1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
6 * Copyright (C) 2002, 2003 H. Peter Anvin
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27 * the number of the batch it will be in. This is seq_flush+1.
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
38 #include <linux/blkdev.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/raid/pq.h>
42 #include <linux/async_tx.h>
43 #include <linux/module.h>
44 #include <linux/async.h>
45 #include <linux/seq_file.h>
46 #include <linux/cpu.h>
47 #include <linux/slab.h>
48 #include <linux/ratelimit.h>
49 #include <linux/nodemask.h>
51 #include <trace/events/block.h>
52 #include <linux/list_sort.h>
57 #include "md-bitmap.h"
58 #include "raid5-log.h"
60 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
62 #define cpu_to_group(cpu) cpu_to_node(cpu)
63 #define ANY_GROUP NUMA_NO_NODE
65 #define RAID5_MAX_REQ_STRIPES 256
67 static bool devices_handle_discard_safely = false;
68 module_param(devices_handle_discard_safely, bool, 0644);
69 MODULE_PARM_DESC(devices_handle_discard_safely,
70 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
71 static struct workqueue_struct *raid5_wq;
73 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
76 return &conf->stripe_hashtbl[hash];
79 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
81 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
84 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
85 __acquires(&conf->device_lock)
87 spin_lock_irq(conf->hash_locks + hash);
88 spin_lock(&conf->device_lock);
91 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
92 __releases(&conf->device_lock)
94 spin_unlock(&conf->device_lock);
95 spin_unlock_irq(conf->hash_locks + hash);
98 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
99 __acquires(&conf->device_lock)
102 spin_lock_irq(conf->hash_locks);
103 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
104 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
105 spin_lock(&conf->device_lock);
108 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
109 __releases(&conf->device_lock)
112 spin_unlock(&conf->device_lock);
113 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
114 spin_unlock(conf->hash_locks + i);
115 spin_unlock_irq(conf->hash_locks);
118 /* Find first data disk in a raid6 stripe */
119 static inline int raid6_d0(struct stripe_head *sh)
122 /* ddf always start from first device */
124 /* md starts just after Q block */
125 if (sh->qd_idx == sh->disks - 1)
128 return sh->qd_idx + 1;
130 static inline int raid6_next_disk(int disk, int raid_disks)
133 return (disk < raid_disks) ? disk : 0;
136 /* When walking through the disks in a raid5, starting at raid6_d0,
137 * We need to map each disk to a 'slot', where the data disks are slot
138 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
139 * is raid_disks-1. This help does that mapping.
141 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
142 int *count, int syndrome_disks)
148 if (idx == sh->pd_idx)
149 return syndrome_disks;
150 if (idx == sh->qd_idx)
151 return syndrome_disks + 1;
157 static void print_raid5_conf (struct r5conf *conf);
159 static int stripe_operations_active(struct stripe_head *sh)
161 return sh->check_state || sh->reconstruct_state ||
162 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
163 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
166 static bool stripe_is_lowprio(struct stripe_head *sh)
168 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
169 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
170 !test_bit(STRIPE_R5C_CACHING, &sh->state);
173 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
174 __must_hold(&sh->raid_conf->device_lock)
176 struct r5conf *conf = sh->raid_conf;
177 struct r5worker_group *group;
179 int i, cpu = sh->cpu;
181 if (!cpu_online(cpu)) {
182 cpu = cpumask_any(cpu_online_mask);
186 if (list_empty(&sh->lru)) {
187 struct r5worker_group *group;
188 group = conf->worker_groups + cpu_to_group(cpu);
189 if (stripe_is_lowprio(sh))
190 list_add_tail(&sh->lru, &group->loprio_list);
192 list_add_tail(&sh->lru, &group->handle_list);
193 group->stripes_cnt++;
197 if (conf->worker_cnt_per_group == 0) {
198 md_wakeup_thread(conf->mddev->thread);
202 group = conf->worker_groups + cpu_to_group(sh->cpu);
204 group->workers[0].working = true;
205 /* at least one worker should run to avoid race */
206 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
208 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
209 /* wakeup more workers */
210 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
211 if (group->workers[i].working == false) {
212 group->workers[i].working = true;
213 queue_work_on(sh->cpu, raid5_wq,
214 &group->workers[i].work);
220 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
221 struct list_head *temp_inactive_list)
222 __must_hold(&conf->device_lock)
225 int injournal = 0; /* number of date pages with R5_InJournal */
227 BUG_ON(!list_empty(&sh->lru));
228 BUG_ON(atomic_read(&conf->active_stripes)==0);
230 if (r5c_is_writeback(conf->log))
231 for (i = sh->disks; i--; )
232 if (test_bit(R5_InJournal, &sh->dev[i].flags))
235 * In the following cases, the stripe cannot be released to cached
236 * lists. Therefore, we make the stripe write out and set
238 * 1. when quiesce in r5c write back;
239 * 2. when resync is requested fot the stripe.
241 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
242 (conf->quiesce && r5c_is_writeback(conf->log) &&
243 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
244 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
245 r5c_make_stripe_write_out(sh);
246 set_bit(STRIPE_HANDLE, &sh->state);
249 if (test_bit(STRIPE_HANDLE, &sh->state)) {
250 if (test_bit(STRIPE_DELAYED, &sh->state) &&
251 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
252 list_add_tail(&sh->lru, &conf->delayed_list);
253 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
254 sh->bm_seq - conf->seq_write > 0)
255 list_add_tail(&sh->lru, &conf->bitmap_list);
257 clear_bit(STRIPE_DELAYED, &sh->state);
258 clear_bit(STRIPE_BIT_DELAY, &sh->state);
259 if (conf->worker_cnt_per_group == 0) {
260 if (stripe_is_lowprio(sh))
261 list_add_tail(&sh->lru,
264 list_add_tail(&sh->lru,
267 raid5_wakeup_stripe_thread(sh);
271 md_wakeup_thread(conf->mddev->thread);
273 BUG_ON(stripe_operations_active(sh));
274 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
275 if (atomic_dec_return(&conf->preread_active_stripes)
277 md_wakeup_thread(conf->mddev->thread);
278 atomic_dec(&conf->active_stripes);
279 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
280 if (!r5c_is_writeback(conf->log))
281 list_add_tail(&sh->lru, temp_inactive_list);
283 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
285 list_add_tail(&sh->lru, temp_inactive_list);
286 else if (injournal == conf->raid_disks - conf->max_degraded) {
288 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
289 atomic_inc(&conf->r5c_cached_full_stripes);
290 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
291 atomic_dec(&conf->r5c_cached_partial_stripes);
292 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
293 r5c_check_cached_full_stripe(conf);
296 * STRIPE_R5C_PARTIAL_STRIPE is set in
297 * r5c_try_caching_write(). No need to
300 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
306 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
307 struct list_head *temp_inactive_list)
308 __must_hold(&conf->device_lock)
310 if (atomic_dec_and_test(&sh->count))
311 do_release_stripe(conf, sh, temp_inactive_list);
315 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
317 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
318 * given time. Adding stripes only takes device lock, while deleting stripes
319 * only takes hash lock.
321 static void release_inactive_stripe_list(struct r5conf *conf,
322 struct list_head *temp_inactive_list,
326 bool do_wakeup = false;
329 if (hash == NR_STRIPE_HASH_LOCKS) {
330 size = NR_STRIPE_HASH_LOCKS;
331 hash = NR_STRIPE_HASH_LOCKS - 1;
335 struct list_head *list = &temp_inactive_list[size - 1];
338 * We don't hold any lock here yet, raid5_get_active_stripe() might
339 * remove stripes from the list
341 if (!list_empty_careful(list)) {
342 spin_lock_irqsave(conf->hash_locks + hash, flags);
343 if (list_empty(conf->inactive_list + hash) &&
345 atomic_dec(&conf->empty_inactive_list_nr);
346 list_splice_tail_init(list, conf->inactive_list + hash);
348 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
355 wake_up(&conf->wait_for_stripe);
356 if (atomic_read(&conf->active_stripes) == 0)
357 wake_up(&conf->wait_for_quiescent);
358 if (conf->retry_read_aligned)
359 md_wakeup_thread(conf->mddev->thread);
363 static int release_stripe_list(struct r5conf *conf,
364 struct list_head *temp_inactive_list)
365 __must_hold(&conf->device_lock)
367 struct stripe_head *sh, *t;
369 struct llist_node *head;
371 head = llist_del_all(&conf->released_stripes);
372 head = llist_reverse_order(head);
373 llist_for_each_entry_safe(sh, t, head, release_list) {
376 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
378 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
380 * Don't worry the bit is set here, because if the bit is set
381 * again, the count is always > 1. This is true for
382 * STRIPE_ON_UNPLUG_LIST bit too.
384 hash = sh->hash_lock_index;
385 __release_stripe(conf, sh, &temp_inactive_list[hash]);
392 void raid5_release_stripe(struct stripe_head *sh)
394 struct r5conf *conf = sh->raid_conf;
396 struct list_head list;
400 /* Avoid release_list until the last reference.
402 if (atomic_add_unless(&sh->count, -1, 1))
405 if (unlikely(!conf->mddev->thread) ||
406 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
408 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
410 md_wakeup_thread(conf->mddev->thread);
413 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
414 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
415 INIT_LIST_HEAD(&list);
416 hash = sh->hash_lock_index;
417 do_release_stripe(conf, sh, &list);
418 spin_unlock_irqrestore(&conf->device_lock, flags);
419 release_inactive_stripe_list(conf, &list, hash);
423 static inline void remove_hash(struct stripe_head *sh)
425 pr_debug("remove_hash(), stripe %llu\n",
426 (unsigned long long)sh->sector);
428 hlist_del_init(&sh->hash);
431 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
433 struct hlist_head *hp = stripe_hash(conf, sh->sector);
435 pr_debug("insert_hash(), stripe %llu\n",
436 (unsigned long long)sh->sector);
438 hlist_add_head(&sh->hash, hp);
441 /* find an idle stripe, make sure it is unhashed, and return it. */
442 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
444 struct stripe_head *sh = NULL;
445 struct list_head *first;
447 if (list_empty(conf->inactive_list + hash))
449 first = (conf->inactive_list + hash)->next;
450 sh = list_entry(first, struct stripe_head, lru);
451 list_del_init(first);
453 atomic_inc(&conf->active_stripes);
454 BUG_ON(hash != sh->hash_lock_index);
455 if (list_empty(conf->inactive_list + hash))
456 atomic_inc(&conf->empty_inactive_list_nr);
461 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
462 static void free_stripe_pages(struct stripe_head *sh)
467 /* Have not allocate page pool */
471 for (i = 0; i < sh->nr_pages; i++) {
479 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
484 for (i = 0; i < sh->nr_pages; i++) {
485 /* The page have allocated. */
491 free_stripe_pages(sh);
500 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
507 /* Each of the sh->dev[i] need one conf->stripe_size */
508 cnt = PAGE_SIZE / conf->stripe_size;
509 nr_pages = (disks + cnt - 1) / cnt;
511 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
514 sh->nr_pages = nr_pages;
515 sh->stripes_per_page = cnt;
520 static void shrink_buffers(struct stripe_head *sh)
523 int num = sh->raid_conf->pool_size;
525 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
526 for (i = 0; i < num ; i++) {
529 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
533 sh->dev[i].page = NULL;
537 for (i = 0; i < num; i++)
538 sh->dev[i].page = NULL;
539 free_stripe_pages(sh); /* Free pages */
543 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
546 int num = sh->raid_conf->pool_size;
548 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
549 for (i = 0; i < num; i++) {
552 if (!(page = alloc_page(gfp))) {
555 sh->dev[i].page = page;
556 sh->dev[i].orig_page = page;
557 sh->dev[i].offset = 0;
560 if (alloc_stripe_pages(sh, gfp))
563 for (i = 0; i < num; i++) {
564 sh->dev[i].page = raid5_get_dev_page(sh, i);
565 sh->dev[i].orig_page = sh->dev[i].page;
566 sh->dev[i].offset = raid5_get_page_offset(sh, i);
572 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
573 struct stripe_head *sh);
575 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
577 struct r5conf *conf = sh->raid_conf;
580 BUG_ON(atomic_read(&sh->count) != 0);
581 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
582 BUG_ON(stripe_operations_active(sh));
583 BUG_ON(sh->batch_head);
585 pr_debug("init_stripe called, stripe %llu\n",
586 (unsigned long long)sector);
588 seq = read_seqcount_begin(&conf->gen_lock);
589 sh->generation = conf->generation - previous;
590 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
592 stripe_set_idx(sector, conf, previous, sh);
595 for (i = sh->disks; i--; ) {
596 struct r5dev *dev = &sh->dev[i];
598 if (dev->toread || dev->read || dev->towrite || dev->written ||
599 test_bit(R5_LOCKED, &dev->flags)) {
600 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
601 (unsigned long long)sh->sector, i, dev->toread,
602 dev->read, dev->towrite, dev->written,
603 test_bit(R5_LOCKED, &dev->flags));
607 dev->sector = raid5_compute_blocknr(sh, i, previous);
609 if (read_seqcount_retry(&conf->gen_lock, seq))
611 sh->overwrite_disks = 0;
612 insert_hash(conf, sh);
613 sh->cpu = smp_processor_id();
614 set_bit(STRIPE_BATCH_READY, &sh->state);
617 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
620 struct stripe_head *sh;
622 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
623 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
624 if (sh->sector == sector && sh->generation == generation)
626 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
630 static struct stripe_head *find_get_stripe(struct r5conf *conf,
631 sector_t sector, short generation, int hash)
633 int inc_empty_inactive_list_flag;
634 struct stripe_head *sh;
636 sh = __find_stripe(conf, sector, generation);
640 if (atomic_inc_not_zero(&sh->count))
644 * Slow path. The reference count is zero which means the stripe must
645 * be on a list (sh->lru). Must remove the stripe from the list that
646 * references it with the device_lock held.
649 spin_lock(&conf->device_lock);
650 if (!atomic_read(&sh->count)) {
651 if (!test_bit(STRIPE_HANDLE, &sh->state))
652 atomic_inc(&conf->active_stripes);
653 BUG_ON(list_empty(&sh->lru) &&
654 !test_bit(STRIPE_EXPANDING, &sh->state));
655 inc_empty_inactive_list_flag = 0;
656 if (!list_empty(conf->inactive_list + hash))
657 inc_empty_inactive_list_flag = 1;
658 list_del_init(&sh->lru);
659 if (list_empty(conf->inactive_list + hash) &&
660 inc_empty_inactive_list_flag)
661 atomic_inc(&conf->empty_inactive_list_nr);
663 sh->group->stripes_cnt--;
667 atomic_inc(&sh->count);
668 spin_unlock(&conf->device_lock);
674 * Need to check if array has failed when deciding whether to:
676 * - remove non-faulty devices
679 * This determination is simple when no reshape is happening.
680 * However if there is a reshape, we need to carefully check
681 * both the before and after sections.
682 * This is because some failed devices may only affect one
683 * of the two sections, and some non-in_sync devices may
684 * be insync in the section most affected by failed devices.
686 * Most calls to this function hold &conf->device_lock. Calls
687 * in raid5_run() do not require the lock as no other threads
688 * have been started yet.
690 int raid5_calc_degraded(struct r5conf *conf)
692 int degraded, degraded2;
697 for (i = 0; i < conf->previous_raid_disks; i++) {
698 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
699 if (rdev && test_bit(Faulty, &rdev->flags))
700 rdev = rcu_dereference(conf->disks[i].replacement);
701 if (!rdev || test_bit(Faulty, &rdev->flags))
703 else if (test_bit(In_sync, &rdev->flags))
706 /* not in-sync or faulty.
707 * If the reshape increases the number of devices,
708 * this is being recovered by the reshape, so
709 * this 'previous' section is not in_sync.
710 * If the number of devices is being reduced however,
711 * the device can only be part of the array if
712 * we are reverting a reshape, so this section will
715 if (conf->raid_disks >= conf->previous_raid_disks)
719 if (conf->raid_disks == conf->previous_raid_disks)
723 for (i = 0; i < conf->raid_disks; i++) {
724 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
725 if (rdev && test_bit(Faulty, &rdev->flags))
726 rdev = rcu_dereference(conf->disks[i].replacement);
727 if (!rdev || test_bit(Faulty, &rdev->flags))
729 else if (test_bit(In_sync, &rdev->flags))
732 /* not in-sync or faulty.
733 * If reshape increases the number of devices, this
734 * section has already been recovered, else it
735 * almost certainly hasn't.
737 if (conf->raid_disks <= conf->previous_raid_disks)
741 if (degraded2 > degraded)
746 static bool has_failed(struct r5conf *conf)
748 int degraded = conf->mddev->degraded;
750 if (test_bit(MD_BROKEN, &conf->mddev->flags))
753 if (conf->mddev->reshape_position != MaxSector)
754 degraded = raid5_calc_degraded(conf);
756 return degraded > conf->max_degraded;
762 STRIPE_SCHEDULE_AND_RETRY,
766 struct stripe_request_ctx {
767 /* a reference to the last stripe_head for batching */
768 struct stripe_head *batch_last;
770 /* first sector in the request */
771 sector_t first_sector;
773 /* last sector in the request */
774 sector_t last_sector;
777 * bitmap to track stripe sectors that have been added to stripes
778 * add one to account for unaligned requests
780 DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1);
782 /* the request had REQ_PREFLUSH, cleared after the first stripe_head */
787 * Block until another thread clears R5_INACTIVE_BLOCKED or
788 * there are fewer than 3/4 the maximum number of active stripes
789 * and there is an inactive stripe available.
791 static bool is_inactive_blocked(struct r5conf *conf, int hash)
793 if (list_empty(conf->inactive_list + hash))
796 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
799 return (atomic_read(&conf->active_stripes) <
800 (conf->max_nr_stripes * 3 / 4));
803 struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
804 struct stripe_request_ctx *ctx, sector_t sector,
807 struct stripe_head *sh;
808 int hash = stripe_hash_locks_hash(conf, sector);
809 int previous = !!(flags & R5_GAS_PREVIOUS);
811 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
813 spin_lock_irq(conf->hash_locks + hash);
816 if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) {
818 * Must release the reference to batch_last before
819 * waiting, on quiesce, otherwise the batch_last will
820 * hold a reference to a stripe and raid5_quiesce()
821 * will deadlock waiting for active_stripes to go to
824 if (ctx && ctx->batch_last) {
825 raid5_release_stripe(ctx->batch_last);
826 ctx->batch_last = NULL;
829 wait_event_lock_irq(conf->wait_for_quiescent,
831 *(conf->hash_locks + hash));
834 sh = find_get_stripe(conf, sector, conf->generation - previous,
839 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
840 sh = get_free_stripe(conf, hash);
842 r5c_check_stripe_cache_usage(conf);
843 init_stripe(sh, sector, previous);
844 atomic_inc(&sh->count);
848 if (!test_bit(R5_DID_ALLOC, &conf->cache_state))
849 set_bit(R5_ALLOC_MORE, &conf->cache_state);
852 if (flags & R5_GAS_NOBLOCK)
855 set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
856 r5l_wake_reclaim(conf->log, 0);
857 wait_event_lock_irq(conf->wait_for_stripe,
858 is_inactive_blocked(conf, hash),
859 *(conf->hash_locks + hash));
860 clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
863 spin_unlock_irq(conf->hash_locks + hash);
867 static bool is_full_stripe_write(struct stripe_head *sh)
869 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
870 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
873 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
874 __acquires(&sh1->stripe_lock)
875 __acquires(&sh2->stripe_lock)
878 spin_lock_irq(&sh2->stripe_lock);
879 spin_lock_nested(&sh1->stripe_lock, 1);
881 spin_lock_irq(&sh1->stripe_lock);
882 spin_lock_nested(&sh2->stripe_lock, 1);
886 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
887 __releases(&sh1->stripe_lock)
888 __releases(&sh2->stripe_lock)
890 spin_unlock(&sh1->stripe_lock);
891 spin_unlock_irq(&sh2->stripe_lock);
894 /* Only freshly new full stripe normal write stripe can be added to a batch list */
895 static bool stripe_can_batch(struct stripe_head *sh)
897 struct r5conf *conf = sh->raid_conf;
899 if (raid5_has_log(conf) || raid5_has_ppl(conf))
901 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
902 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
903 is_full_stripe_write(sh);
906 /* we only do back search */
907 static void stripe_add_to_batch_list(struct r5conf *conf,
908 struct stripe_head *sh, struct stripe_head *last_sh)
910 struct stripe_head *head;
911 sector_t head_sector, tmp_sec;
915 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
916 tmp_sec = sh->sector;
917 if (!sector_div(tmp_sec, conf->chunk_sectors))
919 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
921 if (last_sh && head_sector == last_sh->sector) {
923 atomic_inc(&head->count);
925 hash = stripe_hash_locks_hash(conf, head_sector);
926 spin_lock_irq(conf->hash_locks + hash);
927 head = find_get_stripe(conf, head_sector, conf->generation,
929 spin_unlock_irq(conf->hash_locks + hash);
932 if (!stripe_can_batch(head))
936 lock_two_stripes(head, sh);
937 /* clear_batch_ready clear the flag */
938 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
945 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
947 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
948 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
951 if (head->batch_head) {
952 spin_lock(&head->batch_head->batch_lock);
953 /* This batch list is already running */
954 if (!stripe_can_batch(head)) {
955 spin_unlock(&head->batch_head->batch_lock);
959 * We must assign batch_head of this stripe within the
960 * batch_lock, otherwise clear_batch_ready of batch head
961 * stripe could clear BATCH_READY bit of this stripe and
962 * this stripe->batch_head doesn't get assigned, which
963 * could confuse clear_batch_ready for this stripe
965 sh->batch_head = head->batch_head;
968 * at this point, head's BATCH_READY could be cleared, but we
969 * can still add the stripe to batch list
971 list_add(&sh->batch_list, &head->batch_list);
972 spin_unlock(&head->batch_head->batch_lock);
974 head->batch_head = head;
975 sh->batch_head = head->batch_head;
976 spin_lock(&head->batch_lock);
977 list_add_tail(&sh->batch_list, &head->batch_list);
978 spin_unlock(&head->batch_lock);
981 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
982 if (atomic_dec_return(&conf->preread_active_stripes)
984 md_wakeup_thread(conf->mddev->thread);
986 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
987 int seq = sh->bm_seq;
988 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
989 sh->batch_head->bm_seq > seq)
990 seq = sh->batch_head->bm_seq;
991 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
992 sh->batch_head->bm_seq = seq;
995 atomic_inc(&sh->count);
997 unlock_two_stripes(head, sh);
999 raid5_release_stripe(head);
1002 /* Determine if 'data_offset' or 'new_data_offset' should be used
1003 * in this stripe_head.
1005 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
1007 sector_t progress = conf->reshape_progress;
1008 /* Need a memory barrier to make sure we see the value
1009 * of conf->generation, or ->data_offset that was set before
1010 * reshape_progress was updated.
1013 if (progress == MaxSector)
1015 if (sh->generation == conf->generation - 1)
1017 /* We are in a reshape, and this is a new-generation stripe,
1018 * so use new_data_offset.
1023 static void dispatch_bio_list(struct bio_list *tmp)
1027 while ((bio = bio_list_pop(tmp)))
1028 submit_bio_noacct(bio);
1031 static int cmp_stripe(void *priv, const struct list_head *a,
1032 const struct list_head *b)
1034 const struct r5pending_data *da = list_entry(a,
1035 struct r5pending_data, sibling);
1036 const struct r5pending_data *db = list_entry(b,
1037 struct r5pending_data, sibling);
1038 if (da->sector > db->sector)
1040 if (da->sector < db->sector)
1045 static void dispatch_defer_bios(struct r5conf *conf, int target,
1046 struct bio_list *list)
1048 struct r5pending_data *data;
1049 struct list_head *first, *next = NULL;
1052 if (conf->pending_data_cnt == 0)
1055 list_sort(NULL, &conf->pending_list, cmp_stripe);
1057 first = conf->pending_list.next;
1059 /* temporarily move the head */
1060 if (conf->next_pending_data)
1061 list_move_tail(&conf->pending_list,
1062 &conf->next_pending_data->sibling);
1064 while (!list_empty(&conf->pending_list)) {
1065 data = list_first_entry(&conf->pending_list,
1066 struct r5pending_data, sibling);
1067 if (&data->sibling == first)
1068 first = data->sibling.next;
1069 next = data->sibling.next;
1071 bio_list_merge(list, &data->bios);
1072 list_move(&data->sibling, &conf->free_list);
1077 conf->pending_data_cnt -= cnt;
1078 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1080 if (next != &conf->pending_list)
1081 conf->next_pending_data = list_entry(next,
1082 struct r5pending_data, sibling);
1084 conf->next_pending_data = NULL;
1085 /* list isn't empty */
1086 if (first != &conf->pending_list)
1087 list_move_tail(&conf->pending_list, first);
1090 static void flush_deferred_bios(struct r5conf *conf)
1092 struct bio_list tmp = BIO_EMPTY_LIST;
1094 if (conf->pending_data_cnt == 0)
1097 spin_lock(&conf->pending_bios_lock);
1098 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1099 BUG_ON(conf->pending_data_cnt != 0);
1100 spin_unlock(&conf->pending_bios_lock);
1102 dispatch_bio_list(&tmp);
1105 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1106 struct bio_list *bios)
1108 struct bio_list tmp = BIO_EMPTY_LIST;
1109 struct r5pending_data *ent;
1111 spin_lock(&conf->pending_bios_lock);
1112 ent = list_first_entry(&conf->free_list, struct r5pending_data,
1114 list_move_tail(&ent->sibling, &conf->pending_list);
1115 ent->sector = sector;
1116 bio_list_init(&ent->bios);
1117 bio_list_merge(&ent->bios, bios);
1118 conf->pending_data_cnt++;
1119 if (conf->pending_data_cnt >= PENDING_IO_MAX)
1120 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1122 spin_unlock(&conf->pending_bios_lock);
1124 dispatch_bio_list(&tmp);
1128 raid5_end_read_request(struct bio *bi);
1130 raid5_end_write_request(struct bio *bi);
1132 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1134 struct r5conf *conf = sh->raid_conf;
1135 int i, disks = sh->disks;
1136 struct stripe_head *head_sh = sh;
1137 struct bio_list pending_bios = BIO_EMPTY_LIST;
1143 if (log_stripe(sh, s) == 0)
1146 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1148 for (i = disks; i--; ) {
1150 blk_opf_t op_flags = 0;
1151 int replace_only = 0;
1152 struct bio *bi, *rbi;
1153 struct md_rdev *rdev, *rrdev = NULL;
1156 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1158 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1160 if (test_bit(R5_Discard, &sh->dev[i].flags))
1161 op = REQ_OP_DISCARD;
1162 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1164 else if (test_and_clear_bit(R5_WantReplace,
1165 &sh->dev[i].flags)) {
1170 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1171 op_flags |= REQ_SYNC;
1176 rbi = &dev->rreq; /* For writing to replacement */
1179 rrdev = rcu_dereference(conf->disks[i].replacement);
1180 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1181 rdev = rcu_dereference(conf->disks[i].rdev);
1186 if (op_is_write(op)) {
1190 /* We raced and saw duplicates */
1193 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1198 if (rdev && test_bit(Faulty, &rdev->flags))
1201 atomic_inc(&rdev->nr_pending);
1202 if (rrdev && test_bit(Faulty, &rrdev->flags))
1205 atomic_inc(&rrdev->nr_pending);
1208 /* We have already checked bad blocks for reads. Now
1209 * need to check for writes. We never accept write errors
1210 * on the replacement, so we don't to check rrdev.
1212 while (op_is_write(op) && rdev &&
1213 test_bit(WriteErrorSeen, &rdev->flags)) {
1216 int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
1217 &first_bad, &bad_sectors);
1222 set_bit(BlockedBadBlocks, &rdev->flags);
1223 if (!conf->mddev->external &&
1224 conf->mddev->sb_flags) {
1225 /* It is very unlikely, but we might
1226 * still need to write out the
1227 * bad block log - better give it
1229 md_check_recovery(conf->mddev);
1232 * Because md_wait_for_blocked_rdev
1233 * will dec nr_pending, we must
1234 * increment it first.
1236 atomic_inc(&rdev->nr_pending);
1237 md_wait_for_blocked_rdev(rdev, conf->mddev);
1239 /* Acknowledged bad block - skip the write */
1240 rdev_dec_pending(rdev, conf->mddev);
1246 if (s->syncing || s->expanding || s->expanded
1248 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1250 set_bit(STRIPE_IO_STARTED, &sh->state);
1252 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1253 bi->bi_end_io = op_is_write(op)
1254 ? raid5_end_write_request
1255 : raid5_end_read_request;
1256 bi->bi_private = sh;
1258 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1259 __func__, (unsigned long long)sh->sector,
1261 atomic_inc(&sh->count);
1263 atomic_inc(&head_sh->count);
1264 if (use_new_offset(conf, sh))
1265 bi->bi_iter.bi_sector = (sh->sector
1266 + rdev->new_data_offset);
1268 bi->bi_iter.bi_sector = (sh->sector
1269 + rdev->data_offset);
1270 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1271 bi->bi_opf |= REQ_NOMERGE;
1273 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1274 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1276 if (!op_is_write(op) &&
1277 test_bit(R5_InJournal, &sh->dev[i].flags))
1279 * issuing read for a page in journal, this
1280 * must be preparing for prexor in rmw; read
1281 * the data into orig_page
1283 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1285 sh->dev[i].vec.bv_page = sh->dev[i].page;
1287 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1288 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1289 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1291 * If this is discard request, set bi_vcnt 0. We don't
1292 * want to confuse SCSI because SCSI will replace payload
1294 if (op == REQ_OP_DISCARD)
1297 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1299 if (conf->mddev->gendisk)
1300 trace_block_bio_remap(bi,
1301 disk_devt(conf->mddev->gendisk),
1303 if (should_defer && op_is_write(op))
1304 bio_list_add(&pending_bios, bi);
1306 submit_bio_noacct(bi);
1309 if (s->syncing || s->expanding || s->expanded
1311 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1313 set_bit(STRIPE_IO_STARTED, &sh->state);
1315 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1316 BUG_ON(!op_is_write(op));
1317 rbi->bi_end_io = raid5_end_write_request;
1318 rbi->bi_private = sh;
1320 pr_debug("%s: for %llu schedule op %d on "
1321 "replacement disc %d\n",
1322 __func__, (unsigned long long)sh->sector,
1324 atomic_inc(&sh->count);
1326 atomic_inc(&head_sh->count);
1327 if (use_new_offset(conf, sh))
1328 rbi->bi_iter.bi_sector = (sh->sector
1329 + rrdev->new_data_offset);
1331 rbi->bi_iter.bi_sector = (sh->sector
1332 + rrdev->data_offset);
1333 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1334 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1335 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1337 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1338 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1339 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1341 * If this is discard request, set bi_vcnt 0. We don't
1342 * want to confuse SCSI because SCSI will replace payload
1344 if (op == REQ_OP_DISCARD)
1346 if (conf->mddev->gendisk)
1347 trace_block_bio_remap(rbi,
1348 disk_devt(conf->mddev->gendisk),
1350 if (should_defer && op_is_write(op))
1351 bio_list_add(&pending_bios, rbi);
1353 submit_bio_noacct(rbi);
1355 if (!rdev && !rrdev) {
1356 if (op_is_write(op))
1357 set_bit(STRIPE_DEGRADED, &sh->state);
1358 pr_debug("skip op %d on disc %d for sector %llu\n",
1359 bi->bi_opf, i, (unsigned long long)sh->sector);
1360 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1361 set_bit(STRIPE_HANDLE, &sh->state);
1364 if (!head_sh->batch_head)
1366 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1372 if (should_defer && !bio_list_empty(&pending_bios))
1373 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1376 static struct dma_async_tx_descriptor *
1377 async_copy_data(int frombio, struct bio *bio, struct page **page,
1378 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1379 struct stripe_head *sh, int no_skipcopy)
1382 struct bvec_iter iter;
1383 struct page *bio_page;
1385 struct async_submit_ctl submit;
1386 enum async_tx_flags flags = 0;
1387 struct r5conf *conf = sh->raid_conf;
1389 if (bio->bi_iter.bi_sector >= sector)
1390 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1392 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1395 flags |= ASYNC_TX_FENCE;
1396 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1398 bio_for_each_segment(bvl, bio, iter) {
1399 int len = bvl.bv_len;
1403 if (page_offset < 0) {
1404 b_offset = -page_offset;
1405 page_offset += b_offset;
1409 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1410 clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1415 b_offset += bvl.bv_offset;
1416 bio_page = bvl.bv_page;
1418 if (conf->skip_copy &&
1419 b_offset == 0 && page_offset == 0 &&
1420 clen == RAID5_STRIPE_SIZE(conf) &&
1424 tx = async_memcpy(*page, bio_page, page_offset + poff,
1425 b_offset, clen, &submit);
1427 tx = async_memcpy(bio_page, *page, b_offset,
1428 page_offset + poff, clen, &submit);
1430 /* chain the operations */
1431 submit.depend_tx = tx;
1433 if (clen < len) /* hit end of page */
1441 static void ops_complete_biofill(void *stripe_head_ref)
1443 struct stripe_head *sh = stripe_head_ref;
1445 struct r5conf *conf = sh->raid_conf;
1447 pr_debug("%s: stripe %llu\n", __func__,
1448 (unsigned long long)sh->sector);
1450 /* clear completed biofills */
1451 for (i = sh->disks; i--; ) {
1452 struct r5dev *dev = &sh->dev[i];
1454 /* acknowledge completion of a biofill operation */
1455 /* and check if we need to reply to a read request,
1456 * new R5_Wantfill requests are held off until
1457 * !STRIPE_BIOFILL_RUN
1459 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1460 struct bio *rbi, *rbi2;
1465 while (rbi && rbi->bi_iter.bi_sector <
1466 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1467 rbi2 = r5_next_bio(conf, rbi, dev->sector);
1473 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1475 set_bit(STRIPE_HANDLE, &sh->state);
1476 raid5_release_stripe(sh);
1479 static void ops_run_biofill(struct stripe_head *sh)
1481 struct dma_async_tx_descriptor *tx = NULL;
1482 struct async_submit_ctl submit;
1484 struct r5conf *conf = sh->raid_conf;
1486 BUG_ON(sh->batch_head);
1487 pr_debug("%s: stripe %llu\n", __func__,
1488 (unsigned long long)sh->sector);
1490 for (i = sh->disks; i--; ) {
1491 struct r5dev *dev = &sh->dev[i];
1492 if (test_bit(R5_Wantfill, &dev->flags)) {
1494 spin_lock_irq(&sh->stripe_lock);
1495 dev->read = rbi = dev->toread;
1497 spin_unlock_irq(&sh->stripe_lock);
1498 while (rbi && rbi->bi_iter.bi_sector <
1499 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1500 tx = async_copy_data(0, rbi, &dev->page,
1502 dev->sector, tx, sh, 0);
1503 rbi = r5_next_bio(conf, rbi, dev->sector);
1508 atomic_inc(&sh->count);
1509 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1510 async_trigger_callback(&submit);
1513 static void mark_target_uptodate(struct stripe_head *sh, int target)
1520 tgt = &sh->dev[target];
1521 set_bit(R5_UPTODATE, &tgt->flags);
1522 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1523 clear_bit(R5_Wantcompute, &tgt->flags);
1526 static void ops_complete_compute(void *stripe_head_ref)
1528 struct stripe_head *sh = stripe_head_ref;
1530 pr_debug("%s: stripe %llu\n", __func__,
1531 (unsigned long long)sh->sector);
1533 /* mark the computed target(s) as uptodate */
1534 mark_target_uptodate(sh, sh->ops.target);
1535 mark_target_uptodate(sh, sh->ops.target2);
1537 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1538 if (sh->check_state == check_state_compute_run)
1539 sh->check_state = check_state_compute_result;
1540 set_bit(STRIPE_HANDLE, &sh->state);
1541 raid5_release_stripe(sh);
1544 /* return a pointer to the address conversion region of the scribble buffer */
1545 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1547 return percpu->scribble + i * percpu->scribble_obj_size;
1550 /* return a pointer to the address conversion region of the scribble buffer */
1551 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1552 struct raid5_percpu *percpu, int i)
1554 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1558 * Return a pointer to record offset address.
1560 static unsigned int *
1561 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1563 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1566 static struct dma_async_tx_descriptor *
1567 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1569 int disks = sh->disks;
1570 struct page **xor_srcs = to_addr_page(percpu, 0);
1571 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1572 int target = sh->ops.target;
1573 struct r5dev *tgt = &sh->dev[target];
1574 struct page *xor_dest = tgt->page;
1575 unsigned int off_dest = tgt->offset;
1577 struct dma_async_tx_descriptor *tx;
1578 struct async_submit_ctl submit;
1581 BUG_ON(sh->batch_head);
1583 pr_debug("%s: stripe %llu block: %d\n",
1584 __func__, (unsigned long long)sh->sector, target);
1585 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1587 for (i = disks; i--; ) {
1589 off_srcs[count] = sh->dev[i].offset;
1590 xor_srcs[count++] = sh->dev[i].page;
1594 atomic_inc(&sh->count);
1596 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1597 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1598 if (unlikely(count == 1))
1599 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1600 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1602 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1603 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1608 /* set_syndrome_sources - populate source buffers for gen_syndrome
1609 * @srcs - (struct page *) array of size sh->disks
1610 * @offs - (unsigned int) array of offset for each page
1611 * @sh - stripe_head to parse
1613 * Populates srcs in proper layout order for the stripe and returns the
1614 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1615 * destination buffer is recorded in srcs[count] and the Q destination
1616 * is recorded in srcs[count+1]].
1618 static int set_syndrome_sources(struct page **srcs,
1620 struct stripe_head *sh,
1623 int disks = sh->disks;
1624 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1625 int d0_idx = raid6_d0(sh);
1629 for (i = 0; i < disks; i++)
1635 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1636 struct r5dev *dev = &sh->dev[i];
1638 if (i == sh->qd_idx || i == sh->pd_idx ||
1639 (srctype == SYNDROME_SRC_ALL) ||
1640 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1641 (test_bit(R5_Wantdrain, &dev->flags) ||
1642 test_bit(R5_InJournal, &dev->flags))) ||
1643 (srctype == SYNDROME_SRC_WRITTEN &&
1645 test_bit(R5_InJournal, &dev->flags)))) {
1646 if (test_bit(R5_InJournal, &dev->flags))
1647 srcs[slot] = sh->dev[i].orig_page;
1649 srcs[slot] = sh->dev[i].page;
1651 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1652 * not shared page. In that case, dev[i].offset
1655 offs[slot] = sh->dev[i].offset;
1657 i = raid6_next_disk(i, disks);
1658 } while (i != d0_idx);
1660 return syndrome_disks;
1663 static struct dma_async_tx_descriptor *
1664 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1666 int disks = sh->disks;
1667 struct page **blocks = to_addr_page(percpu, 0);
1668 unsigned int *offs = to_addr_offs(sh, percpu);
1670 int qd_idx = sh->qd_idx;
1671 struct dma_async_tx_descriptor *tx;
1672 struct async_submit_ctl submit;
1675 unsigned int dest_off;
1679 BUG_ON(sh->batch_head);
1680 if (sh->ops.target < 0)
1681 target = sh->ops.target2;
1682 else if (sh->ops.target2 < 0)
1683 target = sh->ops.target;
1685 /* we should only have one valid target */
1688 pr_debug("%s: stripe %llu block: %d\n",
1689 __func__, (unsigned long long)sh->sector, target);
1691 tgt = &sh->dev[target];
1692 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1694 dest_off = tgt->offset;
1696 atomic_inc(&sh->count);
1698 if (target == qd_idx) {
1699 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1700 blocks[count] = NULL; /* regenerating p is not necessary */
1701 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1702 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1703 ops_complete_compute, sh,
1704 to_addr_conv(sh, percpu, 0));
1705 tx = async_gen_syndrome(blocks, offs, count+2,
1706 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1708 /* Compute any data- or p-drive using XOR */
1710 for (i = disks; i-- ; ) {
1711 if (i == target || i == qd_idx)
1713 offs[count] = sh->dev[i].offset;
1714 blocks[count++] = sh->dev[i].page;
1717 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1718 NULL, ops_complete_compute, sh,
1719 to_addr_conv(sh, percpu, 0));
1720 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1721 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1727 static struct dma_async_tx_descriptor *
1728 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1730 int i, count, disks = sh->disks;
1731 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1732 int d0_idx = raid6_d0(sh);
1733 int faila = -1, failb = -1;
1734 int target = sh->ops.target;
1735 int target2 = sh->ops.target2;
1736 struct r5dev *tgt = &sh->dev[target];
1737 struct r5dev *tgt2 = &sh->dev[target2];
1738 struct dma_async_tx_descriptor *tx;
1739 struct page **blocks = to_addr_page(percpu, 0);
1740 unsigned int *offs = to_addr_offs(sh, percpu);
1741 struct async_submit_ctl submit;
1743 BUG_ON(sh->batch_head);
1744 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1745 __func__, (unsigned long long)sh->sector, target, target2);
1746 BUG_ON(target < 0 || target2 < 0);
1747 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1748 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1750 /* we need to open-code set_syndrome_sources to handle the
1751 * slot number conversion for 'faila' and 'failb'
1753 for (i = 0; i < disks ; i++) {
1760 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1762 offs[slot] = sh->dev[i].offset;
1763 blocks[slot] = sh->dev[i].page;
1769 i = raid6_next_disk(i, disks);
1770 } while (i != d0_idx);
1772 BUG_ON(faila == failb);
1775 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1776 __func__, (unsigned long long)sh->sector, faila, failb);
1778 atomic_inc(&sh->count);
1780 if (failb == syndrome_disks+1) {
1781 /* Q disk is one of the missing disks */
1782 if (faila == syndrome_disks) {
1783 /* Missing P+Q, just recompute */
1784 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1785 ops_complete_compute, sh,
1786 to_addr_conv(sh, percpu, 0));
1787 return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1788 RAID5_STRIPE_SIZE(sh->raid_conf),
1792 unsigned int dest_off;
1794 int qd_idx = sh->qd_idx;
1796 /* Missing D+Q: recompute D from P, then recompute Q */
1797 if (target == qd_idx)
1798 data_target = target2;
1800 data_target = target;
1803 for (i = disks; i-- ; ) {
1804 if (i == data_target || i == qd_idx)
1806 offs[count] = sh->dev[i].offset;
1807 blocks[count++] = sh->dev[i].page;
1809 dest = sh->dev[data_target].page;
1810 dest_off = sh->dev[data_target].offset;
1811 init_async_submit(&submit,
1812 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1814 to_addr_conv(sh, percpu, 0));
1815 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1816 RAID5_STRIPE_SIZE(sh->raid_conf),
1819 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1820 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1821 ops_complete_compute, sh,
1822 to_addr_conv(sh, percpu, 0));
1823 return async_gen_syndrome(blocks, offs, count+2,
1824 RAID5_STRIPE_SIZE(sh->raid_conf),
1828 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1829 ops_complete_compute, sh,
1830 to_addr_conv(sh, percpu, 0));
1831 if (failb == syndrome_disks) {
1832 /* We're missing D+P. */
1833 return async_raid6_datap_recov(syndrome_disks+2,
1834 RAID5_STRIPE_SIZE(sh->raid_conf),
1836 blocks, offs, &submit);
1838 /* We're missing D+D. */
1839 return async_raid6_2data_recov(syndrome_disks+2,
1840 RAID5_STRIPE_SIZE(sh->raid_conf),
1842 blocks, offs, &submit);
1847 static void ops_complete_prexor(void *stripe_head_ref)
1849 struct stripe_head *sh = stripe_head_ref;
1851 pr_debug("%s: stripe %llu\n", __func__,
1852 (unsigned long long)sh->sector);
1854 if (r5c_is_writeback(sh->raid_conf->log))
1856 * raid5-cache write back uses orig_page during prexor.
1857 * After prexor, it is time to free orig_page
1859 r5c_release_extra_page(sh);
1862 static struct dma_async_tx_descriptor *
1863 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1864 struct dma_async_tx_descriptor *tx)
1866 int disks = sh->disks;
1867 struct page **xor_srcs = to_addr_page(percpu, 0);
1868 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1869 int count = 0, pd_idx = sh->pd_idx, i;
1870 struct async_submit_ctl submit;
1872 /* existing parity data subtracted */
1873 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1874 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1876 BUG_ON(sh->batch_head);
1877 pr_debug("%s: stripe %llu\n", __func__,
1878 (unsigned long long)sh->sector);
1880 for (i = disks; i--; ) {
1881 struct r5dev *dev = &sh->dev[i];
1882 /* Only process blocks that are known to be uptodate */
1883 if (test_bit(R5_InJournal, &dev->flags)) {
1885 * For this case, PAGE_SIZE must be equal to 4KB and
1886 * page offset is zero.
1888 off_srcs[count] = dev->offset;
1889 xor_srcs[count++] = dev->orig_page;
1890 } else if (test_bit(R5_Wantdrain, &dev->flags)) {
1891 off_srcs[count] = dev->offset;
1892 xor_srcs[count++] = dev->page;
1896 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1897 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1898 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1899 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1904 static struct dma_async_tx_descriptor *
1905 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1906 struct dma_async_tx_descriptor *tx)
1908 struct page **blocks = to_addr_page(percpu, 0);
1909 unsigned int *offs = to_addr_offs(sh, percpu);
1911 struct async_submit_ctl submit;
1913 pr_debug("%s: stripe %llu\n", __func__,
1914 (unsigned long long)sh->sector);
1916 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1918 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1919 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1920 tx = async_gen_syndrome(blocks, offs, count+2,
1921 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1926 static struct dma_async_tx_descriptor *
1927 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1929 struct r5conf *conf = sh->raid_conf;
1930 int disks = sh->disks;
1932 struct stripe_head *head_sh = sh;
1934 pr_debug("%s: stripe %llu\n", __func__,
1935 (unsigned long long)sh->sector);
1937 for (i = disks; i--; ) {
1942 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1948 * clear R5_InJournal, so when rewriting a page in
1949 * journal, it is not skipped by r5l_log_stripe()
1951 clear_bit(R5_InJournal, &dev->flags);
1952 spin_lock_irq(&sh->stripe_lock);
1953 chosen = dev->towrite;
1954 dev->towrite = NULL;
1955 sh->overwrite_disks = 0;
1956 BUG_ON(dev->written);
1957 wbi = dev->written = chosen;
1958 spin_unlock_irq(&sh->stripe_lock);
1959 WARN_ON(dev->page != dev->orig_page);
1961 while (wbi && wbi->bi_iter.bi_sector <
1962 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1963 if (wbi->bi_opf & REQ_FUA)
1964 set_bit(R5_WantFUA, &dev->flags);
1965 if (wbi->bi_opf & REQ_SYNC)
1966 set_bit(R5_SyncIO, &dev->flags);
1967 if (bio_op(wbi) == REQ_OP_DISCARD)
1968 set_bit(R5_Discard, &dev->flags);
1970 tx = async_copy_data(1, wbi, &dev->page,
1972 dev->sector, tx, sh,
1973 r5c_is_writeback(conf->log));
1974 if (dev->page != dev->orig_page &&
1975 !r5c_is_writeback(conf->log)) {
1976 set_bit(R5_SkipCopy, &dev->flags);
1977 clear_bit(R5_UPTODATE, &dev->flags);
1978 clear_bit(R5_OVERWRITE, &dev->flags);
1981 wbi = r5_next_bio(conf, wbi, dev->sector);
1984 if (head_sh->batch_head) {
1985 sh = list_first_entry(&sh->batch_list,
1998 static void ops_complete_reconstruct(void *stripe_head_ref)
2000 struct stripe_head *sh = stripe_head_ref;
2001 int disks = sh->disks;
2002 int pd_idx = sh->pd_idx;
2003 int qd_idx = sh->qd_idx;
2005 bool fua = false, sync = false, discard = false;
2007 pr_debug("%s: stripe %llu\n", __func__,
2008 (unsigned long long)sh->sector);
2010 for (i = disks; i--; ) {
2011 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
2012 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
2013 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
2016 for (i = disks; i--; ) {
2017 struct r5dev *dev = &sh->dev[i];
2019 if (dev->written || i == pd_idx || i == qd_idx) {
2020 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
2021 set_bit(R5_UPTODATE, &dev->flags);
2022 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
2023 set_bit(R5_Expanded, &dev->flags);
2026 set_bit(R5_WantFUA, &dev->flags);
2028 set_bit(R5_SyncIO, &dev->flags);
2032 if (sh->reconstruct_state == reconstruct_state_drain_run)
2033 sh->reconstruct_state = reconstruct_state_drain_result;
2034 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
2035 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
2037 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
2038 sh->reconstruct_state = reconstruct_state_result;
2041 set_bit(STRIPE_HANDLE, &sh->state);
2042 raid5_release_stripe(sh);
2046 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
2047 struct dma_async_tx_descriptor *tx)
2049 int disks = sh->disks;
2050 struct page **xor_srcs;
2051 unsigned int *off_srcs;
2052 struct async_submit_ctl submit;
2053 int count, pd_idx = sh->pd_idx, i;
2054 struct page *xor_dest;
2055 unsigned int off_dest;
2057 unsigned long flags;
2059 struct stripe_head *head_sh = sh;
2062 pr_debug("%s: stripe %llu\n", __func__,
2063 (unsigned long long)sh->sector);
2065 for (i = 0; i < sh->disks; i++) {
2068 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2071 if (i >= sh->disks) {
2072 atomic_inc(&sh->count);
2073 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2074 ops_complete_reconstruct(sh);
2079 xor_srcs = to_addr_page(percpu, j);
2080 off_srcs = to_addr_offs(sh, percpu);
2081 /* check if prexor is active which means only process blocks
2082 * that are part of a read-modify-write (written)
2084 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2086 off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2087 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2088 for (i = disks; i--; ) {
2089 struct r5dev *dev = &sh->dev[i];
2090 if (head_sh->dev[i].written ||
2091 test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2092 off_srcs[count] = dev->offset;
2093 xor_srcs[count++] = dev->page;
2097 xor_dest = sh->dev[pd_idx].page;
2098 off_dest = sh->dev[pd_idx].offset;
2099 for (i = disks; i--; ) {
2100 struct r5dev *dev = &sh->dev[i];
2102 off_srcs[count] = dev->offset;
2103 xor_srcs[count++] = dev->page;
2108 /* 1/ if we prexor'd then the dest is reused as a source
2109 * 2/ if we did not prexor then we are redoing the parity
2110 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2111 * for the synchronous xor case
2113 last_stripe = !head_sh->batch_head ||
2114 list_first_entry(&sh->batch_list,
2115 struct stripe_head, batch_list) == head_sh;
2117 flags = ASYNC_TX_ACK |
2118 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2120 atomic_inc(&head_sh->count);
2121 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2122 to_addr_conv(sh, percpu, j));
2124 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2125 init_async_submit(&submit, flags, tx, NULL, NULL,
2126 to_addr_conv(sh, percpu, j));
2129 if (unlikely(count == 1))
2130 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2131 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2133 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2134 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2137 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2144 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2145 struct dma_async_tx_descriptor *tx)
2147 struct async_submit_ctl submit;
2148 struct page **blocks;
2150 int count, i, j = 0;
2151 struct stripe_head *head_sh = sh;
2154 unsigned long txflags;
2156 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2158 for (i = 0; i < sh->disks; i++) {
2159 if (sh->pd_idx == i || sh->qd_idx == i)
2161 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2164 if (i >= sh->disks) {
2165 atomic_inc(&sh->count);
2166 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2167 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2168 ops_complete_reconstruct(sh);
2173 blocks = to_addr_page(percpu, j);
2174 offs = to_addr_offs(sh, percpu);
2176 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2177 synflags = SYNDROME_SRC_WRITTEN;
2178 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2180 synflags = SYNDROME_SRC_ALL;
2181 txflags = ASYNC_TX_ACK;
2184 count = set_syndrome_sources(blocks, offs, sh, synflags);
2185 last_stripe = !head_sh->batch_head ||
2186 list_first_entry(&sh->batch_list,
2187 struct stripe_head, batch_list) == head_sh;
2190 atomic_inc(&head_sh->count);
2191 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2192 head_sh, to_addr_conv(sh, percpu, j));
2194 init_async_submit(&submit, 0, tx, NULL, NULL,
2195 to_addr_conv(sh, percpu, j));
2196 tx = async_gen_syndrome(blocks, offs, count+2,
2197 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2200 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2206 static void ops_complete_check(void *stripe_head_ref)
2208 struct stripe_head *sh = stripe_head_ref;
2210 pr_debug("%s: stripe %llu\n", __func__,
2211 (unsigned long long)sh->sector);
2213 sh->check_state = check_state_check_result;
2214 set_bit(STRIPE_HANDLE, &sh->state);
2215 raid5_release_stripe(sh);
2218 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2220 int disks = sh->disks;
2221 int pd_idx = sh->pd_idx;
2222 int qd_idx = sh->qd_idx;
2223 struct page *xor_dest;
2224 unsigned int off_dest;
2225 struct page **xor_srcs = to_addr_page(percpu, 0);
2226 unsigned int *off_srcs = to_addr_offs(sh, percpu);
2227 struct dma_async_tx_descriptor *tx;
2228 struct async_submit_ctl submit;
2232 pr_debug("%s: stripe %llu\n", __func__,
2233 (unsigned long long)sh->sector);
2235 BUG_ON(sh->batch_head);
2237 xor_dest = sh->dev[pd_idx].page;
2238 off_dest = sh->dev[pd_idx].offset;
2239 off_srcs[count] = off_dest;
2240 xor_srcs[count++] = xor_dest;
2241 for (i = disks; i--; ) {
2242 if (i == pd_idx || i == qd_idx)
2244 off_srcs[count] = sh->dev[i].offset;
2245 xor_srcs[count++] = sh->dev[i].page;
2248 init_async_submit(&submit, 0, NULL, NULL, NULL,
2249 to_addr_conv(sh, percpu, 0));
2250 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2251 RAID5_STRIPE_SIZE(sh->raid_conf),
2252 &sh->ops.zero_sum_result, &submit);
2254 atomic_inc(&sh->count);
2255 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2256 tx = async_trigger_callback(&submit);
2259 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2261 struct page **srcs = to_addr_page(percpu, 0);
2262 unsigned int *offs = to_addr_offs(sh, percpu);
2263 struct async_submit_ctl submit;
2266 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2267 (unsigned long long)sh->sector, checkp);
2269 BUG_ON(sh->batch_head);
2270 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2274 atomic_inc(&sh->count);
2275 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2276 sh, to_addr_conv(sh, percpu, 0));
2277 async_syndrome_val(srcs, offs, count+2,
2278 RAID5_STRIPE_SIZE(sh->raid_conf),
2279 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2282 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2284 int overlap_clear = 0, i, disks = sh->disks;
2285 struct dma_async_tx_descriptor *tx = NULL;
2286 struct r5conf *conf = sh->raid_conf;
2287 int level = conf->level;
2288 struct raid5_percpu *percpu;
2290 local_lock(&conf->percpu->lock);
2291 percpu = this_cpu_ptr(conf->percpu);
2292 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2293 ops_run_biofill(sh);
2297 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2299 tx = ops_run_compute5(sh, percpu);
2301 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2302 tx = ops_run_compute6_1(sh, percpu);
2304 tx = ops_run_compute6_2(sh, percpu);
2306 /* terminate the chain if reconstruct is not set to be run */
2307 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2311 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2313 tx = ops_run_prexor5(sh, percpu, tx);
2315 tx = ops_run_prexor6(sh, percpu, tx);
2318 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2319 tx = ops_run_partial_parity(sh, percpu, tx);
2321 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2322 tx = ops_run_biodrain(sh, tx);
2326 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2328 ops_run_reconstruct5(sh, percpu, tx);
2330 ops_run_reconstruct6(sh, percpu, tx);
2333 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2334 if (sh->check_state == check_state_run)
2335 ops_run_check_p(sh, percpu);
2336 else if (sh->check_state == check_state_run_q)
2337 ops_run_check_pq(sh, percpu, 0);
2338 else if (sh->check_state == check_state_run_pq)
2339 ops_run_check_pq(sh, percpu, 1);
2344 if (overlap_clear && !sh->batch_head) {
2345 for (i = disks; i--; ) {
2346 struct r5dev *dev = &sh->dev[i];
2347 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2348 wake_up(&sh->raid_conf->wait_for_overlap);
2351 local_unlock(&conf->percpu->lock);
2354 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2356 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2360 __free_page(sh->ppl_page);
2361 kmem_cache_free(sc, sh);
2364 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2365 int disks, struct r5conf *conf)
2367 struct stripe_head *sh;
2369 sh = kmem_cache_zalloc(sc, gfp);
2371 spin_lock_init(&sh->stripe_lock);
2372 spin_lock_init(&sh->batch_lock);
2373 INIT_LIST_HEAD(&sh->batch_list);
2374 INIT_LIST_HEAD(&sh->lru);
2375 INIT_LIST_HEAD(&sh->r5c);
2376 INIT_LIST_HEAD(&sh->log_list);
2377 atomic_set(&sh->count, 1);
2378 sh->raid_conf = conf;
2379 sh->log_start = MaxSector;
2381 if (raid5_has_ppl(conf)) {
2382 sh->ppl_page = alloc_page(gfp);
2383 if (!sh->ppl_page) {
2384 free_stripe(sc, sh);
2388 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2389 if (init_stripe_shared_pages(sh, conf, disks)) {
2390 free_stripe(sc, sh);
2397 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2399 struct stripe_head *sh;
2401 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2405 if (grow_buffers(sh, gfp)) {
2407 free_stripe(conf->slab_cache, sh);
2410 sh->hash_lock_index =
2411 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2412 /* we just created an active stripe so... */
2413 atomic_inc(&conf->active_stripes);
2415 raid5_release_stripe(sh);
2416 conf->max_nr_stripes++;
2420 static int grow_stripes(struct r5conf *conf, int num)
2422 struct kmem_cache *sc;
2423 size_t namelen = sizeof(conf->cache_name[0]);
2424 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2426 if (conf->mddev->gendisk)
2427 snprintf(conf->cache_name[0], namelen,
2428 "raid%d-%s", conf->level, mdname(conf->mddev));
2430 snprintf(conf->cache_name[0], namelen,
2431 "raid%d-%p", conf->level, conf->mddev);
2432 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2434 conf->active_name = 0;
2435 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2436 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2440 conf->slab_cache = sc;
2441 conf->pool_size = devs;
2443 if (!grow_one_stripe(conf, GFP_KERNEL))
2450 * scribble_alloc - allocate percpu scribble buffer for required size
2451 * of the scribble region
2452 * @percpu: from for_each_present_cpu() of the caller
2453 * @num: total number of disks in the array
2454 * @cnt: scribble objs count for required size of the scribble region
2456 * The scribble buffer size must be enough to contain:
2457 * 1/ a struct page pointer for each device in the array +2
2458 * 2/ room to convert each entry in (1) to its corresponding dma
2459 * (dma_map_page()) or page (page_address()) address.
2461 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2462 * calculate over all devices (not just the data blocks), using zeros in place
2463 * of the P and Q blocks.
2465 static int scribble_alloc(struct raid5_percpu *percpu,
2469 sizeof(struct page *) * (num + 2) +
2470 sizeof(addr_conv_t) * (num + 2) +
2471 sizeof(unsigned int) * (num + 2);
2475 * If here is in raid array suspend context, it is in memalloc noio
2476 * context as well, there is no potential recursive memory reclaim
2477 * I/Os with the GFP_KERNEL flag.
2479 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2483 kvfree(percpu->scribble);
2485 percpu->scribble = scribble;
2486 percpu->scribble_obj_size = obj_size;
2490 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2496 * Never shrink. And mddev_suspend() could deadlock if this is called
2497 * from raid5d. In that case, scribble_disks and scribble_sectors
2498 * should equal to new_disks and new_sectors
2500 if (conf->scribble_disks >= new_disks &&
2501 conf->scribble_sectors >= new_sectors)
2503 mddev_suspend(conf->mddev);
2506 for_each_present_cpu(cpu) {
2507 struct raid5_percpu *percpu;
2509 percpu = per_cpu_ptr(conf->percpu, cpu);
2510 err = scribble_alloc(percpu, new_disks,
2511 new_sectors / RAID5_STRIPE_SECTORS(conf));
2517 mddev_resume(conf->mddev);
2519 conf->scribble_disks = new_disks;
2520 conf->scribble_sectors = new_sectors;
2525 static int resize_stripes(struct r5conf *conf, int newsize)
2527 /* Make all the stripes able to hold 'newsize' devices.
2528 * New slots in each stripe get 'page' set to a new page.
2530 * This happens in stages:
2531 * 1/ create a new kmem_cache and allocate the required number of
2533 * 2/ gather all the old stripe_heads and transfer the pages across
2534 * to the new stripe_heads. This will have the side effect of
2535 * freezing the array as once all stripe_heads have been collected,
2536 * no IO will be possible. Old stripe heads are freed once their
2537 * pages have been transferred over, and the old kmem_cache is
2538 * freed when all stripes are done.
2539 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2540 * we simple return a failure status - no need to clean anything up.
2541 * 4/ allocate new pages for the new slots in the new stripe_heads.
2542 * If this fails, we don't bother trying the shrink the
2543 * stripe_heads down again, we just leave them as they are.
2544 * As each stripe_head is processed the new one is released into
2547 * Once step2 is started, we cannot afford to wait for a write,
2548 * so we use GFP_NOIO allocations.
2550 struct stripe_head *osh, *nsh;
2551 LIST_HEAD(newstripes);
2552 struct disk_info *ndisks;
2554 struct kmem_cache *sc;
2558 md_allow_write(conf->mddev);
2561 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2562 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2567 /* Need to ensure auto-resizing doesn't interfere */
2568 mutex_lock(&conf->cache_size_mutex);
2570 for (i = conf->max_nr_stripes; i; i--) {
2571 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2575 list_add(&nsh->lru, &newstripes);
2578 /* didn't get enough, give up */
2579 while (!list_empty(&newstripes)) {
2580 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2581 list_del(&nsh->lru);
2582 free_stripe(sc, nsh);
2584 kmem_cache_destroy(sc);
2585 mutex_unlock(&conf->cache_size_mutex);
2588 /* Step 2 - Must use GFP_NOIO now.
2589 * OK, we have enough stripes, start collecting inactive
2590 * stripes and copying them over
2594 list_for_each_entry(nsh, &newstripes, lru) {
2595 lock_device_hash_lock(conf, hash);
2596 wait_event_cmd(conf->wait_for_stripe,
2597 !list_empty(conf->inactive_list + hash),
2598 unlock_device_hash_lock(conf, hash),
2599 lock_device_hash_lock(conf, hash));
2600 osh = get_free_stripe(conf, hash);
2601 unlock_device_hash_lock(conf, hash);
2603 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2604 for (i = 0; i < osh->nr_pages; i++) {
2605 nsh->pages[i] = osh->pages[i];
2606 osh->pages[i] = NULL;
2609 for(i=0; i<conf->pool_size; i++) {
2610 nsh->dev[i].page = osh->dev[i].page;
2611 nsh->dev[i].orig_page = osh->dev[i].page;
2612 nsh->dev[i].offset = osh->dev[i].offset;
2614 nsh->hash_lock_index = hash;
2615 free_stripe(conf->slab_cache, osh);
2617 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2618 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2623 kmem_cache_destroy(conf->slab_cache);
2626 * At this point, we are holding all the stripes so the array
2627 * is completely stalled, so now is a good time to resize
2628 * conf->disks and the scribble region
2630 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2632 for (i = 0; i < conf->pool_size; i++)
2633 ndisks[i] = conf->disks[i];
2635 for (i = conf->pool_size; i < newsize; i++) {
2636 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2637 if (!ndisks[i].extra_page)
2642 for (i = conf->pool_size; i < newsize; i++)
2643 if (ndisks[i].extra_page)
2644 put_page(ndisks[i].extra_page);
2648 conf->disks = ndisks;
2653 conf->slab_cache = sc;
2654 conf->active_name = 1-conf->active_name;
2656 /* Step 4, return new stripes to service */
2657 while(!list_empty(&newstripes)) {
2658 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2659 list_del_init(&nsh->lru);
2661 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2662 for (i = 0; i < nsh->nr_pages; i++) {
2665 nsh->pages[i] = alloc_page(GFP_NOIO);
2670 for (i = conf->raid_disks; i < newsize; i++) {
2671 if (nsh->dev[i].page)
2673 nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2674 nsh->dev[i].orig_page = nsh->dev[i].page;
2675 nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2678 for (i=conf->raid_disks; i < newsize; i++)
2679 if (nsh->dev[i].page == NULL) {
2680 struct page *p = alloc_page(GFP_NOIO);
2681 nsh->dev[i].page = p;
2682 nsh->dev[i].orig_page = p;
2683 nsh->dev[i].offset = 0;
2688 raid5_release_stripe(nsh);
2690 /* critical section pass, GFP_NOIO no longer needed */
2693 conf->pool_size = newsize;
2694 mutex_unlock(&conf->cache_size_mutex);
2699 static int drop_one_stripe(struct r5conf *conf)
2701 struct stripe_head *sh;
2702 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2704 spin_lock_irq(conf->hash_locks + hash);
2705 sh = get_free_stripe(conf, hash);
2706 spin_unlock_irq(conf->hash_locks + hash);
2709 BUG_ON(atomic_read(&sh->count));
2711 free_stripe(conf->slab_cache, sh);
2712 atomic_dec(&conf->active_stripes);
2713 conf->max_nr_stripes--;
2717 static void shrink_stripes(struct r5conf *conf)
2719 while (conf->max_nr_stripes &&
2720 drop_one_stripe(conf))
2723 kmem_cache_destroy(conf->slab_cache);
2724 conf->slab_cache = NULL;
2728 * This helper wraps rcu_dereference_protected() and can be used when
2729 * it is known that the nr_pending of the rdev is elevated.
2731 static struct md_rdev *rdev_pend_deref(struct md_rdev __rcu *rdev)
2733 return rcu_dereference_protected(rdev,
2734 atomic_read(&rcu_access_pointer(rdev)->nr_pending));
2738 * This helper wraps rcu_dereference_protected() and should be used
2739 * when it is known that the mddev_lock() is held. This is safe
2740 * seeing raid5_remove_disk() has the same lock held.
2742 static struct md_rdev *rdev_mdlock_deref(struct mddev *mddev,
2743 struct md_rdev __rcu *rdev)
2745 return rcu_dereference_protected(rdev,
2746 lockdep_is_held(&mddev->reconfig_mutex));
2749 static void raid5_end_read_request(struct bio * bi)
2751 struct stripe_head *sh = bi->bi_private;
2752 struct r5conf *conf = sh->raid_conf;
2753 int disks = sh->disks, i;
2754 struct md_rdev *rdev = NULL;
2757 for (i=0 ; i<disks; i++)
2758 if (bi == &sh->dev[i].req)
2761 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2762 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2768 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2769 /* If replacement finished while this request was outstanding,
2770 * 'replacement' might be NULL already.
2771 * In that case it moved down to 'rdev'.
2772 * rdev is not removed until all requests are finished.
2774 rdev = rdev_pend_deref(conf->disks[i].replacement);
2776 rdev = rdev_pend_deref(conf->disks[i].rdev);
2778 if (use_new_offset(conf, sh))
2779 s = sh->sector + rdev->new_data_offset;
2781 s = sh->sector + rdev->data_offset;
2782 if (!bi->bi_status) {
2783 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2784 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2785 /* Note that this cannot happen on a
2786 * replacement device. We just fail those on
2789 pr_info_ratelimited(
2790 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
2791 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2792 (unsigned long long)s,
2794 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2795 clear_bit(R5_ReadError, &sh->dev[i].flags);
2796 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2797 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2798 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2800 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2802 * end read for a page in journal, this
2803 * must be preparing for prexor in rmw
2805 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2807 if (atomic_read(&rdev->read_errors))
2808 atomic_set(&rdev->read_errors, 0);
2813 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2814 if (!(bi->bi_status == BLK_STS_PROTECTION))
2815 atomic_inc(&rdev->read_errors);
2816 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2817 pr_warn_ratelimited(
2818 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
2819 mdname(conf->mddev),
2820 (unsigned long long)s,
2822 else if (conf->mddev->degraded >= conf->max_degraded) {
2824 pr_warn_ratelimited(
2825 "md/raid:%s: read error not correctable (sector %llu on %pg).\n",
2826 mdname(conf->mddev),
2827 (unsigned long long)s,
2829 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2832 pr_warn_ratelimited(
2833 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
2834 mdname(conf->mddev),
2835 (unsigned long long)s,
2837 } else if (atomic_read(&rdev->read_errors)
2838 > conf->max_nr_stripes) {
2839 if (!test_bit(Faulty, &rdev->flags)) {
2840 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2841 mdname(conf->mddev),
2842 atomic_read(&rdev->read_errors),
2843 conf->max_nr_stripes);
2844 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2845 mdname(conf->mddev), rdev->bdev);
2849 if (set_bad && test_bit(In_sync, &rdev->flags)
2850 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2853 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2854 set_bit(R5_ReadError, &sh->dev[i].flags);
2855 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2856 set_bit(R5_ReadError, &sh->dev[i].flags);
2857 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2859 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2861 clear_bit(R5_ReadError, &sh->dev[i].flags);
2862 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2864 && test_bit(In_sync, &rdev->flags)
2865 && rdev_set_badblocks(
2866 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2867 md_error(conf->mddev, rdev);
2870 rdev_dec_pending(rdev, conf->mddev);
2872 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2873 set_bit(STRIPE_HANDLE, &sh->state);
2874 raid5_release_stripe(sh);
2877 static void raid5_end_write_request(struct bio *bi)
2879 struct stripe_head *sh = bi->bi_private;
2880 struct r5conf *conf = sh->raid_conf;
2881 int disks = sh->disks, i;
2882 struct md_rdev *rdev;
2885 int replacement = 0;
2887 for (i = 0 ; i < disks; i++) {
2888 if (bi == &sh->dev[i].req) {
2889 rdev = rdev_pend_deref(conf->disks[i].rdev);
2892 if (bi == &sh->dev[i].rreq) {
2893 rdev = rdev_pend_deref(conf->disks[i].replacement);
2897 /* rdev was removed and 'replacement'
2898 * replaced it. rdev is not removed
2899 * until all requests are finished.
2901 rdev = rdev_pend_deref(conf->disks[i].rdev);
2905 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2906 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2915 md_error(conf->mddev, rdev);
2916 else if (is_badblock(rdev, sh->sector,
2917 RAID5_STRIPE_SECTORS(conf),
2918 &first_bad, &bad_sectors))
2919 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2921 if (bi->bi_status) {
2922 set_bit(STRIPE_DEGRADED, &sh->state);
2923 set_bit(WriteErrorSeen, &rdev->flags);
2924 set_bit(R5_WriteError, &sh->dev[i].flags);
2925 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2926 set_bit(MD_RECOVERY_NEEDED,
2927 &rdev->mddev->recovery);
2928 } else if (is_badblock(rdev, sh->sector,
2929 RAID5_STRIPE_SECTORS(conf),
2930 &first_bad, &bad_sectors)) {
2931 set_bit(R5_MadeGood, &sh->dev[i].flags);
2932 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2933 /* That was a successful write so make
2934 * sure it looks like we already did
2937 set_bit(R5_ReWrite, &sh->dev[i].flags);
2940 rdev_dec_pending(rdev, conf->mddev);
2942 if (sh->batch_head && bi->bi_status && !replacement)
2943 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2946 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2947 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2948 set_bit(STRIPE_HANDLE, &sh->state);
2950 if (sh->batch_head && sh != sh->batch_head)
2951 raid5_release_stripe(sh->batch_head);
2952 raid5_release_stripe(sh);
2955 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2957 struct r5conf *conf = mddev->private;
2958 unsigned long flags;
2959 pr_debug("raid456: error called\n");
2961 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2962 mdname(mddev), rdev->bdev);
2964 spin_lock_irqsave(&conf->device_lock, flags);
2965 set_bit(Faulty, &rdev->flags);
2966 clear_bit(In_sync, &rdev->flags);
2967 mddev->degraded = raid5_calc_degraded(conf);
2969 if (has_failed(conf)) {
2970 set_bit(MD_BROKEN, &conf->mddev->flags);
2971 conf->recovery_disabled = mddev->recovery_disabled;
2973 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2974 mdname(mddev), mddev->degraded, conf->raid_disks);
2976 pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2977 mdname(mddev), conf->raid_disks - mddev->degraded);
2980 spin_unlock_irqrestore(&conf->device_lock, flags);
2981 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2983 set_bit(Blocked, &rdev->flags);
2984 set_mask_bits(&mddev->sb_flags, 0,
2985 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2986 r5c_update_on_rdev_error(mddev, rdev);
2990 * Input: a 'big' sector number,
2991 * Output: index of the data and parity disk, and the sector # in them.
2993 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2994 int previous, int *dd_idx,
2995 struct stripe_head *sh)
2997 sector_t stripe, stripe2;
2998 sector_t chunk_number;
2999 unsigned int chunk_offset;
3002 sector_t new_sector;
3003 int algorithm = previous ? conf->prev_algo
3005 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3006 : conf->chunk_sectors;
3007 int raid_disks = previous ? conf->previous_raid_disks
3009 int data_disks = raid_disks - conf->max_degraded;
3011 /* First compute the information on this sector */
3014 * Compute the chunk number and the sector offset inside the chunk
3016 chunk_offset = sector_div(r_sector, sectors_per_chunk);
3017 chunk_number = r_sector;
3020 * Compute the stripe number
3022 stripe = chunk_number;
3023 *dd_idx = sector_div(stripe, data_disks);
3026 * Select the parity disk based on the user selected algorithm.
3028 pd_idx = qd_idx = -1;
3029 switch(conf->level) {
3031 pd_idx = data_disks;
3034 switch (algorithm) {
3035 case ALGORITHM_LEFT_ASYMMETRIC:
3036 pd_idx = data_disks - sector_div(stripe2, raid_disks);
3037 if (*dd_idx >= pd_idx)
3040 case ALGORITHM_RIGHT_ASYMMETRIC:
3041 pd_idx = sector_div(stripe2, raid_disks);
3042 if (*dd_idx >= pd_idx)
3045 case ALGORITHM_LEFT_SYMMETRIC:
3046 pd_idx = data_disks - sector_div(stripe2, raid_disks);
3047 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3049 case ALGORITHM_RIGHT_SYMMETRIC:
3050 pd_idx = sector_div(stripe2, raid_disks);
3051 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3053 case ALGORITHM_PARITY_0:
3057 case ALGORITHM_PARITY_N:
3058 pd_idx = data_disks;
3066 switch (algorithm) {
3067 case ALGORITHM_LEFT_ASYMMETRIC:
3068 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3069 qd_idx = pd_idx + 1;
3070 if (pd_idx == raid_disks-1) {
3071 (*dd_idx)++; /* Q D D D P */
3073 } else if (*dd_idx >= pd_idx)
3074 (*dd_idx) += 2; /* D D P Q D */
3076 case ALGORITHM_RIGHT_ASYMMETRIC:
3077 pd_idx = sector_div(stripe2, raid_disks);
3078 qd_idx = pd_idx + 1;
3079 if (pd_idx == raid_disks-1) {
3080 (*dd_idx)++; /* Q D D D P */
3082 } else if (*dd_idx >= pd_idx)
3083 (*dd_idx) += 2; /* D D P Q D */
3085 case ALGORITHM_LEFT_SYMMETRIC:
3086 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3087 qd_idx = (pd_idx + 1) % raid_disks;
3088 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3090 case ALGORITHM_RIGHT_SYMMETRIC:
3091 pd_idx = sector_div(stripe2, raid_disks);
3092 qd_idx = (pd_idx + 1) % raid_disks;
3093 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3096 case ALGORITHM_PARITY_0:
3101 case ALGORITHM_PARITY_N:
3102 pd_idx = data_disks;
3103 qd_idx = data_disks + 1;
3106 case ALGORITHM_ROTATING_ZERO_RESTART:
3107 /* Exactly the same as RIGHT_ASYMMETRIC, but or
3108 * of blocks for computing Q is different.
3110 pd_idx = sector_div(stripe2, raid_disks);
3111 qd_idx = pd_idx + 1;
3112 if (pd_idx == raid_disks-1) {
3113 (*dd_idx)++; /* Q D D D P */
3115 } else if (*dd_idx >= pd_idx)
3116 (*dd_idx) += 2; /* D D P Q D */
3120 case ALGORITHM_ROTATING_N_RESTART:
3121 /* Same a left_asymmetric, by first stripe is
3122 * D D D P Q rather than
3126 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3127 qd_idx = pd_idx + 1;
3128 if (pd_idx == raid_disks-1) {
3129 (*dd_idx)++; /* Q D D D P */
3131 } else if (*dd_idx >= pd_idx)
3132 (*dd_idx) += 2; /* D D P Q D */
3136 case ALGORITHM_ROTATING_N_CONTINUE:
3137 /* Same as left_symmetric but Q is before P */
3138 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3139 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3140 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3144 case ALGORITHM_LEFT_ASYMMETRIC_6:
3145 /* RAID5 left_asymmetric, with Q on last device */
3146 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3147 if (*dd_idx >= pd_idx)
3149 qd_idx = raid_disks - 1;
3152 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3153 pd_idx = sector_div(stripe2, raid_disks-1);
3154 if (*dd_idx >= pd_idx)
3156 qd_idx = raid_disks - 1;
3159 case ALGORITHM_LEFT_SYMMETRIC_6:
3160 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3161 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3162 qd_idx = raid_disks - 1;
3165 case ALGORITHM_RIGHT_SYMMETRIC_6:
3166 pd_idx = sector_div(stripe2, raid_disks-1);
3167 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3168 qd_idx = raid_disks - 1;
3171 case ALGORITHM_PARITY_0_6:
3174 qd_idx = raid_disks - 1;
3184 sh->pd_idx = pd_idx;
3185 sh->qd_idx = qd_idx;
3186 sh->ddf_layout = ddf_layout;
3189 * Finally, compute the new sector number
3191 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3195 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3197 struct r5conf *conf = sh->raid_conf;
3198 int raid_disks = sh->disks;
3199 int data_disks = raid_disks - conf->max_degraded;
3200 sector_t new_sector = sh->sector, check;
3201 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3202 : conf->chunk_sectors;
3203 int algorithm = previous ? conf->prev_algo
3207 sector_t chunk_number;
3208 int dummy1, dd_idx = i;
3210 struct stripe_head sh2;
3212 chunk_offset = sector_div(new_sector, sectors_per_chunk);
3213 stripe = new_sector;
3215 if (i == sh->pd_idx)
3217 switch(conf->level) {
3220 switch (algorithm) {
3221 case ALGORITHM_LEFT_ASYMMETRIC:
3222 case ALGORITHM_RIGHT_ASYMMETRIC:
3226 case ALGORITHM_LEFT_SYMMETRIC:
3227 case ALGORITHM_RIGHT_SYMMETRIC:
3230 i -= (sh->pd_idx + 1);
3232 case ALGORITHM_PARITY_0:
3235 case ALGORITHM_PARITY_N:
3242 if (i == sh->qd_idx)
3243 return 0; /* It is the Q disk */
3244 switch (algorithm) {
3245 case ALGORITHM_LEFT_ASYMMETRIC:
3246 case ALGORITHM_RIGHT_ASYMMETRIC:
3247 case ALGORITHM_ROTATING_ZERO_RESTART:
3248 case ALGORITHM_ROTATING_N_RESTART:
3249 if (sh->pd_idx == raid_disks-1)
3250 i--; /* Q D D D P */
3251 else if (i > sh->pd_idx)
3252 i -= 2; /* D D P Q D */
3254 case ALGORITHM_LEFT_SYMMETRIC:
3255 case ALGORITHM_RIGHT_SYMMETRIC:
3256 if (sh->pd_idx == raid_disks-1)
3257 i--; /* Q D D D P */
3262 i -= (sh->pd_idx + 2);
3265 case ALGORITHM_PARITY_0:
3268 case ALGORITHM_PARITY_N:
3270 case ALGORITHM_ROTATING_N_CONTINUE:
3271 /* Like left_symmetric, but P is before Q */
3272 if (sh->pd_idx == 0)
3273 i--; /* P D D D Q */
3278 i -= (sh->pd_idx + 1);
3281 case ALGORITHM_LEFT_ASYMMETRIC_6:
3282 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3286 case ALGORITHM_LEFT_SYMMETRIC_6:
3287 case ALGORITHM_RIGHT_SYMMETRIC_6:
3289 i += data_disks + 1;
3290 i -= (sh->pd_idx + 1);
3292 case ALGORITHM_PARITY_0_6:
3301 chunk_number = stripe * data_disks + i;
3302 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3304 check = raid5_compute_sector(conf, r_sector,
3305 previous, &dummy1, &sh2);
3306 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3307 || sh2.qd_idx != sh->qd_idx) {
3308 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3309 mdname(conf->mddev));
3316 * There are cases where we want handle_stripe_dirtying() and
3317 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3319 * This function checks whether we want to delay the towrite. Specifically,
3320 * we delay the towrite when:
3322 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3323 * stripe has data in journal (for other devices).
3325 * In this case, when reading data for the non-overwrite dev, it is
3326 * necessary to handle complex rmw of write back cache (prexor with
3327 * orig_page, and xor with page). To keep read path simple, we would
3328 * like to flush data in journal to RAID disks first, so complex rmw
3329 * is handled in the write patch (handle_stripe_dirtying).
3331 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3333 * It is important to be able to flush all stripes in raid5-cache.
3334 * Therefore, we need reserve some space on the journal device for
3335 * these flushes. If flush operation includes pending writes to the
3336 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3337 * for the flush out. If we exclude these pending writes from flush
3338 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3339 * Therefore, excluding pending writes in these cases enables more
3340 * efficient use of the journal device.
3342 * Note: To make sure the stripe makes progress, we only delay
3343 * towrite for stripes with data already in journal (injournal > 0).
3344 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3345 * no_space_stripes list.
3347 * 3. during journal failure
3348 * In journal failure, we try to flush all cached data to raid disks
3349 * based on data in stripe cache. The array is read-only to upper
3350 * layers, so we would skip all pending writes.
3353 static inline bool delay_towrite(struct r5conf *conf,
3355 struct stripe_head_state *s)
3358 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3359 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3362 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3366 if (s->log_failed && s->injournal)
3372 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3373 int rcw, int expand)
3375 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3376 struct r5conf *conf = sh->raid_conf;
3377 int level = conf->level;
3381 * In some cases, handle_stripe_dirtying initially decided to
3382 * run rmw and allocates extra page for prexor. However, rcw is
3383 * cheaper later on. We need to free the extra page now,
3384 * because we won't be able to do that in ops_complete_prexor().
3386 r5c_release_extra_page(sh);
3388 for (i = disks; i--; ) {
3389 struct r5dev *dev = &sh->dev[i];
3391 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3392 set_bit(R5_LOCKED, &dev->flags);
3393 set_bit(R5_Wantdrain, &dev->flags);
3395 clear_bit(R5_UPTODATE, &dev->flags);
3397 } else if (test_bit(R5_InJournal, &dev->flags)) {
3398 set_bit(R5_LOCKED, &dev->flags);
3402 /* if we are not expanding this is a proper write request, and
3403 * there will be bios with new data to be drained into the
3408 /* False alarm, nothing to do */
3410 sh->reconstruct_state = reconstruct_state_drain_run;
3411 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3413 sh->reconstruct_state = reconstruct_state_run;
3415 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3417 if (s->locked + conf->max_degraded == disks)
3418 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3419 atomic_inc(&conf->pending_full_writes);
3421 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3422 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3423 BUG_ON(level == 6 &&
3424 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3425 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3427 for (i = disks; i--; ) {
3428 struct r5dev *dev = &sh->dev[i];
3429 if (i == pd_idx || i == qd_idx)
3433 (test_bit(R5_UPTODATE, &dev->flags) ||
3434 test_bit(R5_Wantcompute, &dev->flags))) {
3435 set_bit(R5_Wantdrain, &dev->flags);
3436 set_bit(R5_LOCKED, &dev->flags);
3437 clear_bit(R5_UPTODATE, &dev->flags);
3439 } else if (test_bit(R5_InJournal, &dev->flags)) {
3440 set_bit(R5_LOCKED, &dev->flags);
3445 /* False alarm - nothing to do */
3447 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3448 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3449 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3450 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3453 /* keep the parity disk(s) locked while asynchronous operations
3456 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3457 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3461 int qd_idx = sh->qd_idx;
3462 struct r5dev *dev = &sh->dev[qd_idx];
3464 set_bit(R5_LOCKED, &dev->flags);
3465 clear_bit(R5_UPTODATE, &dev->flags);
3469 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3470 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3471 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3472 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3473 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3475 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3476 __func__, (unsigned long long)sh->sector,
3477 s->locked, s->ops_request);
3480 static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi,
3481 int dd_idx, int forwrite)
3483 struct r5conf *conf = sh->raid_conf;
3486 pr_debug("checking bi b#%llu to stripe s#%llu\n",
3487 bi->bi_iter.bi_sector, sh->sector);
3489 /* Don't allow new IO added to stripes in batch list */
3494 bip = &sh->dev[dd_idx].towrite;
3496 bip = &sh->dev[dd_idx].toread;
3498 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3499 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3501 bip = &(*bip)->bi_next;
3504 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3507 if (forwrite && raid5_has_ppl(conf)) {
3509 * With PPL only writes to consecutive data chunks within a
3510 * stripe are allowed because for a single stripe_head we can
3511 * only have one PPL entry at a time, which describes one data
3512 * range. Not really an overlap, but wait_for_overlap can be
3513 * used to handle this.
3521 for (i = 0; i < sh->disks; i++) {
3522 if (i != sh->pd_idx &&
3523 (i == dd_idx || sh->dev[i].towrite)) {
3524 sector = sh->dev[i].sector;
3525 if (count == 0 || sector < first)
3533 if (first + conf->chunk_sectors * (count - 1) != last)
3540 static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3541 int dd_idx, int forwrite, int previous)
3543 struct r5conf *conf = sh->raid_conf;
3548 bip = &sh->dev[dd_idx].towrite;
3552 bip = &sh->dev[dd_idx].toread;
3555 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector)
3556 bip = &(*bip)->bi_next;
3558 if (!forwrite || previous)
3559 clear_bit(STRIPE_BATCH_READY, &sh->state);
3561 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3565 bio_inc_remaining(bi);
3566 md_write_inc(conf->mddev, bi);
3569 /* check if page is covered */
3570 sector_t sector = sh->dev[dd_idx].sector;
3571 for (bi=sh->dev[dd_idx].towrite;
3572 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3573 bi && bi->bi_iter.bi_sector <= sector;
3574 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3575 if (bio_end_sector(bi) >= sector)
3576 sector = bio_end_sector(bi);
3578 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3579 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3580 sh->overwrite_disks++;
3583 pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n",
3584 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx,
3585 sh->dev[dd_idx].sector);
3587 if (conf->mddev->bitmap && firstwrite) {
3588 /* Cannot hold spinlock over bitmap_startwrite,
3589 * but must ensure this isn't added to a batch until
3590 * we have added to the bitmap and set bm_seq.
3591 * So set STRIPE_BITMAP_PENDING to prevent
3593 * If multiple __add_stripe_bio() calls race here they
3594 * much all set STRIPE_BITMAP_PENDING. So only the first one
3595 * to complete "bitmap_startwrite" gets to set
3596 * STRIPE_BIT_DELAY. This is important as once a stripe
3597 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3600 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3601 spin_unlock_irq(&sh->stripe_lock);
3602 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3603 RAID5_STRIPE_SECTORS(conf), 0);
3604 spin_lock_irq(&sh->stripe_lock);
3605 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3606 if (!sh->batch_head) {
3607 sh->bm_seq = conf->seq_flush+1;
3608 set_bit(STRIPE_BIT_DELAY, &sh->state);
3614 * Each stripe/dev can have one or more bios attached.
3615 * toread/towrite point to the first in a chain.
3616 * The bi_next chain must be in order.
3618 static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3619 int dd_idx, int forwrite, int previous)
3621 spin_lock_irq(&sh->stripe_lock);
3623 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
3624 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3625 spin_unlock_irq(&sh->stripe_lock);
3629 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
3630 spin_unlock_irq(&sh->stripe_lock);
3634 static void end_reshape(struct r5conf *conf);
3636 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3637 struct stripe_head *sh)
3639 int sectors_per_chunk =
3640 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3642 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3643 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3645 raid5_compute_sector(conf,
3646 stripe * (disks - conf->max_degraded)
3647 *sectors_per_chunk + chunk_offset,
3653 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3654 struct stripe_head_state *s, int disks)
3657 BUG_ON(sh->batch_head);
3658 for (i = disks; i--; ) {
3662 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3663 struct md_rdev *rdev;
3665 rdev = rcu_dereference(conf->disks[i].rdev);
3666 if (rdev && test_bit(In_sync, &rdev->flags) &&
3667 !test_bit(Faulty, &rdev->flags))
3668 atomic_inc(&rdev->nr_pending);
3673 if (!rdev_set_badblocks(
3676 RAID5_STRIPE_SECTORS(conf), 0))
3677 md_error(conf->mddev, rdev);
3678 rdev_dec_pending(rdev, conf->mddev);
3681 spin_lock_irq(&sh->stripe_lock);
3682 /* fail all writes first */
3683 bi = sh->dev[i].towrite;
3684 sh->dev[i].towrite = NULL;
3685 sh->overwrite_disks = 0;
3686 spin_unlock_irq(&sh->stripe_lock);
3690 log_stripe_write_finished(sh);
3692 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3693 wake_up(&conf->wait_for_overlap);
3695 while (bi && bi->bi_iter.bi_sector <
3696 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3697 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3699 md_write_end(conf->mddev);
3704 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3705 RAID5_STRIPE_SECTORS(conf), 0, 0);
3707 /* and fail all 'written' */
3708 bi = sh->dev[i].written;
3709 sh->dev[i].written = NULL;
3710 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3711 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3712 sh->dev[i].page = sh->dev[i].orig_page;
3715 if (bi) bitmap_end = 1;
3716 while (bi && bi->bi_iter.bi_sector <
3717 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3718 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3720 md_write_end(conf->mddev);
3725 /* fail any reads if this device is non-operational and
3726 * the data has not reached the cache yet.
3728 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3729 s->failed > conf->max_degraded &&
3730 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3731 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3732 spin_lock_irq(&sh->stripe_lock);
3733 bi = sh->dev[i].toread;
3734 sh->dev[i].toread = NULL;
3735 spin_unlock_irq(&sh->stripe_lock);
3736 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3737 wake_up(&conf->wait_for_overlap);
3740 while (bi && bi->bi_iter.bi_sector <
3741 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3742 struct bio *nextbi =
3743 r5_next_bio(conf, bi, sh->dev[i].sector);
3750 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3751 RAID5_STRIPE_SECTORS(conf), 0, 0);
3752 /* If we were in the middle of a write the parity block might
3753 * still be locked - so just clear all R5_LOCKED flags
3755 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3760 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3761 if (atomic_dec_and_test(&conf->pending_full_writes))
3762 md_wakeup_thread(conf->mddev->thread);
3766 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3767 struct stripe_head_state *s)
3772 BUG_ON(sh->batch_head);
3773 clear_bit(STRIPE_SYNCING, &sh->state);
3774 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3775 wake_up(&conf->wait_for_overlap);
3778 /* There is nothing more to do for sync/check/repair.
3779 * Don't even need to abort as that is handled elsewhere
3780 * if needed, and not always wanted e.g. if there is a known
3782 * For recover/replace we need to record a bad block on all
3783 * non-sync devices, or abort the recovery
3785 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3786 /* During recovery devices cannot be removed, so
3787 * locking and refcounting of rdevs is not needed
3790 for (i = 0; i < conf->raid_disks; i++) {
3791 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3793 && !test_bit(Faulty, &rdev->flags)
3794 && !test_bit(In_sync, &rdev->flags)
3795 && !rdev_set_badblocks(rdev, sh->sector,
3796 RAID5_STRIPE_SECTORS(conf), 0))
3798 rdev = rcu_dereference(conf->disks[i].replacement);
3800 && !test_bit(Faulty, &rdev->flags)
3801 && !test_bit(In_sync, &rdev->flags)
3802 && !rdev_set_badblocks(rdev, sh->sector,
3803 RAID5_STRIPE_SECTORS(conf), 0))
3808 conf->recovery_disabled =
3809 conf->mddev->recovery_disabled;
3811 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3814 static int want_replace(struct stripe_head *sh, int disk_idx)
3816 struct md_rdev *rdev;
3820 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3822 && !test_bit(Faulty, &rdev->flags)
3823 && !test_bit(In_sync, &rdev->flags)
3824 && (rdev->recovery_offset <= sh->sector
3825 || rdev->mddev->recovery_cp <= sh->sector))
3831 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3832 int disk_idx, int disks)
3834 struct r5dev *dev = &sh->dev[disk_idx];
3835 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3836 &sh->dev[s->failed_num[1]] };
3838 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3841 if (test_bit(R5_LOCKED, &dev->flags) ||
3842 test_bit(R5_UPTODATE, &dev->flags))
3843 /* No point reading this as we already have it or have
3844 * decided to get it.
3849 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3850 /* We need this block to directly satisfy a request */
3853 if (s->syncing || s->expanding ||
3854 (s->replacing && want_replace(sh, disk_idx)))
3855 /* When syncing, or expanding we read everything.
3856 * When replacing, we need the replaced block.
3860 if ((s->failed >= 1 && fdev[0]->toread) ||
3861 (s->failed >= 2 && fdev[1]->toread))
3862 /* If we want to read from a failed device, then
3863 * we need to actually read every other device.
3867 /* Sometimes neither read-modify-write nor reconstruct-write
3868 * cycles can work. In those cases we read every block we
3869 * can. Then the parity-update is certain to have enough to
3871 * This can only be a problem when we need to write something,
3872 * and some device has failed. If either of those tests
3873 * fail we need look no further.
3875 if (!s->failed || !s->to_write)
3878 if (test_bit(R5_Insync, &dev->flags) &&
3879 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3880 /* Pre-reads at not permitted until after short delay
3881 * to gather multiple requests. However if this
3882 * device is no Insync, the block could only be computed
3883 * and there is no need to delay that.
3887 for (i = 0; i < s->failed && i < 2; i++) {
3888 if (fdev[i]->towrite &&
3889 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3890 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3891 /* If we have a partial write to a failed
3892 * device, then we will need to reconstruct
3893 * the content of that device, so all other
3894 * devices must be read.
3898 if (s->failed >= 2 &&
3899 (fdev[i]->towrite ||
3900 s->failed_num[i] == sh->pd_idx ||
3901 s->failed_num[i] == sh->qd_idx) &&
3902 !test_bit(R5_UPTODATE, &fdev[i]->flags))
3903 /* In max degraded raid6, If the failed disk is P, Q,
3904 * or we want to read the failed disk, we need to do
3905 * reconstruct-write.
3910 /* If we are forced to do a reconstruct-write, because parity
3911 * cannot be trusted and we are currently recovering it, there
3912 * is extra need to be careful.
3913 * If one of the devices that we would need to read, because
3914 * it is not being overwritten (and maybe not written at all)
3915 * is missing/faulty, then we need to read everything we can.
3918 sh->sector < sh->raid_conf->mddev->recovery_cp)
3919 /* reconstruct-write isn't being forced */
3921 for (i = 0; i < s->failed && i < 2; i++) {
3922 if (s->failed_num[i] != sh->pd_idx &&
3923 s->failed_num[i] != sh->qd_idx &&
3924 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3925 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3932 /* fetch_block - checks the given member device to see if its data needs
3933 * to be read or computed to satisfy a request.
3935 * Returns 1 when no more member devices need to be checked, otherwise returns
3936 * 0 to tell the loop in handle_stripe_fill to continue
3938 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3939 int disk_idx, int disks)
3941 struct r5dev *dev = &sh->dev[disk_idx];
3943 /* is the data in this block needed, and can we get it? */
3944 if (need_this_block(sh, s, disk_idx, disks)) {
3945 /* we would like to get this block, possibly by computing it,
3946 * otherwise read it if the backing disk is insync
3948 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3949 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3950 BUG_ON(sh->batch_head);
3953 * In the raid6 case if the only non-uptodate disk is P
3954 * then we already trusted P to compute the other failed
3955 * drives. It is safe to compute rather than re-read P.
3956 * In other cases we only compute blocks from failed
3957 * devices, otherwise check/repair might fail to detect
3958 * a real inconsistency.
3961 if ((s->uptodate == disks - 1) &&
3962 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3963 (s->failed && (disk_idx == s->failed_num[0] ||
3964 disk_idx == s->failed_num[1])))) {
3965 /* have disk failed, and we're requested to fetch it;
3968 pr_debug("Computing stripe %llu block %d\n",
3969 (unsigned long long)sh->sector, disk_idx);
3970 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3971 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3972 set_bit(R5_Wantcompute, &dev->flags);
3973 sh->ops.target = disk_idx;
3974 sh->ops.target2 = -1; /* no 2nd target */
3976 /* Careful: from this point on 'uptodate' is in the eye
3977 * of raid_run_ops which services 'compute' operations
3978 * before writes. R5_Wantcompute flags a block that will
3979 * be R5_UPTODATE by the time it is needed for a
3980 * subsequent operation.
3984 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3985 /* Computing 2-failure is *very* expensive; only
3986 * do it if failed >= 2
3989 for (other = disks; other--; ) {
3990 if (other == disk_idx)
3992 if (!test_bit(R5_UPTODATE,
3993 &sh->dev[other].flags))
3997 pr_debug("Computing stripe %llu blocks %d,%d\n",
3998 (unsigned long long)sh->sector,
4000 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4001 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4002 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
4003 set_bit(R5_Wantcompute, &sh->dev[other].flags);
4004 sh->ops.target = disk_idx;
4005 sh->ops.target2 = other;
4009 } else if (test_bit(R5_Insync, &dev->flags)) {
4010 set_bit(R5_LOCKED, &dev->flags);
4011 set_bit(R5_Wantread, &dev->flags);
4013 pr_debug("Reading block %d (sync=%d)\n",
4014 disk_idx, s->syncing);
4022 * handle_stripe_fill - read or compute data to satisfy pending requests.
4024 static void handle_stripe_fill(struct stripe_head *sh,
4025 struct stripe_head_state *s,
4030 /* look for blocks to read/compute, skip this if a compute
4031 * is already in flight, or if the stripe contents are in the
4032 * midst of changing due to a write
4034 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
4035 !sh->reconstruct_state) {
4038 * For degraded stripe with data in journal, do not handle
4039 * read requests yet, instead, flush the stripe to raid
4040 * disks first, this avoids handling complex rmw of write
4041 * back cache (prexor with orig_page, and then xor with
4042 * page) in the read path
4044 if (s->to_read && s->injournal && s->failed) {
4045 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
4046 r5c_make_stripe_write_out(sh);
4050 for (i = disks; i--; )
4051 if (fetch_block(sh, s, i, disks))
4055 set_bit(STRIPE_HANDLE, &sh->state);
4058 static void break_stripe_batch_list(struct stripe_head *head_sh,
4059 unsigned long handle_flags);
4060 /* handle_stripe_clean_event
4061 * any written block on an uptodate or failed drive can be returned.
4062 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
4063 * never LOCKED, so we don't need to test 'failed' directly.
4065 static void handle_stripe_clean_event(struct r5conf *conf,
4066 struct stripe_head *sh, int disks)
4070 int discard_pending = 0;
4071 struct stripe_head *head_sh = sh;
4072 bool do_endio = false;
4074 for (i = disks; i--; )
4075 if (sh->dev[i].written) {
4077 if (!test_bit(R5_LOCKED, &dev->flags) &&
4078 (test_bit(R5_UPTODATE, &dev->flags) ||
4079 test_bit(R5_Discard, &dev->flags) ||
4080 test_bit(R5_SkipCopy, &dev->flags))) {
4081 /* We can return any write requests */
4082 struct bio *wbi, *wbi2;
4083 pr_debug("Return write for disc %d\n", i);
4084 if (test_and_clear_bit(R5_Discard, &dev->flags))
4085 clear_bit(R5_UPTODATE, &dev->flags);
4086 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
4087 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
4092 dev->page = dev->orig_page;
4094 dev->written = NULL;
4095 while (wbi && wbi->bi_iter.bi_sector <
4096 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4097 wbi2 = r5_next_bio(conf, wbi, dev->sector);
4098 md_write_end(conf->mddev);
4102 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
4103 RAID5_STRIPE_SECTORS(conf),
4104 !test_bit(STRIPE_DEGRADED, &sh->state),
4106 if (head_sh->batch_head) {
4107 sh = list_first_entry(&sh->batch_list,
4110 if (sh != head_sh) {
4117 } else if (test_bit(R5_Discard, &dev->flags))
4118 discard_pending = 1;
4121 log_stripe_write_finished(sh);
4123 if (!discard_pending &&
4124 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4126 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4127 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4128 if (sh->qd_idx >= 0) {
4129 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4130 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4132 /* now that discard is done we can proceed with any sync */
4133 clear_bit(STRIPE_DISCARD, &sh->state);
4135 * SCSI discard will change some bio fields and the stripe has
4136 * no updated data, so remove it from hash list and the stripe
4137 * will be reinitialized
4140 hash = sh->hash_lock_index;
4141 spin_lock_irq(conf->hash_locks + hash);
4143 spin_unlock_irq(conf->hash_locks + hash);
4144 if (head_sh->batch_head) {
4145 sh = list_first_entry(&sh->batch_list,
4146 struct stripe_head, batch_list);
4152 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4153 set_bit(STRIPE_HANDLE, &sh->state);
4157 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4158 if (atomic_dec_and_test(&conf->pending_full_writes))
4159 md_wakeup_thread(conf->mddev->thread);
4161 if (head_sh->batch_head && do_endio)
4162 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4166 * For RMW in write back cache, we need extra page in prexor to store the
4167 * old data. This page is stored in dev->orig_page.
4169 * This function checks whether we have data for prexor. The exact logic
4171 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4173 static inline bool uptodate_for_rmw(struct r5dev *dev)
4175 return (test_bit(R5_UPTODATE, &dev->flags)) &&
4176 (!test_bit(R5_InJournal, &dev->flags) ||
4177 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4180 static int handle_stripe_dirtying(struct r5conf *conf,
4181 struct stripe_head *sh,
4182 struct stripe_head_state *s,
4185 int rmw = 0, rcw = 0, i;
4186 sector_t recovery_cp = conf->mddev->recovery_cp;
4188 /* Check whether resync is now happening or should start.
4189 * If yes, then the array is dirty (after unclean shutdown or
4190 * initial creation), so parity in some stripes might be inconsistent.
4191 * In this case, we need to always do reconstruct-write, to ensure
4192 * that in case of drive failure or read-error correction, we
4193 * generate correct data from the parity.
4195 if (conf->rmw_level == PARITY_DISABLE_RMW ||
4196 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4198 /* Calculate the real rcw later - for now make it
4199 * look like rcw is cheaper
4202 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4203 conf->rmw_level, (unsigned long long)recovery_cp,
4204 (unsigned long long)sh->sector);
4205 } else for (i = disks; i--; ) {
4206 /* would I have to read this buffer for read_modify_write */
4207 struct r5dev *dev = &sh->dev[i];
4208 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4209 i == sh->pd_idx || i == sh->qd_idx ||
4210 test_bit(R5_InJournal, &dev->flags)) &&
4211 !test_bit(R5_LOCKED, &dev->flags) &&
4212 !(uptodate_for_rmw(dev) ||
4213 test_bit(R5_Wantcompute, &dev->flags))) {
4214 if (test_bit(R5_Insync, &dev->flags))
4217 rmw += 2*disks; /* cannot read it */
4219 /* Would I have to read this buffer for reconstruct_write */
4220 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4221 i != sh->pd_idx && i != sh->qd_idx &&
4222 !test_bit(R5_LOCKED, &dev->flags) &&
4223 !(test_bit(R5_UPTODATE, &dev->flags) ||
4224 test_bit(R5_Wantcompute, &dev->flags))) {
4225 if (test_bit(R5_Insync, &dev->flags))
4232 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4233 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4234 set_bit(STRIPE_HANDLE, &sh->state);
4235 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4236 /* prefer read-modify-write, but need to get some data */
4237 if (conf->mddev->queue)
4238 blk_add_trace_msg(conf->mddev->queue,
4239 "raid5 rmw %llu %d",
4240 (unsigned long long)sh->sector, rmw);
4241 for (i = disks; i--; ) {
4242 struct r5dev *dev = &sh->dev[i];
4243 if (test_bit(R5_InJournal, &dev->flags) &&
4244 dev->page == dev->orig_page &&
4245 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4246 /* alloc page for prexor */
4247 struct page *p = alloc_page(GFP_NOIO);
4255 * alloc_page() failed, try use
4256 * disk_info->extra_page
4258 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4259 &conf->cache_state)) {
4260 r5c_use_extra_page(sh);
4264 /* extra_page in use, add to delayed_list */
4265 set_bit(STRIPE_DELAYED, &sh->state);
4266 s->waiting_extra_page = 1;
4271 for (i = disks; i--; ) {
4272 struct r5dev *dev = &sh->dev[i];
4273 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4274 i == sh->pd_idx || i == sh->qd_idx ||
4275 test_bit(R5_InJournal, &dev->flags)) &&
4276 !test_bit(R5_LOCKED, &dev->flags) &&
4277 !(uptodate_for_rmw(dev) ||
4278 test_bit(R5_Wantcompute, &dev->flags)) &&
4279 test_bit(R5_Insync, &dev->flags)) {
4280 if (test_bit(STRIPE_PREREAD_ACTIVE,
4282 pr_debug("Read_old block %d for r-m-w\n",
4284 set_bit(R5_LOCKED, &dev->flags);
4285 set_bit(R5_Wantread, &dev->flags);
4288 set_bit(STRIPE_DELAYED, &sh->state);
4292 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4293 /* want reconstruct write, but need to get some data */
4296 for (i = disks; i--; ) {
4297 struct r5dev *dev = &sh->dev[i];
4298 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4299 i != sh->pd_idx && i != sh->qd_idx &&
4300 !test_bit(R5_LOCKED, &dev->flags) &&
4301 !(test_bit(R5_UPTODATE, &dev->flags) ||
4302 test_bit(R5_Wantcompute, &dev->flags))) {
4304 if (test_bit(R5_Insync, &dev->flags) &&
4305 test_bit(STRIPE_PREREAD_ACTIVE,
4307 pr_debug("Read_old block "
4308 "%d for Reconstruct\n", i);
4309 set_bit(R5_LOCKED, &dev->flags);
4310 set_bit(R5_Wantread, &dev->flags);
4314 set_bit(STRIPE_DELAYED, &sh->state);
4317 if (rcw && conf->mddev->queue)
4318 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4319 (unsigned long long)sh->sector,
4320 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4323 if (rcw > disks && rmw > disks &&
4324 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4325 set_bit(STRIPE_DELAYED, &sh->state);
4327 /* now if nothing is locked, and if we have enough data,
4328 * we can start a write request
4330 /* since handle_stripe can be called at any time we need to handle the
4331 * case where a compute block operation has been submitted and then a
4332 * subsequent call wants to start a write request. raid_run_ops only
4333 * handles the case where compute block and reconstruct are requested
4334 * simultaneously. If this is not the case then new writes need to be
4335 * held off until the compute completes.
4337 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4338 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4339 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4340 schedule_reconstruction(sh, s, rcw == 0, 0);
4344 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4345 struct stripe_head_state *s, int disks)
4347 struct r5dev *dev = NULL;
4349 BUG_ON(sh->batch_head);
4350 set_bit(STRIPE_HANDLE, &sh->state);
4352 switch (sh->check_state) {
4353 case check_state_idle:
4354 /* start a new check operation if there are no failures */
4355 if (s->failed == 0) {
4356 BUG_ON(s->uptodate != disks);
4357 sh->check_state = check_state_run;
4358 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4359 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4363 dev = &sh->dev[s->failed_num[0]];
4365 case check_state_compute_result:
4366 sh->check_state = check_state_idle;
4368 dev = &sh->dev[sh->pd_idx];
4370 /* check that a write has not made the stripe insync */
4371 if (test_bit(STRIPE_INSYNC, &sh->state))
4374 /* either failed parity check, or recovery is happening */
4375 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4376 BUG_ON(s->uptodate != disks);
4378 set_bit(R5_LOCKED, &dev->flags);
4380 set_bit(R5_Wantwrite, &dev->flags);
4382 clear_bit(STRIPE_DEGRADED, &sh->state);
4383 set_bit(STRIPE_INSYNC, &sh->state);
4385 case check_state_run:
4386 break; /* we will be called again upon completion */
4387 case check_state_check_result:
4388 sh->check_state = check_state_idle;
4390 /* if a failure occurred during the check operation, leave
4391 * STRIPE_INSYNC not set and let the stripe be handled again
4396 /* handle a successful check operation, if parity is correct
4397 * we are done. Otherwise update the mismatch count and repair
4398 * parity if !MD_RECOVERY_CHECK
4400 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4401 /* parity is correct (on disc,
4402 * not in buffer any more)
4404 set_bit(STRIPE_INSYNC, &sh->state);
4406 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4407 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4408 /* don't try to repair!! */
4409 set_bit(STRIPE_INSYNC, &sh->state);
4410 pr_warn_ratelimited("%s: mismatch sector in range "
4411 "%llu-%llu\n", mdname(conf->mddev),
4412 (unsigned long long) sh->sector,
4413 (unsigned long long) sh->sector +
4414 RAID5_STRIPE_SECTORS(conf));
4416 sh->check_state = check_state_compute_run;
4417 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4418 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4419 set_bit(R5_Wantcompute,
4420 &sh->dev[sh->pd_idx].flags);
4421 sh->ops.target = sh->pd_idx;
4422 sh->ops.target2 = -1;
4427 case check_state_compute_run:
4430 pr_err("%s: unknown check_state: %d sector: %llu\n",
4431 __func__, sh->check_state,
4432 (unsigned long long) sh->sector);
4437 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4438 struct stripe_head_state *s,
4441 int pd_idx = sh->pd_idx;
4442 int qd_idx = sh->qd_idx;
4445 BUG_ON(sh->batch_head);
4446 set_bit(STRIPE_HANDLE, &sh->state);
4448 BUG_ON(s->failed > 2);
4450 /* Want to check and possibly repair P and Q.
4451 * However there could be one 'failed' device, in which
4452 * case we can only check one of them, possibly using the
4453 * other to generate missing data
4456 switch (sh->check_state) {
4457 case check_state_idle:
4458 /* start a new check operation if there are < 2 failures */
4459 if (s->failed == s->q_failed) {
4460 /* The only possible failed device holds Q, so it
4461 * makes sense to check P (If anything else were failed,
4462 * we would have used P to recreate it).
4464 sh->check_state = check_state_run;
4466 if (!s->q_failed && s->failed < 2) {
4467 /* Q is not failed, and we didn't use it to generate
4468 * anything, so it makes sense to check it
4470 if (sh->check_state == check_state_run)
4471 sh->check_state = check_state_run_pq;
4473 sh->check_state = check_state_run_q;
4476 /* discard potentially stale zero_sum_result */
4477 sh->ops.zero_sum_result = 0;
4479 if (sh->check_state == check_state_run) {
4480 /* async_xor_zero_sum destroys the contents of P */
4481 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4484 if (sh->check_state >= check_state_run &&
4485 sh->check_state <= check_state_run_pq) {
4486 /* async_syndrome_zero_sum preserves P and Q, so
4487 * no need to mark them !uptodate here
4489 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4493 /* we have 2-disk failure */
4494 BUG_ON(s->failed != 2);
4496 case check_state_compute_result:
4497 sh->check_state = check_state_idle;
4499 /* check that a write has not made the stripe insync */
4500 if (test_bit(STRIPE_INSYNC, &sh->state))
4503 /* now write out any block on a failed drive,
4504 * or P or Q if they were recomputed
4507 if (s->failed == 2) {
4508 dev = &sh->dev[s->failed_num[1]];
4510 set_bit(R5_LOCKED, &dev->flags);
4511 set_bit(R5_Wantwrite, &dev->flags);
4513 if (s->failed >= 1) {
4514 dev = &sh->dev[s->failed_num[0]];
4516 set_bit(R5_LOCKED, &dev->flags);
4517 set_bit(R5_Wantwrite, &dev->flags);
4519 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4520 dev = &sh->dev[pd_idx];
4522 set_bit(R5_LOCKED, &dev->flags);
4523 set_bit(R5_Wantwrite, &dev->flags);
4525 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4526 dev = &sh->dev[qd_idx];
4528 set_bit(R5_LOCKED, &dev->flags);
4529 set_bit(R5_Wantwrite, &dev->flags);
4531 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4532 "%s: disk%td not up to date\n",
4533 mdname(conf->mddev),
4534 dev - (struct r5dev *) &sh->dev)) {
4535 clear_bit(R5_LOCKED, &dev->flags);
4536 clear_bit(R5_Wantwrite, &dev->flags);
4539 clear_bit(STRIPE_DEGRADED, &sh->state);
4541 set_bit(STRIPE_INSYNC, &sh->state);
4543 case check_state_run:
4544 case check_state_run_q:
4545 case check_state_run_pq:
4546 break; /* we will be called again upon completion */
4547 case check_state_check_result:
4548 sh->check_state = check_state_idle;
4550 /* handle a successful check operation, if parity is correct
4551 * we are done. Otherwise update the mismatch count and repair
4552 * parity if !MD_RECOVERY_CHECK
4554 if (sh->ops.zero_sum_result == 0) {
4555 /* both parities are correct */
4557 set_bit(STRIPE_INSYNC, &sh->state);
4559 /* in contrast to the raid5 case we can validate
4560 * parity, but still have a failure to write
4563 sh->check_state = check_state_compute_result;
4564 /* Returning at this point means that we may go
4565 * off and bring p and/or q uptodate again so
4566 * we make sure to check zero_sum_result again
4567 * to verify if p or q need writeback
4571 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4572 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4573 /* don't try to repair!! */
4574 set_bit(STRIPE_INSYNC, &sh->state);
4575 pr_warn_ratelimited("%s: mismatch sector in range "
4576 "%llu-%llu\n", mdname(conf->mddev),
4577 (unsigned long long) sh->sector,
4578 (unsigned long long) sh->sector +
4579 RAID5_STRIPE_SECTORS(conf));
4581 int *target = &sh->ops.target;
4583 sh->ops.target = -1;
4584 sh->ops.target2 = -1;
4585 sh->check_state = check_state_compute_run;
4586 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4587 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4588 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4589 set_bit(R5_Wantcompute,
4590 &sh->dev[pd_idx].flags);
4592 target = &sh->ops.target2;
4595 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4596 set_bit(R5_Wantcompute,
4597 &sh->dev[qd_idx].flags);
4604 case check_state_compute_run:
4607 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4608 __func__, sh->check_state,
4609 (unsigned long long) sh->sector);
4614 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4618 /* We have read all the blocks in this stripe and now we need to
4619 * copy some of them into a target stripe for expand.
4621 struct dma_async_tx_descriptor *tx = NULL;
4622 BUG_ON(sh->batch_head);
4623 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4624 for (i = 0; i < sh->disks; i++)
4625 if (i != sh->pd_idx && i != sh->qd_idx) {
4627 struct stripe_head *sh2;
4628 struct async_submit_ctl submit;
4630 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4631 sector_t s = raid5_compute_sector(conf, bn, 0,
4633 sh2 = raid5_get_active_stripe(conf, NULL, s,
4634 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
4636 /* so far only the early blocks of this stripe
4637 * have been requested. When later blocks
4638 * get requested, we will try again
4641 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4642 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4643 /* must have already done this block */
4644 raid5_release_stripe(sh2);
4648 /* place all the copies on one channel */
4649 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4650 tx = async_memcpy(sh2->dev[dd_idx].page,
4651 sh->dev[i].page, sh2->dev[dd_idx].offset,
4652 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4655 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4656 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4657 for (j = 0; j < conf->raid_disks; j++)
4658 if (j != sh2->pd_idx &&
4660 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4662 if (j == conf->raid_disks) {
4663 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4664 set_bit(STRIPE_HANDLE, &sh2->state);
4666 raid5_release_stripe(sh2);
4669 /* done submitting copies, wait for them to complete */
4670 async_tx_quiesce(&tx);
4674 * handle_stripe - do things to a stripe.
4676 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4677 * state of various bits to see what needs to be done.
4679 * return some read requests which now have data
4680 * return some write requests which are safely on storage
4681 * schedule a read on some buffers
4682 * schedule a write of some buffers
4683 * return confirmation of parity correctness
4687 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4689 struct r5conf *conf = sh->raid_conf;
4690 int disks = sh->disks;
4693 int do_recovery = 0;
4695 memset(s, 0, sizeof(*s));
4697 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4698 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4699 s->failed_num[0] = -1;
4700 s->failed_num[1] = -1;
4701 s->log_failed = r5l_log_disk_error(conf);
4703 /* Now to look around and see what can be done */
4705 for (i=disks; i--; ) {
4706 struct md_rdev *rdev;
4713 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4715 dev->toread, dev->towrite, dev->written);
4716 /* maybe we can reply to a read
4718 * new wantfill requests are only permitted while
4719 * ops_complete_biofill is guaranteed to be inactive
4721 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4722 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4723 set_bit(R5_Wantfill, &dev->flags);
4725 /* now count some things */
4726 if (test_bit(R5_LOCKED, &dev->flags))
4728 if (test_bit(R5_UPTODATE, &dev->flags))
4730 if (test_bit(R5_Wantcompute, &dev->flags)) {
4732 BUG_ON(s->compute > 2);
4735 if (test_bit(R5_Wantfill, &dev->flags))
4737 else if (dev->toread)
4741 if (!test_bit(R5_OVERWRITE, &dev->flags))
4746 /* Prefer to use the replacement for reads, but only
4747 * if it is recovered enough and has no bad blocks.
4749 rdev = rcu_dereference(conf->disks[i].replacement);
4750 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4751 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4752 !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4753 &first_bad, &bad_sectors))
4754 set_bit(R5_ReadRepl, &dev->flags);
4756 if (rdev && !test_bit(Faulty, &rdev->flags))
4757 set_bit(R5_NeedReplace, &dev->flags);
4759 clear_bit(R5_NeedReplace, &dev->flags);
4760 rdev = rcu_dereference(conf->disks[i].rdev);
4761 clear_bit(R5_ReadRepl, &dev->flags);
4763 if (rdev && test_bit(Faulty, &rdev->flags))
4766 is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4767 &first_bad, &bad_sectors);
4768 if (s->blocked_rdev == NULL
4769 && (test_bit(Blocked, &rdev->flags)
4772 set_bit(BlockedBadBlocks,
4774 s->blocked_rdev = rdev;
4775 atomic_inc(&rdev->nr_pending);
4778 clear_bit(R5_Insync, &dev->flags);
4782 /* also not in-sync */
4783 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4784 test_bit(R5_UPTODATE, &dev->flags)) {
4785 /* treat as in-sync, but with a read error
4786 * which we can now try to correct
4788 set_bit(R5_Insync, &dev->flags);
4789 set_bit(R5_ReadError, &dev->flags);
4791 } else if (test_bit(In_sync, &rdev->flags))
4792 set_bit(R5_Insync, &dev->flags);
4793 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4794 /* in sync if before recovery_offset */
4795 set_bit(R5_Insync, &dev->flags);
4796 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4797 test_bit(R5_Expanded, &dev->flags))
4798 /* If we've reshaped into here, we assume it is Insync.
4799 * We will shortly update recovery_offset to make
4802 set_bit(R5_Insync, &dev->flags);
4804 if (test_bit(R5_WriteError, &dev->flags)) {
4805 /* This flag does not apply to '.replacement'
4806 * only to .rdev, so make sure to check that*/
4807 struct md_rdev *rdev2 = rcu_dereference(
4808 conf->disks[i].rdev);
4810 clear_bit(R5_Insync, &dev->flags);
4811 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4812 s->handle_bad_blocks = 1;
4813 atomic_inc(&rdev2->nr_pending);
4815 clear_bit(R5_WriteError, &dev->flags);
4817 if (test_bit(R5_MadeGood, &dev->flags)) {
4818 /* This flag does not apply to '.replacement'
4819 * only to .rdev, so make sure to check that*/
4820 struct md_rdev *rdev2 = rcu_dereference(
4821 conf->disks[i].rdev);
4822 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4823 s->handle_bad_blocks = 1;
4824 atomic_inc(&rdev2->nr_pending);
4826 clear_bit(R5_MadeGood, &dev->flags);
4828 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4829 struct md_rdev *rdev2 = rcu_dereference(
4830 conf->disks[i].replacement);
4831 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4832 s->handle_bad_blocks = 1;
4833 atomic_inc(&rdev2->nr_pending);
4835 clear_bit(R5_MadeGoodRepl, &dev->flags);
4837 if (!test_bit(R5_Insync, &dev->flags)) {
4838 /* The ReadError flag will just be confusing now */
4839 clear_bit(R5_ReadError, &dev->flags);
4840 clear_bit(R5_ReWrite, &dev->flags);
4842 if (test_bit(R5_ReadError, &dev->flags))
4843 clear_bit(R5_Insync, &dev->flags);
4844 if (!test_bit(R5_Insync, &dev->flags)) {
4846 s->failed_num[s->failed] = i;
4848 if (rdev && !test_bit(Faulty, &rdev->flags))
4851 rdev = rcu_dereference(
4852 conf->disks[i].replacement);
4853 if (rdev && !test_bit(Faulty, &rdev->flags))
4858 if (test_bit(R5_InJournal, &dev->flags))
4860 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4863 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4864 /* If there is a failed device being replaced,
4865 * we must be recovering.
4866 * else if we are after recovery_cp, we must be syncing
4867 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4868 * else we can only be replacing
4869 * sync and recovery both need to read all devices, and so
4870 * use the same flag.
4873 sh->sector >= conf->mddev->recovery_cp ||
4874 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4883 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4884 * a head which can now be handled.
4886 static int clear_batch_ready(struct stripe_head *sh)
4888 struct stripe_head *tmp;
4889 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4890 return (sh->batch_head && sh->batch_head != sh);
4891 spin_lock(&sh->stripe_lock);
4892 if (!sh->batch_head) {
4893 spin_unlock(&sh->stripe_lock);
4898 * this stripe could be added to a batch list before we check
4899 * BATCH_READY, skips it
4901 if (sh->batch_head != sh) {
4902 spin_unlock(&sh->stripe_lock);
4905 spin_lock(&sh->batch_lock);
4906 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4907 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4908 spin_unlock(&sh->batch_lock);
4909 spin_unlock(&sh->stripe_lock);
4912 * BATCH_READY is cleared, no new stripes can be added.
4913 * batch_list can be accessed without lock
4918 static void break_stripe_batch_list(struct stripe_head *head_sh,
4919 unsigned long handle_flags)
4921 struct stripe_head *sh, *next;
4925 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4927 list_del_init(&sh->batch_list);
4929 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4930 (1 << STRIPE_SYNCING) |
4931 (1 << STRIPE_REPLACED) |
4932 (1 << STRIPE_DELAYED) |
4933 (1 << STRIPE_BIT_DELAY) |
4934 (1 << STRIPE_FULL_WRITE) |
4935 (1 << STRIPE_BIOFILL_RUN) |
4936 (1 << STRIPE_COMPUTE_RUN) |
4937 (1 << STRIPE_DISCARD) |
4938 (1 << STRIPE_BATCH_READY) |
4939 (1 << STRIPE_BATCH_ERR) |
4940 (1 << STRIPE_BITMAP_PENDING)),
4941 "stripe state: %lx\n", sh->state);
4942 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4943 (1 << STRIPE_REPLACED)),
4944 "head stripe state: %lx\n", head_sh->state);
4946 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4947 (1 << STRIPE_PREREAD_ACTIVE) |
4948 (1 << STRIPE_DEGRADED) |
4949 (1 << STRIPE_ON_UNPLUG_LIST)),
4950 head_sh->state & (1 << STRIPE_INSYNC));
4952 sh->check_state = head_sh->check_state;
4953 sh->reconstruct_state = head_sh->reconstruct_state;
4954 spin_lock_irq(&sh->stripe_lock);
4955 sh->batch_head = NULL;
4956 spin_unlock_irq(&sh->stripe_lock);
4957 for (i = 0; i < sh->disks; i++) {
4958 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4960 sh->dev[i].flags = head_sh->dev[i].flags &
4961 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4963 if (handle_flags == 0 ||
4964 sh->state & handle_flags)
4965 set_bit(STRIPE_HANDLE, &sh->state);
4966 raid5_release_stripe(sh);
4968 spin_lock_irq(&head_sh->stripe_lock);
4969 head_sh->batch_head = NULL;
4970 spin_unlock_irq(&head_sh->stripe_lock);
4971 for (i = 0; i < head_sh->disks; i++)
4972 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4974 if (head_sh->state & handle_flags)
4975 set_bit(STRIPE_HANDLE, &head_sh->state);
4978 wake_up(&head_sh->raid_conf->wait_for_overlap);
4981 static void handle_stripe(struct stripe_head *sh)
4983 struct stripe_head_state s;
4984 struct r5conf *conf = sh->raid_conf;
4987 int disks = sh->disks;
4988 struct r5dev *pdev, *qdev;
4990 clear_bit(STRIPE_HANDLE, &sh->state);
4993 * handle_stripe should not continue handle the batched stripe, only
4994 * the head of batch list or lone stripe can continue. Otherwise we
4995 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4996 * is set for the batched stripe.
4998 if (clear_batch_ready(sh))
5001 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
5002 /* already being handled, ensure it gets handled
5003 * again when current action finishes */
5004 set_bit(STRIPE_HANDLE, &sh->state);
5008 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
5009 break_stripe_batch_list(sh, 0);
5011 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
5012 spin_lock(&sh->stripe_lock);
5014 * Cannot process 'sync' concurrently with 'discard'.
5015 * Flush data in r5cache before 'sync'.
5017 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
5018 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
5019 !test_bit(STRIPE_DISCARD, &sh->state) &&
5020 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
5021 set_bit(STRIPE_SYNCING, &sh->state);
5022 clear_bit(STRIPE_INSYNC, &sh->state);
5023 clear_bit(STRIPE_REPLACED, &sh->state);
5025 spin_unlock(&sh->stripe_lock);
5027 clear_bit(STRIPE_DELAYED, &sh->state);
5029 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
5030 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
5031 (unsigned long long)sh->sector, sh->state,
5032 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
5033 sh->check_state, sh->reconstruct_state);
5035 analyse_stripe(sh, &s);
5037 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
5040 if (s.handle_bad_blocks ||
5041 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
5042 set_bit(STRIPE_HANDLE, &sh->state);
5046 if (unlikely(s.blocked_rdev)) {
5047 if (s.syncing || s.expanding || s.expanded ||
5048 s.replacing || s.to_write || s.written) {
5049 set_bit(STRIPE_HANDLE, &sh->state);
5052 /* There is nothing for the blocked_rdev to block */
5053 rdev_dec_pending(s.blocked_rdev, conf->mddev);
5054 s.blocked_rdev = NULL;
5057 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
5058 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
5059 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
5062 pr_debug("locked=%d uptodate=%d to_read=%d"
5063 " to_write=%d failed=%d failed_num=%d,%d\n",
5064 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
5065 s.failed_num[0], s.failed_num[1]);
5067 * check if the array has lost more than max_degraded devices and,
5068 * if so, some requests might need to be failed.
5070 * When journal device failed (log_failed), we will only process
5071 * the stripe if there is data need write to raid disks
5073 if (s.failed > conf->max_degraded ||
5074 (s.log_failed && s.injournal == 0)) {
5075 sh->check_state = 0;
5076 sh->reconstruct_state = 0;
5077 break_stripe_batch_list(sh, 0);
5078 if (s.to_read+s.to_write+s.written)
5079 handle_failed_stripe(conf, sh, &s, disks);
5080 if (s.syncing + s.replacing)
5081 handle_failed_sync(conf, sh, &s);
5084 /* Now we check to see if any write operations have recently
5088 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
5090 if (sh->reconstruct_state == reconstruct_state_drain_result ||
5091 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
5092 sh->reconstruct_state = reconstruct_state_idle;
5094 /* All the 'written' buffers and the parity block are ready to
5095 * be written back to disk
5097 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
5098 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
5099 BUG_ON(sh->qd_idx >= 0 &&
5100 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5101 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
5102 for (i = disks; i--; ) {
5103 struct r5dev *dev = &sh->dev[i];
5104 if (test_bit(R5_LOCKED, &dev->flags) &&
5105 (i == sh->pd_idx || i == sh->qd_idx ||
5106 dev->written || test_bit(R5_InJournal,
5108 pr_debug("Writing block %d\n", i);
5109 set_bit(R5_Wantwrite, &dev->flags);
5114 if (!test_bit(R5_Insync, &dev->flags) ||
5115 ((i == sh->pd_idx || i == sh->qd_idx) &&
5117 set_bit(STRIPE_INSYNC, &sh->state);
5120 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5121 s.dec_preread_active = 1;
5125 * might be able to return some write requests if the parity blocks
5126 * are safe, or on a failed drive
5128 pdev = &sh->dev[sh->pd_idx];
5129 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5130 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5131 qdev = &sh->dev[sh->qd_idx];
5132 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5133 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5137 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5138 && !test_bit(R5_LOCKED, &pdev->flags)
5139 && (test_bit(R5_UPTODATE, &pdev->flags) ||
5140 test_bit(R5_Discard, &pdev->flags))))) &&
5141 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5142 && !test_bit(R5_LOCKED, &qdev->flags)
5143 && (test_bit(R5_UPTODATE, &qdev->flags) ||
5144 test_bit(R5_Discard, &qdev->flags))))))
5145 handle_stripe_clean_event(conf, sh, disks);
5148 r5c_handle_cached_data_endio(conf, sh, disks);
5149 log_stripe_write_finished(sh);
5151 /* Now we might consider reading some blocks, either to check/generate
5152 * parity, or to satisfy requests
5153 * or to load a block that is being partially written.
5155 if (s.to_read || s.non_overwrite
5156 || (s.to_write && s.failed)
5157 || (s.syncing && (s.uptodate + s.compute < disks))
5160 handle_stripe_fill(sh, &s, disks);
5163 * When the stripe finishes full journal write cycle (write to journal
5164 * and raid disk), this is the clean up procedure so it is ready for
5167 r5c_finish_stripe_write_out(conf, sh, &s);
5170 * Now to consider new write requests, cache write back and what else,
5171 * if anything should be read. We do not handle new writes when:
5172 * 1/ A 'write' operation (copy+xor) is already in flight.
5173 * 2/ A 'check' operation is in flight, as it may clobber the parity
5175 * 3/ A r5c cache log write is in flight.
5178 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5179 if (!r5c_is_writeback(conf->log)) {
5181 handle_stripe_dirtying(conf, sh, &s, disks);
5182 } else { /* write back cache */
5185 /* First, try handle writes in caching phase */
5187 ret = r5c_try_caching_write(conf, sh, &s,
5190 * If caching phase failed: ret == -EAGAIN
5192 * stripe under reclaim: !caching && injournal
5194 * fall back to handle_stripe_dirtying()
5196 if (ret == -EAGAIN ||
5197 /* stripe under reclaim: !caching && injournal */
5198 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5200 ret = handle_stripe_dirtying(conf, sh, &s,
5208 /* maybe we need to check and possibly fix the parity for this stripe
5209 * Any reads will already have been scheduled, so we just see if enough
5210 * data is available. The parity check is held off while parity
5211 * dependent operations are in flight.
5213 if (sh->check_state ||
5214 (s.syncing && s.locked == 0 &&
5215 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5216 !test_bit(STRIPE_INSYNC, &sh->state))) {
5217 if (conf->level == 6)
5218 handle_parity_checks6(conf, sh, &s, disks);
5220 handle_parity_checks5(conf, sh, &s, disks);
5223 if ((s.replacing || s.syncing) && s.locked == 0
5224 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5225 && !test_bit(STRIPE_REPLACED, &sh->state)) {
5226 /* Write out to replacement devices where possible */
5227 for (i = 0; i < conf->raid_disks; i++)
5228 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5229 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5230 set_bit(R5_WantReplace, &sh->dev[i].flags);
5231 set_bit(R5_LOCKED, &sh->dev[i].flags);
5235 set_bit(STRIPE_INSYNC, &sh->state);
5236 set_bit(STRIPE_REPLACED, &sh->state);
5238 if ((s.syncing || s.replacing) && s.locked == 0 &&
5239 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5240 test_bit(STRIPE_INSYNC, &sh->state)) {
5241 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5242 clear_bit(STRIPE_SYNCING, &sh->state);
5243 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5244 wake_up(&conf->wait_for_overlap);
5247 /* If the failed drives are just a ReadError, then we might need
5248 * to progress the repair/check process
5250 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5251 for (i = 0; i < s.failed; i++) {
5252 struct r5dev *dev = &sh->dev[s.failed_num[i]];
5253 if (test_bit(R5_ReadError, &dev->flags)
5254 && !test_bit(R5_LOCKED, &dev->flags)
5255 && test_bit(R5_UPTODATE, &dev->flags)
5257 if (!test_bit(R5_ReWrite, &dev->flags)) {
5258 set_bit(R5_Wantwrite, &dev->flags);
5259 set_bit(R5_ReWrite, &dev->flags);
5261 /* let's read it back */
5262 set_bit(R5_Wantread, &dev->flags);
5263 set_bit(R5_LOCKED, &dev->flags);
5268 /* Finish reconstruct operations initiated by the expansion process */
5269 if (sh->reconstruct_state == reconstruct_state_result) {
5270 struct stripe_head *sh_src
5271 = raid5_get_active_stripe(conf, NULL, sh->sector,
5272 R5_GAS_PREVIOUS | R5_GAS_NOBLOCK |
5274 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5275 /* sh cannot be written until sh_src has been read.
5276 * so arrange for sh to be delayed a little
5278 set_bit(STRIPE_DELAYED, &sh->state);
5279 set_bit(STRIPE_HANDLE, &sh->state);
5280 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5282 atomic_inc(&conf->preread_active_stripes);
5283 raid5_release_stripe(sh_src);
5287 raid5_release_stripe(sh_src);
5289 sh->reconstruct_state = reconstruct_state_idle;
5290 clear_bit(STRIPE_EXPANDING, &sh->state);
5291 for (i = conf->raid_disks; i--; ) {
5292 set_bit(R5_Wantwrite, &sh->dev[i].flags);
5293 set_bit(R5_LOCKED, &sh->dev[i].flags);
5298 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5299 !sh->reconstruct_state) {
5300 /* Need to write out all blocks after computing parity */
5301 sh->disks = conf->raid_disks;
5302 stripe_set_idx(sh->sector, conf, 0, sh);
5303 schedule_reconstruction(sh, &s, 1, 1);
5304 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5305 clear_bit(STRIPE_EXPAND_READY, &sh->state);
5306 atomic_dec(&conf->reshape_stripes);
5307 wake_up(&conf->wait_for_overlap);
5308 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5311 if (s.expanding && s.locked == 0 &&
5312 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5313 handle_stripe_expansion(conf, sh);
5316 /* wait for this device to become unblocked */
5317 if (unlikely(s.blocked_rdev)) {
5318 if (conf->mddev->external)
5319 md_wait_for_blocked_rdev(s.blocked_rdev,
5322 /* Internal metadata will immediately
5323 * be written by raid5d, so we don't
5324 * need to wait here.
5326 rdev_dec_pending(s.blocked_rdev,
5330 if (s.handle_bad_blocks)
5331 for (i = disks; i--; ) {
5332 struct md_rdev *rdev;
5333 struct r5dev *dev = &sh->dev[i];
5334 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5335 /* We own a safe reference to the rdev */
5336 rdev = rdev_pend_deref(conf->disks[i].rdev);
5337 if (!rdev_set_badblocks(rdev, sh->sector,
5338 RAID5_STRIPE_SECTORS(conf), 0))
5339 md_error(conf->mddev, rdev);
5340 rdev_dec_pending(rdev, conf->mddev);
5342 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5343 rdev = rdev_pend_deref(conf->disks[i].rdev);
5344 rdev_clear_badblocks(rdev, sh->sector,
5345 RAID5_STRIPE_SECTORS(conf), 0);
5346 rdev_dec_pending(rdev, conf->mddev);
5348 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5349 rdev = rdev_pend_deref(conf->disks[i].replacement);
5351 /* rdev have been moved down */
5352 rdev = rdev_pend_deref(conf->disks[i].rdev);
5353 rdev_clear_badblocks(rdev, sh->sector,
5354 RAID5_STRIPE_SECTORS(conf), 0);
5355 rdev_dec_pending(rdev, conf->mddev);
5360 raid_run_ops(sh, s.ops_request);
5364 if (s.dec_preread_active) {
5365 /* We delay this until after ops_run_io so that if make_request
5366 * is waiting on a flush, it won't continue until the writes
5367 * have actually been submitted.
5369 atomic_dec(&conf->preread_active_stripes);
5370 if (atomic_read(&conf->preread_active_stripes) <
5372 md_wakeup_thread(conf->mddev->thread);
5375 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5378 static void raid5_activate_delayed(struct r5conf *conf)
5379 __must_hold(&conf->device_lock)
5381 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5382 while (!list_empty(&conf->delayed_list)) {
5383 struct list_head *l = conf->delayed_list.next;
5384 struct stripe_head *sh;
5385 sh = list_entry(l, struct stripe_head, lru);
5387 clear_bit(STRIPE_DELAYED, &sh->state);
5388 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5389 atomic_inc(&conf->preread_active_stripes);
5390 list_add_tail(&sh->lru, &conf->hold_list);
5391 raid5_wakeup_stripe_thread(sh);
5396 static void activate_bit_delay(struct r5conf *conf,
5397 struct list_head *temp_inactive_list)
5398 __must_hold(&conf->device_lock)
5400 struct list_head head;
5401 list_add(&head, &conf->bitmap_list);
5402 list_del_init(&conf->bitmap_list);
5403 while (!list_empty(&head)) {
5404 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5406 list_del_init(&sh->lru);
5407 atomic_inc(&sh->count);
5408 hash = sh->hash_lock_index;
5409 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5413 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5415 struct r5conf *conf = mddev->private;
5416 sector_t sector = bio->bi_iter.bi_sector;
5417 unsigned int chunk_sectors;
5418 unsigned int bio_sectors = bio_sectors(bio);
5420 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5421 return chunk_sectors >=
5422 ((sector & (chunk_sectors - 1)) + bio_sectors);
5426 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5427 * later sampled by raid5d.
5429 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5431 unsigned long flags;
5433 spin_lock_irqsave(&conf->device_lock, flags);
5435 bi->bi_next = conf->retry_read_aligned_list;
5436 conf->retry_read_aligned_list = bi;
5438 spin_unlock_irqrestore(&conf->device_lock, flags);
5439 md_wakeup_thread(conf->mddev->thread);
5442 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5443 unsigned int *offset)
5447 bi = conf->retry_read_aligned;
5449 *offset = conf->retry_read_offset;
5450 conf->retry_read_aligned = NULL;
5453 bi = conf->retry_read_aligned_list;
5455 conf->retry_read_aligned_list = bi->bi_next;
5464 * The "raid5_align_endio" should check if the read succeeded and if it
5465 * did, call bio_endio on the original bio (having bio_put the new bio
5467 * If the read failed..
5469 static void raid5_align_endio(struct bio *bi)
5471 struct md_io_acct *md_io_acct = bi->bi_private;
5472 struct bio *raid_bi = md_io_acct->orig_bio;
5473 struct mddev *mddev;
5474 struct r5conf *conf;
5475 struct md_rdev *rdev;
5476 blk_status_t error = bi->bi_status;
5477 unsigned long start_time = md_io_acct->start_time;
5481 rdev = (void*)raid_bi->bi_next;
5482 raid_bi->bi_next = NULL;
5483 mddev = rdev->mddev;
5484 conf = mddev->private;
5486 rdev_dec_pending(rdev, conf->mddev);
5489 if (blk_queue_io_stat(raid_bi->bi_bdev->bd_disk->queue))
5490 bio_end_io_acct(raid_bi, start_time);
5492 if (atomic_dec_and_test(&conf->active_aligned_reads))
5493 wake_up(&conf->wait_for_quiescent);
5497 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5499 add_bio_to_retry(raid_bi, conf);
5502 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5504 struct r5conf *conf = mddev->private;
5505 struct bio *align_bio;
5506 struct md_rdev *rdev;
5507 sector_t sector, end_sector, first_bad;
5508 int bad_sectors, dd_idx;
5509 struct md_io_acct *md_io_acct;
5512 if (!in_chunk_boundary(mddev, raid_bio)) {
5513 pr_debug("%s: non aligned\n", __func__);
5517 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5519 end_sector = bio_end_sector(raid_bio);
5522 if (r5c_big_stripe_cached(conf, sector))
5523 goto out_rcu_unlock;
5525 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5526 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5527 rdev->recovery_offset < end_sector) {
5528 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5530 goto out_rcu_unlock;
5531 if (test_bit(Faulty, &rdev->flags) ||
5532 !(test_bit(In_sync, &rdev->flags) ||
5533 rdev->recovery_offset >= end_sector))
5534 goto out_rcu_unlock;
5537 atomic_inc(&rdev->nr_pending);
5540 if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad,
5542 rdev_dec_pending(rdev, mddev);
5546 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5547 &mddev->io_acct_set);
5548 md_io_acct = container_of(align_bio, struct md_io_acct, bio_clone);
5549 raid_bio->bi_next = (void *)rdev;
5550 if (blk_queue_io_stat(raid_bio->bi_bdev->bd_disk->queue))
5551 md_io_acct->start_time = bio_start_io_acct(raid_bio);
5552 md_io_acct->orig_bio = raid_bio;
5554 align_bio->bi_end_io = raid5_align_endio;
5555 align_bio->bi_private = md_io_acct;
5556 align_bio->bi_iter.bi_sector = sector;
5558 /* No reshape active, so we can trust rdev->data_offset */
5559 align_bio->bi_iter.bi_sector += rdev->data_offset;
5562 if (conf->quiesce == 0) {
5563 atomic_inc(&conf->active_aligned_reads);
5566 /* need a memory barrier to detect the race with raid5_quiesce() */
5567 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5568 /* quiesce is in progress, so we need to undo io activation and wait
5571 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5572 wake_up(&conf->wait_for_quiescent);
5573 spin_lock_irq(&conf->device_lock);
5574 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5576 atomic_inc(&conf->active_aligned_reads);
5577 spin_unlock_irq(&conf->device_lock);
5581 trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk),
5582 raid_bio->bi_iter.bi_sector);
5583 submit_bio_noacct(align_bio);
5591 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5594 sector_t sector = raid_bio->bi_iter.bi_sector;
5595 unsigned chunk_sects = mddev->chunk_sectors;
5596 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5598 if (sectors < bio_sectors(raid_bio)) {
5599 struct r5conf *conf = mddev->private;
5600 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5601 bio_chain(split, raid_bio);
5602 submit_bio_noacct(raid_bio);
5606 if (!raid5_read_one_chunk(mddev, raid_bio))
5612 /* __get_priority_stripe - get the next stripe to process
5614 * Full stripe writes are allowed to pass preread active stripes up until
5615 * the bypass_threshold is exceeded. In general the bypass_count
5616 * increments when the handle_list is handled before the hold_list; however, it
5617 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5618 * stripe with in flight i/o. The bypass_count will be reset when the
5619 * head of the hold_list has changed, i.e. the head was promoted to the
5622 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5623 __must_hold(&conf->device_lock)
5625 struct stripe_head *sh, *tmp;
5626 struct list_head *handle_list = NULL;
5627 struct r5worker_group *wg;
5628 bool second_try = !r5c_is_writeback(conf->log) &&
5629 !r5l_log_disk_error(conf);
5630 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5631 r5l_log_disk_error(conf);
5636 if (conf->worker_cnt_per_group == 0) {
5637 handle_list = try_loprio ? &conf->loprio_list :
5639 } else if (group != ANY_GROUP) {
5640 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5641 &conf->worker_groups[group].handle_list;
5642 wg = &conf->worker_groups[group];
5645 for (i = 0; i < conf->group_cnt; i++) {
5646 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5647 &conf->worker_groups[i].handle_list;
5648 wg = &conf->worker_groups[i];
5649 if (!list_empty(handle_list))
5654 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5656 list_empty(handle_list) ? "empty" : "busy",
5657 list_empty(&conf->hold_list) ? "empty" : "busy",
5658 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5660 if (!list_empty(handle_list)) {
5661 sh = list_entry(handle_list->next, typeof(*sh), lru);
5663 if (list_empty(&conf->hold_list))
5664 conf->bypass_count = 0;
5665 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5666 if (conf->hold_list.next == conf->last_hold)
5667 conf->bypass_count++;
5669 conf->last_hold = conf->hold_list.next;
5670 conf->bypass_count -= conf->bypass_threshold;
5671 if (conf->bypass_count < 0)
5672 conf->bypass_count = 0;
5675 } else if (!list_empty(&conf->hold_list) &&
5676 ((conf->bypass_threshold &&
5677 conf->bypass_count > conf->bypass_threshold) ||
5678 atomic_read(&conf->pending_full_writes) == 0)) {
5680 list_for_each_entry(tmp, &conf->hold_list, lru) {
5681 if (conf->worker_cnt_per_group == 0 ||
5682 group == ANY_GROUP ||
5683 !cpu_online(tmp->cpu) ||
5684 cpu_to_group(tmp->cpu) == group) {
5691 conf->bypass_count -= conf->bypass_threshold;
5692 if (conf->bypass_count < 0)
5693 conf->bypass_count = 0;
5702 try_loprio = !try_loprio;
5710 list_del_init(&sh->lru);
5711 BUG_ON(atomic_inc_return(&sh->count) != 1);
5715 struct raid5_plug_cb {
5716 struct blk_plug_cb cb;
5717 struct list_head list;
5718 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5721 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5723 struct raid5_plug_cb *cb = container_of(
5724 blk_cb, struct raid5_plug_cb, cb);
5725 struct stripe_head *sh;
5726 struct mddev *mddev = cb->cb.data;
5727 struct r5conf *conf = mddev->private;
5731 if (cb->list.next && !list_empty(&cb->list)) {
5732 spin_lock_irq(&conf->device_lock);
5733 while (!list_empty(&cb->list)) {
5734 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5735 list_del_init(&sh->lru);
5737 * avoid race release_stripe_plug() sees
5738 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5739 * is still in our list
5741 smp_mb__before_atomic();
5742 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5744 * STRIPE_ON_RELEASE_LIST could be set here. In that
5745 * case, the count is always > 1 here
5747 hash = sh->hash_lock_index;
5748 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5751 spin_unlock_irq(&conf->device_lock);
5753 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5754 NR_STRIPE_HASH_LOCKS);
5756 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5760 static void release_stripe_plug(struct mddev *mddev,
5761 struct stripe_head *sh)
5763 struct blk_plug_cb *blk_cb = blk_check_plugged(
5764 raid5_unplug, mddev,
5765 sizeof(struct raid5_plug_cb));
5766 struct raid5_plug_cb *cb;
5769 raid5_release_stripe(sh);
5773 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5775 if (cb->list.next == NULL) {
5777 INIT_LIST_HEAD(&cb->list);
5778 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5779 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5782 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5783 list_add_tail(&sh->lru, &cb->list);
5785 raid5_release_stripe(sh);
5788 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5790 struct r5conf *conf = mddev->private;
5791 sector_t logical_sector, last_sector;
5792 struct stripe_head *sh;
5795 /* We need to handle this when io_uring supports discard/trim */
5796 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5799 if (mddev->reshape_position != MaxSector)
5800 /* Skip discard while reshape is happening */
5803 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5804 last_sector = bio_end_sector(bi);
5808 stripe_sectors = conf->chunk_sectors *
5809 (conf->raid_disks - conf->max_degraded);
5810 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5812 sector_div(last_sector, stripe_sectors);
5814 logical_sector *= conf->chunk_sectors;
5815 last_sector *= conf->chunk_sectors;
5817 for (; logical_sector < last_sector;
5818 logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5822 sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0);
5823 prepare_to_wait(&conf->wait_for_overlap, &w,
5824 TASK_UNINTERRUPTIBLE);
5825 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5826 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5827 raid5_release_stripe(sh);
5831 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5832 spin_lock_irq(&sh->stripe_lock);
5833 for (d = 0; d < conf->raid_disks; d++) {
5834 if (d == sh->pd_idx || d == sh->qd_idx)
5836 if (sh->dev[d].towrite || sh->dev[d].toread) {
5837 set_bit(R5_Overlap, &sh->dev[d].flags);
5838 spin_unlock_irq(&sh->stripe_lock);
5839 raid5_release_stripe(sh);
5844 set_bit(STRIPE_DISCARD, &sh->state);
5845 finish_wait(&conf->wait_for_overlap, &w);
5846 sh->overwrite_disks = 0;
5847 for (d = 0; d < conf->raid_disks; d++) {
5848 if (d == sh->pd_idx || d == sh->qd_idx)
5850 sh->dev[d].towrite = bi;
5851 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5852 bio_inc_remaining(bi);
5853 md_write_inc(mddev, bi);
5854 sh->overwrite_disks++;
5856 spin_unlock_irq(&sh->stripe_lock);
5857 if (conf->mddev->bitmap) {
5859 d < conf->raid_disks - conf->max_degraded;
5861 md_bitmap_startwrite(mddev->bitmap,
5863 RAID5_STRIPE_SECTORS(conf),
5865 sh->bm_seq = conf->seq_flush + 1;
5866 set_bit(STRIPE_BIT_DELAY, &sh->state);
5869 set_bit(STRIPE_HANDLE, &sh->state);
5870 clear_bit(STRIPE_DELAYED, &sh->state);
5871 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5872 atomic_inc(&conf->preread_active_stripes);
5873 release_stripe_plug(mddev, sh);
5879 static bool ahead_of_reshape(struct mddev *mddev, sector_t sector,
5880 sector_t reshape_sector)
5882 return mddev->reshape_backwards ? sector < reshape_sector :
5883 sector >= reshape_sector;
5886 static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min,
5887 sector_t max, sector_t reshape_sector)
5889 return mddev->reshape_backwards ? max < reshape_sector :
5890 min >= reshape_sector;
5893 static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf,
5894 struct stripe_head *sh)
5896 sector_t max_sector = 0, min_sector = MaxSector;
5900 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5901 if (dd_idx == sh->pd_idx)
5904 min_sector = min(min_sector, sh->dev[dd_idx].sector);
5905 max_sector = min(max_sector, sh->dev[dd_idx].sector);
5908 spin_lock_irq(&conf->device_lock);
5910 if (!range_ahead_of_reshape(mddev, min_sector, max_sector,
5911 conf->reshape_progress))
5912 /* mismatch, need to try again */
5915 spin_unlock_irq(&conf->device_lock);
5920 static int add_all_stripe_bios(struct r5conf *conf,
5921 struct stripe_request_ctx *ctx, struct stripe_head *sh,
5922 struct bio *bi, int forwrite, int previous)
5927 spin_lock_irq(&sh->stripe_lock);
5929 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5930 struct r5dev *dev = &sh->dev[dd_idx];
5932 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5935 if (dev->sector < ctx->first_sector ||
5936 dev->sector >= ctx->last_sector)
5939 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
5940 set_bit(R5_Overlap, &dev->flags);
5949 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5950 struct r5dev *dev = &sh->dev[dd_idx];
5952 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5955 if (dev->sector < ctx->first_sector ||
5956 dev->sector >= ctx->last_sector)
5959 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
5960 clear_bit((dev->sector - ctx->first_sector) >>
5961 RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do);
5965 spin_unlock_irq(&sh->stripe_lock);
5969 static enum stripe_result make_stripe_request(struct mddev *mddev,
5970 struct r5conf *conf, struct stripe_request_ctx *ctx,
5971 sector_t logical_sector, struct bio *bi)
5973 const int rw = bio_data_dir(bi);
5974 enum stripe_result ret;
5975 struct stripe_head *sh;
5976 sector_t new_sector;
5977 int previous = 0, flags = 0;
5980 seq = read_seqcount_begin(&conf->gen_lock);
5982 if (unlikely(conf->reshape_progress != MaxSector)) {
5984 * Spinlock is needed as reshape_progress may be
5985 * 64bit on a 32bit platform, and so it might be
5986 * possible to see a half-updated value
5987 * Of course reshape_progress could change after
5988 * the lock is dropped, so once we get a reference
5989 * to the stripe that we think it is, we will have
5992 spin_lock_irq(&conf->device_lock);
5993 if (ahead_of_reshape(mddev, logical_sector,
5994 conf->reshape_progress)) {
5997 if (ahead_of_reshape(mddev, logical_sector,
5998 conf->reshape_safe)) {
5999 spin_unlock_irq(&conf->device_lock);
6000 return STRIPE_SCHEDULE_AND_RETRY;
6003 spin_unlock_irq(&conf->device_lock);
6006 new_sector = raid5_compute_sector(conf, logical_sector, previous,
6008 pr_debug("raid456: %s, sector %llu logical %llu\n", __func__,
6009 new_sector, logical_sector);
6012 flags |= R5_GAS_PREVIOUS;
6013 if (bi->bi_opf & REQ_RAHEAD)
6014 flags |= R5_GAS_NOBLOCK;
6015 sh = raid5_get_active_stripe(conf, ctx, new_sector, flags);
6016 if (unlikely(!sh)) {
6017 /* cannot get stripe, just give-up */
6018 bi->bi_status = BLK_STS_IOERR;
6022 if (unlikely(previous) &&
6023 stripe_ahead_of_reshape(mddev, conf, sh)) {
6025 * Expansion moved on while waiting for a stripe.
6026 * Expansion could still move past after this
6027 * test, but as we are holding a reference to
6028 * 'sh', we know that if that happens,
6029 * STRIPE_EXPANDING will get set and the expansion
6030 * won't proceed until we finish with the stripe.
6032 ret = STRIPE_SCHEDULE_AND_RETRY;
6036 if (read_seqcount_retry(&conf->gen_lock, seq)) {
6037 /* Might have got the wrong stripe_head by accident */
6042 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
6043 !add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) {
6045 * Stripe is busy expanding or add failed due to
6046 * overlap. Flush everything and wait a while.
6048 md_wakeup_thread(mddev->thread);
6049 ret = STRIPE_SCHEDULE_AND_RETRY;
6053 if (stripe_can_batch(sh)) {
6054 stripe_add_to_batch_list(conf, sh, ctx->batch_last);
6055 if (ctx->batch_last)
6056 raid5_release_stripe(ctx->batch_last);
6057 atomic_inc(&sh->count);
6058 ctx->batch_last = sh;
6061 if (ctx->do_flush) {
6062 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
6063 /* we only need flush for one stripe */
6064 ctx->do_flush = false;
6067 set_bit(STRIPE_HANDLE, &sh->state);
6068 clear_bit(STRIPE_DELAYED, &sh->state);
6069 if ((!sh->batch_head || sh == sh->batch_head) &&
6070 (bi->bi_opf & REQ_SYNC) &&
6071 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
6072 atomic_inc(&conf->preread_active_stripes);
6074 release_stripe_plug(mddev, sh);
6075 return STRIPE_SUCCESS;
6078 raid5_release_stripe(sh);
6082 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
6084 DEFINE_WAIT_FUNC(wait, woken_wake_function);
6085 struct r5conf *conf = mddev->private;
6086 sector_t logical_sector;
6087 struct stripe_request_ctx ctx = {};
6088 const int rw = bio_data_dir(bi);
6089 enum stripe_result res;
6092 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
6093 int ret = log_handle_flush_request(conf, bi);
6097 if (ret == -ENODEV) {
6098 if (md_flush_request(mddev, bi))
6101 /* ret == -EAGAIN, fallback */
6103 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
6104 * we need to flush journal device
6106 ctx.do_flush = bi->bi_opf & REQ_PREFLUSH;
6109 if (!md_write_start(mddev, bi))
6112 * If array is degraded, better not do chunk aligned read because
6113 * later we might have to read it again in order to reconstruct
6114 * data on failed drives.
6116 if (rw == READ && mddev->degraded == 0 &&
6117 mddev->reshape_position == MaxSector) {
6118 bi = chunk_aligned_read(mddev, bi);
6123 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
6124 make_discard_request(mddev, bi);
6125 md_write_end(mddev);
6129 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6130 ctx.first_sector = logical_sector;
6131 ctx.last_sector = bio_end_sector(bi);
6134 stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector,
6135 RAID5_STRIPE_SECTORS(conf));
6136 bitmap_set(ctx.sectors_to_do, 0, stripe_cnt);
6138 pr_debug("raid456: %s, logical %llu to %llu\n", __func__,
6139 bi->bi_iter.bi_sector, ctx.last_sector);
6141 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */
6142 if ((bi->bi_opf & REQ_NOWAIT) &&
6143 (conf->reshape_progress != MaxSector) &&
6144 !ahead_of_reshape(mddev, logical_sector, conf->reshape_progress) &&
6145 ahead_of_reshape(mddev, logical_sector, conf->reshape_safe)) {
6146 bio_wouldblock_error(bi);
6148 md_write_end(mddev);
6151 md_account_bio(mddev, &bi);
6153 add_wait_queue(&conf->wait_for_overlap, &wait);
6155 res = make_stripe_request(mddev, conf, &ctx, logical_sector,
6157 if (res == STRIPE_FAIL)
6160 if (res == STRIPE_RETRY)
6163 if (res == STRIPE_SCHEDULE_AND_RETRY) {
6165 * Must release the reference to batch_last before
6166 * scheduling and waiting for work to be done,
6167 * otherwise the batch_last stripe head could prevent
6168 * raid5_activate_delayed() from making progress
6169 * and thus deadlocking.
6171 if (ctx.batch_last) {
6172 raid5_release_stripe(ctx.batch_last);
6173 ctx.batch_last = NULL;
6176 wait_woken(&wait, TASK_UNINTERRUPTIBLE,
6177 MAX_SCHEDULE_TIMEOUT);
6181 s = find_first_bit(ctx.sectors_to_do, stripe_cnt);
6182 if (s == stripe_cnt)
6185 logical_sector = ctx.first_sector +
6186 (s << RAID5_STRIPE_SHIFT(conf));
6188 remove_wait_queue(&conf->wait_for_overlap, &wait);
6191 raid5_release_stripe(ctx.batch_last);
6194 md_write_end(mddev);
6199 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
6201 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
6203 /* reshaping is quite different to recovery/resync so it is
6204 * handled quite separately ... here.
6206 * On each call to sync_request, we gather one chunk worth of
6207 * destination stripes and flag them as expanding.
6208 * Then we find all the source stripes and request reads.
6209 * As the reads complete, handle_stripe will copy the data
6210 * into the destination stripe and release that stripe.
6212 struct r5conf *conf = mddev->private;
6213 struct stripe_head *sh;
6214 struct md_rdev *rdev;
6215 sector_t first_sector, last_sector;
6216 int raid_disks = conf->previous_raid_disks;
6217 int data_disks = raid_disks - conf->max_degraded;
6218 int new_data_disks = conf->raid_disks - conf->max_degraded;
6221 sector_t writepos, readpos, safepos;
6222 sector_t stripe_addr;
6223 int reshape_sectors;
6224 struct list_head stripes;
6227 if (sector_nr == 0) {
6228 /* If restarting in the middle, skip the initial sectors */
6229 if (mddev->reshape_backwards &&
6230 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
6231 sector_nr = raid5_size(mddev, 0, 0)
6232 - conf->reshape_progress;
6233 } else if (mddev->reshape_backwards &&
6234 conf->reshape_progress == MaxSector) {
6235 /* shouldn't happen, but just in case, finish up.*/
6236 sector_nr = MaxSector;
6237 } else if (!mddev->reshape_backwards &&
6238 conf->reshape_progress > 0)
6239 sector_nr = conf->reshape_progress;
6240 sector_div(sector_nr, new_data_disks);
6242 mddev->curr_resync_completed = sector_nr;
6243 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6250 /* We need to process a full chunk at a time.
6251 * If old and new chunk sizes differ, we need to process the
6255 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6257 /* We update the metadata at least every 10 seconds, or when
6258 * the data about to be copied would over-write the source of
6259 * the data at the front of the range. i.e. one new_stripe
6260 * along from reshape_progress new_maps to after where
6261 * reshape_safe old_maps to
6263 writepos = conf->reshape_progress;
6264 sector_div(writepos, new_data_disks);
6265 readpos = conf->reshape_progress;
6266 sector_div(readpos, data_disks);
6267 safepos = conf->reshape_safe;
6268 sector_div(safepos, data_disks);
6269 if (mddev->reshape_backwards) {
6270 BUG_ON(writepos < reshape_sectors);
6271 writepos -= reshape_sectors;
6272 readpos += reshape_sectors;
6273 safepos += reshape_sectors;
6275 writepos += reshape_sectors;
6276 /* readpos and safepos are worst-case calculations.
6277 * A negative number is overly pessimistic, and causes
6278 * obvious problems for unsigned storage. So clip to 0.
6280 readpos -= min_t(sector_t, reshape_sectors, readpos);
6281 safepos -= min_t(sector_t, reshape_sectors, safepos);
6284 /* Having calculated the 'writepos' possibly use it
6285 * to set 'stripe_addr' which is where we will write to.
6287 if (mddev->reshape_backwards) {
6288 BUG_ON(conf->reshape_progress == 0);
6289 stripe_addr = writepos;
6290 BUG_ON((mddev->dev_sectors &
6291 ~((sector_t)reshape_sectors - 1))
6292 - reshape_sectors - stripe_addr
6295 BUG_ON(writepos != sector_nr + reshape_sectors);
6296 stripe_addr = sector_nr;
6299 /* 'writepos' is the most advanced device address we might write.
6300 * 'readpos' is the least advanced device address we might read.
6301 * 'safepos' is the least address recorded in the metadata as having
6303 * If there is a min_offset_diff, these are adjusted either by
6304 * increasing the safepos/readpos if diff is negative, or
6305 * increasing writepos if diff is positive.
6306 * If 'readpos' is then behind 'writepos', there is no way that we can
6307 * ensure safety in the face of a crash - that must be done by userspace
6308 * making a backup of the data. So in that case there is no particular
6309 * rush to update metadata.
6310 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6311 * update the metadata to advance 'safepos' to match 'readpos' so that
6312 * we can be safe in the event of a crash.
6313 * So we insist on updating metadata if safepos is behind writepos and
6314 * readpos is beyond writepos.
6315 * In any case, update the metadata every 10 seconds.
6316 * Maybe that number should be configurable, but I'm not sure it is
6317 * worth it.... maybe it could be a multiple of safemode_delay???
6319 if (conf->min_offset_diff < 0) {
6320 safepos += -conf->min_offset_diff;
6321 readpos += -conf->min_offset_diff;
6323 writepos += conf->min_offset_diff;
6325 if ((mddev->reshape_backwards
6326 ? (safepos > writepos && readpos < writepos)
6327 : (safepos < writepos && readpos > writepos)) ||
6328 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6329 /* Cannot proceed until we've updated the superblock... */
6330 wait_event(conf->wait_for_overlap,
6331 atomic_read(&conf->reshape_stripes)==0
6332 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6333 if (atomic_read(&conf->reshape_stripes) != 0)
6335 mddev->reshape_position = conf->reshape_progress;
6336 mddev->curr_resync_completed = sector_nr;
6337 if (!mddev->reshape_backwards)
6338 /* Can update recovery_offset */
6339 rdev_for_each(rdev, mddev)
6340 if (rdev->raid_disk >= 0 &&
6341 !test_bit(Journal, &rdev->flags) &&
6342 !test_bit(In_sync, &rdev->flags) &&
6343 rdev->recovery_offset < sector_nr)
6344 rdev->recovery_offset = sector_nr;
6346 conf->reshape_checkpoint = jiffies;
6347 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6348 md_wakeup_thread(mddev->thread);
6349 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6350 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6351 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6353 spin_lock_irq(&conf->device_lock);
6354 conf->reshape_safe = mddev->reshape_position;
6355 spin_unlock_irq(&conf->device_lock);
6356 wake_up(&conf->wait_for_overlap);
6357 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6360 INIT_LIST_HEAD(&stripes);
6361 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6363 int skipped_disk = 0;
6364 sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i,
6366 set_bit(STRIPE_EXPANDING, &sh->state);
6367 atomic_inc(&conf->reshape_stripes);
6368 /* If any of this stripe is beyond the end of the old
6369 * array, then we need to zero those blocks
6371 for (j=sh->disks; j--;) {
6373 if (j == sh->pd_idx)
6375 if (conf->level == 6 &&
6378 s = raid5_compute_blocknr(sh, j, 0);
6379 if (s < raid5_size(mddev, 0, 0)) {
6383 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6384 set_bit(R5_Expanded, &sh->dev[j].flags);
6385 set_bit(R5_UPTODATE, &sh->dev[j].flags);
6387 if (!skipped_disk) {
6388 set_bit(STRIPE_EXPAND_READY, &sh->state);
6389 set_bit(STRIPE_HANDLE, &sh->state);
6391 list_add(&sh->lru, &stripes);
6393 spin_lock_irq(&conf->device_lock);
6394 if (mddev->reshape_backwards)
6395 conf->reshape_progress -= reshape_sectors * new_data_disks;
6397 conf->reshape_progress += reshape_sectors * new_data_disks;
6398 spin_unlock_irq(&conf->device_lock);
6399 /* Ok, those stripe are ready. We can start scheduling
6400 * reads on the source stripes.
6401 * The source stripes are determined by mapping the first and last
6402 * block on the destination stripes.
6405 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6408 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6409 * new_data_disks - 1),
6411 if (last_sector >= mddev->dev_sectors)
6412 last_sector = mddev->dev_sectors - 1;
6413 while (first_sector <= last_sector) {
6414 sh = raid5_get_active_stripe(conf, NULL, first_sector,
6415 R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE);
6416 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6417 set_bit(STRIPE_HANDLE, &sh->state);
6418 raid5_release_stripe(sh);
6419 first_sector += RAID5_STRIPE_SECTORS(conf);
6421 /* Now that the sources are clearly marked, we can release
6422 * the destination stripes
6424 while (!list_empty(&stripes)) {
6425 sh = list_entry(stripes.next, struct stripe_head, lru);
6426 list_del_init(&sh->lru);
6427 raid5_release_stripe(sh);
6429 /* If this takes us to the resync_max point where we have to pause,
6430 * then we need to write out the superblock.
6432 sector_nr += reshape_sectors;
6433 retn = reshape_sectors;
6435 if (mddev->curr_resync_completed > mddev->resync_max ||
6436 (sector_nr - mddev->curr_resync_completed) * 2
6437 >= mddev->resync_max - mddev->curr_resync_completed) {
6438 /* Cannot proceed until we've updated the superblock... */
6439 wait_event(conf->wait_for_overlap,
6440 atomic_read(&conf->reshape_stripes) == 0
6441 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6442 if (atomic_read(&conf->reshape_stripes) != 0)
6444 mddev->reshape_position = conf->reshape_progress;
6445 mddev->curr_resync_completed = sector_nr;
6446 if (!mddev->reshape_backwards)
6447 /* Can update recovery_offset */
6448 rdev_for_each(rdev, mddev)
6449 if (rdev->raid_disk >= 0 &&
6450 !test_bit(Journal, &rdev->flags) &&
6451 !test_bit(In_sync, &rdev->flags) &&
6452 rdev->recovery_offset < sector_nr)
6453 rdev->recovery_offset = sector_nr;
6454 conf->reshape_checkpoint = jiffies;
6455 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6456 md_wakeup_thread(mddev->thread);
6457 wait_event(mddev->sb_wait,
6458 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6459 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6460 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6462 spin_lock_irq(&conf->device_lock);
6463 conf->reshape_safe = mddev->reshape_position;
6464 spin_unlock_irq(&conf->device_lock);
6465 wake_up(&conf->wait_for_overlap);
6466 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6472 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6475 struct r5conf *conf = mddev->private;
6476 struct stripe_head *sh;
6477 sector_t max_sector = mddev->dev_sectors;
6478 sector_t sync_blocks;
6479 int still_degraded = 0;
6482 if (sector_nr >= max_sector) {
6483 /* just being told to finish up .. nothing much to do */
6485 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6490 if (mddev->curr_resync < max_sector) /* aborted */
6491 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6493 else /* completed sync */
6495 md_bitmap_close_sync(mddev->bitmap);
6500 /* Allow raid5_quiesce to complete */
6501 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6503 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6504 return reshape_request(mddev, sector_nr, skipped);
6506 /* No need to check resync_max as we never do more than one
6507 * stripe, and as resync_max will always be on a chunk boundary,
6508 * if the check in md_do_sync didn't fire, there is no chance
6509 * of overstepping resync_max here
6512 /* if there is too many failed drives and we are trying
6513 * to resync, then assert that we are finished, because there is
6514 * nothing we can do.
6516 if (mddev->degraded >= conf->max_degraded &&
6517 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6518 sector_t rv = mddev->dev_sectors - sector_nr;
6522 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6524 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6525 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6526 /* we can skip this block, and probably more */
6527 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6529 /* keep things rounded to whole stripes */
6530 return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6533 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6535 sh = raid5_get_active_stripe(conf, NULL, sector_nr,
6538 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0);
6539 /* make sure we don't swamp the stripe cache if someone else
6540 * is trying to get access
6542 schedule_timeout_uninterruptible(1);
6544 /* Need to check if array will still be degraded after recovery/resync
6545 * Note in case of > 1 drive failures it's possible we're rebuilding
6546 * one drive while leaving another faulty drive in array.
6549 for (i = 0; i < conf->raid_disks; i++) {
6550 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
6552 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6557 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6559 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6560 set_bit(STRIPE_HANDLE, &sh->state);
6562 raid5_release_stripe(sh);
6564 return RAID5_STRIPE_SECTORS(conf);
6567 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6568 unsigned int offset)
6570 /* We may not be able to submit a whole bio at once as there
6571 * may not be enough stripe_heads available.
6572 * We cannot pre-allocate enough stripe_heads as we may need
6573 * more than exist in the cache (if we allow ever large chunks).
6574 * So we do one stripe head at a time and record in
6575 * ->bi_hw_segments how many have been done.
6577 * We *know* that this entire raid_bio is in one chunk, so
6578 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6580 struct stripe_head *sh;
6582 sector_t sector, logical_sector, last_sector;
6586 logical_sector = raid_bio->bi_iter.bi_sector &
6587 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6588 sector = raid5_compute_sector(conf, logical_sector,
6590 last_sector = bio_end_sector(raid_bio);
6592 for (; logical_sector < last_sector;
6593 logical_sector += RAID5_STRIPE_SECTORS(conf),
6594 sector += RAID5_STRIPE_SECTORS(conf),
6598 /* already done this stripe */
6601 sh = raid5_get_active_stripe(conf, NULL, sector,
6602 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
6604 /* failed to get a stripe - must wait */
6605 conf->retry_read_aligned = raid_bio;
6606 conf->retry_read_offset = scnt;
6610 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6611 raid5_release_stripe(sh);
6612 conf->retry_read_aligned = raid_bio;
6613 conf->retry_read_offset = scnt;
6617 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6619 raid5_release_stripe(sh);
6623 bio_endio(raid_bio);
6625 if (atomic_dec_and_test(&conf->active_aligned_reads))
6626 wake_up(&conf->wait_for_quiescent);
6630 static int handle_active_stripes(struct r5conf *conf, int group,
6631 struct r5worker *worker,
6632 struct list_head *temp_inactive_list)
6633 __must_hold(&conf->device_lock)
6635 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6636 int i, batch_size = 0, hash;
6637 bool release_inactive = false;
6639 while (batch_size < MAX_STRIPE_BATCH &&
6640 (sh = __get_priority_stripe(conf, group)) != NULL)
6641 batch[batch_size++] = sh;
6643 if (batch_size == 0) {
6644 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6645 if (!list_empty(temp_inactive_list + i))
6647 if (i == NR_STRIPE_HASH_LOCKS) {
6648 spin_unlock_irq(&conf->device_lock);
6649 log_flush_stripe_to_raid(conf);
6650 spin_lock_irq(&conf->device_lock);
6653 release_inactive = true;
6655 spin_unlock_irq(&conf->device_lock);
6657 release_inactive_stripe_list(conf, temp_inactive_list,
6658 NR_STRIPE_HASH_LOCKS);
6660 r5l_flush_stripe_to_raid(conf->log);
6661 if (release_inactive) {
6662 spin_lock_irq(&conf->device_lock);
6666 for (i = 0; i < batch_size; i++)
6667 handle_stripe(batch[i]);
6668 log_write_stripe_run(conf);
6672 spin_lock_irq(&conf->device_lock);
6673 for (i = 0; i < batch_size; i++) {
6674 hash = batch[i]->hash_lock_index;
6675 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6680 static void raid5_do_work(struct work_struct *work)
6682 struct r5worker *worker = container_of(work, struct r5worker, work);
6683 struct r5worker_group *group = worker->group;
6684 struct r5conf *conf = group->conf;
6685 struct mddev *mddev = conf->mddev;
6686 int group_id = group - conf->worker_groups;
6688 struct blk_plug plug;
6690 pr_debug("+++ raid5worker active\n");
6692 blk_start_plug(&plug);
6694 spin_lock_irq(&conf->device_lock);
6696 int batch_size, released;
6698 released = release_stripe_list(conf, worker->temp_inactive_list);
6700 batch_size = handle_active_stripes(conf, group_id, worker,
6701 worker->temp_inactive_list);
6702 worker->working = false;
6703 if (!batch_size && !released)
6705 handled += batch_size;
6706 wait_event_lock_irq(mddev->sb_wait,
6707 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6710 pr_debug("%d stripes handled\n", handled);
6712 spin_unlock_irq(&conf->device_lock);
6714 flush_deferred_bios(conf);
6716 r5l_flush_stripe_to_raid(conf->log);
6718 async_tx_issue_pending_all();
6719 blk_finish_plug(&plug);
6721 pr_debug("--- raid5worker inactive\n");
6725 * This is our raid5 kernel thread.
6727 * We scan the hash table for stripes which can be handled now.
6728 * During the scan, completed stripes are saved for us by the interrupt
6729 * handler, so that they will not have to wait for our next wakeup.
6731 static void raid5d(struct md_thread *thread)
6733 struct mddev *mddev = thread->mddev;
6734 struct r5conf *conf = mddev->private;
6736 struct blk_plug plug;
6738 pr_debug("+++ raid5d active\n");
6740 md_check_recovery(mddev);
6742 blk_start_plug(&plug);
6744 spin_lock_irq(&conf->device_lock);
6747 int batch_size, released;
6748 unsigned int offset;
6750 released = release_stripe_list(conf, conf->temp_inactive_list);
6752 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6755 !list_empty(&conf->bitmap_list)) {
6756 /* Now is a good time to flush some bitmap updates */
6758 spin_unlock_irq(&conf->device_lock);
6759 md_bitmap_unplug(mddev->bitmap);
6760 spin_lock_irq(&conf->device_lock);
6761 conf->seq_write = conf->seq_flush;
6762 activate_bit_delay(conf, conf->temp_inactive_list);
6764 raid5_activate_delayed(conf);
6766 while ((bio = remove_bio_from_retry(conf, &offset))) {
6768 spin_unlock_irq(&conf->device_lock);
6769 ok = retry_aligned_read(conf, bio, offset);
6770 spin_lock_irq(&conf->device_lock);
6776 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6777 conf->temp_inactive_list);
6778 if (!batch_size && !released)
6780 handled += batch_size;
6782 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6783 spin_unlock_irq(&conf->device_lock);
6784 md_check_recovery(mddev);
6785 spin_lock_irq(&conf->device_lock);
6788 * Waiting on MD_SB_CHANGE_PENDING below may deadlock
6789 * seeing md_check_recovery() is needed to clear
6790 * the flag when using mdmon.
6795 wait_event_lock_irq(mddev->sb_wait,
6796 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6799 pr_debug("%d stripes handled\n", handled);
6801 spin_unlock_irq(&conf->device_lock);
6802 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6803 mutex_trylock(&conf->cache_size_mutex)) {
6804 grow_one_stripe(conf, __GFP_NOWARN);
6805 /* Set flag even if allocation failed. This helps
6806 * slow down allocation requests when mem is short
6808 set_bit(R5_DID_ALLOC, &conf->cache_state);
6809 mutex_unlock(&conf->cache_size_mutex);
6812 flush_deferred_bios(conf);
6814 r5l_flush_stripe_to_raid(conf->log);
6816 async_tx_issue_pending_all();
6817 blk_finish_plug(&plug);
6819 pr_debug("--- raid5d inactive\n");
6823 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6825 struct r5conf *conf;
6827 spin_lock(&mddev->lock);
6828 conf = mddev->private;
6830 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6831 spin_unlock(&mddev->lock);
6836 raid5_set_cache_size(struct mddev *mddev, int size)
6839 struct r5conf *conf = mddev->private;
6841 if (size <= 16 || size > 32768)
6844 conf->min_nr_stripes = size;
6845 mutex_lock(&conf->cache_size_mutex);
6846 while (size < conf->max_nr_stripes &&
6847 drop_one_stripe(conf))
6849 mutex_unlock(&conf->cache_size_mutex);
6851 md_allow_write(mddev);
6853 mutex_lock(&conf->cache_size_mutex);
6854 while (size > conf->max_nr_stripes)
6855 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6856 conf->min_nr_stripes = conf->max_nr_stripes;
6860 mutex_unlock(&conf->cache_size_mutex);
6864 EXPORT_SYMBOL(raid5_set_cache_size);
6867 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6869 struct r5conf *conf;
6873 if (len >= PAGE_SIZE)
6875 if (kstrtoul(page, 10, &new))
6877 err = mddev_lock(mddev);
6880 conf = mddev->private;
6884 err = raid5_set_cache_size(mddev, new);
6885 mddev_unlock(mddev);
6890 static struct md_sysfs_entry
6891 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6892 raid5_show_stripe_cache_size,
6893 raid5_store_stripe_cache_size);
6896 raid5_show_rmw_level(struct mddev *mddev, char *page)
6898 struct r5conf *conf = mddev->private;
6900 return sprintf(page, "%d\n", conf->rmw_level);
6906 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6908 struct r5conf *conf = mddev->private;
6914 if (len >= PAGE_SIZE)
6917 if (kstrtoul(page, 10, &new))
6920 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6923 if (new != PARITY_DISABLE_RMW &&
6924 new != PARITY_ENABLE_RMW &&
6925 new != PARITY_PREFER_RMW)
6928 conf->rmw_level = new;
6932 static struct md_sysfs_entry
6933 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6934 raid5_show_rmw_level,
6935 raid5_store_rmw_level);
6938 raid5_show_stripe_size(struct mddev *mddev, char *page)
6940 struct r5conf *conf;
6943 spin_lock(&mddev->lock);
6944 conf = mddev->private;
6946 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6947 spin_unlock(&mddev->lock);
6951 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6953 raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len)
6955 struct r5conf *conf;
6960 if (len >= PAGE_SIZE)
6962 if (kstrtoul(page, 10, &new))
6966 * The value should not be bigger than PAGE_SIZE. It requires to
6967 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6970 if (new % DEFAULT_STRIPE_SIZE != 0 ||
6971 new > PAGE_SIZE || new == 0 ||
6972 new != roundup_pow_of_two(new))
6975 err = mddev_lock(mddev);
6979 conf = mddev->private;
6985 if (new == conf->stripe_size)
6988 pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6989 conf->stripe_size, new);
6991 if (mddev->sync_thread ||
6992 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6993 mddev->reshape_position != MaxSector ||
6994 mddev->sysfs_active) {
6999 mddev_suspend(mddev);
7000 mutex_lock(&conf->cache_size_mutex);
7001 size = conf->max_nr_stripes;
7003 shrink_stripes(conf);
7005 conf->stripe_size = new;
7006 conf->stripe_shift = ilog2(new) - 9;
7007 conf->stripe_sectors = new >> 9;
7008 if (grow_stripes(conf, size)) {
7009 pr_warn("md/raid:%s: couldn't allocate buffers\n",
7013 mutex_unlock(&conf->cache_size_mutex);
7014 mddev_resume(mddev);
7017 mddev_unlock(mddev);
7021 static struct md_sysfs_entry
7022 raid5_stripe_size = __ATTR(stripe_size, 0644,
7023 raid5_show_stripe_size,
7024 raid5_store_stripe_size);
7026 static struct md_sysfs_entry
7027 raid5_stripe_size = __ATTR(stripe_size, 0444,
7028 raid5_show_stripe_size,
7033 raid5_show_preread_threshold(struct mddev *mddev, char *page)
7035 struct r5conf *conf;
7037 spin_lock(&mddev->lock);
7038 conf = mddev->private;
7040 ret = sprintf(page, "%d\n", conf->bypass_threshold);
7041 spin_unlock(&mddev->lock);
7046 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
7048 struct r5conf *conf;
7052 if (len >= PAGE_SIZE)
7054 if (kstrtoul(page, 10, &new))
7057 err = mddev_lock(mddev);
7060 conf = mddev->private;
7063 else if (new > conf->min_nr_stripes)
7066 conf->bypass_threshold = new;
7067 mddev_unlock(mddev);
7071 static struct md_sysfs_entry
7072 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
7074 raid5_show_preread_threshold,
7075 raid5_store_preread_threshold);
7078 raid5_show_skip_copy(struct mddev *mddev, char *page)
7080 struct r5conf *conf;
7082 spin_lock(&mddev->lock);
7083 conf = mddev->private;
7085 ret = sprintf(page, "%d\n", conf->skip_copy);
7086 spin_unlock(&mddev->lock);
7091 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
7093 struct r5conf *conf;
7097 if (len >= PAGE_SIZE)
7099 if (kstrtoul(page, 10, &new))
7103 err = mddev_lock(mddev);
7106 conf = mddev->private;
7109 else if (new != conf->skip_copy) {
7110 struct request_queue *q = mddev->queue;
7112 mddev_suspend(mddev);
7113 conf->skip_copy = new;
7115 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
7117 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
7118 mddev_resume(mddev);
7120 mddev_unlock(mddev);
7124 static struct md_sysfs_entry
7125 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
7126 raid5_show_skip_copy,
7127 raid5_store_skip_copy);
7130 stripe_cache_active_show(struct mddev *mddev, char *page)
7132 struct r5conf *conf = mddev->private;
7134 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
7139 static struct md_sysfs_entry
7140 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
7143 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
7145 struct r5conf *conf;
7147 spin_lock(&mddev->lock);
7148 conf = mddev->private;
7150 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
7151 spin_unlock(&mddev->lock);
7155 static int alloc_thread_groups(struct r5conf *conf, int cnt,
7157 struct r5worker_group **worker_groups);
7159 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
7161 struct r5conf *conf;
7164 struct r5worker_group *new_groups, *old_groups;
7167 if (len >= PAGE_SIZE)
7169 if (kstrtouint(page, 10, &new))
7171 /* 8192 should be big enough */
7175 err = mddev_lock(mddev);
7178 conf = mddev->private;
7181 else if (new != conf->worker_cnt_per_group) {
7182 mddev_suspend(mddev);
7184 old_groups = conf->worker_groups;
7186 flush_workqueue(raid5_wq);
7188 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
7190 spin_lock_irq(&conf->device_lock);
7191 conf->group_cnt = group_cnt;
7192 conf->worker_cnt_per_group = new;
7193 conf->worker_groups = new_groups;
7194 spin_unlock_irq(&conf->device_lock);
7197 kfree(old_groups[0].workers);
7200 mddev_resume(mddev);
7202 mddev_unlock(mddev);
7207 static struct md_sysfs_entry
7208 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
7209 raid5_show_group_thread_cnt,
7210 raid5_store_group_thread_cnt);
7212 static struct attribute *raid5_attrs[] = {
7213 &raid5_stripecache_size.attr,
7214 &raid5_stripecache_active.attr,
7215 &raid5_preread_bypass_threshold.attr,
7216 &raid5_group_thread_cnt.attr,
7217 &raid5_skip_copy.attr,
7218 &raid5_rmw_level.attr,
7219 &raid5_stripe_size.attr,
7220 &r5c_journal_mode.attr,
7221 &ppl_write_hint.attr,
7224 static const struct attribute_group raid5_attrs_group = {
7226 .attrs = raid5_attrs,
7229 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
7230 struct r5worker_group **worker_groups)
7234 struct r5worker *workers;
7238 *worker_groups = NULL;
7241 *group_cnt = num_possible_nodes();
7242 size = sizeof(struct r5worker) * cnt;
7243 workers = kcalloc(size, *group_cnt, GFP_NOIO);
7244 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
7246 if (!*worker_groups || !workers) {
7248 kfree(*worker_groups);
7252 for (i = 0; i < *group_cnt; i++) {
7253 struct r5worker_group *group;
7255 group = &(*worker_groups)[i];
7256 INIT_LIST_HEAD(&group->handle_list);
7257 INIT_LIST_HEAD(&group->loprio_list);
7259 group->workers = workers + i * cnt;
7261 for (j = 0; j < cnt; j++) {
7262 struct r5worker *worker = group->workers + j;
7263 worker->group = group;
7264 INIT_WORK(&worker->work, raid5_do_work);
7266 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7267 INIT_LIST_HEAD(worker->temp_inactive_list + k);
7274 static void free_thread_groups(struct r5conf *conf)
7276 if (conf->worker_groups)
7277 kfree(conf->worker_groups[0].workers);
7278 kfree(conf->worker_groups);
7279 conf->worker_groups = NULL;
7283 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7285 struct r5conf *conf = mddev->private;
7288 sectors = mddev->dev_sectors;
7290 /* size is defined by the smallest of previous and new size */
7291 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7293 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7294 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7295 return sectors * (raid_disks - conf->max_degraded);
7298 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7300 safe_put_page(percpu->spare_page);
7301 percpu->spare_page = NULL;
7302 kvfree(percpu->scribble);
7303 percpu->scribble = NULL;
7306 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7308 if (conf->level == 6 && !percpu->spare_page) {
7309 percpu->spare_page = alloc_page(GFP_KERNEL);
7310 if (!percpu->spare_page)
7314 if (scribble_alloc(percpu,
7315 max(conf->raid_disks,
7316 conf->previous_raid_disks),
7317 max(conf->chunk_sectors,
7318 conf->prev_chunk_sectors)
7319 / RAID5_STRIPE_SECTORS(conf))) {
7320 free_scratch_buffer(conf, percpu);
7324 local_lock_init(&percpu->lock);
7328 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7330 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7332 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7336 static void raid5_free_percpu(struct r5conf *conf)
7341 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7342 free_percpu(conf->percpu);
7345 static void free_conf(struct r5conf *conf)
7351 unregister_shrinker(&conf->shrinker);
7352 free_thread_groups(conf);
7353 shrink_stripes(conf);
7354 raid5_free_percpu(conf);
7355 for (i = 0; i < conf->pool_size; i++)
7356 if (conf->disks[i].extra_page)
7357 put_page(conf->disks[i].extra_page);
7359 bioset_exit(&conf->bio_split);
7360 kfree(conf->stripe_hashtbl);
7361 kfree(conf->pending_data);
7365 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7367 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7368 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7370 if (alloc_scratch_buffer(conf, percpu)) {
7371 pr_warn("%s: failed memory allocation for cpu%u\n",
7378 static int raid5_alloc_percpu(struct r5conf *conf)
7382 conf->percpu = alloc_percpu(struct raid5_percpu);
7386 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7388 conf->scribble_disks = max(conf->raid_disks,
7389 conf->previous_raid_disks);
7390 conf->scribble_sectors = max(conf->chunk_sectors,
7391 conf->prev_chunk_sectors);
7396 static unsigned long raid5_cache_scan(struct shrinker *shrink,
7397 struct shrink_control *sc)
7399 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7400 unsigned long ret = SHRINK_STOP;
7402 if (mutex_trylock(&conf->cache_size_mutex)) {
7404 while (ret < sc->nr_to_scan &&
7405 conf->max_nr_stripes > conf->min_nr_stripes) {
7406 if (drop_one_stripe(conf) == 0) {
7412 mutex_unlock(&conf->cache_size_mutex);
7417 static unsigned long raid5_cache_count(struct shrinker *shrink,
7418 struct shrink_control *sc)
7420 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7422 if (conf->max_nr_stripes < conf->min_nr_stripes)
7423 /* unlikely, but not impossible */
7425 return conf->max_nr_stripes - conf->min_nr_stripes;
7428 static struct r5conf *setup_conf(struct mddev *mddev)
7430 struct r5conf *conf;
7431 int raid_disk, memory, max_disks;
7432 struct md_rdev *rdev;
7433 struct disk_info *disk;
7437 struct r5worker_group *new_group;
7440 if (mddev->new_level != 5
7441 && mddev->new_level != 4
7442 && mddev->new_level != 6) {
7443 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7444 mdname(mddev), mddev->new_level);
7445 return ERR_PTR(-EIO);
7447 if ((mddev->new_level == 5
7448 && !algorithm_valid_raid5(mddev->new_layout)) ||
7449 (mddev->new_level == 6
7450 && !algorithm_valid_raid6(mddev->new_layout))) {
7451 pr_warn("md/raid:%s: layout %d not supported\n",
7452 mdname(mddev), mddev->new_layout);
7453 return ERR_PTR(-EIO);
7455 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7456 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7457 mdname(mddev), mddev->raid_disks);
7458 return ERR_PTR(-EINVAL);
7461 if (!mddev->new_chunk_sectors ||
7462 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7463 !is_power_of_2(mddev->new_chunk_sectors)) {
7464 pr_warn("md/raid:%s: invalid chunk size %d\n",
7465 mdname(mddev), mddev->new_chunk_sectors << 9);
7466 return ERR_PTR(-EINVAL);
7469 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7473 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7474 conf->stripe_size = DEFAULT_STRIPE_SIZE;
7475 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7476 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7478 INIT_LIST_HEAD(&conf->free_list);
7479 INIT_LIST_HEAD(&conf->pending_list);
7480 conf->pending_data = kcalloc(PENDING_IO_MAX,
7481 sizeof(struct r5pending_data),
7483 if (!conf->pending_data)
7485 for (i = 0; i < PENDING_IO_MAX; i++)
7486 list_add(&conf->pending_data[i].sibling, &conf->free_list);
7487 /* Don't enable multi-threading by default*/
7488 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7489 conf->group_cnt = group_cnt;
7490 conf->worker_cnt_per_group = 0;
7491 conf->worker_groups = new_group;
7494 spin_lock_init(&conf->device_lock);
7495 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7496 mutex_init(&conf->cache_size_mutex);
7498 init_waitqueue_head(&conf->wait_for_quiescent);
7499 init_waitqueue_head(&conf->wait_for_stripe);
7500 init_waitqueue_head(&conf->wait_for_overlap);
7501 INIT_LIST_HEAD(&conf->handle_list);
7502 INIT_LIST_HEAD(&conf->loprio_list);
7503 INIT_LIST_HEAD(&conf->hold_list);
7504 INIT_LIST_HEAD(&conf->delayed_list);
7505 INIT_LIST_HEAD(&conf->bitmap_list);
7506 init_llist_head(&conf->released_stripes);
7507 atomic_set(&conf->active_stripes, 0);
7508 atomic_set(&conf->preread_active_stripes, 0);
7509 atomic_set(&conf->active_aligned_reads, 0);
7510 spin_lock_init(&conf->pending_bios_lock);
7511 conf->batch_bio_dispatch = true;
7512 rdev_for_each(rdev, mddev) {
7513 if (test_bit(Journal, &rdev->flags))
7515 if (bdev_nonrot(rdev->bdev)) {
7516 conf->batch_bio_dispatch = false;
7521 conf->bypass_threshold = BYPASS_THRESHOLD;
7522 conf->recovery_disabled = mddev->recovery_disabled - 1;
7524 conf->raid_disks = mddev->raid_disks;
7525 if (mddev->reshape_position == MaxSector)
7526 conf->previous_raid_disks = mddev->raid_disks;
7528 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7529 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7531 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7537 for (i = 0; i < max_disks; i++) {
7538 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7539 if (!conf->disks[i].extra_page)
7543 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7546 conf->mddev = mddev;
7549 conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL);
7550 if (!conf->stripe_hashtbl)
7553 /* We init hash_locks[0] separately to that it can be used
7554 * as the reference lock in the spin_lock_nest_lock() call
7555 * in lock_all_device_hash_locks_irq in order to convince
7556 * lockdep that we know what we are doing.
7558 spin_lock_init(conf->hash_locks);
7559 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7560 spin_lock_init(conf->hash_locks + i);
7562 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7563 INIT_LIST_HEAD(conf->inactive_list + i);
7565 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7566 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7568 atomic_set(&conf->r5c_cached_full_stripes, 0);
7569 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7570 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7571 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7572 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7573 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7575 conf->level = mddev->new_level;
7576 conf->chunk_sectors = mddev->new_chunk_sectors;
7577 ret = raid5_alloc_percpu(conf);
7581 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7584 rdev_for_each(rdev, mddev) {
7585 raid_disk = rdev->raid_disk;
7586 if (raid_disk >= max_disks
7587 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7589 disk = conf->disks + raid_disk;
7591 if (test_bit(Replacement, &rdev->flags)) {
7592 if (disk->replacement)
7594 RCU_INIT_POINTER(disk->replacement, rdev);
7598 RCU_INIT_POINTER(disk->rdev, rdev);
7601 if (test_bit(In_sync, &rdev->flags)) {
7602 pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7603 mdname(mddev), rdev->bdev, raid_disk);
7604 } else if (rdev->saved_raid_disk != raid_disk)
7605 /* Cannot rely on bitmap to complete recovery */
7609 conf->level = mddev->new_level;
7610 if (conf->level == 6) {
7611 conf->max_degraded = 2;
7612 if (raid6_call.xor_syndrome)
7613 conf->rmw_level = PARITY_ENABLE_RMW;
7615 conf->rmw_level = PARITY_DISABLE_RMW;
7617 conf->max_degraded = 1;
7618 conf->rmw_level = PARITY_ENABLE_RMW;
7620 conf->algorithm = mddev->new_layout;
7621 conf->reshape_progress = mddev->reshape_position;
7622 if (conf->reshape_progress != MaxSector) {
7623 conf->prev_chunk_sectors = mddev->chunk_sectors;
7624 conf->prev_algo = mddev->layout;
7626 conf->prev_chunk_sectors = conf->chunk_sectors;
7627 conf->prev_algo = conf->algorithm;
7630 conf->min_nr_stripes = NR_STRIPES;
7631 if (mddev->reshape_position != MaxSector) {
7632 int stripes = max_t(int,
7633 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7634 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7635 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7636 if (conf->min_nr_stripes != NR_STRIPES)
7637 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7638 mdname(mddev), conf->min_nr_stripes);
7640 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7641 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7642 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7643 if (grow_stripes(conf, conf->min_nr_stripes)) {
7644 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7645 mdname(mddev), memory);
7649 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7651 * Losing a stripe head costs more than the time to refill it,
7652 * it reduces the queue depth and so can hurt throughput.
7653 * So set it rather large, scaled by number of devices.
7655 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7656 conf->shrinker.scan_objects = raid5_cache_scan;
7657 conf->shrinker.count_objects = raid5_cache_count;
7658 conf->shrinker.batch = 128;
7659 conf->shrinker.flags = 0;
7660 ret = register_shrinker(&conf->shrinker, "md-raid5:%s", mdname(mddev));
7662 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7667 sprintf(pers_name, "raid%d", mddev->new_level);
7668 conf->thread = md_register_thread(raid5d, mddev, pers_name);
7669 if (!conf->thread) {
7670 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7681 return ERR_PTR(ret);
7684 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7687 case ALGORITHM_PARITY_0:
7688 if (raid_disk < max_degraded)
7691 case ALGORITHM_PARITY_N:
7692 if (raid_disk >= raid_disks - max_degraded)
7695 case ALGORITHM_PARITY_0_6:
7696 if (raid_disk == 0 ||
7697 raid_disk == raid_disks - 1)
7700 case ALGORITHM_LEFT_ASYMMETRIC_6:
7701 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7702 case ALGORITHM_LEFT_SYMMETRIC_6:
7703 case ALGORITHM_RIGHT_SYMMETRIC_6:
7704 if (raid_disk == raid_disks - 1)
7710 static void raid5_set_io_opt(struct r5conf *conf)
7712 blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) *
7713 (conf->raid_disks - conf->max_degraded));
7716 static int raid5_run(struct mddev *mddev)
7718 struct r5conf *conf;
7719 int working_disks = 0;
7720 int dirty_parity_disks = 0;
7721 struct md_rdev *rdev;
7722 struct md_rdev *journal_dev = NULL;
7723 sector_t reshape_offset = 0;
7725 long long min_offset_diff = 0;
7728 if (acct_bioset_init(mddev)) {
7729 pr_err("md/raid456:%s: alloc acct bioset failed.\n", mdname(mddev));
7733 if (mddev_init_writes_pending(mddev) < 0) {
7738 if (mddev->recovery_cp != MaxSector)
7739 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7742 rdev_for_each(rdev, mddev) {
7745 if (test_bit(Journal, &rdev->flags)) {
7749 if (rdev->raid_disk < 0)
7751 diff = (rdev->new_data_offset - rdev->data_offset);
7753 min_offset_diff = diff;
7755 } else if (mddev->reshape_backwards &&
7756 diff < min_offset_diff)
7757 min_offset_diff = diff;
7758 else if (!mddev->reshape_backwards &&
7759 diff > min_offset_diff)
7760 min_offset_diff = diff;
7763 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7764 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7765 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7771 if (mddev->reshape_position != MaxSector) {
7772 /* Check that we can continue the reshape.
7773 * Difficulties arise if the stripe we would write to
7774 * next is at or after the stripe we would read from next.
7775 * For a reshape that changes the number of devices, this
7776 * is only possible for a very short time, and mdadm makes
7777 * sure that time appears to have past before assembling
7778 * the array. So we fail if that time hasn't passed.
7779 * For a reshape that keeps the number of devices the same
7780 * mdadm must be monitoring the reshape can keeping the
7781 * critical areas read-only and backed up. It will start
7782 * the array in read-only mode, so we check for that.
7784 sector_t here_new, here_old;
7786 int max_degraded = (mddev->level == 6 ? 2 : 1);
7791 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7797 if (mddev->new_level != mddev->level) {
7798 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7803 old_disks = mddev->raid_disks - mddev->delta_disks;
7804 /* reshape_position must be on a new-stripe boundary, and one
7805 * further up in new geometry must map after here in old
7807 * If the chunk sizes are different, then as we perform reshape
7808 * in units of the largest of the two, reshape_position needs
7809 * be a multiple of the largest chunk size times new data disks.
7811 here_new = mddev->reshape_position;
7812 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7813 new_data_disks = mddev->raid_disks - max_degraded;
7814 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7815 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7820 reshape_offset = here_new * chunk_sectors;
7821 /* here_new is the stripe we will write to */
7822 here_old = mddev->reshape_position;
7823 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7824 /* here_old is the first stripe that we might need to read
7826 if (mddev->delta_disks == 0) {
7827 /* We cannot be sure it is safe to start an in-place
7828 * reshape. It is only safe if user-space is monitoring
7829 * and taking constant backups.
7830 * mdadm always starts a situation like this in
7831 * readonly mode so it can take control before
7832 * allowing any writes. So just check for that.
7834 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7835 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7836 /* not really in-place - so OK */;
7837 else if (mddev->ro == 0) {
7838 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7843 } else if (mddev->reshape_backwards
7844 ? (here_new * chunk_sectors + min_offset_diff <=
7845 here_old * chunk_sectors)
7846 : (here_new * chunk_sectors >=
7847 here_old * chunk_sectors + (-min_offset_diff))) {
7848 /* Reading from the same stripe as writing to - bad */
7849 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7854 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7855 /* OK, we should be able to continue; */
7857 BUG_ON(mddev->level != mddev->new_level);
7858 BUG_ON(mddev->layout != mddev->new_layout);
7859 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7860 BUG_ON(mddev->delta_disks != 0);
7863 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7864 test_bit(MD_HAS_PPL, &mddev->flags)) {
7865 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7867 clear_bit(MD_HAS_PPL, &mddev->flags);
7868 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7871 if (mddev->private == NULL)
7872 conf = setup_conf(mddev);
7874 conf = mddev->private;
7877 ret = PTR_ERR(conf);
7881 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7883 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7886 set_disk_ro(mddev->gendisk, 1);
7887 } else if (mddev->recovery_cp == MaxSector)
7888 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7891 conf->min_offset_diff = min_offset_diff;
7892 mddev->thread = conf->thread;
7893 conf->thread = NULL;
7894 mddev->private = conf;
7896 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7898 rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev);
7899 if (!rdev && conf->disks[i].replacement) {
7900 /* The replacement is all we have yet */
7901 rdev = rdev_mdlock_deref(mddev,
7902 conf->disks[i].replacement);
7903 conf->disks[i].replacement = NULL;
7904 clear_bit(Replacement, &rdev->flags);
7905 rcu_assign_pointer(conf->disks[i].rdev, rdev);
7909 if (rcu_access_pointer(conf->disks[i].replacement) &&
7910 conf->reshape_progress != MaxSector) {
7911 /* replacements and reshape simply do not mix. */
7912 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7915 if (test_bit(In_sync, &rdev->flags)) {
7919 /* This disc is not fully in-sync. However if it
7920 * just stored parity (beyond the recovery_offset),
7921 * when we don't need to be concerned about the
7922 * array being dirty.
7923 * When reshape goes 'backwards', we never have
7924 * partially completed devices, so we only need
7925 * to worry about reshape going forwards.
7927 /* Hack because v0.91 doesn't store recovery_offset properly. */
7928 if (mddev->major_version == 0 &&
7929 mddev->minor_version > 90)
7930 rdev->recovery_offset = reshape_offset;
7932 if (rdev->recovery_offset < reshape_offset) {
7933 /* We need to check old and new layout */
7934 if (!only_parity(rdev->raid_disk,
7937 conf->max_degraded))
7940 if (!only_parity(rdev->raid_disk,
7942 conf->previous_raid_disks,
7943 conf->max_degraded))
7945 dirty_parity_disks++;
7949 * 0 for a fully functional array, 1 or 2 for a degraded array.
7951 mddev->degraded = raid5_calc_degraded(conf);
7953 if (has_failed(conf)) {
7954 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7955 mdname(mddev), mddev->degraded, conf->raid_disks);
7959 /* device size must be a multiple of chunk size */
7960 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7961 mddev->resync_max_sectors = mddev->dev_sectors;
7963 if (mddev->degraded > dirty_parity_disks &&
7964 mddev->recovery_cp != MaxSector) {
7965 if (test_bit(MD_HAS_PPL, &mddev->flags))
7966 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7968 else if (mddev->ok_start_degraded)
7969 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7972 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7978 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7979 mdname(mddev), conf->level,
7980 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7983 print_raid5_conf(conf);
7985 if (conf->reshape_progress != MaxSector) {
7986 conf->reshape_safe = conf->reshape_progress;
7987 atomic_set(&conf->reshape_stripes, 0);
7988 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7989 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7990 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7991 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7992 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7994 if (!mddev->sync_thread)
7998 /* Ok, everything is just fine now */
7999 if (mddev->to_remove == &raid5_attrs_group)
8000 mddev->to_remove = NULL;
8001 else if (mddev->kobj.sd &&
8002 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
8003 pr_warn("raid5: failed to create sysfs attributes for %s\n",
8005 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
8009 /* read-ahead size must cover two whole stripes, which
8010 * is 2 * (datadisks) * chunksize where 'n' is the
8011 * number of raid devices
8013 int data_disks = conf->previous_raid_disks - conf->max_degraded;
8014 int stripe = data_disks *
8015 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
8017 chunk_size = mddev->chunk_sectors << 9;
8018 blk_queue_io_min(mddev->queue, chunk_size);
8019 raid5_set_io_opt(conf);
8020 mddev->queue->limits.raid_partial_stripes_expensive = 1;
8022 * We can only discard a whole stripe. It doesn't make sense to
8023 * discard data disk but write parity disk
8025 stripe = stripe * PAGE_SIZE;
8026 stripe = roundup_pow_of_two(stripe);
8027 mddev->queue->limits.discard_granularity = stripe;
8029 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
8031 rdev_for_each(rdev, mddev) {
8032 disk_stack_limits(mddev->gendisk, rdev->bdev,
8033 rdev->data_offset << 9);
8034 disk_stack_limits(mddev->gendisk, rdev->bdev,
8035 rdev->new_data_offset << 9);
8039 * zeroing is required, otherwise data
8040 * could be lost. Consider a scenario: discard a stripe
8041 * (the stripe could be inconsistent if
8042 * discard_zeroes_data is 0); write one disk of the
8043 * stripe (the stripe could be inconsistent again
8044 * depending on which disks are used to calculate
8045 * parity); the disk is broken; The stripe data of this
8048 * We only allow DISCARD if the sysadmin has confirmed that
8049 * only safe devices are in use by setting a module parameter.
8050 * A better idea might be to turn DISCARD into WRITE_ZEROES
8051 * requests, as that is required to be safe.
8053 if (!devices_handle_discard_safely ||
8054 mddev->queue->limits.max_discard_sectors < (stripe >> 9) ||
8055 mddev->queue->limits.discard_granularity < stripe)
8056 blk_queue_max_discard_sectors(mddev->queue, 0);
8059 * Requests require having a bitmap for each stripe.
8060 * Limit the max sectors based on this.
8062 blk_queue_max_hw_sectors(mddev->queue,
8063 RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf));
8065 /* No restrictions on the number of segments in the request */
8066 blk_queue_max_segments(mddev->queue, USHRT_MAX);
8069 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
8074 md_unregister_thread(&mddev->thread);
8075 print_raid5_conf(conf);
8077 mddev->private = NULL;
8078 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
8081 acct_bioset_exit(mddev);
8085 static void raid5_free(struct mddev *mddev, void *priv)
8087 struct r5conf *conf = priv;
8090 acct_bioset_exit(mddev);
8091 mddev->to_remove = &raid5_attrs_group;
8094 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
8096 struct r5conf *conf = mddev->private;
8099 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
8100 conf->chunk_sectors / 2, mddev->layout);
8101 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
8103 for (i = 0; i < conf->raid_disks; i++) {
8104 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
8105 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
8108 seq_printf (seq, "]");
8111 static void print_raid5_conf (struct r5conf *conf)
8113 struct md_rdev *rdev;
8116 pr_debug("RAID conf printout:\n");
8118 pr_debug("(conf==NULL)\n");
8121 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
8123 conf->raid_disks - conf->mddev->degraded);
8126 for (i = 0; i < conf->raid_disks; i++) {
8127 rdev = rcu_dereference(conf->disks[i].rdev);
8129 pr_debug(" disk %d, o:%d, dev:%pg\n",
8130 i, !test_bit(Faulty, &rdev->flags),
8136 static int raid5_spare_active(struct mddev *mddev)
8139 struct r5conf *conf = mddev->private;
8140 struct md_rdev *rdev, *replacement;
8142 unsigned long flags;
8144 for (i = 0; i < conf->raid_disks; i++) {
8145 rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev);
8146 replacement = rdev_mdlock_deref(mddev,
8147 conf->disks[i].replacement);
8149 && replacement->recovery_offset == MaxSector
8150 && !test_bit(Faulty, &replacement->flags)
8151 && !test_and_set_bit(In_sync, &replacement->flags)) {
8152 /* Replacement has just become active. */
8154 || !test_and_clear_bit(In_sync, &rdev->flags))
8157 /* Replaced device not technically faulty,
8158 * but we need to be sure it gets removed
8159 * and never re-added.
8161 set_bit(Faulty, &rdev->flags);
8162 sysfs_notify_dirent_safe(
8165 sysfs_notify_dirent_safe(replacement->sysfs_state);
8167 && rdev->recovery_offset == MaxSector
8168 && !test_bit(Faulty, &rdev->flags)
8169 && !test_and_set_bit(In_sync, &rdev->flags)) {
8171 sysfs_notify_dirent_safe(rdev->sysfs_state);
8174 spin_lock_irqsave(&conf->device_lock, flags);
8175 mddev->degraded = raid5_calc_degraded(conf);
8176 spin_unlock_irqrestore(&conf->device_lock, flags);
8177 print_raid5_conf(conf);
8181 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
8183 struct r5conf *conf = mddev->private;
8185 int number = rdev->raid_disk;
8186 struct md_rdev __rcu **rdevp;
8187 struct disk_info *p;
8188 struct md_rdev *tmp;
8190 print_raid5_conf(conf);
8191 if (test_bit(Journal, &rdev->flags) && conf->log) {
8193 * we can't wait pending write here, as this is called in
8194 * raid5d, wait will deadlock.
8195 * neilb: there is no locking about new writes here,
8196 * so this cannot be safe.
8198 if (atomic_read(&conf->active_stripes) ||
8199 atomic_read(&conf->r5c_cached_full_stripes) ||
8200 atomic_read(&conf->r5c_cached_partial_stripes)) {
8206 if (unlikely(number >= conf->pool_size))
8208 p = conf->disks + number;
8209 if (rdev == rcu_access_pointer(p->rdev))
8211 else if (rdev == rcu_access_pointer(p->replacement))
8212 rdevp = &p->replacement;
8216 if (number >= conf->raid_disks &&
8217 conf->reshape_progress == MaxSector)
8218 clear_bit(In_sync, &rdev->flags);
8220 if (test_bit(In_sync, &rdev->flags) ||
8221 atomic_read(&rdev->nr_pending)) {
8225 /* Only remove non-faulty devices if recovery
8228 if (!test_bit(Faulty, &rdev->flags) &&
8229 mddev->recovery_disabled != conf->recovery_disabled &&
8230 !has_failed(conf) &&
8231 (!rcu_access_pointer(p->replacement) ||
8232 rcu_access_pointer(p->replacement) == rdev) &&
8233 number < conf->raid_disks) {
8238 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
8239 lockdep_assert_held(&mddev->reconfig_mutex);
8241 if (atomic_read(&rdev->nr_pending)) {
8242 /* lost the race, try later */
8244 rcu_assign_pointer(*rdevp, rdev);
8248 err = log_modify(conf, rdev, false);
8253 tmp = rcu_access_pointer(p->replacement);
8255 /* We must have just cleared 'rdev' */
8256 rcu_assign_pointer(p->rdev, tmp);
8257 clear_bit(Replacement, &tmp->flags);
8258 smp_mb(); /* Make sure other CPUs may see both as identical
8259 * but will never see neither - if they are careful
8261 rcu_assign_pointer(p->replacement, NULL);
8264 err = log_modify(conf, tmp, true);
8267 clear_bit(WantReplacement, &rdev->flags);
8270 print_raid5_conf(conf);
8274 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
8276 struct r5conf *conf = mddev->private;
8277 int ret, err = -EEXIST;
8279 struct disk_info *p;
8280 struct md_rdev *tmp;
8282 int last = conf->raid_disks - 1;
8284 if (test_bit(Journal, &rdev->flags)) {
8288 rdev->raid_disk = 0;
8290 * The array is in readonly mode if journal is missing, so no
8291 * write requests running. We should be safe
8293 ret = log_init(conf, rdev, false);
8297 ret = r5l_start(conf->log);
8303 if (mddev->recovery_disabled == conf->recovery_disabled)
8306 if (rdev->saved_raid_disk < 0 && has_failed(conf))
8307 /* no point adding a device */
8310 if (rdev->raid_disk >= 0)
8311 first = last = rdev->raid_disk;
8314 * find the disk ... but prefer rdev->saved_raid_disk
8317 if (rdev->saved_raid_disk >= first &&
8318 rdev->saved_raid_disk <= last &&
8319 conf->disks[rdev->saved_raid_disk].rdev == NULL)
8320 first = rdev->saved_raid_disk;
8322 for (disk = first; disk <= last; disk++) {
8323 p = conf->disks + disk;
8324 if (p->rdev == NULL) {
8325 clear_bit(In_sync, &rdev->flags);
8326 rdev->raid_disk = disk;
8327 if (rdev->saved_raid_disk != disk)
8329 rcu_assign_pointer(p->rdev, rdev);
8331 err = log_modify(conf, rdev, true);
8336 for (disk = first; disk <= last; disk++) {
8337 p = conf->disks + disk;
8338 tmp = rdev_mdlock_deref(mddev, p->rdev);
8339 if (test_bit(WantReplacement, &tmp->flags) &&
8340 p->replacement == NULL) {
8341 clear_bit(In_sync, &rdev->flags);
8342 set_bit(Replacement, &rdev->flags);
8343 rdev->raid_disk = disk;
8346 rcu_assign_pointer(p->replacement, rdev);
8351 print_raid5_conf(conf);
8355 static int raid5_resize(struct mddev *mddev, sector_t sectors)
8357 /* no resync is happening, and there is enough space
8358 * on all devices, so we can resize.
8359 * We need to make sure resync covers any new space.
8360 * If the array is shrinking we should possibly wait until
8361 * any io in the removed space completes, but it hardly seems
8365 struct r5conf *conf = mddev->private;
8367 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8369 sectors &= ~((sector_t)conf->chunk_sectors - 1);
8370 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8371 if (mddev->external_size &&
8372 mddev->array_sectors > newsize)
8374 if (mddev->bitmap) {
8375 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
8379 md_set_array_sectors(mddev, newsize);
8380 if (sectors > mddev->dev_sectors &&
8381 mddev->recovery_cp > mddev->dev_sectors) {
8382 mddev->recovery_cp = mddev->dev_sectors;
8383 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8385 mddev->dev_sectors = sectors;
8386 mddev->resync_max_sectors = sectors;
8390 static int check_stripe_cache(struct mddev *mddev)
8392 /* Can only proceed if there are plenty of stripe_heads.
8393 * We need a minimum of one full stripe,, and for sensible progress
8394 * it is best to have about 4 times that.
8395 * If we require 4 times, then the default 256 4K stripe_heads will
8396 * allow for chunk sizes up to 256K, which is probably OK.
8397 * If the chunk size is greater, user-space should request more
8398 * stripe_heads first.
8400 struct r5conf *conf = mddev->private;
8401 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8402 > conf->min_nr_stripes ||
8403 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8404 > conf->min_nr_stripes) {
8405 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
8407 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8408 / RAID5_STRIPE_SIZE(conf))*4);
8414 static int check_reshape(struct mddev *mddev)
8416 struct r5conf *conf = mddev->private;
8418 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8420 if (mddev->delta_disks == 0 &&
8421 mddev->new_layout == mddev->layout &&
8422 mddev->new_chunk_sectors == mddev->chunk_sectors)
8423 return 0; /* nothing to do */
8424 if (has_failed(conf))
8426 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8427 /* We might be able to shrink, but the devices must
8428 * be made bigger first.
8429 * For raid6, 4 is the minimum size.
8430 * Otherwise 2 is the minimum
8433 if (mddev->level == 6)
8435 if (mddev->raid_disks + mddev->delta_disks < min)
8439 if (!check_stripe_cache(mddev))
8442 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8443 mddev->delta_disks > 0)
8444 if (resize_chunks(conf,
8445 conf->previous_raid_disks
8446 + max(0, mddev->delta_disks),
8447 max(mddev->new_chunk_sectors,
8448 mddev->chunk_sectors)
8452 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8453 return 0; /* never bother to shrink */
8454 return resize_stripes(conf, (conf->previous_raid_disks
8455 + mddev->delta_disks));
8458 static int raid5_start_reshape(struct mddev *mddev)
8460 struct r5conf *conf = mddev->private;
8461 struct md_rdev *rdev;
8463 unsigned long flags;
8465 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8468 if (!check_stripe_cache(mddev))
8471 if (has_failed(conf))
8474 rdev_for_each(rdev, mddev) {
8475 if (!test_bit(In_sync, &rdev->flags)
8476 && !test_bit(Faulty, &rdev->flags))
8480 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8481 /* Not enough devices even to make a degraded array
8486 /* Refuse to reduce size of the array. Any reductions in
8487 * array size must be through explicit setting of array_size
8490 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8491 < mddev->array_sectors) {
8492 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8497 atomic_set(&conf->reshape_stripes, 0);
8498 spin_lock_irq(&conf->device_lock);
8499 write_seqcount_begin(&conf->gen_lock);
8500 conf->previous_raid_disks = conf->raid_disks;
8501 conf->raid_disks += mddev->delta_disks;
8502 conf->prev_chunk_sectors = conf->chunk_sectors;
8503 conf->chunk_sectors = mddev->new_chunk_sectors;
8504 conf->prev_algo = conf->algorithm;
8505 conf->algorithm = mddev->new_layout;
8507 /* Code that selects data_offset needs to see the generation update
8508 * if reshape_progress has been set - so a memory barrier needed.
8511 if (mddev->reshape_backwards)
8512 conf->reshape_progress = raid5_size(mddev, 0, 0);
8514 conf->reshape_progress = 0;
8515 conf->reshape_safe = conf->reshape_progress;
8516 write_seqcount_end(&conf->gen_lock);
8517 spin_unlock_irq(&conf->device_lock);
8519 /* Now make sure any requests that proceeded on the assumption
8520 * the reshape wasn't running - like Discard or Read - have
8523 mddev_suspend(mddev);
8524 mddev_resume(mddev);
8526 /* Add some new drives, as many as will fit.
8527 * We know there are enough to make the newly sized array work.
8528 * Don't add devices if we are reducing the number of
8529 * devices in the array. This is because it is not possible
8530 * to correctly record the "partially reconstructed" state of
8531 * such devices during the reshape and confusion could result.
8533 if (mddev->delta_disks >= 0) {
8534 rdev_for_each(rdev, mddev)
8535 if (rdev->raid_disk < 0 &&
8536 !test_bit(Faulty, &rdev->flags)) {
8537 if (raid5_add_disk(mddev, rdev) == 0) {
8539 >= conf->previous_raid_disks)
8540 set_bit(In_sync, &rdev->flags);
8542 rdev->recovery_offset = 0;
8544 /* Failure here is OK */
8545 sysfs_link_rdev(mddev, rdev);
8547 } else if (rdev->raid_disk >= conf->previous_raid_disks
8548 && !test_bit(Faulty, &rdev->flags)) {
8549 /* This is a spare that was manually added */
8550 set_bit(In_sync, &rdev->flags);
8553 /* When a reshape changes the number of devices,
8554 * ->degraded is measured against the larger of the
8555 * pre and post number of devices.
8557 spin_lock_irqsave(&conf->device_lock, flags);
8558 mddev->degraded = raid5_calc_degraded(conf);
8559 spin_unlock_irqrestore(&conf->device_lock, flags);
8561 mddev->raid_disks = conf->raid_disks;
8562 mddev->reshape_position = conf->reshape_progress;
8563 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8565 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8566 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8567 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8568 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8569 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8570 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
8572 if (!mddev->sync_thread) {
8573 mddev->recovery = 0;
8574 spin_lock_irq(&conf->device_lock);
8575 write_seqcount_begin(&conf->gen_lock);
8576 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
8577 mddev->new_chunk_sectors =
8578 conf->chunk_sectors = conf->prev_chunk_sectors;
8579 mddev->new_layout = conf->algorithm = conf->prev_algo;
8580 rdev_for_each(rdev, mddev)
8581 rdev->new_data_offset = rdev->data_offset;
8583 conf->generation --;
8584 conf->reshape_progress = MaxSector;
8585 mddev->reshape_position = MaxSector;
8586 write_seqcount_end(&conf->gen_lock);
8587 spin_unlock_irq(&conf->device_lock);
8590 conf->reshape_checkpoint = jiffies;
8591 md_wakeup_thread(mddev->sync_thread);
8596 /* This is called from the reshape thread and should make any
8597 * changes needed in 'conf'
8599 static void end_reshape(struct r5conf *conf)
8602 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8603 struct md_rdev *rdev;
8605 spin_lock_irq(&conf->device_lock);
8606 conf->previous_raid_disks = conf->raid_disks;
8607 md_finish_reshape(conf->mddev);
8609 conf->reshape_progress = MaxSector;
8610 conf->mddev->reshape_position = MaxSector;
8611 rdev_for_each(rdev, conf->mddev)
8612 if (rdev->raid_disk >= 0 &&
8613 !test_bit(Journal, &rdev->flags) &&
8614 !test_bit(In_sync, &rdev->flags))
8615 rdev->recovery_offset = MaxSector;
8616 spin_unlock_irq(&conf->device_lock);
8617 wake_up(&conf->wait_for_overlap);
8619 if (conf->mddev->queue)
8620 raid5_set_io_opt(conf);
8624 /* This is called from the raid5d thread with mddev_lock held.
8625 * It makes config changes to the device.
8627 static void raid5_finish_reshape(struct mddev *mddev)
8629 struct r5conf *conf = mddev->private;
8630 struct md_rdev *rdev;
8632 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8634 if (mddev->delta_disks <= 0) {
8636 spin_lock_irq(&conf->device_lock);
8637 mddev->degraded = raid5_calc_degraded(conf);
8638 spin_unlock_irq(&conf->device_lock);
8639 for (d = conf->raid_disks ;
8640 d < conf->raid_disks - mddev->delta_disks;
8642 rdev = rdev_mdlock_deref(mddev,
8643 conf->disks[d].rdev);
8645 clear_bit(In_sync, &rdev->flags);
8646 rdev = rdev_mdlock_deref(mddev,
8647 conf->disks[d].replacement);
8649 clear_bit(In_sync, &rdev->flags);
8652 mddev->layout = conf->algorithm;
8653 mddev->chunk_sectors = conf->chunk_sectors;
8654 mddev->reshape_position = MaxSector;
8655 mddev->delta_disks = 0;
8656 mddev->reshape_backwards = 0;
8660 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8662 struct r5conf *conf = mddev->private;
8665 /* stop all writes */
8666 lock_all_device_hash_locks_irq(conf);
8667 /* '2' tells resync/reshape to pause so that all
8668 * active stripes can drain
8670 r5c_flush_cache(conf, INT_MAX);
8671 /* need a memory barrier to make sure read_one_chunk() sees
8672 * quiesce started and reverts to slow (locked) path.
8674 smp_store_release(&conf->quiesce, 2);
8675 wait_event_cmd(conf->wait_for_quiescent,
8676 atomic_read(&conf->active_stripes) == 0 &&
8677 atomic_read(&conf->active_aligned_reads) == 0,
8678 unlock_all_device_hash_locks_irq(conf),
8679 lock_all_device_hash_locks_irq(conf));
8681 unlock_all_device_hash_locks_irq(conf);
8682 /* allow reshape to continue */
8683 wake_up(&conf->wait_for_overlap);
8685 /* re-enable writes */
8686 lock_all_device_hash_locks_irq(conf);
8688 wake_up(&conf->wait_for_quiescent);
8689 wake_up(&conf->wait_for_overlap);
8690 unlock_all_device_hash_locks_irq(conf);
8692 log_quiesce(conf, quiesce);
8695 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8697 struct r0conf *raid0_conf = mddev->private;
8700 /* for raid0 takeover only one zone is supported */
8701 if (raid0_conf->nr_strip_zones > 1) {
8702 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8704 return ERR_PTR(-EINVAL);
8707 sectors = raid0_conf->strip_zone[0].zone_end;
8708 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8709 mddev->dev_sectors = sectors;
8710 mddev->new_level = level;
8711 mddev->new_layout = ALGORITHM_PARITY_N;
8712 mddev->new_chunk_sectors = mddev->chunk_sectors;
8713 mddev->raid_disks += 1;
8714 mddev->delta_disks = 1;
8715 /* make sure it will be not marked as dirty */
8716 mddev->recovery_cp = MaxSector;
8718 return setup_conf(mddev);
8721 static void *raid5_takeover_raid1(struct mddev *mddev)
8726 if (mddev->raid_disks != 2 ||
8727 mddev->degraded > 1)
8728 return ERR_PTR(-EINVAL);
8730 /* Should check if there are write-behind devices? */
8732 chunksect = 64*2; /* 64K by default */
8734 /* The array must be an exact multiple of chunksize */
8735 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8738 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8739 /* array size does not allow a suitable chunk size */
8740 return ERR_PTR(-EINVAL);
8742 mddev->new_level = 5;
8743 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8744 mddev->new_chunk_sectors = chunksect;
8746 ret = setup_conf(mddev);
8748 mddev_clear_unsupported_flags(mddev,
8749 UNSUPPORTED_MDDEV_FLAGS);
8753 static void *raid5_takeover_raid6(struct mddev *mddev)
8757 switch (mddev->layout) {
8758 case ALGORITHM_LEFT_ASYMMETRIC_6:
8759 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8761 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8762 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8764 case ALGORITHM_LEFT_SYMMETRIC_6:
8765 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8767 case ALGORITHM_RIGHT_SYMMETRIC_6:
8768 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8770 case ALGORITHM_PARITY_0_6:
8771 new_layout = ALGORITHM_PARITY_0;
8773 case ALGORITHM_PARITY_N:
8774 new_layout = ALGORITHM_PARITY_N;
8777 return ERR_PTR(-EINVAL);
8779 mddev->new_level = 5;
8780 mddev->new_layout = new_layout;
8781 mddev->delta_disks = -1;
8782 mddev->raid_disks -= 1;
8783 return setup_conf(mddev);
8786 static int raid5_check_reshape(struct mddev *mddev)
8788 /* For a 2-drive array, the layout and chunk size can be changed
8789 * immediately as not restriping is needed.
8790 * For larger arrays we record the new value - after validation
8791 * to be used by a reshape pass.
8793 struct r5conf *conf = mddev->private;
8794 int new_chunk = mddev->new_chunk_sectors;
8796 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8798 if (new_chunk > 0) {
8799 if (!is_power_of_2(new_chunk))
8801 if (new_chunk < (PAGE_SIZE>>9))
8803 if (mddev->array_sectors & (new_chunk-1))
8804 /* not factor of array size */
8808 /* They look valid */
8810 if (mddev->raid_disks == 2) {
8811 /* can make the change immediately */
8812 if (mddev->new_layout >= 0) {
8813 conf->algorithm = mddev->new_layout;
8814 mddev->layout = mddev->new_layout;
8816 if (new_chunk > 0) {
8817 conf->chunk_sectors = new_chunk ;
8818 mddev->chunk_sectors = new_chunk;
8820 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8821 md_wakeup_thread(mddev->thread);
8823 return check_reshape(mddev);
8826 static int raid6_check_reshape(struct mddev *mddev)
8828 int new_chunk = mddev->new_chunk_sectors;
8830 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8832 if (new_chunk > 0) {
8833 if (!is_power_of_2(new_chunk))
8835 if (new_chunk < (PAGE_SIZE >> 9))
8837 if (mddev->array_sectors & (new_chunk-1))
8838 /* not factor of array size */
8842 /* They look valid */
8843 return check_reshape(mddev);
8846 static void *raid5_takeover(struct mddev *mddev)
8848 /* raid5 can take over:
8849 * raid0 - if there is only one strip zone - make it a raid4 layout
8850 * raid1 - if there are two drives. We need to know the chunk size
8851 * raid4 - trivial - just use a raid4 layout.
8852 * raid6 - Providing it is a *_6 layout
8854 if (mddev->level == 0)
8855 return raid45_takeover_raid0(mddev, 5);
8856 if (mddev->level == 1)
8857 return raid5_takeover_raid1(mddev);
8858 if (mddev->level == 4) {
8859 mddev->new_layout = ALGORITHM_PARITY_N;
8860 mddev->new_level = 5;
8861 return setup_conf(mddev);
8863 if (mddev->level == 6)
8864 return raid5_takeover_raid6(mddev);
8866 return ERR_PTR(-EINVAL);
8869 static void *raid4_takeover(struct mddev *mddev)
8871 /* raid4 can take over:
8872 * raid0 - if there is only one strip zone
8873 * raid5 - if layout is right
8875 if (mddev->level == 0)
8876 return raid45_takeover_raid0(mddev, 4);
8877 if (mddev->level == 5 &&
8878 mddev->layout == ALGORITHM_PARITY_N) {
8879 mddev->new_layout = 0;
8880 mddev->new_level = 4;
8881 return setup_conf(mddev);
8883 return ERR_PTR(-EINVAL);
8886 static struct md_personality raid5_personality;
8888 static void *raid6_takeover(struct mddev *mddev)
8890 /* Currently can only take over a raid5. We map the
8891 * personality to an equivalent raid6 personality
8892 * with the Q block at the end.
8896 if (mddev->pers != &raid5_personality)
8897 return ERR_PTR(-EINVAL);
8898 if (mddev->degraded > 1)
8899 return ERR_PTR(-EINVAL);
8900 if (mddev->raid_disks > 253)
8901 return ERR_PTR(-EINVAL);
8902 if (mddev->raid_disks < 3)
8903 return ERR_PTR(-EINVAL);
8905 switch (mddev->layout) {
8906 case ALGORITHM_LEFT_ASYMMETRIC:
8907 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8909 case ALGORITHM_RIGHT_ASYMMETRIC:
8910 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8912 case ALGORITHM_LEFT_SYMMETRIC:
8913 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8915 case ALGORITHM_RIGHT_SYMMETRIC:
8916 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8918 case ALGORITHM_PARITY_0:
8919 new_layout = ALGORITHM_PARITY_0_6;
8921 case ALGORITHM_PARITY_N:
8922 new_layout = ALGORITHM_PARITY_N;
8925 return ERR_PTR(-EINVAL);
8927 mddev->new_level = 6;
8928 mddev->new_layout = new_layout;
8929 mddev->delta_disks = 1;
8930 mddev->raid_disks += 1;
8931 return setup_conf(mddev);
8934 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8936 struct r5conf *conf;
8939 err = mddev_lock(mddev);
8942 conf = mddev->private;
8944 mddev_unlock(mddev);
8948 if (strncmp(buf, "ppl", 3) == 0) {
8949 /* ppl only works with RAID 5 */
8950 if (!raid5_has_ppl(conf) && conf->level == 5) {
8951 err = log_init(conf, NULL, true);
8953 err = resize_stripes(conf, conf->pool_size);
8955 mddev_suspend(mddev);
8957 mddev_resume(mddev);
8962 } else if (strncmp(buf, "resync", 6) == 0) {
8963 if (raid5_has_ppl(conf)) {
8964 mddev_suspend(mddev);
8966 mddev_resume(mddev);
8967 err = resize_stripes(conf, conf->pool_size);
8968 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8969 r5l_log_disk_error(conf)) {
8970 bool journal_dev_exists = false;
8971 struct md_rdev *rdev;
8973 rdev_for_each(rdev, mddev)
8974 if (test_bit(Journal, &rdev->flags)) {
8975 journal_dev_exists = true;
8979 if (!journal_dev_exists) {
8980 mddev_suspend(mddev);
8981 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8982 mddev_resume(mddev);
8983 } else /* need remove journal device first */
8992 md_update_sb(mddev, 1);
8994 mddev_unlock(mddev);
8999 static int raid5_start(struct mddev *mddev)
9001 struct r5conf *conf = mddev->private;
9003 return r5l_start(conf->log);
9006 static struct md_personality raid6_personality =
9010 .owner = THIS_MODULE,
9011 .make_request = raid5_make_request,
9013 .start = raid5_start,
9015 .status = raid5_status,
9016 .error_handler = raid5_error,
9017 .hot_add_disk = raid5_add_disk,
9018 .hot_remove_disk= raid5_remove_disk,
9019 .spare_active = raid5_spare_active,
9020 .sync_request = raid5_sync_request,
9021 .resize = raid5_resize,
9023 .check_reshape = raid6_check_reshape,
9024 .start_reshape = raid5_start_reshape,
9025 .finish_reshape = raid5_finish_reshape,
9026 .quiesce = raid5_quiesce,
9027 .takeover = raid6_takeover,
9028 .change_consistency_policy = raid5_change_consistency_policy,
9030 static struct md_personality raid5_personality =
9034 .owner = THIS_MODULE,
9035 .make_request = raid5_make_request,
9037 .start = raid5_start,
9039 .status = raid5_status,
9040 .error_handler = raid5_error,
9041 .hot_add_disk = raid5_add_disk,
9042 .hot_remove_disk= raid5_remove_disk,
9043 .spare_active = raid5_spare_active,
9044 .sync_request = raid5_sync_request,
9045 .resize = raid5_resize,
9047 .check_reshape = raid5_check_reshape,
9048 .start_reshape = raid5_start_reshape,
9049 .finish_reshape = raid5_finish_reshape,
9050 .quiesce = raid5_quiesce,
9051 .takeover = raid5_takeover,
9052 .change_consistency_policy = raid5_change_consistency_policy,
9055 static struct md_personality raid4_personality =
9059 .owner = THIS_MODULE,
9060 .make_request = raid5_make_request,
9062 .start = raid5_start,
9064 .status = raid5_status,
9065 .error_handler = raid5_error,
9066 .hot_add_disk = raid5_add_disk,
9067 .hot_remove_disk= raid5_remove_disk,
9068 .spare_active = raid5_spare_active,
9069 .sync_request = raid5_sync_request,
9070 .resize = raid5_resize,
9072 .check_reshape = raid5_check_reshape,
9073 .start_reshape = raid5_start_reshape,
9074 .finish_reshape = raid5_finish_reshape,
9075 .quiesce = raid5_quiesce,
9076 .takeover = raid4_takeover,
9077 .change_consistency_policy = raid5_change_consistency_policy,
9080 static int __init raid5_init(void)
9084 raid5_wq = alloc_workqueue("raid5wq",
9085 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
9089 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
9091 raid456_cpu_up_prepare,
9094 destroy_workqueue(raid5_wq);
9097 register_md_personality(&raid6_personality);
9098 register_md_personality(&raid5_personality);
9099 register_md_personality(&raid4_personality);
9103 static void raid5_exit(void)
9105 unregister_md_personality(&raid6_personality);
9106 unregister_md_personality(&raid5_personality);
9107 unregister_md_personality(&raid4_personality);
9108 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9109 destroy_workqueue(raid5_wq);
9112 module_init(raid5_init);
9113 module_exit(raid5_exit);
9114 MODULE_LICENSE("GPL");
9115 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
9116 MODULE_ALIAS("md-personality-4"); /* RAID5 */
9117 MODULE_ALIAS("md-raid5");
9118 MODULE_ALIAS("md-raid4");
9119 MODULE_ALIAS("md-level-5");
9120 MODULE_ALIAS("md-level-4");
9121 MODULE_ALIAS("md-personality-8"); /* RAID6 */
9122 MODULE_ALIAS("md-raid6");
9123 MODULE_ALIAS("md-level-6");
9125 /* This used to be two separate modules, they were: */
9126 MODULE_ALIAS("raid5");
9127 MODULE_ALIAS("raid6");