raid5: set bio bi_vcnt 0 for discard request
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66
67 static struct workqueue_struct *raid5_wq;
68 /*
69  * Stripe cache
70  */
71
72 #define NR_STRIPES              256
73 #define STRIPE_SIZE             PAGE_SIZE
74 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
75 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
76 #define IO_THRESHOLD            1
77 #define BYPASS_THRESHOLD        1
78 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
79 #define HASH_MASK               (NR_HASH - 1)
80 #define MAX_STRIPE_BATCH        8
81
82 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
83 {
84         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85         return &conf->stripe_hashtbl[hash];
86 }
87
88 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
89  * order without overlap.  There may be several bio's per stripe+device, and
90  * a bio could span several devices.
91  * When walking this list for a particular stripe+device, we must never proceed
92  * beyond a bio that extends past this device, as the next bio might no longer
93  * be valid.
94  * This function is used to determine the 'next' bio in the list, given the sector
95  * of the current stripe+device
96  */
97 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
98 {
99         int sectors = bio_sectors(bio);
100         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
101                 return bio->bi_next;
102         else
103                 return NULL;
104 }
105
106 /*
107  * We maintain a biased count of active stripes in the bottom 16 bits of
108  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
109  */
110 static inline int raid5_bi_processed_stripes(struct bio *bio)
111 {
112         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
113         return (atomic_read(segments) >> 16) & 0xffff;
114 }
115
116 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
117 {
118         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
119         return atomic_sub_return(1, segments) & 0xffff;
120 }
121
122 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
123 {
124         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
125         atomic_inc(segments);
126 }
127
128 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
129         unsigned int cnt)
130 {
131         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
132         int old, new;
133
134         do {
135                 old = atomic_read(segments);
136                 new = (old & 0xffff) | (cnt << 16);
137         } while (atomic_cmpxchg(segments, old, new) != old);
138 }
139
140 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
141 {
142         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
143         atomic_set(segments, cnt);
144 }
145
146 /* Find first data disk in a raid6 stripe */
147 static inline int raid6_d0(struct stripe_head *sh)
148 {
149         if (sh->ddf_layout)
150                 /* ddf always start from first device */
151                 return 0;
152         /* md starts just after Q block */
153         if (sh->qd_idx == sh->disks - 1)
154                 return 0;
155         else
156                 return sh->qd_idx + 1;
157 }
158 static inline int raid6_next_disk(int disk, int raid_disks)
159 {
160         disk++;
161         return (disk < raid_disks) ? disk : 0;
162 }
163
164 /* When walking through the disks in a raid5, starting at raid6_d0,
165  * We need to map each disk to a 'slot', where the data disks are slot
166  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
167  * is raid_disks-1.  This help does that mapping.
168  */
169 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
170                              int *count, int syndrome_disks)
171 {
172         int slot = *count;
173
174         if (sh->ddf_layout)
175                 (*count)++;
176         if (idx == sh->pd_idx)
177                 return syndrome_disks;
178         if (idx == sh->qd_idx)
179                 return syndrome_disks + 1;
180         if (!sh->ddf_layout)
181                 (*count)++;
182         return slot;
183 }
184
185 static void return_io(struct bio *return_bi)
186 {
187         struct bio *bi = return_bi;
188         while (bi) {
189
190                 return_bi = bi->bi_next;
191                 bi->bi_next = NULL;
192                 bi->bi_size = 0;
193                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
194                                          bi, 0);
195                 bio_endio(bi, 0);
196                 bi = return_bi;
197         }
198 }
199
200 static void print_raid5_conf (struct r5conf *conf);
201
202 static int stripe_operations_active(struct stripe_head *sh)
203 {
204         return sh->check_state || sh->reconstruct_state ||
205                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
206                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
207 }
208
209 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
210 {
211         struct r5conf *conf = sh->raid_conf;
212         struct r5worker_group *group;
213         int thread_cnt;
214         int i, cpu = sh->cpu;
215
216         if (!cpu_online(cpu)) {
217                 cpu = cpumask_any(cpu_online_mask);
218                 sh->cpu = cpu;
219         }
220
221         if (list_empty(&sh->lru)) {
222                 struct r5worker_group *group;
223                 group = conf->worker_groups + cpu_to_group(cpu);
224                 list_add_tail(&sh->lru, &group->handle_list);
225                 group->stripes_cnt++;
226                 sh->group = group;
227         }
228
229         if (conf->worker_cnt_per_group == 0) {
230                 md_wakeup_thread(conf->mddev->thread);
231                 return;
232         }
233
234         group = conf->worker_groups + cpu_to_group(sh->cpu);
235
236         group->workers[0].working = true;
237         /* at least one worker should run to avoid race */
238         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
239
240         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
241         /* wakeup more workers */
242         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
243                 if (group->workers[i].working == false) {
244                         group->workers[i].working = true;
245                         queue_work_on(sh->cpu, raid5_wq,
246                                       &group->workers[i].work);
247                         thread_cnt--;
248                 }
249         }
250 }
251
252 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
253 {
254         BUG_ON(!list_empty(&sh->lru));
255         BUG_ON(atomic_read(&conf->active_stripes)==0);
256         if (test_bit(STRIPE_HANDLE, &sh->state)) {
257                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
258                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
259                         list_add_tail(&sh->lru, &conf->delayed_list);
260                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
261                            sh->bm_seq - conf->seq_write > 0)
262                         list_add_tail(&sh->lru, &conf->bitmap_list);
263                 else {
264                         clear_bit(STRIPE_DELAYED, &sh->state);
265                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
266                         if (conf->worker_cnt_per_group == 0) {
267                                 list_add_tail(&sh->lru, &conf->handle_list);
268                         } else {
269                                 raid5_wakeup_stripe_thread(sh);
270                                 return;
271                         }
272                 }
273                 md_wakeup_thread(conf->mddev->thread);
274         } else {
275                 BUG_ON(stripe_operations_active(sh));
276                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
277                         if (atomic_dec_return(&conf->preread_active_stripes)
278                             < IO_THRESHOLD)
279                                 md_wakeup_thread(conf->mddev->thread);
280                 atomic_dec(&conf->active_stripes);
281                 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
282                         list_add_tail(&sh->lru, &conf->inactive_list);
283                         wake_up(&conf->wait_for_stripe);
284                         if (conf->retry_read_aligned)
285                                 md_wakeup_thread(conf->mddev->thread);
286                 }
287         }
288 }
289
290 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
291 {
292         if (atomic_dec_and_test(&sh->count))
293                 do_release_stripe(conf, sh);
294 }
295
296 static struct llist_node *llist_reverse_order(struct llist_node *head)
297 {
298         struct llist_node *new_head = NULL;
299
300         while (head) {
301                 struct llist_node *tmp = head;
302                 head = head->next;
303                 tmp->next = new_head;
304                 new_head = tmp;
305         }
306
307         return new_head;
308 }
309
310 /* should hold conf->device_lock already */
311 static int release_stripe_list(struct r5conf *conf)
312 {
313         struct stripe_head *sh;
314         int count = 0;
315         struct llist_node *head;
316
317         head = llist_del_all(&conf->released_stripes);
318         head = llist_reverse_order(head);
319         while (head) {
320                 sh = llist_entry(head, struct stripe_head, release_list);
321                 head = llist_next(head);
322                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
323                 smp_mb();
324                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
325                 /*
326                  * Don't worry the bit is set here, because if the bit is set
327                  * again, the count is always > 1. This is true for
328                  * STRIPE_ON_UNPLUG_LIST bit too.
329                  */
330                 __release_stripe(conf, sh);
331                 count++;
332         }
333
334         return count;
335 }
336
337 static void release_stripe(struct stripe_head *sh)
338 {
339         struct r5conf *conf = sh->raid_conf;
340         unsigned long flags;
341         bool wakeup;
342
343         if (test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
344                 goto slow_path;
345         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
346         if (wakeup)
347                 md_wakeup_thread(conf->mddev->thread);
348         return;
349 slow_path:
350         local_irq_save(flags);
351         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
352         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
353                 do_release_stripe(conf, sh);
354                 spin_unlock(&conf->device_lock);
355         }
356         local_irq_restore(flags);
357 }
358
359 static inline void remove_hash(struct stripe_head *sh)
360 {
361         pr_debug("remove_hash(), stripe %llu\n",
362                 (unsigned long long)sh->sector);
363
364         hlist_del_init(&sh->hash);
365 }
366
367 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
368 {
369         struct hlist_head *hp = stripe_hash(conf, sh->sector);
370
371         pr_debug("insert_hash(), stripe %llu\n",
372                 (unsigned long long)sh->sector);
373
374         hlist_add_head(&sh->hash, hp);
375 }
376
377
378 /* find an idle stripe, make sure it is unhashed, and return it. */
379 static struct stripe_head *get_free_stripe(struct r5conf *conf)
380 {
381         struct stripe_head *sh = NULL;
382         struct list_head *first;
383
384         if (list_empty(&conf->inactive_list))
385                 goto out;
386         first = conf->inactive_list.next;
387         sh = list_entry(first, struct stripe_head, lru);
388         list_del_init(first);
389         remove_hash(sh);
390         atomic_inc(&conf->active_stripes);
391 out:
392         return sh;
393 }
394
395 static void shrink_buffers(struct stripe_head *sh)
396 {
397         struct page *p;
398         int i;
399         int num = sh->raid_conf->pool_size;
400
401         for (i = 0; i < num ; i++) {
402                 p = sh->dev[i].page;
403                 if (!p)
404                         continue;
405                 sh->dev[i].page = NULL;
406                 put_page(p);
407         }
408 }
409
410 static int grow_buffers(struct stripe_head *sh)
411 {
412         int i;
413         int num = sh->raid_conf->pool_size;
414
415         for (i = 0; i < num; i++) {
416                 struct page *page;
417
418                 if (!(page = alloc_page(GFP_KERNEL))) {
419                         return 1;
420                 }
421                 sh->dev[i].page = page;
422         }
423         return 0;
424 }
425
426 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
427 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
428                             struct stripe_head *sh);
429
430 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
431 {
432         struct r5conf *conf = sh->raid_conf;
433         int i;
434
435         BUG_ON(atomic_read(&sh->count) != 0);
436         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
437         BUG_ON(stripe_operations_active(sh));
438
439         pr_debug("init_stripe called, stripe %llu\n",
440                 (unsigned long long)sh->sector);
441
442         remove_hash(sh);
443
444         sh->generation = conf->generation - previous;
445         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
446         sh->sector = sector;
447         stripe_set_idx(sector, conf, previous, sh);
448         sh->state = 0;
449
450
451         for (i = sh->disks; i--; ) {
452                 struct r5dev *dev = &sh->dev[i];
453
454                 if (dev->toread || dev->read || dev->towrite || dev->written ||
455                     test_bit(R5_LOCKED, &dev->flags)) {
456                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
457                                (unsigned long long)sh->sector, i, dev->toread,
458                                dev->read, dev->towrite, dev->written,
459                                test_bit(R5_LOCKED, &dev->flags));
460                         WARN_ON(1);
461                 }
462                 dev->flags = 0;
463                 raid5_build_block(sh, i, previous);
464         }
465         insert_hash(conf, sh);
466         sh->cpu = smp_processor_id();
467 }
468
469 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
470                                          short generation)
471 {
472         struct stripe_head *sh;
473
474         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
475         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
476                 if (sh->sector == sector && sh->generation == generation)
477                         return sh;
478         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
479         return NULL;
480 }
481
482 /*
483  * Need to check if array has failed when deciding whether to:
484  *  - start an array
485  *  - remove non-faulty devices
486  *  - add a spare
487  *  - allow a reshape
488  * This determination is simple when no reshape is happening.
489  * However if there is a reshape, we need to carefully check
490  * both the before and after sections.
491  * This is because some failed devices may only affect one
492  * of the two sections, and some non-in_sync devices may
493  * be insync in the section most affected by failed devices.
494  */
495 static int calc_degraded(struct r5conf *conf)
496 {
497         int degraded, degraded2;
498         int i;
499
500         rcu_read_lock();
501         degraded = 0;
502         for (i = 0; i < conf->previous_raid_disks; i++) {
503                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
504                 if (rdev && test_bit(Faulty, &rdev->flags))
505                         rdev = rcu_dereference(conf->disks[i].replacement);
506                 if (!rdev || test_bit(Faulty, &rdev->flags))
507                         degraded++;
508                 else if (test_bit(In_sync, &rdev->flags))
509                         ;
510                 else
511                         /* not in-sync or faulty.
512                          * If the reshape increases the number of devices,
513                          * this is being recovered by the reshape, so
514                          * this 'previous' section is not in_sync.
515                          * If the number of devices is being reduced however,
516                          * the device can only be part of the array if
517                          * we are reverting a reshape, so this section will
518                          * be in-sync.
519                          */
520                         if (conf->raid_disks >= conf->previous_raid_disks)
521                                 degraded++;
522         }
523         rcu_read_unlock();
524         if (conf->raid_disks == conf->previous_raid_disks)
525                 return degraded;
526         rcu_read_lock();
527         degraded2 = 0;
528         for (i = 0; i < conf->raid_disks; i++) {
529                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
530                 if (rdev && test_bit(Faulty, &rdev->flags))
531                         rdev = rcu_dereference(conf->disks[i].replacement);
532                 if (!rdev || test_bit(Faulty, &rdev->flags))
533                         degraded2++;
534                 else if (test_bit(In_sync, &rdev->flags))
535                         ;
536                 else
537                         /* not in-sync or faulty.
538                          * If reshape increases the number of devices, this
539                          * section has already been recovered, else it
540                          * almost certainly hasn't.
541                          */
542                         if (conf->raid_disks <= conf->previous_raid_disks)
543                                 degraded2++;
544         }
545         rcu_read_unlock();
546         if (degraded2 > degraded)
547                 return degraded2;
548         return degraded;
549 }
550
551 static int has_failed(struct r5conf *conf)
552 {
553         int degraded;
554
555         if (conf->mddev->reshape_position == MaxSector)
556                 return conf->mddev->degraded > conf->max_degraded;
557
558         degraded = calc_degraded(conf);
559         if (degraded > conf->max_degraded)
560                 return 1;
561         return 0;
562 }
563
564 static struct stripe_head *
565 get_active_stripe(struct r5conf *conf, sector_t sector,
566                   int previous, int noblock, int noquiesce)
567 {
568         struct stripe_head *sh;
569
570         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
571
572         spin_lock_irq(&conf->device_lock);
573
574         do {
575                 wait_event_lock_irq(conf->wait_for_stripe,
576                                     conf->quiesce == 0 || noquiesce,
577                                     conf->device_lock);
578                 sh = __find_stripe(conf, sector, conf->generation - previous);
579                 if (!sh) {
580                         if (!conf->inactive_blocked)
581                                 sh = get_free_stripe(conf);
582                         if (noblock && sh == NULL)
583                                 break;
584                         if (!sh) {
585                                 conf->inactive_blocked = 1;
586                                 wait_event_lock_irq(conf->wait_for_stripe,
587                                                     !list_empty(&conf->inactive_list) &&
588                                                     (atomic_read(&conf->active_stripes)
589                                                      < (conf->max_nr_stripes *3/4)
590                                                      || !conf->inactive_blocked),
591                                                     conf->device_lock);
592                                 conf->inactive_blocked = 0;
593                         } else
594                                 init_stripe(sh, sector, previous);
595                 } else {
596                         if (atomic_read(&sh->count)) {
597                                 BUG_ON(!list_empty(&sh->lru)
598                                     && !test_bit(STRIPE_EXPANDING, &sh->state)
599                                     && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)
600                                     && !test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
601                         } else {
602                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
603                                         atomic_inc(&conf->active_stripes);
604                                 if (list_empty(&sh->lru) &&
605                                     !test_bit(STRIPE_EXPANDING, &sh->state))
606                                         BUG();
607                                 list_del_init(&sh->lru);
608                                 if (sh->group) {
609                                         sh->group->stripes_cnt--;
610                                         sh->group = NULL;
611                                 }
612                         }
613                 }
614         } while (sh == NULL);
615
616         if (sh)
617                 atomic_inc(&sh->count);
618
619         spin_unlock_irq(&conf->device_lock);
620         return sh;
621 }
622
623 /* Determine if 'data_offset' or 'new_data_offset' should be used
624  * in this stripe_head.
625  */
626 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
627 {
628         sector_t progress = conf->reshape_progress;
629         /* Need a memory barrier to make sure we see the value
630          * of conf->generation, or ->data_offset that was set before
631          * reshape_progress was updated.
632          */
633         smp_rmb();
634         if (progress == MaxSector)
635                 return 0;
636         if (sh->generation == conf->generation - 1)
637                 return 0;
638         /* We are in a reshape, and this is a new-generation stripe,
639          * so use new_data_offset.
640          */
641         return 1;
642 }
643
644 static void
645 raid5_end_read_request(struct bio *bi, int error);
646 static void
647 raid5_end_write_request(struct bio *bi, int error);
648
649 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
650 {
651         struct r5conf *conf = sh->raid_conf;
652         int i, disks = sh->disks;
653
654         might_sleep();
655
656         for (i = disks; i--; ) {
657                 int rw;
658                 int replace_only = 0;
659                 struct bio *bi, *rbi;
660                 struct md_rdev *rdev, *rrdev = NULL;
661                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
662                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
663                                 rw = WRITE_FUA;
664                         else
665                                 rw = WRITE;
666                         if (test_bit(R5_Discard, &sh->dev[i].flags))
667                                 rw |= REQ_DISCARD;
668                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
669                         rw = READ;
670                 else if (test_and_clear_bit(R5_WantReplace,
671                                             &sh->dev[i].flags)) {
672                         rw = WRITE;
673                         replace_only = 1;
674                 } else
675                         continue;
676                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
677                         rw |= REQ_SYNC;
678
679                 bi = &sh->dev[i].req;
680                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
681
682                 rcu_read_lock();
683                 rrdev = rcu_dereference(conf->disks[i].replacement);
684                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
685                 rdev = rcu_dereference(conf->disks[i].rdev);
686                 if (!rdev) {
687                         rdev = rrdev;
688                         rrdev = NULL;
689                 }
690                 if (rw & WRITE) {
691                         if (replace_only)
692                                 rdev = NULL;
693                         if (rdev == rrdev)
694                                 /* We raced and saw duplicates */
695                                 rrdev = NULL;
696                 } else {
697                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
698                                 rdev = rrdev;
699                         rrdev = NULL;
700                 }
701
702                 if (rdev && test_bit(Faulty, &rdev->flags))
703                         rdev = NULL;
704                 if (rdev)
705                         atomic_inc(&rdev->nr_pending);
706                 if (rrdev && test_bit(Faulty, &rrdev->flags))
707                         rrdev = NULL;
708                 if (rrdev)
709                         atomic_inc(&rrdev->nr_pending);
710                 rcu_read_unlock();
711
712                 /* We have already checked bad blocks for reads.  Now
713                  * need to check for writes.  We never accept write errors
714                  * on the replacement, so we don't to check rrdev.
715                  */
716                 while ((rw & WRITE) && rdev &&
717                        test_bit(WriteErrorSeen, &rdev->flags)) {
718                         sector_t first_bad;
719                         int bad_sectors;
720                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
721                                               &first_bad, &bad_sectors);
722                         if (!bad)
723                                 break;
724
725                         if (bad < 0) {
726                                 set_bit(BlockedBadBlocks, &rdev->flags);
727                                 if (!conf->mddev->external &&
728                                     conf->mddev->flags) {
729                                         /* It is very unlikely, but we might
730                                          * still need to write out the
731                                          * bad block log - better give it
732                                          * a chance*/
733                                         md_check_recovery(conf->mddev);
734                                 }
735                                 /*
736                                  * Because md_wait_for_blocked_rdev
737                                  * will dec nr_pending, we must
738                                  * increment it first.
739                                  */
740                                 atomic_inc(&rdev->nr_pending);
741                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
742                         } else {
743                                 /* Acknowledged bad block - skip the write */
744                                 rdev_dec_pending(rdev, conf->mddev);
745                                 rdev = NULL;
746                         }
747                 }
748
749                 if (rdev) {
750                         if (s->syncing || s->expanding || s->expanded
751                             || s->replacing)
752                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
753
754                         set_bit(STRIPE_IO_STARTED, &sh->state);
755
756                         bio_reset(bi);
757                         bi->bi_bdev = rdev->bdev;
758                         bi->bi_rw = rw;
759                         bi->bi_end_io = (rw & WRITE)
760                                 ? raid5_end_write_request
761                                 : raid5_end_read_request;
762                         bi->bi_private = sh;
763
764                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
765                                 __func__, (unsigned long long)sh->sector,
766                                 bi->bi_rw, i);
767                         atomic_inc(&sh->count);
768                         if (use_new_offset(conf, sh))
769                                 bi->bi_sector = (sh->sector
770                                                  + rdev->new_data_offset);
771                         else
772                                 bi->bi_sector = (sh->sector
773                                                  + rdev->data_offset);
774                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
775                                 bi->bi_rw |= REQ_FLUSH;
776
777                         bi->bi_vcnt = 1;
778                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
779                         bi->bi_io_vec[0].bv_offset = 0;
780                         bi->bi_size = STRIPE_SIZE;
781                         /*
782                          * If this is discard request, set bi_vcnt 0. We don't
783                          * want to confuse SCSI because SCSI will replace payload
784                          */
785                         if (rw & REQ_DISCARD)
786                                 bi->bi_vcnt = 0;
787                         if (rrdev)
788                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
789
790                         if (conf->mddev->gendisk)
791                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
792                                                       bi, disk_devt(conf->mddev->gendisk),
793                                                       sh->dev[i].sector);
794                         generic_make_request(bi);
795                 }
796                 if (rrdev) {
797                         if (s->syncing || s->expanding || s->expanded
798                             || s->replacing)
799                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
800
801                         set_bit(STRIPE_IO_STARTED, &sh->state);
802
803                         bio_reset(rbi);
804                         rbi->bi_bdev = rrdev->bdev;
805                         rbi->bi_rw = rw;
806                         BUG_ON(!(rw & WRITE));
807                         rbi->bi_end_io = raid5_end_write_request;
808                         rbi->bi_private = sh;
809
810                         pr_debug("%s: for %llu schedule op %ld on "
811                                  "replacement disc %d\n",
812                                 __func__, (unsigned long long)sh->sector,
813                                 rbi->bi_rw, i);
814                         atomic_inc(&sh->count);
815                         if (use_new_offset(conf, sh))
816                                 rbi->bi_sector = (sh->sector
817                                                   + rrdev->new_data_offset);
818                         else
819                                 rbi->bi_sector = (sh->sector
820                                                   + rrdev->data_offset);
821                         rbi->bi_vcnt = 1;
822                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
823                         rbi->bi_io_vec[0].bv_offset = 0;
824                         rbi->bi_size = STRIPE_SIZE;
825                         /*
826                          * If this is discard request, set bi_vcnt 0. We don't
827                          * want to confuse SCSI because SCSI will replace payload
828                          */
829                         if (rw & REQ_DISCARD)
830                                 rbi->bi_vcnt = 0;
831                         if (conf->mddev->gendisk)
832                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
833                                                       rbi, disk_devt(conf->mddev->gendisk),
834                                                       sh->dev[i].sector);
835                         generic_make_request(rbi);
836                 }
837                 if (!rdev && !rrdev) {
838                         if (rw & WRITE)
839                                 set_bit(STRIPE_DEGRADED, &sh->state);
840                         pr_debug("skip op %ld on disc %d for sector %llu\n",
841                                 bi->bi_rw, i, (unsigned long long)sh->sector);
842                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
843                         set_bit(STRIPE_HANDLE, &sh->state);
844                 }
845         }
846 }
847
848 static struct dma_async_tx_descriptor *
849 async_copy_data(int frombio, struct bio *bio, struct page *page,
850         sector_t sector, struct dma_async_tx_descriptor *tx)
851 {
852         struct bio_vec *bvl;
853         struct page *bio_page;
854         int i;
855         int page_offset;
856         struct async_submit_ctl submit;
857         enum async_tx_flags flags = 0;
858
859         if (bio->bi_sector >= sector)
860                 page_offset = (signed)(bio->bi_sector - sector) * 512;
861         else
862                 page_offset = (signed)(sector - bio->bi_sector) * -512;
863
864         if (frombio)
865                 flags |= ASYNC_TX_FENCE;
866         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
867
868         bio_for_each_segment(bvl, bio, i) {
869                 int len = bvl->bv_len;
870                 int clen;
871                 int b_offset = 0;
872
873                 if (page_offset < 0) {
874                         b_offset = -page_offset;
875                         page_offset += b_offset;
876                         len -= b_offset;
877                 }
878
879                 if (len > 0 && page_offset + len > STRIPE_SIZE)
880                         clen = STRIPE_SIZE - page_offset;
881                 else
882                         clen = len;
883
884                 if (clen > 0) {
885                         b_offset += bvl->bv_offset;
886                         bio_page = bvl->bv_page;
887                         if (frombio)
888                                 tx = async_memcpy(page, bio_page, page_offset,
889                                                   b_offset, clen, &submit);
890                         else
891                                 tx = async_memcpy(bio_page, page, b_offset,
892                                                   page_offset, clen, &submit);
893                 }
894                 /* chain the operations */
895                 submit.depend_tx = tx;
896
897                 if (clen < len) /* hit end of page */
898                         break;
899                 page_offset +=  len;
900         }
901
902         return tx;
903 }
904
905 static void ops_complete_biofill(void *stripe_head_ref)
906 {
907         struct stripe_head *sh = stripe_head_ref;
908         struct bio *return_bi = NULL;
909         int i;
910
911         pr_debug("%s: stripe %llu\n", __func__,
912                 (unsigned long long)sh->sector);
913
914         /* clear completed biofills */
915         for (i = sh->disks; i--; ) {
916                 struct r5dev *dev = &sh->dev[i];
917
918                 /* acknowledge completion of a biofill operation */
919                 /* and check if we need to reply to a read request,
920                  * new R5_Wantfill requests are held off until
921                  * !STRIPE_BIOFILL_RUN
922                  */
923                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
924                         struct bio *rbi, *rbi2;
925
926                         BUG_ON(!dev->read);
927                         rbi = dev->read;
928                         dev->read = NULL;
929                         while (rbi && rbi->bi_sector <
930                                 dev->sector + STRIPE_SECTORS) {
931                                 rbi2 = r5_next_bio(rbi, dev->sector);
932                                 if (!raid5_dec_bi_active_stripes(rbi)) {
933                                         rbi->bi_next = return_bi;
934                                         return_bi = rbi;
935                                 }
936                                 rbi = rbi2;
937                         }
938                 }
939         }
940         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
941
942         return_io(return_bi);
943
944         set_bit(STRIPE_HANDLE, &sh->state);
945         release_stripe(sh);
946 }
947
948 static void ops_run_biofill(struct stripe_head *sh)
949 {
950         struct dma_async_tx_descriptor *tx = NULL;
951         struct async_submit_ctl submit;
952         int i;
953
954         pr_debug("%s: stripe %llu\n", __func__,
955                 (unsigned long long)sh->sector);
956
957         for (i = sh->disks; i--; ) {
958                 struct r5dev *dev = &sh->dev[i];
959                 if (test_bit(R5_Wantfill, &dev->flags)) {
960                         struct bio *rbi;
961                         spin_lock_irq(&sh->stripe_lock);
962                         dev->read = rbi = dev->toread;
963                         dev->toread = NULL;
964                         spin_unlock_irq(&sh->stripe_lock);
965                         while (rbi && rbi->bi_sector <
966                                 dev->sector + STRIPE_SECTORS) {
967                                 tx = async_copy_data(0, rbi, dev->page,
968                                         dev->sector, tx);
969                                 rbi = r5_next_bio(rbi, dev->sector);
970                         }
971                 }
972         }
973
974         atomic_inc(&sh->count);
975         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
976         async_trigger_callback(&submit);
977 }
978
979 static void mark_target_uptodate(struct stripe_head *sh, int target)
980 {
981         struct r5dev *tgt;
982
983         if (target < 0)
984                 return;
985
986         tgt = &sh->dev[target];
987         set_bit(R5_UPTODATE, &tgt->flags);
988         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
989         clear_bit(R5_Wantcompute, &tgt->flags);
990 }
991
992 static void ops_complete_compute(void *stripe_head_ref)
993 {
994         struct stripe_head *sh = stripe_head_ref;
995
996         pr_debug("%s: stripe %llu\n", __func__,
997                 (unsigned long long)sh->sector);
998
999         /* mark the computed target(s) as uptodate */
1000         mark_target_uptodate(sh, sh->ops.target);
1001         mark_target_uptodate(sh, sh->ops.target2);
1002
1003         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1004         if (sh->check_state == check_state_compute_run)
1005                 sh->check_state = check_state_compute_result;
1006         set_bit(STRIPE_HANDLE, &sh->state);
1007         release_stripe(sh);
1008 }
1009
1010 /* return a pointer to the address conversion region of the scribble buffer */
1011 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1012                                  struct raid5_percpu *percpu)
1013 {
1014         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1015 }
1016
1017 static struct dma_async_tx_descriptor *
1018 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1019 {
1020         int disks = sh->disks;
1021         struct page **xor_srcs = percpu->scribble;
1022         int target = sh->ops.target;
1023         struct r5dev *tgt = &sh->dev[target];
1024         struct page *xor_dest = tgt->page;
1025         int count = 0;
1026         struct dma_async_tx_descriptor *tx;
1027         struct async_submit_ctl submit;
1028         int i;
1029
1030         pr_debug("%s: stripe %llu block: %d\n",
1031                 __func__, (unsigned long long)sh->sector, target);
1032         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1033
1034         for (i = disks; i--; )
1035                 if (i != target)
1036                         xor_srcs[count++] = sh->dev[i].page;
1037
1038         atomic_inc(&sh->count);
1039
1040         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1041                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
1042         if (unlikely(count == 1))
1043                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1044         else
1045                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1046
1047         return tx;
1048 }
1049
1050 /* set_syndrome_sources - populate source buffers for gen_syndrome
1051  * @srcs - (struct page *) array of size sh->disks
1052  * @sh - stripe_head to parse
1053  *
1054  * Populates srcs in proper layout order for the stripe and returns the
1055  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1056  * destination buffer is recorded in srcs[count] and the Q destination
1057  * is recorded in srcs[count+1]].
1058  */
1059 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1060 {
1061         int disks = sh->disks;
1062         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1063         int d0_idx = raid6_d0(sh);
1064         int count;
1065         int i;
1066
1067         for (i = 0; i < disks; i++)
1068                 srcs[i] = NULL;
1069
1070         count = 0;
1071         i = d0_idx;
1072         do {
1073                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1074
1075                 srcs[slot] = sh->dev[i].page;
1076                 i = raid6_next_disk(i, disks);
1077         } while (i != d0_idx);
1078
1079         return syndrome_disks;
1080 }
1081
1082 static struct dma_async_tx_descriptor *
1083 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1084 {
1085         int disks = sh->disks;
1086         struct page **blocks = percpu->scribble;
1087         int target;
1088         int qd_idx = sh->qd_idx;
1089         struct dma_async_tx_descriptor *tx;
1090         struct async_submit_ctl submit;
1091         struct r5dev *tgt;
1092         struct page *dest;
1093         int i;
1094         int count;
1095
1096         if (sh->ops.target < 0)
1097                 target = sh->ops.target2;
1098         else if (sh->ops.target2 < 0)
1099                 target = sh->ops.target;
1100         else
1101                 /* we should only have one valid target */
1102                 BUG();
1103         BUG_ON(target < 0);
1104         pr_debug("%s: stripe %llu block: %d\n",
1105                 __func__, (unsigned long long)sh->sector, target);
1106
1107         tgt = &sh->dev[target];
1108         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1109         dest = tgt->page;
1110
1111         atomic_inc(&sh->count);
1112
1113         if (target == qd_idx) {
1114                 count = set_syndrome_sources(blocks, sh);
1115                 blocks[count] = NULL; /* regenerating p is not necessary */
1116                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1117                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1118                                   ops_complete_compute, sh,
1119                                   to_addr_conv(sh, percpu));
1120                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1121         } else {
1122                 /* Compute any data- or p-drive using XOR */
1123                 count = 0;
1124                 for (i = disks; i-- ; ) {
1125                         if (i == target || i == qd_idx)
1126                                 continue;
1127                         blocks[count++] = sh->dev[i].page;
1128                 }
1129
1130                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1131                                   NULL, ops_complete_compute, sh,
1132                                   to_addr_conv(sh, percpu));
1133                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1134         }
1135
1136         return tx;
1137 }
1138
1139 static struct dma_async_tx_descriptor *
1140 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1141 {
1142         int i, count, disks = sh->disks;
1143         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1144         int d0_idx = raid6_d0(sh);
1145         int faila = -1, failb = -1;
1146         int target = sh->ops.target;
1147         int target2 = sh->ops.target2;
1148         struct r5dev *tgt = &sh->dev[target];
1149         struct r5dev *tgt2 = &sh->dev[target2];
1150         struct dma_async_tx_descriptor *tx;
1151         struct page **blocks = percpu->scribble;
1152         struct async_submit_ctl submit;
1153
1154         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1155                  __func__, (unsigned long long)sh->sector, target, target2);
1156         BUG_ON(target < 0 || target2 < 0);
1157         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1158         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1159
1160         /* we need to open-code set_syndrome_sources to handle the
1161          * slot number conversion for 'faila' and 'failb'
1162          */
1163         for (i = 0; i < disks ; i++)
1164                 blocks[i] = NULL;
1165         count = 0;
1166         i = d0_idx;
1167         do {
1168                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1169
1170                 blocks[slot] = sh->dev[i].page;
1171
1172                 if (i == target)
1173                         faila = slot;
1174                 if (i == target2)
1175                         failb = slot;
1176                 i = raid6_next_disk(i, disks);
1177         } while (i != d0_idx);
1178
1179         BUG_ON(faila == failb);
1180         if (failb < faila)
1181                 swap(faila, failb);
1182         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1183                  __func__, (unsigned long long)sh->sector, faila, failb);
1184
1185         atomic_inc(&sh->count);
1186
1187         if (failb == syndrome_disks+1) {
1188                 /* Q disk is one of the missing disks */
1189                 if (faila == syndrome_disks) {
1190                         /* Missing P+Q, just recompute */
1191                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1192                                           ops_complete_compute, sh,
1193                                           to_addr_conv(sh, percpu));
1194                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1195                                                   STRIPE_SIZE, &submit);
1196                 } else {
1197                         struct page *dest;
1198                         int data_target;
1199                         int qd_idx = sh->qd_idx;
1200
1201                         /* Missing D+Q: recompute D from P, then recompute Q */
1202                         if (target == qd_idx)
1203                                 data_target = target2;
1204                         else
1205                                 data_target = target;
1206
1207                         count = 0;
1208                         for (i = disks; i-- ; ) {
1209                                 if (i == data_target || i == qd_idx)
1210                                         continue;
1211                                 blocks[count++] = sh->dev[i].page;
1212                         }
1213                         dest = sh->dev[data_target].page;
1214                         init_async_submit(&submit,
1215                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1216                                           NULL, NULL, NULL,
1217                                           to_addr_conv(sh, percpu));
1218                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1219                                        &submit);
1220
1221                         count = set_syndrome_sources(blocks, sh);
1222                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1223                                           ops_complete_compute, sh,
1224                                           to_addr_conv(sh, percpu));
1225                         return async_gen_syndrome(blocks, 0, count+2,
1226                                                   STRIPE_SIZE, &submit);
1227                 }
1228         } else {
1229                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1230                                   ops_complete_compute, sh,
1231                                   to_addr_conv(sh, percpu));
1232                 if (failb == syndrome_disks) {
1233                         /* We're missing D+P. */
1234                         return async_raid6_datap_recov(syndrome_disks+2,
1235                                                        STRIPE_SIZE, faila,
1236                                                        blocks, &submit);
1237                 } else {
1238                         /* We're missing D+D. */
1239                         return async_raid6_2data_recov(syndrome_disks+2,
1240                                                        STRIPE_SIZE, faila, failb,
1241                                                        blocks, &submit);
1242                 }
1243         }
1244 }
1245
1246
1247 static void ops_complete_prexor(void *stripe_head_ref)
1248 {
1249         struct stripe_head *sh = stripe_head_ref;
1250
1251         pr_debug("%s: stripe %llu\n", __func__,
1252                 (unsigned long long)sh->sector);
1253 }
1254
1255 static struct dma_async_tx_descriptor *
1256 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1257                struct dma_async_tx_descriptor *tx)
1258 {
1259         int disks = sh->disks;
1260         struct page **xor_srcs = percpu->scribble;
1261         int count = 0, pd_idx = sh->pd_idx, i;
1262         struct async_submit_ctl submit;
1263
1264         /* existing parity data subtracted */
1265         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1266
1267         pr_debug("%s: stripe %llu\n", __func__,
1268                 (unsigned long long)sh->sector);
1269
1270         for (i = disks; i--; ) {
1271                 struct r5dev *dev = &sh->dev[i];
1272                 /* Only process blocks that are known to be uptodate */
1273                 if (test_bit(R5_Wantdrain, &dev->flags))
1274                         xor_srcs[count++] = dev->page;
1275         }
1276
1277         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1278                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1279         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1280
1281         return tx;
1282 }
1283
1284 static struct dma_async_tx_descriptor *
1285 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1286 {
1287         int disks = sh->disks;
1288         int i;
1289
1290         pr_debug("%s: stripe %llu\n", __func__,
1291                 (unsigned long long)sh->sector);
1292
1293         for (i = disks; i--; ) {
1294                 struct r5dev *dev = &sh->dev[i];
1295                 struct bio *chosen;
1296
1297                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1298                         struct bio *wbi;
1299
1300                         spin_lock_irq(&sh->stripe_lock);
1301                         chosen = dev->towrite;
1302                         dev->towrite = NULL;
1303                         BUG_ON(dev->written);
1304                         wbi = dev->written = chosen;
1305                         spin_unlock_irq(&sh->stripe_lock);
1306
1307                         while (wbi && wbi->bi_sector <
1308                                 dev->sector + STRIPE_SECTORS) {
1309                                 if (wbi->bi_rw & REQ_FUA)
1310                                         set_bit(R5_WantFUA, &dev->flags);
1311                                 if (wbi->bi_rw & REQ_SYNC)
1312                                         set_bit(R5_SyncIO, &dev->flags);
1313                                 if (wbi->bi_rw & REQ_DISCARD)
1314                                         set_bit(R5_Discard, &dev->flags);
1315                                 else
1316                                         tx = async_copy_data(1, wbi, dev->page,
1317                                                 dev->sector, tx);
1318                                 wbi = r5_next_bio(wbi, dev->sector);
1319                         }
1320                 }
1321         }
1322
1323         return tx;
1324 }
1325
1326 static void ops_complete_reconstruct(void *stripe_head_ref)
1327 {
1328         struct stripe_head *sh = stripe_head_ref;
1329         int disks = sh->disks;
1330         int pd_idx = sh->pd_idx;
1331         int qd_idx = sh->qd_idx;
1332         int i;
1333         bool fua = false, sync = false, discard = false;
1334
1335         pr_debug("%s: stripe %llu\n", __func__,
1336                 (unsigned long long)sh->sector);
1337
1338         for (i = disks; i--; ) {
1339                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1340                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1341                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1342         }
1343
1344         for (i = disks; i--; ) {
1345                 struct r5dev *dev = &sh->dev[i];
1346
1347                 if (dev->written || i == pd_idx || i == qd_idx) {
1348                         if (!discard)
1349                                 set_bit(R5_UPTODATE, &dev->flags);
1350                         if (fua)
1351                                 set_bit(R5_WantFUA, &dev->flags);
1352                         if (sync)
1353                                 set_bit(R5_SyncIO, &dev->flags);
1354                 }
1355         }
1356
1357         if (sh->reconstruct_state == reconstruct_state_drain_run)
1358                 sh->reconstruct_state = reconstruct_state_drain_result;
1359         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1360                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1361         else {
1362                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1363                 sh->reconstruct_state = reconstruct_state_result;
1364         }
1365
1366         set_bit(STRIPE_HANDLE, &sh->state);
1367         release_stripe(sh);
1368 }
1369
1370 static void
1371 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1372                      struct dma_async_tx_descriptor *tx)
1373 {
1374         int disks = sh->disks;
1375         struct page **xor_srcs = percpu->scribble;
1376         struct async_submit_ctl submit;
1377         int count = 0, pd_idx = sh->pd_idx, i;
1378         struct page *xor_dest;
1379         int prexor = 0;
1380         unsigned long flags;
1381
1382         pr_debug("%s: stripe %llu\n", __func__,
1383                 (unsigned long long)sh->sector);
1384
1385         for (i = 0; i < sh->disks; i++) {
1386                 if (pd_idx == i)
1387                         continue;
1388                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1389                         break;
1390         }
1391         if (i >= sh->disks) {
1392                 atomic_inc(&sh->count);
1393                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1394                 ops_complete_reconstruct(sh);
1395                 return;
1396         }
1397         /* check if prexor is active which means only process blocks
1398          * that are part of a read-modify-write (written)
1399          */
1400         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1401                 prexor = 1;
1402                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1403                 for (i = disks; i--; ) {
1404                         struct r5dev *dev = &sh->dev[i];
1405                         if (dev->written)
1406                                 xor_srcs[count++] = dev->page;
1407                 }
1408         } else {
1409                 xor_dest = sh->dev[pd_idx].page;
1410                 for (i = disks; i--; ) {
1411                         struct r5dev *dev = &sh->dev[i];
1412                         if (i != pd_idx)
1413                                 xor_srcs[count++] = dev->page;
1414                 }
1415         }
1416
1417         /* 1/ if we prexor'd then the dest is reused as a source
1418          * 2/ if we did not prexor then we are redoing the parity
1419          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1420          * for the synchronous xor case
1421          */
1422         flags = ASYNC_TX_ACK |
1423                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1424
1425         atomic_inc(&sh->count);
1426
1427         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1428                           to_addr_conv(sh, percpu));
1429         if (unlikely(count == 1))
1430                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1431         else
1432                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1433 }
1434
1435 static void
1436 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1437                      struct dma_async_tx_descriptor *tx)
1438 {
1439         struct async_submit_ctl submit;
1440         struct page **blocks = percpu->scribble;
1441         int count, i;
1442
1443         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1444
1445         for (i = 0; i < sh->disks; i++) {
1446                 if (sh->pd_idx == i || sh->qd_idx == i)
1447                         continue;
1448                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1449                         break;
1450         }
1451         if (i >= sh->disks) {
1452                 atomic_inc(&sh->count);
1453                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1454                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1455                 ops_complete_reconstruct(sh);
1456                 return;
1457         }
1458
1459         count = set_syndrome_sources(blocks, sh);
1460
1461         atomic_inc(&sh->count);
1462
1463         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1464                           sh, to_addr_conv(sh, percpu));
1465         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1466 }
1467
1468 static void ops_complete_check(void *stripe_head_ref)
1469 {
1470         struct stripe_head *sh = stripe_head_ref;
1471
1472         pr_debug("%s: stripe %llu\n", __func__,
1473                 (unsigned long long)sh->sector);
1474
1475         sh->check_state = check_state_check_result;
1476         set_bit(STRIPE_HANDLE, &sh->state);
1477         release_stripe(sh);
1478 }
1479
1480 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1481 {
1482         int disks = sh->disks;
1483         int pd_idx = sh->pd_idx;
1484         int qd_idx = sh->qd_idx;
1485         struct page *xor_dest;
1486         struct page **xor_srcs = percpu->scribble;
1487         struct dma_async_tx_descriptor *tx;
1488         struct async_submit_ctl submit;
1489         int count;
1490         int i;
1491
1492         pr_debug("%s: stripe %llu\n", __func__,
1493                 (unsigned long long)sh->sector);
1494
1495         count = 0;
1496         xor_dest = sh->dev[pd_idx].page;
1497         xor_srcs[count++] = xor_dest;
1498         for (i = disks; i--; ) {
1499                 if (i == pd_idx || i == qd_idx)
1500                         continue;
1501                 xor_srcs[count++] = sh->dev[i].page;
1502         }
1503
1504         init_async_submit(&submit, 0, NULL, NULL, NULL,
1505                           to_addr_conv(sh, percpu));
1506         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1507                            &sh->ops.zero_sum_result, &submit);
1508
1509         atomic_inc(&sh->count);
1510         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1511         tx = async_trigger_callback(&submit);
1512 }
1513
1514 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1515 {
1516         struct page **srcs = percpu->scribble;
1517         struct async_submit_ctl submit;
1518         int count;
1519
1520         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1521                 (unsigned long long)sh->sector, checkp);
1522
1523         count = set_syndrome_sources(srcs, sh);
1524         if (!checkp)
1525                 srcs[count] = NULL;
1526
1527         atomic_inc(&sh->count);
1528         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1529                           sh, to_addr_conv(sh, percpu));
1530         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1531                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1532 }
1533
1534 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1535 {
1536         int overlap_clear = 0, i, disks = sh->disks;
1537         struct dma_async_tx_descriptor *tx = NULL;
1538         struct r5conf *conf = sh->raid_conf;
1539         int level = conf->level;
1540         struct raid5_percpu *percpu;
1541         unsigned long cpu;
1542
1543         cpu = get_cpu();
1544         percpu = per_cpu_ptr(conf->percpu, cpu);
1545         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1546                 ops_run_biofill(sh);
1547                 overlap_clear++;
1548         }
1549
1550         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1551                 if (level < 6)
1552                         tx = ops_run_compute5(sh, percpu);
1553                 else {
1554                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1555                                 tx = ops_run_compute6_1(sh, percpu);
1556                         else
1557                                 tx = ops_run_compute6_2(sh, percpu);
1558                 }
1559                 /* terminate the chain if reconstruct is not set to be run */
1560                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1561                         async_tx_ack(tx);
1562         }
1563
1564         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1565                 tx = ops_run_prexor(sh, percpu, tx);
1566
1567         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1568                 tx = ops_run_biodrain(sh, tx);
1569                 overlap_clear++;
1570         }
1571
1572         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1573                 if (level < 6)
1574                         ops_run_reconstruct5(sh, percpu, tx);
1575                 else
1576                         ops_run_reconstruct6(sh, percpu, tx);
1577         }
1578
1579         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1580                 if (sh->check_state == check_state_run)
1581                         ops_run_check_p(sh, percpu);
1582                 else if (sh->check_state == check_state_run_q)
1583                         ops_run_check_pq(sh, percpu, 0);
1584                 else if (sh->check_state == check_state_run_pq)
1585                         ops_run_check_pq(sh, percpu, 1);
1586                 else
1587                         BUG();
1588         }
1589
1590         if (overlap_clear)
1591                 for (i = disks; i--; ) {
1592                         struct r5dev *dev = &sh->dev[i];
1593                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1594                                 wake_up(&sh->raid_conf->wait_for_overlap);
1595                 }
1596         put_cpu();
1597 }
1598
1599 static int grow_one_stripe(struct r5conf *conf)
1600 {
1601         struct stripe_head *sh;
1602         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1603         if (!sh)
1604                 return 0;
1605
1606         sh->raid_conf = conf;
1607
1608         spin_lock_init(&sh->stripe_lock);
1609
1610         if (grow_buffers(sh)) {
1611                 shrink_buffers(sh);
1612                 kmem_cache_free(conf->slab_cache, sh);
1613                 return 0;
1614         }
1615         /* we just created an active stripe so... */
1616         atomic_set(&sh->count, 1);
1617         atomic_inc(&conf->active_stripes);
1618         INIT_LIST_HEAD(&sh->lru);
1619         release_stripe(sh);
1620         return 1;
1621 }
1622
1623 static int grow_stripes(struct r5conf *conf, int num)
1624 {
1625         struct kmem_cache *sc;
1626         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1627
1628         if (conf->mddev->gendisk)
1629                 sprintf(conf->cache_name[0],
1630                         "raid%d-%s", conf->level, mdname(conf->mddev));
1631         else
1632                 sprintf(conf->cache_name[0],
1633                         "raid%d-%p", conf->level, conf->mddev);
1634         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1635
1636         conf->active_name = 0;
1637         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1638                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1639                                0, 0, NULL);
1640         if (!sc)
1641                 return 1;
1642         conf->slab_cache = sc;
1643         conf->pool_size = devs;
1644         while (num--)
1645                 if (!grow_one_stripe(conf))
1646                         return 1;
1647         return 0;
1648 }
1649
1650 /**
1651  * scribble_len - return the required size of the scribble region
1652  * @num - total number of disks in the array
1653  *
1654  * The size must be enough to contain:
1655  * 1/ a struct page pointer for each device in the array +2
1656  * 2/ room to convert each entry in (1) to its corresponding dma
1657  *    (dma_map_page()) or page (page_address()) address.
1658  *
1659  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1660  * calculate over all devices (not just the data blocks), using zeros in place
1661  * of the P and Q blocks.
1662  */
1663 static size_t scribble_len(int num)
1664 {
1665         size_t len;
1666
1667         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1668
1669         return len;
1670 }
1671
1672 static int resize_stripes(struct r5conf *conf, int newsize)
1673 {
1674         /* Make all the stripes able to hold 'newsize' devices.
1675          * New slots in each stripe get 'page' set to a new page.
1676          *
1677          * This happens in stages:
1678          * 1/ create a new kmem_cache and allocate the required number of
1679          *    stripe_heads.
1680          * 2/ gather all the old stripe_heads and transfer the pages across
1681          *    to the new stripe_heads.  This will have the side effect of
1682          *    freezing the array as once all stripe_heads have been collected,
1683          *    no IO will be possible.  Old stripe heads are freed once their
1684          *    pages have been transferred over, and the old kmem_cache is
1685          *    freed when all stripes are done.
1686          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1687          *    we simple return a failre status - no need to clean anything up.
1688          * 4/ allocate new pages for the new slots in the new stripe_heads.
1689          *    If this fails, we don't bother trying the shrink the
1690          *    stripe_heads down again, we just leave them as they are.
1691          *    As each stripe_head is processed the new one is released into
1692          *    active service.
1693          *
1694          * Once step2 is started, we cannot afford to wait for a write,
1695          * so we use GFP_NOIO allocations.
1696          */
1697         struct stripe_head *osh, *nsh;
1698         LIST_HEAD(newstripes);
1699         struct disk_info *ndisks;
1700         unsigned long cpu;
1701         int err;
1702         struct kmem_cache *sc;
1703         int i;
1704
1705         if (newsize <= conf->pool_size)
1706                 return 0; /* never bother to shrink */
1707
1708         err = md_allow_write(conf->mddev);
1709         if (err)
1710                 return err;
1711
1712         /* Step 1 */
1713         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1714                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1715                                0, 0, NULL);
1716         if (!sc)
1717                 return -ENOMEM;
1718
1719         for (i = conf->max_nr_stripes; i; i--) {
1720                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1721                 if (!nsh)
1722                         break;
1723
1724                 nsh->raid_conf = conf;
1725                 spin_lock_init(&nsh->stripe_lock);
1726
1727                 list_add(&nsh->lru, &newstripes);
1728         }
1729         if (i) {
1730                 /* didn't get enough, give up */
1731                 while (!list_empty(&newstripes)) {
1732                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1733                         list_del(&nsh->lru);
1734                         kmem_cache_free(sc, nsh);
1735                 }
1736                 kmem_cache_destroy(sc);
1737                 return -ENOMEM;
1738         }
1739         /* Step 2 - Must use GFP_NOIO now.
1740          * OK, we have enough stripes, start collecting inactive
1741          * stripes and copying them over
1742          */
1743         list_for_each_entry(nsh, &newstripes, lru) {
1744                 spin_lock_irq(&conf->device_lock);
1745                 wait_event_lock_irq(conf->wait_for_stripe,
1746                                     !list_empty(&conf->inactive_list),
1747                                     conf->device_lock);
1748                 osh = get_free_stripe(conf);
1749                 spin_unlock_irq(&conf->device_lock);
1750                 atomic_set(&nsh->count, 1);
1751                 for(i=0; i<conf->pool_size; i++)
1752                         nsh->dev[i].page = osh->dev[i].page;
1753                 for( ; i<newsize; i++)
1754                         nsh->dev[i].page = NULL;
1755                 kmem_cache_free(conf->slab_cache, osh);
1756         }
1757         kmem_cache_destroy(conf->slab_cache);
1758
1759         /* Step 3.
1760          * At this point, we are holding all the stripes so the array
1761          * is completely stalled, so now is a good time to resize
1762          * conf->disks and the scribble region
1763          */
1764         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1765         if (ndisks) {
1766                 for (i=0; i<conf->raid_disks; i++)
1767                         ndisks[i] = conf->disks[i];
1768                 kfree(conf->disks);
1769                 conf->disks = ndisks;
1770         } else
1771                 err = -ENOMEM;
1772
1773         get_online_cpus();
1774         conf->scribble_len = scribble_len(newsize);
1775         for_each_present_cpu(cpu) {
1776                 struct raid5_percpu *percpu;
1777                 void *scribble;
1778
1779                 percpu = per_cpu_ptr(conf->percpu, cpu);
1780                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1781
1782                 if (scribble) {
1783                         kfree(percpu->scribble);
1784                         percpu->scribble = scribble;
1785                 } else {
1786                         err = -ENOMEM;
1787                         break;
1788                 }
1789         }
1790         put_online_cpus();
1791
1792         /* Step 4, return new stripes to service */
1793         while(!list_empty(&newstripes)) {
1794                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1795                 list_del_init(&nsh->lru);
1796
1797                 for (i=conf->raid_disks; i < newsize; i++)
1798                         if (nsh->dev[i].page == NULL) {
1799                                 struct page *p = alloc_page(GFP_NOIO);
1800                                 nsh->dev[i].page = p;
1801                                 if (!p)
1802                                         err = -ENOMEM;
1803                         }
1804                 release_stripe(nsh);
1805         }
1806         /* critical section pass, GFP_NOIO no longer needed */
1807
1808         conf->slab_cache = sc;
1809         conf->active_name = 1-conf->active_name;
1810         conf->pool_size = newsize;
1811         return err;
1812 }
1813
1814 static int drop_one_stripe(struct r5conf *conf)
1815 {
1816         struct stripe_head *sh;
1817
1818         spin_lock_irq(&conf->device_lock);
1819         sh = get_free_stripe(conf);
1820         spin_unlock_irq(&conf->device_lock);
1821         if (!sh)
1822                 return 0;
1823         BUG_ON(atomic_read(&sh->count));
1824         shrink_buffers(sh);
1825         kmem_cache_free(conf->slab_cache, sh);
1826         atomic_dec(&conf->active_stripes);
1827         return 1;
1828 }
1829
1830 static void shrink_stripes(struct r5conf *conf)
1831 {
1832         while (drop_one_stripe(conf))
1833                 ;
1834
1835         if (conf->slab_cache)
1836                 kmem_cache_destroy(conf->slab_cache);
1837         conf->slab_cache = NULL;
1838 }
1839
1840 static void raid5_end_read_request(struct bio * bi, int error)
1841 {
1842         struct stripe_head *sh = bi->bi_private;
1843         struct r5conf *conf = sh->raid_conf;
1844         int disks = sh->disks, i;
1845         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1846         char b[BDEVNAME_SIZE];
1847         struct md_rdev *rdev = NULL;
1848         sector_t s;
1849
1850         for (i=0 ; i<disks; i++)
1851                 if (bi == &sh->dev[i].req)
1852                         break;
1853
1854         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1855                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1856                 uptodate);
1857         if (i == disks) {
1858                 BUG();
1859                 return;
1860         }
1861         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1862                 /* If replacement finished while this request was outstanding,
1863                  * 'replacement' might be NULL already.
1864                  * In that case it moved down to 'rdev'.
1865                  * rdev is not removed until all requests are finished.
1866                  */
1867                 rdev = conf->disks[i].replacement;
1868         if (!rdev)
1869                 rdev = conf->disks[i].rdev;
1870
1871         if (use_new_offset(conf, sh))
1872                 s = sh->sector + rdev->new_data_offset;
1873         else
1874                 s = sh->sector + rdev->data_offset;
1875         if (uptodate) {
1876                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1877                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1878                         /* Note that this cannot happen on a
1879                          * replacement device.  We just fail those on
1880                          * any error
1881                          */
1882                         printk_ratelimited(
1883                                 KERN_INFO
1884                                 "md/raid:%s: read error corrected"
1885                                 " (%lu sectors at %llu on %s)\n",
1886                                 mdname(conf->mddev), STRIPE_SECTORS,
1887                                 (unsigned long long)s,
1888                                 bdevname(rdev->bdev, b));
1889                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1890                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1891                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1892                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1893                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1894
1895                 if (atomic_read(&rdev->read_errors))
1896                         atomic_set(&rdev->read_errors, 0);
1897         } else {
1898                 const char *bdn = bdevname(rdev->bdev, b);
1899                 int retry = 0;
1900                 int set_bad = 0;
1901
1902                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1903                 atomic_inc(&rdev->read_errors);
1904                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1905                         printk_ratelimited(
1906                                 KERN_WARNING
1907                                 "md/raid:%s: read error on replacement device "
1908                                 "(sector %llu on %s).\n",
1909                                 mdname(conf->mddev),
1910                                 (unsigned long long)s,
1911                                 bdn);
1912                 else if (conf->mddev->degraded >= conf->max_degraded) {
1913                         set_bad = 1;
1914                         printk_ratelimited(
1915                                 KERN_WARNING
1916                                 "md/raid:%s: read error not correctable "
1917                                 "(sector %llu on %s).\n",
1918                                 mdname(conf->mddev),
1919                                 (unsigned long long)s,
1920                                 bdn);
1921                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1922                         /* Oh, no!!! */
1923                         set_bad = 1;
1924                         printk_ratelimited(
1925                                 KERN_WARNING
1926                                 "md/raid:%s: read error NOT corrected!! "
1927                                 "(sector %llu on %s).\n",
1928                                 mdname(conf->mddev),
1929                                 (unsigned long long)s,
1930                                 bdn);
1931                 } else if (atomic_read(&rdev->read_errors)
1932                          > conf->max_nr_stripes)
1933                         printk(KERN_WARNING
1934                                "md/raid:%s: Too many read errors, failing device %s.\n",
1935                                mdname(conf->mddev), bdn);
1936                 else
1937                         retry = 1;
1938                 if (retry)
1939                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1940                                 set_bit(R5_ReadError, &sh->dev[i].flags);
1941                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1942                         } else
1943                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1944                 else {
1945                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1946                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1947                         if (!(set_bad
1948                               && test_bit(In_sync, &rdev->flags)
1949                               && rdev_set_badblocks(
1950                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
1951                                 md_error(conf->mddev, rdev);
1952                 }
1953         }
1954         rdev_dec_pending(rdev, conf->mddev);
1955         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1956         set_bit(STRIPE_HANDLE, &sh->state);
1957         release_stripe(sh);
1958 }
1959
1960 static void raid5_end_write_request(struct bio *bi, int error)
1961 {
1962         struct stripe_head *sh = bi->bi_private;
1963         struct r5conf *conf = sh->raid_conf;
1964         int disks = sh->disks, i;
1965         struct md_rdev *uninitialized_var(rdev);
1966         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1967         sector_t first_bad;
1968         int bad_sectors;
1969         int replacement = 0;
1970
1971         for (i = 0 ; i < disks; i++) {
1972                 if (bi == &sh->dev[i].req) {
1973                         rdev = conf->disks[i].rdev;
1974                         break;
1975                 }
1976                 if (bi == &sh->dev[i].rreq) {
1977                         rdev = conf->disks[i].replacement;
1978                         if (rdev)
1979                                 replacement = 1;
1980                         else
1981                                 /* rdev was removed and 'replacement'
1982                                  * replaced it.  rdev is not removed
1983                                  * until all requests are finished.
1984                                  */
1985                                 rdev = conf->disks[i].rdev;
1986                         break;
1987                 }
1988         }
1989         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1990                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1991                 uptodate);
1992         if (i == disks) {
1993                 BUG();
1994                 return;
1995         }
1996
1997         if (replacement) {
1998                 if (!uptodate)
1999                         md_error(conf->mddev, rdev);
2000                 else if (is_badblock(rdev, sh->sector,
2001                                      STRIPE_SECTORS,
2002                                      &first_bad, &bad_sectors))
2003                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2004         } else {
2005                 if (!uptodate) {
2006                         set_bit(WriteErrorSeen, &rdev->flags);
2007                         set_bit(R5_WriteError, &sh->dev[i].flags);
2008                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2009                                 set_bit(MD_RECOVERY_NEEDED,
2010                                         &rdev->mddev->recovery);
2011                 } else if (is_badblock(rdev, sh->sector,
2012                                        STRIPE_SECTORS,
2013                                        &first_bad, &bad_sectors)) {
2014                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2015                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2016                                 /* That was a successful write so make
2017                                  * sure it looks like we already did
2018                                  * a re-write.
2019                                  */
2020                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2021                 }
2022         }
2023         rdev_dec_pending(rdev, conf->mddev);
2024
2025         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2026                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2027         set_bit(STRIPE_HANDLE, &sh->state);
2028         release_stripe(sh);
2029 }
2030
2031 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2032         
2033 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2034 {
2035         struct r5dev *dev = &sh->dev[i];
2036
2037         bio_init(&dev->req);
2038         dev->req.bi_io_vec = &dev->vec;
2039         dev->req.bi_vcnt++;
2040         dev->req.bi_max_vecs++;
2041         dev->req.bi_private = sh;
2042         dev->vec.bv_page = dev->page;
2043
2044         bio_init(&dev->rreq);
2045         dev->rreq.bi_io_vec = &dev->rvec;
2046         dev->rreq.bi_vcnt++;
2047         dev->rreq.bi_max_vecs++;
2048         dev->rreq.bi_private = sh;
2049         dev->rvec.bv_page = dev->page;
2050
2051         dev->flags = 0;
2052         dev->sector = compute_blocknr(sh, i, previous);
2053 }
2054
2055 static void error(struct mddev *mddev, struct md_rdev *rdev)
2056 {
2057         char b[BDEVNAME_SIZE];
2058         struct r5conf *conf = mddev->private;
2059         unsigned long flags;
2060         pr_debug("raid456: error called\n");
2061
2062         spin_lock_irqsave(&conf->device_lock, flags);
2063         clear_bit(In_sync, &rdev->flags);
2064         mddev->degraded = calc_degraded(conf);
2065         spin_unlock_irqrestore(&conf->device_lock, flags);
2066         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2067
2068         set_bit(Blocked, &rdev->flags);
2069         set_bit(Faulty, &rdev->flags);
2070         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2071         printk(KERN_ALERT
2072                "md/raid:%s: Disk failure on %s, disabling device.\n"
2073                "md/raid:%s: Operation continuing on %d devices.\n",
2074                mdname(mddev),
2075                bdevname(rdev->bdev, b),
2076                mdname(mddev),
2077                conf->raid_disks - mddev->degraded);
2078 }
2079
2080 /*
2081  * Input: a 'big' sector number,
2082  * Output: index of the data and parity disk, and the sector # in them.
2083  */
2084 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2085                                      int previous, int *dd_idx,
2086                                      struct stripe_head *sh)
2087 {
2088         sector_t stripe, stripe2;
2089         sector_t chunk_number;
2090         unsigned int chunk_offset;
2091         int pd_idx, qd_idx;
2092         int ddf_layout = 0;
2093         sector_t new_sector;
2094         int algorithm = previous ? conf->prev_algo
2095                                  : conf->algorithm;
2096         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2097                                          : conf->chunk_sectors;
2098         int raid_disks = previous ? conf->previous_raid_disks
2099                                   : conf->raid_disks;
2100         int data_disks = raid_disks - conf->max_degraded;
2101
2102         /* First compute the information on this sector */
2103
2104         /*
2105          * Compute the chunk number and the sector offset inside the chunk
2106          */
2107         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2108         chunk_number = r_sector;
2109
2110         /*
2111          * Compute the stripe number
2112          */
2113         stripe = chunk_number;
2114         *dd_idx = sector_div(stripe, data_disks);
2115         stripe2 = stripe;
2116         /*
2117          * Select the parity disk based on the user selected algorithm.
2118          */
2119         pd_idx = qd_idx = -1;
2120         switch(conf->level) {
2121         case 4:
2122                 pd_idx = data_disks;
2123                 break;
2124         case 5:
2125                 switch (algorithm) {
2126                 case ALGORITHM_LEFT_ASYMMETRIC:
2127                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2128                         if (*dd_idx >= pd_idx)
2129                                 (*dd_idx)++;
2130                         break;
2131                 case ALGORITHM_RIGHT_ASYMMETRIC:
2132                         pd_idx = sector_div(stripe2, raid_disks);
2133                         if (*dd_idx >= pd_idx)
2134                                 (*dd_idx)++;
2135                         break;
2136                 case ALGORITHM_LEFT_SYMMETRIC:
2137                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2138                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2139                         break;
2140                 case ALGORITHM_RIGHT_SYMMETRIC:
2141                         pd_idx = sector_div(stripe2, raid_disks);
2142                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2143                         break;
2144                 case ALGORITHM_PARITY_0:
2145                         pd_idx = 0;
2146                         (*dd_idx)++;
2147                         break;
2148                 case ALGORITHM_PARITY_N:
2149                         pd_idx = data_disks;
2150                         break;
2151                 default:
2152                         BUG();
2153                 }
2154                 break;
2155         case 6:
2156
2157                 switch (algorithm) {
2158                 case ALGORITHM_LEFT_ASYMMETRIC:
2159                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2160                         qd_idx = pd_idx + 1;
2161                         if (pd_idx == raid_disks-1) {
2162                                 (*dd_idx)++;    /* Q D D D P */
2163                                 qd_idx = 0;
2164                         } else if (*dd_idx >= pd_idx)
2165                                 (*dd_idx) += 2; /* D D P Q D */
2166                         break;
2167                 case ALGORITHM_RIGHT_ASYMMETRIC:
2168                         pd_idx = sector_div(stripe2, raid_disks);
2169                         qd_idx = pd_idx + 1;
2170                         if (pd_idx == raid_disks-1) {
2171                                 (*dd_idx)++;    /* Q D D D P */
2172                                 qd_idx = 0;
2173                         } else if (*dd_idx >= pd_idx)
2174                                 (*dd_idx) += 2; /* D D P Q D */
2175                         break;
2176                 case ALGORITHM_LEFT_SYMMETRIC:
2177                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2178                         qd_idx = (pd_idx + 1) % raid_disks;
2179                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2180                         break;
2181                 case ALGORITHM_RIGHT_SYMMETRIC:
2182                         pd_idx = sector_div(stripe2, raid_disks);
2183                         qd_idx = (pd_idx + 1) % raid_disks;
2184                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2185                         break;
2186
2187                 case ALGORITHM_PARITY_0:
2188                         pd_idx = 0;
2189                         qd_idx = 1;
2190                         (*dd_idx) += 2;
2191                         break;
2192                 case ALGORITHM_PARITY_N:
2193                         pd_idx = data_disks;
2194                         qd_idx = data_disks + 1;
2195                         break;
2196
2197                 case ALGORITHM_ROTATING_ZERO_RESTART:
2198                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2199                          * of blocks for computing Q is different.
2200                          */
2201                         pd_idx = sector_div(stripe2, raid_disks);
2202                         qd_idx = pd_idx + 1;
2203                         if (pd_idx == raid_disks-1) {
2204                                 (*dd_idx)++;    /* Q D D D P */
2205                                 qd_idx = 0;
2206                         } else if (*dd_idx >= pd_idx)
2207                                 (*dd_idx) += 2; /* D D P Q D */
2208                         ddf_layout = 1;
2209                         break;
2210
2211                 case ALGORITHM_ROTATING_N_RESTART:
2212                         /* Same a left_asymmetric, by first stripe is
2213                          * D D D P Q  rather than
2214                          * Q D D D P
2215                          */
2216                         stripe2 += 1;
2217                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2218                         qd_idx = pd_idx + 1;
2219                         if (pd_idx == raid_disks-1) {
2220                                 (*dd_idx)++;    /* Q D D D P */
2221                                 qd_idx = 0;
2222                         } else if (*dd_idx >= pd_idx)
2223                                 (*dd_idx) += 2; /* D D P Q D */
2224                         ddf_layout = 1;
2225                         break;
2226
2227                 case ALGORITHM_ROTATING_N_CONTINUE:
2228                         /* Same as left_symmetric but Q is before P */
2229                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2230                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2231                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2232                         ddf_layout = 1;
2233                         break;
2234
2235                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2236                         /* RAID5 left_asymmetric, with Q on last device */
2237                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2238                         if (*dd_idx >= pd_idx)
2239                                 (*dd_idx)++;
2240                         qd_idx = raid_disks - 1;
2241                         break;
2242
2243                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2244                         pd_idx = sector_div(stripe2, raid_disks-1);
2245                         if (*dd_idx >= pd_idx)
2246                                 (*dd_idx)++;
2247                         qd_idx = raid_disks - 1;
2248                         break;
2249
2250                 case ALGORITHM_LEFT_SYMMETRIC_6:
2251                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2252                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2253                         qd_idx = raid_disks - 1;
2254                         break;
2255
2256                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2257                         pd_idx = sector_div(stripe2, raid_disks-1);
2258                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2259                         qd_idx = raid_disks - 1;
2260                         break;
2261
2262                 case ALGORITHM_PARITY_0_6:
2263                         pd_idx = 0;
2264                         (*dd_idx)++;
2265                         qd_idx = raid_disks - 1;
2266                         break;
2267
2268                 default:
2269                         BUG();
2270                 }
2271                 break;
2272         }
2273
2274         if (sh) {
2275                 sh->pd_idx = pd_idx;
2276                 sh->qd_idx = qd_idx;
2277                 sh->ddf_layout = ddf_layout;
2278         }
2279         /*
2280          * Finally, compute the new sector number
2281          */
2282         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2283         return new_sector;
2284 }
2285
2286
2287 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2288 {
2289         struct r5conf *conf = sh->raid_conf;
2290         int raid_disks = sh->disks;
2291         int data_disks = raid_disks - conf->max_degraded;
2292         sector_t new_sector = sh->sector, check;
2293         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2294                                          : conf->chunk_sectors;
2295         int algorithm = previous ? conf->prev_algo
2296                                  : conf->algorithm;
2297         sector_t stripe;
2298         int chunk_offset;
2299         sector_t chunk_number;
2300         int dummy1, dd_idx = i;
2301         sector_t r_sector;
2302         struct stripe_head sh2;
2303
2304
2305         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2306         stripe = new_sector;
2307
2308         if (i == sh->pd_idx)
2309                 return 0;
2310         switch(conf->level) {
2311         case 4: break;
2312         case 5:
2313                 switch (algorithm) {
2314                 case ALGORITHM_LEFT_ASYMMETRIC:
2315                 case ALGORITHM_RIGHT_ASYMMETRIC:
2316                         if (i > sh->pd_idx)
2317                                 i--;
2318                         break;
2319                 case ALGORITHM_LEFT_SYMMETRIC:
2320                 case ALGORITHM_RIGHT_SYMMETRIC:
2321                         if (i < sh->pd_idx)
2322                                 i += raid_disks;
2323                         i -= (sh->pd_idx + 1);
2324                         break;
2325                 case ALGORITHM_PARITY_0:
2326                         i -= 1;
2327                         break;
2328                 case ALGORITHM_PARITY_N:
2329                         break;
2330                 default:
2331                         BUG();
2332                 }
2333                 break;
2334         case 6:
2335                 if (i == sh->qd_idx)
2336                         return 0; /* It is the Q disk */
2337                 switch (algorithm) {
2338                 case ALGORITHM_LEFT_ASYMMETRIC:
2339                 case ALGORITHM_RIGHT_ASYMMETRIC:
2340                 case ALGORITHM_ROTATING_ZERO_RESTART:
2341                 case ALGORITHM_ROTATING_N_RESTART:
2342                         if (sh->pd_idx == raid_disks-1)
2343                                 i--;    /* Q D D D P */
2344                         else if (i > sh->pd_idx)
2345                                 i -= 2; /* D D P Q D */
2346                         break;
2347                 case ALGORITHM_LEFT_SYMMETRIC:
2348                 case ALGORITHM_RIGHT_SYMMETRIC:
2349                         if (sh->pd_idx == raid_disks-1)
2350                                 i--; /* Q D D D P */
2351                         else {
2352                                 /* D D P Q D */
2353                                 if (i < sh->pd_idx)
2354                                         i += raid_disks;
2355                                 i -= (sh->pd_idx + 2);
2356                         }
2357                         break;
2358                 case ALGORITHM_PARITY_0:
2359                         i -= 2;
2360                         break;
2361                 case ALGORITHM_PARITY_N:
2362                         break;
2363                 case ALGORITHM_ROTATING_N_CONTINUE:
2364                         /* Like left_symmetric, but P is before Q */
2365                         if (sh->pd_idx == 0)
2366                                 i--;    /* P D D D Q */
2367                         else {
2368                                 /* D D Q P D */
2369                                 if (i < sh->pd_idx)
2370                                         i += raid_disks;
2371                                 i -= (sh->pd_idx + 1);
2372                         }
2373                         break;
2374                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2375                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2376                         if (i > sh->pd_idx)
2377                                 i--;
2378                         break;
2379                 case ALGORITHM_LEFT_SYMMETRIC_6:
2380                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2381                         if (i < sh->pd_idx)
2382                                 i += data_disks + 1;
2383                         i -= (sh->pd_idx + 1);
2384                         break;
2385                 case ALGORITHM_PARITY_0_6:
2386                         i -= 1;
2387                         break;
2388                 default:
2389                         BUG();
2390                 }
2391                 break;
2392         }
2393
2394         chunk_number = stripe * data_disks + i;
2395         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2396
2397         check = raid5_compute_sector(conf, r_sector,
2398                                      previous, &dummy1, &sh2);
2399         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2400                 || sh2.qd_idx != sh->qd_idx) {
2401                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2402                        mdname(conf->mddev));
2403                 return 0;
2404         }
2405         return r_sector;
2406 }
2407
2408
2409 static void
2410 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2411                          int rcw, int expand)
2412 {
2413         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2414         struct r5conf *conf = sh->raid_conf;
2415         int level = conf->level;
2416
2417         if (rcw) {
2418
2419                 for (i = disks; i--; ) {
2420                         struct r5dev *dev = &sh->dev[i];
2421
2422                         if (dev->towrite) {
2423                                 set_bit(R5_LOCKED, &dev->flags);
2424                                 set_bit(R5_Wantdrain, &dev->flags);
2425                                 if (!expand)
2426                                         clear_bit(R5_UPTODATE, &dev->flags);
2427                                 s->locked++;
2428                         }
2429                 }
2430                 /* if we are not expanding this is a proper write request, and
2431                  * there will be bios with new data to be drained into the
2432                  * stripe cache
2433                  */
2434                 if (!expand) {
2435                         if (!s->locked)
2436                                 /* False alarm, nothing to do */
2437                                 return;
2438                         sh->reconstruct_state = reconstruct_state_drain_run;
2439                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2440                 } else
2441                         sh->reconstruct_state = reconstruct_state_run;
2442
2443                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2444
2445                 if (s->locked + conf->max_degraded == disks)
2446                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2447                                 atomic_inc(&conf->pending_full_writes);
2448         } else {
2449                 BUG_ON(level == 6);
2450                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2451                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2452
2453                 for (i = disks; i--; ) {
2454                         struct r5dev *dev = &sh->dev[i];
2455                         if (i == pd_idx)
2456                                 continue;
2457
2458                         if (dev->towrite &&
2459                             (test_bit(R5_UPTODATE, &dev->flags) ||
2460                              test_bit(R5_Wantcompute, &dev->flags))) {
2461                                 set_bit(R5_Wantdrain, &dev->flags);
2462                                 set_bit(R5_LOCKED, &dev->flags);
2463                                 clear_bit(R5_UPTODATE, &dev->flags);
2464                                 s->locked++;
2465                         }
2466                 }
2467                 if (!s->locked)
2468                         /* False alarm - nothing to do */
2469                         return;
2470                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2471                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2472                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2473                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2474         }
2475
2476         /* keep the parity disk(s) locked while asynchronous operations
2477          * are in flight
2478          */
2479         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2480         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2481         s->locked++;
2482
2483         if (level == 6) {
2484                 int qd_idx = sh->qd_idx;
2485                 struct r5dev *dev = &sh->dev[qd_idx];
2486
2487                 set_bit(R5_LOCKED, &dev->flags);
2488                 clear_bit(R5_UPTODATE, &dev->flags);
2489                 s->locked++;
2490         }
2491
2492         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2493                 __func__, (unsigned long long)sh->sector,
2494                 s->locked, s->ops_request);
2495 }
2496
2497 /*
2498  * Each stripe/dev can have one or more bion attached.
2499  * toread/towrite point to the first in a chain.
2500  * The bi_next chain must be in order.
2501  */
2502 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2503 {
2504         struct bio **bip;
2505         struct r5conf *conf = sh->raid_conf;
2506         int firstwrite=0;
2507
2508         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2509                 (unsigned long long)bi->bi_sector,
2510                 (unsigned long long)sh->sector);
2511
2512         /*
2513          * If several bio share a stripe. The bio bi_phys_segments acts as a
2514          * reference count to avoid race. The reference count should already be
2515          * increased before this function is called (for example, in
2516          * make_request()), so other bio sharing this stripe will not free the
2517          * stripe. If a stripe is owned by one stripe, the stripe lock will
2518          * protect it.
2519          */
2520         spin_lock_irq(&sh->stripe_lock);
2521         if (forwrite) {
2522                 bip = &sh->dev[dd_idx].towrite;
2523                 if (*bip == NULL)
2524                         firstwrite = 1;
2525         } else
2526                 bip = &sh->dev[dd_idx].toread;
2527         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2528                 if (bio_end_sector(*bip) > bi->bi_sector)
2529                         goto overlap;
2530                 bip = & (*bip)->bi_next;
2531         }
2532         if (*bip && (*bip)->bi_sector < bio_end_sector(bi))
2533                 goto overlap;
2534
2535         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2536         if (*bip)
2537                 bi->bi_next = *bip;
2538         *bip = bi;
2539         raid5_inc_bi_active_stripes(bi);
2540
2541         if (forwrite) {
2542                 /* check if page is covered */
2543                 sector_t sector = sh->dev[dd_idx].sector;
2544                 for (bi=sh->dev[dd_idx].towrite;
2545                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2546                              bi && bi->bi_sector <= sector;
2547                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2548                         if (bio_end_sector(bi) >= sector)
2549                                 sector = bio_end_sector(bi);
2550                 }
2551                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2552                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2553         }
2554
2555         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2556                 (unsigned long long)(*bip)->bi_sector,
2557                 (unsigned long long)sh->sector, dd_idx);
2558         spin_unlock_irq(&sh->stripe_lock);
2559
2560         if (conf->mddev->bitmap && firstwrite) {
2561                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2562                                   STRIPE_SECTORS, 0);
2563                 sh->bm_seq = conf->seq_flush+1;
2564                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2565         }
2566         return 1;
2567
2568  overlap:
2569         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2570         spin_unlock_irq(&sh->stripe_lock);
2571         return 0;
2572 }
2573
2574 static void end_reshape(struct r5conf *conf);
2575
2576 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2577                             struct stripe_head *sh)
2578 {
2579         int sectors_per_chunk =
2580                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2581         int dd_idx;
2582         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2583         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2584
2585         raid5_compute_sector(conf,
2586                              stripe * (disks - conf->max_degraded)
2587                              *sectors_per_chunk + chunk_offset,
2588                              previous,
2589                              &dd_idx, sh);
2590 }
2591
2592 static void
2593 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2594                                 struct stripe_head_state *s, int disks,
2595                                 struct bio **return_bi)
2596 {
2597         int i;
2598         for (i = disks; i--; ) {
2599                 struct bio *bi;
2600                 int bitmap_end = 0;
2601
2602                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2603                         struct md_rdev *rdev;
2604                         rcu_read_lock();
2605                         rdev = rcu_dereference(conf->disks[i].rdev);
2606                         if (rdev && test_bit(In_sync, &rdev->flags))
2607                                 atomic_inc(&rdev->nr_pending);
2608                         else
2609                                 rdev = NULL;
2610                         rcu_read_unlock();
2611                         if (rdev) {
2612                                 if (!rdev_set_badblocks(
2613                                             rdev,
2614                                             sh->sector,
2615                                             STRIPE_SECTORS, 0))
2616                                         md_error(conf->mddev, rdev);
2617                                 rdev_dec_pending(rdev, conf->mddev);
2618                         }
2619                 }
2620                 spin_lock_irq(&sh->stripe_lock);
2621                 /* fail all writes first */
2622                 bi = sh->dev[i].towrite;
2623                 sh->dev[i].towrite = NULL;
2624                 spin_unlock_irq(&sh->stripe_lock);
2625                 if (bi)
2626                         bitmap_end = 1;
2627
2628                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2629                         wake_up(&conf->wait_for_overlap);
2630
2631                 while (bi && bi->bi_sector <
2632                         sh->dev[i].sector + STRIPE_SECTORS) {
2633                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2634                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2635                         if (!raid5_dec_bi_active_stripes(bi)) {
2636                                 md_write_end(conf->mddev);
2637                                 bi->bi_next = *return_bi;
2638                                 *return_bi = bi;
2639                         }
2640                         bi = nextbi;
2641                 }
2642                 if (bitmap_end)
2643                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2644                                 STRIPE_SECTORS, 0, 0);
2645                 bitmap_end = 0;
2646                 /* and fail all 'written' */
2647                 bi = sh->dev[i].written;
2648                 sh->dev[i].written = NULL;
2649                 if (bi) bitmap_end = 1;
2650                 while (bi && bi->bi_sector <
2651                        sh->dev[i].sector + STRIPE_SECTORS) {
2652                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2653                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2654                         if (!raid5_dec_bi_active_stripes(bi)) {
2655                                 md_write_end(conf->mddev);
2656                                 bi->bi_next = *return_bi;
2657                                 *return_bi = bi;
2658                         }
2659                         bi = bi2;
2660                 }
2661
2662                 /* fail any reads if this device is non-operational and
2663                  * the data has not reached the cache yet.
2664                  */
2665                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2666                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2667                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2668                         spin_lock_irq(&sh->stripe_lock);
2669                         bi = sh->dev[i].toread;
2670                         sh->dev[i].toread = NULL;
2671                         spin_unlock_irq(&sh->stripe_lock);
2672                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2673                                 wake_up(&conf->wait_for_overlap);
2674                         while (bi && bi->bi_sector <
2675                                sh->dev[i].sector + STRIPE_SECTORS) {
2676                                 struct bio *nextbi =
2677                                         r5_next_bio(bi, sh->dev[i].sector);
2678                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2679                                 if (!raid5_dec_bi_active_stripes(bi)) {
2680                                         bi->bi_next = *return_bi;
2681                                         *return_bi = bi;
2682                                 }
2683                                 bi = nextbi;
2684                         }
2685                 }
2686                 if (bitmap_end)
2687                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2688                                         STRIPE_SECTORS, 0, 0);
2689                 /* If we were in the middle of a write the parity block might
2690                  * still be locked - so just clear all R5_LOCKED flags
2691                  */
2692                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2693         }
2694
2695         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2696                 if (atomic_dec_and_test(&conf->pending_full_writes))
2697                         md_wakeup_thread(conf->mddev->thread);
2698 }
2699
2700 static void
2701 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2702                    struct stripe_head_state *s)
2703 {
2704         int abort = 0;
2705         int i;
2706
2707         clear_bit(STRIPE_SYNCING, &sh->state);
2708         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2709                 wake_up(&conf->wait_for_overlap);
2710         s->syncing = 0;
2711         s->replacing = 0;
2712         /* There is nothing more to do for sync/check/repair.
2713          * Don't even need to abort as that is handled elsewhere
2714          * if needed, and not always wanted e.g. if there is a known
2715          * bad block here.
2716          * For recover/replace we need to record a bad block on all
2717          * non-sync devices, or abort the recovery
2718          */
2719         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2720                 /* During recovery devices cannot be removed, so
2721                  * locking and refcounting of rdevs is not needed
2722                  */
2723                 for (i = 0; i < conf->raid_disks; i++) {
2724                         struct md_rdev *rdev = conf->disks[i].rdev;
2725                         if (rdev
2726                             && !test_bit(Faulty, &rdev->flags)
2727                             && !test_bit(In_sync, &rdev->flags)
2728                             && !rdev_set_badblocks(rdev, sh->sector,
2729                                                    STRIPE_SECTORS, 0))
2730                                 abort = 1;
2731                         rdev = conf->disks[i].replacement;
2732                         if (rdev
2733                             && !test_bit(Faulty, &rdev->flags)
2734                             && !test_bit(In_sync, &rdev->flags)
2735                             && !rdev_set_badblocks(rdev, sh->sector,
2736                                                    STRIPE_SECTORS, 0))
2737                                 abort = 1;
2738                 }
2739                 if (abort)
2740                         conf->recovery_disabled =
2741                                 conf->mddev->recovery_disabled;
2742         }
2743         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2744 }
2745
2746 static int want_replace(struct stripe_head *sh, int disk_idx)
2747 {
2748         struct md_rdev *rdev;
2749         int rv = 0;
2750         /* Doing recovery so rcu locking not required */
2751         rdev = sh->raid_conf->disks[disk_idx].replacement;
2752         if (rdev
2753             && !test_bit(Faulty, &rdev->flags)
2754             && !test_bit(In_sync, &rdev->flags)
2755             && (rdev->recovery_offset <= sh->sector
2756                 || rdev->mddev->recovery_cp <= sh->sector))
2757                 rv = 1;
2758
2759         return rv;
2760 }
2761
2762 /* fetch_block - checks the given member device to see if its data needs
2763  * to be read or computed to satisfy a request.
2764  *
2765  * Returns 1 when no more member devices need to be checked, otherwise returns
2766  * 0 to tell the loop in handle_stripe_fill to continue
2767  */
2768 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2769                        int disk_idx, int disks)
2770 {
2771         struct r5dev *dev = &sh->dev[disk_idx];
2772         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2773                                   &sh->dev[s->failed_num[1]] };
2774
2775         /* is the data in this block needed, and can we get it? */
2776         if (!test_bit(R5_LOCKED, &dev->flags) &&
2777             !test_bit(R5_UPTODATE, &dev->flags) &&
2778             (dev->toread ||
2779              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2780              s->syncing || s->expanding ||
2781              (s->replacing && want_replace(sh, disk_idx)) ||
2782              (s->failed >= 1 && fdev[0]->toread) ||
2783              (s->failed >= 2 && fdev[1]->toread) ||
2784              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2785               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2786              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2787                 /* we would like to get this block, possibly by computing it,
2788                  * otherwise read it if the backing disk is insync
2789                  */
2790                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2791                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2792                 if ((s->uptodate == disks - 1) &&
2793                     (s->failed && (disk_idx == s->failed_num[0] ||
2794                                    disk_idx == s->failed_num[1]))) {
2795                         /* have disk failed, and we're requested to fetch it;
2796                          * do compute it
2797                          */
2798                         pr_debug("Computing stripe %llu block %d\n",
2799                                (unsigned long long)sh->sector, disk_idx);
2800                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2801                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2802                         set_bit(R5_Wantcompute, &dev->flags);
2803                         sh->ops.target = disk_idx;
2804                         sh->ops.target2 = -1; /* no 2nd target */
2805                         s->req_compute = 1;
2806                         /* Careful: from this point on 'uptodate' is in the eye
2807                          * of raid_run_ops which services 'compute' operations
2808                          * before writes. R5_Wantcompute flags a block that will
2809                          * be R5_UPTODATE by the time it is needed for a
2810                          * subsequent operation.
2811                          */
2812                         s->uptodate++;
2813                         return 1;
2814                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2815                         /* Computing 2-failure is *very* expensive; only
2816                          * do it if failed >= 2
2817                          */
2818                         int other;
2819                         for (other = disks; other--; ) {
2820                                 if (other == disk_idx)
2821                                         continue;
2822                                 if (!test_bit(R5_UPTODATE,
2823                                       &sh->dev[other].flags))
2824                                         break;
2825                         }
2826                         BUG_ON(other < 0);
2827                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2828                                (unsigned long long)sh->sector,
2829                                disk_idx, other);
2830                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2831                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2832                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2833                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2834                         sh->ops.target = disk_idx;
2835                         sh->ops.target2 = other;
2836                         s->uptodate += 2;
2837                         s->req_compute = 1;
2838                         return 1;
2839                 } else if (test_bit(R5_Insync, &dev->flags)) {
2840                         set_bit(R5_LOCKED, &dev->flags);
2841                         set_bit(R5_Wantread, &dev->flags);
2842                         s->locked++;
2843                         pr_debug("Reading block %d (sync=%d)\n",
2844                                 disk_idx, s->syncing);
2845                 }
2846         }
2847
2848         return 0;
2849 }
2850
2851 /**
2852  * handle_stripe_fill - read or compute data to satisfy pending requests.
2853  */
2854 static void handle_stripe_fill(struct stripe_head *sh,
2855                                struct stripe_head_state *s,
2856                                int disks)
2857 {
2858         int i;
2859
2860         /* look for blocks to read/compute, skip this if a compute
2861          * is already in flight, or if the stripe contents are in the
2862          * midst of changing due to a write
2863          */
2864         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2865             !sh->reconstruct_state)
2866                 for (i = disks; i--; )
2867                         if (fetch_block(sh, s, i, disks))
2868                                 break;
2869         set_bit(STRIPE_HANDLE, &sh->state);
2870 }
2871
2872
2873 /* handle_stripe_clean_event
2874  * any written block on an uptodate or failed drive can be returned.
2875  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2876  * never LOCKED, so we don't need to test 'failed' directly.
2877  */
2878 static void handle_stripe_clean_event(struct r5conf *conf,
2879         struct stripe_head *sh, int disks, struct bio **return_bi)
2880 {
2881         int i;
2882         struct r5dev *dev;
2883         int discard_pending = 0;
2884
2885         for (i = disks; i--; )
2886                 if (sh->dev[i].written) {
2887                         dev = &sh->dev[i];
2888                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2889                             (test_bit(R5_UPTODATE, &dev->flags) ||
2890                              test_bit(R5_Discard, &dev->flags))) {
2891                                 /* We can return any write requests */
2892                                 struct bio *wbi, *wbi2;
2893                                 pr_debug("Return write for disc %d\n", i);
2894                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
2895                                         clear_bit(R5_UPTODATE, &dev->flags);
2896                                 wbi = dev->written;
2897                                 dev->written = NULL;
2898                                 while (wbi && wbi->bi_sector <
2899                                         dev->sector + STRIPE_SECTORS) {
2900                                         wbi2 = r5_next_bio(wbi, dev->sector);
2901                                         if (!raid5_dec_bi_active_stripes(wbi)) {
2902                                                 md_write_end(conf->mddev);
2903                                                 wbi->bi_next = *return_bi;
2904                                                 *return_bi = wbi;
2905                                         }
2906                                         wbi = wbi2;
2907                                 }
2908                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2909                                                 STRIPE_SECTORS,
2910                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2911                                                 0);
2912                         } else if (test_bit(R5_Discard, &dev->flags))
2913                                 discard_pending = 1;
2914                 }
2915         if (!discard_pending &&
2916             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
2917                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2918                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2919                 if (sh->qd_idx >= 0) {
2920                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2921                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
2922                 }
2923                 /* now that discard is done we can proceed with any sync */
2924                 clear_bit(STRIPE_DISCARD, &sh->state);
2925                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2926                         set_bit(STRIPE_HANDLE, &sh->state);
2927
2928         }
2929
2930         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2931                 if (atomic_dec_and_test(&conf->pending_full_writes))
2932                         md_wakeup_thread(conf->mddev->thread);
2933 }
2934
2935 static void handle_stripe_dirtying(struct r5conf *conf,
2936                                    struct stripe_head *sh,
2937                                    struct stripe_head_state *s,
2938                                    int disks)
2939 {
2940         int rmw = 0, rcw = 0, i;
2941         sector_t recovery_cp = conf->mddev->recovery_cp;
2942
2943         /* RAID6 requires 'rcw' in current implementation.
2944          * Otherwise, check whether resync is now happening or should start.
2945          * If yes, then the array is dirty (after unclean shutdown or
2946          * initial creation), so parity in some stripes might be inconsistent.
2947          * In this case, we need to always do reconstruct-write, to ensure
2948          * that in case of drive failure or read-error correction, we
2949          * generate correct data from the parity.
2950          */
2951         if (conf->max_degraded == 2 ||
2952             (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2953                 /* Calculate the real rcw later - for now make it
2954                  * look like rcw is cheaper
2955                  */
2956                 rcw = 1; rmw = 2;
2957                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2958                          conf->max_degraded, (unsigned long long)recovery_cp,
2959                          (unsigned long long)sh->sector);
2960         } else for (i = disks; i--; ) {
2961                 /* would I have to read this buffer for read_modify_write */
2962                 struct r5dev *dev = &sh->dev[i];
2963                 if ((dev->towrite || i == sh->pd_idx) &&
2964                     !test_bit(R5_LOCKED, &dev->flags) &&
2965                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2966                       test_bit(R5_Wantcompute, &dev->flags))) {
2967                         if (test_bit(R5_Insync, &dev->flags))
2968                                 rmw++;
2969                         else
2970                                 rmw += 2*disks;  /* cannot read it */
2971                 }
2972                 /* Would I have to read this buffer for reconstruct_write */
2973                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2974                     !test_bit(R5_LOCKED, &dev->flags) &&
2975                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2976                     test_bit(R5_Wantcompute, &dev->flags))) {
2977                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2978                         else
2979                                 rcw += 2*disks;
2980                 }
2981         }
2982         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2983                 (unsigned long long)sh->sector, rmw, rcw);
2984         set_bit(STRIPE_HANDLE, &sh->state);
2985         if (rmw < rcw && rmw > 0) {
2986                 /* prefer read-modify-write, but need to get some data */
2987                 if (conf->mddev->queue)
2988                         blk_add_trace_msg(conf->mddev->queue,
2989                                           "raid5 rmw %llu %d",
2990                                           (unsigned long long)sh->sector, rmw);
2991                 for (i = disks; i--; ) {
2992                         struct r5dev *dev = &sh->dev[i];
2993                         if ((dev->towrite || i == sh->pd_idx) &&
2994                             !test_bit(R5_LOCKED, &dev->flags) &&
2995                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2996                             test_bit(R5_Wantcompute, &dev->flags)) &&
2997                             test_bit(R5_Insync, &dev->flags)) {
2998                                 if (
2999                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3000                                         pr_debug("Read_old block "
3001                                                  "%d for r-m-w\n", i);
3002                                         set_bit(R5_LOCKED, &dev->flags);
3003                                         set_bit(R5_Wantread, &dev->flags);
3004                                         s->locked++;
3005                                 } else {
3006                                         set_bit(STRIPE_DELAYED, &sh->state);
3007                                         set_bit(STRIPE_HANDLE, &sh->state);
3008                                 }
3009                         }
3010                 }
3011         }
3012         if (rcw <= rmw && rcw > 0) {
3013                 /* want reconstruct write, but need to get some data */
3014                 int qread =0;
3015                 rcw = 0;
3016                 for (i = disks; i--; ) {
3017                         struct r5dev *dev = &sh->dev[i];
3018                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3019                             i != sh->pd_idx && i != sh->qd_idx &&
3020                             !test_bit(R5_LOCKED, &dev->flags) &&
3021                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3022                               test_bit(R5_Wantcompute, &dev->flags))) {
3023                                 rcw++;
3024                                 if (!test_bit(R5_Insync, &dev->flags))
3025                                         continue; /* it's a failed drive */
3026                                 if (
3027                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3028                                         pr_debug("Read_old block "
3029                                                 "%d for Reconstruct\n", i);
3030                                         set_bit(R5_LOCKED, &dev->flags);
3031                                         set_bit(R5_Wantread, &dev->flags);
3032                                         s->locked++;
3033                                         qread++;
3034                                 } else {
3035                                         set_bit(STRIPE_DELAYED, &sh->state);
3036                                         set_bit(STRIPE_HANDLE, &sh->state);
3037                                 }
3038                         }
3039                 }
3040                 if (rcw && conf->mddev->queue)
3041                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3042                                           (unsigned long long)sh->sector,
3043                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3044         }
3045         /* now if nothing is locked, and if we have enough data,
3046          * we can start a write request
3047          */
3048         /* since handle_stripe can be called at any time we need to handle the
3049          * case where a compute block operation has been submitted and then a
3050          * subsequent call wants to start a write request.  raid_run_ops only
3051          * handles the case where compute block and reconstruct are requested
3052          * simultaneously.  If this is not the case then new writes need to be
3053          * held off until the compute completes.
3054          */
3055         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3056             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3057             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3058                 schedule_reconstruction(sh, s, rcw == 0, 0);
3059 }
3060
3061 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3062                                 struct stripe_head_state *s, int disks)
3063 {
3064         struct r5dev *dev = NULL;
3065
3066         set_bit(STRIPE_HANDLE, &sh->state);
3067
3068         switch (sh->check_state) {
3069         case check_state_idle:
3070                 /* start a new check operation if there are no failures */
3071                 if (s->failed == 0) {
3072                         BUG_ON(s->uptodate != disks);
3073                         sh->check_state = check_state_run;
3074                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3075                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3076                         s->uptodate--;
3077                         break;
3078                 }
3079                 dev = &sh->dev[s->failed_num[0]];
3080                 /* fall through */
3081         case check_state_compute_result:
3082                 sh->check_state = check_state_idle;
3083                 if (!dev)
3084                         dev = &sh->dev[sh->pd_idx];
3085
3086                 /* check that a write has not made the stripe insync */
3087                 if (test_bit(STRIPE_INSYNC, &sh->state))
3088                         break;
3089
3090                 /* either failed parity check, or recovery is happening */
3091                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3092                 BUG_ON(s->uptodate != disks);
3093
3094                 set_bit(R5_LOCKED, &dev->flags);
3095                 s->locked++;
3096                 set_bit(R5_Wantwrite, &dev->flags);
3097
3098                 clear_bit(STRIPE_DEGRADED, &sh->state);
3099                 set_bit(STRIPE_INSYNC, &sh->state);
3100                 break;
3101         case check_state_run:
3102                 break; /* we will be called again upon completion */
3103         case check_state_check_result:
3104                 sh->check_state = check_state_idle;
3105
3106                 /* if a failure occurred during the check operation, leave
3107                  * STRIPE_INSYNC not set and let the stripe be handled again
3108                  */
3109                 if (s->failed)
3110                         break;
3111
3112                 /* handle a successful check operation, if parity is correct
3113                  * we are done.  Otherwise update the mismatch count and repair
3114                  * parity if !MD_RECOVERY_CHECK
3115                  */
3116                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3117                         /* parity is correct (on disc,
3118                          * not in buffer any more)
3119                          */
3120                         set_bit(STRIPE_INSYNC, &sh->state);
3121                 else {
3122                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3123                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3124                                 /* don't try to repair!! */
3125                                 set_bit(STRIPE_INSYNC, &sh->state);
3126                         else {
3127                                 sh->check_state = check_state_compute_run;
3128                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3129                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3130                                 set_bit(R5_Wantcompute,
3131                                         &sh->dev[sh->pd_idx].flags);
3132                                 sh->ops.target = sh->pd_idx;
3133                                 sh->ops.target2 = -1;
3134                                 s->uptodate++;
3135                         }
3136                 }
3137                 break;
3138         case check_state_compute_run:
3139                 break;
3140         default:
3141                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3142                        __func__, sh->check_state,
3143                        (unsigned long long) sh->sector);
3144                 BUG();
3145         }
3146 }
3147
3148
3149 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3150                                   struct stripe_head_state *s,
3151                                   int disks)
3152 {
3153         int pd_idx = sh->pd_idx;
3154         int qd_idx = sh->qd_idx;
3155         struct r5dev *dev;
3156
3157         set_bit(STRIPE_HANDLE, &sh->state);
3158
3159         BUG_ON(s->failed > 2);
3160
3161         /* Want to check and possibly repair P and Q.
3162          * However there could be one 'failed' device, in which
3163          * case we can only check one of them, possibly using the
3164          * other to generate missing data
3165          */
3166
3167         switch (sh->check_state) {
3168         case check_state_idle:
3169                 /* start a new check operation if there are < 2 failures */
3170                 if (s->failed == s->q_failed) {
3171                         /* The only possible failed device holds Q, so it
3172                          * makes sense to check P (If anything else were failed,
3173                          * we would have used P to recreate it).
3174                          */
3175                         sh->check_state = check_state_run;
3176                 }
3177                 if (!s->q_failed && s->failed < 2) {
3178                         /* Q is not failed, and we didn't use it to generate
3179                          * anything, so it makes sense to check it
3180                          */
3181                         if (sh->check_state == check_state_run)
3182                                 sh->check_state = check_state_run_pq;
3183                         else
3184                                 sh->check_state = check_state_run_q;
3185                 }
3186
3187                 /* discard potentially stale zero_sum_result */
3188                 sh->ops.zero_sum_result = 0;
3189
3190                 if (sh->check_state == check_state_run) {
3191                         /* async_xor_zero_sum destroys the contents of P */
3192                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3193                         s->uptodate--;
3194                 }
3195                 if (sh->check_state >= check_state_run &&
3196                     sh->check_state <= check_state_run_pq) {
3197                         /* async_syndrome_zero_sum preserves P and Q, so
3198                          * no need to mark them !uptodate here
3199                          */
3200                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3201                         break;
3202                 }
3203
3204                 /* we have 2-disk failure */
3205                 BUG_ON(s->failed != 2);
3206                 /* fall through */
3207         case check_state_compute_result:
3208                 sh->check_state = check_state_idle;
3209
3210                 /* check that a write has not made the stripe insync */
3211                 if (test_bit(STRIPE_INSYNC, &sh->state))
3212                         break;
3213
3214                 /* now write out any block on a failed drive,
3215                  * or P or Q if they were recomputed
3216                  */
3217                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3218                 if (s->failed == 2) {
3219                         dev = &sh->dev[s->failed_num[1]];
3220                         s->locked++;
3221                         set_bit(R5_LOCKED, &dev->flags);
3222                         set_bit(R5_Wantwrite, &dev->flags);
3223                 }
3224                 if (s->failed >= 1) {
3225                         dev = &sh->dev[s->failed_num[0]];
3226                         s->locked++;
3227                         set_bit(R5_LOCKED, &dev->flags);
3228                         set_bit(R5_Wantwrite, &dev->flags);
3229                 }
3230                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3231                         dev = &sh->dev[pd_idx];
3232                         s->locked++;
3233                         set_bit(R5_LOCKED, &dev->flags);
3234                         set_bit(R5_Wantwrite, &dev->flags);
3235                 }
3236                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3237                         dev = &sh->dev[qd_idx];
3238                         s->locked++;
3239                         set_bit(R5_LOCKED, &dev->flags);
3240                         set_bit(R5_Wantwrite, &dev->flags);
3241                 }
3242                 clear_bit(STRIPE_DEGRADED, &sh->state);
3243
3244                 set_bit(STRIPE_INSYNC, &sh->state);
3245                 break;
3246         case check_state_run:
3247         case check_state_run_q:
3248         case check_state_run_pq:
3249                 break; /* we will be called again upon completion */
3250         case check_state_check_result:
3251                 sh->check_state = check_state_idle;
3252
3253                 /* handle a successful check operation, if parity is correct
3254                  * we are done.  Otherwise update the mismatch count and repair
3255                  * parity if !MD_RECOVERY_CHECK
3256                  */
3257                 if (sh->ops.zero_sum_result == 0) {
3258                         /* both parities are correct */
3259                         if (!s->failed)
3260                                 set_bit(STRIPE_INSYNC, &sh->state);
3261                         else {
3262                                 /* in contrast to the raid5 case we can validate
3263                                  * parity, but still have a failure to write
3264                                  * back
3265                                  */
3266                                 sh->check_state = check_state_compute_result;
3267                                 /* Returning at this point means that we may go
3268                                  * off and bring p and/or q uptodate again so
3269                                  * we make sure to check zero_sum_result again
3270                                  * to verify if p or q need writeback
3271                                  */
3272                         }
3273                 } else {
3274                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3275                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3276                                 /* don't try to repair!! */
3277                                 set_bit(STRIPE_INSYNC, &sh->state);
3278                         else {
3279                                 int *target = &sh->ops.target;
3280
3281                                 sh->ops.target = -1;
3282                                 sh->ops.target2 = -1;
3283                                 sh->check_state = check_state_compute_run;
3284                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3285                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3286                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3287                                         set_bit(R5_Wantcompute,
3288                                                 &sh->dev[pd_idx].flags);
3289                                         *target = pd_idx;
3290                                         target = &sh->ops.target2;
3291                                         s->uptodate++;
3292                                 }
3293                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3294                                         set_bit(R5_Wantcompute,
3295                                                 &sh->dev[qd_idx].flags);
3296                                         *target = qd_idx;
3297                                         s->uptodate++;
3298                                 }
3299                         }
3300                 }
3301                 break;
3302         case check_state_compute_run:
3303                 break;
3304         default:
3305                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3306                        __func__, sh->check_state,
3307                        (unsigned long long) sh->sector);
3308                 BUG();
3309         }
3310 }
3311
3312 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3313 {
3314         int i;
3315
3316         /* We have read all the blocks in this stripe and now we need to
3317          * copy some of them into a target stripe for expand.
3318          */
3319         struct dma_async_tx_descriptor *tx = NULL;
3320         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3321         for (i = 0; i < sh->disks; i++)
3322                 if (i != sh->pd_idx && i != sh->qd_idx) {
3323                         int dd_idx, j;
3324                         struct stripe_head *sh2;
3325                         struct async_submit_ctl submit;
3326
3327                         sector_t bn = compute_blocknr(sh, i, 1);
3328                         sector_t s = raid5_compute_sector(conf, bn, 0,
3329                                                           &dd_idx, NULL);
3330                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3331                         if (sh2 == NULL)
3332                                 /* so far only the early blocks of this stripe
3333                                  * have been requested.  When later blocks
3334                                  * get requested, we will try again
3335                                  */
3336                                 continue;
3337                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3338                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3339                                 /* must have already done this block */
3340                                 release_stripe(sh2);
3341                                 continue;
3342                         }
3343
3344                         /* place all the copies on one channel */
3345                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3346                         tx = async_memcpy(sh2->dev[dd_idx].page,
3347                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3348                                           &submit);
3349
3350                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3351                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3352                         for (j = 0; j < conf->raid_disks; j++)
3353                                 if (j != sh2->pd_idx &&
3354                                     j != sh2->qd_idx &&
3355                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3356                                         break;
3357                         if (j == conf->raid_disks) {
3358                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3359                                 set_bit(STRIPE_HANDLE, &sh2->state);
3360                         }
3361                         release_stripe(sh2);
3362
3363                 }
3364         /* done submitting copies, wait for them to complete */
3365         async_tx_quiesce(&tx);
3366 }
3367
3368 /*
3369  * handle_stripe - do things to a stripe.
3370  *
3371  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3372  * state of various bits to see what needs to be done.
3373  * Possible results:
3374  *    return some read requests which now have data
3375  *    return some write requests which are safely on storage
3376  *    schedule a read on some buffers
3377  *    schedule a write of some buffers
3378  *    return confirmation of parity correctness
3379  *
3380  */
3381
3382 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3383 {
3384         struct r5conf *conf = sh->raid_conf;
3385         int disks = sh->disks;
3386         struct r5dev *dev;
3387         int i;
3388         int do_recovery = 0;
3389
3390         memset(s, 0, sizeof(*s));
3391
3392         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3393         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3394         s->failed_num[0] = -1;
3395         s->failed_num[1] = -1;
3396
3397         /* Now to look around and see what can be done */
3398         rcu_read_lock();
3399         for (i=disks; i--; ) {
3400                 struct md_rdev *rdev;
3401                 sector_t first_bad;
3402                 int bad_sectors;
3403                 int is_bad = 0;
3404
3405                 dev = &sh->dev[i];
3406
3407                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3408                          i, dev->flags,
3409                          dev->toread, dev->towrite, dev->written);
3410                 /* maybe we can reply to a read
3411                  *
3412                  * new wantfill requests are only permitted while
3413                  * ops_complete_biofill is guaranteed to be inactive
3414                  */
3415                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3416                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3417                         set_bit(R5_Wantfill, &dev->flags);
3418
3419                 /* now count some things */
3420                 if (test_bit(R5_LOCKED, &dev->flags))
3421                         s->locked++;
3422                 if (test_bit(R5_UPTODATE, &dev->flags))
3423                         s->uptodate++;
3424                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3425                         s->compute++;
3426                         BUG_ON(s->compute > 2);
3427                 }
3428
3429                 if (test_bit(R5_Wantfill, &dev->flags))
3430                         s->to_fill++;
3431                 else if (dev->toread)
3432                         s->to_read++;
3433                 if (dev->towrite) {
3434                         s->to_write++;
3435                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3436                                 s->non_overwrite++;
3437                 }
3438                 if (dev->written)
3439                         s->written++;
3440                 /* Prefer to use the replacement for reads, but only
3441                  * if it is recovered enough and has no bad blocks.
3442                  */
3443                 rdev = rcu_dereference(conf->disks[i].replacement);
3444                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3445                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3446                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3447                                  &first_bad, &bad_sectors))
3448                         set_bit(R5_ReadRepl, &dev->flags);
3449                 else {
3450                         if (rdev)
3451                                 set_bit(R5_NeedReplace, &dev->flags);
3452                         rdev = rcu_dereference(conf->disks[i].rdev);
3453                         clear_bit(R5_ReadRepl, &dev->flags);
3454                 }
3455                 if (rdev && test_bit(Faulty, &rdev->flags))
3456                         rdev = NULL;
3457                 if (rdev) {
3458                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3459                                              &first_bad, &bad_sectors);
3460                         if (s->blocked_rdev == NULL
3461                             && (test_bit(Blocked, &rdev->flags)
3462                                 || is_bad < 0)) {
3463                                 if (is_bad < 0)
3464                                         set_bit(BlockedBadBlocks,
3465                                                 &rdev->flags);
3466                                 s->blocked_rdev = rdev;
3467                                 atomic_inc(&rdev->nr_pending);
3468                         }
3469                 }
3470                 clear_bit(R5_Insync, &dev->flags);
3471                 if (!rdev)
3472                         /* Not in-sync */;
3473                 else if (is_bad) {
3474                         /* also not in-sync */
3475                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3476                             test_bit(R5_UPTODATE, &dev->flags)) {
3477                                 /* treat as in-sync, but with a read error
3478                                  * which we can now try to correct
3479                                  */
3480                                 set_bit(R5_Insync, &dev->flags);
3481                                 set_bit(R5_ReadError, &dev->flags);
3482                         }
3483                 } else if (test_bit(In_sync, &rdev->flags))
3484                         set_bit(R5_Insync, &dev->flags);
3485                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3486                         /* in sync if before recovery_offset */
3487                         set_bit(R5_Insync, &dev->flags);
3488                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3489                          test_bit(R5_Expanded, &dev->flags))
3490                         /* If we've reshaped into here, we assume it is Insync.
3491                          * We will shortly update recovery_offset to make
3492                          * it official.
3493                          */
3494                         set_bit(R5_Insync, &dev->flags);
3495
3496                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3497                         /* This flag does not apply to '.replacement'
3498                          * only to .rdev, so make sure to check that*/
3499                         struct md_rdev *rdev2 = rcu_dereference(
3500                                 conf->disks[i].rdev);
3501                         if (rdev2 == rdev)
3502                                 clear_bit(R5_Insync, &dev->flags);
3503                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3504                                 s->handle_bad_blocks = 1;
3505                                 atomic_inc(&rdev2->nr_pending);
3506                         } else
3507                                 clear_bit(R5_WriteError, &dev->flags);
3508                 }
3509                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3510                         /* This flag does not apply to '.replacement'
3511                          * only to .rdev, so make sure to check that*/
3512                         struct md_rdev *rdev2 = rcu_dereference(
3513                                 conf->disks[i].rdev);
3514                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3515                                 s->handle_bad_blocks = 1;
3516                                 atomic_inc(&rdev2->nr_pending);
3517                         } else
3518                                 clear_bit(R5_MadeGood, &dev->flags);
3519                 }
3520                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3521                         struct md_rdev *rdev2 = rcu_dereference(
3522                                 conf->disks[i].replacement);
3523                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3524                                 s->handle_bad_blocks = 1;
3525                                 atomic_inc(&rdev2->nr_pending);
3526                         } else
3527                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3528                 }
3529                 if (!test_bit(R5_Insync, &dev->flags)) {
3530                         /* The ReadError flag will just be confusing now */
3531                         clear_bit(R5_ReadError, &dev->flags);
3532                         clear_bit(R5_ReWrite, &dev->flags);
3533                 }
3534                 if (test_bit(R5_ReadError, &dev->flags))
3535                         clear_bit(R5_Insync, &dev->flags);
3536                 if (!test_bit(R5_Insync, &dev->flags)) {
3537                         if (s->failed < 2)
3538                                 s->failed_num[s->failed] = i;
3539                         s->failed++;
3540                         if (rdev && !test_bit(Faulty, &rdev->flags))
3541                                 do_recovery = 1;
3542                 }
3543         }
3544         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3545                 /* If there is a failed device being replaced,
3546                  *     we must be recovering.
3547                  * else if we are after recovery_cp, we must be syncing
3548                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3549                  * else we can only be replacing
3550                  * sync and recovery both need to read all devices, and so
3551                  * use the same flag.
3552                  */
3553                 if (do_recovery ||
3554                     sh->sector >= conf->mddev->recovery_cp ||
3555                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3556                         s->syncing = 1;
3557                 else
3558                         s->replacing = 1;
3559         }
3560         rcu_read_unlock();
3561 }
3562
3563 static void handle_stripe(struct stripe_head *sh)
3564 {
3565         struct stripe_head_state s;
3566         struct r5conf *conf = sh->raid_conf;
3567         int i;
3568         int prexor;
3569         int disks = sh->disks;
3570         struct r5dev *pdev, *qdev;
3571
3572         clear_bit(STRIPE_HANDLE, &sh->state);
3573         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3574                 /* already being handled, ensure it gets handled
3575                  * again when current action finishes */
3576                 set_bit(STRIPE_HANDLE, &sh->state);
3577                 return;
3578         }
3579
3580         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3581                 spin_lock(&sh->stripe_lock);
3582                 /* Cannot process 'sync' concurrently with 'discard' */
3583                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3584                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3585                         set_bit(STRIPE_SYNCING, &sh->state);
3586                         clear_bit(STRIPE_INSYNC, &sh->state);
3587                         clear_bit(STRIPE_REPLACED, &sh->state);
3588                 }
3589                 spin_unlock(&sh->stripe_lock);
3590         }
3591         clear_bit(STRIPE_DELAYED, &sh->state);
3592
3593         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3594                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3595                (unsigned long long)sh->sector, sh->state,
3596                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3597                sh->check_state, sh->reconstruct_state);
3598
3599         analyse_stripe(sh, &s);
3600
3601         if (s.handle_bad_blocks) {
3602                 set_bit(STRIPE_HANDLE, &sh->state);
3603                 goto finish;
3604         }
3605
3606         if (unlikely(s.blocked_rdev)) {
3607                 if (s.syncing || s.expanding || s.expanded ||
3608                     s.replacing || s.to_write || s.written) {
3609                         set_bit(STRIPE_HANDLE, &sh->state);
3610                         goto finish;
3611                 }
3612                 /* There is nothing for the blocked_rdev to block */
3613                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3614                 s.blocked_rdev = NULL;
3615         }
3616
3617         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3618                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3619                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3620         }
3621
3622         pr_debug("locked=%d uptodate=%d to_read=%d"
3623                " to_write=%d failed=%d failed_num=%d,%d\n",
3624                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3625                s.failed_num[0], s.failed_num[1]);
3626         /* check if the array has lost more than max_degraded devices and,
3627          * if so, some requests might need to be failed.
3628          */
3629         if (s.failed > conf->max_degraded) {
3630                 sh->check_state = 0;
3631                 sh->reconstruct_state = 0;
3632                 if (s.to_read+s.to_write+s.written)
3633                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3634                 if (s.syncing + s.replacing)
3635                         handle_failed_sync(conf, sh, &s);
3636         }
3637
3638         /* Now we check to see if any write operations have recently
3639          * completed
3640          */
3641         prexor = 0;
3642         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3643                 prexor = 1;
3644         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3645             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3646                 sh->reconstruct_state = reconstruct_state_idle;
3647
3648                 /* All the 'written' buffers and the parity block are ready to
3649                  * be written back to disk
3650                  */
3651                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3652                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3653                 BUG_ON(sh->qd_idx >= 0 &&
3654                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3655                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3656                 for (i = disks; i--; ) {
3657                         struct r5dev *dev = &sh->dev[i];
3658                         if (test_bit(R5_LOCKED, &dev->flags) &&
3659                                 (i == sh->pd_idx || i == sh->qd_idx ||
3660                                  dev->written)) {
3661                                 pr_debug("Writing block %d\n", i);
3662                                 set_bit(R5_Wantwrite, &dev->flags);
3663                                 if (prexor)
3664                                         continue;
3665                                 if (!test_bit(R5_Insync, &dev->flags) ||
3666                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3667                                      s.failed == 0))
3668                                         set_bit(STRIPE_INSYNC, &sh->state);
3669                         }
3670                 }
3671                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3672                         s.dec_preread_active = 1;
3673         }
3674
3675         /*
3676          * might be able to return some write requests if the parity blocks
3677          * are safe, or on a failed drive
3678          */
3679         pdev = &sh->dev[sh->pd_idx];
3680         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3681                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3682         qdev = &sh->dev[sh->qd_idx];
3683         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3684                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3685                 || conf->level < 6;
3686
3687         if (s.written &&
3688             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3689                              && !test_bit(R5_LOCKED, &pdev->flags)
3690                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
3691                                  test_bit(R5_Discard, &pdev->flags))))) &&
3692             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3693                              && !test_bit(R5_LOCKED, &qdev->flags)
3694                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
3695                                  test_bit(R5_Discard, &qdev->flags))))))
3696                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3697
3698         /* Now we might consider reading some blocks, either to check/generate
3699          * parity, or to satisfy requests
3700          * or to load a block that is being partially written.
3701          */
3702         if (s.to_read || s.non_overwrite
3703             || (conf->level == 6 && s.to_write && s.failed)
3704             || (s.syncing && (s.uptodate + s.compute < disks))
3705             || s.replacing
3706             || s.expanding)
3707                 handle_stripe_fill(sh, &s, disks);
3708
3709         /* Now to consider new write requests and what else, if anything
3710          * should be read.  We do not handle new writes when:
3711          * 1/ A 'write' operation (copy+xor) is already in flight.
3712          * 2/ A 'check' operation is in flight, as it may clobber the parity
3713          *    block.
3714          */
3715         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3716                 handle_stripe_dirtying(conf, sh, &s, disks);
3717
3718         /* maybe we need to check and possibly fix the parity for this stripe
3719          * Any reads will already have been scheduled, so we just see if enough
3720          * data is available.  The parity check is held off while parity
3721          * dependent operations are in flight.
3722          */
3723         if (sh->check_state ||
3724             (s.syncing && s.locked == 0 &&
3725              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3726              !test_bit(STRIPE_INSYNC, &sh->state))) {
3727                 if (conf->level == 6)
3728                         handle_parity_checks6(conf, sh, &s, disks);
3729                 else
3730                         handle_parity_checks5(conf, sh, &s, disks);
3731         }
3732
3733         if ((s.replacing || s.syncing) && s.locked == 0
3734             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3735             && !test_bit(STRIPE_REPLACED, &sh->state)) {
3736                 /* Write out to replacement devices where possible */
3737                 for (i = 0; i < conf->raid_disks; i++)
3738                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3739                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3740                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3741                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3742                                 s.locked++;
3743                         }
3744                 if (s.replacing)
3745                         set_bit(STRIPE_INSYNC, &sh->state);
3746                 set_bit(STRIPE_REPLACED, &sh->state);
3747         }
3748         if ((s.syncing || s.replacing) && s.locked == 0 &&
3749             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3750             test_bit(STRIPE_INSYNC, &sh->state)) {
3751                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3752                 clear_bit(STRIPE_SYNCING, &sh->state);
3753                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3754                         wake_up(&conf->wait_for_overlap);
3755         }
3756
3757         /* If the failed drives are just a ReadError, then we might need
3758          * to progress the repair/check process
3759          */
3760         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3761                 for (i = 0; i < s.failed; i++) {
3762                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3763                         if (test_bit(R5_ReadError, &dev->flags)
3764                             && !test_bit(R5_LOCKED, &dev->flags)
3765                             && test_bit(R5_UPTODATE, &dev->flags)
3766                                 ) {
3767                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3768                                         set_bit(R5_Wantwrite, &dev->flags);
3769                                         set_bit(R5_ReWrite, &dev->flags);
3770                                         set_bit(R5_LOCKED, &dev->flags);
3771                                         s.locked++;
3772                                 } else {
3773                                         /* let's read it back */
3774                                         set_bit(R5_Wantread, &dev->flags);
3775                                         set_bit(R5_LOCKED, &dev->flags);
3776                                         s.locked++;
3777                                 }
3778                         }
3779                 }
3780
3781
3782         /* Finish reconstruct operations initiated by the expansion process */
3783         if (sh->reconstruct_state == reconstruct_state_result) {
3784                 struct stripe_head *sh_src
3785                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3786                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3787                         /* sh cannot be written until sh_src has been read.
3788                          * so arrange for sh to be delayed a little
3789                          */
3790                         set_bit(STRIPE_DELAYED, &sh->state);
3791                         set_bit(STRIPE_HANDLE, &sh->state);
3792                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3793                                               &sh_src->state))
3794                                 atomic_inc(&conf->preread_active_stripes);
3795                         release_stripe(sh_src);
3796                         goto finish;
3797                 }
3798                 if (sh_src)
3799                         release_stripe(sh_src);
3800
3801                 sh->reconstruct_state = reconstruct_state_idle;
3802                 clear_bit(STRIPE_EXPANDING, &sh->state);
3803                 for (i = conf->raid_disks; i--; ) {
3804                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3805                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3806                         s.locked++;
3807                 }
3808         }
3809
3810         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3811             !sh->reconstruct_state) {
3812                 /* Need to write out all blocks after computing parity */
3813                 sh->disks = conf->raid_disks;
3814                 stripe_set_idx(sh->sector, conf, 0, sh);
3815                 schedule_reconstruction(sh, &s, 1, 1);
3816         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3817                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3818                 atomic_dec(&conf->reshape_stripes);
3819                 wake_up(&conf->wait_for_overlap);
3820                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3821         }
3822
3823         if (s.expanding && s.locked == 0 &&
3824             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3825                 handle_stripe_expansion(conf, sh);
3826
3827 finish:
3828         /* wait for this device to become unblocked */
3829         if (unlikely(s.blocked_rdev)) {
3830                 if (conf->mddev->external)
3831                         md_wait_for_blocked_rdev(s.blocked_rdev,
3832                                                  conf->mddev);
3833                 else
3834                         /* Internal metadata will immediately
3835                          * be written by raid5d, so we don't
3836                          * need to wait here.
3837                          */
3838                         rdev_dec_pending(s.blocked_rdev,
3839                                          conf->mddev);
3840         }
3841
3842         if (s.handle_bad_blocks)
3843                 for (i = disks; i--; ) {
3844                         struct md_rdev *rdev;
3845                         struct r5dev *dev = &sh->dev[i];
3846                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3847                                 /* We own a safe reference to the rdev */
3848                                 rdev = conf->disks[i].rdev;
3849                                 if (!rdev_set_badblocks(rdev, sh->sector,
3850                                                         STRIPE_SECTORS, 0))
3851                                         md_error(conf->mddev, rdev);
3852                                 rdev_dec_pending(rdev, conf->mddev);
3853                         }
3854                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3855                                 rdev = conf->disks[i].rdev;
3856                                 rdev_clear_badblocks(rdev, sh->sector,
3857                                                      STRIPE_SECTORS, 0);
3858                                 rdev_dec_pending(rdev, conf->mddev);
3859                         }
3860                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3861                                 rdev = conf->disks[i].replacement;
3862                                 if (!rdev)
3863                                         /* rdev have been moved down */
3864                                         rdev = conf->disks[i].rdev;
3865                                 rdev_clear_badblocks(rdev, sh->sector,
3866                                                      STRIPE_SECTORS, 0);
3867                                 rdev_dec_pending(rdev, conf->mddev);
3868                         }
3869                 }
3870
3871         if (s.ops_request)
3872                 raid_run_ops(sh, s.ops_request);
3873
3874         ops_run_io(sh, &s);
3875
3876         if (s.dec_preread_active) {
3877                 /* We delay this until after ops_run_io so that if make_request
3878                  * is waiting on a flush, it won't continue until the writes
3879                  * have actually been submitted.
3880                  */
3881                 atomic_dec(&conf->preread_active_stripes);
3882                 if (atomic_read(&conf->preread_active_stripes) <
3883                     IO_THRESHOLD)
3884                         md_wakeup_thread(conf->mddev->thread);
3885         }
3886
3887         return_io(s.return_bi);
3888
3889         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3890 }
3891
3892 static void raid5_activate_delayed(struct r5conf *conf)
3893 {
3894         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3895                 while (!list_empty(&conf->delayed_list)) {
3896                         struct list_head *l = conf->delayed_list.next;
3897                         struct stripe_head *sh;
3898                         sh = list_entry(l, struct stripe_head, lru);
3899                         list_del_init(l);
3900                         clear_bit(STRIPE_DELAYED, &sh->state);
3901                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3902                                 atomic_inc(&conf->preread_active_stripes);
3903                         list_add_tail(&sh->lru, &conf->hold_list);
3904                         raid5_wakeup_stripe_thread(sh);
3905                 }
3906         }
3907 }
3908
3909 static void activate_bit_delay(struct r5conf *conf)
3910 {
3911         /* device_lock is held */
3912         struct list_head head;
3913         list_add(&head, &conf->bitmap_list);
3914         list_del_init(&conf->bitmap_list);
3915         while (!list_empty(&head)) {
3916                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3917                 list_del_init(&sh->lru);
3918                 atomic_inc(&sh->count);
3919                 __release_stripe(conf, sh);
3920         }
3921 }
3922
3923 int md_raid5_congested(struct mddev *mddev, int bits)
3924 {
3925         struct r5conf *conf = mddev->private;
3926
3927         /* No difference between reads and writes.  Just check
3928          * how busy the stripe_cache is
3929          */
3930
3931         if (conf->inactive_blocked)
3932                 return 1;
3933         if (conf->quiesce)
3934                 return 1;
3935         if (list_empty_careful(&conf->inactive_list))
3936                 return 1;
3937
3938         return 0;
3939 }
3940 EXPORT_SYMBOL_GPL(md_raid5_congested);
3941
3942 static int raid5_congested(void *data, int bits)
3943 {
3944         struct mddev *mddev = data;
3945
3946         return mddev_congested(mddev, bits) ||
3947                 md_raid5_congested(mddev, bits);
3948 }
3949
3950 /* We want read requests to align with chunks where possible,
3951  * but write requests don't need to.
3952  */
3953 static int raid5_mergeable_bvec(struct request_queue *q,
3954                                 struct bvec_merge_data *bvm,
3955                                 struct bio_vec *biovec)
3956 {
3957         struct mddev *mddev = q->queuedata;
3958         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3959         int max;
3960         unsigned int chunk_sectors = mddev->chunk_sectors;
3961         unsigned int bio_sectors = bvm->bi_size >> 9;
3962
3963         if ((bvm->bi_rw & 1) == WRITE)
3964                 return biovec->bv_len; /* always allow writes to be mergeable */
3965
3966         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3967                 chunk_sectors = mddev->new_chunk_sectors;
3968         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3969         if (max < 0) max = 0;
3970         if (max <= biovec->bv_len && bio_sectors == 0)
3971                 return biovec->bv_len;
3972         else
3973                 return max;
3974 }
3975
3976
3977 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3978 {
3979         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3980         unsigned int chunk_sectors = mddev->chunk_sectors;
3981         unsigned int bio_sectors = bio_sectors(bio);
3982
3983         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3984                 chunk_sectors = mddev->new_chunk_sectors;
3985         return  chunk_sectors >=
3986                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3987 }
3988
3989 /*
3990  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3991  *  later sampled by raid5d.
3992  */
3993 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3994 {
3995         unsigned long flags;
3996
3997         spin_lock_irqsave(&conf->device_lock, flags);
3998
3999         bi->bi_next = conf->retry_read_aligned_list;
4000         conf->retry_read_aligned_list = bi;
4001
4002         spin_unlock_irqrestore(&conf->device_lock, flags);
4003         md_wakeup_thread(conf->mddev->thread);
4004 }
4005
4006
4007 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4008 {
4009         struct bio *bi;
4010
4011         bi = conf->retry_read_aligned;
4012         if (bi) {
4013                 conf->retry_read_aligned = NULL;
4014                 return bi;
4015         }
4016         bi = conf->retry_read_aligned_list;
4017         if(bi) {
4018                 conf->retry_read_aligned_list = bi->bi_next;
4019                 bi->bi_next = NULL;
4020                 /*
4021                  * this sets the active strip count to 1 and the processed
4022                  * strip count to zero (upper 8 bits)
4023                  */
4024                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4025         }
4026
4027         return bi;
4028 }
4029
4030
4031 /*
4032  *  The "raid5_align_endio" should check if the read succeeded and if it
4033  *  did, call bio_endio on the original bio (having bio_put the new bio
4034  *  first).
4035  *  If the read failed..
4036  */
4037 static void raid5_align_endio(struct bio *bi, int error)
4038 {
4039         struct bio* raid_bi  = bi->bi_private;
4040         struct mddev *mddev;
4041         struct r5conf *conf;
4042         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4043         struct md_rdev *rdev;
4044
4045         bio_put(bi);
4046
4047         rdev = (void*)raid_bi->bi_next;
4048         raid_bi->bi_next = NULL;
4049         mddev = rdev->mddev;
4050         conf = mddev->private;
4051
4052         rdev_dec_pending(rdev, conf->mddev);
4053
4054         if (!error && uptodate) {
4055                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4056                                          raid_bi, 0);
4057                 bio_endio(raid_bi, 0);
4058                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4059                         wake_up(&conf->wait_for_stripe);
4060                 return;
4061         }
4062
4063
4064         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4065
4066         add_bio_to_retry(raid_bi, conf);
4067 }
4068
4069 static int bio_fits_rdev(struct bio *bi)
4070 {
4071         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4072
4073         if (bio_sectors(bi) > queue_max_sectors(q))
4074                 return 0;
4075         blk_recount_segments(q, bi);
4076         if (bi->bi_phys_segments > queue_max_segments(q))
4077                 return 0;
4078
4079         if (q->merge_bvec_fn)
4080                 /* it's too hard to apply the merge_bvec_fn at this stage,
4081                  * just just give up
4082                  */
4083                 return 0;
4084
4085         return 1;
4086 }
4087
4088
4089 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4090 {
4091         struct r5conf *conf = mddev->private;
4092         int dd_idx;
4093         struct bio* align_bi;
4094         struct md_rdev *rdev;
4095         sector_t end_sector;
4096
4097         if (!in_chunk_boundary(mddev, raid_bio)) {
4098                 pr_debug("chunk_aligned_read : non aligned\n");
4099                 return 0;
4100         }
4101         /*
4102          * use bio_clone_mddev to make a copy of the bio
4103          */
4104         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4105         if (!align_bi)
4106                 return 0;
4107         /*
4108          *   set bi_end_io to a new function, and set bi_private to the
4109          *     original bio.
4110          */
4111         align_bi->bi_end_io  = raid5_align_endio;
4112         align_bi->bi_private = raid_bio;
4113         /*
4114          *      compute position
4115          */
4116         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
4117                                                     0,
4118                                                     &dd_idx, NULL);
4119
4120         end_sector = bio_end_sector(align_bi);
4121         rcu_read_lock();
4122         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4123         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4124             rdev->recovery_offset < end_sector) {
4125                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4126                 if (rdev &&
4127                     (test_bit(Faulty, &rdev->flags) ||
4128                     !(test_bit(In_sync, &rdev->flags) ||
4129                       rdev->recovery_offset >= end_sector)))
4130                         rdev = NULL;
4131         }
4132         if (rdev) {
4133                 sector_t first_bad;
4134                 int bad_sectors;
4135
4136                 atomic_inc(&rdev->nr_pending);
4137                 rcu_read_unlock();
4138                 raid_bio->bi_next = (void*)rdev;
4139                 align_bi->bi_bdev =  rdev->bdev;
4140                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4141
4142                 if (!bio_fits_rdev(align_bi) ||
4143                     is_badblock(rdev, align_bi->bi_sector, bio_sectors(align_bi),
4144                                 &first_bad, &bad_sectors)) {
4145                         /* too big in some way, or has a known bad block */
4146                         bio_put(align_bi);
4147                         rdev_dec_pending(rdev, mddev);
4148                         return 0;
4149                 }
4150
4151                 /* No reshape active, so we can trust rdev->data_offset */
4152                 align_bi->bi_sector += rdev->data_offset;
4153
4154                 spin_lock_irq(&conf->device_lock);
4155                 wait_event_lock_irq(conf->wait_for_stripe,
4156                                     conf->quiesce == 0,
4157                                     conf->device_lock);
4158                 atomic_inc(&conf->active_aligned_reads);
4159                 spin_unlock_irq(&conf->device_lock);
4160
4161                 if (mddev->gendisk)
4162                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4163                                               align_bi, disk_devt(mddev->gendisk),
4164                                               raid_bio->bi_sector);
4165                 generic_make_request(align_bi);
4166                 return 1;
4167         } else {
4168                 rcu_read_unlock();
4169                 bio_put(align_bi);
4170                 return 0;
4171         }
4172 }
4173
4174 /* __get_priority_stripe - get the next stripe to process
4175  *
4176  * Full stripe writes are allowed to pass preread active stripes up until
4177  * the bypass_threshold is exceeded.  In general the bypass_count
4178  * increments when the handle_list is handled before the hold_list; however, it
4179  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4180  * stripe with in flight i/o.  The bypass_count will be reset when the
4181  * head of the hold_list has changed, i.e. the head was promoted to the
4182  * handle_list.
4183  */
4184 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4185 {
4186         struct stripe_head *sh = NULL, *tmp;
4187         struct list_head *handle_list = NULL;
4188         struct r5worker_group *wg = NULL;
4189
4190         if (conf->worker_cnt_per_group == 0) {
4191                 handle_list = &conf->handle_list;
4192         } else if (group != ANY_GROUP) {
4193                 handle_list = &conf->worker_groups[group].handle_list;
4194                 wg = &conf->worker_groups[group];
4195         } else {
4196                 int i;
4197                 for (i = 0; i < conf->group_cnt; i++) {
4198                         handle_list = &conf->worker_groups[i].handle_list;
4199                         wg = &conf->worker_groups[i];
4200                         if (!list_empty(handle_list))
4201                                 break;
4202                 }
4203         }
4204
4205         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4206                   __func__,
4207                   list_empty(handle_list) ? "empty" : "busy",
4208                   list_empty(&conf->hold_list) ? "empty" : "busy",
4209                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4210
4211         if (!list_empty(handle_list)) {
4212                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4213
4214                 if (list_empty(&conf->hold_list))
4215                         conf->bypass_count = 0;
4216                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4217                         if (conf->hold_list.next == conf->last_hold)
4218                                 conf->bypass_count++;
4219                         else {
4220                                 conf->last_hold = conf->hold_list.next;
4221                                 conf->bypass_count -= conf->bypass_threshold;
4222                                 if (conf->bypass_count < 0)
4223                                         conf->bypass_count = 0;
4224                         }
4225                 }
4226         } else if (!list_empty(&conf->hold_list) &&
4227                    ((conf->bypass_threshold &&
4228                      conf->bypass_count > conf->bypass_threshold) ||
4229                     atomic_read(&conf->pending_full_writes) == 0)) {
4230
4231                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4232                         if (conf->worker_cnt_per_group == 0 ||
4233                             group == ANY_GROUP ||
4234                             !cpu_online(tmp->cpu) ||
4235                             cpu_to_group(tmp->cpu) == group) {
4236                                 sh = tmp;
4237                                 break;
4238                         }
4239                 }
4240
4241                 if (sh) {
4242                         conf->bypass_count -= conf->bypass_threshold;
4243                         if (conf->bypass_count < 0)
4244                                 conf->bypass_count = 0;
4245                 }
4246                 wg = NULL;
4247         }
4248
4249         if (!sh)
4250                 return NULL;
4251
4252         if (wg) {
4253                 wg->stripes_cnt--;
4254                 sh->group = NULL;
4255         }
4256         list_del_init(&sh->lru);
4257         atomic_inc(&sh->count);
4258         BUG_ON(atomic_read(&sh->count) != 1);
4259         return sh;
4260 }
4261
4262 struct raid5_plug_cb {
4263         struct blk_plug_cb      cb;
4264         struct list_head        list;
4265 };
4266
4267 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4268 {
4269         struct raid5_plug_cb *cb = container_of(
4270                 blk_cb, struct raid5_plug_cb, cb);
4271         struct stripe_head *sh;
4272         struct mddev *mddev = cb->cb.data;
4273         struct r5conf *conf = mddev->private;
4274         int cnt = 0;
4275
4276         if (cb->list.next && !list_empty(&cb->list)) {
4277                 spin_lock_irq(&conf->device_lock);
4278                 while (!list_empty(&cb->list)) {
4279                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4280                         list_del_init(&sh->lru);
4281                         /*
4282                          * avoid race release_stripe_plug() sees
4283                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4284                          * is still in our list
4285                          */
4286                         smp_mb__before_clear_bit();
4287                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4288                         /*
4289                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4290                          * case, the count is always > 1 here
4291                          */
4292                         __release_stripe(conf, sh);
4293                         cnt++;
4294                 }
4295                 spin_unlock_irq(&conf->device_lock);
4296         }
4297         if (mddev->queue)
4298                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4299         kfree(cb);
4300 }
4301
4302 static void release_stripe_plug(struct mddev *mddev,
4303                                 struct stripe_head *sh)
4304 {
4305         struct blk_plug_cb *blk_cb = blk_check_plugged(
4306                 raid5_unplug, mddev,
4307                 sizeof(struct raid5_plug_cb));
4308         struct raid5_plug_cb *cb;
4309
4310         if (!blk_cb) {
4311                 release_stripe(sh);
4312                 return;
4313         }
4314
4315         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4316
4317         if (cb->list.next == NULL)
4318                 INIT_LIST_HEAD(&cb->list);
4319
4320         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4321                 list_add_tail(&sh->lru, &cb->list);
4322         else
4323                 release_stripe(sh);
4324 }
4325
4326 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4327 {
4328         struct r5conf *conf = mddev->private;
4329         sector_t logical_sector, last_sector;
4330         struct stripe_head *sh;
4331         int remaining;
4332         int stripe_sectors;
4333
4334         if (mddev->reshape_position != MaxSector)
4335                 /* Skip discard while reshape is happening */
4336                 return;
4337
4338         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4339         last_sector = bi->bi_sector + (bi->bi_size>>9);
4340
4341         bi->bi_next = NULL;
4342         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4343
4344         stripe_sectors = conf->chunk_sectors *
4345                 (conf->raid_disks - conf->max_degraded);
4346         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4347                                                stripe_sectors);
4348         sector_div(last_sector, stripe_sectors);
4349
4350         logical_sector *= conf->chunk_sectors;
4351         last_sector *= conf->chunk_sectors;
4352
4353         for (; logical_sector < last_sector;
4354              logical_sector += STRIPE_SECTORS) {
4355                 DEFINE_WAIT(w);
4356                 int d;
4357         again:
4358                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4359                 prepare_to_wait(&conf->wait_for_overlap, &w,
4360                                 TASK_UNINTERRUPTIBLE);
4361                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4362                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4363                         release_stripe(sh);
4364                         schedule();
4365                         goto again;
4366                 }
4367                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4368                 spin_lock_irq(&sh->stripe_lock);
4369                 for (d = 0; d < conf->raid_disks; d++) {
4370                         if (d == sh->pd_idx || d == sh->qd_idx)
4371                                 continue;
4372                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4373                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4374                                 spin_unlock_irq(&sh->stripe_lock);
4375                                 release_stripe(sh);
4376                                 schedule();
4377                                 goto again;
4378                         }
4379                 }
4380                 set_bit(STRIPE_DISCARD, &sh->state);
4381                 finish_wait(&conf->wait_for_overlap, &w);
4382                 for (d = 0; d < conf->raid_disks; d++) {
4383                         if (d == sh->pd_idx || d == sh->qd_idx)
4384                                 continue;
4385                         sh->dev[d].towrite = bi;
4386                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4387                         raid5_inc_bi_active_stripes(bi);
4388                 }
4389                 spin_unlock_irq(&sh->stripe_lock);
4390                 if (conf->mddev->bitmap) {
4391                         for (d = 0;
4392                              d < conf->raid_disks - conf->max_degraded;
4393                              d++)
4394                                 bitmap_startwrite(mddev->bitmap,
4395                                                   sh->sector,
4396                                                   STRIPE_SECTORS,
4397                                                   0);
4398                         sh->bm_seq = conf->seq_flush + 1;
4399                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4400                 }
4401
4402                 set_bit(STRIPE_HANDLE, &sh->state);
4403                 clear_bit(STRIPE_DELAYED, &sh->state);
4404                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4405                         atomic_inc(&conf->preread_active_stripes);
4406                 release_stripe_plug(mddev, sh);
4407         }
4408
4409         remaining = raid5_dec_bi_active_stripes(bi);
4410         if (remaining == 0) {
4411                 md_write_end(mddev);
4412                 bio_endio(bi, 0);
4413         }
4414 }
4415
4416 static void make_request(struct mddev *mddev, struct bio * bi)
4417 {
4418         struct r5conf *conf = mddev->private;
4419         int dd_idx;
4420         sector_t new_sector;
4421         sector_t logical_sector, last_sector;
4422         struct stripe_head *sh;
4423         const int rw = bio_data_dir(bi);
4424         int remaining;
4425
4426         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4427                 md_flush_request(mddev, bi);
4428                 return;
4429         }
4430
4431         md_write_start(mddev, bi);
4432
4433         if (rw == READ &&
4434              mddev->reshape_position == MaxSector &&
4435              chunk_aligned_read(mddev,bi))
4436                 return;
4437
4438         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4439                 make_discard_request(mddev, bi);
4440                 return;
4441         }
4442
4443         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4444         last_sector = bio_end_sector(bi);
4445         bi->bi_next = NULL;
4446         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4447
4448         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4449                 DEFINE_WAIT(w);
4450                 int previous;
4451                 int seq;
4452
4453         retry:
4454                 seq = read_seqcount_begin(&conf->gen_lock);
4455                 previous = 0;
4456                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4457                 if (unlikely(conf->reshape_progress != MaxSector)) {
4458                         /* spinlock is needed as reshape_progress may be
4459                          * 64bit on a 32bit platform, and so it might be
4460                          * possible to see a half-updated value
4461                          * Of course reshape_progress could change after
4462                          * the lock is dropped, so once we get a reference
4463                          * to the stripe that we think it is, we will have
4464                          * to check again.
4465                          */
4466                         spin_lock_irq(&conf->device_lock);
4467                         if (mddev->reshape_backwards
4468                             ? logical_sector < conf->reshape_progress
4469                             : logical_sector >= conf->reshape_progress) {
4470                                 previous = 1;
4471                         } else {
4472                                 if (mddev->reshape_backwards
4473                                     ? logical_sector < conf->reshape_safe
4474                                     : logical_sector >= conf->reshape_safe) {
4475                                         spin_unlock_irq(&conf->device_lock);
4476                                         schedule();
4477                                         goto retry;
4478                                 }
4479                         }
4480                         spin_unlock_irq(&conf->device_lock);
4481                 }
4482
4483                 new_sector = raid5_compute_sector(conf, logical_sector,
4484                                                   previous,
4485                                                   &dd_idx, NULL);
4486                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4487                         (unsigned long long)new_sector,
4488                         (unsigned long long)logical_sector);
4489
4490                 sh = get_active_stripe(conf, new_sector, previous,
4491                                        (bi->bi_rw&RWA_MASK), 0);
4492                 if (sh) {
4493                         if (unlikely(previous)) {
4494                                 /* expansion might have moved on while waiting for a
4495                                  * stripe, so we must do the range check again.
4496                                  * Expansion could still move past after this
4497                                  * test, but as we are holding a reference to
4498                                  * 'sh', we know that if that happens,
4499                                  *  STRIPE_EXPANDING will get set and the expansion
4500                                  * won't proceed until we finish with the stripe.
4501                                  */
4502                                 int must_retry = 0;
4503                                 spin_lock_irq(&conf->device_lock);
4504                                 if (mddev->reshape_backwards
4505                                     ? logical_sector >= conf->reshape_progress
4506                                     : logical_sector < conf->reshape_progress)
4507                                         /* mismatch, need to try again */
4508                                         must_retry = 1;
4509                                 spin_unlock_irq(&conf->device_lock);
4510                                 if (must_retry) {
4511                                         release_stripe(sh);
4512                                         schedule();
4513                                         goto retry;
4514                                 }
4515                         }
4516                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
4517                                 /* Might have got the wrong stripe_head
4518                                  * by accident
4519                                  */
4520                                 release_stripe(sh);
4521                                 goto retry;
4522                         }
4523
4524                         if (rw == WRITE &&
4525                             logical_sector >= mddev->suspend_lo &&
4526                             logical_sector < mddev->suspend_hi) {
4527                                 release_stripe(sh);
4528                                 /* As the suspend_* range is controlled by
4529                                  * userspace, we want an interruptible
4530                                  * wait.
4531                                  */
4532                                 flush_signals(current);
4533                                 prepare_to_wait(&conf->wait_for_overlap,
4534                                                 &w, TASK_INTERRUPTIBLE);
4535                                 if (logical_sector >= mddev->suspend_lo &&
4536                                     logical_sector < mddev->suspend_hi)
4537                                         schedule();
4538                                 goto retry;
4539                         }
4540
4541                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4542                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4543                                 /* Stripe is busy expanding or
4544                                  * add failed due to overlap.  Flush everything
4545                                  * and wait a while
4546                                  */
4547                                 md_wakeup_thread(mddev->thread);
4548                                 release_stripe(sh);
4549                                 schedule();
4550                                 goto retry;
4551                         }
4552                         finish_wait(&conf->wait_for_overlap, &w);
4553                         set_bit(STRIPE_HANDLE, &sh->state);
4554                         clear_bit(STRIPE_DELAYED, &sh->state);
4555                         if ((bi->bi_rw & REQ_SYNC) &&
4556                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4557                                 atomic_inc(&conf->preread_active_stripes);
4558                         release_stripe_plug(mddev, sh);
4559                 } else {
4560                         /* cannot get stripe for read-ahead, just give-up */
4561                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4562                         finish_wait(&conf->wait_for_overlap, &w);
4563                         break;
4564                 }
4565         }
4566
4567         remaining = raid5_dec_bi_active_stripes(bi);
4568         if (remaining == 0) {
4569
4570                 if ( rw == WRITE )
4571                         md_write_end(mddev);
4572
4573                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4574                                          bi, 0);
4575                 bio_endio(bi, 0);
4576         }
4577 }
4578
4579 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4580
4581 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4582 {
4583         /* reshaping is quite different to recovery/resync so it is
4584          * handled quite separately ... here.
4585          *
4586          * On each call to sync_request, we gather one chunk worth of
4587          * destination stripes and flag them as expanding.
4588          * Then we find all the source stripes and request reads.
4589          * As the reads complete, handle_stripe will copy the data
4590          * into the destination stripe and release that stripe.
4591          */
4592         struct r5conf *conf = mddev->private;
4593         struct stripe_head *sh;
4594         sector_t first_sector, last_sector;
4595         int raid_disks = conf->previous_raid_disks;
4596         int data_disks = raid_disks - conf->max_degraded;
4597         int new_data_disks = conf->raid_disks - conf->max_degraded;
4598         int i;
4599         int dd_idx;
4600         sector_t writepos, readpos, safepos;
4601         sector_t stripe_addr;
4602         int reshape_sectors;
4603         struct list_head stripes;
4604
4605         if (sector_nr == 0) {
4606                 /* If restarting in the middle, skip the initial sectors */
4607                 if (mddev->reshape_backwards &&
4608                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4609                         sector_nr = raid5_size(mddev, 0, 0)
4610                                 - conf->reshape_progress;
4611                 } else if (!mddev->reshape_backwards &&
4612                            conf->reshape_progress > 0)
4613                         sector_nr = conf->reshape_progress;
4614                 sector_div(sector_nr, new_data_disks);
4615                 if (sector_nr) {
4616                         mddev->curr_resync_completed = sector_nr;
4617                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4618                         *skipped = 1;
4619                         return sector_nr;
4620                 }
4621         }
4622
4623         /* We need to process a full chunk at a time.
4624          * If old and new chunk sizes differ, we need to process the
4625          * largest of these
4626          */
4627         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4628                 reshape_sectors = mddev->new_chunk_sectors;
4629         else
4630                 reshape_sectors = mddev->chunk_sectors;
4631
4632         /* We update the metadata at least every 10 seconds, or when
4633          * the data about to be copied would over-write the source of
4634          * the data at the front of the range.  i.e. one new_stripe
4635          * along from reshape_progress new_maps to after where
4636          * reshape_safe old_maps to
4637          */
4638         writepos = conf->reshape_progress;
4639         sector_div(writepos, new_data_disks);
4640         readpos = conf->reshape_progress;
4641         sector_div(readpos, data_disks);
4642         safepos = conf->reshape_safe;
4643         sector_div(safepos, data_disks);
4644         if (mddev->reshape_backwards) {
4645                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4646                 readpos += reshape_sectors;
4647                 safepos += reshape_sectors;
4648         } else {
4649                 writepos += reshape_sectors;
4650                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4651                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4652         }
4653
4654         /* Having calculated the 'writepos' possibly use it
4655          * to set 'stripe_addr' which is where we will write to.
4656          */
4657         if (mddev->reshape_backwards) {
4658                 BUG_ON(conf->reshape_progress == 0);
4659                 stripe_addr = writepos;
4660                 BUG_ON((mddev->dev_sectors &
4661                         ~((sector_t)reshape_sectors - 1))
4662                        - reshape_sectors - stripe_addr
4663                        != sector_nr);
4664         } else {
4665                 BUG_ON(writepos != sector_nr + reshape_sectors);
4666                 stripe_addr = sector_nr;
4667         }
4668
4669         /* 'writepos' is the most advanced device address we might write.
4670          * 'readpos' is the least advanced device address we might read.
4671          * 'safepos' is the least address recorded in the metadata as having
4672          *     been reshaped.
4673          * If there is a min_offset_diff, these are adjusted either by
4674          * increasing the safepos/readpos if diff is negative, or
4675          * increasing writepos if diff is positive.
4676          * If 'readpos' is then behind 'writepos', there is no way that we can
4677          * ensure safety in the face of a crash - that must be done by userspace
4678          * making a backup of the data.  So in that case there is no particular
4679          * rush to update metadata.
4680          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4681          * update the metadata to advance 'safepos' to match 'readpos' so that
4682          * we can be safe in the event of a crash.
4683          * So we insist on updating metadata if safepos is behind writepos and
4684          * readpos is beyond writepos.
4685          * In any case, update the metadata every 10 seconds.
4686          * Maybe that number should be configurable, but I'm not sure it is
4687          * worth it.... maybe it could be a multiple of safemode_delay???
4688          */
4689         if (conf->min_offset_diff < 0) {
4690                 safepos += -conf->min_offset_diff;
4691                 readpos += -conf->min_offset_diff;
4692         } else
4693                 writepos += conf->min_offset_diff;
4694
4695         if ((mddev->reshape_backwards
4696              ? (safepos > writepos && readpos < writepos)
4697              : (safepos < writepos && readpos > writepos)) ||
4698             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4699                 /* Cannot proceed until we've updated the superblock... */
4700                 wait_event(conf->wait_for_overlap,
4701                            atomic_read(&conf->reshape_stripes)==0);
4702                 mddev->reshape_position = conf->reshape_progress;
4703                 mddev->curr_resync_completed = sector_nr;
4704                 conf->reshape_checkpoint = jiffies;
4705                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4706                 md_wakeup_thread(mddev->thread);
4707                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4708                            kthread_should_stop());
4709                 spin_lock_irq(&conf->device_lock);
4710                 conf->reshape_safe = mddev->reshape_position;
4711                 spin_unlock_irq(&conf->device_lock);
4712                 wake_up(&conf->wait_for_overlap);
4713                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4714         }
4715
4716         INIT_LIST_HEAD(&stripes);
4717         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4718                 int j;
4719                 int skipped_disk = 0;
4720                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4721                 set_bit(STRIPE_EXPANDING, &sh->state);
4722                 atomic_inc(&conf->reshape_stripes);
4723                 /* If any of this stripe is beyond the end of the old
4724                  * array, then we need to zero those blocks
4725                  */
4726                 for (j=sh->disks; j--;) {
4727                         sector_t s;
4728                         if (j == sh->pd_idx)
4729                                 continue;
4730                         if (conf->level == 6 &&
4731                             j == sh->qd_idx)
4732                                 continue;
4733                         s = compute_blocknr(sh, j, 0);
4734                         if (s < raid5_size(mddev, 0, 0)) {
4735                                 skipped_disk = 1;
4736                                 continue;
4737                         }
4738                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4739                         set_bit(R5_Expanded, &sh->dev[j].flags);
4740                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4741                 }
4742                 if (!skipped_disk) {
4743                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4744                         set_bit(STRIPE_HANDLE, &sh->state);
4745                 }
4746                 list_add(&sh->lru, &stripes);
4747         }
4748         spin_lock_irq(&conf->device_lock);
4749         if (mddev->reshape_backwards)
4750                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4751         else
4752                 conf->reshape_progress += reshape_sectors * new_data_disks;
4753         spin_unlock_irq(&conf->device_lock);
4754         /* Ok, those stripe are ready. We can start scheduling
4755          * reads on the source stripes.
4756          * The source stripes are determined by mapping the first and last
4757          * block on the destination stripes.
4758          */
4759         first_sector =
4760                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4761                                      1, &dd_idx, NULL);
4762         last_sector =
4763                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4764                                             * new_data_disks - 1),
4765                                      1, &dd_idx, NULL);
4766         if (last_sector >= mddev->dev_sectors)
4767                 last_sector = mddev->dev_sectors - 1;
4768         while (first_sector <= last_sector) {
4769                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4770                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4771                 set_bit(STRIPE_HANDLE, &sh->state);
4772                 release_stripe(sh);
4773                 first_sector += STRIPE_SECTORS;
4774         }
4775         /* Now that the sources are clearly marked, we can release
4776          * the destination stripes
4777          */
4778         while (!list_empty(&stripes)) {
4779                 sh = list_entry(stripes.next, struct stripe_head, lru);
4780                 list_del_init(&sh->lru);
4781                 release_stripe(sh);
4782         }
4783         /* If this takes us to the resync_max point where we have to pause,
4784          * then we need to write out the superblock.
4785          */
4786         sector_nr += reshape_sectors;
4787         if ((sector_nr - mddev->curr_resync_completed) * 2
4788             >= mddev->resync_max - mddev->curr_resync_completed) {
4789                 /* Cannot proceed until we've updated the superblock... */
4790                 wait_event(conf->wait_for_overlap,
4791                            atomic_read(&conf->reshape_stripes) == 0);
4792                 mddev->reshape_position = conf->reshape_progress;
4793                 mddev->curr_resync_completed = sector_nr;
4794                 conf->reshape_checkpoint = jiffies;
4795                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4796                 md_wakeup_thread(mddev->thread);
4797                 wait_event(mddev->sb_wait,
4798                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4799                            || kthread_should_stop());
4800                 spin_lock_irq(&conf->device_lock);
4801                 conf->reshape_safe = mddev->reshape_position;
4802                 spin_unlock_irq(&conf->device_lock);
4803                 wake_up(&conf->wait_for_overlap);
4804                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4805         }
4806         return reshape_sectors;
4807 }
4808
4809 /* FIXME go_faster isn't used */
4810 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4811 {
4812         struct r5conf *conf = mddev->private;
4813         struct stripe_head *sh;
4814         sector_t max_sector = mddev->dev_sectors;
4815         sector_t sync_blocks;
4816         int still_degraded = 0;
4817         int i;
4818
4819         if (sector_nr >= max_sector) {
4820                 /* just being told to finish up .. nothing much to do */
4821
4822                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4823                         end_reshape(conf);
4824                         return 0;
4825                 }
4826
4827                 if (mddev->curr_resync < max_sector) /* aborted */
4828                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4829                                         &sync_blocks, 1);
4830                 else /* completed sync */
4831                         conf->fullsync = 0;
4832                 bitmap_close_sync(mddev->bitmap);
4833
4834                 return 0;
4835         }
4836
4837         /* Allow raid5_quiesce to complete */
4838         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4839
4840         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4841                 return reshape_request(mddev, sector_nr, skipped);
4842
4843         /* No need to check resync_max as we never do more than one
4844          * stripe, and as resync_max will always be on a chunk boundary,
4845          * if the check in md_do_sync didn't fire, there is no chance
4846          * of overstepping resync_max here
4847          */
4848
4849         /* if there is too many failed drives and we are trying
4850          * to resync, then assert that we are finished, because there is
4851          * nothing we can do.
4852          */
4853         if (mddev->degraded >= conf->max_degraded &&
4854             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4855                 sector_t rv = mddev->dev_sectors - sector_nr;
4856                 *skipped = 1;
4857                 return rv;
4858         }
4859         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4860             !conf->fullsync &&
4861             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4862             sync_blocks >= STRIPE_SECTORS) {
4863                 /* we can skip this block, and probably more */
4864                 sync_blocks /= STRIPE_SECTORS;
4865                 *skipped = 1;
4866                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4867         }
4868
4869         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4870
4871         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4872         if (sh == NULL) {
4873                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4874                 /* make sure we don't swamp the stripe cache if someone else
4875                  * is trying to get access
4876                  */
4877                 schedule_timeout_uninterruptible(1);
4878         }
4879         /* Need to check if array will still be degraded after recovery/resync
4880          * We don't need to check the 'failed' flag as when that gets set,
4881          * recovery aborts.
4882          */
4883         for (i = 0; i < conf->raid_disks; i++)
4884                 if (conf->disks[i].rdev == NULL)
4885                         still_degraded = 1;
4886
4887         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4888
4889         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4890
4891         handle_stripe(sh);
4892         release_stripe(sh);
4893
4894         return STRIPE_SECTORS;
4895 }
4896
4897 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4898 {
4899         /* We may not be able to submit a whole bio at once as there
4900          * may not be enough stripe_heads available.
4901          * We cannot pre-allocate enough stripe_heads as we may need
4902          * more than exist in the cache (if we allow ever large chunks).
4903          * So we do one stripe head at a time and record in
4904          * ->bi_hw_segments how many have been done.
4905          *
4906          * We *know* that this entire raid_bio is in one chunk, so
4907          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4908          */
4909         struct stripe_head *sh;
4910         int dd_idx;
4911         sector_t sector, logical_sector, last_sector;
4912         int scnt = 0;
4913         int remaining;
4914         int handled = 0;
4915
4916         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4917         sector = raid5_compute_sector(conf, logical_sector,
4918                                       0, &dd_idx, NULL);
4919         last_sector = bio_end_sector(raid_bio);
4920
4921         for (; logical_sector < last_sector;
4922              logical_sector += STRIPE_SECTORS,
4923                      sector += STRIPE_SECTORS,
4924                      scnt++) {
4925
4926                 if (scnt < raid5_bi_processed_stripes(raid_bio))
4927                         /* already done this stripe */
4928                         continue;
4929
4930                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4931
4932                 if (!sh) {
4933                         /* failed to get a stripe - must wait */
4934                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4935                         conf->retry_read_aligned = raid_bio;
4936                         return handled;
4937                 }
4938
4939                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4940                         release_stripe(sh);
4941                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4942                         conf->retry_read_aligned = raid_bio;
4943                         return handled;
4944                 }
4945
4946                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4947                 handle_stripe(sh);
4948                 release_stripe(sh);
4949                 handled++;
4950         }
4951         remaining = raid5_dec_bi_active_stripes(raid_bio);
4952         if (remaining == 0) {
4953                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
4954                                          raid_bio, 0);
4955                 bio_endio(raid_bio, 0);
4956         }
4957         if (atomic_dec_and_test(&conf->active_aligned_reads))
4958                 wake_up(&conf->wait_for_stripe);
4959         return handled;
4960 }
4961
4962 static int handle_active_stripes(struct r5conf *conf, int group,
4963                                  struct r5worker *worker)
4964 {
4965         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4966         int i, batch_size = 0;
4967
4968         while (batch_size < MAX_STRIPE_BATCH &&
4969                         (sh = __get_priority_stripe(conf, group)) != NULL)
4970                 batch[batch_size++] = sh;
4971
4972         if (batch_size == 0)
4973                 return batch_size;
4974         spin_unlock_irq(&conf->device_lock);
4975
4976         for (i = 0; i < batch_size; i++)
4977                 handle_stripe(batch[i]);
4978
4979         cond_resched();
4980
4981         spin_lock_irq(&conf->device_lock);
4982         for (i = 0; i < batch_size; i++)
4983                 __release_stripe(conf, batch[i]);
4984         return batch_size;
4985 }
4986
4987 static void raid5_do_work(struct work_struct *work)
4988 {
4989         struct r5worker *worker = container_of(work, struct r5worker, work);
4990         struct r5worker_group *group = worker->group;
4991         struct r5conf *conf = group->conf;
4992         int group_id = group - conf->worker_groups;
4993         int handled;
4994         struct blk_plug plug;
4995
4996         pr_debug("+++ raid5worker active\n");
4997
4998         blk_start_plug(&plug);
4999         handled = 0;
5000         spin_lock_irq(&conf->device_lock);
5001         while (1) {
5002                 int batch_size, released;
5003
5004                 released = release_stripe_list(conf);
5005
5006                 batch_size = handle_active_stripes(conf, group_id, worker);
5007                 worker->working = false;
5008                 if (!batch_size && !released)
5009                         break;
5010                 handled += batch_size;
5011         }
5012         pr_debug("%d stripes handled\n", handled);
5013
5014         spin_unlock_irq(&conf->device_lock);
5015         blk_finish_plug(&plug);
5016
5017         pr_debug("--- raid5worker inactive\n");
5018 }
5019
5020 /*
5021  * This is our raid5 kernel thread.
5022  *
5023  * We scan the hash table for stripes which can be handled now.
5024  * During the scan, completed stripes are saved for us by the interrupt
5025  * handler, so that they will not have to wait for our next wakeup.
5026  */
5027 static void raid5d(struct md_thread *thread)
5028 {
5029         struct mddev *mddev = thread->mddev;
5030         struct r5conf *conf = mddev->private;
5031         int handled;
5032         struct blk_plug plug;
5033
5034         pr_debug("+++ raid5d active\n");
5035
5036         md_check_recovery(mddev);
5037
5038         blk_start_plug(&plug);
5039         handled = 0;
5040         spin_lock_irq(&conf->device_lock);
5041         while (1) {
5042                 struct bio *bio;
5043                 int batch_size, released;
5044
5045                 released = release_stripe_list(conf);
5046
5047                 if (
5048                     !list_empty(&conf->bitmap_list)) {
5049                         /* Now is a good time to flush some bitmap updates */
5050                         conf->seq_flush++;
5051                         spin_unlock_irq(&conf->device_lock);
5052                         bitmap_unplug(mddev->bitmap);
5053                         spin_lock_irq(&conf->device_lock);
5054                         conf->seq_write = conf->seq_flush;
5055                         activate_bit_delay(conf);
5056                 }
5057                 raid5_activate_delayed(conf);
5058
5059                 while ((bio = remove_bio_from_retry(conf))) {
5060                         int ok;
5061                         spin_unlock_irq(&conf->device_lock);
5062                         ok = retry_aligned_read(conf, bio);
5063                         spin_lock_irq(&conf->device_lock);
5064                         if (!ok)
5065                                 break;
5066                         handled++;
5067                 }
5068
5069                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL);
5070                 if (!batch_size && !released)
5071                         break;
5072                 handled += batch_size;
5073
5074                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5075                         spin_unlock_irq(&conf->device_lock);
5076                         md_check_recovery(mddev);
5077                         spin_lock_irq(&conf->device_lock);
5078                 }
5079         }
5080         pr_debug("%d stripes handled\n", handled);
5081
5082         spin_unlock_irq(&conf->device_lock);
5083
5084         async_tx_issue_pending_all();
5085         blk_finish_plug(&plug);
5086
5087         pr_debug("--- raid5d inactive\n");
5088 }
5089
5090 static ssize_t
5091 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5092 {
5093         struct r5conf *conf = mddev->private;
5094         if (conf)
5095                 return sprintf(page, "%d\n", conf->max_nr_stripes);
5096         else
5097                 return 0;
5098 }
5099
5100 int
5101 raid5_set_cache_size(struct mddev *mddev, int size)
5102 {
5103         struct r5conf *conf = mddev->private;
5104         int err;
5105
5106         if (size <= 16 || size > 32768)
5107                 return -EINVAL;
5108         while (size < conf->max_nr_stripes) {
5109                 if (drop_one_stripe(conf))
5110                         conf->max_nr_stripes--;
5111                 else
5112                         break;
5113         }
5114         err = md_allow_write(mddev);
5115         if (err)
5116                 return err;
5117         while (size > conf->max_nr_stripes) {
5118                 if (grow_one_stripe(conf))
5119                         conf->max_nr_stripes++;
5120                 else break;
5121         }
5122         return 0;
5123 }
5124 EXPORT_SYMBOL(raid5_set_cache_size);
5125
5126 static ssize_t
5127 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5128 {
5129         struct r5conf *conf = mddev->private;
5130         unsigned long new;
5131         int err;
5132
5133         if (len >= PAGE_SIZE)
5134                 return -EINVAL;
5135         if (!conf)
5136                 return -ENODEV;
5137
5138         if (kstrtoul(page, 10, &new))
5139                 return -EINVAL;
5140         err = raid5_set_cache_size(mddev, new);
5141         if (err)
5142                 return err;
5143         return len;
5144 }
5145
5146 static struct md_sysfs_entry
5147 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5148                                 raid5_show_stripe_cache_size,
5149                                 raid5_store_stripe_cache_size);
5150
5151 static ssize_t
5152 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5153 {
5154         struct r5conf *conf = mddev->private;
5155         if (conf)
5156                 return sprintf(page, "%d\n", conf->bypass_threshold);
5157         else
5158                 return 0;
5159 }
5160
5161 static ssize_t
5162 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5163 {
5164         struct r5conf *conf = mddev->private;
5165         unsigned long new;
5166         if (len >= PAGE_SIZE)
5167                 return -EINVAL;
5168         if (!conf)
5169                 return -ENODEV;
5170
5171         if (kstrtoul(page, 10, &new))
5172                 return -EINVAL;
5173         if (new > conf->max_nr_stripes)
5174                 return -EINVAL;
5175         conf->bypass_threshold = new;
5176         return len;
5177 }
5178
5179 static struct md_sysfs_entry
5180 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5181                                         S_IRUGO | S_IWUSR,
5182                                         raid5_show_preread_threshold,
5183                                         raid5_store_preread_threshold);
5184
5185 static ssize_t
5186 stripe_cache_active_show(struct mddev *mddev, char *page)
5187 {
5188         struct r5conf *conf = mddev->private;
5189         if (conf)
5190                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5191         else
5192                 return 0;
5193 }
5194
5195 static struct md_sysfs_entry
5196 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5197
5198 static ssize_t
5199 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5200 {
5201         struct r5conf *conf = mddev->private;
5202         if (conf)
5203                 return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5204         else
5205                 return 0;
5206 }
5207
5208 static int alloc_thread_groups(struct r5conf *conf, int cnt);
5209 static ssize_t
5210 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5211 {
5212         struct r5conf *conf = mddev->private;
5213         unsigned long new;
5214         int err;
5215         struct r5worker_group *old_groups;
5216         int old_group_cnt;
5217
5218         if (len >= PAGE_SIZE)
5219                 return -EINVAL;
5220         if (!conf)
5221                 return -ENODEV;
5222
5223         if (kstrtoul(page, 10, &new))
5224                 return -EINVAL;
5225
5226         if (new == conf->worker_cnt_per_group)
5227                 return len;
5228
5229         mddev_suspend(mddev);
5230
5231         old_groups = conf->worker_groups;
5232         old_group_cnt = conf->worker_cnt_per_group;
5233
5234         conf->worker_groups = NULL;
5235         err = alloc_thread_groups(conf, new);
5236         if (err) {
5237                 conf->worker_groups = old_groups;
5238                 conf->worker_cnt_per_group = old_group_cnt;
5239         } else {
5240                 if (old_groups)
5241                         kfree(old_groups[0].workers);
5242                 kfree(old_groups);
5243         }
5244
5245         mddev_resume(mddev);
5246
5247         if (err)
5248                 return err;
5249         return len;
5250 }
5251
5252 static struct md_sysfs_entry
5253 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5254                                 raid5_show_group_thread_cnt,
5255                                 raid5_store_group_thread_cnt);
5256
5257 static struct attribute *raid5_attrs[] =  {
5258         &raid5_stripecache_size.attr,
5259         &raid5_stripecache_active.attr,
5260         &raid5_preread_bypass_threshold.attr,
5261         &raid5_group_thread_cnt.attr,
5262         NULL,
5263 };
5264 static struct attribute_group raid5_attrs_group = {
5265         .name = NULL,
5266         .attrs = raid5_attrs,
5267 };
5268
5269 static int alloc_thread_groups(struct r5conf *conf, int cnt)
5270 {
5271         int i, j;
5272         ssize_t size;
5273         struct r5worker *workers;
5274
5275         conf->worker_cnt_per_group = cnt;
5276         if (cnt == 0) {
5277                 conf->worker_groups = NULL;
5278                 return 0;
5279         }
5280         conf->group_cnt = num_possible_nodes();
5281         size = sizeof(struct r5worker) * cnt;
5282         workers = kzalloc(size * conf->group_cnt, GFP_NOIO);
5283         conf->worker_groups = kzalloc(sizeof(struct r5worker_group) *
5284                                 conf->group_cnt, GFP_NOIO);
5285         if (!conf->worker_groups || !workers) {
5286                 kfree(workers);
5287                 kfree(conf->worker_groups);
5288                 conf->worker_groups = NULL;
5289                 return -ENOMEM;
5290         }
5291
5292         for (i = 0; i < conf->group_cnt; i++) {
5293                 struct r5worker_group *group;
5294
5295                 group = &conf->worker_groups[i];
5296                 INIT_LIST_HEAD(&group->handle_list);
5297                 group->conf = conf;
5298                 group->workers = workers + i * cnt;
5299
5300                 for (j = 0; j < cnt; j++) {
5301                         group->workers[j].group = group;
5302                         INIT_WORK(&group->workers[j].work, raid5_do_work);
5303                 }
5304         }
5305
5306         return 0;
5307 }
5308
5309 static void free_thread_groups(struct r5conf *conf)
5310 {
5311         if (conf->worker_groups)
5312                 kfree(conf->worker_groups[0].workers);
5313         kfree(conf->worker_groups);
5314         conf->worker_groups = NULL;
5315 }
5316
5317 static sector_t
5318 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5319 {
5320         struct r5conf *conf = mddev->private;
5321
5322         if (!sectors)
5323                 sectors = mddev->dev_sectors;
5324         if (!raid_disks)
5325                 /* size is defined by the smallest of previous and new size */
5326                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5327
5328         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5329         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5330         return sectors * (raid_disks - conf->max_degraded);
5331 }
5332
5333 static void raid5_free_percpu(struct r5conf *conf)
5334 {
5335         struct raid5_percpu *percpu;
5336         unsigned long cpu;
5337
5338         if (!conf->percpu)
5339                 return;
5340
5341         get_online_cpus();
5342         for_each_possible_cpu(cpu) {
5343                 percpu = per_cpu_ptr(conf->percpu, cpu);
5344                 safe_put_page(percpu->spare_page);
5345                 kfree(percpu->scribble);
5346         }
5347 #ifdef CONFIG_HOTPLUG_CPU
5348         unregister_cpu_notifier(&conf->cpu_notify);
5349 #endif
5350         put_online_cpus();
5351
5352         free_percpu(conf->percpu);
5353 }
5354
5355 static void free_conf(struct r5conf *conf)
5356 {
5357         free_thread_groups(conf);
5358         shrink_stripes(conf);
5359         raid5_free_percpu(conf);
5360         kfree(conf->disks);
5361         kfree(conf->stripe_hashtbl);
5362         kfree(conf);
5363 }
5364
5365 #ifdef CONFIG_HOTPLUG_CPU
5366 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5367                               void *hcpu)
5368 {
5369         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5370         long cpu = (long)hcpu;
5371         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5372
5373         switch (action) {
5374         case CPU_UP_PREPARE:
5375         case CPU_UP_PREPARE_FROZEN:
5376                 if (conf->level == 6 && !percpu->spare_page)
5377                         percpu->spare_page = alloc_page(GFP_KERNEL);
5378                 if (!percpu->scribble)
5379                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5380
5381                 if (!percpu->scribble ||
5382                     (conf->level == 6 && !percpu->spare_page)) {
5383                         safe_put_page(percpu->spare_page);
5384                         kfree(percpu->scribble);
5385                         pr_err("%s: failed memory allocation for cpu%ld\n",
5386                                __func__, cpu);
5387                         return notifier_from_errno(-ENOMEM);
5388                 }
5389                 break;
5390         case CPU_DEAD:
5391         case CPU_DEAD_FROZEN:
5392                 safe_put_page(percpu->spare_page);
5393                 kfree(percpu->scribble);
5394                 percpu->spare_page = NULL;
5395                 percpu->scribble = NULL;
5396                 break;
5397         default:
5398                 break;
5399         }
5400         return NOTIFY_OK;
5401 }
5402 #endif
5403
5404 static int raid5_alloc_percpu(struct r5conf *conf)
5405 {
5406         unsigned long cpu;
5407         struct page *spare_page;
5408         struct raid5_percpu __percpu *allcpus;
5409         void *scribble;
5410         int err;
5411
5412         allcpus = alloc_percpu(struct raid5_percpu);
5413         if (!allcpus)
5414                 return -ENOMEM;
5415         conf->percpu = allcpus;
5416
5417         get_online_cpus();
5418         err = 0;
5419         for_each_present_cpu(cpu) {
5420                 if (conf->level == 6) {
5421                         spare_page = alloc_page(GFP_KERNEL);
5422                         if (!spare_page) {
5423                                 err = -ENOMEM;
5424                                 break;
5425                         }
5426                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5427                 }
5428                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5429                 if (!scribble) {
5430                         err = -ENOMEM;
5431                         break;
5432                 }
5433                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5434         }
5435 #ifdef CONFIG_HOTPLUG_CPU
5436         conf->cpu_notify.notifier_call = raid456_cpu_notify;
5437         conf->cpu_notify.priority = 0;
5438         if (err == 0)
5439                 err = register_cpu_notifier(&conf->cpu_notify);
5440 #endif
5441         put_online_cpus();
5442
5443         return err;
5444 }
5445
5446 static struct r5conf *setup_conf(struct mddev *mddev)
5447 {
5448         struct r5conf *conf;
5449         int raid_disk, memory, max_disks;
5450         struct md_rdev *rdev;
5451         struct disk_info *disk;
5452         char pers_name[6];
5453
5454         if (mddev->new_level != 5
5455             && mddev->new_level != 4
5456             && mddev->new_level != 6) {
5457                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5458                        mdname(mddev), mddev->new_level);
5459                 return ERR_PTR(-EIO);
5460         }
5461         if ((mddev->new_level == 5
5462              && !algorithm_valid_raid5(mddev->new_layout)) ||
5463             (mddev->new_level == 6
5464              && !algorithm_valid_raid6(mddev->new_layout))) {
5465                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5466                        mdname(mddev), mddev->new_layout);
5467                 return ERR_PTR(-EIO);
5468         }
5469         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5470                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5471                        mdname(mddev), mddev->raid_disks);
5472                 return ERR_PTR(-EINVAL);
5473         }
5474
5475         if (!mddev->new_chunk_sectors ||
5476             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5477             !is_power_of_2(mddev->new_chunk_sectors)) {
5478                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5479                        mdname(mddev), mddev->new_chunk_sectors << 9);
5480                 return ERR_PTR(-EINVAL);
5481         }
5482
5483         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5484         if (conf == NULL)
5485                 goto abort;
5486         /* Don't enable multi-threading by default*/
5487         if (alloc_thread_groups(conf, 0))
5488                 goto abort;
5489         spin_lock_init(&conf->device_lock);
5490         seqcount_init(&conf->gen_lock);
5491         init_waitqueue_head(&conf->wait_for_stripe);
5492         init_waitqueue_head(&conf->wait_for_overlap);
5493         INIT_LIST_HEAD(&conf->handle_list);
5494         INIT_LIST_HEAD(&conf->hold_list);
5495         INIT_LIST_HEAD(&conf->delayed_list);
5496         INIT_LIST_HEAD(&conf->bitmap_list);
5497         INIT_LIST_HEAD(&conf->inactive_list);
5498         init_llist_head(&conf->released_stripes);
5499         atomic_set(&conf->active_stripes, 0);
5500         atomic_set(&conf->preread_active_stripes, 0);
5501         atomic_set(&conf->active_aligned_reads, 0);
5502         conf->bypass_threshold = BYPASS_THRESHOLD;
5503         conf->recovery_disabled = mddev->recovery_disabled - 1;
5504
5505         conf->raid_disks = mddev->raid_disks;
5506         if (mddev->reshape_position == MaxSector)
5507                 conf->previous_raid_disks = mddev->raid_disks;
5508         else
5509                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5510         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5511         conf->scribble_len = scribble_len(max_disks);
5512
5513         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5514                               GFP_KERNEL);
5515         if (!conf->disks)
5516                 goto abort;
5517
5518         conf->mddev = mddev;
5519
5520         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5521                 goto abort;
5522
5523         conf->level = mddev->new_level;
5524         if (raid5_alloc_percpu(conf) != 0)
5525                 goto abort;
5526
5527         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5528
5529         rdev_for_each(rdev, mddev) {
5530                 raid_disk = rdev->raid_disk;
5531                 if (raid_disk >= max_disks
5532                     || raid_disk < 0)
5533                         continue;
5534                 disk = conf->disks + raid_disk;
5535
5536                 if (test_bit(Replacement, &rdev->flags)) {
5537                         if (disk->replacement)
5538                                 goto abort;
5539                         disk->replacement = rdev;
5540                 } else {
5541                         if (disk->rdev)
5542                                 goto abort;
5543                         disk->rdev = rdev;
5544                 }
5545
5546                 if (test_bit(In_sync, &rdev->flags)) {
5547                         char b[BDEVNAME_SIZE];
5548                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5549                                " disk %d\n",
5550                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5551                 } else if (rdev->saved_raid_disk != raid_disk)
5552                         /* Cannot rely on bitmap to complete recovery */
5553                         conf->fullsync = 1;
5554         }
5555
5556         conf->chunk_sectors = mddev->new_chunk_sectors;
5557         conf->level = mddev->new_level;
5558         if (conf->level == 6)
5559                 conf->max_degraded = 2;
5560         else
5561                 conf->max_degraded = 1;
5562         conf->algorithm = mddev->new_layout;
5563         conf->max_nr_stripes = NR_STRIPES;
5564         conf->reshape_progress = mddev->reshape_position;
5565         if (conf->reshape_progress != MaxSector) {
5566                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5567                 conf->prev_algo = mddev->layout;
5568         }
5569
5570         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5571                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5572         if (grow_stripes(conf, conf->max_nr_stripes)) {
5573                 printk(KERN_ERR
5574                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5575                        mdname(mddev), memory);
5576                 goto abort;
5577         } else
5578                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5579                        mdname(mddev), memory);
5580
5581         sprintf(pers_name, "raid%d", mddev->new_level);
5582         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5583         if (!conf->thread) {
5584                 printk(KERN_ERR
5585                        "md/raid:%s: couldn't allocate thread.\n",
5586                        mdname(mddev));
5587                 goto abort;
5588         }
5589
5590         return conf;
5591
5592  abort:
5593         if (conf) {
5594                 free_conf(conf);
5595                 return ERR_PTR(-EIO);
5596         } else
5597                 return ERR_PTR(-ENOMEM);
5598 }
5599
5600
5601 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5602 {
5603         switch (algo) {
5604         case ALGORITHM_PARITY_0:
5605                 if (raid_disk < max_degraded)
5606                         return 1;
5607                 break;
5608         case ALGORITHM_PARITY_N:
5609                 if (raid_disk >= raid_disks - max_degraded)
5610                         return 1;
5611                 break;
5612         case ALGORITHM_PARITY_0_6:
5613                 if (raid_disk == 0 || 
5614                     raid_disk == raid_disks - 1)
5615                         return 1;
5616                 break;
5617         case ALGORITHM_LEFT_ASYMMETRIC_6:
5618         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5619         case ALGORITHM_LEFT_SYMMETRIC_6:
5620         case ALGORITHM_RIGHT_SYMMETRIC_6:
5621                 if (raid_disk == raid_disks - 1)
5622                         return 1;
5623         }
5624         return 0;
5625 }
5626
5627 static int run(struct mddev *mddev)
5628 {
5629         struct r5conf *conf;
5630         int working_disks = 0;
5631         int dirty_parity_disks = 0;
5632         struct md_rdev *rdev;
5633         sector_t reshape_offset = 0;
5634         int i;
5635         long long min_offset_diff = 0;
5636         int first = 1;
5637
5638         if (mddev->recovery_cp != MaxSector)
5639                 printk(KERN_NOTICE "md/raid:%s: not clean"
5640                        " -- starting background reconstruction\n",
5641                        mdname(mddev));
5642
5643         rdev_for_each(rdev, mddev) {
5644                 long long diff;
5645                 if (rdev->raid_disk < 0)
5646                         continue;
5647                 diff = (rdev->new_data_offset - rdev->data_offset);
5648                 if (first) {
5649                         min_offset_diff = diff;
5650                         first = 0;
5651                 } else if (mddev->reshape_backwards &&
5652                          diff < min_offset_diff)
5653                         min_offset_diff = diff;
5654                 else if (!mddev->reshape_backwards &&
5655                          diff > min_offset_diff)
5656                         min_offset_diff = diff;
5657         }
5658
5659         if (mddev->reshape_position != MaxSector) {
5660                 /* Check that we can continue the reshape.
5661                  * Difficulties arise if the stripe we would write to
5662                  * next is at or after the stripe we would read from next.
5663                  * For a reshape that changes the number of devices, this
5664                  * is only possible for a very short time, and mdadm makes
5665                  * sure that time appears to have past before assembling
5666                  * the array.  So we fail if that time hasn't passed.
5667                  * For a reshape that keeps the number of devices the same
5668                  * mdadm must be monitoring the reshape can keeping the
5669                  * critical areas read-only and backed up.  It will start
5670                  * the array in read-only mode, so we check for that.
5671                  */
5672                 sector_t here_new, here_old;
5673                 int old_disks;
5674                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5675
5676                 if (mddev->new_level != mddev->level) {
5677                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5678                                "required - aborting.\n",
5679                                mdname(mddev));
5680                         return -EINVAL;
5681                 }
5682                 old_disks = mddev->raid_disks - mddev->delta_disks;
5683                 /* reshape_position must be on a new-stripe boundary, and one
5684                  * further up in new geometry must map after here in old
5685                  * geometry.
5686                  */
5687                 here_new = mddev->reshape_position;
5688                 if (sector_div(here_new, mddev->new_chunk_sectors *
5689                                (mddev->raid_disks - max_degraded))) {
5690                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5691                                "on a stripe boundary\n", mdname(mddev));
5692                         return -EINVAL;
5693                 }
5694                 reshape_offset = here_new * mddev->new_chunk_sectors;
5695                 /* here_new is the stripe we will write to */
5696                 here_old = mddev->reshape_position;
5697                 sector_div(here_old, mddev->chunk_sectors *
5698                            (old_disks-max_degraded));
5699                 /* here_old is the first stripe that we might need to read
5700                  * from */
5701                 if (mddev->delta_disks == 0) {
5702                         if ((here_new * mddev->new_chunk_sectors !=
5703                              here_old * mddev->chunk_sectors)) {
5704                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5705                                        " confused - aborting\n", mdname(mddev));
5706                                 return -EINVAL;
5707                         }
5708                         /* We cannot be sure it is safe to start an in-place
5709                          * reshape.  It is only safe if user-space is monitoring
5710                          * and taking constant backups.
5711                          * mdadm always starts a situation like this in
5712                          * readonly mode so it can take control before
5713                          * allowing any writes.  So just check for that.
5714                          */
5715                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5716                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5717                                 /* not really in-place - so OK */;
5718                         else if (mddev->ro == 0) {
5719                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5720                                        "must be started in read-only mode "
5721                                        "- aborting\n",
5722                                        mdname(mddev));
5723                                 return -EINVAL;
5724                         }
5725                 } else if (mddev->reshape_backwards
5726                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5727                        here_old * mddev->chunk_sectors)
5728                     : (here_new * mddev->new_chunk_sectors >=
5729                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5730                         /* Reading from the same stripe as writing to - bad */
5731                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5732                                "auto-recovery - aborting.\n",
5733                                mdname(mddev));
5734                         return -EINVAL;
5735                 }
5736                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5737                        mdname(mddev));
5738                 /* OK, we should be able to continue; */
5739         } else {
5740                 BUG_ON(mddev->level != mddev->new_level);
5741                 BUG_ON(mddev->layout != mddev->new_layout);
5742                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5743                 BUG_ON(mddev->delta_disks != 0);
5744         }
5745
5746         if (mddev->private == NULL)
5747                 conf = setup_conf(mddev);
5748         else
5749                 conf = mddev->private;
5750
5751         if (IS_ERR(conf))
5752                 return PTR_ERR(conf);
5753
5754         conf->min_offset_diff = min_offset_diff;
5755         mddev->thread = conf->thread;
5756         conf->thread = NULL;
5757         mddev->private = conf;
5758
5759         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5760              i++) {
5761                 rdev = conf->disks[i].rdev;
5762                 if (!rdev && conf->disks[i].replacement) {
5763                         /* The replacement is all we have yet */
5764                         rdev = conf->disks[i].replacement;
5765                         conf->disks[i].replacement = NULL;
5766                         clear_bit(Replacement, &rdev->flags);
5767                         conf->disks[i].rdev = rdev;
5768                 }
5769                 if (!rdev)
5770                         continue;
5771                 if (conf->disks[i].replacement &&
5772                     conf->reshape_progress != MaxSector) {
5773                         /* replacements and reshape simply do not mix. */
5774                         printk(KERN_ERR "md: cannot handle concurrent "
5775                                "replacement and reshape.\n");
5776                         goto abort;
5777                 }
5778                 if (test_bit(In_sync, &rdev->flags)) {
5779                         working_disks++;
5780                         continue;
5781                 }
5782                 /* This disc is not fully in-sync.  However if it
5783                  * just stored parity (beyond the recovery_offset),
5784                  * when we don't need to be concerned about the
5785                  * array being dirty.
5786                  * When reshape goes 'backwards', we never have
5787                  * partially completed devices, so we only need
5788                  * to worry about reshape going forwards.
5789                  */
5790                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5791                 if (mddev->major_version == 0 &&
5792                     mddev->minor_version > 90)
5793                         rdev->recovery_offset = reshape_offset;
5794
5795                 if (rdev->recovery_offset < reshape_offset) {
5796                         /* We need to check old and new layout */
5797                         if (!only_parity(rdev->raid_disk,
5798                                          conf->algorithm,
5799                                          conf->raid_disks,
5800                                          conf->max_degraded))
5801                                 continue;
5802                 }
5803                 if (!only_parity(rdev->raid_disk,
5804                                  conf->prev_algo,
5805                                  conf->previous_raid_disks,
5806                                  conf->max_degraded))
5807                         continue;
5808                 dirty_parity_disks++;
5809         }
5810
5811         /*
5812          * 0 for a fully functional array, 1 or 2 for a degraded array.
5813          */
5814         mddev->degraded = calc_degraded(conf);
5815
5816         if (has_failed(conf)) {
5817                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5818                         " (%d/%d failed)\n",
5819                         mdname(mddev), mddev->degraded, conf->raid_disks);
5820                 goto abort;
5821         }
5822
5823         /* device size must be a multiple of chunk size */
5824         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5825         mddev->resync_max_sectors = mddev->dev_sectors;
5826
5827         if (mddev->degraded > dirty_parity_disks &&
5828             mddev->recovery_cp != MaxSector) {
5829                 if (mddev->ok_start_degraded)
5830                         printk(KERN_WARNING
5831                                "md/raid:%s: starting dirty degraded array"
5832                                " - data corruption possible.\n",
5833                                mdname(mddev));
5834                 else {
5835                         printk(KERN_ERR
5836                                "md/raid:%s: cannot start dirty degraded array.\n",
5837                                mdname(mddev));
5838                         goto abort;
5839                 }
5840         }
5841
5842         if (mddev->degraded == 0)
5843                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5844                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5845                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5846                        mddev->new_layout);
5847         else
5848                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5849                        " out of %d devices, algorithm %d\n",
5850                        mdname(mddev), conf->level,
5851                        mddev->raid_disks - mddev->degraded,
5852                        mddev->raid_disks, mddev->new_layout);
5853
5854         print_raid5_conf(conf);
5855
5856         if (conf->reshape_progress != MaxSector) {
5857                 conf->reshape_safe = conf->reshape_progress;
5858                 atomic_set(&conf->reshape_stripes, 0);
5859                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5860                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5861                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5862                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5863                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5864                                                         "reshape");
5865         }
5866
5867
5868         /* Ok, everything is just fine now */
5869         if (mddev->to_remove == &raid5_attrs_group)
5870                 mddev->to_remove = NULL;
5871         else if (mddev->kobj.sd &&
5872             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5873                 printk(KERN_WARNING
5874                        "raid5: failed to create sysfs attributes for %s\n",
5875                        mdname(mddev));
5876         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5877
5878         if (mddev->queue) {
5879                 int chunk_size;
5880                 bool discard_supported = true;
5881                 /* read-ahead size must cover two whole stripes, which
5882                  * is 2 * (datadisks) * chunksize where 'n' is the
5883                  * number of raid devices
5884                  */
5885                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5886                 int stripe = data_disks *
5887                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5888                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5889                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5890
5891                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5892
5893                 mddev->queue->backing_dev_info.congested_data = mddev;
5894                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5895
5896                 chunk_size = mddev->chunk_sectors << 9;
5897                 blk_queue_io_min(mddev->queue, chunk_size);
5898                 blk_queue_io_opt(mddev->queue, chunk_size *
5899                                  (conf->raid_disks - conf->max_degraded));
5900                 /*
5901                  * We can only discard a whole stripe. It doesn't make sense to
5902                  * discard data disk but write parity disk
5903                  */
5904                 stripe = stripe * PAGE_SIZE;
5905                 /* Round up to power of 2, as discard handling
5906                  * currently assumes that */
5907                 while ((stripe-1) & stripe)
5908                         stripe = (stripe | (stripe-1)) + 1;
5909                 mddev->queue->limits.discard_alignment = stripe;
5910                 mddev->queue->limits.discard_granularity = stripe;
5911                 /*
5912                  * unaligned part of discard request will be ignored, so can't
5913                  * guarantee discard_zerors_data
5914                  */
5915                 mddev->queue->limits.discard_zeroes_data = 0;
5916
5917                 blk_queue_max_write_same_sectors(mddev->queue, 0);
5918
5919                 rdev_for_each(rdev, mddev) {
5920                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5921                                           rdev->data_offset << 9);
5922                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5923                                           rdev->new_data_offset << 9);
5924                         /*
5925                          * discard_zeroes_data is required, otherwise data
5926                          * could be lost. Consider a scenario: discard a stripe
5927                          * (the stripe could be inconsistent if
5928                          * discard_zeroes_data is 0); write one disk of the
5929                          * stripe (the stripe could be inconsistent again
5930                          * depending on which disks are used to calculate
5931                          * parity); the disk is broken; The stripe data of this
5932                          * disk is lost.
5933                          */
5934                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5935                             !bdev_get_queue(rdev->bdev)->
5936                                                 limits.discard_zeroes_data)
5937                                 discard_supported = false;
5938                 }
5939
5940                 if (discard_supported &&
5941                    mddev->queue->limits.max_discard_sectors >= stripe &&
5942                    mddev->queue->limits.discard_granularity >= stripe)
5943                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5944                                                 mddev->queue);
5945                 else
5946                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5947                                                 mddev->queue);
5948         }
5949
5950         return 0;
5951 abort:
5952         md_unregister_thread(&mddev->thread);
5953         print_raid5_conf(conf);
5954         free_conf(conf);
5955         mddev->private = NULL;
5956         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5957         return -EIO;
5958 }
5959
5960 static int stop(struct mddev *mddev)
5961 {
5962         struct r5conf *conf = mddev->private;
5963
5964         md_unregister_thread(&mddev->thread);
5965         if (mddev->queue)
5966                 mddev->queue->backing_dev_info.congested_fn = NULL;
5967         free_conf(conf);
5968         mddev->private = NULL;
5969         mddev->to_remove = &raid5_attrs_group;
5970         return 0;
5971 }
5972
5973 static void status(struct seq_file *seq, struct mddev *mddev)
5974 {
5975         struct r5conf *conf = mddev->private;
5976         int i;
5977
5978         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5979                 mddev->chunk_sectors / 2, mddev->layout);
5980         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5981         for (i = 0; i < conf->raid_disks; i++)
5982                 seq_printf (seq, "%s",
5983                                conf->disks[i].rdev &&
5984                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5985         seq_printf (seq, "]");
5986 }
5987
5988 static void print_raid5_conf (struct r5conf *conf)
5989 {
5990         int i;
5991         struct disk_info *tmp;
5992
5993         printk(KERN_DEBUG "RAID conf printout:\n");
5994         if (!conf) {
5995                 printk("(conf==NULL)\n");
5996                 return;
5997         }
5998         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5999                conf->raid_disks,
6000                conf->raid_disks - conf->mddev->degraded);
6001
6002         for (i = 0; i < conf->raid_disks; i++) {
6003                 char b[BDEVNAME_SIZE];
6004                 tmp = conf->disks + i;
6005                 if (tmp->rdev)
6006                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6007                                i, !test_bit(Faulty, &tmp->rdev->flags),
6008                                bdevname(tmp->rdev->bdev, b));
6009         }
6010 }
6011
6012 static int raid5_spare_active(struct mddev *mddev)
6013 {
6014         int i;
6015         struct r5conf *conf = mddev->private;
6016         struct disk_info *tmp;
6017         int count = 0;
6018         unsigned long flags;
6019
6020         for (i = 0; i < conf->raid_disks; i++) {
6021                 tmp = conf->disks + i;
6022                 if (tmp->replacement
6023                     && tmp->replacement->recovery_offset == MaxSector
6024                     && !test_bit(Faulty, &tmp->replacement->flags)
6025                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6026                         /* Replacement has just become active. */
6027                         if (!tmp->rdev
6028                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6029                                 count++;
6030                         if (tmp->rdev) {
6031                                 /* Replaced device not technically faulty,
6032                                  * but we need to be sure it gets removed
6033                                  * and never re-added.
6034                                  */
6035                                 set_bit(Faulty, &tmp->rdev->flags);
6036                                 sysfs_notify_dirent_safe(
6037                                         tmp->rdev->sysfs_state);
6038                         }
6039                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6040                 } else if (tmp->rdev
6041                     && tmp->rdev->recovery_offset == MaxSector
6042                     && !test_bit(Faulty, &tmp->rdev->flags)
6043                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6044                         count++;
6045                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6046                 }
6047         }
6048         spin_lock_irqsave(&conf->device_lock, flags);
6049         mddev->degraded = calc_degraded(conf);
6050         spin_unlock_irqrestore(&conf->device_lock, flags);
6051         print_raid5_conf(conf);
6052         return count;
6053 }
6054
6055 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6056 {
6057         struct r5conf *conf = mddev->private;
6058         int err = 0;
6059         int number = rdev->raid_disk;
6060         struct md_rdev **rdevp;
6061         struct disk_info *p = conf->disks + number;
6062
6063         print_raid5_conf(conf);
6064         if (rdev == p->rdev)
6065                 rdevp = &p->rdev;
6066         else if (rdev == p->replacement)
6067                 rdevp = &p->replacement;
6068         else
6069                 return 0;
6070
6071         if (number >= conf->raid_disks &&
6072             conf->reshape_progress == MaxSector)
6073                 clear_bit(In_sync, &rdev->flags);
6074
6075         if (test_bit(In_sync, &rdev->flags) ||
6076             atomic_read(&rdev->nr_pending)) {
6077                 err = -EBUSY;
6078                 goto abort;
6079         }
6080         /* Only remove non-faulty devices if recovery
6081          * isn't possible.
6082          */
6083         if (!test_bit(Faulty, &rdev->flags) &&
6084             mddev->recovery_disabled != conf->recovery_disabled &&
6085             !has_failed(conf) &&
6086             (!p->replacement || p->replacement == rdev) &&
6087             number < conf->raid_disks) {
6088                 err = -EBUSY;
6089                 goto abort;
6090         }
6091         *rdevp = NULL;
6092         synchronize_rcu();
6093         if (atomic_read(&rdev->nr_pending)) {
6094                 /* lost the race, try later */
6095                 err = -EBUSY;
6096                 *rdevp = rdev;
6097         } else if (p->replacement) {
6098                 /* We must have just cleared 'rdev' */
6099                 p->rdev = p->replacement;
6100                 clear_bit(Replacement, &p->replacement->flags);
6101                 smp_mb(); /* Make sure other CPUs may see both as identical
6102                            * but will never see neither - if they are careful
6103                            */
6104                 p->replacement = NULL;
6105                 clear_bit(WantReplacement, &rdev->flags);
6106         } else
6107                 /* We might have just removed the Replacement as faulty-
6108                  * clear the bit just in case
6109                  */
6110                 clear_bit(WantReplacement, &rdev->flags);
6111 abort:
6112
6113         print_raid5_conf(conf);
6114         return err;
6115 }
6116
6117 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6118 {
6119         struct r5conf *conf = mddev->private;
6120         int err = -EEXIST;
6121         int disk;
6122         struct disk_info *p;
6123         int first = 0;
6124         int last = conf->raid_disks - 1;
6125
6126         if (mddev->recovery_disabled == conf->recovery_disabled)
6127                 return -EBUSY;
6128
6129         if (rdev->saved_raid_disk < 0 && has_failed(conf))
6130                 /* no point adding a device */
6131                 return -EINVAL;
6132
6133         if (rdev->raid_disk >= 0)
6134                 first = last = rdev->raid_disk;
6135
6136         /*
6137          * find the disk ... but prefer rdev->saved_raid_disk
6138          * if possible.
6139          */
6140         if (rdev->saved_raid_disk >= 0 &&
6141             rdev->saved_raid_disk >= first &&
6142             conf->disks[rdev->saved_raid_disk].rdev == NULL)
6143                 first = rdev->saved_raid_disk;
6144
6145         for (disk = first; disk <= last; disk++) {
6146                 p = conf->disks + disk;
6147                 if (p->rdev == NULL) {
6148                         clear_bit(In_sync, &rdev->flags);
6149                         rdev->raid_disk = disk;
6150                         err = 0;
6151                         if (rdev->saved_raid_disk != disk)
6152                                 conf->fullsync = 1;
6153                         rcu_assign_pointer(p->rdev, rdev);
6154                         goto out;
6155                 }
6156         }
6157         for (disk = first; disk <= last; disk++) {
6158                 p = conf->disks + disk;
6159                 if (test_bit(WantReplacement, &p->rdev->flags) &&
6160                     p->replacement == NULL) {
6161                         clear_bit(In_sync, &rdev->flags);
6162                         set_bit(Replacement, &rdev->flags);
6163                         rdev->raid_disk = disk;
6164                         err = 0;
6165                         conf->fullsync = 1;
6166                         rcu_assign_pointer(p->replacement, rdev);
6167                         break;
6168                 }
6169         }
6170 out:
6171         print_raid5_conf(conf);
6172         return err;
6173 }
6174
6175 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6176 {
6177         /* no resync is happening, and there is enough space
6178          * on all devices, so we can resize.
6179          * We need to make sure resync covers any new space.
6180          * If the array is shrinking we should possibly wait until
6181          * any io in the removed space completes, but it hardly seems
6182          * worth it.
6183          */
6184         sector_t newsize;
6185         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6186         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6187         if (mddev->external_size &&
6188             mddev->array_sectors > newsize)
6189                 return -EINVAL;
6190         if (mddev->bitmap) {
6191                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6192                 if (ret)
6193                         return ret;
6194         }
6195         md_set_array_sectors(mddev, newsize);
6196         set_capacity(mddev->gendisk, mddev->array_sectors);
6197         revalidate_disk(mddev->gendisk);
6198         if (sectors > mddev->dev_sectors &&
6199             mddev->recovery_cp > mddev->dev_sectors) {
6200                 mddev->recovery_cp = mddev->dev_sectors;
6201                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6202         }
6203         mddev->dev_sectors = sectors;
6204         mddev->resync_max_sectors = sectors;
6205         return 0;
6206 }
6207
6208 static int check_stripe_cache(struct mddev *mddev)
6209 {
6210         /* Can only proceed if there are plenty of stripe_heads.
6211          * We need a minimum of one full stripe,, and for sensible progress
6212          * it is best to have about 4 times that.
6213          * If we require 4 times, then the default 256 4K stripe_heads will
6214          * allow for chunk sizes up to 256K, which is probably OK.
6215          * If the chunk size is greater, user-space should request more
6216          * stripe_heads first.
6217          */
6218         struct r5conf *conf = mddev->private;
6219         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6220             > conf->max_nr_stripes ||
6221             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6222             > conf->max_nr_stripes) {
6223                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6224                        mdname(mddev),
6225                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6226                         / STRIPE_SIZE)*4);
6227                 return 0;
6228         }
6229         return 1;
6230 }
6231
6232 static int check_reshape(struct mddev *mddev)
6233 {
6234         struct r5conf *conf = mddev->private;
6235
6236         if (mddev->delta_disks == 0 &&
6237             mddev->new_layout == mddev->layout &&
6238             mddev->new_chunk_sectors == mddev->chunk_sectors)
6239                 return 0; /* nothing to do */
6240         if (has_failed(conf))
6241                 return -EINVAL;
6242         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6243                 /* We might be able to shrink, but the devices must
6244                  * be made bigger first.
6245                  * For raid6, 4 is the minimum size.
6246                  * Otherwise 2 is the minimum
6247                  */
6248                 int min = 2;
6249                 if (mddev->level == 6)
6250                         min = 4;
6251                 if (mddev->raid_disks + mddev->delta_disks < min)
6252                         return -EINVAL;
6253         }
6254
6255         if (!check_stripe_cache(mddev))
6256                 return -ENOSPC;
6257
6258         return resize_stripes(conf, (conf->previous_raid_disks
6259                                      + mddev->delta_disks));
6260 }
6261
6262 static int raid5_start_reshape(struct mddev *mddev)
6263 {
6264         struct r5conf *conf = mddev->private;
6265         struct md_rdev *rdev;
6266         int spares = 0;
6267         unsigned long flags;
6268
6269         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6270                 return -EBUSY;
6271
6272         if (!check_stripe_cache(mddev))
6273                 return -ENOSPC;
6274
6275         if (has_failed(conf))
6276                 return -EINVAL;
6277
6278         rdev_for_each(rdev, mddev) {
6279                 if (!test_bit(In_sync, &rdev->flags)
6280                     && !test_bit(Faulty, &rdev->flags))
6281                         spares++;
6282         }
6283
6284         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6285                 /* Not enough devices even to make a degraded array
6286                  * of that size
6287                  */
6288                 return -EINVAL;
6289
6290         /* Refuse to reduce size of the array.  Any reductions in
6291          * array size must be through explicit setting of array_size
6292          * attribute.
6293          */
6294         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6295             < mddev->array_sectors) {
6296                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
6297                        "before number of disks\n", mdname(mddev));
6298                 return -EINVAL;
6299         }
6300
6301         atomic_set(&conf->reshape_stripes, 0);
6302         spin_lock_irq(&conf->device_lock);
6303         write_seqcount_begin(&conf->gen_lock);
6304         conf->previous_raid_disks = conf->raid_disks;
6305         conf->raid_disks += mddev->delta_disks;
6306         conf->prev_chunk_sectors = conf->chunk_sectors;
6307         conf->chunk_sectors = mddev->new_chunk_sectors;
6308         conf->prev_algo = conf->algorithm;
6309         conf->algorithm = mddev->new_layout;
6310         conf->generation++;
6311         /* Code that selects data_offset needs to see the generation update
6312          * if reshape_progress has been set - so a memory barrier needed.
6313          */
6314         smp_mb();
6315         if (mddev->reshape_backwards)
6316                 conf->reshape_progress = raid5_size(mddev, 0, 0);
6317         else
6318                 conf->reshape_progress = 0;
6319         conf->reshape_safe = conf->reshape_progress;
6320         write_seqcount_end(&conf->gen_lock);
6321         spin_unlock_irq(&conf->device_lock);
6322
6323         /* Now make sure any requests that proceeded on the assumption
6324          * the reshape wasn't running - like Discard or Read - have
6325          * completed.
6326          */
6327         mddev_suspend(mddev);
6328         mddev_resume(mddev);
6329
6330         /* Add some new drives, as many as will fit.
6331          * We know there are enough to make the newly sized array work.
6332          * Don't add devices if we are reducing the number of
6333          * devices in the array.  This is because it is not possible
6334          * to correctly record the "partially reconstructed" state of
6335          * such devices during the reshape and confusion could result.
6336          */
6337         if (mddev->delta_disks >= 0) {
6338                 rdev_for_each(rdev, mddev)
6339                         if (rdev->raid_disk < 0 &&
6340                             !test_bit(Faulty, &rdev->flags)) {
6341                                 if (raid5_add_disk(mddev, rdev) == 0) {
6342                                         if (rdev->raid_disk
6343                                             >= conf->previous_raid_disks)
6344                                                 set_bit(In_sync, &rdev->flags);
6345                                         else
6346                                                 rdev->recovery_offset = 0;
6347
6348                                         if (sysfs_link_rdev(mddev, rdev))
6349                                                 /* Failure here is OK */;
6350                                 }
6351                         } else if (rdev->raid_disk >= conf->previous_raid_disks
6352                                    && !test_bit(Faulty, &rdev->flags)) {
6353                                 /* This is a spare that was manually added */
6354                                 set_bit(In_sync, &rdev->flags);
6355                         }
6356
6357                 /* When a reshape changes the number of devices,
6358                  * ->degraded is measured against the larger of the
6359                  * pre and post number of devices.
6360                  */
6361                 spin_lock_irqsave(&conf->device_lock, flags);
6362                 mddev->degraded = calc_degraded(conf);
6363                 spin_unlock_irqrestore(&conf->device_lock, flags);
6364         }
6365         mddev->raid_disks = conf->raid_disks;
6366         mddev->reshape_position = conf->reshape_progress;
6367         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6368
6369         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6370         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6371         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6372         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6373         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6374                                                 "reshape");
6375         if (!mddev->sync_thread) {
6376                 mddev->recovery = 0;
6377                 spin_lock_irq(&conf->device_lock);
6378                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6379                 rdev_for_each(rdev, mddev)
6380                         rdev->new_data_offset = rdev->data_offset;
6381                 smp_wmb();
6382                 conf->reshape_progress = MaxSector;
6383                 mddev->reshape_position = MaxSector;
6384                 spin_unlock_irq(&conf->device_lock);
6385                 return -EAGAIN;
6386         }
6387         conf->reshape_checkpoint = jiffies;
6388         md_wakeup_thread(mddev->sync_thread);
6389         md_new_event(mddev);
6390         return 0;
6391 }
6392
6393 /* This is called from the reshape thread and should make any
6394  * changes needed in 'conf'
6395  */
6396 static void end_reshape(struct r5conf *conf)
6397 {
6398
6399         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6400                 struct md_rdev *rdev;
6401
6402                 spin_lock_irq(&conf->device_lock);
6403                 conf->previous_raid_disks = conf->raid_disks;
6404                 rdev_for_each(rdev, conf->mddev)
6405                         rdev->data_offset = rdev->new_data_offset;
6406                 smp_wmb();
6407                 conf->reshape_progress = MaxSector;
6408                 spin_unlock_irq(&conf->device_lock);
6409                 wake_up(&conf->wait_for_overlap);
6410
6411                 /* read-ahead size must cover two whole stripes, which is
6412                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6413                  */
6414                 if (conf->mddev->queue) {
6415                         int data_disks = conf->raid_disks - conf->max_degraded;
6416                         int stripe = data_disks * ((conf->chunk_sectors << 9)
6417                                                    / PAGE_SIZE);
6418                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6419                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6420                 }
6421         }
6422 }
6423
6424 /* This is called from the raid5d thread with mddev_lock held.
6425  * It makes config changes to the device.
6426  */
6427 static void raid5_finish_reshape(struct mddev *mddev)
6428 {
6429         struct r5conf *conf = mddev->private;
6430
6431         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6432
6433                 if (mddev->delta_disks > 0) {
6434                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6435                         set_capacity(mddev->gendisk, mddev->array_sectors);
6436                         revalidate_disk(mddev->gendisk);
6437                 } else {
6438                         int d;
6439                         spin_lock_irq(&conf->device_lock);
6440                         mddev->degraded = calc_degraded(conf);
6441                         spin_unlock_irq(&conf->device_lock);
6442                         for (d = conf->raid_disks ;
6443                              d < conf->raid_disks - mddev->delta_disks;
6444                              d++) {
6445                                 struct md_rdev *rdev = conf->disks[d].rdev;
6446                                 if (rdev)
6447                                         clear_bit(In_sync, &rdev->flags);
6448                                 rdev = conf->disks[d].replacement;
6449                                 if (rdev)
6450                                         clear_bit(In_sync, &rdev->flags);
6451                         }
6452                 }
6453                 mddev->layout = conf->algorithm;
6454                 mddev->chunk_sectors = conf->chunk_sectors;
6455                 mddev->reshape_position = MaxSector;
6456                 mddev->delta_disks = 0;
6457                 mddev->reshape_backwards = 0;
6458         }
6459 }
6460
6461 static void raid5_quiesce(struct mddev *mddev, int state)
6462 {
6463         struct r5conf *conf = mddev->private;
6464
6465         switch(state) {
6466         case 2: /* resume for a suspend */
6467                 wake_up(&conf->wait_for_overlap);
6468                 break;
6469
6470         case 1: /* stop all writes */
6471                 spin_lock_irq(&conf->device_lock);
6472                 /* '2' tells resync/reshape to pause so that all
6473                  * active stripes can drain
6474                  */
6475                 conf->quiesce = 2;
6476                 wait_event_lock_irq(conf->wait_for_stripe,
6477                                     atomic_read(&conf->active_stripes) == 0 &&
6478                                     atomic_read(&conf->active_aligned_reads) == 0,
6479                                     conf->device_lock);
6480                 conf->quiesce = 1;
6481                 spin_unlock_irq(&conf->device_lock);
6482                 /* allow reshape to continue */
6483                 wake_up(&conf->wait_for_overlap);
6484                 break;
6485
6486         case 0: /* re-enable writes */
6487                 spin_lock_irq(&conf->device_lock);
6488                 conf->quiesce = 0;
6489                 wake_up(&conf->wait_for_stripe);
6490                 wake_up(&conf->wait_for_overlap);
6491                 spin_unlock_irq(&conf->device_lock);
6492                 break;
6493         }
6494 }
6495
6496
6497 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6498 {
6499         struct r0conf *raid0_conf = mddev->private;
6500         sector_t sectors;
6501
6502         /* for raid0 takeover only one zone is supported */
6503         if (raid0_conf->nr_strip_zones > 1) {
6504                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6505                        mdname(mddev));
6506                 return ERR_PTR(-EINVAL);
6507         }
6508
6509         sectors = raid0_conf->strip_zone[0].zone_end;
6510         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6511         mddev->dev_sectors = sectors;
6512         mddev->new_level = level;
6513         mddev->new_layout = ALGORITHM_PARITY_N;
6514         mddev->new_chunk_sectors = mddev->chunk_sectors;
6515         mddev->raid_disks += 1;
6516         mddev->delta_disks = 1;
6517         /* make sure it will be not marked as dirty */
6518         mddev->recovery_cp = MaxSector;
6519
6520         return setup_conf(mddev);
6521 }
6522
6523
6524 static void *raid5_takeover_raid1(struct mddev *mddev)
6525 {
6526         int chunksect;
6527
6528         if (mddev->raid_disks != 2 ||
6529             mddev->degraded > 1)
6530                 return ERR_PTR(-EINVAL);
6531
6532         /* Should check if there are write-behind devices? */
6533
6534         chunksect = 64*2; /* 64K by default */
6535
6536         /* The array must be an exact multiple of chunksize */
6537         while (chunksect && (mddev->array_sectors & (chunksect-1)))
6538                 chunksect >>= 1;
6539
6540         if ((chunksect<<9) < STRIPE_SIZE)
6541                 /* array size does not allow a suitable chunk size */
6542                 return ERR_PTR(-EINVAL);
6543
6544         mddev->new_level = 5;
6545         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6546         mddev->new_chunk_sectors = chunksect;
6547
6548         return setup_conf(mddev);
6549 }
6550
6551 static void *raid5_takeover_raid6(struct mddev *mddev)
6552 {
6553         int new_layout;
6554
6555         switch (mddev->layout) {
6556         case ALGORITHM_LEFT_ASYMMETRIC_6:
6557                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6558                 break;
6559         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6560                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6561                 break;
6562         case ALGORITHM_LEFT_SYMMETRIC_6:
6563                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6564                 break;
6565         case ALGORITHM_RIGHT_SYMMETRIC_6:
6566                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6567                 break;
6568         case ALGORITHM_PARITY_0_6:
6569                 new_layout = ALGORITHM_PARITY_0;
6570                 break;
6571         case ALGORITHM_PARITY_N:
6572                 new_layout = ALGORITHM_PARITY_N;
6573                 break;
6574         default:
6575                 return ERR_PTR(-EINVAL);
6576         }
6577         mddev->new_level = 5;
6578         mddev->new_layout = new_layout;
6579         mddev->delta_disks = -1;
6580         mddev->raid_disks -= 1;
6581         return setup_conf(mddev);
6582 }
6583
6584
6585 static int raid5_check_reshape(struct mddev *mddev)
6586 {
6587         /* For a 2-drive array, the layout and chunk size can be changed
6588          * immediately as not restriping is needed.
6589          * For larger arrays we record the new value - after validation
6590          * to be used by a reshape pass.
6591          */
6592         struct r5conf *conf = mddev->private;
6593         int new_chunk = mddev->new_chunk_sectors;
6594
6595         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6596                 return -EINVAL;
6597         if (new_chunk > 0) {
6598                 if (!is_power_of_2(new_chunk))
6599                         return -EINVAL;
6600                 if (new_chunk < (PAGE_SIZE>>9))
6601                         return -EINVAL;
6602                 if (mddev->array_sectors & (new_chunk-1))
6603                         /* not factor of array size */
6604                         return -EINVAL;
6605         }
6606
6607         /* They look valid */
6608
6609         if (mddev->raid_disks == 2) {
6610                 /* can make the change immediately */
6611                 if (mddev->new_layout >= 0) {
6612                         conf->algorithm = mddev->new_layout;
6613                         mddev->layout = mddev->new_layout;
6614                 }
6615                 if (new_chunk > 0) {
6616                         conf->chunk_sectors = new_chunk ;
6617                         mddev->chunk_sectors = new_chunk;
6618                 }
6619                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6620                 md_wakeup_thread(mddev->thread);
6621         }
6622         return check_reshape(mddev);
6623 }
6624
6625 static int raid6_check_reshape(struct mddev *mddev)
6626 {
6627         int new_chunk = mddev->new_chunk_sectors;
6628
6629         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6630                 return -EINVAL;
6631         if (new_chunk > 0) {
6632                 if (!is_power_of_2(new_chunk))
6633                         return -EINVAL;
6634                 if (new_chunk < (PAGE_SIZE >> 9))
6635                         return -EINVAL;
6636                 if (mddev->array_sectors & (new_chunk-1))
6637                         /* not factor of array size */
6638                         return -EINVAL;
6639         }
6640
6641         /* They look valid */
6642         return check_reshape(mddev);
6643 }
6644
6645 static void *raid5_takeover(struct mddev *mddev)
6646 {
6647         /* raid5 can take over:
6648          *  raid0 - if there is only one strip zone - make it a raid4 layout
6649          *  raid1 - if there are two drives.  We need to know the chunk size
6650          *  raid4 - trivial - just use a raid4 layout.
6651          *  raid6 - Providing it is a *_6 layout
6652          */
6653         if (mddev->level == 0)
6654                 return raid45_takeover_raid0(mddev, 5);
6655         if (mddev->level == 1)
6656                 return raid5_takeover_raid1(mddev);
6657         if (mddev->level == 4) {
6658                 mddev->new_layout = ALGORITHM_PARITY_N;
6659                 mddev->new_level = 5;
6660                 return setup_conf(mddev);
6661         }
6662         if (mddev->level == 6)
6663                 return raid5_takeover_raid6(mddev);
6664
6665         return ERR_PTR(-EINVAL);
6666 }
6667
6668 static void *raid4_takeover(struct mddev *mddev)
6669 {
6670         /* raid4 can take over:
6671          *  raid0 - if there is only one strip zone
6672          *  raid5 - if layout is right
6673          */
6674         if (mddev->level == 0)
6675                 return raid45_takeover_raid0(mddev, 4);
6676         if (mddev->level == 5 &&
6677             mddev->layout == ALGORITHM_PARITY_N) {
6678                 mddev->new_layout = 0;
6679                 mddev->new_level = 4;
6680                 return setup_conf(mddev);
6681         }
6682         return ERR_PTR(-EINVAL);
6683 }
6684
6685 static struct md_personality raid5_personality;
6686
6687 static void *raid6_takeover(struct mddev *mddev)
6688 {
6689         /* Currently can only take over a raid5.  We map the
6690          * personality to an equivalent raid6 personality
6691          * with the Q block at the end.
6692          */
6693         int new_layout;
6694
6695         if (mddev->pers != &raid5_personality)
6696                 return ERR_PTR(-EINVAL);
6697         if (mddev->degraded > 1)
6698                 return ERR_PTR(-EINVAL);
6699         if (mddev->raid_disks > 253)
6700                 return ERR_PTR(-EINVAL);
6701         if (mddev->raid_disks < 3)
6702                 return ERR_PTR(-EINVAL);
6703
6704         switch (mddev->layout) {
6705         case ALGORITHM_LEFT_ASYMMETRIC:
6706                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6707                 break;
6708         case ALGORITHM_RIGHT_ASYMMETRIC:
6709                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6710                 break;
6711         case ALGORITHM_LEFT_SYMMETRIC:
6712                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6713                 break;
6714         case ALGORITHM_RIGHT_SYMMETRIC:
6715                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6716                 break;
6717         case ALGORITHM_PARITY_0:
6718                 new_layout = ALGORITHM_PARITY_0_6;
6719                 break;
6720         case ALGORITHM_PARITY_N:
6721                 new_layout = ALGORITHM_PARITY_N;
6722                 break;
6723         default:
6724                 return ERR_PTR(-EINVAL);
6725         }
6726         mddev->new_level = 6;
6727         mddev->new_layout = new_layout;
6728         mddev->delta_disks = 1;
6729         mddev->raid_disks += 1;
6730         return setup_conf(mddev);
6731 }
6732
6733
6734 static struct md_personality raid6_personality =
6735 {
6736         .name           = "raid6",
6737         .level          = 6,
6738         .owner          = THIS_MODULE,
6739         .make_request   = make_request,
6740         .run            = run,
6741         .stop           = stop,
6742         .status         = status,
6743         .error_handler  = error,
6744         .hot_add_disk   = raid5_add_disk,
6745         .hot_remove_disk= raid5_remove_disk,
6746         .spare_active   = raid5_spare_active,
6747         .sync_request   = sync_request,
6748         .resize         = raid5_resize,
6749         .size           = raid5_size,
6750         .check_reshape  = raid6_check_reshape,
6751         .start_reshape  = raid5_start_reshape,
6752         .finish_reshape = raid5_finish_reshape,
6753         .quiesce        = raid5_quiesce,
6754         .takeover       = raid6_takeover,
6755 };
6756 static struct md_personality raid5_personality =
6757 {
6758         .name           = "raid5",
6759         .level          = 5,
6760         .owner          = THIS_MODULE,
6761         .make_request   = make_request,
6762         .run            = run,
6763         .stop           = stop,
6764         .status         = status,
6765         .error_handler  = error,
6766         .hot_add_disk   = raid5_add_disk,
6767         .hot_remove_disk= raid5_remove_disk,
6768         .spare_active   = raid5_spare_active,
6769         .sync_request   = sync_request,
6770         .resize         = raid5_resize,
6771         .size           = raid5_size,
6772         .check_reshape  = raid5_check_reshape,
6773         .start_reshape  = raid5_start_reshape,
6774         .finish_reshape = raid5_finish_reshape,
6775         .quiesce        = raid5_quiesce,
6776         .takeover       = raid5_takeover,
6777 };
6778
6779 static struct md_personality raid4_personality =
6780 {
6781         .name           = "raid4",
6782         .level          = 4,
6783         .owner          = THIS_MODULE,
6784         .make_request   = make_request,
6785         .run            = run,
6786         .stop           = stop,
6787         .status         = status,
6788         .error_handler  = error,
6789         .hot_add_disk   = raid5_add_disk,
6790         .hot_remove_disk= raid5_remove_disk,
6791         .spare_active   = raid5_spare_active,
6792         .sync_request   = sync_request,
6793         .resize         = raid5_resize,
6794         .size           = raid5_size,
6795         .check_reshape  = raid5_check_reshape,
6796         .start_reshape  = raid5_start_reshape,
6797         .finish_reshape = raid5_finish_reshape,
6798         .quiesce        = raid5_quiesce,
6799         .takeover       = raid4_takeover,
6800 };
6801
6802 static int __init raid5_init(void)
6803 {
6804         raid5_wq = alloc_workqueue("raid5wq",
6805                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
6806         if (!raid5_wq)
6807                 return -ENOMEM;
6808         register_md_personality(&raid6_personality);
6809         register_md_personality(&raid5_personality);
6810         register_md_personality(&raid4_personality);
6811         return 0;
6812 }
6813
6814 static void raid5_exit(void)
6815 {
6816         unregister_md_personality(&raid6_personality);
6817         unregister_md_personality(&raid5_personality);
6818         unregister_md_personality(&raid4_personality);
6819         destroy_workqueue(raid5_wq);
6820 }
6821
6822 module_init(raid5_init);
6823 module_exit(raid5_exit);
6824 MODULE_LICENSE("GPL");
6825 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6826 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6827 MODULE_ALIAS("md-raid5");
6828 MODULE_ALIAS("md-raid4");
6829 MODULE_ALIAS("md-level-5");
6830 MODULE_ALIAS("md-level-4");
6831 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6832 MODULE_ALIAS("md-raid6");
6833 MODULE_ALIAS("md-level-6");
6834
6835 /* This used to be two separate modules, they were: */
6836 MODULE_ALIAS("raid5");
6837 MODULE_ALIAS("raid6");