_disks;
6538         else
6539                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6540         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6541
6542         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6543                               GFP_KERNEL);
6544         if (!conf->disks)
6545                 goto abort;
6546
6547         conf->mddev = mddev;
6548
6549         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6550                 goto abort;
6551
6552         /* We init hash_locks[0] separately to that it can be used
6553          * as the reference lock in the spin_lock_nest_lock() call
6554          * in lock_all_device_hash_locks_irq in order to convince
6555          * lockdep that we know what we are doing.
6556          */
6557         spin_lock_init(conf->hash_locks);
6558         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6559                 spin_lock_init(conf->hash_locks + i);
6560
6561         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6562                 INIT_LIST_HEAD(conf->inactive_list + i);
6563
6564         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6565                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6566
6567         conf->level = mddev->new_level;
6568         conf->chunk_sectors = mddev->new_chunk_sectors;
6569         if (raid5_alloc_percpu(conf) != 0)
6570                 goto abort;
6571
6572         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6573
6574         rdev_for_each(rdev, mddev) {
6575                 raid_disk = rdev->raid_disk;
6576                 if (raid_disk >= max_disks
6577                     || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6578                         continue;
6579                 disk = conf->disks + raid_disk;
6580
6581                 if (test_bit(Replacement, &rdev->flags)) {
6582                         if (disk->replacement)
6583                                 goto abort;
6584                         disk->replacement = rdev;
6585                 } else {
6586                         if (disk->rdev)
6587                                 goto abort;
6588                         disk->rdev = rdev;
6589                 }
6590
6591                 if (test_bit(In_sync, &rdev->flags)) {
6592                         char b[BDEVNAME_SIZE];
6593                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6594                                " disk %d\n",
6595                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6596                 } else if (rdev->saved_raid_disk != raid_disk)
6597                         /* Cannot rely on bitmap to complete recovery */
6598                         conf->fullsync = 1;
6599         }
6600
6601         conf->level = mddev->new_level;
6602         if (conf->level == 6) {
6603                 conf->max_degraded = 2;
6604                 if (raid6_call.xor_syndrome)
6605                         conf->rmw_level = PARITY_ENABLE_RMW;
6606                 else
6607                         conf->rmw_level = PARITY_DISABLE_RMW;
6608         } else {
6609                 conf->max_degraded = 1;
6610                 conf->rmw_level = PARITY_ENABLE_RMW;
6611         }
6612         conf->algorithm = mddev->new_layout;
6613         conf->reshape_progress = mddev->reshape_position;
6614         if (conf->reshape_progress != MaxSector) {
6615                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6616                 conf->prev_algo = mddev->layout;
6617         } else {
6618                 conf->prev_chunk_sectors = conf->chunk_sectors;
6619                 conf->prev_algo = conf->algorithm;
6620         }
6621
6622         conf->min_nr_stripes = NR_STRIPES;
6623         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6624                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6625         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6626         if (grow_stripes(conf, conf->min_nr_stripes)) {
6627                 printk(KERN_ERR
6628                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6629                        mdname(mddev), memory);
6630                 goto abort;
6631         } else
6632                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6633                        mdname(mddev), memory);
6634         /*
6635          * Losing a stripe head costs more than the time to refill it,
6636          * it reduces the queue depth and so can hurt throughput.
6637          * So set it rather large, scaled by number of devices.
6638          */
6639         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6640         conf->shrinker.scan_objects = raid5_cache_scan;
6641         conf->shrinker.count_objects = raid5_cache_count;
6642         conf->shrinker.batch = 128;
6643         conf->shrinker.flags = 0;
6644         register_shrinker(&conf->shrinker);
6645
6646         sprintf(pers_name, "raid%d", mddev->new_level);
6647         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6648         if (!conf->thread) {
6649                 printk(KERN_ERR
6650                        "md/raid:%s: couldn't allocate thread.\n",
6651                        mdname(mddev));
6652                 goto abort;
6653         }
6654
6655         return conf;
6656
6657  abort:
6658         if (conf) {
6659                 free_conf(conf);
6660                 return ERR_PTR(-EIO);
6661         } else
6662                 return ERR_PTR(-ENOMEM);
6663 }
6664
6665 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6666 {
6667         switch (algo) {
6668         case ALGORITHM_PARITY_0:
6669                 if (raid_disk < max_degraded)
6670                         return 1;
6671                 break;
6672         case ALGORITHM_PARITY_N:
6673                 if (raid_disk >= raid_disks - max_degraded)
6674                         return 1;
6675                 break;
6676         case ALGORITHM_PARITY_0_6:
6677                 if (raid_disk == 0 ||
6678                     raid_disk == raid_disks - 1)
6679                         return 1;
6680                 break;
6681         case ALGORITHM_LEFT_ASYMMETRIC_6:
6682         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6683         case ALGORITHM_LEFT_SYMMETRIC_6:
6684         case ALGORITHM_RIGHT_SYMMETRIC_6:
6685                 if (raid_disk == raid_disks - 1)
6686                         return 1;
6687         }
6688         return 0;
6689 }
6690
6691 static int raid5_run(struct mddev *mddev)
6692 {
6693         struct r5conf *conf;
6694         int working_disks = 0;
6695         int dirty_parity_disks = 0;
6696         struct md_rdev *rdev;
6697         struct md_rdev *journal_dev = NULL;
6698         sector_t reshape_offset = 0;
6699         int i;
6700         long long min_offset_diff = 0;
6701         int first = 1;
6702
6703         if (mddev->recovery_cp != MaxSector)
6704                 printk(KERN_NOTICE "md/raid:%s: not clean"
6705                        " -- starting background reconstruction\n",
6706                        mdname(mddev));
6707
6708         rdev_for_each(rdev, mddev) {
6709                 long long diff;
6710
6711                 if (test_bit(Journal, &rdev->flags)) {
6712                         journal_dev = rdev;
6713                         continue;
6714                 }
6715                 if (rdev->raid_disk < 0)
6716                         continue;
6717                 diff = (rdev->new_data_offset - rdev->data_offset);
6718                 if (first) {
6719                         min_offset_diff = diff;
6720                         first = 0;
6721                 } else if (mddev->reshape_backwards &&
6722                          diff < min_offset_diff)
6723                         min_offset_diff = diff;
6724                 else if (!mddev->reshape_backwards &&
6725                          diff > min_offset_diff)
6726                         min_offset_diff = diff;
6727         }
6728
6729         if (mddev->reshape_position != MaxSector) {
6730                 /* Check that we can continue the reshape.
6731                  * Difficulties arise if the stripe we would write to
6732                  * next is at or after the stripe we would read from next.
6733                  * For a reshape that changes the number of devices, this
6734                  * is only possible for a very short time, and mdadm makes
6735                  * sure that time appears to have past before assembling
6736                  * the array.  So we fail if that time hasn't passed.
6737                  * For a reshape that keeps the number of devices the same
6738                  * mdadm must be monitoring the reshape can keeping the
6739                  * critical areas read-only and backed up.  It will start
6740                  * the array in read-only mode, so we check for that.
6741                  */
6742                 sector_t here_new, here_old;
6743                 int old_disks;
6744                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6745                 int chunk_sectors;
6746                 int new_data_disks;
6747
6748                 if (journal_dev) {
6749                         printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6750                                mdname(mddev));
6751                         return -EINVAL;
6752                 }
6753
6754                 if (mddev->new_level != mddev->level) {
6755                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6756                                "required - aborting.\n",
6757                                mdname(mddev));
6758                         return -EINVAL;
6759                 }
6760                 old_disks = mddev->raid_disks - mddev->delta_disks;
6761                 /* reshape_position must be on a new-stripe boundary, and one
6762                  * further up in new geometry must map after here in old
6763                  * geometry.
6764                  * If the chunk sizes are different, then as we perform reshape
6765                  * in units of the largest of the two, reshape_position needs
6766                  * be a multiple of the largest chunk size times new data disks.
6767                  */
6768                 here_new = mddev->reshape_position;
6769                 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6770                 new_data_disks = mddev->raid_disks - max_degraded;
6771                 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6772                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6773                                "on a stripe boundary\n", mdname(mddev));
6774                         return -EINVAL;
6775                 }
6776                 reshape_offset = here_new * chunk_sectors;
6777                 /* here_new is the stripe we will write to */
6778                 here_old = mddev->reshape_position;
6779                 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6780                 /* here_old is the first stripe that we might need to read
6781                  * from */
6782                 if (mddev->delta_disks == 0) {
6783                         /* We cannot be sure it is safe to start an in-place
6784                          * reshape.  It is only safe if user-space is monitoring
6785                          * and taking constant backups.
6786                          * mdadm always starts a situation like this in
6787                          * readonly mode so it can take control before
6788                          * allowing any writes.  So just check for that.
6789                          */
6790                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6791                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6792                                 /* not really in-place - so OK */;
6793                         else if (mddev->ro == 0) {
6794                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6795                                        "must be started in read-only mode "
6796                                        "- aborting\n",
6797                                        mdname(mddev));
6798                                 return -EINVAL;
6799                         }
6800                 } else if (mddev->reshape_backwards
6801                     ? (here_new * chunk_sectors + min_offset_diff <=
6802                        here_old * chunk_sectors)
6803                     : (here_new * chunk_sectors >=
6804                        here_old * chunk_sectors + (-min_offset_diff))) {
6805                         /* Reading from the same stripe as writing to - bad */
6806                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6807                                "auto-recovery - aborting.\n",
6808                                mdname(mddev));
6809                         return -EINVAL;
6810                 }
6811                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6812                        mdname(mddev));
6813                 /* OK, we should be able to continue; */
6814         } else {
6815                 BUG_ON(mddev->level != mddev->new_level);
6816                 BUG_ON(mddev->layout != mddev->new_layout);
6817                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6818                 BUG_ON(mddev->delta_disks != 0);
6819         }
6820
6821         if (mddev->private == NULL)
6822                 conf = setup_conf(mddev);
6823         else
6824                 conf = mddev->private;
6825
6826         if (IS_ERR(conf))
6827                 return PTR_ERR(conf);
6828
6829         if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !journal_dev) {
6830                 printk(KERN_ERR "md/raid:%s: journal disk is missing, force array readonly\n",
6831                        mdname(mddev));
6832                 mddev->ro = 1;
6833                 set_disk_ro(mddev->gendisk, 1);
6834         }
6835
6836         conf->min_offset_diff = min_offset_diff;
6837         mddev->thread = conf->thread;
6838         conf->thread = NULL;
6839         mddev->private = conf;
6840
6841         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6842              i++) {
6843                 rdev = conf->disks[i].rdev;
6844                 if (!rdev && conf->disks[i].replacement) {
6845                         /* The replacement is all we have yet */
6846                         rdev = conf->disks[i].replacement;
6847                         conf->disks[i].replacement = NULL;
6848                         clear_bit(Replacement, &rdev->flags);
6849                         conf->disks[i].rdev = rdev;
6850                 }
6851                 if (!rdev)
6852                         continue;
6853                 if (conf->disks[i].replacement &&
6854                     conf->reshape_progress != MaxSector) {
6855                         /* replacements and reshape simply do not mix. */
6856                         printk(KERN_ERR "md: cannot handle concurrent "
6857                                "replacement and reshape.\n");
6858                         goto abort;
6859                 }
6860                 if (test_bit(In_sync, &rdev->flags)) {
6861                         working_disks++;
6862                         continue;
6863                 }
6864                 /* This disc is not fully in-sync.  However if it
6865                  * just stored parity (beyond the recovery_offset),
6866                  * when we don't need to be concerned about the
6867                  * array being dirty.
6868                  * When reshape goes 'backwards', we never have
6869                  * partially completed devices, so we only need
6870                  * to worry about reshape going forwards.
6871                  */
6872                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6873                 if (mddev->major_version == 0 &&
6874                     mddev->minor_version > 90)
6875                         rdev->recovery_offset = reshape_offset;
6876
6877                 if (rdev->recovery_offset < reshape_offset) {
6878                         /* We need to check old and new layout */
6879                         if (!only_parity(rdev->raid_disk,
6880                                          conf->algorithm,
6881                                          conf->raid_disks,
6882                                          conf->max_degraded))
6883                                 continue;
6884                 }
6885                 if (!only_parity(rdev->raid_disk,
6886                                  conf->prev_algo,
6887                                  conf->previous_raid_disks,
6888                                  conf->max_degraded))
6889                         continue;
6890                 dirty_parity_disks++;
6891         }
6892
6893         /*
6894          * 0 for a fully functional array, 1 or 2 for a degraded array.
6895          */
6896         mddev->degraded = calc_degraded(conf);
6897
6898         if (has_failed(conf)) {
6899                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6900                         " (%d/%d failed)\n",
6901                         mdname(mddev), mddev->degraded, conf->raid_disks);
6902                 goto abort;
6903         }
6904
6905         /* device size must be a multiple of chunk size */
6906         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6907         mddev->resync_max_sectors = mddev->dev_sectors;
6908
6909         if (mddev->degraded > dirty_parity_disks &&
6910             mddev->recovery_cp != MaxSector) {
6911                 if (mddev->ok_start_degraded)
6912                         printk(KERN_WARNING
6913                                "md/raid:%s: starting dirty degraded array"
6914                                " - data corruption possible.\n",
6915                                mdname(mddev));
6916                 else {
6917                         printk(KERN_ERR
6918                                "md/raid:%s: cannot start dirty degraded array.\n",
6919                                mdname(mddev));
6920                         goto abort;
6921                 }
6922         }
6923
6924         if (mddev->degraded == 0)
6925                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6926                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6927                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6928                        mddev->new_layout);
6929         else
6930                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6931                        " out of %d devices, algorithm %d\n",
6932                        mdname(mddev), conf->level,
6933                        mddev->raid_disks - mddev->degraded,
6934                        mddev->raid_disks, mddev->new_layout);
6935
6936         print_raid5_conf(conf);
6937
6938         if (conf->reshape_progress != MaxSector) {
6939                 conf->reshape_safe = conf->reshape_progress;
6940                 atomic_set(&conf->reshape_stripes, 0);
6941                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6942                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6943                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6944                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6945                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6946                                                         "reshape");
6947         }
6948
6949         /* Ok, everything is just fine now */
6950         if (mddev->to_remove == &raid5_attrs_group)
6951                 mddev->to_remove = NULL;
6952         else if (mddev->kobj.sd &&
6953             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6954                 printk(KERN_WARNING
6955                        "raid5: failed to create sysfs attributes for %s\n",
6956                        mdname(mddev));
6957         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6958
6959         if (mddev->queue) {
6960                 int chunk_size;
6961                 bool discard_supported = true;
6962                 /* read-ahead size must cover two whole stripes, which
6963                  * is 2 * (datadisks) * chunksize where 'n' is the
6964                  * number of raid devices
6965                  */
6966                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6967                 int stripe = data_disks *
6968                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6969                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6970                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6971
6972                 chunk_size = mddev->chunk_sectors << 9;
6973                 blk_queue_io_min(mddev->queue, chunk_size);
6974                 blk_queue_io_opt(mddev->queue, chunk_size *
6975                                  (conf->raid_disks - conf->max_degraded));
6976                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6977                 /*
6978                  * We can only discard a whole stripe. It doesn't make sense to
6979                  * discard data disk but write parity disk
6980                  */
6981                 stripe = stripe * PAGE_SIZE;
6982                 /* Round up to power of 2, as discard handling
6983                  * currently assumes that */
6984                 while ((stripe-1) & stripe)
6985                         stripe = (stripe | (stripe-1)) + 1;
6986                 mddev->queue->limits.discard_alignment = stripe;
6987                 mddev->queue->limits.discard_granularity = stripe;
6988                 /*
6989                  * unaligned part of discard request will be ignored, so can't
6990                  * guarantee discard_zeroes_data
6991                  */
6992                 mddev->queue->limits.discard_zeroes_data = 0;
6993
6994                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6995
6996                 rdev_for_each(rdev, mddev) {
6997                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6998                                           rdev->data_offset << 9);
6999                         disk_stack_limits(mddev->gendisk, rdev->bdev,
7000                                           rdev->new_data_offset << 9);
7001                         /*
7002                          * discard_zeroes_data is required, otherwise data
7003                          * could be lost. Consider a scenario: discard a stripe
7004                          * (the stripe could be inconsistent if
7005                          * discard_zeroes_data is 0); write one disk of the
7006                          * stripe (the stripe could be inconsistent again
7007                          * depending on which disks are used to calculate
7008                          * parity); the disk is broken; The stripe data of this
7009                          * disk is lost.
7010                          */
7011                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7012                             !bdev_get_queue(rdev->bdev)->
7013                                                 limits.discard_zeroes_data)
7014                                 discard_supported = false;
7015                         /* Unfortunately, discard_zeroes_data is not currently
7016                          * a guarantee - just a hint.  So we only allow DISCARD
7017                          * if the sysadmin has confirmed that only safe devices
7018                          * are in use by setting a module parameter.
7019                          */
7020                         if (!devices_handle_discard_safely) {
7021                                 if (discard_supported) {
7022                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7023                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7024                                 }
7025                                 discard_supported = false;
7026                         }
7027                 }
7028
7029                 if (discard_supported &&
7030                     mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7031                     mddev->queue->limits.discard_granularity >= stripe)
7032                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7033                                                 mddev->queue);
7034                 else
7035                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7036                                                 mddev->queue);
7037         }
7038
7039         if (journal_dev) {
7040                 char b[BDEVNAME_SIZE];
7041
7042                 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7043                        mdname(mddev), bdevname(journal_dev->bdev, b));
7044                 r5l_init_log(conf, journal_dev);
7045         }
7046
7047         return 0;
7048 abort:
7049         md_unregister_thread(&mddev->thread);
7050         print_raid5_conf(conf);
7051         free_conf(conf);
7052         mddev->private = NULL;
7053         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
7054         return -EIO;
7055 }
7056
7057 static void raid5_free(struct mddev *mddev, void *priv)
7058 {
7059         struct r5conf *conf = priv;
7060
7061         free_conf(conf);
7062         mddev->to_remove = &raid5_attrs_group;
7063 }
7064
7065 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7066 {
7067         struct r5conf *conf = mddev->private;
7068         int i;
7069
7070         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7071                 conf->chunk_sectors / 2, mddev->layout);
7072         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7073         rcu_read_lock();
7074         for (i = 0; i < conf->raid_disks; i++) {
7075                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7076                 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7077         }
7078         rcu_read_unlock();
7079         seq_printf (seq, "]");
7080 }
7081
7082 static void print_raid5_conf (struct r5conf *conf)
7083 {
7084         int i;
7085         struct disk_info *tmp;
7086
7087         printk(KERN_DEBUG "RAID conf printout:\n");
7088         if (!conf) {
7089                 printk("(conf==NULL)\n");
7090                 return;
7091         }
7092         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7093                conf->raid_disks,
7094                conf->raid_disks - conf->mddev->degraded);
7095
7096         for (i = 0; i < conf->raid_disks; i++) {
7097                 char b[BDEVNAME_SIZE];
7098                 tmp = conf->disks + i;
7099                 if (tmp->rdev)
7100                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7101                                i, !test_bit(Faulty, &tmp->rdev->flags),
7102                                bdevname(tmp->rdev->bdev, b));
7103         }
7104 }
7105
7106 static int raid5_spare_active(struct mddev *mddev)
7107 {
7108         int i;
7109         struct r5conf *conf = mddev->private;
7110         struct disk_info *tmp;
7111         int count = 0;
7112         unsigned long flags;
7113
7114         for (i = 0; i < conf->raid_disks; i++) {
7115                 tmp = conf->disks + i;
7116                 if (tmp->replacement
7117                     && tmp->replacement->recovery_offset == MaxSector
7118                     && !test_bit(Faulty, &tmp->replacement->flags)
7119                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7120                         /* Replacement has just become active. */
7121                         if (!tmp->rdev
7122                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7123                                 count++;
7124                         if (tmp->rdev) {
7125                                 /* Replaced device not technically faulty,
7126                                  * but we need to be sure it gets removed
7127                                  * and never re-added.
7128                                  */
7129                                 set_bit(Faulty, &tmp->rdev->flags);
7130                                 sysfs_notify_dirent_safe(
7131                                         tmp->rdev->sysfs_state);
7132                         }
7133                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7134                 } else if (tmp->rdev
7135                     && tmp->rdev->recovery_offset == MaxSector
7136                     && !test_bit(Faulty, &tmp->rdev->flags)
7137                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7138                         count++;
7139                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7140                 }
7141         }
7142         spin_lock_irqsave(&conf->device_lock, flags);
7143         mddev->degraded = calc_degraded(conf);
7144         spin_unlock_irqrestore(&conf->device_lock, flags);
7145         print_raid5_conf(conf);
7146         return count;
7147 }
7148
7149 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7150 {
7151         struct r5conf *conf = mddev->private;
7152         int err = 0;
7153         int number = rdev->raid_disk;
7154         struct md_rdev **rdevp;
7155         struct disk_info *p = conf->disks + number;
7156
7157         print_raid5_conf(conf);
7158         if (test_bit(Journal, &rdev->flags) && conf->log) {
7159                 struct r5l_log *log;
7160                 /*
7161                  * we can't wait pending write here, as this is called in
7162                  * raid5d, wait will deadlock.
7163                  */
7164                 if (atomic_read(&mddev->writes_pending))
7165                         return -EBUSY;
7166                 log = conf->log;
7167                 conf->log = NULL;
7168                 synchronize_rcu();
7169                 r5l_exit_log(log);
7170                 return 0;
7171         }
7172         if (rdev == p->rdev)
7173                 rdevp = &p->rdev;
7174         else if (rdev == p->replacement)
7175                 rdevp = &p->replacement;
7176         else
7177                 return 0;
7178
7179         if (number >= conf->raid_disks &&
7180             conf->reshape_progress == MaxSector)
7181                 clear_bit(In_sync, &rdev->flags);
7182
7183         if (test_bit(In_sync, &rdev->flags) ||
7184             atomic_read(&rdev->nr_pending)) {
7185                 err = -EBUSY;
7186                 goto abort;
7187         }
7188         /* Only remove non-faulty devices if recovery
7189          * isn't possible.
7190          */
7191         if (!test_bit(Faulty, &rdev->flags) &&
7192             mddev->recovery_disabled != conf->recovery_disabled &&
7193             !has_failed(conf) &&
7194             (!p->replacement || p->replacement == rdev) &&
7195             number < conf->raid_disks) {
7196                 err = -EBUSY;
7197                 goto abort;
7198         }
7199         *rdevp = NULL;
7200         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7201                 synchronize_rcu();
7202                 if (atomic_read(&rdev->nr_pending)) {
7203                         /* lost the race, try later */
7204                         err = -EBUSY;
7205                         *rdevp = rdev;
7206                 }
7207         }
7208         if (p->replacement) {
7209                 /* We must have just cleared 'rdev' */
7210                 p->rdev = p->replacement;
7211                 clear_bit(Replacement, &p->replacement->flags);
7212                 smp_mb(); /* Make sure other CPUs may see both as identical
7213                            * but will never see neither - if they are careful
7214                            */
7215                 p->replacement = NULL;
7216                 clear_bit(WantReplacement, &rdev->flags);
7217         } else
7218                 /* We might have just removed the Replacement as faulty-
7219                  * clear the bit just in case
7220                  */
7221                 clear_bit(WantReplacement, &rdev->flags);
7222 abort:
7223
7224         print_raid5_conf(conf);
7225         return err;
7226 }
7227
7228 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7229 {
7230         struct r5conf *conf = mddev->private;
7231         int err = -EEXIST;
7232         int disk;
7233         struct disk_info *p;
7234         int first = 0;
7235         int last = conf->raid_disks - 1;
7236
7237         if (test_bit(Journal, &rdev->flags)) {
7238                 char b[BDEVNAME_SIZE];
7239                 if (conf->log)
7240                         return -EBUSY;
7241
7242                 rdev->raid_disk = 0;
7243                 /*
7244                  * The array is in readonly mode if journal is missing, so no
7245                  * write requests running. We should be safe
7246                  */
7247                 r5l_init_log(conf, rdev);
7248                 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7249                        mdname(mddev), bdevname(rdev->bdev, b));
7250                 return 0;
7251         }
7252         if (mddev->recovery_disabled == conf->recovery_disabled)
7253                 return -EBUSY;
7254
7255         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7256                 /* no point adding a device */
7257                 return -EINVAL;
7258
7259         if (rdev->raid_disk >= 0)
7260                 first = last = rdev->raid_disk;
7261
7262         /*
7263          * find the disk ... but prefer rdev->saved_raid_disk
7264          * if possible.
7265          */
7266         if (rdev->saved_raid_disk >= 0 &&
7267             rdev->saved_raid_disk >= first &&
7268             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7269                 first = rdev->saved_raid_disk;
7270
7271         for (disk = first; disk <= last; disk++) {
7272                 p = conf->disks + disk;
7273                 if (p->rdev == NULL) {
7274                         clear_bit(In_sync, &rdev->flags);
7275                         rdev->raid_disk = disk;
7276                         err = 0;
7277                         if (rdev->saved_raid_disk != disk)
7278                                 conf->fullsync = 1;
7279                         rcu_assign_pointer(p->rdev, rdev);
7280                         goto out;
7281                 }
7282         }
7283         for (disk = first; disk <= last; disk++) {
7284                 p = conf->disks + disk;
7285                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7286                     p->replacement == NULL) {
7287                         clear_bit(In_sync, &rdev->flags);
7288                         set_bit(Replacement, &rdev->flags);
7289                         rdev->raid_disk = disk;
7290                         err = 0;
7291                         conf->fullsync = 1;
7292                         rcu_assign_pointer(p->replacement, rdev);
7293                         break;
7294                 }
7295         }
7296 out:
7297         print_raid5_conf(conf);
7298         return err;
7299 }
7300
7301 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7302 {
7303         /* no resync is happening, and there is enough space
7304          * on all devices, so we can resize.
7305          * We need to make sure resync covers any new space.
7306          * If the array is shrinking we should possibly wait until
7307          * any io in the removed space completes, but it hardly seems
7308          * worth it.
7309          */
7310         sector_t newsize;
7311         struct r5conf *conf = mddev->private;
7312
7313         if (conf->log)
7314                 return -EINVAL;
7315         sectors &= ~((sector_t)conf->chunk_sectors - 1);
7316         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7317         if (mddev->external_size &&
7318             mddev->array_sectors > newsize)
7319                 return -EINVAL;
7320         if (mddev->bitmap) {
7321                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7322                 if (ret)
7323                         return ret;
7324         }
7325         md_set_array_sectors(mddev, newsize);
7326         set_capacity(mddev->gendisk, mddev->array_sectors);
7327         revalidate_disk(mddev->gendisk);
7328         if (sectors > mddev->dev_sectors &&
7329             mddev->recovery_cp > mddev->dev_sectors) {
7330                 mddev->recovery_cp = mddev->dev_sectors;
7331                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7332         }
7333         mddev->dev_sectors = sectors;
7334         mddev->resync_max_sectors = sectors;
7335         return 0;
7336 }
7337
7338 static int check_stripe_cache(struct mddev *mddev)
7339 {
7340         /* Can only proceed if there are plenty of stripe_heads.
7341          * We need a minimum of one full stripe,, and for sensible progress
7342          * it is best to have about 4 times that.
7343          * If we require 4 times, then the default 256 4K stripe_heads will
7344          * allow for chunk sizes up to 256K, which is probably OK.
7345          * If the chunk size is greater, user-space should request more
7346          * stripe_heads first.
7347          */
7348         struct r5conf *conf = mddev->private;
7349         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7350             > conf->min_nr_stripes ||
7351             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7352             > conf->min_nr_stripes) {
7353                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7354                        mdname(mddev),
7355                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7356                         / STRIPE_SIZE)*4);
7357                 return 0;
7358         }
7359         return 1;
7360 }
7361
7362 static int check_reshape(struct mddev *mddev)
7363 {
7364         struct r5conf *conf = mddev->private;
7365
7366         if (conf->log)
7367                 return -EINVAL;
7368         if (mddev->delta_disks == 0 &&
7369             mddev->new_layout == mddev->layout &&
7370             mddev->new_chunk_sectors == mddev->chunk_sectors)
7371                 return 0; /* nothing to do */
7372         if (has_failed(conf))
7373                 return -EINVAL;
7374         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7375                 /* We might be able to shrink, but the devices must
7376                  * be made bigger first.
7377                  * For raid6, 4 is the minimum size.
7378                  * Otherwise 2 is the minimum
7379                  */
7380                 int min = 2;
7381                 if (mddev->level == 6)
7382                         min = 4;
7383                 if (mddev->raid_disks + mddev->delta_disks < min)
7384                         return -EINVAL;
7385         }
7386
7387         if (!check_stripe_cache(mddev))
7388                 return -ENOSPC;
7389
7390         if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7391             mddev->delta_disks > 0)
7392                 if (resize_chunks(conf,
7393                                   conf->previous_raid_disks
7394                                   + max(0, mddev->delta_disks),
7395                                   max(mddev->new_chunk_sectors,
7396                                       mddev->chunk_sectors)
7397                             ) < 0)
7398                         return -ENOMEM;
7399         return resize_stripes(conf, (conf->previous_raid_disks
7400                                      + mddev->delta_disks));
7401 }
7402
7403 static int raid5_start_reshape(struct mddev *mddev)
7404 {
7405         struct r5conf *conf = mddev->private;
7406         struct md_rdev *rdev;
7407         int spares = 0;
7408         unsigned long flags;
7409
7410         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7411                 return -EBUSY;
7412
7413         if (!check_stripe_cache(mddev))
7414                 return -ENOSPC;
7415
7416         if (has_failed(conf))
7417                 return -EINVAL;
7418
7419         rdev_for_each(rdev, mddev) {
7420                 if (!test_bit(In_sync, &rdev->flags)
7421                     && !test_bit(Faulty, &rdev->flags))
7422                         spares++;
7423         }
7424
7425         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7426                 /* Not enough devices even to make a degraded array
7427                  * of that size
7428                  */
7429                 return -EINVAL;
7430
7431         /* Refuse to reduce size of the array.  Any reductions in
7432          * array size must be through explicit setting of array_size
7433          * attribute.
7434          */
7435         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7436             < mddev->array_sectors) {
7437                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7438                        "before number of disks\n", mdname(mddev));
7439                 return -EINVAL;
7440         }
7441
7442         atomic_set(&conf->reshape_stripes, 0);
7443         spin_lock_irq(&conf->device_lock);
7444         write_seqcount_begin(&conf->gen_lock);
7445         conf->previous_raid_disks = conf->raid_disks;
7446         conf->raid_disks += mddev->delta_disks;
7447         conf->prev_chunk_sectors = conf->chunk_sectors;
7448         conf->chunk_sectors = mddev->new_chunk_sectors;
7449         conf->prev_algo = conf->algorithm;
7450         conf->algorithm = mddev->new_layout;
7451         conf->generation++;
7452         /* Code that selects data_offset needs to see the generation update
7453          * if reshape_progress has been set - so a memory barrier needed.
7454          */
7455         smp_mb();
7456         if (mddev->reshape_backwards)
7457                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7458         else
7459                 conf->reshape_progress = 0;
7460         conf->reshape_safe = conf->reshape_progress;
7461         write_seqcount_end(&conf->gen_lock);
7462         spin_unlock_irq(&conf->device_lock);
7463
7464         /* Now make sure any requests that proceeded on the assumption
7465          * the reshape wasn't running - like Discard or Read - have
7466          * completed.
7467          */
7468         mddev_suspend(mddev);
7469         mddev_resume(mddev);
7470
7471         /* Add some new drives, as many as will fit.
7472          * We know there are enough to make the newly sized array work.
7473          * Don't add devices if we are reducing the number of
7474          * devices in the array.  This is because it is not possible
7475          * to correctly record the "partially reconstructed" state of
7476          * such devices during the reshape and confusion could result.
7477          */
7478         if (mddev->delta_disks >= 0) {
7479                 rdev_for_each(rdev, mddev)
7480                         if (rdev->raid_disk < 0 &&
7481                             !test_bit(Faulty, &rdev->flags)) {
7482                                 if (raid5_add_disk(mddev, rdev) == 0) {
7483                                         if (rdev->raid_disk
7484                                             >= conf->previous_raid_disks)
7485                                                 set_bit(In_sync, &rdev->flags);
7486                                         else
7487                                                 rdev->recovery_offset = 0;
7488
7489                                         if (sysfs_link_rdev(mddev, rdev))
7490                                                 /* Failure here is OK */;
7491                                 }
7492                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7493                                    && !test_bit(Faulty, &rdev->flags)) {
7494                                 /* This is a spare that was manually added */
7495                                 set_bit(In_sync, &rdev->flags);
7496                         }
7497
7498                 /* When a reshape changes the number of devices,
7499                  * ->degraded is measured against the larger of the
7500                  * pre and post number of devices.
7501                  */
7502                 spin_lock_irqsave(&conf->device_lock, flags);
7503                 mddev->degraded = calc_degraded(conf);
7504                 spin_unlock_irqrestore(&conf->device_lock, flags);
7505         }
7506         mddev->raid_disks = conf->raid_disks;
7507         mddev->reshape_position = conf->reshape_progress;
7508         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7509
7510         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7511         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7512         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7513         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7514         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7515         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7516                                                 "reshape");
7517         if (!mddev->sync_thread) {
7518                 mddev->recovery = 0;
7519                 spin_lock_irq(&conf->device_lock);
7520                 write_seqcount_begin(&conf->gen_lock);
7521                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7522                 mddev->new_chunk_sectors =
7523                         conf->chunk_sectors = conf->prev_chunk_sectors;
7524                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7525                 rdev_for_each(rdev, mddev)
7526                         rdev->new_data_offset = rdev->data_offset;
7527                 smp_wmb();
7528                 conf->generation --;
7529                 conf->reshape_progress = MaxSector;
7530                 mddev->reshape_position = MaxSector;
7531                 write_seqcount_end(&conf->gen_lock);
7532                 spin_unlock_irq(&conf->device_lock);
7533                 return -EAGAIN;
7534         }
7535         conf->reshape_checkpoint = jiffies;
7536         md_wakeup_thread(mddev->sync_thread);
7537         md_new_event(mddev);
7538         return 0;
7539 }
7540
7541 /* This is called from the reshape thread and should make any
7542  * changes needed in 'conf'
7543  */
7544 static void end_reshape(struct r5conf *conf)
7545 {
7546
7547         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7548                 struct md_rdev *rdev;
7549
7550                 spin_lock_irq(&conf->device_lock);
7551                 conf->previous_raid_disks = conf->raid_disks;
7552                 rdev_for_each(rdev, conf->mddev)
7553                         rdev->data_offset = rdev->new_data_offset;
7554                 smp_wmb();
7555                 conf->reshape_progress = MaxSector;
7556                 conf->mddev->reshape_position = MaxSector;
7557                 spin_unlock_irq(&conf->device_lock);
7558                 wake_up(&conf->wait_for_overlap);
7559
7560                 /* read-ahead size must cover two whole stripes, which is
7561                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7562                  */
7563                 if (conf->mddev->queue) {
7564                         int data_disks = conf->raid_disks - conf->max_degraded;
7565                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7566                                                    / PAGE_SIZE);
7567                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7568                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7569                 }
7570         }
7571 }
7572
7573 /* This is called from the raid5d thread with mddev_lock held.
7574  * It makes config changes to the device.
7575  */
7576 static void raid5_finish_reshape(struct mddev *mddev)
7577 {
7578         struct r5conf *conf = mddev->private;
7579
7580         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7581
7582                 if (mddev->delta_disks > 0) {
7583                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7584                         if (mddev->queue) {
7585                                 set_capacity(mddev->gendisk, mddev->array_sectors);
7586                                 revalidate_disk(mddev->gendisk);
7587                         }
7588                 } else {
7589                         int d;
7590                         spin_lock_irq(&conf->device_lock);
7591                         mddev->degraded = calc_degraded(conf);
7592                         spin_unlock_irq(&conf->device_lock);
7593                         for (d = conf->raid_disks ;
7594                              d < conf->raid_disks - mddev->delta_disks;
7595                              d++) {
7596                                 struct md_rdev *rdev = conf->disks[d].rdev;
7597                                 if (rdev)
7598                                         clear_bit(In_sync, &rdev->flags);
7599                                 rdev = conf->disks[d].replacement;
7600                                 if (rdev)
7601                                         clear_bit(In_sync, &rdev->flags);
7602                         }
7603                 }
7604                 mddev->layout = conf->algorithm;
7605                 mddev->chunk_sectors = conf->chunk_sectors;
7606                 mddev->reshape_position = MaxSector;
7607                 mddev->delta_disks = 0;
7608                 mddev->reshape_backwards = 0;
7609         }
7610 }
7611
7612 static void raid5_quiesce(struct mddev *mddev, int state)
7613 {
7614         struct r5conf *conf = mddev->private;
7615
7616         switch(state) {
7617         case 2: /* resume for a suspend */
7618                 wake_up(&conf->wait_for_overlap);
7619                 break;
7620
7621         case 1: /* stop all writes */
7622                 lock_all_device_hash_locks_irq(conf);
7623                 /* '2' tells resync/reshape to pause so that all
7624                  * active stripes can drain
7625                  */
7626                 conf->quiesce = 2;
7627                 wait_event_cmd(conf->wait_for_quiescent,
7628                                     atomic_read(&conf->active_stripes) == 0 &&
7629                                     atomic_read(&conf->active_aligned_reads) == 0,
7630                                     unlock_all_device_hash_locks_irq(conf),
7631                                     lock_all_device_hash_locks_irq(conf));
7632                 conf->quiesce = 1;
7633                 unlock_all_device_hash_locks_irq(conf);
7634                 /* allow reshape to continue */
7635                 wake_up(&conf->wait_for_overlap);
7636                 break;
7637
7638         case 0: /* re-enable writes */
7639                 lock_all_device_hash_locks_irq(conf);
7640                 conf->quiesce = 0;
7641                 wake_up(&conf->wait_for_quiescent);
7642                 wake_up(&conf->wait_for_overlap);
7643                 unlock_all_device_hash_locks_irq(conf);
7644                 break;
7645         }
7646         r5l_quiesce(conf->log, state);
7647 }
7648
7649 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7650 {
7651         struct r0conf *raid0_conf = mddev->private;
7652         sector_t sectors;
7653
7654         /* for raid0 takeover only one zone is supported */
7655         if (raid0_conf->nr_strip_zones > 1) {
7656                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7657                        mdname(mddev));
7658                 return ERR_PTR(-EINVAL);
7659         }
7660
7661         sectors = raid0_conf->strip_zone[0].zone_end;
7662         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7663         mddev->dev_sectors = sectors;
7664         mddev->new_level = level;
7665         mddev->new_layout = ALGORITHM_PARITY_N;
7666         mddev->new_chunk_sectors = mddev->chunk_sectors;
7667         mddev->raid_disks += 1;
7668         mddev->delta_disks = 1;
7669         /* make sure it will be not marked as dirty */
7670         mddev->recovery_cp = MaxSector;
7671
7672         return setup_conf(mddev);
7673 }
7674
7675 static void *raid5_takeover_raid1(struct mddev *mddev)
7676 {
7677         int chunksect;
7678
7679         if (mddev->raid_disks != 2 ||
7680             mddev->degraded > 1)
7681                 return ERR_PTR(-EINVAL);
7682
7683         /* Should check if there are write-behind devices? */
7684
7685         chunksect = 64*2; /* 64K by default */
7686
7687         /* The array must be an exact multiple of chunksize */
7688         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7689                 chunksect >>= 1;
7690
7691         if ((chunksect<<9) < STRIPE_SIZE)
7692                 /* array size does not allow a suitable chunk size */
7693                 return ERR_PTR(-EINVAL);
7694
7695         mddev->new_level = 5;
7696         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7697         mddev->new_chunk_sectors = chunksect;
7698
7699         return setup_conf(mddev);
7700 }
7701
7702 static void *raid5_takeover_raid6(struct mddev *mddev)
7703 {
7704         int new_layout;
7705
7706         switch (mddev->layout) {
7707         case ALGORITHM_LEFT_ASYMMETRIC_6:
7708                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7709                 break;
7710         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7711                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7712                 break;
7713         case ALGORITHM_LEFT_SYMMETRIC_6:
7714                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7715                 break;
7716         case ALGORITHM_RIGHT_SYMMETRIC_6:
7717                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7718                 break;
7719         case ALGORITHM_PARITY_0_6:
7720                 new_layout = ALGORITHM_PARITY_0;
7721                 break;
7722         case ALGORITHM_PARITY_N:
7723                 new_layout = ALGORITHM_PARITY_N;
7724                 break;
7725         default:
7726                 return ERR_PTR(-EINVAL);
7727         }
7728         mddev->new_level = 5;
7729         mddev->new_layout = new_layout;
7730         mddev->delta_disks = -1;
7731         mddev->raid_disks -= 1;
7732         return setup_conf(mddev);
7733 }
7734
7735 static int raid5_check_reshape(struct mddev *mddev)
7736 {
7737         /* For a 2-drive array, the layout and chunk size can be changed
7738          * immediately as not restriping is needed.
7739          * For larger arrays we record the new value - after validation
7740          * to be used by a reshape pass.
7741          */
7742         struct r5conf *conf = mddev->private;
7743         int new_chunk = mddev->new_chunk_sectors;
7744
7745         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7746                 return -EINVAL;
7747         if (new_chunk > 0) {
7748                 if (!is_power_of_2(new_chunk))
7749                         return -EINVAL;
7750                 if (new_chunk < (PAGE_SIZE>>9))
7751                         return -EINVAL;
7752                 if (mddev->array_sectors & (new_chunk-1))
7753                         /* not factor of array size */
7754                         return -EINVAL;
7755         }
7756
7757         /* They look valid */
7758
7759         if (mddev->raid_disks == 2) {
7760                 /* can make the change immediately */
7761                 if (mddev->new_layout >= 0) {
7762                         conf->algorithm = mddev->new_layout;
7763                         mddev->layout = mddev->new_layout;
7764                 }
7765                 if (new_chunk > 0) {
7766                         conf->chunk_sectors = new_chunk ;
7767                         mddev->chunk_sectors = new_chunk;
7768                 }
7769                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7770                 md_wakeup_thread(mddev->thread);
7771         }
7772         return check_reshape(mddev);
7773 }
7774
7775 static int raid6_check_reshape(struct mddev *mddev)
7776 {
7777         int new_chunk = mddev->new_chunk_sectors;
7778
7779         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7780                 return -EINVAL;
7781         if (new_chunk > 0) {
7782                 if (!is_power_of_2(new_chunk))
7783                         return -EINVAL;
7784                 if (new_chunk < (PAGE_SIZE >> 9))
7785                         return -EINVAL;
7786                 if (mddev->array_sectors & (new_chunk-1))
7787                         /* not factor of array size */
7788                         return -EINVAL;
7789         }
7790
7791         /* They look valid */
7792         return check_reshape(mddev);
7793 }
7794
7795 static void *raid5_takeover(struct mddev *mddev)
7796 {
7797         /* raid5 can take over:
7798          *  raid0 - if there is only one strip zone - make it a raid4 layout
7799          *  raid1 - if there are two drives.  We need to know the chunk size
7800          *  raid4 - trivial - just use a raid4 layout.
7801          *  raid6 - Providing it is a *_6 layout
7802          */
7803         if (mddev->level == 0)
7804                 return raid45_takeover_raid0(mddev, 5);
7805         if (mddev->level == 1)
7806                 return raid5_takeover_raid1(mddev);
7807         if (mddev->level == 4) {
7808                 mddev->new_layout = ALGORITHM_PARITY_N;
7809                 mddev->new_level = 5;
7810                 return setup_conf(mddev);
7811         }
7812         if (mddev->level == 6)
7813                 return raid5_takeover_raid6(mddev);
7814
7815         return ERR_PTR(-EINVAL);
7816 }
7817
7818 static void *raid4_takeover(struct mddev *mddev)
7819 {
7820         /* raid4 can take over:
7821          *  raid0 - if there is only one strip zone
7822          *  raid5 - if layout is right
7823          */
7824         if (mddev->level == 0)
7825                 return raid45_takeover_raid0(mddev, 4);
7826         if (mddev->level == 5 &&
7827             mddev->layout == ALGORITHM_PARITY_N) {
7828                 mddev->new_layout = 0;
7829                 mddev->new_level = 4;
7830                 return setup_conf(mddev);
7831         }
7832         return ERR_PTR(-EINVAL);
7833 }
7834
7835 static struct md_personality raid5_personality;
7836
7837 static void *raid6_takeover(struct mddev *mddev)
7838 {
7839         /* Currently can only take over a raid5.  We map the
7840          * personality to an equivalent raid6 personality
7841          * with the Q block at the end.
7842          */
7843         int new_layout;
7844
7845         if (mddev->pers != &raid5_personality)
7846                 return ERR_PTR(-EINVAL);
7847         if (mddev->degraded > 1)
7848                 return ERR_PTR(-EINVAL);
7849         if (mddev->raid_disks > 253)
7850                 return ERR_PTR(-EINVAL);
7851         if (mddev->raid_disks < 3)
7852                 return ERR_PTR(-EINVAL);
7853
7854         switch (mddev->layout) {
7855         case ALGORITHM_LEFT_ASYMMETRIC:
7856                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7857                 break;
7858         case ALGORITHM_RIGHT_ASYMMETRIC:
7859                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7860                 break;
7861         case ALGORITHM_LEFT_SYMMETRIC:
7862                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7863                 break;
7864         case ALGORITHM_RIGHT_SYMMETRIC:
7865                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7866                 break;
7867         case ALGORITHM_PARITY_0:
7868                 new_layout = ALGORITHM_PARITY_0_6;
7869                 break;
7870         case ALGORITHM_PARITY_N:
7871                 new_layout = ALGORITHM_PARITY_N;
7872                 break;
7873         default:
7874                 return ERR_PTR(-EINVAL);
7875         }
7876         mddev->new_level = 6;
7877         mddev->new_layout = new_layout;
7878         mddev->delta_disks = 1;
7879         mddev->raid_disks += 1;
7880         return setup_conf(mddev);
7881 }
7882
7883 static struct md_personality raid6_personality =
7884 {
7885         .name           = "raid6",
7886         .level          = 6,
7887         .owner          = THIS_MODULE,
7888         .make_request   = raid5_make_request,
7889         .run            = raid5_run,
7890         .free           = raid5_free,
7891         .status         = raid5_status,
7892         .error_handler  = raid5_error,
7893         .hot_add_disk   = raid5_add_disk,
7894         .hot_remove_disk= raid5_remove_disk,
7895         .spare_active   = raid5_spare_active,
7896         .sync_request   = raid5_sync_request,
7897         .resize         = raid5_resize,
7898         .size           = raid5_size,
7899         .check_reshape  = raid6_check_reshape,
7900         .start_reshape  = raid5_start_reshape,
7901         .finish_reshape = raid5_finish_reshape,
7902         .quiesce        = raid5_quiesce,
7903         .takeover       = raid6_takeover,
7904         .congested      = raid5_congested,
7905 };
7906 static struct md_personality raid5_personality =
7907 {
7908         .name           = "raid5",
7909         .level          = 5,
7910         .owner          = THIS_MODULE,
7911         .make_request   = raid5_make_request,
7912         .run            = raid5_run,
7913         .free           = raid5_free,
7914         .status         = raid5_status,
7915         .error_handler  = raid5_error,
7916         .hot_add_disk   = raid5_add_disk,
7917         .hot_remove_disk= raid5_remove_disk,
7918         .spare_active   = raid5_spare_active,
7919         .sync_request   = raid5_sync_request,
7920         .resize         = raid5_resize,
7921         .size           = raid5_size,
7922         .check_reshape  = raid5_check_reshape,
7923         .start_reshape  = raid5_start_reshape,
7924         .finish_reshape = raid5_finish_reshape,
7925         .quiesce        = raid5_quiesce,
7926         .takeover       = raid5_takeover,
7927         .congested      = raid5_congested,
7928 };
7929
7930 static struct md_personality raid4_personality =
7931 {
7932         .name           = "raid4",
7933         .level          = 4,
7934         .owner          = THIS_MODULE,
7935         .make_request   = raid5_make_request,
7936         .run            = raid5_run,
7937         .free           = raid5_free,
7938         .status         = raid5_status,
7939         .error_handler  = raid5_error,
7940         .hot_add_disk   = raid5_add_disk,
7941         .hot_remove_disk= raid5_remove_disk,
7942         .spare_active   = raid5_spare_active,
7943         .sync_request   = raid5_sync_request,
7944         .resize         = raid5_resize,
7945         .size           = raid5_size,
7946         .check_reshape  = raid5_check_reshape,
7947         .start_reshape  = raid5_start_reshape,
7948         .finish_reshape = raid5_finish_reshape,
7949         .quiesce        = raid5_quiesce,
7950         .takeover       = raid4_takeover,
7951         .congested      = raid5_congested,
7952 };
7953
7954 static int __init raid5_init(void)
7955 {
7956         raid5_wq = alloc_workqueue("raid5wq",
7957                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7958         if (!raid5_wq)
7959                 return -ENOMEM;
7960         register_md_personality(&raid6_personality);
7961         register_md_personality(&raid5_personality);
7962         register_md_personality(&raid4_personality);
7963         return 0;
7964 }
7965
7966 static void raid5_exit(void)
7967 {
7968         unregister_md_personality(&raid6_personality);
7969         unregister_md_personality(&raid5_personality);
7970         unregister_md_personality(&raid4_personality);
7971         destroy_workqueue(raid5_wq);
7972 }
7973
7974 module_init(raid5_init);
7975 module_exit(raid5_exit);
7976 MODULE_LICENSE("GPL");
7977 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7978 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7979 MODULE_ALIAS("md-raid5");
7980 MODULE_ALIAS("md-raid4");
7981 MODULE_ALIAS("md-level-5");
7982 MODULE_ALIAS("md-level-4");
7983 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7984 MODULE_ALIAS("md-raid6");
7985 MODULE_ALIAS("md-level-6");
7986
7987 /* This used to be two separate modules, they were: */
7988 MODULE_ALIAS("raid5");
7989 MODULE_ALIAS("raid6");