Merge tag 'dt' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60
61 /*
62  * Stripe cache
63  */
64
65 #define NR_STRIPES              256
66 #define STRIPE_SIZE             PAGE_SIZE
67 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD            1
70 #define BYPASS_THRESHOLD        1
71 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK               (NR_HASH - 1)
73
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77         return &conf->stripe_hashtbl[hash];
78 }
79
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap.  There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91         int sectors = bio->bi_size >> 9;
92         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93                 return bio->bi_next;
94         else
95                 return NULL;
96 }
97
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_processed_stripes(struct bio *bio)
103 {
104         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
105         return (atomic_read(segments) >> 16) & 0xffff;
106 }
107
108 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
109 {
110         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
111         return atomic_sub_return(1, segments) & 0xffff;
112 }
113
114 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
115 {
116         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
117         atomic_inc(segments);
118 }
119
120 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
121         unsigned int cnt)
122 {
123         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
124         int old, new;
125
126         do {
127                 old = atomic_read(segments);
128                 new = (old & 0xffff) | (cnt << 16);
129         } while (atomic_cmpxchg(segments, old, new) != old);
130 }
131
132 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
133 {
134         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
135         atomic_set(segments, cnt);
136 }
137
138 /* Find first data disk in a raid6 stripe */
139 static inline int raid6_d0(struct stripe_head *sh)
140 {
141         if (sh->ddf_layout)
142                 /* ddf always start from first device */
143                 return 0;
144         /* md starts just after Q block */
145         if (sh->qd_idx == sh->disks - 1)
146                 return 0;
147         else
148                 return sh->qd_idx + 1;
149 }
150 static inline int raid6_next_disk(int disk, int raid_disks)
151 {
152         disk++;
153         return (disk < raid_disks) ? disk : 0;
154 }
155
156 /* When walking through the disks in a raid5, starting at raid6_d0,
157  * We need to map each disk to a 'slot', where the data disks are slot
158  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
159  * is raid_disks-1.  This help does that mapping.
160  */
161 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
162                              int *count, int syndrome_disks)
163 {
164         int slot = *count;
165
166         if (sh->ddf_layout)
167                 (*count)++;
168         if (idx == sh->pd_idx)
169                 return syndrome_disks;
170         if (idx == sh->qd_idx)
171                 return syndrome_disks + 1;
172         if (!sh->ddf_layout)
173                 (*count)++;
174         return slot;
175 }
176
177 static void return_io(struct bio *return_bi)
178 {
179         struct bio *bi = return_bi;
180         while (bi) {
181
182                 return_bi = bi->bi_next;
183                 bi->bi_next = NULL;
184                 bi->bi_size = 0;
185                 bio_endio(bi, 0);
186                 bi = return_bi;
187         }
188 }
189
190 static void print_raid5_conf (struct r5conf *conf);
191
192 static int stripe_operations_active(struct stripe_head *sh)
193 {
194         return sh->check_state || sh->reconstruct_state ||
195                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
196                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
197 }
198
199 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
200 {
201         BUG_ON(!list_empty(&sh->lru));
202         BUG_ON(atomic_read(&conf->active_stripes)==0);
203         if (test_bit(STRIPE_HANDLE, &sh->state)) {
204                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
205                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
206                         list_add_tail(&sh->lru, &conf->delayed_list);
207                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
208                            sh->bm_seq - conf->seq_write > 0)
209                         list_add_tail(&sh->lru, &conf->bitmap_list);
210                 else {
211                         clear_bit(STRIPE_DELAYED, &sh->state);
212                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
213                         list_add_tail(&sh->lru, &conf->handle_list);
214                 }
215                 md_wakeup_thread(conf->mddev->thread);
216         } else {
217                 BUG_ON(stripe_operations_active(sh));
218                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
219                         if (atomic_dec_return(&conf->preread_active_stripes)
220                             < IO_THRESHOLD)
221                                 md_wakeup_thread(conf->mddev->thread);
222                 atomic_dec(&conf->active_stripes);
223                 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
224                         list_add_tail(&sh->lru, &conf->inactive_list);
225                         wake_up(&conf->wait_for_stripe);
226                         if (conf->retry_read_aligned)
227                                 md_wakeup_thread(conf->mddev->thread);
228                 }
229         }
230 }
231
232 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
233 {
234         if (atomic_dec_and_test(&sh->count))
235                 do_release_stripe(conf, sh);
236 }
237
238 static void release_stripe(struct stripe_head *sh)
239 {
240         struct r5conf *conf = sh->raid_conf;
241         unsigned long flags;
242
243         local_irq_save(flags);
244         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
245                 do_release_stripe(conf, sh);
246                 spin_unlock(&conf->device_lock);
247         }
248         local_irq_restore(flags);
249 }
250
251 static inline void remove_hash(struct stripe_head *sh)
252 {
253         pr_debug("remove_hash(), stripe %llu\n",
254                 (unsigned long long)sh->sector);
255
256         hlist_del_init(&sh->hash);
257 }
258
259 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
260 {
261         struct hlist_head *hp = stripe_hash(conf, sh->sector);
262
263         pr_debug("insert_hash(), stripe %llu\n",
264                 (unsigned long long)sh->sector);
265
266         hlist_add_head(&sh->hash, hp);
267 }
268
269
270 /* find an idle stripe, make sure it is unhashed, and return it. */
271 static struct stripe_head *get_free_stripe(struct r5conf *conf)
272 {
273         struct stripe_head *sh = NULL;
274         struct list_head *first;
275
276         if (list_empty(&conf->inactive_list))
277                 goto out;
278         first = conf->inactive_list.next;
279         sh = list_entry(first, struct stripe_head, lru);
280         list_del_init(first);
281         remove_hash(sh);
282         atomic_inc(&conf->active_stripes);
283 out:
284         return sh;
285 }
286
287 static void shrink_buffers(struct stripe_head *sh)
288 {
289         struct page *p;
290         int i;
291         int num = sh->raid_conf->pool_size;
292
293         for (i = 0; i < num ; i++) {
294                 p = sh->dev[i].page;
295                 if (!p)
296                         continue;
297                 sh->dev[i].page = NULL;
298                 put_page(p);
299         }
300 }
301
302 static int grow_buffers(struct stripe_head *sh)
303 {
304         int i;
305         int num = sh->raid_conf->pool_size;
306
307         for (i = 0; i < num; i++) {
308                 struct page *page;
309
310                 if (!(page = alloc_page(GFP_KERNEL))) {
311                         return 1;
312                 }
313                 sh->dev[i].page = page;
314         }
315         return 0;
316 }
317
318 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
319 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
320                             struct stripe_head *sh);
321
322 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
323 {
324         struct r5conf *conf = sh->raid_conf;
325         int i;
326
327         BUG_ON(atomic_read(&sh->count) != 0);
328         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
329         BUG_ON(stripe_operations_active(sh));
330
331         pr_debug("init_stripe called, stripe %llu\n",
332                 (unsigned long long)sh->sector);
333
334         remove_hash(sh);
335
336         sh->generation = conf->generation - previous;
337         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
338         sh->sector = sector;
339         stripe_set_idx(sector, conf, previous, sh);
340         sh->state = 0;
341
342
343         for (i = sh->disks; i--; ) {
344                 struct r5dev *dev = &sh->dev[i];
345
346                 if (dev->toread || dev->read || dev->towrite || dev->written ||
347                     test_bit(R5_LOCKED, &dev->flags)) {
348                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
349                                (unsigned long long)sh->sector, i, dev->toread,
350                                dev->read, dev->towrite, dev->written,
351                                test_bit(R5_LOCKED, &dev->flags));
352                         WARN_ON(1);
353                 }
354                 dev->flags = 0;
355                 raid5_build_block(sh, i, previous);
356         }
357         insert_hash(conf, sh);
358 }
359
360 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
361                                          short generation)
362 {
363         struct stripe_head *sh;
364         struct hlist_node *hn;
365
366         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
367         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
368                 if (sh->sector == sector && sh->generation == generation)
369                         return sh;
370         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
371         return NULL;
372 }
373
374 /*
375  * Need to check if array has failed when deciding whether to:
376  *  - start an array
377  *  - remove non-faulty devices
378  *  - add a spare
379  *  - allow a reshape
380  * This determination is simple when no reshape is happening.
381  * However if there is a reshape, we need to carefully check
382  * both the before and after sections.
383  * This is because some failed devices may only affect one
384  * of the two sections, and some non-in_sync devices may
385  * be insync in the section most affected by failed devices.
386  */
387 static int calc_degraded(struct r5conf *conf)
388 {
389         int degraded, degraded2;
390         int i;
391
392         rcu_read_lock();
393         degraded = 0;
394         for (i = 0; i < conf->previous_raid_disks; i++) {
395                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
396                 if (rdev && test_bit(Faulty, &rdev->flags))
397                         rdev = rcu_dereference(conf->disks[i].replacement);
398                 if (!rdev || test_bit(Faulty, &rdev->flags))
399                         degraded++;
400                 else if (test_bit(In_sync, &rdev->flags))
401                         ;
402                 else
403                         /* not in-sync or faulty.
404                          * If the reshape increases the number of devices,
405                          * this is being recovered by the reshape, so
406                          * this 'previous' section is not in_sync.
407                          * If the number of devices is being reduced however,
408                          * the device can only be part of the array if
409                          * we are reverting a reshape, so this section will
410                          * be in-sync.
411                          */
412                         if (conf->raid_disks >= conf->previous_raid_disks)
413                                 degraded++;
414         }
415         rcu_read_unlock();
416         if (conf->raid_disks == conf->previous_raid_disks)
417                 return degraded;
418         rcu_read_lock();
419         degraded2 = 0;
420         for (i = 0; i < conf->raid_disks; i++) {
421                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
422                 if (rdev && test_bit(Faulty, &rdev->flags))
423                         rdev = rcu_dereference(conf->disks[i].replacement);
424                 if (!rdev || test_bit(Faulty, &rdev->flags))
425                         degraded2++;
426                 else if (test_bit(In_sync, &rdev->flags))
427                         ;
428                 else
429                         /* not in-sync or faulty.
430                          * If reshape increases the number of devices, this
431                          * section has already been recovered, else it
432                          * almost certainly hasn't.
433                          */
434                         if (conf->raid_disks <= conf->previous_raid_disks)
435                                 degraded2++;
436         }
437         rcu_read_unlock();
438         if (degraded2 > degraded)
439                 return degraded2;
440         return degraded;
441 }
442
443 static int has_failed(struct r5conf *conf)
444 {
445         int degraded;
446
447         if (conf->mddev->reshape_position == MaxSector)
448                 return conf->mddev->degraded > conf->max_degraded;
449
450         degraded = calc_degraded(conf);
451         if (degraded > conf->max_degraded)
452                 return 1;
453         return 0;
454 }
455
456 static struct stripe_head *
457 get_active_stripe(struct r5conf *conf, sector_t sector,
458                   int previous, int noblock, int noquiesce)
459 {
460         struct stripe_head *sh;
461
462         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
463
464         spin_lock_irq(&conf->device_lock);
465
466         do {
467                 wait_event_lock_irq(conf->wait_for_stripe,
468                                     conf->quiesce == 0 || noquiesce,
469                                     conf->device_lock, /* nothing */);
470                 sh = __find_stripe(conf, sector, conf->generation - previous);
471                 if (!sh) {
472                         if (!conf->inactive_blocked)
473                                 sh = get_free_stripe(conf);
474                         if (noblock && sh == NULL)
475                                 break;
476                         if (!sh) {
477                                 conf->inactive_blocked = 1;
478                                 wait_event_lock_irq(conf->wait_for_stripe,
479                                                     !list_empty(&conf->inactive_list) &&
480                                                     (atomic_read(&conf->active_stripes)
481                                                      < (conf->max_nr_stripes *3/4)
482                                                      || !conf->inactive_blocked),
483                                                     conf->device_lock,
484                                                     );
485                                 conf->inactive_blocked = 0;
486                         } else
487                                 init_stripe(sh, sector, previous);
488                 } else {
489                         if (atomic_read(&sh->count)) {
490                                 BUG_ON(!list_empty(&sh->lru)
491                                     && !test_bit(STRIPE_EXPANDING, &sh->state)
492                                     && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
493                         } else {
494                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
495                                         atomic_inc(&conf->active_stripes);
496                                 if (list_empty(&sh->lru) &&
497                                     !test_bit(STRIPE_EXPANDING, &sh->state))
498                                         BUG();
499                                 list_del_init(&sh->lru);
500                         }
501                 }
502         } while (sh == NULL);
503
504         if (sh)
505                 atomic_inc(&sh->count);
506
507         spin_unlock_irq(&conf->device_lock);
508         return sh;
509 }
510
511 /* Determine if 'data_offset' or 'new_data_offset' should be used
512  * in this stripe_head.
513  */
514 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
515 {
516         sector_t progress = conf->reshape_progress;
517         /* Need a memory barrier to make sure we see the value
518          * of conf->generation, or ->data_offset that was set before
519          * reshape_progress was updated.
520          */
521         smp_rmb();
522         if (progress == MaxSector)
523                 return 0;
524         if (sh->generation == conf->generation - 1)
525                 return 0;
526         /* We are in a reshape, and this is a new-generation stripe,
527          * so use new_data_offset.
528          */
529         return 1;
530 }
531
532 static void
533 raid5_end_read_request(struct bio *bi, int error);
534 static void
535 raid5_end_write_request(struct bio *bi, int error);
536
537 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
538 {
539         struct r5conf *conf = sh->raid_conf;
540         int i, disks = sh->disks;
541
542         might_sleep();
543
544         for (i = disks; i--; ) {
545                 int rw;
546                 int replace_only = 0;
547                 struct bio *bi, *rbi;
548                 struct md_rdev *rdev, *rrdev = NULL;
549                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
550                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
551                                 rw = WRITE_FUA;
552                         else
553                                 rw = WRITE;
554                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
555                         rw = READ;
556                 else if (test_and_clear_bit(R5_WantReplace,
557                                             &sh->dev[i].flags)) {
558                         rw = WRITE;
559                         replace_only = 1;
560                 } else
561                         continue;
562                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
563                         rw |= REQ_SYNC;
564
565                 bi = &sh->dev[i].req;
566                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
567
568                 bi->bi_rw = rw;
569                 rbi->bi_rw = rw;
570                 if (rw & WRITE) {
571                         bi->bi_end_io = raid5_end_write_request;
572                         rbi->bi_end_io = raid5_end_write_request;
573                 } else
574                         bi->bi_end_io = raid5_end_read_request;
575
576                 rcu_read_lock();
577                 rrdev = rcu_dereference(conf->disks[i].replacement);
578                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
579                 rdev = rcu_dereference(conf->disks[i].rdev);
580                 if (!rdev) {
581                         rdev = rrdev;
582                         rrdev = NULL;
583                 }
584                 if (rw & WRITE) {
585                         if (replace_only)
586                                 rdev = NULL;
587                         if (rdev == rrdev)
588                                 /* We raced and saw duplicates */
589                                 rrdev = NULL;
590                 } else {
591                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
592                                 rdev = rrdev;
593                         rrdev = NULL;
594                 }
595
596                 if (rdev && test_bit(Faulty, &rdev->flags))
597                         rdev = NULL;
598                 if (rdev)
599                         atomic_inc(&rdev->nr_pending);
600                 if (rrdev && test_bit(Faulty, &rrdev->flags))
601                         rrdev = NULL;
602                 if (rrdev)
603                         atomic_inc(&rrdev->nr_pending);
604                 rcu_read_unlock();
605
606                 /* We have already checked bad blocks for reads.  Now
607                  * need to check for writes.  We never accept write errors
608                  * on the replacement, so we don't to check rrdev.
609                  */
610                 while ((rw & WRITE) && rdev &&
611                        test_bit(WriteErrorSeen, &rdev->flags)) {
612                         sector_t first_bad;
613                         int bad_sectors;
614                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
615                                               &first_bad, &bad_sectors);
616                         if (!bad)
617                                 break;
618
619                         if (bad < 0) {
620                                 set_bit(BlockedBadBlocks, &rdev->flags);
621                                 if (!conf->mddev->external &&
622                                     conf->mddev->flags) {
623                                         /* It is very unlikely, but we might
624                                          * still need to write out the
625                                          * bad block log - better give it
626                                          * a chance*/
627                                         md_check_recovery(conf->mddev);
628                                 }
629                                 /*
630                                  * Because md_wait_for_blocked_rdev
631                                  * will dec nr_pending, we must
632                                  * increment it first.
633                                  */
634                                 atomic_inc(&rdev->nr_pending);
635                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
636                         } else {
637                                 /* Acknowledged bad block - skip the write */
638                                 rdev_dec_pending(rdev, conf->mddev);
639                                 rdev = NULL;
640                         }
641                 }
642
643                 if (rdev) {
644                         if (s->syncing || s->expanding || s->expanded
645                             || s->replacing)
646                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
647
648                         set_bit(STRIPE_IO_STARTED, &sh->state);
649
650                         bi->bi_bdev = rdev->bdev;
651                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
652                                 __func__, (unsigned long long)sh->sector,
653                                 bi->bi_rw, i);
654                         atomic_inc(&sh->count);
655                         if (use_new_offset(conf, sh))
656                                 bi->bi_sector = (sh->sector
657                                                  + rdev->new_data_offset);
658                         else
659                                 bi->bi_sector = (sh->sector
660                                                  + rdev->data_offset);
661                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
662                                 bi->bi_rw |= REQ_FLUSH;
663
664                         bi->bi_flags = 1 << BIO_UPTODATE;
665                         bi->bi_idx = 0;
666                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
667                         bi->bi_io_vec[0].bv_offset = 0;
668                         bi->bi_size = STRIPE_SIZE;
669                         bi->bi_next = NULL;
670                         if (rrdev)
671                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
672                         generic_make_request(bi);
673                 }
674                 if (rrdev) {
675                         if (s->syncing || s->expanding || s->expanded
676                             || s->replacing)
677                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
678
679                         set_bit(STRIPE_IO_STARTED, &sh->state);
680
681                         rbi->bi_bdev = rrdev->bdev;
682                         pr_debug("%s: for %llu schedule op %ld on "
683                                  "replacement disc %d\n",
684                                 __func__, (unsigned long long)sh->sector,
685                                 rbi->bi_rw, i);
686                         atomic_inc(&sh->count);
687                         if (use_new_offset(conf, sh))
688                                 rbi->bi_sector = (sh->sector
689                                                   + rrdev->new_data_offset);
690                         else
691                                 rbi->bi_sector = (sh->sector
692                                                   + rrdev->data_offset);
693                         rbi->bi_flags = 1 << BIO_UPTODATE;
694                         rbi->bi_idx = 0;
695                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
696                         rbi->bi_io_vec[0].bv_offset = 0;
697                         rbi->bi_size = STRIPE_SIZE;
698                         rbi->bi_next = NULL;
699                         generic_make_request(rbi);
700                 }
701                 if (!rdev && !rrdev) {
702                         if (rw & WRITE)
703                                 set_bit(STRIPE_DEGRADED, &sh->state);
704                         pr_debug("skip op %ld on disc %d for sector %llu\n",
705                                 bi->bi_rw, i, (unsigned long long)sh->sector);
706                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
707                         set_bit(STRIPE_HANDLE, &sh->state);
708                 }
709         }
710 }
711
712 static struct dma_async_tx_descriptor *
713 async_copy_data(int frombio, struct bio *bio, struct page *page,
714         sector_t sector, struct dma_async_tx_descriptor *tx)
715 {
716         struct bio_vec *bvl;
717         struct page *bio_page;
718         int i;
719         int page_offset;
720         struct async_submit_ctl submit;
721         enum async_tx_flags flags = 0;
722
723         if (bio->bi_sector >= sector)
724                 page_offset = (signed)(bio->bi_sector - sector) * 512;
725         else
726                 page_offset = (signed)(sector - bio->bi_sector) * -512;
727
728         if (frombio)
729                 flags |= ASYNC_TX_FENCE;
730         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
731
732         bio_for_each_segment(bvl, bio, i) {
733                 int len = bvl->bv_len;
734                 int clen;
735                 int b_offset = 0;
736
737                 if (page_offset < 0) {
738                         b_offset = -page_offset;
739                         page_offset += b_offset;
740                         len -= b_offset;
741                 }
742
743                 if (len > 0 && page_offset + len > STRIPE_SIZE)
744                         clen = STRIPE_SIZE - page_offset;
745                 else
746                         clen = len;
747
748                 if (clen > 0) {
749                         b_offset += bvl->bv_offset;
750                         bio_page = bvl->bv_page;
751                         if (frombio)
752                                 tx = async_memcpy(page, bio_page, page_offset,
753                                                   b_offset, clen, &submit);
754                         else
755                                 tx = async_memcpy(bio_page, page, b_offset,
756                                                   page_offset, clen, &submit);
757                 }
758                 /* chain the operations */
759                 submit.depend_tx = tx;
760
761                 if (clen < len) /* hit end of page */
762                         break;
763                 page_offset +=  len;
764         }
765
766         return tx;
767 }
768
769 static void ops_complete_biofill(void *stripe_head_ref)
770 {
771         struct stripe_head *sh = stripe_head_ref;
772         struct bio *return_bi = NULL;
773         int i;
774
775         pr_debug("%s: stripe %llu\n", __func__,
776                 (unsigned long long)sh->sector);
777
778         /* clear completed biofills */
779         for (i = sh->disks; i--; ) {
780                 struct r5dev *dev = &sh->dev[i];
781
782                 /* acknowledge completion of a biofill operation */
783                 /* and check if we need to reply to a read request,
784                  * new R5_Wantfill requests are held off until
785                  * !STRIPE_BIOFILL_RUN
786                  */
787                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
788                         struct bio *rbi, *rbi2;
789
790                         BUG_ON(!dev->read);
791                         rbi = dev->read;
792                         dev->read = NULL;
793                         while (rbi && rbi->bi_sector <
794                                 dev->sector + STRIPE_SECTORS) {
795                                 rbi2 = r5_next_bio(rbi, dev->sector);
796                                 if (!raid5_dec_bi_active_stripes(rbi)) {
797                                         rbi->bi_next = return_bi;
798                                         return_bi = rbi;
799                                 }
800                                 rbi = rbi2;
801                         }
802                 }
803         }
804         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
805
806         return_io(return_bi);
807
808         set_bit(STRIPE_HANDLE, &sh->state);
809         release_stripe(sh);
810 }
811
812 static void ops_run_biofill(struct stripe_head *sh)
813 {
814         struct dma_async_tx_descriptor *tx = NULL;
815         struct async_submit_ctl submit;
816         int i;
817
818         pr_debug("%s: stripe %llu\n", __func__,
819                 (unsigned long long)sh->sector);
820
821         for (i = sh->disks; i--; ) {
822                 struct r5dev *dev = &sh->dev[i];
823                 if (test_bit(R5_Wantfill, &dev->flags)) {
824                         struct bio *rbi;
825                         spin_lock_irq(&sh->stripe_lock);
826                         dev->read = rbi = dev->toread;
827                         dev->toread = NULL;
828                         spin_unlock_irq(&sh->stripe_lock);
829                         while (rbi && rbi->bi_sector <
830                                 dev->sector + STRIPE_SECTORS) {
831                                 tx = async_copy_data(0, rbi, dev->page,
832                                         dev->sector, tx);
833                                 rbi = r5_next_bio(rbi, dev->sector);
834                         }
835                 }
836         }
837
838         atomic_inc(&sh->count);
839         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
840         async_trigger_callback(&submit);
841 }
842
843 static void mark_target_uptodate(struct stripe_head *sh, int target)
844 {
845         struct r5dev *tgt;
846
847         if (target < 0)
848                 return;
849
850         tgt = &sh->dev[target];
851         set_bit(R5_UPTODATE, &tgt->flags);
852         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
853         clear_bit(R5_Wantcompute, &tgt->flags);
854 }
855
856 static void ops_complete_compute(void *stripe_head_ref)
857 {
858         struct stripe_head *sh = stripe_head_ref;
859
860         pr_debug("%s: stripe %llu\n", __func__,
861                 (unsigned long long)sh->sector);
862
863         /* mark the computed target(s) as uptodate */
864         mark_target_uptodate(sh, sh->ops.target);
865         mark_target_uptodate(sh, sh->ops.target2);
866
867         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
868         if (sh->check_state == check_state_compute_run)
869                 sh->check_state = check_state_compute_result;
870         set_bit(STRIPE_HANDLE, &sh->state);
871         release_stripe(sh);
872 }
873
874 /* return a pointer to the address conversion region of the scribble buffer */
875 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
876                                  struct raid5_percpu *percpu)
877 {
878         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
879 }
880
881 static struct dma_async_tx_descriptor *
882 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
883 {
884         int disks = sh->disks;
885         struct page **xor_srcs = percpu->scribble;
886         int target = sh->ops.target;
887         struct r5dev *tgt = &sh->dev[target];
888         struct page *xor_dest = tgt->page;
889         int count = 0;
890         struct dma_async_tx_descriptor *tx;
891         struct async_submit_ctl submit;
892         int i;
893
894         pr_debug("%s: stripe %llu block: %d\n",
895                 __func__, (unsigned long long)sh->sector, target);
896         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
897
898         for (i = disks; i--; )
899                 if (i != target)
900                         xor_srcs[count++] = sh->dev[i].page;
901
902         atomic_inc(&sh->count);
903
904         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
905                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
906         if (unlikely(count == 1))
907                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
908         else
909                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
910
911         return tx;
912 }
913
914 /* set_syndrome_sources - populate source buffers for gen_syndrome
915  * @srcs - (struct page *) array of size sh->disks
916  * @sh - stripe_head to parse
917  *
918  * Populates srcs in proper layout order for the stripe and returns the
919  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
920  * destination buffer is recorded in srcs[count] and the Q destination
921  * is recorded in srcs[count+1]].
922  */
923 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
924 {
925         int disks = sh->disks;
926         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
927         int d0_idx = raid6_d0(sh);
928         int count;
929         int i;
930
931         for (i = 0; i < disks; i++)
932                 srcs[i] = NULL;
933
934         count = 0;
935         i = d0_idx;
936         do {
937                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
938
939                 srcs[slot] = sh->dev[i].page;
940                 i = raid6_next_disk(i, disks);
941         } while (i != d0_idx);
942
943         return syndrome_disks;
944 }
945
946 static struct dma_async_tx_descriptor *
947 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
948 {
949         int disks = sh->disks;
950         struct page **blocks = percpu->scribble;
951         int target;
952         int qd_idx = sh->qd_idx;
953         struct dma_async_tx_descriptor *tx;
954         struct async_submit_ctl submit;
955         struct r5dev *tgt;
956         struct page *dest;
957         int i;
958         int count;
959
960         if (sh->ops.target < 0)
961                 target = sh->ops.target2;
962         else if (sh->ops.target2 < 0)
963                 target = sh->ops.target;
964         else
965                 /* we should only have one valid target */
966                 BUG();
967         BUG_ON(target < 0);
968         pr_debug("%s: stripe %llu block: %d\n",
969                 __func__, (unsigned long long)sh->sector, target);
970
971         tgt = &sh->dev[target];
972         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
973         dest = tgt->page;
974
975         atomic_inc(&sh->count);
976
977         if (target == qd_idx) {
978                 count = set_syndrome_sources(blocks, sh);
979                 blocks[count] = NULL; /* regenerating p is not necessary */
980                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
981                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
982                                   ops_complete_compute, sh,
983                                   to_addr_conv(sh, percpu));
984                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
985         } else {
986                 /* Compute any data- or p-drive using XOR */
987                 count = 0;
988                 for (i = disks; i-- ; ) {
989                         if (i == target || i == qd_idx)
990                                 continue;
991                         blocks[count++] = sh->dev[i].page;
992                 }
993
994                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
995                                   NULL, ops_complete_compute, sh,
996                                   to_addr_conv(sh, percpu));
997                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
998         }
999
1000         return tx;
1001 }
1002
1003 static struct dma_async_tx_descriptor *
1004 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1005 {
1006         int i, count, disks = sh->disks;
1007         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1008         int d0_idx = raid6_d0(sh);
1009         int faila = -1, failb = -1;
1010         int target = sh->ops.target;
1011         int target2 = sh->ops.target2;
1012         struct r5dev *tgt = &sh->dev[target];
1013         struct r5dev *tgt2 = &sh->dev[target2];
1014         struct dma_async_tx_descriptor *tx;
1015         struct page **blocks = percpu->scribble;
1016         struct async_submit_ctl submit;
1017
1018         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1019                  __func__, (unsigned long long)sh->sector, target, target2);
1020         BUG_ON(target < 0 || target2 < 0);
1021         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1022         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1023
1024         /* we need to open-code set_syndrome_sources to handle the
1025          * slot number conversion for 'faila' and 'failb'
1026          */
1027         for (i = 0; i < disks ; i++)
1028                 blocks[i] = NULL;
1029         count = 0;
1030         i = d0_idx;
1031         do {
1032                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1033
1034                 blocks[slot] = sh->dev[i].page;
1035
1036                 if (i == target)
1037                         faila = slot;
1038                 if (i == target2)
1039                         failb = slot;
1040                 i = raid6_next_disk(i, disks);
1041         } while (i != d0_idx);
1042
1043         BUG_ON(faila == failb);
1044         if (failb < faila)
1045                 swap(faila, failb);
1046         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1047                  __func__, (unsigned long long)sh->sector, faila, failb);
1048
1049         atomic_inc(&sh->count);
1050
1051         if (failb == syndrome_disks+1) {
1052                 /* Q disk is one of the missing disks */
1053                 if (faila == syndrome_disks) {
1054                         /* Missing P+Q, just recompute */
1055                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1056                                           ops_complete_compute, sh,
1057                                           to_addr_conv(sh, percpu));
1058                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1059                                                   STRIPE_SIZE, &submit);
1060                 } else {
1061                         struct page *dest;
1062                         int data_target;
1063                         int qd_idx = sh->qd_idx;
1064
1065                         /* Missing D+Q: recompute D from P, then recompute Q */
1066                         if (target == qd_idx)
1067                                 data_target = target2;
1068                         else
1069                                 data_target = target;
1070
1071                         count = 0;
1072                         for (i = disks; i-- ; ) {
1073                                 if (i == data_target || i == qd_idx)
1074                                         continue;
1075                                 blocks[count++] = sh->dev[i].page;
1076                         }
1077                         dest = sh->dev[data_target].page;
1078                         init_async_submit(&submit,
1079                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1080                                           NULL, NULL, NULL,
1081                                           to_addr_conv(sh, percpu));
1082                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1083                                        &submit);
1084
1085                         count = set_syndrome_sources(blocks, sh);
1086                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1087                                           ops_complete_compute, sh,
1088                                           to_addr_conv(sh, percpu));
1089                         return async_gen_syndrome(blocks, 0, count+2,
1090                                                   STRIPE_SIZE, &submit);
1091                 }
1092         } else {
1093                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1094                                   ops_complete_compute, sh,
1095                                   to_addr_conv(sh, percpu));
1096                 if (failb == syndrome_disks) {
1097                         /* We're missing D+P. */
1098                         return async_raid6_datap_recov(syndrome_disks+2,
1099                                                        STRIPE_SIZE, faila,
1100                                                        blocks, &submit);
1101                 } else {
1102                         /* We're missing D+D. */
1103                         return async_raid6_2data_recov(syndrome_disks+2,
1104                                                        STRIPE_SIZE, faila, failb,
1105                                                        blocks, &submit);
1106                 }
1107         }
1108 }
1109
1110
1111 static void ops_complete_prexor(void *stripe_head_ref)
1112 {
1113         struct stripe_head *sh = stripe_head_ref;
1114
1115         pr_debug("%s: stripe %llu\n", __func__,
1116                 (unsigned long long)sh->sector);
1117 }
1118
1119 static struct dma_async_tx_descriptor *
1120 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1121                struct dma_async_tx_descriptor *tx)
1122 {
1123         int disks = sh->disks;
1124         struct page **xor_srcs = percpu->scribble;
1125         int count = 0, pd_idx = sh->pd_idx, i;
1126         struct async_submit_ctl submit;
1127
1128         /* existing parity data subtracted */
1129         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1130
1131         pr_debug("%s: stripe %llu\n", __func__,
1132                 (unsigned long long)sh->sector);
1133
1134         for (i = disks; i--; ) {
1135                 struct r5dev *dev = &sh->dev[i];
1136                 /* Only process blocks that are known to be uptodate */
1137                 if (test_bit(R5_Wantdrain, &dev->flags))
1138                         xor_srcs[count++] = dev->page;
1139         }
1140
1141         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1142                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1143         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1144
1145         return tx;
1146 }
1147
1148 static struct dma_async_tx_descriptor *
1149 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1150 {
1151         int disks = sh->disks;
1152         int i;
1153
1154         pr_debug("%s: stripe %llu\n", __func__,
1155                 (unsigned long long)sh->sector);
1156
1157         for (i = disks; i--; ) {
1158                 struct r5dev *dev = &sh->dev[i];
1159                 struct bio *chosen;
1160
1161                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1162                         struct bio *wbi;
1163
1164                         spin_lock_irq(&sh->stripe_lock);
1165                         chosen = dev->towrite;
1166                         dev->towrite = NULL;
1167                         BUG_ON(dev->written);
1168                         wbi = dev->written = chosen;
1169                         spin_unlock_irq(&sh->stripe_lock);
1170
1171                         while (wbi && wbi->bi_sector <
1172                                 dev->sector + STRIPE_SECTORS) {
1173                                 if (wbi->bi_rw & REQ_FUA)
1174                                         set_bit(R5_WantFUA, &dev->flags);
1175                                 if (wbi->bi_rw & REQ_SYNC)
1176                                         set_bit(R5_SyncIO, &dev->flags);
1177                                 tx = async_copy_data(1, wbi, dev->page,
1178                                         dev->sector, tx);
1179                                 wbi = r5_next_bio(wbi, dev->sector);
1180                         }
1181                 }
1182         }
1183
1184         return tx;
1185 }
1186
1187 static void ops_complete_reconstruct(void *stripe_head_ref)
1188 {
1189         struct stripe_head *sh = stripe_head_ref;
1190         int disks = sh->disks;
1191         int pd_idx = sh->pd_idx;
1192         int qd_idx = sh->qd_idx;
1193         int i;
1194         bool fua = false, sync = false;
1195
1196         pr_debug("%s: stripe %llu\n", __func__,
1197                 (unsigned long long)sh->sector);
1198
1199         for (i = disks; i--; ) {
1200                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1201                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1202         }
1203
1204         for (i = disks; i--; ) {
1205                 struct r5dev *dev = &sh->dev[i];
1206
1207                 if (dev->written || i == pd_idx || i == qd_idx) {
1208                         set_bit(R5_UPTODATE, &dev->flags);
1209                         if (fua)
1210                                 set_bit(R5_WantFUA, &dev->flags);
1211                         if (sync)
1212                                 set_bit(R5_SyncIO, &dev->flags);
1213                 }
1214         }
1215
1216         if (sh->reconstruct_state == reconstruct_state_drain_run)
1217                 sh->reconstruct_state = reconstruct_state_drain_result;
1218         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1219                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1220         else {
1221                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1222                 sh->reconstruct_state = reconstruct_state_result;
1223         }
1224
1225         set_bit(STRIPE_HANDLE, &sh->state);
1226         release_stripe(sh);
1227 }
1228
1229 static void
1230 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1231                      struct dma_async_tx_descriptor *tx)
1232 {
1233         int disks = sh->disks;
1234         struct page **xor_srcs = percpu->scribble;
1235         struct async_submit_ctl submit;
1236         int count = 0, pd_idx = sh->pd_idx, i;
1237         struct page *xor_dest;
1238         int prexor = 0;
1239         unsigned long flags;
1240
1241         pr_debug("%s: stripe %llu\n", __func__,
1242                 (unsigned long long)sh->sector);
1243
1244         /* check if prexor is active which means only process blocks
1245          * that are part of a read-modify-write (written)
1246          */
1247         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1248                 prexor = 1;
1249                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1250                 for (i = disks; i--; ) {
1251                         struct r5dev *dev = &sh->dev[i];
1252                         if (dev->written)
1253                                 xor_srcs[count++] = dev->page;
1254                 }
1255         } else {
1256                 xor_dest = sh->dev[pd_idx].page;
1257                 for (i = disks; i--; ) {
1258                         struct r5dev *dev = &sh->dev[i];
1259                         if (i != pd_idx)
1260                                 xor_srcs[count++] = dev->page;
1261                 }
1262         }
1263
1264         /* 1/ if we prexor'd then the dest is reused as a source
1265          * 2/ if we did not prexor then we are redoing the parity
1266          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1267          * for the synchronous xor case
1268          */
1269         flags = ASYNC_TX_ACK |
1270                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1271
1272         atomic_inc(&sh->count);
1273
1274         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1275                           to_addr_conv(sh, percpu));
1276         if (unlikely(count == 1))
1277                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1278         else
1279                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1280 }
1281
1282 static void
1283 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1284                      struct dma_async_tx_descriptor *tx)
1285 {
1286         struct async_submit_ctl submit;
1287         struct page **blocks = percpu->scribble;
1288         int count;
1289
1290         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1291
1292         count = set_syndrome_sources(blocks, sh);
1293
1294         atomic_inc(&sh->count);
1295
1296         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1297                           sh, to_addr_conv(sh, percpu));
1298         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1299 }
1300
1301 static void ops_complete_check(void *stripe_head_ref)
1302 {
1303         struct stripe_head *sh = stripe_head_ref;
1304
1305         pr_debug("%s: stripe %llu\n", __func__,
1306                 (unsigned long long)sh->sector);
1307
1308         sh->check_state = check_state_check_result;
1309         set_bit(STRIPE_HANDLE, &sh->state);
1310         release_stripe(sh);
1311 }
1312
1313 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1314 {
1315         int disks = sh->disks;
1316         int pd_idx = sh->pd_idx;
1317         int qd_idx = sh->qd_idx;
1318         struct page *xor_dest;
1319         struct page **xor_srcs = percpu->scribble;
1320         struct dma_async_tx_descriptor *tx;
1321         struct async_submit_ctl submit;
1322         int count;
1323         int i;
1324
1325         pr_debug("%s: stripe %llu\n", __func__,
1326                 (unsigned long long)sh->sector);
1327
1328         count = 0;
1329         xor_dest = sh->dev[pd_idx].page;
1330         xor_srcs[count++] = xor_dest;
1331         for (i = disks; i--; ) {
1332                 if (i == pd_idx || i == qd_idx)
1333                         continue;
1334                 xor_srcs[count++] = sh->dev[i].page;
1335         }
1336
1337         init_async_submit(&submit, 0, NULL, NULL, NULL,
1338                           to_addr_conv(sh, percpu));
1339         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1340                            &sh->ops.zero_sum_result, &submit);
1341
1342         atomic_inc(&sh->count);
1343         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1344         tx = async_trigger_callback(&submit);
1345 }
1346
1347 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1348 {
1349         struct page **srcs = percpu->scribble;
1350         struct async_submit_ctl submit;
1351         int count;
1352
1353         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1354                 (unsigned long long)sh->sector, checkp);
1355
1356         count = set_syndrome_sources(srcs, sh);
1357         if (!checkp)
1358                 srcs[count] = NULL;
1359
1360         atomic_inc(&sh->count);
1361         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1362                           sh, to_addr_conv(sh, percpu));
1363         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1364                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1365 }
1366
1367 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1368 {
1369         int overlap_clear = 0, i, disks = sh->disks;
1370         struct dma_async_tx_descriptor *tx = NULL;
1371         struct r5conf *conf = sh->raid_conf;
1372         int level = conf->level;
1373         struct raid5_percpu *percpu;
1374         unsigned long cpu;
1375
1376         cpu = get_cpu();
1377         percpu = per_cpu_ptr(conf->percpu, cpu);
1378         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1379                 ops_run_biofill(sh);
1380                 overlap_clear++;
1381         }
1382
1383         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1384                 if (level < 6)
1385                         tx = ops_run_compute5(sh, percpu);
1386                 else {
1387                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1388                                 tx = ops_run_compute6_1(sh, percpu);
1389                         else
1390                                 tx = ops_run_compute6_2(sh, percpu);
1391                 }
1392                 /* terminate the chain if reconstruct is not set to be run */
1393                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1394                         async_tx_ack(tx);
1395         }
1396
1397         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1398                 tx = ops_run_prexor(sh, percpu, tx);
1399
1400         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1401                 tx = ops_run_biodrain(sh, tx);
1402                 overlap_clear++;
1403         }
1404
1405         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1406                 if (level < 6)
1407                         ops_run_reconstruct5(sh, percpu, tx);
1408                 else
1409                         ops_run_reconstruct6(sh, percpu, tx);
1410         }
1411
1412         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1413                 if (sh->check_state == check_state_run)
1414                         ops_run_check_p(sh, percpu);
1415                 else if (sh->check_state == check_state_run_q)
1416                         ops_run_check_pq(sh, percpu, 0);
1417                 else if (sh->check_state == check_state_run_pq)
1418                         ops_run_check_pq(sh, percpu, 1);
1419                 else
1420                         BUG();
1421         }
1422
1423         if (overlap_clear)
1424                 for (i = disks; i--; ) {
1425                         struct r5dev *dev = &sh->dev[i];
1426                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1427                                 wake_up(&sh->raid_conf->wait_for_overlap);
1428                 }
1429         put_cpu();
1430 }
1431
1432 #ifdef CONFIG_MULTICORE_RAID456
1433 static void async_run_ops(void *param, async_cookie_t cookie)
1434 {
1435         struct stripe_head *sh = param;
1436         unsigned long ops_request = sh->ops.request;
1437
1438         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1439         wake_up(&sh->ops.wait_for_ops);
1440
1441         __raid_run_ops(sh, ops_request);
1442         release_stripe(sh);
1443 }
1444
1445 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1446 {
1447         /* since handle_stripe can be called outside of raid5d context
1448          * we need to ensure sh->ops.request is de-staged before another
1449          * request arrives
1450          */
1451         wait_event(sh->ops.wait_for_ops,
1452                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1453         sh->ops.request = ops_request;
1454
1455         atomic_inc(&sh->count);
1456         async_schedule(async_run_ops, sh);
1457 }
1458 #else
1459 #define raid_run_ops __raid_run_ops
1460 #endif
1461
1462 static int grow_one_stripe(struct r5conf *conf)
1463 {
1464         struct stripe_head *sh;
1465         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1466         if (!sh)
1467                 return 0;
1468
1469         sh->raid_conf = conf;
1470         #ifdef CONFIG_MULTICORE_RAID456
1471         init_waitqueue_head(&sh->ops.wait_for_ops);
1472         #endif
1473
1474         spin_lock_init(&sh->stripe_lock);
1475
1476         if (grow_buffers(sh)) {
1477                 shrink_buffers(sh);
1478                 kmem_cache_free(conf->slab_cache, sh);
1479                 return 0;
1480         }
1481         /* we just created an active stripe so... */
1482         atomic_set(&sh->count, 1);
1483         atomic_inc(&conf->active_stripes);
1484         INIT_LIST_HEAD(&sh->lru);
1485         release_stripe(sh);
1486         return 1;
1487 }
1488
1489 static int grow_stripes(struct r5conf *conf, int num)
1490 {
1491         struct kmem_cache *sc;
1492         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1493
1494         if (conf->mddev->gendisk)
1495                 sprintf(conf->cache_name[0],
1496                         "raid%d-%s", conf->level, mdname(conf->mddev));
1497         else
1498                 sprintf(conf->cache_name[0],
1499                         "raid%d-%p", conf->level, conf->mddev);
1500         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1501
1502         conf->active_name = 0;
1503         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1504                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1505                                0, 0, NULL);
1506         if (!sc)
1507                 return 1;
1508         conf->slab_cache = sc;
1509         conf->pool_size = devs;
1510         while (num--)
1511                 if (!grow_one_stripe(conf))
1512                         return 1;
1513         return 0;
1514 }
1515
1516 /**
1517  * scribble_len - return the required size of the scribble region
1518  * @num - total number of disks in the array
1519  *
1520  * The size must be enough to contain:
1521  * 1/ a struct page pointer for each device in the array +2
1522  * 2/ room to convert each entry in (1) to its corresponding dma
1523  *    (dma_map_page()) or page (page_address()) address.
1524  *
1525  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1526  * calculate over all devices (not just the data blocks), using zeros in place
1527  * of the P and Q blocks.
1528  */
1529 static size_t scribble_len(int num)
1530 {
1531         size_t len;
1532
1533         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1534
1535         return len;
1536 }
1537
1538 static int resize_stripes(struct r5conf *conf, int newsize)
1539 {
1540         /* Make all the stripes able to hold 'newsize' devices.
1541          * New slots in each stripe get 'page' set to a new page.
1542          *
1543          * This happens in stages:
1544          * 1/ create a new kmem_cache and allocate the required number of
1545          *    stripe_heads.
1546          * 2/ gather all the old stripe_heads and tranfer the pages across
1547          *    to the new stripe_heads.  This will have the side effect of
1548          *    freezing the array as once all stripe_heads have been collected,
1549          *    no IO will be possible.  Old stripe heads are freed once their
1550          *    pages have been transferred over, and the old kmem_cache is
1551          *    freed when all stripes are done.
1552          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1553          *    we simple return a failre status - no need to clean anything up.
1554          * 4/ allocate new pages for the new slots in the new stripe_heads.
1555          *    If this fails, we don't bother trying the shrink the
1556          *    stripe_heads down again, we just leave them as they are.
1557          *    As each stripe_head is processed the new one is released into
1558          *    active service.
1559          *
1560          * Once step2 is started, we cannot afford to wait for a write,
1561          * so we use GFP_NOIO allocations.
1562          */
1563         struct stripe_head *osh, *nsh;
1564         LIST_HEAD(newstripes);
1565         struct disk_info *ndisks;
1566         unsigned long cpu;
1567         int err;
1568         struct kmem_cache *sc;
1569         int i;
1570
1571         if (newsize <= conf->pool_size)
1572                 return 0; /* never bother to shrink */
1573
1574         err = md_allow_write(conf->mddev);
1575         if (err)
1576                 return err;
1577
1578         /* Step 1 */
1579         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1580                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1581                                0, 0, NULL);
1582         if (!sc)
1583                 return -ENOMEM;
1584
1585         for (i = conf->max_nr_stripes; i; i--) {
1586                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1587                 if (!nsh)
1588                         break;
1589
1590                 nsh->raid_conf = conf;
1591                 #ifdef CONFIG_MULTICORE_RAID456
1592                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1593                 #endif
1594                 spin_lock_init(&nsh->stripe_lock);
1595
1596                 list_add(&nsh->lru, &newstripes);
1597         }
1598         if (i) {
1599                 /* didn't get enough, give up */
1600                 while (!list_empty(&newstripes)) {
1601                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1602                         list_del(&nsh->lru);
1603                         kmem_cache_free(sc, nsh);
1604                 }
1605                 kmem_cache_destroy(sc);
1606                 return -ENOMEM;
1607         }
1608         /* Step 2 - Must use GFP_NOIO now.
1609          * OK, we have enough stripes, start collecting inactive
1610          * stripes and copying them over
1611          */
1612         list_for_each_entry(nsh, &newstripes, lru) {
1613                 spin_lock_irq(&conf->device_lock);
1614                 wait_event_lock_irq(conf->wait_for_stripe,
1615                                     !list_empty(&conf->inactive_list),
1616                                     conf->device_lock,
1617                                     );
1618                 osh = get_free_stripe(conf);
1619                 spin_unlock_irq(&conf->device_lock);
1620                 atomic_set(&nsh->count, 1);
1621                 for(i=0; i<conf->pool_size; i++)
1622                         nsh->dev[i].page = osh->dev[i].page;
1623                 for( ; i<newsize; i++)
1624                         nsh->dev[i].page = NULL;
1625                 kmem_cache_free(conf->slab_cache, osh);
1626         }
1627         kmem_cache_destroy(conf->slab_cache);
1628
1629         /* Step 3.
1630          * At this point, we are holding all the stripes so the array
1631          * is completely stalled, so now is a good time to resize
1632          * conf->disks and the scribble region
1633          */
1634         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1635         if (ndisks) {
1636                 for (i=0; i<conf->raid_disks; i++)
1637                         ndisks[i] = conf->disks[i];
1638                 kfree(conf->disks);
1639                 conf->disks = ndisks;
1640         } else
1641                 err = -ENOMEM;
1642
1643         get_online_cpus();
1644         conf->scribble_len = scribble_len(newsize);
1645         for_each_present_cpu(cpu) {
1646                 struct raid5_percpu *percpu;
1647                 void *scribble;
1648
1649                 percpu = per_cpu_ptr(conf->percpu, cpu);
1650                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1651
1652                 if (scribble) {
1653                         kfree(percpu->scribble);
1654                         percpu->scribble = scribble;
1655                 } else {
1656                         err = -ENOMEM;
1657                         break;
1658                 }
1659         }
1660         put_online_cpus();
1661
1662         /* Step 4, return new stripes to service */
1663         while(!list_empty(&newstripes)) {
1664                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1665                 list_del_init(&nsh->lru);
1666
1667                 for (i=conf->raid_disks; i < newsize; i++)
1668                         if (nsh->dev[i].page == NULL) {
1669                                 struct page *p = alloc_page(GFP_NOIO);
1670                                 nsh->dev[i].page = p;
1671                                 if (!p)
1672                                         err = -ENOMEM;
1673                         }
1674                 release_stripe(nsh);
1675         }
1676         /* critical section pass, GFP_NOIO no longer needed */
1677
1678         conf->slab_cache = sc;
1679         conf->active_name = 1-conf->active_name;
1680         conf->pool_size = newsize;
1681         return err;
1682 }
1683
1684 static int drop_one_stripe(struct r5conf *conf)
1685 {
1686         struct stripe_head *sh;
1687
1688         spin_lock_irq(&conf->device_lock);
1689         sh = get_free_stripe(conf);
1690         spin_unlock_irq(&conf->device_lock);
1691         if (!sh)
1692                 return 0;
1693         BUG_ON(atomic_read(&sh->count));
1694         shrink_buffers(sh);
1695         kmem_cache_free(conf->slab_cache, sh);
1696         atomic_dec(&conf->active_stripes);
1697         return 1;
1698 }
1699
1700 static void shrink_stripes(struct r5conf *conf)
1701 {
1702         while (drop_one_stripe(conf))
1703                 ;
1704
1705         if (conf->slab_cache)
1706                 kmem_cache_destroy(conf->slab_cache);
1707         conf->slab_cache = NULL;
1708 }
1709
1710 static void raid5_end_read_request(struct bio * bi, int error)
1711 {
1712         struct stripe_head *sh = bi->bi_private;
1713         struct r5conf *conf = sh->raid_conf;
1714         int disks = sh->disks, i;
1715         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1716         char b[BDEVNAME_SIZE];
1717         struct md_rdev *rdev = NULL;
1718         sector_t s;
1719
1720         for (i=0 ; i<disks; i++)
1721                 if (bi == &sh->dev[i].req)
1722                         break;
1723
1724         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1725                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1726                 uptodate);
1727         if (i == disks) {
1728                 BUG();
1729                 return;
1730         }
1731         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1732                 /* If replacement finished while this request was outstanding,
1733                  * 'replacement' might be NULL already.
1734                  * In that case it moved down to 'rdev'.
1735                  * rdev is not removed until all requests are finished.
1736                  */
1737                 rdev = conf->disks[i].replacement;
1738         if (!rdev)
1739                 rdev = conf->disks[i].rdev;
1740
1741         if (use_new_offset(conf, sh))
1742                 s = sh->sector + rdev->new_data_offset;
1743         else
1744                 s = sh->sector + rdev->data_offset;
1745         if (uptodate) {
1746                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1747                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1748                         /* Note that this cannot happen on a
1749                          * replacement device.  We just fail those on
1750                          * any error
1751                          */
1752                         printk_ratelimited(
1753                                 KERN_INFO
1754                                 "md/raid:%s: read error corrected"
1755                                 " (%lu sectors at %llu on %s)\n",
1756                                 mdname(conf->mddev), STRIPE_SECTORS,
1757                                 (unsigned long long)s,
1758                                 bdevname(rdev->bdev, b));
1759                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1760                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1761                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1762                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1763                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1764
1765                 if (atomic_read(&rdev->read_errors))
1766                         atomic_set(&rdev->read_errors, 0);
1767         } else {
1768                 const char *bdn = bdevname(rdev->bdev, b);
1769                 int retry = 0;
1770                 int set_bad = 0;
1771
1772                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1773                 atomic_inc(&rdev->read_errors);
1774                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1775                         printk_ratelimited(
1776                                 KERN_WARNING
1777                                 "md/raid:%s: read error on replacement device "
1778                                 "(sector %llu on %s).\n",
1779                                 mdname(conf->mddev),
1780                                 (unsigned long long)s,
1781                                 bdn);
1782                 else if (conf->mddev->degraded >= conf->max_degraded) {
1783                         set_bad = 1;
1784                         printk_ratelimited(
1785                                 KERN_WARNING
1786                                 "md/raid:%s: read error not correctable "
1787                                 "(sector %llu on %s).\n",
1788                                 mdname(conf->mddev),
1789                                 (unsigned long long)s,
1790                                 bdn);
1791                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1792                         /* Oh, no!!! */
1793                         set_bad = 1;
1794                         printk_ratelimited(
1795                                 KERN_WARNING
1796                                 "md/raid:%s: read error NOT corrected!! "
1797                                 "(sector %llu on %s).\n",
1798                                 mdname(conf->mddev),
1799                                 (unsigned long long)s,
1800                                 bdn);
1801                 } else if (atomic_read(&rdev->read_errors)
1802                          > conf->max_nr_stripes)
1803                         printk(KERN_WARNING
1804                                "md/raid:%s: Too many read errors, failing device %s.\n",
1805                                mdname(conf->mddev), bdn);
1806                 else
1807                         retry = 1;
1808                 if (retry)
1809                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1810                                 set_bit(R5_ReadError, &sh->dev[i].flags);
1811                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1812                         } else
1813                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1814                 else {
1815                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1816                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1817                         if (!(set_bad
1818                               && test_bit(In_sync, &rdev->flags)
1819                               && rdev_set_badblocks(
1820                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
1821                                 md_error(conf->mddev, rdev);
1822                 }
1823         }
1824         rdev_dec_pending(rdev, conf->mddev);
1825         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1826         set_bit(STRIPE_HANDLE, &sh->state);
1827         release_stripe(sh);
1828 }
1829
1830 static void raid5_end_write_request(struct bio *bi, int error)
1831 {
1832         struct stripe_head *sh = bi->bi_private;
1833         struct r5conf *conf = sh->raid_conf;
1834         int disks = sh->disks, i;
1835         struct md_rdev *uninitialized_var(rdev);
1836         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1837         sector_t first_bad;
1838         int bad_sectors;
1839         int replacement = 0;
1840
1841         for (i = 0 ; i < disks; i++) {
1842                 if (bi == &sh->dev[i].req) {
1843                         rdev = conf->disks[i].rdev;
1844                         break;
1845                 }
1846                 if (bi == &sh->dev[i].rreq) {
1847                         rdev = conf->disks[i].replacement;
1848                         if (rdev)
1849                                 replacement = 1;
1850                         else
1851                                 /* rdev was removed and 'replacement'
1852                                  * replaced it.  rdev is not removed
1853                                  * until all requests are finished.
1854                                  */
1855                                 rdev = conf->disks[i].rdev;
1856                         break;
1857                 }
1858         }
1859         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1860                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1861                 uptodate);
1862         if (i == disks) {
1863                 BUG();
1864                 return;
1865         }
1866
1867         if (replacement) {
1868                 if (!uptodate)
1869                         md_error(conf->mddev, rdev);
1870                 else if (is_badblock(rdev, sh->sector,
1871                                      STRIPE_SECTORS,
1872                                      &first_bad, &bad_sectors))
1873                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1874         } else {
1875                 if (!uptodate) {
1876                         set_bit(WriteErrorSeen, &rdev->flags);
1877                         set_bit(R5_WriteError, &sh->dev[i].flags);
1878                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1879                                 set_bit(MD_RECOVERY_NEEDED,
1880                                         &rdev->mddev->recovery);
1881                 } else if (is_badblock(rdev, sh->sector,
1882                                        STRIPE_SECTORS,
1883                                        &first_bad, &bad_sectors))
1884                         set_bit(R5_MadeGood, &sh->dev[i].flags);
1885         }
1886         rdev_dec_pending(rdev, conf->mddev);
1887
1888         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1889                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1890         set_bit(STRIPE_HANDLE, &sh->state);
1891         release_stripe(sh);
1892 }
1893
1894 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1895         
1896 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1897 {
1898         struct r5dev *dev = &sh->dev[i];
1899
1900         bio_init(&dev->req);
1901         dev->req.bi_io_vec = &dev->vec;
1902         dev->req.bi_vcnt++;
1903         dev->req.bi_max_vecs++;
1904         dev->req.bi_private = sh;
1905         dev->vec.bv_page = dev->page;
1906
1907         bio_init(&dev->rreq);
1908         dev->rreq.bi_io_vec = &dev->rvec;
1909         dev->rreq.bi_vcnt++;
1910         dev->rreq.bi_max_vecs++;
1911         dev->rreq.bi_private = sh;
1912         dev->rvec.bv_page = dev->page;
1913
1914         dev->flags = 0;
1915         dev->sector = compute_blocknr(sh, i, previous);
1916 }
1917
1918 static void error(struct mddev *mddev, struct md_rdev *rdev)
1919 {
1920         char b[BDEVNAME_SIZE];
1921         struct r5conf *conf = mddev->private;
1922         unsigned long flags;
1923         pr_debug("raid456: error called\n");
1924
1925         spin_lock_irqsave(&conf->device_lock, flags);
1926         clear_bit(In_sync, &rdev->flags);
1927         mddev->degraded = calc_degraded(conf);
1928         spin_unlock_irqrestore(&conf->device_lock, flags);
1929         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1930
1931         set_bit(Blocked, &rdev->flags);
1932         set_bit(Faulty, &rdev->flags);
1933         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1934         printk(KERN_ALERT
1935                "md/raid:%s: Disk failure on %s, disabling device.\n"
1936                "md/raid:%s: Operation continuing on %d devices.\n",
1937                mdname(mddev),
1938                bdevname(rdev->bdev, b),
1939                mdname(mddev),
1940                conf->raid_disks - mddev->degraded);
1941 }
1942
1943 /*
1944  * Input: a 'big' sector number,
1945  * Output: index of the data and parity disk, and the sector # in them.
1946  */
1947 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1948                                      int previous, int *dd_idx,
1949                                      struct stripe_head *sh)
1950 {
1951         sector_t stripe, stripe2;
1952         sector_t chunk_number;
1953         unsigned int chunk_offset;
1954         int pd_idx, qd_idx;
1955         int ddf_layout = 0;
1956         sector_t new_sector;
1957         int algorithm = previous ? conf->prev_algo
1958                                  : conf->algorithm;
1959         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1960                                          : conf->chunk_sectors;
1961         int raid_disks = previous ? conf->previous_raid_disks
1962                                   : conf->raid_disks;
1963         int data_disks = raid_disks - conf->max_degraded;
1964
1965         /* First compute the information on this sector */
1966
1967         /*
1968          * Compute the chunk number and the sector offset inside the chunk
1969          */
1970         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1971         chunk_number = r_sector;
1972
1973         /*
1974          * Compute the stripe number
1975          */
1976         stripe = chunk_number;
1977         *dd_idx = sector_div(stripe, data_disks);
1978         stripe2 = stripe;
1979         /*
1980          * Select the parity disk based on the user selected algorithm.
1981          */
1982         pd_idx = qd_idx = -1;
1983         switch(conf->level) {
1984         case 4:
1985                 pd_idx = data_disks;
1986                 break;
1987         case 5:
1988                 switch (algorithm) {
1989                 case ALGORITHM_LEFT_ASYMMETRIC:
1990                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1991                         if (*dd_idx >= pd_idx)
1992                                 (*dd_idx)++;
1993                         break;
1994                 case ALGORITHM_RIGHT_ASYMMETRIC:
1995                         pd_idx = sector_div(stripe2, raid_disks);
1996                         if (*dd_idx >= pd_idx)
1997                                 (*dd_idx)++;
1998                         break;
1999                 case ALGORITHM_LEFT_SYMMETRIC:
2000                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2001                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2002                         break;
2003                 case ALGORITHM_RIGHT_SYMMETRIC:
2004                         pd_idx = sector_div(stripe2, raid_disks);
2005                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2006                         break;
2007                 case ALGORITHM_PARITY_0:
2008                         pd_idx = 0;
2009                         (*dd_idx)++;
2010                         break;
2011                 case ALGORITHM_PARITY_N:
2012                         pd_idx = data_disks;
2013                         break;
2014                 default:
2015                         BUG();
2016                 }
2017                 break;
2018         case 6:
2019
2020                 switch (algorithm) {
2021                 case ALGORITHM_LEFT_ASYMMETRIC:
2022                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2023                         qd_idx = pd_idx + 1;
2024                         if (pd_idx == raid_disks-1) {
2025                                 (*dd_idx)++;    /* Q D D D P */
2026                                 qd_idx = 0;
2027                         } else if (*dd_idx >= pd_idx)
2028                                 (*dd_idx) += 2; /* D D P Q D */
2029                         break;
2030                 case ALGORITHM_RIGHT_ASYMMETRIC:
2031                         pd_idx = sector_div(stripe2, raid_disks);
2032                         qd_idx = pd_idx + 1;
2033                         if (pd_idx == raid_disks-1) {
2034                                 (*dd_idx)++;    /* Q D D D P */
2035                                 qd_idx = 0;
2036                         } else if (*dd_idx >= pd_idx)
2037                                 (*dd_idx) += 2; /* D D P Q D */
2038                         break;
2039                 case ALGORITHM_LEFT_SYMMETRIC:
2040                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2041                         qd_idx = (pd_idx + 1) % raid_disks;
2042                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2043                         break;
2044                 case ALGORITHM_RIGHT_SYMMETRIC:
2045                         pd_idx = sector_div(stripe2, raid_disks);
2046                         qd_idx = (pd_idx + 1) % raid_disks;
2047                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2048                         break;
2049
2050                 case ALGORITHM_PARITY_0:
2051                         pd_idx = 0;
2052                         qd_idx = 1;
2053                         (*dd_idx) += 2;
2054                         break;
2055                 case ALGORITHM_PARITY_N:
2056                         pd_idx = data_disks;
2057                         qd_idx = data_disks + 1;
2058                         break;
2059
2060                 case ALGORITHM_ROTATING_ZERO_RESTART:
2061                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2062                          * of blocks for computing Q is different.
2063                          */
2064                         pd_idx = sector_div(stripe2, raid_disks);
2065                         qd_idx = pd_idx + 1;
2066                         if (pd_idx == raid_disks-1) {
2067                                 (*dd_idx)++;    /* Q D D D P */
2068                                 qd_idx = 0;
2069                         } else if (*dd_idx >= pd_idx)
2070                                 (*dd_idx) += 2; /* D D P Q D */
2071                         ddf_layout = 1;
2072                         break;
2073
2074                 case ALGORITHM_ROTATING_N_RESTART:
2075                         /* Same a left_asymmetric, by first stripe is
2076                          * D D D P Q  rather than
2077                          * Q D D D P
2078                          */
2079                         stripe2 += 1;
2080                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2081                         qd_idx = pd_idx + 1;
2082                         if (pd_idx == raid_disks-1) {
2083                                 (*dd_idx)++;    /* Q D D D P */
2084                                 qd_idx = 0;
2085                         } else if (*dd_idx >= pd_idx)
2086                                 (*dd_idx) += 2; /* D D P Q D */
2087                         ddf_layout = 1;
2088                         break;
2089
2090                 case ALGORITHM_ROTATING_N_CONTINUE:
2091                         /* Same as left_symmetric but Q is before P */
2092                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2093                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2094                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2095                         ddf_layout = 1;
2096                         break;
2097
2098                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2099                         /* RAID5 left_asymmetric, with Q on last device */
2100                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2101                         if (*dd_idx >= pd_idx)
2102                                 (*dd_idx)++;
2103                         qd_idx = raid_disks - 1;
2104                         break;
2105
2106                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2107                         pd_idx = sector_div(stripe2, raid_disks-1);
2108                         if (*dd_idx >= pd_idx)
2109                                 (*dd_idx)++;
2110                         qd_idx = raid_disks - 1;
2111                         break;
2112
2113                 case ALGORITHM_LEFT_SYMMETRIC_6:
2114                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2115                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2116                         qd_idx = raid_disks - 1;
2117                         break;
2118
2119                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2120                         pd_idx = sector_div(stripe2, raid_disks-1);
2121                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2122                         qd_idx = raid_disks - 1;
2123                         break;
2124
2125                 case ALGORITHM_PARITY_0_6:
2126                         pd_idx = 0;
2127                         (*dd_idx)++;
2128                         qd_idx = raid_disks - 1;
2129                         break;
2130
2131                 default:
2132                         BUG();
2133                 }
2134                 break;
2135         }
2136
2137         if (sh) {
2138                 sh->pd_idx = pd_idx;
2139                 sh->qd_idx = qd_idx;
2140                 sh->ddf_layout = ddf_layout;
2141         }
2142         /*
2143          * Finally, compute the new sector number
2144          */
2145         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2146         return new_sector;
2147 }
2148
2149
2150 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2151 {
2152         struct r5conf *conf = sh->raid_conf;
2153         int raid_disks = sh->disks;
2154         int data_disks = raid_disks - conf->max_degraded;
2155         sector_t new_sector = sh->sector, check;
2156         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2157                                          : conf->chunk_sectors;
2158         int algorithm = previous ? conf->prev_algo
2159                                  : conf->algorithm;
2160         sector_t stripe;
2161         int chunk_offset;
2162         sector_t chunk_number;
2163         int dummy1, dd_idx = i;
2164         sector_t r_sector;
2165         struct stripe_head sh2;
2166
2167
2168         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2169         stripe = new_sector;
2170
2171         if (i == sh->pd_idx)
2172                 return 0;
2173         switch(conf->level) {
2174         case 4: break;
2175         case 5:
2176                 switch (algorithm) {
2177                 case ALGORITHM_LEFT_ASYMMETRIC:
2178                 case ALGORITHM_RIGHT_ASYMMETRIC:
2179                         if (i > sh->pd_idx)
2180                                 i--;
2181                         break;
2182                 case ALGORITHM_LEFT_SYMMETRIC:
2183                 case ALGORITHM_RIGHT_SYMMETRIC:
2184                         if (i < sh->pd_idx)
2185                                 i += raid_disks;
2186                         i -= (sh->pd_idx + 1);
2187                         break;
2188                 case ALGORITHM_PARITY_0:
2189                         i -= 1;
2190                         break;
2191                 case ALGORITHM_PARITY_N:
2192                         break;
2193                 default:
2194                         BUG();
2195                 }
2196                 break;
2197         case 6:
2198                 if (i == sh->qd_idx)
2199                         return 0; /* It is the Q disk */
2200                 switch (algorithm) {
2201                 case ALGORITHM_LEFT_ASYMMETRIC:
2202                 case ALGORITHM_RIGHT_ASYMMETRIC:
2203                 case ALGORITHM_ROTATING_ZERO_RESTART:
2204                 case ALGORITHM_ROTATING_N_RESTART:
2205                         if (sh->pd_idx == raid_disks-1)
2206                                 i--;    /* Q D D D P */
2207                         else if (i > sh->pd_idx)
2208                                 i -= 2; /* D D P Q D */
2209                         break;
2210                 case ALGORITHM_LEFT_SYMMETRIC:
2211                 case ALGORITHM_RIGHT_SYMMETRIC:
2212                         if (sh->pd_idx == raid_disks-1)
2213                                 i--; /* Q D D D P */
2214                         else {
2215                                 /* D D P Q D */
2216                                 if (i < sh->pd_idx)
2217                                         i += raid_disks;
2218                                 i -= (sh->pd_idx + 2);
2219                         }
2220                         break;
2221                 case ALGORITHM_PARITY_0:
2222                         i -= 2;
2223                         break;
2224                 case ALGORITHM_PARITY_N:
2225                         break;
2226                 case ALGORITHM_ROTATING_N_CONTINUE:
2227                         /* Like left_symmetric, but P is before Q */
2228                         if (sh->pd_idx == 0)
2229                                 i--;    /* P D D D Q */
2230                         else {
2231                                 /* D D Q P D */
2232                                 if (i < sh->pd_idx)
2233                                         i += raid_disks;
2234                                 i -= (sh->pd_idx + 1);
2235                         }
2236                         break;
2237                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2238                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2239                         if (i > sh->pd_idx)
2240                                 i--;
2241                         break;
2242                 case ALGORITHM_LEFT_SYMMETRIC_6:
2243                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2244                         if (i < sh->pd_idx)
2245                                 i += data_disks + 1;
2246                         i -= (sh->pd_idx + 1);
2247                         break;
2248                 case ALGORITHM_PARITY_0_6:
2249                         i -= 1;
2250                         break;
2251                 default:
2252                         BUG();
2253                 }
2254                 break;
2255         }
2256
2257         chunk_number = stripe * data_disks + i;
2258         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2259
2260         check = raid5_compute_sector(conf, r_sector,
2261                                      previous, &dummy1, &sh2);
2262         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2263                 || sh2.qd_idx != sh->qd_idx) {
2264                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2265                        mdname(conf->mddev));
2266                 return 0;
2267         }
2268         return r_sector;
2269 }
2270
2271
2272 static void
2273 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2274                          int rcw, int expand)
2275 {
2276         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2277         struct r5conf *conf = sh->raid_conf;
2278         int level = conf->level;
2279
2280         if (rcw) {
2281                 /* if we are not expanding this is a proper write request, and
2282                  * there will be bios with new data to be drained into the
2283                  * stripe cache
2284                  */
2285                 if (!expand) {
2286                         sh->reconstruct_state = reconstruct_state_drain_run;
2287                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2288                 } else
2289                         sh->reconstruct_state = reconstruct_state_run;
2290
2291                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2292
2293                 for (i = disks; i--; ) {
2294                         struct r5dev *dev = &sh->dev[i];
2295
2296                         if (dev->towrite) {
2297                                 set_bit(R5_LOCKED, &dev->flags);
2298                                 set_bit(R5_Wantdrain, &dev->flags);
2299                                 if (!expand)
2300                                         clear_bit(R5_UPTODATE, &dev->flags);
2301                                 s->locked++;
2302                         }
2303                 }
2304                 if (s->locked + conf->max_degraded == disks)
2305                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2306                                 atomic_inc(&conf->pending_full_writes);
2307         } else {
2308                 BUG_ON(level == 6);
2309                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2310                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2311
2312                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2313                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2314                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2315                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2316
2317                 for (i = disks; i--; ) {
2318                         struct r5dev *dev = &sh->dev[i];
2319                         if (i == pd_idx)
2320                                 continue;
2321
2322                         if (dev->towrite &&
2323                             (test_bit(R5_UPTODATE, &dev->flags) ||
2324                              test_bit(R5_Wantcompute, &dev->flags))) {
2325                                 set_bit(R5_Wantdrain, &dev->flags);
2326                                 set_bit(R5_LOCKED, &dev->flags);
2327                                 clear_bit(R5_UPTODATE, &dev->flags);
2328                                 s->locked++;
2329                         }
2330                 }
2331         }
2332
2333         /* keep the parity disk(s) locked while asynchronous operations
2334          * are in flight
2335          */
2336         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2337         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2338         s->locked++;
2339
2340         if (level == 6) {
2341                 int qd_idx = sh->qd_idx;
2342                 struct r5dev *dev = &sh->dev[qd_idx];
2343
2344                 set_bit(R5_LOCKED, &dev->flags);
2345                 clear_bit(R5_UPTODATE, &dev->flags);
2346                 s->locked++;
2347         }
2348
2349         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2350                 __func__, (unsigned long long)sh->sector,
2351                 s->locked, s->ops_request);
2352 }
2353
2354 /*
2355  * Each stripe/dev can have one or more bion attached.
2356  * toread/towrite point to the first in a chain.
2357  * The bi_next chain must be in order.
2358  */
2359 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2360 {
2361         struct bio **bip;
2362         struct r5conf *conf = sh->raid_conf;
2363         int firstwrite=0;
2364
2365         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2366                 (unsigned long long)bi->bi_sector,
2367                 (unsigned long long)sh->sector);
2368
2369         /*
2370          * If several bio share a stripe. The bio bi_phys_segments acts as a
2371          * reference count to avoid race. The reference count should already be
2372          * increased before this function is called (for example, in
2373          * make_request()), so other bio sharing this stripe will not free the
2374          * stripe. If a stripe is owned by one stripe, the stripe lock will
2375          * protect it.
2376          */
2377         spin_lock_irq(&sh->stripe_lock);
2378         if (forwrite) {
2379                 bip = &sh->dev[dd_idx].towrite;
2380                 if (*bip == NULL)
2381                         firstwrite = 1;
2382         } else
2383                 bip = &sh->dev[dd_idx].toread;
2384         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2385                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2386                         goto overlap;
2387                 bip = & (*bip)->bi_next;
2388         }
2389         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2390                 goto overlap;
2391
2392         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2393         if (*bip)
2394                 bi->bi_next = *bip;
2395         *bip = bi;
2396         raid5_inc_bi_active_stripes(bi);
2397
2398         if (forwrite) {
2399                 /* check if page is covered */
2400                 sector_t sector = sh->dev[dd_idx].sector;
2401                 for (bi=sh->dev[dd_idx].towrite;
2402                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2403                              bi && bi->bi_sector <= sector;
2404                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2405                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2406                                 sector = bi->bi_sector + (bi->bi_size>>9);
2407                 }
2408                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2409                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2410         }
2411         spin_unlock_irq(&sh->stripe_lock);
2412
2413         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2414                 (unsigned long long)(*bip)->bi_sector,
2415                 (unsigned long long)sh->sector, dd_idx);
2416
2417         if (conf->mddev->bitmap && firstwrite) {
2418                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2419                                   STRIPE_SECTORS, 0);
2420                 sh->bm_seq = conf->seq_flush+1;
2421                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2422         }
2423         return 1;
2424
2425  overlap:
2426         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2427         spin_unlock_irq(&sh->stripe_lock);
2428         return 0;
2429 }
2430
2431 static void end_reshape(struct r5conf *conf);
2432
2433 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2434                             struct stripe_head *sh)
2435 {
2436         int sectors_per_chunk =
2437                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2438         int dd_idx;
2439         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2440         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2441
2442         raid5_compute_sector(conf,
2443                              stripe * (disks - conf->max_degraded)
2444                              *sectors_per_chunk + chunk_offset,
2445                              previous,
2446                              &dd_idx, sh);
2447 }
2448
2449 static void
2450 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2451                                 struct stripe_head_state *s, int disks,
2452                                 struct bio **return_bi)
2453 {
2454         int i;
2455         for (i = disks; i--; ) {
2456                 struct bio *bi;
2457                 int bitmap_end = 0;
2458
2459                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2460                         struct md_rdev *rdev;
2461                         rcu_read_lock();
2462                         rdev = rcu_dereference(conf->disks[i].rdev);
2463                         if (rdev && test_bit(In_sync, &rdev->flags))
2464                                 atomic_inc(&rdev->nr_pending);
2465                         else
2466                                 rdev = NULL;
2467                         rcu_read_unlock();
2468                         if (rdev) {
2469                                 if (!rdev_set_badblocks(
2470                                             rdev,
2471                                             sh->sector,
2472                                             STRIPE_SECTORS, 0))
2473                                         md_error(conf->mddev, rdev);
2474                                 rdev_dec_pending(rdev, conf->mddev);
2475                         }
2476                 }
2477                 spin_lock_irq(&sh->stripe_lock);
2478                 /* fail all writes first */
2479                 bi = sh->dev[i].towrite;
2480                 sh->dev[i].towrite = NULL;
2481                 spin_unlock_irq(&sh->stripe_lock);
2482                 if (bi) {
2483                         s->to_write--;
2484                         bitmap_end = 1;
2485                 }
2486
2487                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2488                         wake_up(&conf->wait_for_overlap);
2489
2490                 while (bi && bi->bi_sector <
2491                         sh->dev[i].sector + STRIPE_SECTORS) {
2492                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2493                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2494                         if (!raid5_dec_bi_active_stripes(bi)) {
2495                                 md_write_end(conf->mddev);
2496                                 bi->bi_next = *return_bi;
2497                                 *return_bi = bi;
2498                         }
2499                         bi = nextbi;
2500                 }
2501                 if (bitmap_end)
2502                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2503                                 STRIPE_SECTORS, 0, 0);
2504                 bitmap_end = 0;
2505                 /* and fail all 'written' */
2506                 bi = sh->dev[i].written;
2507                 sh->dev[i].written = NULL;
2508                 if (bi) bitmap_end = 1;
2509                 while (bi && bi->bi_sector <
2510                        sh->dev[i].sector + STRIPE_SECTORS) {
2511                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2512                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2513                         if (!raid5_dec_bi_active_stripes(bi)) {
2514                                 md_write_end(conf->mddev);
2515                                 bi->bi_next = *return_bi;
2516                                 *return_bi = bi;
2517                         }
2518                         bi = bi2;
2519                 }
2520
2521                 /* fail any reads if this device is non-operational and
2522                  * the data has not reached the cache yet.
2523                  */
2524                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2525                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2526                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2527                         bi = sh->dev[i].toread;
2528                         sh->dev[i].toread = NULL;
2529                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2530                                 wake_up(&conf->wait_for_overlap);
2531                         if (bi) s->to_read--;
2532                         while (bi && bi->bi_sector <
2533                                sh->dev[i].sector + STRIPE_SECTORS) {
2534                                 struct bio *nextbi =
2535                                         r5_next_bio(bi, sh->dev[i].sector);
2536                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2537                                 if (!raid5_dec_bi_active_stripes(bi)) {
2538                                         bi->bi_next = *return_bi;
2539                                         *return_bi = bi;
2540                                 }
2541                                 bi = nextbi;
2542                         }
2543                 }
2544                 if (bitmap_end)
2545                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2546                                         STRIPE_SECTORS, 0, 0);
2547                 /* If we were in the middle of a write the parity block might
2548                  * still be locked - so just clear all R5_LOCKED flags
2549                  */
2550                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2551         }
2552
2553         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2554                 if (atomic_dec_and_test(&conf->pending_full_writes))
2555                         md_wakeup_thread(conf->mddev->thread);
2556 }
2557
2558 static void
2559 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2560                    struct stripe_head_state *s)
2561 {
2562         int abort = 0;
2563         int i;
2564
2565         clear_bit(STRIPE_SYNCING, &sh->state);
2566         s->syncing = 0;
2567         s->replacing = 0;
2568         /* There is nothing more to do for sync/check/repair.
2569          * Don't even need to abort as that is handled elsewhere
2570          * if needed, and not always wanted e.g. if there is a known
2571          * bad block here.
2572          * For recover/replace we need to record a bad block on all
2573          * non-sync devices, or abort the recovery
2574          */
2575         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2576                 /* During recovery devices cannot be removed, so
2577                  * locking and refcounting of rdevs is not needed
2578                  */
2579                 for (i = 0; i < conf->raid_disks; i++) {
2580                         struct md_rdev *rdev = conf->disks[i].rdev;
2581                         if (rdev
2582                             && !test_bit(Faulty, &rdev->flags)
2583                             && !test_bit(In_sync, &rdev->flags)
2584                             && !rdev_set_badblocks(rdev, sh->sector,
2585                                                    STRIPE_SECTORS, 0))
2586                                 abort = 1;
2587                         rdev = conf->disks[i].replacement;
2588                         if (rdev
2589                             && !test_bit(Faulty, &rdev->flags)
2590                             && !test_bit(In_sync, &rdev->flags)
2591                             && !rdev_set_badblocks(rdev, sh->sector,
2592                                                    STRIPE_SECTORS, 0))
2593                                 abort = 1;
2594                 }
2595                 if (abort)
2596                         conf->recovery_disabled =
2597                                 conf->mddev->recovery_disabled;
2598         }
2599         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2600 }
2601
2602 static int want_replace(struct stripe_head *sh, int disk_idx)
2603 {
2604         struct md_rdev *rdev;
2605         int rv = 0;
2606         /* Doing recovery so rcu locking not required */
2607         rdev = sh->raid_conf->disks[disk_idx].replacement;
2608         if (rdev
2609             && !test_bit(Faulty, &rdev->flags)
2610             && !test_bit(In_sync, &rdev->flags)
2611             && (rdev->recovery_offset <= sh->sector
2612                 || rdev->mddev->recovery_cp <= sh->sector))
2613                 rv = 1;
2614
2615         return rv;
2616 }
2617
2618 /* fetch_block - checks the given member device to see if its data needs
2619  * to be read or computed to satisfy a request.
2620  *
2621  * Returns 1 when no more member devices need to be checked, otherwise returns
2622  * 0 to tell the loop in handle_stripe_fill to continue
2623  */
2624 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2625                        int disk_idx, int disks)
2626 {
2627         struct r5dev *dev = &sh->dev[disk_idx];
2628         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2629                                   &sh->dev[s->failed_num[1]] };
2630
2631         /* is the data in this block needed, and can we get it? */
2632         if (!test_bit(R5_LOCKED, &dev->flags) &&
2633             !test_bit(R5_UPTODATE, &dev->flags) &&
2634             (dev->toread ||
2635              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2636              s->syncing || s->expanding ||
2637              (s->replacing && want_replace(sh, disk_idx)) ||
2638              (s->failed >= 1 && fdev[0]->toread) ||
2639              (s->failed >= 2 && fdev[1]->toread) ||
2640              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2641               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2642              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2643                 /* we would like to get this block, possibly by computing it,
2644                  * otherwise read it if the backing disk is insync
2645                  */
2646                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2647                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2648                 if ((s->uptodate == disks - 1) &&
2649                     (s->failed && (disk_idx == s->failed_num[0] ||
2650                                    disk_idx == s->failed_num[1]))) {
2651                         /* have disk failed, and we're requested to fetch it;
2652                          * do compute it
2653                          */
2654                         pr_debug("Computing stripe %llu block %d\n",
2655                                (unsigned long long)sh->sector, disk_idx);
2656                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2657                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2658                         set_bit(R5_Wantcompute, &dev->flags);
2659                         sh->ops.target = disk_idx;
2660                         sh->ops.target2 = -1; /* no 2nd target */
2661                         s->req_compute = 1;
2662                         /* Careful: from this point on 'uptodate' is in the eye
2663                          * of raid_run_ops which services 'compute' operations
2664                          * before writes. R5_Wantcompute flags a block that will
2665                          * be R5_UPTODATE by the time it is needed for a
2666                          * subsequent operation.
2667                          */
2668                         s->uptodate++;
2669                         return 1;
2670                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2671                         /* Computing 2-failure is *very* expensive; only
2672                          * do it if failed >= 2
2673                          */
2674                         int other;
2675                         for (other = disks; other--; ) {
2676                                 if (other == disk_idx)
2677                                         continue;
2678                                 if (!test_bit(R5_UPTODATE,
2679                                       &sh->dev[other].flags))
2680                                         break;
2681                         }
2682                         BUG_ON(other < 0);
2683                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2684                                (unsigned long long)sh->sector,
2685                                disk_idx, other);
2686                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2687                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2688                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2689                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2690                         sh->ops.target = disk_idx;
2691                         sh->ops.target2 = other;
2692                         s->uptodate += 2;
2693                         s->req_compute = 1;
2694                         return 1;
2695                 } else if (test_bit(R5_Insync, &dev->flags)) {
2696                         set_bit(R5_LOCKED, &dev->flags);
2697                         set_bit(R5_Wantread, &dev->flags);
2698                         s->locked++;
2699                         pr_debug("Reading block %d (sync=%d)\n",
2700                                 disk_idx, s->syncing);
2701                 }
2702         }
2703
2704         return 0;
2705 }
2706
2707 /**
2708  * handle_stripe_fill - read or compute data to satisfy pending requests.
2709  */
2710 static void handle_stripe_fill(struct stripe_head *sh,
2711                                struct stripe_head_state *s,
2712                                int disks)
2713 {
2714         int i;
2715
2716         /* look for blocks to read/compute, skip this if a compute
2717          * is already in flight, or if the stripe contents are in the
2718          * midst of changing due to a write
2719          */
2720         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2721             !sh->reconstruct_state)
2722                 for (i = disks; i--; )
2723                         if (fetch_block(sh, s, i, disks))
2724                                 break;
2725         set_bit(STRIPE_HANDLE, &sh->state);
2726 }
2727
2728
2729 /* handle_stripe_clean_event
2730  * any written block on an uptodate or failed drive can be returned.
2731  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2732  * never LOCKED, so we don't need to test 'failed' directly.
2733  */
2734 static void handle_stripe_clean_event(struct r5conf *conf,
2735         struct stripe_head *sh, int disks, struct bio **return_bi)
2736 {
2737         int i;
2738         struct r5dev *dev;
2739
2740         for (i = disks; i--; )
2741                 if (sh->dev[i].written) {
2742                         dev = &sh->dev[i];
2743                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2744                                 test_bit(R5_UPTODATE, &dev->flags)) {
2745                                 /* We can return any write requests */
2746                                 struct bio *wbi, *wbi2;
2747                                 pr_debug("Return write for disc %d\n", i);
2748                                 wbi = dev->written;
2749                                 dev->written = NULL;
2750                                 while (wbi && wbi->bi_sector <
2751                                         dev->sector + STRIPE_SECTORS) {
2752                                         wbi2 = r5_next_bio(wbi, dev->sector);
2753                                         if (!raid5_dec_bi_active_stripes(wbi)) {
2754                                                 md_write_end(conf->mddev);
2755                                                 wbi->bi_next = *return_bi;
2756                                                 *return_bi = wbi;
2757                                         }
2758                                         wbi = wbi2;
2759                                 }
2760                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2761                                                 STRIPE_SECTORS,
2762                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2763                                                 0);
2764                         }
2765                 }
2766
2767         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2768                 if (atomic_dec_and_test(&conf->pending_full_writes))
2769                         md_wakeup_thread(conf->mddev->thread);
2770 }
2771
2772 static void handle_stripe_dirtying(struct r5conf *conf,
2773                                    struct stripe_head *sh,
2774                                    struct stripe_head_state *s,
2775                                    int disks)
2776 {
2777         int rmw = 0, rcw = 0, i;
2778         if (conf->max_degraded == 2) {
2779                 /* RAID6 requires 'rcw' in current implementation
2780                  * Calculate the real rcw later - for now fake it
2781                  * look like rcw is cheaper
2782                  */
2783                 rcw = 1; rmw = 2;
2784         } else for (i = disks; i--; ) {
2785                 /* would I have to read this buffer for read_modify_write */
2786                 struct r5dev *dev = &sh->dev[i];
2787                 if ((dev->towrite || i == sh->pd_idx) &&
2788                     !test_bit(R5_LOCKED, &dev->flags) &&
2789                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2790                       test_bit(R5_Wantcompute, &dev->flags))) {
2791                         if (test_bit(R5_Insync, &dev->flags))
2792                                 rmw++;
2793                         else
2794                                 rmw += 2*disks;  /* cannot read it */
2795                 }
2796                 /* Would I have to read this buffer for reconstruct_write */
2797                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2798                     !test_bit(R5_LOCKED, &dev->flags) &&
2799                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2800                     test_bit(R5_Wantcompute, &dev->flags))) {
2801                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2802                         else
2803                                 rcw += 2*disks;
2804                 }
2805         }
2806         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2807                 (unsigned long long)sh->sector, rmw, rcw);
2808         set_bit(STRIPE_HANDLE, &sh->state);
2809         if (rmw < rcw && rmw > 0)
2810                 /* prefer read-modify-write, but need to get some data */
2811                 for (i = disks; i--; ) {
2812                         struct r5dev *dev = &sh->dev[i];
2813                         if ((dev->towrite || i == sh->pd_idx) &&
2814                             !test_bit(R5_LOCKED, &dev->flags) &&
2815                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2816                             test_bit(R5_Wantcompute, &dev->flags)) &&
2817                             test_bit(R5_Insync, &dev->flags)) {
2818                                 if (
2819                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2820                                         pr_debug("Read_old block "
2821                                                 "%d for r-m-w\n", i);
2822                                         set_bit(R5_LOCKED, &dev->flags);
2823                                         set_bit(R5_Wantread, &dev->flags);
2824                                         s->locked++;
2825                                 } else {
2826                                         set_bit(STRIPE_DELAYED, &sh->state);
2827                                         set_bit(STRIPE_HANDLE, &sh->state);
2828                                 }
2829                         }
2830                 }
2831         if (rcw <= rmw && rcw > 0) {
2832                 /* want reconstruct write, but need to get some data */
2833                 rcw = 0;
2834                 for (i = disks; i--; ) {
2835                         struct r5dev *dev = &sh->dev[i];
2836                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2837                             i != sh->pd_idx && i != sh->qd_idx &&
2838                             !test_bit(R5_LOCKED, &dev->flags) &&
2839                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2840                               test_bit(R5_Wantcompute, &dev->flags))) {
2841                                 rcw++;
2842                                 if (!test_bit(R5_Insync, &dev->flags))
2843                                         continue; /* it's a failed drive */
2844                                 if (
2845                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2846                                         pr_debug("Read_old block "
2847                                                 "%d for Reconstruct\n", i);
2848                                         set_bit(R5_LOCKED, &dev->flags);
2849                                         set_bit(R5_Wantread, &dev->flags);
2850                                         s->locked++;
2851                                 } else {
2852                                         set_bit(STRIPE_DELAYED, &sh->state);
2853                                         set_bit(STRIPE_HANDLE, &sh->state);
2854                                 }
2855                         }
2856                 }
2857         }
2858         /* now if nothing is locked, and if we have enough data,
2859          * we can start a write request
2860          */
2861         /* since handle_stripe can be called at any time we need to handle the
2862          * case where a compute block operation has been submitted and then a
2863          * subsequent call wants to start a write request.  raid_run_ops only
2864          * handles the case where compute block and reconstruct are requested
2865          * simultaneously.  If this is not the case then new writes need to be
2866          * held off until the compute completes.
2867          */
2868         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2869             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2870             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2871                 schedule_reconstruction(sh, s, rcw == 0, 0);
2872 }
2873
2874 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2875                                 struct stripe_head_state *s, int disks)
2876 {
2877         struct r5dev *dev = NULL;
2878
2879         set_bit(STRIPE_HANDLE, &sh->state);
2880
2881         switch (sh->check_state) {
2882         case check_state_idle:
2883                 /* start a new check operation if there are no failures */
2884                 if (s->failed == 0) {
2885                         BUG_ON(s->uptodate != disks);
2886                         sh->check_state = check_state_run;
2887                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2888                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2889                         s->uptodate--;
2890                         break;
2891                 }
2892                 dev = &sh->dev[s->failed_num[0]];
2893                 /* fall through */
2894         case check_state_compute_result:
2895                 sh->check_state = check_state_idle;
2896                 if (!dev)
2897                         dev = &sh->dev[sh->pd_idx];
2898
2899                 /* check that a write has not made the stripe insync */
2900                 if (test_bit(STRIPE_INSYNC, &sh->state))
2901                         break;
2902
2903                 /* either failed parity check, or recovery is happening */
2904                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2905                 BUG_ON(s->uptodate != disks);
2906
2907                 set_bit(R5_LOCKED, &dev->flags);
2908                 s->locked++;
2909                 set_bit(R5_Wantwrite, &dev->flags);
2910
2911                 clear_bit(STRIPE_DEGRADED, &sh->state);
2912                 set_bit(STRIPE_INSYNC, &sh->state);
2913                 break;
2914         case check_state_run:
2915                 break; /* we will be called again upon completion */
2916         case check_state_check_result:
2917                 sh->check_state = check_state_idle;
2918
2919                 /* if a failure occurred during the check operation, leave
2920                  * STRIPE_INSYNC not set and let the stripe be handled again
2921                  */
2922                 if (s->failed)
2923                         break;
2924
2925                 /* handle a successful check operation, if parity is correct
2926                  * we are done.  Otherwise update the mismatch count and repair
2927                  * parity if !MD_RECOVERY_CHECK
2928                  */
2929                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2930                         /* parity is correct (on disc,
2931                          * not in buffer any more)
2932                          */
2933                         set_bit(STRIPE_INSYNC, &sh->state);
2934                 else {
2935                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2936                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2937                                 /* don't try to repair!! */
2938                                 set_bit(STRIPE_INSYNC, &sh->state);
2939                         else {
2940                                 sh->check_state = check_state_compute_run;
2941                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2942                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2943                                 set_bit(R5_Wantcompute,
2944                                         &sh->dev[sh->pd_idx].flags);
2945                                 sh->ops.target = sh->pd_idx;
2946                                 sh->ops.target2 = -1;
2947                                 s->uptodate++;
2948                         }
2949                 }
2950                 break;
2951         case check_state_compute_run:
2952                 break;
2953         default:
2954                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2955                        __func__, sh->check_state,
2956                        (unsigned long long) sh->sector);
2957                 BUG();
2958         }
2959 }
2960
2961
2962 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2963                                   struct stripe_head_state *s,
2964                                   int disks)
2965 {
2966         int pd_idx = sh->pd_idx;
2967         int qd_idx = sh->qd_idx;
2968         struct r5dev *dev;
2969
2970         set_bit(STRIPE_HANDLE, &sh->state);
2971
2972         BUG_ON(s->failed > 2);
2973
2974         /* Want to check and possibly repair P and Q.
2975          * However there could be one 'failed' device, in which
2976          * case we can only check one of them, possibly using the
2977          * other to generate missing data
2978          */
2979
2980         switch (sh->check_state) {
2981         case check_state_idle:
2982                 /* start a new check operation if there are < 2 failures */
2983                 if (s->failed == s->q_failed) {
2984                         /* The only possible failed device holds Q, so it
2985                          * makes sense to check P (If anything else were failed,
2986                          * we would have used P to recreate it).
2987                          */
2988                         sh->check_state = check_state_run;
2989                 }
2990                 if (!s->q_failed && s->failed < 2) {
2991                         /* Q is not failed, and we didn't use it to generate
2992                          * anything, so it makes sense to check it
2993                          */
2994                         if (sh->check_state == check_state_run)
2995                                 sh->check_state = check_state_run_pq;
2996                         else
2997                                 sh->check_state = check_state_run_q;
2998                 }
2999
3000                 /* discard potentially stale zero_sum_result */
3001                 sh->ops.zero_sum_result = 0;
3002
3003                 if (sh->check_state == check_state_run) {
3004                         /* async_xor_zero_sum destroys the contents of P */
3005                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3006                         s->uptodate--;
3007                 }
3008                 if (sh->check_state >= check_state_run &&
3009                     sh->check_state <= check_state_run_pq) {
3010                         /* async_syndrome_zero_sum preserves P and Q, so
3011                          * no need to mark them !uptodate here
3012                          */
3013                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3014                         break;
3015                 }
3016
3017                 /* we have 2-disk failure */
3018                 BUG_ON(s->failed != 2);
3019                 /* fall through */
3020         case check_state_compute_result:
3021                 sh->check_state = check_state_idle;
3022
3023                 /* check that a write has not made the stripe insync */
3024                 if (test_bit(STRIPE_INSYNC, &sh->state))
3025                         break;
3026
3027                 /* now write out any block on a failed drive,
3028                  * or P or Q if they were recomputed
3029                  */
3030                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3031                 if (s->failed == 2) {
3032                         dev = &sh->dev[s->failed_num[1]];
3033                         s->locked++;
3034                         set_bit(R5_LOCKED, &dev->flags);
3035                         set_bit(R5_Wantwrite, &dev->flags);
3036                 }
3037                 if (s->failed >= 1) {
3038                         dev = &sh->dev[s->failed_num[0]];
3039                         s->locked++;
3040                         set_bit(R5_LOCKED, &dev->flags);
3041                         set_bit(R5_Wantwrite, &dev->flags);
3042                 }
3043                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3044                         dev = &sh->dev[pd_idx];
3045                         s->locked++;
3046                         set_bit(R5_LOCKED, &dev->flags);
3047                         set_bit(R5_Wantwrite, &dev->flags);
3048                 }
3049                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3050                         dev = &sh->dev[qd_idx];
3051                         s->locked++;
3052                         set_bit(R5_LOCKED, &dev->flags);
3053                         set_bit(R5_Wantwrite, &dev->flags);
3054                 }
3055                 clear_bit(STRIPE_DEGRADED, &sh->state);
3056
3057                 set_bit(STRIPE_INSYNC, &sh->state);
3058                 break;
3059         case check_state_run:
3060         case check_state_run_q:
3061         case check_state_run_pq:
3062                 break; /* we will be called again upon completion */
3063         case check_state_check_result:
3064                 sh->check_state = check_state_idle;
3065
3066                 /* handle a successful check operation, if parity is correct
3067                  * we are done.  Otherwise update the mismatch count and repair
3068                  * parity if !MD_RECOVERY_CHECK
3069                  */
3070                 if (sh->ops.zero_sum_result == 0) {
3071                         /* both parities are correct */
3072                         if (!s->failed)
3073                                 set_bit(STRIPE_INSYNC, &sh->state);
3074                         else {
3075                                 /* in contrast to the raid5 case we can validate
3076                                  * parity, but still have a failure to write
3077                                  * back
3078                                  */
3079                                 sh->check_state = check_state_compute_result;
3080                                 /* Returning at this point means that we may go
3081                                  * off and bring p and/or q uptodate again so
3082                                  * we make sure to check zero_sum_result again
3083                                  * to verify if p or q need writeback
3084                                  */
3085                         }
3086                 } else {
3087                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
3088                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3089                                 /* don't try to repair!! */
3090                                 set_bit(STRIPE_INSYNC, &sh->state);
3091                         else {
3092                                 int *target = &sh->ops.target;
3093
3094                                 sh->ops.target = -1;
3095                                 sh->ops.target2 = -1;
3096                                 sh->check_state = check_state_compute_run;
3097                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3098                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3099                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3100                                         set_bit(R5_Wantcompute,
3101                                                 &sh->dev[pd_idx].flags);
3102                                         *target = pd_idx;
3103                                         target = &sh->ops.target2;
3104                                         s->uptodate++;
3105                                 }
3106                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3107                                         set_bit(R5_Wantcompute,
3108                                                 &sh->dev[qd_idx].flags);
3109                                         *target = qd_idx;
3110                                         s->uptodate++;
3111                                 }
3112                         }
3113                 }
3114                 break;
3115         case check_state_compute_run:
3116                 break;
3117         default:
3118                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3119                        __func__, sh->check_state,
3120                        (unsigned long long) sh->sector);
3121                 BUG();
3122         }
3123 }
3124
3125 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3126 {
3127         int i;
3128
3129         /* We have read all the blocks in this stripe and now we need to
3130          * copy some of them into a target stripe for expand.
3131          */
3132         struct dma_async_tx_descriptor *tx = NULL;
3133         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3134         for (i = 0; i < sh->disks; i++)
3135                 if (i != sh->pd_idx && i != sh->qd_idx) {
3136                         int dd_idx, j;
3137                         struct stripe_head *sh2;
3138                         struct async_submit_ctl submit;
3139
3140                         sector_t bn = compute_blocknr(sh, i, 1);
3141                         sector_t s = raid5_compute_sector(conf, bn, 0,
3142                                                           &dd_idx, NULL);
3143                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3144                         if (sh2 == NULL)
3145                                 /* so far only the early blocks of this stripe
3146                                  * have been requested.  When later blocks
3147                                  * get requested, we will try again
3148                                  */
3149                                 continue;
3150                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3151                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3152                                 /* must have already done this block */
3153                                 release_stripe(sh2);
3154                                 continue;
3155                         }
3156
3157                         /* place all the copies on one channel */
3158                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3159                         tx = async_memcpy(sh2->dev[dd_idx].page,
3160                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3161                                           &submit);
3162
3163                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3164                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3165                         for (j = 0; j < conf->raid_disks; j++)
3166                                 if (j != sh2->pd_idx &&
3167                                     j != sh2->qd_idx &&
3168                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3169                                         break;
3170                         if (j == conf->raid_disks) {
3171                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3172                                 set_bit(STRIPE_HANDLE, &sh2->state);
3173                         }
3174                         release_stripe(sh2);
3175
3176                 }
3177         /* done submitting copies, wait for them to complete */
3178         if (tx) {
3179                 async_tx_ack(tx);
3180                 dma_wait_for_async_tx(tx);
3181         }
3182 }
3183
3184 /*
3185  * handle_stripe - do things to a stripe.
3186  *
3187  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3188  * state of various bits to see what needs to be done.
3189  * Possible results:
3190  *    return some read requests which now have data
3191  *    return some write requests which are safely on storage
3192  *    schedule a read on some buffers
3193  *    schedule a write of some buffers
3194  *    return confirmation of parity correctness
3195  *
3196  */
3197
3198 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3199 {
3200         struct r5conf *conf = sh->raid_conf;
3201         int disks = sh->disks;
3202         struct r5dev *dev;
3203         int i;
3204         int do_recovery = 0;
3205
3206         memset(s, 0, sizeof(*s));
3207
3208         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3209         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3210         s->failed_num[0] = -1;
3211         s->failed_num[1] = -1;
3212
3213         /* Now to look around and see what can be done */
3214         rcu_read_lock();
3215         for (i=disks; i--; ) {
3216                 struct md_rdev *rdev;
3217                 sector_t first_bad;
3218                 int bad_sectors;
3219                 int is_bad = 0;
3220
3221                 dev = &sh->dev[i];
3222
3223                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3224                          i, dev->flags,
3225                          dev->toread, dev->towrite, dev->written);
3226                 /* maybe we can reply to a read
3227                  *
3228                  * new wantfill requests are only permitted while
3229                  * ops_complete_biofill is guaranteed to be inactive
3230                  */
3231                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3232                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3233                         set_bit(R5_Wantfill, &dev->flags);
3234
3235                 /* now count some things */
3236                 if (test_bit(R5_LOCKED, &dev->flags))
3237                         s->locked++;
3238                 if (test_bit(R5_UPTODATE, &dev->flags))
3239                         s->uptodate++;
3240                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3241                         s->compute++;
3242                         BUG_ON(s->compute > 2);
3243                 }
3244
3245                 if (test_bit(R5_Wantfill, &dev->flags))
3246                         s->to_fill++;
3247                 else if (dev->toread)
3248                         s->to_read++;
3249                 if (dev->towrite) {
3250                         s->to_write++;
3251                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3252                                 s->non_overwrite++;
3253                 }
3254                 if (dev->written)
3255                         s->written++;
3256                 /* Prefer to use the replacement for reads, but only
3257                  * if it is recovered enough and has no bad blocks.
3258                  */
3259                 rdev = rcu_dereference(conf->disks[i].replacement);
3260                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3261                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3262                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3263                                  &first_bad, &bad_sectors))
3264                         set_bit(R5_ReadRepl, &dev->flags);
3265                 else {
3266                         if (rdev)
3267                                 set_bit(R5_NeedReplace, &dev->flags);
3268                         rdev = rcu_dereference(conf->disks[i].rdev);
3269                         clear_bit(R5_ReadRepl, &dev->flags);
3270                 }
3271                 if (rdev && test_bit(Faulty, &rdev->flags))
3272                         rdev = NULL;
3273                 if (rdev) {
3274                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3275                                              &first_bad, &bad_sectors);
3276                         if (s->blocked_rdev == NULL
3277                             && (test_bit(Blocked, &rdev->flags)
3278                                 || is_bad < 0)) {
3279                                 if (is_bad < 0)
3280                                         set_bit(BlockedBadBlocks,
3281                                                 &rdev->flags);
3282                                 s->blocked_rdev = rdev;
3283                                 atomic_inc(&rdev->nr_pending);
3284                         }
3285                 }
3286                 clear_bit(R5_Insync, &dev->flags);
3287                 if (!rdev)
3288                         /* Not in-sync */;
3289                 else if (is_bad) {
3290                         /* also not in-sync */
3291                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3292                             test_bit(R5_UPTODATE, &dev->flags)) {
3293                                 /* treat as in-sync, but with a read error
3294                                  * which we can now try to correct
3295                                  */
3296                                 set_bit(R5_Insync, &dev->flags);
3297                                 set_bit(R5_ReadError, &dev->flags);
3298                         }
3299                 } else if (test_bit(In_sync, &rdev->flags))
3300                         set_bit(R5_Insync, &dev->flags);
3301                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3302                         /* in sync if before recovery_offset */
3303                         set_bit(R5_Insync, &dev->flags);
3304                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3305                          test_bit(R5_Expanded, &dev->flags))
3306                         /* If we've reshaped into here, we assume it is Insync.
3307                          * We will shortly update recovery_offset to make
3308                          * it official.
3309                          */
3310                         set_bit(R5_Insync, &dev->flags);
3311
3312                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3313                         /* This flag does not apply to '.replacement'
3314                          * only to .rdev, so make sure to check that*/
3315                         struct md_rdev *rdev2 = rcu_dereference(
3316                                 conf->disks[i].rdev);
3317                         if (rdev2 == rdev)
3318                                 clear_bit(R5_Insync, &dev->flags);
3319                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3320                                 s->handle_bad_blocks = 1;
3321                                 atomic_inc(&rdev2->nr_pending);
3322                         } else
3323                                 clear_bit(R5_WriteError, &dev->flags);
3324                 }
3325                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3326                         /* This flag does not apply to '.replacement'
3327                          * only to .rdev, so make sure to check that*/
3328                         struct md_rdev *rdev2 = rcu_dereference(
3329                                 conf->disks[i].rdev);
3330                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3331                                 s->handle_bad_blocks = 1;
3332                                 atomic_inc(&rdev2->nr_pending);
3333                         } else
3334                                 clear_bit(R5_MadeGood, &dev->flags);
3335                 }
3336                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3337                         struct md_rdev *rdev2 = rcu_dereference(
3338                                 conf->disks[i].replacement);
3339                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3340                                 s->handle_bad_blocks = 1;
3341                                 atomic_inc(&rdev2->nr_pending);
3342                         } else
3343                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3344                 }
3345                 if (!test_bit(R5_Insync, &dev->flags)) {
3346                         /* The ReadError flag will just be confusing now */
3347                         clear_bit(R5_ReadError, &dev->flags);
3348                         clear_bit(R5_ReWrite, &dev->flags);
3349                 }
3350                 if (test_bit(R5_ReadError, &dev->flags))
3351                         clear_bit(R5_Insync, &dev->flags);
3352                 if (!test_bit(R5_Insync, &dev->flags)) {
3353                         if (s->failed < 2)
3354                                 s->failed_num[s->failed] = i;
3355                         s->failed++;
3356                         if (rdev && !test_bit(Faulty, &rdev->flags))
3357                                 do_recovery = 1;
3358                 }
3359         }
3360         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3361                 /* If there is a failed device being replaced,
3362                  *     we must be recovering.
3363                  * else if we are after recovery_cp, we must be syncing
3364                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3365                  * else we can only be replacing
3366                  * sync and recovery both need to read all devices, and so
3367                  * use the same flag.
3368                  */
3369                 if (do_recovery ||
3370                     sh->sector >= conf->mddev->recovery_cp ||
3371                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3372                         s->syncing = 1;
3373                 else
3374                         s->replacing = 1;
3375         }
3376         rcu_read_unlock();
3377 }
3378
3379 static void handle_stripe(struct stripe_head *sh)
3380 {
3381         struct stripe_head_state s;
3382         struct r5conf *conf = sh->raid_conf;
3383         int i;
3384         int prexor;
3385         int disks = sh->disks;
3386         struct r5dev *pdev, *qdev;
3387
3388         clear_bit(STRIPE_HANDLE, &sh->state);
3389         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3390                 /* already being handled, ensure it gets handled
3391                  * again when current action finishes */
3392                 set_bit(STRIPE_HANDLE, &sh->state);
3393                 return;
3394         }
3395
3396         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3397                 set_bit(STRIPE_SYNCING, &sh->state);
3398                 clear_bit(STRIPE_INSYNC, &sh->state);
3399         }
3400         clear_bit(STRIPE_DELAYED, &sh->state);
3401
3402         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3403                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3404                (unsigned long long)sh->sector, sh->state,
3405                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3406                sh->check_state, sh->reconstruct_state);
3407
3408         analyse_stripe(sh, &s);
3409
3410         if (s.handle_bad_blocks) {
3411                 set_bit(STRIPE_HANDLE, &sh->state);
3412                 goto finish;
3413         }
3414
3415         if (unlikely(s.blocked_rdev)) {
3416                 if (s.syncing || s.expanding || s.expanded ||
3417                     s.replacing || s.to_write || s.written) {
3418                         set_bit(STRIPE_HANDLE, &sh->state);
3419                         goto finish;
3420                 }
3421                 /* There is nothing for the blocked_rdev to block */
3422                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3423                 s.blocked_rdev = NULL;
3424         }
3425
3426         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3427                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3428                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3429         }
3430
3431         pr_debug("locked=%d uptodate=%d to_read=%d"
3432                " to_write=%d failed=%d failed_num=%d,%d\n",
3433                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3434                s.failed_num[0], s.failed_num[1]);
3435         /* check if the array has lost more than max_degraded devices and,
3436          * if so, some requests might need to be failed.
3437          */
3438         if (s.failed > conf->max_degraded) {
3439                 sh->check_state = 0;
3440                 sh->reconstruct_state = 0;
3441                 if (s.to_read+s.to_write+s.written)
3442                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3443                 if (s.syncing + s.replacing)
3444                         handle_failed_sync(conf, sh, &s);
3445         }
3446
3447         /*
3448          * might be able to return some write requests if the parity blocks
3449          * are safe, or on a failed drive
3450          */
3451         pdev = &sh->dev[sh->pd_idx];
3452         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3453                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3454         qdev = &sh->dev[sh->qd_idx];
3455         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3456                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3457                 || conf->level < 6;
3458
3459         if (s.written &&
3460             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3461                              && !test_bit(R5_LOCKED, &pdev->flags)
3462                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3463             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3464                              && !test_bit(R5_LOCKED, &qdev->flags)
3465                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3466                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3467
3468         /* Now we might consider reading some blocks, either to check/generate
3469          * parity, or to satisfy requests
3470          * or to load a block that is being partially written.
3471          */
3472         if (s.to_read || s.non_overwrite
3473             || (conf->level == 6 && s.to_write && s.failed)
3474             || (s.syncing && (s.uptodate + s.compute < disks))
3475             || s.replacing
3476             || s.expanding)
3477                 handle_stripe_fill(sh, &s, disks);
3478
3479         /* Now we check to see if any write operations have recently
3480          * completed
3481          */
3482         prexor = 0;
3483         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3484                 prexor = 1;
3485         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3486             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3487                 sh->reconstruct_state = reconstruct_state_idle;
3488
3489                 /* All the 'written' buffers and the parity block are ready to
3490                  * be written back to disk
3491                  */
3492                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3493                 BUG_ON(sh->qd_idx >= 0 &&
3494                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3495                 for (i = disks; i--; ) {
3496                         struct r5dev *dev = &sh->dev[i];
3497                         if (test_bit(R5_LOCKED, &dev->flags) &&
3498                                 (i == sh->pd_idx || i == sh->qd_idx ||
3499                                  dev->written)) {
3500                                 pr_debug("Writing block %d\n", i);
3501                                 set_bit(R5_Wantwrite, &dev->flags);
3502                                 if (prexor)
3503                                         continue;
3504                                 if (!test_bit(R5_Insync, &dev->flags) ||
3505                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3506                                      s.failed == 0))
3507                                         set_bit(STRIPE_INSYNC, &sh->state);
3508                         }
3509                 }
3510                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3511                         s.dec_preread_active = 1;
3512         }
3513
3514         /* Now to consider new write requests and what else, if anything
3515          * should be read.  We do not handle new writes when:
3516          * 1/ A 'write' operation (copy+xor) is already in flight.
3517          * 2/ A 'check' operation is in flight, as it may clobber the parity
3518          *    block.
3519          */
3520         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3521                 handle_stripe_dirtying(conf, sh, &s, disks);
3522
3523         /* maybe we need to check and possibly fix the parity for this stripe
3524          * Any reads will already have been scheduled, so we just see if enough
3525          * data is available.  The parity check is held off while parity
3526          * dependent operations are in flight.
3527          */
3528         if (sh->check_state ||
3529             (s.syncing && s.locked == 0 &&
3530              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3531              !test_bit(STRIPE_INSYNC, &sh->state))) {
3532                 if (conf->level == 6)
3533                         handle_parity_checks6(conf, sh, &s, disks);
3534                 else
3535                         handle_parity_checks5(conf, sh, &s, disks);
3536         }
3537
3538         if (s.replacing && s.locked == 0
3539             && !test_bit(STRIPE_INSYNC, &sh->state)) {
3540                 /* Write out to replacement devices where possible */
3541                 for (i = 0; i < conf->raid_disks; i++)
3542                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3543                             test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3544                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3545                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3546                                 s.locked++;
3547                         }
3548                 set_bit(STRIPE_INSYNC, &sh->state);
3549         }
3550         if ((s.syncing || s.replacing) && s.locked == 0 &&
3551             test_bit(STRIPE_INSYNC, &sh->state)) {
3552                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3553                 clear_bit(STRIPE_SYNCING, &sh->state);
3554         }
3555
3556         /* If the failed drives are just a ReadError, then we might need
3557          * to progress the repair/check process
3558          */
3559         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3560                 for (i = 0; i < s.failed; i++) {
3561                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3562                         if (test_bit(R5_ReadError, &dev->flags)
3563                             && !test_bit(R5_LOCKED, &dev->flags)
3564                             && test_bit(R5_UPTODATE, &dev->flags)
3565                                 ) {
3566                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3567                                         set_bit(R5_Wantwrite, &dev->flags);
3568                                         set_bit(R5_ReWrite, &dev->flags);
3569                                         set_bit(R5_LOCKED, &dev->flags);
3570                                         s.locked++;
3571                                 } else {
3572                                         /* let's read it back */
3573                                         set_bit(R5_Wantread, &dev->flags);
3574                                         set_bit(R5_LOCKED, &dev->flags);
3575                                         s.locked++;
3576                                 }
3577                         }
3578                 }
3579
3580
3581         /* Finish reconstruct operations initiated by the expansion process */
3582         if (sh->reconstruct_state == reconstruct_state_result) {
3583                 struct stripe_head *sh_src
3584                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3585                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3586                         /* sh cannot be written until sh_src has been read.
3587                          * so arrange for sh to be delayed a little
3588                          */
3589                         set_bit(STRIPE_DELAYED, &sh->state);
3590                         set_bit(STRIPE_HANDLE, &sh->state);
3591                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3592                                               &sh_src->state))
3593                                 atomic_inc(&conf->preread_active_stripes);
3594                         release_stripe(sh_src);
3595                         goto finish;
3596                 }
3597                 if (sh_src)
3598                         release_stripe(sh_src);
3599
3600                 sh->reconstruct_state = reconstruct_state_idle;
3601                 clear_bit(STRIPE_EXPANDING, &sh->state);
3602                 for (i = conf->raid_disks; i--; ) {
3603                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3604                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3605                         s.locked++;
3606                 }
3607         }
3608
3609         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3610             !sh->reconstruct_state) {
3611                 /* Need to write out all blocks after computing parity */
3612                 sh->disks = conf->raid_disks;
3613                 stripe_set_idx(sh->sector, conf, 0, sh);
3614                 schedule_reconstruction(sh, &s, 1, 1);
3615         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3616                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3617                 atomic_dec(&conf->reshape_stripes);
3618                 wake_up(&conf->wait_for_overlap);
3619                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3620         }
3621
3622         if (s.expanding && s.locked == 0 &&
3623             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3624                 handle_stripe_expansion(conf, sh);
3625
3626 finish:
3627         /* wait for this device to become unblocked */
3628         if (unlikely(s.blocked_rdev)) {
3629                 if (conf->mddev->external)
3630                         md_wait_for_blocked_rdev(s.blocked_rdev,
3631                                                  conf->mddev);
3632                 else
3633                         /* Internal metadata will immediately
3634                          * be written by raid5d, so we don't
3635                          * need to wait here.
3636                          */
3637                         rdev_dec_pending(s.blocked_rdev,
3638                                          conf->mddev);
3639         }
3640
3641         if (s.handle_bad_blocks)
3642                 for (i = disks; i--; ) {
3643                         struct md_rdev *rdev;
3644                         struct r5dev *dev = &sh->dev[i];
3645                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3646                                 /* We own a safe reference to the rdev */
3647                                 rdev = conf->disks[i].rdev;
3648                                 if (!rdev_set_badblocks(rdev, sh->sector,
3649                                                         STRIPE_SECTORS, 0))
3650                                         md_error(conf->mddev, rdev);
3651                                 rdev_dec_pending(rdev, conf->mddev);
3652                         }
3653                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3654                                 rdev = conf->disks[i].rdev;
3655                                 rdev_clear_badblocks(rdev, sh->sector,
3656                                                      STRIPE_SECTORS, 0);
3657                                 rdev_dec_pending(rdev, conf->mddev);
3658                         }
3659                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3660                                 rdev = conf->disks[i].replacement;
3661                                 if (!rdev)
3662                                         /* rdev have been moved down */
3663                                         rdev = conf->disks[i].rdev;
3664                                 rdev_clear_badblocks(rdev, sh->sector,
3665                                                      STRIPE_SECTORS, 0);
3666                                 rdev_dec_pending(rdev, conf->mddev);
3667                         }
3668                 }
3669
3670         if (s.ops_request)
3671                 raid_run_ops(sh, s.ops_request);
3672
3673         ops_run_io(sh, &s);
3674
3675         if (s.dec_preread_active) {
3676                 /* We delay this until after ops_run_io so that if make_request
3677                  * is waiting on a flush, it won't continue until the writes
3678                  * have actually been submitted.
3679                  */
3680                 atomic_dec(&conf->preread_active_stripes);
3681                 if (atomic_read(&conf->preread_active_stripes) <
3682                     IO_THRESHOLD)
3683                         md_wakeup_thread(conf->mddev->thread);
3684         }
3685
3686         return_io(s.return_bi);
3687
3688         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3689 }
3690
3691 static void raid5_activate_delayed(struct r5conf *conf)
3692 {
3693         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3694                 while (!list_empty(&conf->delayed_list)) {
3695                         struct list_head *l = conf->delayed_list.next;
3696                         struct stripe_head *sh;
3697                         sh = list_entry(l, struct stripe_head, lru);
3698                         list_del_init(l);
3699                         clear_bit(STRIPE_DELAYED, &sh->state);
3700                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3701                                 atomic_inc(&conf->preread_active_stripes);
3702                         list_add_tail(&sh->lru, &conf->hold_list);
3703                 }
3704         }
3705 }
3706
3707 static void activate_bit_delay(struct r5conf *conf)
3708 {
3709         /* device_lock is held */
3710         struct list_head head;
3711         list_add(&head, &conf->bitmap_list);
3712         list_del_init(&conf->bitmap_list);
3713         while (!list_empty(&head)) {
3714                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3715                 list_del_init(&sh->lru);
3716                 atomic_inc(&sh->count);
3717                 __release_stripe(conf, sh);
3718         }
3719 }
3720
3721 int md_raid5_congested(struct mddev *mddev, int bits)
3722 {
3723         struct r5conf *conf = mddev->private;
3724
3725         /* No difference between reads and writes.  Just check
3726          * how busy the stripe_cache is
3727          */
3728
3729         if (conf->inactive_blocked)
3730                 return 1;
3731         if (conf->quiesce)
3732                 return 1;
3733         if (list_empty_careful(&conf->inactive_list))
3734                 return 1;
3735
3736         return 0;
3737 }
3738 EXPORT_SYMBOL_GPL(md_raid5_congested);
3739
3740 static int raid5_congested(void *data, int bits)
3741 {
3742         struct mddev *mddev = data;
3743
3744         return mddev_congested(mddev, bits) ||
3745                 md_raid5_congested(mddev, bits);
3746 }
3747
3748 /* We want read requests to align with chunks where possible,
3749  * but write requests don't need to.
3750  */
3751 static int raid5_mergeable_bvec(struct request_queue *q,
3752                                 struct bvec_merge_data *bvm,
3753                                 struct bio_vec *biovec)
3754 {
3755         struct mddev *mddev = q->queuedata;
3756         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3757         int max;
3758         unsigned int chunk_sectors = mddev->chunk_sectors;
3759         unsigned int bio_sectors = bvm->bi_size >> 9;
3760
3761         if ((bvm->bi_rw & 1) == WRITE)
3762                 return biovec->bv_len; /* always allow writes to be mergeable */
3763
3764         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3765                 chunk_sectors = mddev->new_chunk_sectors;
3766         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3767         if (max < 0) max = 0;
3768         if (max <= biovec->bv_len && bio_sectors == 0)
3769                 return biovec->bv_len;
3770         else
3771                 return max;
3772 }
3773
3774
3775 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3776 {
3777         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3778         unsigned int chunk_sectors = mddev->chunk_sectors;
3779         unsigned int bio_sectors = bio->bi_size >> 9;
3780
3781         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3782                 chunk_sectors = mddev->new_chunk_sectors;
3783         return  chunk_sectors >=
3784                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3785 }
3786
3787 /*
3788  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3789  *  later sampled by raid5d.
3790  */
3791 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3792 {
3793         unsigned long flags;
3794
3795         spin_lock_irqsave(&conf->device_lock, flags);
3796
3797         bi->bi_next = conf->retry_read_aligned_list;
3798         conf->retry_read_aligned_list = bi;
3799
3800         spin_unlock_irqrestore(&conf->device_lock, flags);
3801         md_wakeup_thread(conf->mddev->thread);
3802 }
3803
3804
3805 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3806 {
3807         struct bio *bi;
3808
3809         bi = conf->retry_read_aligned;
3810         if (bi) {
3811                 conf->retry_read_aligned = NULL;
3812                 return bi;
3813         }
3814         bi = conf->retry_read_aligned_list;
3815         if(bi) {
3816                 conf->retry_read_aligned_list = bi->bi_next;
3817                 bi->bi_next = NULL;
3818                 /*
3819                  * this sets the active strip count to 1 and the processed
3820                  * strip count to zero (upper 8 bits)
3821                  */
3822                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3823         }
3824
3825         return bi;
3826 }
3827
3828
3829 /*
3830  *  The "raid5_align_endio" should check if the read succeeded and if it
3831  *  did, call bio_endio on the original bio (having bio_put the new bio
3832  *  first).
3833  *  If the read failed..
3834  */
3835 static void raid5_align_endio(struct bio *bi, int error)
3836 {
3837         struct bio* raid_bi  = bi->bi_private;
3838         struct mddev *mddev;
3839         struct r5conf *conf;
3840         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3841         struct md_rdev *rdev;
3842
3843         bio_put(bi);
3844
3845         rdev = (void*)raid_bi->bi_next;
3846         raid_bi->bi_next = NULL;
3847         mddev = rdev->mddev;
3848         conf = mddev->private;
3849
3850         rdev_dec_pending(rdev, conf->mddev);
3851
3852         if (!error && uptodate) {
3853                 bio_endio(raid_bi, 0);
3854                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3855                         wake_up(&conf->wait_for_stripe);
3856                 return;
3857         }
3858
3859
3860         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3861
3862         add_bio_to_retry(raid_bi, conf);
3863 }
3864
3865 static int bio_fits_rdev(struct bio *bi)
3866 {
3867         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3868
3869         if ((bi->bi_size>>9) > queue_max_sectors(q))
3870                 return 0;
3871         blk_recount_segments(q, bi);
3872         if (bi->bi_phys_segments > queue_max_segments(q))
3873                 return 0;
3874
3875         if (q->merge_bvec_fn)
3876                 /* it's too hard to apply the merge_bvec_fn at this stage,
3877                  * just just give up
3878                  */
3879                 return 0;
3880
3881         return 1;
3882 }
3883
3884
3885 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3886 {
3887         struct r5conf *conf = mddev->private;
3888         int dd_idx;
3889         struct bio* align_bi;
3890         struct md_rdev *rdev;
3891         sector_t end_sector;
3892
3893         if (!in_chunk_boundary(mddev, raid_bio)) {
3894                 pr_debug("chunk_aligned_read : non aligned\n");
3895                 return 0;
3896         }
3897         /*
3898          * use bio_clone_mddev to make a copy of the bio
3899          */
3900         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3901         if (!align_bi)
3902                 return 0;
3903         /*
3904          *   set bi_end_io to a new function, and set bi_private to the
3905          *     original bio.
3906          */
3907         align_bi->bi_end_io  = raid5_align_endio;
3908         align_bi->bi_private = raid_bio;
3909         /*
3910          *      compute position
3911          */
3912         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3913                                                     0,
3914                                                     &dd_idx, NULL);
3915
3916         end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3917         rcu_read_lock();
3918         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3919         if (!rdev || test_bit(Faulty, &rdev->flags) ||
3920             rdev->recovery_offset < end_sector) {
3921                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3922                 if (rdev &&
3923                     (test_bit(Faulty, &rdev->flags) ||
3924                     !(test_bit(In_sync, &rdev->flags) ||
3925                       rdev->recovery_offset >= end_sector)))
3926                         rdev = NULL;
3927         }
3928         if (rdev) {
3929                 sector_t first_bad;
3930                 int bad_sectors;
3931
3932                 atomic_inc(&rdev->nr_pending);
3933                 rcu_read_unlock();
3934                 raid_bio->bi_next = (void*)rdev;
3935                 align_bi->bi_bdev =  rdev->bdev;
3936                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3937
3938                 if (!bio_fits_rdev(align_bi) ||
3939                     is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3940                                 &first_bad, &bad_sectors)) {
3941                         /* too big in some way, or has a known bad block */
3942                         bio_put(align_bi);
3943                         rdev_dec_pending(rdev, mddev);
3944                         return 0;
3945                 }
3946
3947                 /* No reshape active, so we can trust rdev->data_offset */
3948                 align_bi->bi_sector += rdev->data_offset;
3949
3950                 spin_lock_irq(&conf->device_lock);
3951                 wait_event_lock_irq(conf->wait_for_stripe,
3952                                     conf->quiesce == 0,
3953                                     conf->device_lock, /* nothing */);
3954                 atomic_inc(&conf->active_aligned_reads);
3955                 spin_unlock_irq(&conf->device_lock);
3956
3957                 generic_make_request(align_bi);
3958                 return 1;
3959         } else {
3960                 rcu_read_unlock();
3961                 bio_put(align_bi);
3962                 return 0;
3963         }
3964 }
3965
3966 /* __get_priority_stripe - get the next stripe to process
3967  *
3968  * Full stripe writes are allowed to pass preread active stripes up until
3969  * the bypass_threshold is exceeded.  In general the bypass_count
3970  * increments when the handle_list is handled before the hold_list; however, it
3971  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3972  * stripe with in flight i/o.  The bypass_count will be reset when the
3973  * head of the hold_list has changed, i.e. the head was promoted to the
3974  * handle_list.
3975  */
3976 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3977 {
3978         struct stripe_head *sh;
3979
3980         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3981                   __func__,
3982                   list_empty(&conf->handle_list) ? "empty" : "busy",
3983                   list_empty(&conf->hold_list) ? "empty" : "busy",
3984                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3985
3986         if (!list_empty(&conf->handle_list)) {
3987                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3988
3989                 if (list_empty(&conf->hold_list))
3990                         conf->bypass_count = 0;
3991                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3992                         if (conf->hold_list.next == conf->last_hold)
3993                                 conf->bypass_count++;
3994                         else {
3995                                 conf->last_hold = conf->hold_list.next;
3996                                 conf->bypass_count -= conf->bypass_threshold;
3997                                 if (conf->bypass_count < 0)
3998                                         conf->bypass_count = 0;
3999                         }
4000                 }
4001         } else if (!list_empty(&conf->hold_list) &&
4002                    ((conf->bypass_threshold &&
4003                      conf->bypass_count > conf->bypass_threshold) ||
4004                     atomic_read(&conf->pending_full_writes) == 0)) {
4005                 sh = list_entry(conf->hold_list.next,
4006                                 typeof(*sh), lru);
4007                 conf->bypass_count -= conf->bypass_threshold;
4008                 if (conf->bypass_count < 0)
4009                         conf->bypass_count = 0;
4010         } else
4011                 return NULL;
4012
4013         list_del_init(&sh->lru);
4014         atomic_inc(&sh->count);
4015         BUG_ON(atomic_read(&sh->count) != 1);
4016         return sh;
4017 }
4018
4019 struct raid5_plug_cb {
4020         struct blk_plug_cb      cb;
4021         struct list_head        list;
4022 };
4023
4024 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4025 {
4026         struct raid5_plug_cb *cb = container_of(
4027                 blk_cb, struct raid5_plug_cb, cb);
4028         struct stripe_head *sh;
4029         struct mddev *mddev = cb->cb.data;
4030         struct r5conf *conf = mddev->private;
4031
4032         if (cb->list.next && !list_empty(&cb->list)) {
4033                 spin_lock_irq(&conf->device_lock);
4034                 while (!list_empty(&cb->list)) {
4035                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4036                         list_del_init(&sh->lru);
4037                         /*
4038                          * avoid race release_stripe_plug() sees
4039                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4040                          * is still in our list
4041                          */
4042                         smp_mb__before_clear_bit();
4043                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4044                         __release_stripe(conf, sh);
4045                 }
4046                 spin_unlock_irq(&conf->device_lock);
4047         }
4048         kfree(cb);
4049 }
4050
4051 static void release_stripe_plug(struct mddev *mddev,
4052                                 struct stripe_head *sh)
4053 {
4054         struct blk_plug_cb *blk_cb = blk_check_plugged(
4055                 raid5_unplug, mddev,
4056                 sizeof(struct raid5_plug_cb));
4057         struct raid5_plug_cb *cb;
4058
4059         if (!blk_cb) {
4060                 release_stripe(sh);
4061                 return;
4062         }
4063
4064         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4065
4066         if (cb->list.next == NULL)
4067                 INIT_LIST_HEAD(&cb->list);
4068
4069         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4070                 list_add_tail(&sh->lru, &cb->list);
4071         else
4072                 release_stripe(sh);
4073 }
4074
4075 static void make_request(struct mddev *mddev, struct bio * bi)
4076 {
4077         struct r5conf *conf = mddev->private;
4078         int dd_idx;
4079         sector_t new_sector;
4080         sector_t logical_sector, last_sector;
4081         struct stripe_head *sh;
4082         const int rw = bio_data_dir(bi);
4083         int remaining;
4084
4085         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4086                 md_flush_request(mddev, bi);
4087                 return;
4088         }
4089
4090         md_write_start(mddev, bi);
4091
4092         if (rw == READ &&
4093              mddev->reshape_position == MaxSector &&
4094              chunk_aligned_read(mddev,bi))
4095                 return;
4096
4097         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4098         last_sector = bi->bi_sector + (bi->bi_size>>9);
4099         bi->bi_next = NULL;
4100         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4101
4102         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4103                 DEFINE_WAIT(w);
4104                 int previous;
4105
4106         retry:
4107                 previous = 0;
4108                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4109                 if (unlikely(conf->reshape_progress != MaxSector)) {
4110                         /* spinlock is needed as reshape_progress may be
4111                          * 64bit on a 32bit platform, and so it might be
4112                          * possible to see a half-updated value
4113                          * Of course reshape_progress could change after
4114                          * the lock is dropped, so once we get a reference
4115                          * to the stripe that we think it is, we will have
4116                          * to check again.
4117                          */
4118                         spin_lock_irq(&conf->device_lock);
4119                         if (mddev->reshape_backwards
4120                             ? logical_sector < conf->reshape_progress
4121                             : logical_sector >= conf->reshape_progress) {
4122                                 previous = 1;
4123                         } else {
4124                                 if (mddev->reshape_backwards
4125                                     ? logical_sector < conf->reshape_safe
4126                                     : logical_sector >= conf->reshape_safe) {
4127                                         spin_unlock_irq(&conf->device_lock);
4128                                         schedule();
4129                                         goto retry;
4130                                 }
4131                         }
4132                         spin_unlock_irq(&conf->device_lock);
4133                 }
4134
4135                 new_sector = raid5_compute_sector(conf, logical_sector,
4136                                                   previous,
4137                                                   &dd_idx, NULL);
4138                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4139                         (unsigned long long)new_sector, 
4140                         (unsigned long long)logical_sector);
4141
4142                 sh = get_active_stripe(conf, new_sector, previous,
4143                                        (bi->bi_rw&RWA_MASK), 0);
4144                 if (sh) {
4145                         if (unlikely(previous)) {
4146                                 /* expansion might have moved on while waiting for a
4147                                  * stripe, so we must do the range check again.
4148                                  * Expansion could still move past after this
4149                                  * test, but as we are holding a reference to
4150                                  * 'sh', we know that if that happens,
4151                                  *  STRIPE_EXPANDING will get set and the expansion
4152                                  * won't proceed until we finish with the stripe.
4153                                  */
4154                                 int must_retry = 0;
4155                                 spin_lock_irq(&conf->device_lock);
4156                                 if (mddev->reshape_backwards
4157                                     ? logical_sector >= conf->reshape_progress
4158                                     : logical_sector < conf->reshape_progress)
4159                                         /* mismatch, need to try again */
4160                                         must_retry = 1;
4161                                 spin_unlock_irq(&conf->device_lock);
4162                                 if (must_retry) {
4163                                         release_stripe(sh);
4164                                         schedule();
4165                                         goto retry;
4166                                 }
4167                         }
4168
4169                         if (rw == WRITE &&
4170                             logical_sector >= mddev->suspend_lo &&
4171                             logical_sector < mddev->suspend_hi) {
4172                                 release_stripe(sh);
4173                                 /* As the suspend_* range is controlled by
4174                                  * userspace, we want an interruptible
4175                                  * wait.
4176                                  */
4177                                 flush_signals(current);
4178                                 prepare_to_wait(&conf->wait_for_overlap,
4179                                                 &w, TASK_INTERRUPTIBLE);
4180                                 if (logical_sector >= mddev->suspend_lo &&
4181                                     logical_sector < mddev->suspend_hi)
4182                                         schedule();
4183                                 goto retry;
4184                         }
4185
4186                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4187                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4188                                 /* Stripe is busy expanding or
4189                                  * add failed due to overlap.  Flush everything
4190                                  * and wait a while
4191                                  */
4192                                 md_wakeup_thread(mddev->thread);
4193                                 release_stripe(sh);
4194                                 schedule();
4195                                 goto retry;
4196                         }
4197                         finish_wait(&conf->wait_for_overlap, &w);
4198                         set_bit(STRIPE_HANDLE, &sh->state);
4199                         clear_bit(STRIPE_DELAYED, &sh->state);
4200                         if ((bi->bi_rw & REQ_SYNC) &&
4201                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4202                                 atomic_inc(&conf->preread_active_stripes);
4203                         release_stripe_plug(mddev, sh);
4204                 } else {
4205                         /* cannot get stripe for read-ahead, just give-up */
4206                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4207                         finish_wait(&conf->wait_for_overlap, &w);
4208                         break;
4209                 }
4210         }
4211
4212         remaining = raid5_dec_bi_active_stripes(bi);
4213         if (remaining == 0) {
4214
4215                 if ( rw == WRITE )
4216                         md_write_end(mddev);
4217
4218                 bio_endio(bi, 0);
4219         }
4220 }
4221
4222 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4223
4224 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4225 {
4226         /* reshaping is quite different to recovery/resync so it is
4227          * handled quite separately ... here.
4228          *
4229          * On each call to sync_request, we gather one chunk worth of
4230          * destination stripes and flag them as expanding.
4231          * Then we find all the source stripes and request reads.
4232          * As the reads complete, handle_stripe will copy the data
4233          * into the destination stripe and release that stripe.
4234          */
4235         struct r5conf *conf = mddev->private;
4236         struct stripe_head *sh;
4237         sector_t first_sector, last_sector;
4238         int raid_disks = conf->previous_raid_disks;
4239         int data_disks = raid_disks - conf->max_degraded;
4240         int new_data_disks = conf->raid_disks - conf->max_degraded;
4241         int i;
4242         int dd_idx;
4243         sector_t writepos, readpos, safepos;
4244         sector_t stripe_addr;
4245         int reshape_sectors;
4246         struct list_head stripes;
4247
4248         if (sector_nr == 0) {
4249                 /* If restarting in the middle, skip the initial sectors */
4250                 if (mddev->reshape_backwards &&
4251                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4252                         sector_nr = raid5_size(mddev, 0, 0)
4253                                 - conf->reshape_progress;
4254                 } else if (!mddev->reshape_backwards &&
4255                            conf->reshape_progress > 0)
4256                         sector_nr = conf->reshape_progress;
4257                 sector_div(sector_nr, new_data_disks);
4258                 if (sector_nr) {
4259                         mddev->curr_resync_completed = sector_nr;
4260                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4261                         *skipped = 1;
4262                         return sector_nr;
4263                 }
4264         }
4265
4266         /* We need to process a full chunk at a time.
4267          * If old and new chunk sizes differ, we need to process the
4268          * largest of these
4269          */
4270         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4271                 reshape_sectors = mddev->new_chunk_sectors;
4272         else
4273                 reshape_sectors = mddev->chunk_sectors;
4274
4275         /* We update the metadata at least every 10 seconds, or when
4276          * the data about to be copied would over-write the source of
4277          * the data at the front of the range.  i.e. one new_stripe
4278          * along from reshape_progress new_maps to after where
4279          * reshape_safe old_maps to
4280          */
4281         writepos = conf->reshape_progress;
4282         sector_div(writepos, new_data_disks);
4283         readpos = conf->reshape_progress;
4284         sector_div(readpos, data_disks);
4285         safepos = conf->reshape_safe;
4286         sector_div(safepos, data_disks);
4287         if (mddev->reshape_backwards) {
4288                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4289                 readpos += reshape_sectors;
4290                 safepos += reshape_sectors;
4291         } else {
4292                 writepos += reshape_sectors;
4293                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4294                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4295         }
4296
4297         /* Having calculated the 'writepos' possibly use it
4298          * to set 'stripe_addr' which is where we will write to.
4299          */
4300         if (mddev->reshape_backwards) {
4301                 BUG_ON(conf->reshape_progress == 0);
4302                 stripe_addr = writepos;
4303                 BUG_ON((mddev->dev_sectors &
4304                         ~((sector_t)reshape_sectors - 1))
4305                        - reshape_sectors - stripe_addr
4306                        != sector_nr);
4307         } else {
4308                 BUG_ON(writepos != sector_nr + reshape_sectors);
4309                 stripe_addr = sector_nr;
4310         }
4311
4312         /* 'writepos' is the most advanced device address we might write.
4313          * 'readpos' is the least advanced device address we might read.
4314          * 'safepos' is the least address recorded in the metadata as having
4315          *     been reshaped.
4316          * If there is a min_offset_diff, these are adjusted either by
4317          * increasing the safepos/readpos if diff is negative, or
4318          * increasing writepos if diff is positive.
4319          * If 'readpos' is then behind 'writepos', there is no way that we can
4320          * ensure safety in the face of a crash - that must be done by userspace
4321          * making a backup of the data.  So in that case there is no particular
4322          * rush to update metadata.
4323          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4324          * update the metadata to advance 'safepos' to match 'readpos' so that
4325          * we can be safe in the event of a crash.
4326          * So we insist on updating metadata if safepos is behind writepos and
4327          * readpos is beyond writepos.
4328          * In any case, update the metadata every 10 seconds.
4329          * Maybe that number should be configurable, but I'm not sure it is
4330          * worth it.... maybe it could be a multiple of safemode_delay???
4331          */
4332         if (conf->min_offset_diff < 0) {
4333                 safepos += -conf->min_offset_diff;
4334                 readpos += -conf->min_offset_diff;
4335         } else
4336                 writepos += conf->min_offset_diff;
4337
4338         if ((mddev->reshape_backwards
4339              ? (safepos > writepos && readpos < writepos)
4340              : (safepos < writepos && readpos > writepos)) ||
4341             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4342                 /* Cannot proceed until we've updated the superblock... */
4343                 wait_event(conf->wait_for_overlap,
4344                            atomic_read(&conf->reshape_stripes)==0);
4345                 mddev->reshape_position = conf->reshape_progress;
4346                 mddev->curr_resync_completed = sector_nr;
4347                 conf->reshape_checkpoint = jiffies;
4348                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4349                 md_wakeup_thread(mddev->thread);
4350                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4351                            kthread_should_stop());
4352                 spin_lock_irq(&conf->device_lock);
4353                 conf->reshape_safe = mddev->reshape_position;
4354                 spin_unlock_irq(&conf->device_lock);
4355                 wake_up(&conf->wait_for_overlap);
4356                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4357         }
4358
4359         INIT_LIST_HEAD(&stripes);
4360         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4361                 int j;
4362                 int skipped_disk = 0;
4363                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4364                 set_bit(STRIPE_EXPANDING, &sh->state);
4365                 atomic_inc(&conf->reshape_stripes);
4366                 /* If any of this stripe is beyond the end of the old
4367                  * array, then we need to zero those blocks
4368                  */
4369                 for (j=sh->disks; j--;) {
4370                         sector_t s;
4371                         if (j == sh->pd_idx)
4372                                 continue;
4373                         if (conf->level == 6 &&
4374                             j == sh->qd_idx)
4375                                 continue;
4376                         s = compute_blocknr(sh, j, 0);
4377                         if (s < raid5_size(mddev, 0, 0)) {
4378                                 skipped_disk = 1;
4379                                 continue;
4380                         }
4381                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4382                         set_bit(R5_Expanded, &sh->dev[j].flags);
4383                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4384                 }
4385                 if (!skipped_disk) {
4386                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4387                         set_bit(STRIPE_HANDLE, &sh->state);
4388                 }
4389                 list_add(&sh->lru, &stripes);
4390         }
4391         spin_lock_irq(&conf->device_lock);
4392         if (mddev->reshape_backwards)
4393                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4394         else
4395                 conf->reshape_progress += reshape_sectors * new_data_disks;
4396         spin_unlock_irq(&conf->device_lock);
4397         /* Ok, those stripe are ready. We can start scheduling
4398          * reads on the source stripes.
4399          * The source stripes are determined by mapping the first and last
4400          * block on the destination stripes.
4401          */
4402         first_sector =
4403                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4404                                      1, &dd_idx, NULL);
4405         last_sector =
4406                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4407                                             * new_data_disks - 1),
4408                                      1, &dd_idx, NULL);
4409         if (last_sector >= mddev->dev_sectors)
4410                 last_sector = mddev->dev_sectors - 1;
4411         while (first_sector <= last_sector) {
4412                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4413                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4414                 set_bit(STRIPE_HANDLE, &sh->state);
4415                 release_stripe(sh);
4416                 first_sector += STRIPE_SECTORS;
4417         }
4418         /* Now that the sources are clearly marked, we can release
4419          * the destination stripes
4420          */
4421         while (!list_empty(&stripes)) {
4422                 sh = list_entry(stripes.next, struct stripe_head, lru);
4423                 list_del_init(&sh->lru);
4424                 release_stripe(sh);
4425         }
4426         /* If this takes us to the resync_max point where we have to pause,
4427          * then we need to write out the superblock.
4428          */
4429         sector_nr += reshape_sectors;
4430         if ((sector_nr - mddev->curr_resync_completed) * 2
4431             >= mddev->resync_max - mddev->curr_resync_completed) {
4432                 /* Cannot proceed until we've updated the superblock... */
4433                 wait_event(conf->wait_for_overlap,
4434                            atomic_read(&conf->reshape_stripes) == 0);
4435                 mddev->reshape_position = conf->reshape_progress;
4436                 mddev->curr_resync_completed = sector_nr;
4437                 conf->reshape_checkpoint = jiffies;
4438                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4439                 md_wakeup_thread(mddev->thread);
4440                 wait_event(mddev->sb_wait,
4441                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4442                            || kthread_should_stop());
4443                 spin_lock_irq(&conf->device_lock);
4444                 conf->reshape_safe = mddev->reshape_position;
4445                 spin_unlock_irq(&conf->device_lock);
4446                 wake_up(&conf->wait_for_overlap);
4447                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4448         }
4449         return reshape_sectors;
4450 }
4451
4452 /* FIXME go_faster isn't used */
4453 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4454 {
4455         struct r5conf *conf = mddev->private;
4456         struct stripe_head *sh;
4457         sector_t max_sector = mddev->dev_sectors;
4458         sector_t sync_blocks;
4459         int still_degraded = 0;
4460         int i;
4461
4462         if (sector_nr >= max_sector) {
4463                 /* just being told to finish up .. nothing much to do */
4464
4465                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4466                         end_reshape(conf);
4467                         return 0;
4468                 }
4469
4470                 if (mddev->curr_resync < max_sector) /* aborted */
4471                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4472                                         &sync_blocks, 1);
4473                 else /* completed sync */
4474                         conf->fullsync = 0;
4475                 bitmap_close_sync(mddev->bitmap);
4476
4477                 return 0;
4478         }
4479
4480         /* Allow raid5_quiesce to complete */
4481         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4482
4483         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4484                 return reshape_request(mddev, sector_nr, skipped);
4485
4486         /* No need to check resync_max as we never do more than one
4487          * stripe, and as resync_max will always be on a chunk boundary,
4488          * if the check in md_do_sync didn't fire, there is no chance
4489          * of overstepping resync_max here
4490          */
4491
4492         /* if there is too many failed drives and we are trying
4493          * to resync, then assert that we are finished, because there is
4494          * nothing we can do.
4495          */
4496         if (mddev->degraded >= conf->max_degraded &&
4497             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4498                 sector_t rv = mddev->dev_sectors - sector_nr;
4499                 *skipped = 1;
4500                 return rv;
4501         }
4502         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4503             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4504             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4505                 /* we can skip this block, and probably more */
4506                 sync_blocks /= STRIPE_SECTORS;
4507                 *skipped = 1;
4508                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4509         }
4510
4511         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4512
4513         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4514         if (sh == NULL) {
4515                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4516                 /* make sure we don't swamp the stripe cache if someone else
4517                  * is trying to get access
4518                  */
4519                 schedule_timeout_uninterruptible(1);
4520         }
4521         /* Need to check if array will still be degraded after recovery/resync
4522          * We don't need to check the 'failed' flag as when that gets set,
4523          * recovery aborts.
4524          */
4525         for (i = 0; i < conf->raid_disks; i++)
4526                 if (conf->disks[i].rdev == NULL)
4527                         still_degraded = 1;
4528
4529         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4530
4531         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4532
4533         handle_stripe(sh);
4534         release_stripe(sh);
4535
4536         return STRIPE_SECTORS;
4537 }
4538
4539 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4540 {
4541         /* We may not be able to submit a whole bio at once as there
4542          * may not be enough stripe_heads available.
4543          * We cannot pre-allocate enough stripe_heads as we may need
4544          * more than exist in the cache (if we allow ever large chunks).
4545          * So we do one stripe head at a time and record in
4546          * ->bi_hw_segments how many have been done.
4547          *
4548          * We *know* that this entire raid_bio is in one chunk, so
4549          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4550          */
4551         struct stripe_head *sh;
4552         int dd_idx;
4553         sector_t sector, logical_sector, last_sector;
4554         int scnt = 0;
4555         int remaining;
4556         int handled = 0;
4557
4558         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4559         sector = raid5_compute_sector(conf, logical_sector,
4560                                       0, &dd_idx, NULL);
4561         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4562
4563         for (; logical_sector < last_sector;
4564              logical_sector += STRIPE_SECTORS,
4565                      sector += STRIPE_SECTORS,
4566                      scnt++) {
4567
4568                 if (scnt < raid5_bi_processed_stripes(raid_bio))
4569                         /* already done this stripe */
4570                         continue;
4571
4572                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4573
4574                 if (!sh) {
4575                         /* failed to get a stripe - must wait */
4576                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4577                         conf->retry_read_aligned = raid_bio;
4578                         return handled;
4579                 }
4580
4581                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4582                         release_stripe(sh);
4583                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4584                         conf->retry_read_aligned = raid_bio;
4585                         return handled;
4586                 }
4587
4588                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4589                 handle_stripe(sh);
4590                 release_stripe(sh);
4591                 handled++;
4592         }
4593         remaining = raid5_dec_bi_active_stripes(raid_bio);
4594         if (remaining == 0)
4595                 bio_endio(raid_bio, 0);
4596         if (atomic_dec_and_test(&conf->active_aligned_reads))
4597                 wake_up(&conf->wait_for_stripe);
4598         return handled;
4599 }
4600
4601 #define MAX_STRIPE_BATCH 8
4602 static int handle_active_stripes(struct r5conf *conf)
4603 {
4604         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4605         int i, batch_size = 0;
4606
4607         while (batch_size < MAX_STRIPE_BATCH &&
4608                         (sh = __get_priority_stripe(conf)) != NULL)
4609                 batch[batch_size++] = sh;
4610
4611         if (batch_size == 0)
4612                 return batch_size;
4613         spin_unlock_irq(&conf->device_lock);
4614
4615         for (i = 0; i < batch_size; i++)
4616                 handle_stripe(batch[i]);
4617
4618         cond_resched();
4619
4620         spin_lock_irq(&conf->device_lock);
4621         for (i = 0; i < batch_size; i++)
4622                 __release_stripe(conf, batch[i]);
4623         return batch_size;
4624 }
4625
4626 /*
4627  * This is our raid5 kernel thread.
4628  *
4629  * We scan the hash table for stripes which can be handled now.
4630  * During the scan, completed stripes are saved for us by the interrupt
4631  * handler, so that they will not have to wait for our next wakeup.
4632  */
4633 static void raid5d(struct mddev *mddev)
4634 {
4635         struct r5conf *conf = mddev->private;
4636         int handled;
4637         struct blk_plug plug;
4638
4639         pr_debug("+++ raid5d active\n");
4640
4641         md_check_recovery(mddev);
4642
4643         blk_start_plug(&plug);
4644         handled = 0;
4645         spin_lock_irq(&conf->device_lock);
4646         while (1) {
4647                 struct bio *bio;
4648                 int batch_size;
4649
4650                 if (
4651                     !list_empty(&conf->bitmap_list)) {
4652                         /* Now is a good time to flush some bitmap updates */
4653                         conf->seq_flush++;
4654                         spin_unlock_irq(&conf->device_lock);
4655                         bitmap_unplug(mddev->bitmap);
4656                         spin_lock_irq(&conf->device_lock);
4657                         conf->seq_write = conf->seq_flush;
4658                         activate_bit_delay(conf);
4659                 }
4660                 raid5_activate_delayed(conf);
4661
4662                 while ((bio = remove_bio_from_retry(conf))) {
4663                         int ok;
4664                         spin_unlock_irq(&conf->device_lock);
4665                         ok = retry_aligned_read(conf, bio);
4666                         spin_lock_irq(&conf->device_lock);
4667                         if (!ok)
4668                                 break;
4669                         handled++;
4670                 }
4671
4672                 batch_size = handle_active_stripes(conf);
4673                 if (!batch_size)
4674                         break;
4675                 handled += batch_size;
4676
4677                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4678                         spin_unlock_irq(&conf->device_lock);
4679                         md_check_recovery(mddev);
4680                         spin_lock_irq(&conf->device_lock);
4681                 }
4682         }
4683         pr_debug("%d stripes handled\n", handled);
4684
4685         spin_unlock_irq(&conf->device_lock);
4686
4687         async_tx_issue_pending_all();
4688         blk_finish_plug(&plug);
4689
4690         pr_debug("--- raid5d inactive\n");
4691 }
4692
4693 static ssize_t
4694 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4695 {
4696         struct r5conf *conf = mddev->private;
4697         if (conf)
4698                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4699         else
4700                 return 0;
4701 }
4702
4703 int
4704 raid5_set_cache_size(struct mddev *mddev, int size)
4705 {
4706         struct r5conf *conf = mddev->private;
4707         int err;
4708
4709         if (size <= 16 || size > 32768)
4710                 return -EINVAL;
4711         while (size < conf->max_nr_stripes) {
4712                 if (drop_one_stripe(conf))
4713                         conf->max_nr_stripes--;
4714                 else
4715                         break;
4716         }
4717         err = md_allow_write(mddev);
4718         if (err)
4719                 return err;
4720         while (size > conf->max_nr_stripes) {
4721                 if (grow_one_stripe(conf))
4722                         conf->max_nr_stripes++;
4723                 else break;
4724         }
4725         return 0;
4726 }
4727 EXPORT_SYMBOL(raid5_set_cache_size);
4728
4729 static ssize_t
4730 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4731 {
4732         struct r5conf *conf = mddev->private;
4733         unsigned long new;
4734         int err;
4735
4736         if (len >= PAGE_SIZE)
4737                 return -EINVAL;
4738         if (!conf)
4739                 return -ENODEV;
4740
4741         if (strict_strtoul(page, 10, &new))
4742                 return -EINVAL;
4743         err = raid5_set_cache_size(mddev, new);
4744         if (err)
4745                 return err;
4746         return len;
4747 }
4748
4749 static struct md_sysfs_entry
4750 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4751                                 raid5_show_stripe_cache_size,
4752                                 raid5_store_stripe_cache_size);
4753
4754 static ssize_t
4755 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4756 {
4757         struct r5conf *conf = mddev->private;
4758         if (conf)
4759                 return sprintf(page, "%d\n", conf->bypass_threshold);
4760         else
4761                 return 0;
4762 }
4763
4764 static ssize_t
4765 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4766 {
4767         struct r5conf *conf = mddev->private;
4768         unsigned long new;
4769         if (len >= PAGE_SIZE)
4770                 return -EINVAL;
4771         if (!conf)
4772                 return -ENODEV;
4773
4774         if (strict_strtoul(page, 10, &new))
4775                 return -EINVAL;
4776         if (new > conf->max_nr_stripes)
4777                 return -EINVAL;
4778         conf->bypass_threshold = new;
4779         return len;
4780 }
4781
4782 static struct md_sysfs_entry
4783 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4784                                         S_IRUGO | S_IWUSR,
4785                                         raid5_show_preread_threshold,
4786                                         raid5_store_preread_threshold);
4787
4788 static ssize_t
4789 stripe_cache_active_show(struct mddev *mddev, char *page)
4790 {
4791         struct r5conf *conf = mddev->private;
4792         if (conf)
4793                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4794         else
4795                 return 0;
4796 }
4797
4798 static struct md_sysfs_entry
4799 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4800
4801 static struct attribute *raid5_attrs[] =  {
4802         &raid5_stripecache_size.attr,
4803         &raid5_stripecache_active.attr,
4804         &raid5_preread_bypass_threshold.attr,
4805         NULL,
4806 };
4807 static struct attribute_group raid5_attrs_group = {
4808         .name = NULL,
4809         .attrs = raid5_attrs,
4810 };
4811
4812 static sector_t
4813 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4814 {
4815         struct r5conf *conf = mddev->private;
4816
4817         if (!sectors)
4818                 sectors = mddev->dev_sectors;
4819         if (!raid_disks)
4820                 /* size is defined by the smallest of previous and new size */
4821                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4822
4823         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4824         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4825         return sectors * (raid_disks - conf->max_degraded);
4826 }
4827
4828 static void raid5_free_percpu(struct r5conf *conf)
4829 {
4830         struct raid5_percpu *percpu;
4831         unsigned long cpu;
4832
4833         if (!conf->percpu)
4834                 return;
4835
4836         get_online_cpus();
4837         for_each_possible_cpu(cpu) {
4838                 percpu = per_cpu_ptr(conf->percpu, cpu);
4839                 safe_put_page(percpu->spare_page);
4840                 kfree(percpu->scribble);
4841         }
4842 #ifdef CONFIG_HOTPLUG_CPU
4843         unregister_cpu_notifier(&conf->cpu_notify);
4844 #endif
4845         put_online_cpus();
4846
4847         free_percpu(conf->percpu);
4848 }
4849
4850 static void free_conf(struct r5conf *conf)
4851 {
4852         shrink_stripes(conf);
4853         raid5_free_percpu(conf);
4854         kfree(conf->disks);
4855         kfree(conf->stripe_hashtbl);
4856         kfree(conf);
4857 }
4858
4859 #ifdef CONFIG_HOTPLUG_CPU
4860 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4861                               void *hcpu)
4862 {
4863         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4864         long cpu = (long)hcpu;
4865         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4866
4867         switch (action) {
4868         case CPU_UP_PREPARE:
4869         case CPU_UP_PREPARE_FROZEN:
4870                 if (conf->level == 6 && !percpu->spare_page)
4871                         percpu->spare_page = alloc_page(GFP_KERNEL);
4872                 if (!percpu->scribble)
4873                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4874
4875                 if (!percpu->scribble ||
4876                     (conf->level == 6 && !percpu->spare_page)) {
4877                         safe_put_page(percpu->spare_page);
4878                         kfree(percpu->scribble);
4879                         pr_err("%s: failed memory allocation for cpu%ld\n",
4880                                __func__, cpu);
4881                         return notifier_from_errno(-ENOMEM);
4882                 }
4883                 break;
4884         case CPU_DEAD:
4885         case CPU_DEAD_FROZEN:
4886                 safe_put_page(percpu->spare_page);
4887                 kfree(percpu->scribble);
4888                 percpu->spare_page = NULL;
4889                 percpu->scribble = NULL;
4890                 break;
4891         default:
4892                 break;
4893         }
4894         return NOTIFY_OK;
4895 }
4896 #endif
4897
4898 static int raid5_alloc_percpu(struct r5conf *conf)
4899 {
4900         unsigned long cpu;
4901         struct page *spare_page;
4902         struct raid5_percpu __percpu *allcpus;
4903         void *scribble;
4904         int err;
4905
4906         allcpus = alloc_percpu(struct raid5_percpu);
4907         if (!allcpus)
4908                 return -ENOMEM;
4909         conf->percpu = allcpus;
4910
4911         get_online_cpus();
4912         err = 0;
4913         for_each_present_cpu(cpu) {
4914                 if (conf->level == 6) {
4915                         spare_page = alloc_page(GFP_KERNEL);
4916                         if (!spare_page) {
4917                                 err = -ENOMEM;
4918                                 break;
4919                         }
4920                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4921                 }
4922                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4923                 if (!scribble) {
4924                         err = -ENOMEM;
4925                         break;
4926                 }
4927                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4928         }
4929 #ifdef CONFIG_HOTPLUG_CPU
4930         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4931         conf->cpu_notify.priority = 0;
4932         if (err == 0)
4933                 err = register_cpu_notifier(&conf->cpu_notify);
4934 #endif
4935         put_online_cpus();
4936
4937         return err;
4938 }
4939
4940 static struct r5conf *setup_conf(struct mddev *mddev)
4941 {
4942         struct r5conf *conf;
4943         int raid_disk, memory, max_disks;
4944         struct md_rdev *rdev;
4945         struct disk_info *disk;
4946         char pers_name[6];
4947
4948         if (mddev->new_level != 5
4949             && mddev->new_level != 4
4950             && mddev->new_level != 6) {
4951                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4952                        mdname(mddev), mddev->new_level);
4953                 return ERR_PTR(-EIO);
4954         }
4955         if ((mddev->new_level == 5
4956              && !algorithm_valid_raid5(mddev->new_layout)) ||
4957             (mddev->new_level == 6
4958              && !algorithm_valid_raid6(mddev->new_layout))) {
4959                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4960                        mdname(mddev), mddev->new_layout);
4961                 return ERR_PTR(-EIO);
4962         }
4963         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4964                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4965                        mdname(mddev), mddev->raid_disks);
4966                 return ERR_PTR(-EINVAL);
4967         }
4968
4969         if (!mddev->new_chunk_sectors ||
4970             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4971             !is_power_of_2(mddev->new_chunk_sectors)) {
4972                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4973                        mdname(mddev), mddev->new_chunk_sectors << 9);
4974                 return ERR_PTR(-EINVAL);
4975         }
4976
4977         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4978         if (conf == NULL)
4979                 goto abort;
4980         spin_lock_init(&conf->device_lock);
4981         init_waitqueue_head(&conf->wait_for_stripe);
4982         init_waitqueue_head(&conf->wait_for_overlap);
4983         INIT_LIST_HEAD(&conf->handle_list);
4984         INIT_LIST_HEAD(&conf->hold_list);
4985         INIT_LIST_HEAD(&conf->delayed_list);
4986         INIT_LIST_HEAD(&conf->bitmap_list);
4987         INIT_LIST_HEAD(&conf->inactive_list);
4988         atomic_set(&conf->active_stripes, 0);
4989         atomic_set(&conf->preread_active_stripes, 0);
4990         atomic_set(&conf->active_aligned_reads, 0);
4991         conf->bypass_threshold = BYPASS_THRESHOLD;
4992         conf->recovery_disabled = mddev->recovery_disabled - 1;
4993
4994         conf->raid_disks = mddev->raid_disks;
4995         if (mddev->reshape_position == MaxSector)
4996                 conf->previous_raid_disks = mddev->raid_disks;
4997         else
4998                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4999         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5000         conf->scribble_len = scribble_len(max_disks);
5001
5002         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5003                               GFP_KERNEL);
5004         if (!conf->disks)
5005                 goto abort;
5006
5007         conf->mddev = mddev;
5008
5009         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5010                 goto abort;
5011
5012         conf->level = mddev->new_level;
5013         if (raid5_alloc_percpu(conf) != 0)
5014                 goto abort;
5015
5016         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5017
5018         rdev_for_each(rdev, mddev) {
5019                 raid_disk = rdev->raid_disk;
5020                 if (raid_disk >= max_disks
5021                     || raid_disk < 0)
5022                         continue;
5023                 disk = conf->disks + raid_disk;
5024
5025                 if (test_bit(Replacement, &rdev->flags)) {
5026                         if (disk->replacement)
5027                                 goto abort;
5028                         disk->replacement = rdev;
5029                 } else {
5030                         if (disk->rdev)
5031                                 goto abort;
5032                         disk->rdev = rdev;
5033                 }
5034
5035                 if (test_bit(In_sync, &rdev->flags)) {
5036                         char b[BDEVNAME_SIZE];
5037                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5038                                " disk %d\n",
5039                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5040                 } else if (rdev->saved_raid_disk != raid_disk)
5041                         /* Cannot rely on bitmap to complete recovery */
5042                         conf->fullsync = 1;
5043         }
5044
5045         conf->chunk_sectors = mddev->new_chunk_sectors;
5046         conf->level = mddev->new_level;
5047         if (conf->level == 6)
5048                 conf->max_degraded = 2;
5049         else
5050                 conf->max_degraded = 1;
5051         conf->algorithm = mddev->new_layout;
5052         conf->max_nr_stripes = NR_STRIPES;
5053         conf->reshape_progress = mddev->reshape_position;
5054         if (conf->reshape_progress != MaxSector) {
5055                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5056                 conf->prev_algo = mddev->layout;
5057         }
5058
5059         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5060                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5061         if (grow_stripes(conf, conf->max_nr_stripes)) {
5062                 printk(KERN_ERR
5063                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5064                        mdname(mddev), memory);
5065                 goto abort;
5066         } else
5067                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5068                        mdname(mddev), memory);
5069
5070         sprintf(pers_name, "raid%d", mddev->new_level);
5071         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5072         if (!conf->thread) {
5073                 printk(KERN_ERR
5074                        "md/raid:%s: couldn't allocate thread.\n",
5075                        mdname(mddev));
5076                 goto abort;
5077         }
5078
5079         return conf;
5080
5081  abort:
5082         if (conf) {
5083                 free_conf(conf);
5084                 return ERR_PTR(-EIO);
5085         } else
5086                 return ERR_PTR(-ENOMEM);
5087 }
5088
5089
5090 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5091 {
5092         switch (algo) {
5093         case ALGORITHM_PARITY_0:
5094                 if (raid_disk < max_degraded)
5095                         return 1;
5096                 break;
5097         case ALGORITHM_PARITY_N:
5098                 if (raid_disk >= raid_disks - max_degraded)
5099                         return 1;
5100                 break;
5101         case ALGORITHM_PARITY_0_6:
5102                 if (raid_disk == 0 || 
5103                     raid_disk == raid_disks - 1)
5104                         return 1;
5105                 break;
5106         case ALGORITHM_LEFT_ASYMMETRIC_6:
5107         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5108         case ALGORITHM_LEFT_SYMMETRIC_6:
5109         case ALGORITHM_RIGHT_SYMMETRIC_6:
5110                 if (raid_disk == raid_disks - 1)
5111                         return 1;
5112         }
5113         return 0;
5114 }
5115
5116 static int run(struct mddev *mddev)
5117 {
5118         struct r5conf *conf;
5119         int working_disks = 0;
5120         int dirty_parity_disks = 0;
5121         struct md_rdev *rdev;
5122         sector_t reshape_offset = 0;
5123         int i;
5124         long long min_offset_diff = 0;
5125         int first = 1;
5126
5127         if (mddev->recovery_cp != MaxSector)
5128                 printk(KERN_NOTICE "md/raid:%s: not clean"
5129                        " -- starting background reconstruction\n",
5130                        mdname(mddev));
5131
5132         rdev_for_each(rdev, mddev) {
5133                 long long diff;
5134                 if (rdev->raid_disk < 0)
5135                         continue;
5136                 diff = (rdev->new_data_offset - rdev->data_offset);
5137                 if (first) {
5138                         min_offset_diff = diff;
5139                         first = 0;
5140                 } else if (mddev->reshape_backwards &&
5141                          diff < min_offset_diff)
5142                         min_offset_diff = diff;
5143                 else if (!mddev->reshape_backwards &&
5144                          diff > min_offset_diff)
5145                         min_offset_diff = diff;
5146         }
5147
5148         if (mddev->reshape_position != MaxSector) {
5149                 /* Check that we can continue the reshape.
5150                  * Difficulties arise if the stripe we would write to
5151                  * next is at or after the stripe we would read from next.
5152                  * For a reshape that changes the number of devices, this
5153                  * is only possible for a very short time, and mdadm makes
5154                  * sure that time appears to have past before assembling
5155                  * the array.  So we fail if that time hasn't passed.
5156                  * For a reshape that keeps the number of devices the same
5157                  * mdadm must be monitoring the reshape can keeping the
5158                  * critical areas read-only and backed up.  It will start
5159                  * the array in read-only mode, so we check for that.
5160                  */
5161                 sector_t here_new, here_old;
5162                 int old_disks;
5163                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5164
5165                 if (mddev->new_level != mddev->level) {
5166                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5167                                "required - aborting.\n",
5168                                mdname(mddev));
5169                         return -EINVAL;
5170                 }
5171                 old_disks = mddev->raid_disks - mddev->delta_disks;
5172                 /* reshape_position must be on a new-stripe boundary, and one
5173                  * further up in new geometry must map after here in old
5174                  * geometry.
5175                  */
5176                 here_new = mddev->reshape_position;
5177                 if (sector_div(here_new, mddev->new_chunk_sectors *
5178                                (mddev->raid_disks - max_degraded))) {
5179                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5180                                "on a stripe boundary\n", mdname(mddev));
5181                         return -EINVAL;
5182                 }
5183                 reshape_offset = here_new * mddev->new_chunk_sectors;
5184                 /* here_new is the stripe we will write to */
5185                 here_old = mddev->reshape_position;
5186                 sector_div(here_old, mddev->chunk_sectors *
5187                            (old_disks-max_degraded));
5188                 /* here_old is the first stripe that we might need to read
5189                  * from */
5190                 if (mddev->delta_disks == 0) {
5191                         if ((here_new * mddev->new_chunk_sectors !=
5192                              here_old * mddev->chunk_sectors)) {
5193                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5194                                        " confused - aborting\n", mdname(mddev));
5195                                 return -EINVAL;
5196                         }
5197                         /* We cannot be sure it is safe to start an in-place
5198                          * reshape.  It is only safe if user-space is monitoring
5199                          * and taking constant backups.
5200                          * mdadm always starts a situation like this in
5201                          * readonly mode so it can take control before
5202                          * allowing any writes.  So just check for that.
5203                          */
5204                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5205                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5206                                 /* not really in-place - so OK */;
5207                         else if (mddev->ro == 0) {
5208                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5209                                        "must be started in read-only mode "
5210                                        "- aborting\n",
5211                                        mdname(mddev));
5212                                 return -EINVAL;
5213                         }
5214                 } else if (mddev->reshape_backwards
5215                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5216                        here_old * mddev->chunk_sectors)
5217                     : (here_new * mddev->new_chunk_sectors >=
5218                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5219                         /* Reading from the same stripe as writing to - bad */
5220                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5221                                "auto-recovery - aborting.\n",
5222                                mdname(mddev));
5223                         return -EINVAL;
5224                 }
5225                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5226                        mdname(mddev));
5227                 /* OK, we should be able to continue; */
5228         } else {
5229                 BUG_ON(mddev->level != mddev->new_level);
5230                 BUG_ON(mddev->layout != mddev->new_layout);
5231                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5232                 BUG_ON(mddev->delta_disks != 0);
5233         }
5234
5235         if (mddev->private == NULL)
5236                 conf = setup_conf(mddev);
5237         else
5238                 conf = mddev->private;
5239
5240         if (IS_ERR(conf))
5241                 return PTR_ERR(conf);
5242
5243         conf->min_offset_diff = min_offset_diff;
5244         mddev->thread = conf->thread;
5245         conf->thread = NULL;
5246         mddev->private = conf;
5247
5248         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5249              i++) {
5250                 rdev = conf->disks[i].rdev;
5251                 if (!rdev && conf->disks[i].replacement) {
5252                         /* The replacement is all we have yet */
5253                         rdev = conf->disks[i].replacement;
5254                         conf->disks[i].replacement = NULL;
5255                         clear_bit(Replacement, &rdev->flags);
5256                         conf->disks[i].rdev = rdev;
5257                 }
5258                 if (!rdev)
5259                         continue;
5260                 if (conf->disks[i].replacement &&
5261                     conf->reshape_progress != MaxSector) {
5262                         /* replacements and reshape simply do not mix. */
5263                         printk(KERN_ERR "md: cannot handle concurrent "
5264                                "replacement and reshape.\n");
5265                         goto abort;
5266                 }
5267                 if (test_bit(In_sync, &rdev->flags)) {
5268                         working_disks++;
5269                         continue;
5270                 }
5271                 /* This disc is not fully in-sync.  However if it
5272                  * just stored parity (beyond the recovery_offset),
5273                  * when we don't need to be concerned about the
5274                  * array being dirty.
5275                  * When reshape goes 'backwards', we never have
5276                  * partially completed devices, so we only need
5277                  * to worry about reshape going forwards.
5278                  */
5279                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5280                 if (mddev->major_version == 0 &&
5281                     mddev->minor_version > 90)
5282                         rdev->recovery_offset = reshape_offset;
5283                         
5284                 if (rdev->recovery_offset < reshape_offset) {
5285                         /* We need to check old and new layout */
5286                         if (!only_parity(rdev->raid_disk,
5287                                          conf->algorithm,
5288                                          conf->raid_disks,
5289                                          conf->max_degraded))
5290                                 continue;
5291                 }
5292                 if (!only_parity(rdev->raid_disk,
5293                                  conf->prev_algo,
5294                                  conf->previous_raid_disks,
5295                                  conf->max_degraded))
5296                         continue;
5297                 dirty_parity_disks++;
5298         }
5299
5300         /*
5301          * 0 for a fully functional array, 1 or 2 for a degraded array.
5302          */
5303         mddev->degraded = calc_degraded(conf);
5304
5305         if (has_failed(conf)) {
5306                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5307                         " (%d/%d failed)\n",
5308                         mdname(mddev), mddev->degraded, conf->raid_disks);
5309                 goto abort;
5310         }
5311
5312         /* device size must be a multiple of chunk size */
5313         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5314         mddev->resync_max_sectors = mddev->dev_sectors;
5315
5316         if (mddev->degraded > dirty_parity_disks &&
5317             mddev->recovery_cp != MaxSector) {
5318                 if (mddev->ok_start_degraded)
5319                         printk(KERN_WARNING
5320                                "md/raid:%s: starting dirty degraded array"
5321                                " - data corruption possible.\n",
5322                                mdname(mddev));
5323                 else {
5324                         printk(KERN_ERR
5325                                "md/raid:%s: cannot start dirty degraded array.\n",
5326                                mdname(mddev));
5327                         goto abort;
5328                 }
5329         }
5330
5331         if (mddev->degraded == 0)
5332                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5333                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5334                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5335                        mddev->new_layout);
5336         else
5337                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5338                        " out of %d devices, algorithm %d\n",
5339                        mdname(mddev), conf->level,
5340                        mddev->raid_disks - mddev->degraded,
5341                        mddev->raid_disks, mddev->new_layout);
5342
5343         print_raid5_conf(conf);
5344
5345         if (conf->reshape_progress != MaxSector) {
5346                 conf->reshape_safe = conf->reshape_progress;
5347                 atomic_set(&conf->reshape_stripes, 0);
5348                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5349                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5350                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5351                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5352                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5353                                                         "reshape");
5354         }
5355
5356
5357         /* Ok, everything is just fine now */
5358         if (mddev->to_remove == &raid5_attrs_group)
5359                 mddev->to_remove = NULL;
5360         else if (mddev->kobj.sd &&
5361             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5362                 printk(KERN_WARNING
5363                        "raid5: failed to create sysfs attributes for %s\n",
5364                        mdname(mddev));
5365         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5366
5367         if (mddev->queue) {
5368                 int chunk_size;
5369                 /* read-ahead size must cover two whole stripes, which
5370                  * is 2 * (datadisks) * chunksize where 'n' is the
5371                  * number of raid devices
5372                  */
5373                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5374                 int stripe = data_disks *
5375                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5376                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5377                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5378
5379                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5380
5381                 mddev->queue->backing_dev_info.congested_data = mddev;
5382                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5383
5384                 chunk_size = mddev->chunk_sectors << 9;
5385                 blk_queue_io_min(mddev->queue, chunk_size);
5386                 blk_queue_io_opt(mddev->queue, chunk_size *
5387                                  (conf->raid_disks - conf->max_degraded));
5388
5389                 rdev_for_each(rdev, mddev) {
5390                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5391                                           rdev->data_offset << 9);
5392                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5393                                           rdev->new_data_offset << 9);
5394                 }
5395         }
5396
5397         return 0;
5398 abort:
5399         md_unregister_thread(&mddev->thread);
5400         print_raid5_conf(conf);
5401         free_conf(conf);
5402         mddev->private = NULL;
5403         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5404         return -EIO;
5405 }
5406
5407 static int stop(struct mddev *mddev)
5408 {
5409         struct r5conf *conf = mddev->private;
5410
5411         md_unregister_thread(&mddev->thread);
5412         if (mddev->queue)
5413                 mddev->queue->backing_dev_info.congested_fn = NULL;
5414         free_conf(conf);
5415         mddev->private = NULL;
5416         mddev->to_remove = &raid5_attrs_group;
5417         return 0;
5418 }
5419
5420 static void status(struct seq_file *seq, struct mddev *mddev)
5421 {
5422         struct r5conf *conf = mddev->private;
5423         int i;
5424
5425         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5426                 mddev->chunk_sectors / 2, mddev->layout);
5427         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5428         for (i = 0; i < conf->raid_disks; i++)
5429                 seq_printf (seq, "%s",
5430                                conf->disks[i].rdev &&
5431                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5432         seq_printf (seq, "]");
5433 }
5434
5435 static void print_raid5_conf (struct r5conf *conf)
5436 {
5437         int i;
5438         struct disk_info *tmp;
5439
5440         printk(KERN_DEBUG "RAID conf printout:\n");
5441         if (!conf) {
5442                 printk("(conf==NULL)\n");
5443                 return;
5444         }
5445         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5446                conf->raid_disks,
5447                conf->raid_disks - conf->mddev->degraded);
5448
5449         for (i = 0; i < conf->raid_disks; i++) {
5450                 char b[BDEVNAME_SIZE];
5451                 tmp = conf->disks + i;
5452                 if (tmp->rdev)
5453                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5454                                i, !test_bit(Faulty, &tmp->rdev->flags),
5455                                bdevname(tmp->rdev->bdev, b));
5456         }
5457 }
5458
5459 static int raid5_spare_active(struct mddev *mddev)
5460 {
5461         int i;
5462         struct r5conf *conf = mddev->private;
5463         struct disk_info *tmp;
5464         int count = 0;
5465         unsigned long flags;
5466
5467         for (i = 0; i < conf->raid_disks; i++) {
5468                 tmp = conf->disks + i;
5469                 if (tmp->replacement
5470                     && tmp->replacement->recovery_offset == MaxSector
5471                     && !test_bit(Faulty, &tmp->replacement->flags)
5472                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5473                         /* Replacement has just become active. */
5474                         if (!tmp->rdev
5475                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5476                                 count++;
5477                         if (tmp->rdev) {
5478                                 /* Replaced device not technically faulty,
5479                                  * but we need to be sure it gets removed
5480                                  * and never re-added.
5481                                  */
5482                                 set_bit(Faulty, &tmp->rdev->flags);
5483                                 sysfs_notify_dirent_safe(
5484                                         tmp->rdev->sysfs_state);
5485                         }
5486                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5487                 } else if (tmp->rdev
5488                     && tmp->rdev->recovery_offset == MaxSector
5489                     && !test_bit(Faulty, &tmp->rdev->flags)
5490                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5491                         count++;
5492                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5493                 }
5494         }
5495         spin_lock_irqsave(&conf->device_lock, flags);
5496         mddev->degraded = calc_degraded(conf);
5497         spin_unlock_irqrestore(&conf->device_lock, flags);
5498         print_raid5_conf(conf);
5499         return count;
5500 }
5501
5502 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5503 {
5504         struct r5conf *conf = mddev->private;
5505         int err = 0;
5506         int number = rdev->raid_disk;
5507         struct md_rdev **rdevp;
5508         struct disk_info *p = conf->disks + number;
5509
5510         print_raid5_conf(conf);
5511         if (rdev == p->rdev)
5512                 rdevp = &p->rdev;
5513         else if (rdev == p->replacement)
5514                 rdevp = &p->replacement;
5515         else
5516                 return 0;
5517
5518         if (number >= conf->raid_disks &&
5519             conf->reshape_progress == MaxSector)
5520                 clear_bit(In_sync, &rdev->flags);
5521
5522         if (test_bit(In_sync, &rdev->flags) ||
5523             atomic_read(&rdev->nr_pending)) {
5524                 err = -EBUSY;
5525                 goto abort;
5526         }
5527         /* Only remove non-faulty devices if recovery
5528          * isn't possible.
5529          */
5530         if (!test_bit(Faulty, &rdev->flags) &&
5531             mddev->recovery_disabled != conf->recovery_disabled &&
5532             !has_failed(conf) &&
5533             (!p->replacement || p->replacement == rdev) &&
5534             number < conf->raid_disks) {
5535                 err = -EBUSY;
5536                 goto abort;
5537         }
5538         *rdevp = NULL;
5539         synchronize_rcu();
5540         if (atomic_read(&rdev->nr_pending)) {
5541                 /* lost the race, try later */
5542                 err = -EBUSY;
5543                 *rdevp = rdev;
5544         } else if (p->replacement) {
5545                 /* We must have just cleared 'rdev' */
5546                 p->rdev = p->replacement;
5547                 clear_bit(Replacement, &p->replacement->flags);
5548                 smp_mb(); /* Make sure other CPUs may see both as identical
5549                            * but will never see neither - if they are careful
5550                            */
5551                 p->replacement = NULL;
5552                 clear_bit(WantReplacement, &rdev->flags);
5553         } else
5554                 /* We might have just removed the Replacement as faulty-
5555                  * clear the bit just in case
5556                  */
5557                 clear_bit(WantReplacement, &rdev->flags);
5558 abort:
5559
5560         print_raid5_conf(conf);
5561         return err;
5562 }
5563
5564 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5565 {
5566         struct r5conf *conf = mddev->private;
5567         int err = -EEXIST;
5568         int disk;
5569         struct disk_info *p;
5570         int first = 0;
5571         int last = conf->raid_disks - 1;
5572
5573         if (mddev->recovery_disabled == conf->recovery_disabled)
5574                 return -EBUSY;
5575
5576         if (rdev->saved_raid_disk < 0 && has_failed(conf))
5577                 /* no point adding a device */
5578                 return -EINVAL;
5579
5580         if (rdev->raid_disk >= 0)
5581                 first = last = rdev->raid_disk;
5582
5583         /*
5584          * find the disk ... but prefer rdev->saved_raid_disk
5585          * if possible.
5586          */
5587         if (rdev->saved_raid_disk >= 0 &&
5588             rdev->saved_raid_disk >= first &&
5589             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5590                 first = rdev->saved_raid_disk;
5591
5592         for (disk = first; disk <= last; disk++) {
5593                 p = conf->disks + disk;
5594                 if (p->rdev == NULL) {
5595                         clear_bit(In_sync, &rdev->flags);
5596                         rdev->raid_disk = disk;
5597                         err = 0;
5598                         if (rdev->saved_raid_disk != disk)
5599                                 conf->fullsync = 1;
5600                         rcu_assign_pointer(p->rdev, rdev);
5601                         goto out;
5602                 }
5603         }
5604         for (disk = first; disk <= last; disk++) {
5605                 p = conf->disks + disk;
5606                 if (test_bit(WantReplacement, &p->rdev->flags) &&
5607                     p->replacement == NULL) {
5608                         clear_bit(In_sync, &rdev->flags);
5609                         set_bit(Replacement, &rdev->flags);
5610                         rdev->raid_disk = disk;
5611                         err = 0;
5612                         conf->fullsync = 1;
5613                         rcu_assign_pointer(p->replacement, rdev);
5614                         break;
5615                 }
5616         }
5617 out:
5618         print_raid5_conf(conf);
5619         return err;
5620 }
5621
5622 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5623 {
5624         /* no resync is happening, and there is enough space
5625          * on all devices, so we can resize.
5626          * We need to make sure resync covers any new space.
5627          * If the array is shrinking we should possibly wait until
5628          * any io in the removed space completes, but it hardly seems
5629          * worth it.
5630          */
5631         sector_t newsize;
5632         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5633         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5634         if (mddev->external_size &&
5635             mddev->array_sectors > newsize)
5636                 return -EINVAL;
5637         if (mddev->bitmap) {
5638                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5639                 if (ret)
5640                         return ret;
5641         }
5642         md_set_array_sectors(mddev, newsize);
5643         set_capacity(mddev->gendisk, mddev->array_sectors);
5644         revalidate_disk(mddev->gendisk);
5645         if (sectors > mddev->dev_sectors &&
5646             mddev->recovery_cp > mddev->dev_sectors) {
5647                 mddev->recovery_cp = mddev->dev_sectors;
5648                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5649         }
5650         mddev->dev_sectors = sectors;
5651         mddev->resync_max_sectors = sectors;
5652         return 0;
5653 }
5654
5655 static int check_stripe_cache(struct mddev *mddev)
5656 {
5657         /* Can only proceed if there are plenty of stripe_heads.
5658          * We need a minimum of one full stripe,, and for sensible progress
5659          * it is best to have about 4 times that.
5660          * If we require 4 times, then the default 256 4K stripe_heads will
5661          * allow for chunk sizes up to 256K, which is probably OK.
5662          * If the chunk size is greater, user-space should request more
5663          * stripe_heads first.
5664          */
5665         struct r5conf *conf = mddev->private;
5666         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5667             > conf->max_nr_stripes ||
5668             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5669             > conf->max_nr_stripes) {
5670                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5671                        mdname(mddev),
5672                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5673                         / STRIPE_SIZE)*4);
5674                 return 0;
5675         }
5676         return 1;
5677 }
5678
5679 static int check_reshape(struct mddev *mddev)
5680 {
5681         struct r5conf *conf = mddev->private;
5682
5683         if (mddev->delta_disks == 0 &&
5684             mddev->new_layout == mddev->layout &&
5685             mddev->new_chunk_sectors == mddev->chunk_sectors)
5686                 return 0; /* nothing to do */
5687         if (has_failed(conf))
5688                 return -EINVAL;
5689         if (mddev->delta_disks < 0) {
5690                 /* We might be able to shrink, but the devices must
5691                  * be made bigger first.
5692                  * For raid6, 4 is the minimum size.
5693                  * Otherwise 2 is the minimum
5694                  */
5695                 int min = 2;
5696                 if (mddev->level == 6)
5697                         min = 4;
5698                 if (mddev->raid_disks + mddev->delta_disks < min)
5699                         return -EINVAL;
5700         }
5701
5702         if (!check_stripe_cache(mddev))
5703                 return -ENOSPC;
5704
5705         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5706 }
5707
5708 static int raid5_start_reshape(struct mddev *mddev)
5709 {
5710         struct r5conf *conf = mddev->private;
5711         struct md_rdev *rdev;
5712         int spares = 0;
5713         unsigned long flags;
5714
5715         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5716                 return -EBUSY;
5717
5718         if (!check_stripe_cache(mddev))
5719                 return -ENOSPC;
5720
5721         if (has_failed(conf))
5722                 return -EINVAL;
5723
5724         rdev_for_each(rdev, mddev) {
5725                 if (!test_bit(In_sync, &rdev->flags)
5726                     && !test_bit(Faulty, &rdev->flags))
5727                         spares++;
5728         }
5729
5730         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5731                 /* Not enough devices even to make a degraded array
5732                  * of that size
5733                  */
5734                 return -EINVAL;
5735
5736         /* Refuse to reduce size of the array.  Any reductions in
5737          * array size must be through explicit setting of array_size
5738          * attribute.
5739          */
5740         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5741             < mddev->array_sectors) {
5742                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5743                        "before number of disks\n", mdname(mddev));
5744                 return -EINVAL;
5745         }
5746
5747         atomic_set(&conf->reshape_stripes, 0);
5748         spin_lock_irq(&conf->device_lock);
5749         conf->previous_raid_disks = conf->raid_disks;
5750         conf->raid_disks += mddev->delta_disks;
5751         conf->prev_chunk_sectors = conf->chunk_sectors;
5752         conf->chunk_sectors = mddev->new_chunk_sectors;
5753         conf->prev_algo = conf->algorithm;
5754         conf->algorithm = mddev->new_layout;
5755         conf->generation++;
5756         /* Code that selects data_offset needs to see the generation update
5757          * if reshape_progress has been set - so a memory barrier needed.
5758          */
5759         smp_mb();
5760         if (mddev->reshape_backwards)
5761                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5762         else
5763                 conf->reshape_progress = 0;
5764         conf->reshape_safe = conf->reshape_progress;
5765         spin_unlock_irq(&conf->device_lock);
5766
5767         /* Add some new drives, as many as will fit.
5768          * We know there are enough to make the newly sized array work.
5769          * Don't add devices if we are reducing the number of
5770          * devices in the array.  This is because it is not possible
5771          * to correctly record the "partially reconstructed" state of
5772          * such devices during the reshape and confusion could result.
5773          */
5774         if (mddev->delta_disks >= 0) {
5775                 rdev_for_each(rdev, mddev)
5776                         if (rdev->raid_disk < 0 &&
5777                             !test_bit(Faulty, &rdev->flags)) {
5778                                 if (raid5_add_disk(mddev, rdev) == 0) {
5779                                         if (rdev->raid_disk
5780                                             >= conf->previous_raid_disks)
5781                                                 set_bit(In_sync, &rdev->flags);
5782                                         else
5783                                                 rdev->recovery_offset = 0;
5784
5785                                         if (sysfs_link_rdev(mddev, rdev))
5786                                                 /* Failure here is OK */;
5787                                 }
5788                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5789                                    && !test_bit(Faulty, &rdev->flags)) {
5790                                 /* This is a spare that was manually added */
5791                                 set_bit(In_sync, &rdev->flags);
5792                         }
5793
5794                 /* When a reshape changes the number of devices,
5795                  * ->degraded is measured against the larger of the
5796                  * pre and post number of devices.
5797                  */
5798                 spin_lock_irqsave(&conf->device_lock, flags);
5799                 mddev->degraded = calc_degraded(conf);
5800                 spin_unlock_irqrestore(&conf->device_lock, flags);
5801         }
5802         mddev->raid_disks = conf->raid_disks;
5803         mddev->reshape_position = conf->reshape_progress;
5804         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5805
5806         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5807         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5808         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5809         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5810         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5811                                                 "reshape");
5812         if (!mddev->sync_thread) {
5813                 mddev->recovery = 0;
5814                 spin_lock_irq(&conf->device_lock);
5815                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5816                 rdev_for_each(rdev, mddev)
5817                         rdev->new_data_offset = rdev->data_offset;
5818                 smp_wmb();
5819                 conf->reshape_progress = MaxSector;
5820                 mddev->reshape_position = MaxSector;
5821                 spin_unlock_irq(&conf->device_lock);
5822                 return -EAGAIN;
5823         }
5824         conf->reshape_checkpoint = jiffies;
5825         md_wakeup_thread(mddev->sync_thread);
5826         md_new_event(mddev);
5827         return 0;
5828 }
5829
5830 /* This is called from the reshape thread and should make any
5831  * changes needed in 'conf'
5832  */
5833 static void end_reshape(struct r5conf *conf)
5834 {
5835
5836         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5837                 struct md_rdev *rdev;
5838
5839                 spin_lock_irq(&conf->device_lock);
5840                 conf->previous_raid_disks = conf->raid_disks;
5841                 rdev_for_each(rdev, conf->mddev)
5842                         rdev->data_offset = rdev->new_data_offset;
5843                 smp_wmb();
5844                 conf->reshape_progress = MaxSector;
5845                 spin_unlock_irq(&conf->device_lock);
5846                 wake_up(&conf->wait_for_overlap);
5847
5848                 /* read-ahead size must cover two whole stripes, which is
5849                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5850                  */
5851                 if (conf->mddev->queue) {
5852                         int data_disks = conf->raid_disks - conf->max_degraded;
5853                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5854                                                    / PAGE_SIZE);
5855                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5856                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5857                 }
5858         }
5859 }
5860
5861 /* This is called from the raid5d thread with mddev_lock held.
5862  * It makes config changes to the device.
5863  */
5864 static void raid5_finish_reshape(struct mddev *mddev)
5865 {
5866         struct r5conf *conf = mddev->private;
5867
5868         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5869
5870                 if (mddev->delta_disks > 0) {
5871                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5872                         set_capacity(mddev->gendisk, mddev->array_sectors);
5873                         revalidate_disk(mddev->gendisk);
5874                 } else {
5875                         int d;
5876                         spin_lock_irq(&conf->device_lock);
5877                         mddev->degraded = calc_degraded(conf);
5878                         spin_unlock_irq(&conf->device_lock);
5879                         for (d = conf->raid_disks ;
5880                              d < conf->raid_disks - mddev->delta_disks;
5881                              d++) {
5882                                 struct md_rdev *rdev = conf->disks[d].rdev;
5883                                 if (rdev)
5884                                         clear_bit(In_sync, &rdev->flags);
5885                                 rdev = conf->disks[d].replacement;
5886                                 if (rdev)
5887                                         clear_bit(In_sync, &rdev->flags);
5888                         }
5889                 }
5890                 mddev->layout = conf->algorithm;
5891                 mddev->chunk_sectors = conf->chunk_sectors;
5892                 mddev->reshape_position = MaxSector;
5893                 mddev->delta_disks = 0;
5894                 mddev->reshape_backwards = 0;
5895         }
5896 }
5897
5898 static void raid5_quiesce(struct mddev *mddev, int state)
5899 {
5900         struct r5conf *conf = mddev->private;
5901
5902         switch(state) {
5903         case 2: /* resume for a suspend */
5904                 wake_up(&conf->wait_for_overlap);
5905                 break;
5906
5907         case 1: /* stop all writes */
5908                 spin_lock_irq(&conf->device_lock);
5909                 /* '2' tells resync/reshape to pause so that all
5910                  * active stripes can drain
5911                  */
5912                 conf->quiesce = 2;
5913                 wait_event_lock_irq(conf->wait_for_stripe,
5914                                     atomic_read(&conf->active_stripes) == 0 &&
5915                                     atomic_read(&conf->active_aligned_reads) == 0,
5916                                     conf->device_lock, /* nothing */);
5917                 conf->quiesce = 1;
5918                 spin_unlock_irq(&conf->device_lock);
5919                 /* allow reshape to continue */
5920                 wake_up(&conf->wait_for_overlap);
5921                 break;
5922
5923         case 0: /* re-enable writes */
5924                 spin_lock_irq(&conf->device_lock);
5925                 conf->quiesce = 0;
5926                 wake_up(&conf->wait_for_stripe);
5927                 wake_up(&conf->wait_for_overlap);
5928                 spin_unlock_irq(&conf->device_lock);
5929                 break;
5930         }
5931 }
5932
5933
5934 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5935 {
5936         struct r0conf *raid0_conf = mddev->private;
5937         sector_t sectors;
5938
5939         /* for raid0 takeover only one zone is supported */
5940         if (raid0_conf->nr_strip_zones > 1) {
5941                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5942                        mdname(mddev));
5943                 return ERR_PTR(-EINVAL);
5944         }
5945
5946         sectors = raid0_conf->strip_zone[0].zone_end;
5947         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5948         mddev->dev_sectors = sectors;
5949         mddev->new_level = level;
5950         mddev->new_layout = ALGORITHM_PARITY_N;
5951         mddev->new_chunk_sectors = mddev->chunk_sectors;
5952         mddev->raid_disks += 1;
5953         mddev->delta_disks = 1;
5954         /* make sure it will be not marked as dirty */
5955         mddev->recovery_cp = MaxSector;
5956
5957         return setup_conf(mddev);
5958 }
5959
5960
5961 static void *raid5_takeover_raid1(struct mddev *mddev)
5962 {
5963         int chunksect;
5964
5965         if (mddev->raid_disks != 2 ||
5966             mddev->degraded > 1)
5967                 return ERR_PTR(-EINVAL);
5968
5969         /* Should check if there are write-behind devices? */
5970
5971         chunksect = 64*2; /* 64K by default */
5972
5973         /* The array must be an exact multiple of chunksize */
5974         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5975                 chunksect >>= 1;
5976
5977         if ((chunksect<<9) < STRIPE_SIZE)
5978                 /* array size does not allow a suitable chunk size */
5979                 return ERR_PTR(-EINVAL);
5980
5981         mddev->new_level = 5;
5982         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5983         mddev->new_chunk_sectors = chunksect;
5984
5985         return setup_conf(mddev);
5986 }
5987
5988 static void *raid5_takeover_raid6(struct mddev *mddev)
5989 {
5990         int new_layout;
5991
5992         switch (mddev->layout) {
5993         case ALGORITHM_LEFT_ASYMMETRIC_6:
5994                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5995                 break;
5996         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5997                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5998                 break;
5999         case ALGORITHM_LEFT_SYMMETRIC_6:
6000                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6001                 break;
6002         case ALGORITHM_RIGHT_SYMMETRIC_6:
6003                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6004                 break;
6005         case ALGORITHM_PARITY_0_6:
6006                 new_layout = ALGORITHM_PARITY_0;
6007                 break;
6008         case ALGORITHM_PARITY_N:
6009                 new_layout = ALGORITHM_PARITY_N;
6010                 break;
6011         default:
6012                 return ERR_PTR(-EINVAL);
6013         }
6014         mddev->new_level = 5;
6015         mddev->new_layout = new_layout;
6016         mddev->delta_disks = -1;
6017         mddev->raid_disks -= 1;
6018         return setup_conf(mddev);
6019 }
6020
6021
6022 static int raid5_check_reshape(struct mddev *mddev)
6023 {
6024         /* For a 2-drive array, the layout and chunk size can be changed
6025          * immediately as not restriping is needed.
6026          * For larger arrays we record the new value - after validation
6027          * to be used by a reshape pass.
6028          */
6029         struct r5conf *conf = mddev->private;
6030         int new_chunk = mddev->new_chunk_sectors;
6031
6032         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6033                 return -EINVAL;
6034         if (new_chunk > 0) {
6035                 if (!is_power_of_2(new_chunk))
6036                         return -EINVAL;
6037                 if (new_chunk < (PAGE_SIZE>>9))
6038                         return -EINVAL;
6039                 if (mddev->array_sectors & (new_chunk-1))
6040                         /* not factor of array size */
6041                         return -EINVAL;
6042         }
6043
6044         /* They look valid */
6045
6046         if (mddev->raid_disks == 2) {
6047                 /* can make the change immediately */
6048                 if (mddev->new_layout >= 0) {
6049                         conf->algorithm = mddev->new_layout;
6050                         mddev->layout = mddev->new_layout;
6051                 }
6052                 if (new_chunk > 0) {
6053                         conf->chunk_sectors = new_chunk ;
6054                         mddev->chunk_sectors = new_chunk;
6055                 }
6056                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6057                 md_wakeup_thread(mddev->thread);
6058         }
6059         return check_reshape(mddev);
6060 }
6061
6062 static int raid6_check_reshape(struct mddev *mddev)
6063 {
6064         int new_chunk = mddev->new_chunk_sectors;
6065
6066         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6067                 return -EINVAL;
6068         if (new_chunk > 0) {
6069                 if (!is_power_of_2(new_chunk))
6070                         return -EINVAL;
6071                 if (new_chunk < (PAGE_SIZE >> 9))
6072                         return -EINVAL;
6073                 if (mddev->array_sectors & (new_chunk-1))
6074                         /* not factor of array size */
6075                         return -EINVAL;
6076         }
6077
6078         /* They look valid */
6079         return check_reshape(mddev);
6080 }
6081
6082 static void *raid5_takeover(struct mddev *mddev)
6083 {
6084         /* raid5 can take over:
6085          *  raid0 - if there is only one strip zone - make it a raid4 layout
6086          *  raid1 - if there are two drives.  We need to know the chunk size
6087          *  raid4 - trivial - just use a raid4 layout.
6088          *  raid6 - Providing it is a *_6 layout
6089          */
6090         if (mddev->level == 0)
6091                 return raid45_takeover_raid0(mddev, 5);
6092         if (mddev->level == 1)
6093                 return raid5_takeover_raid1(mddev);
6094         if (mddev->level == 4) {
6095                 mddev->new_layout = ALGORITHM_PARITY_N;
6096                 mddev->new_level = 5;
6097                 return setup_conf(mddev);
6098         }
6099         if (mddev->level == 6)
6100                 return raid5_takeover_raid6(mddev);
6101
6102         return ERR_PTR(-EINVAL);
6103 }
6104
6105 static void *raid4_takeover(struct mddev *mddev)
6106 {
6107         /* raid4 can take over:
6108          *  raid0 - if there is only one strip zone
6109          *  raid5 - if layout is right
6110          */
6111         if (mddev->level == 0)
6112                 return raid45_takeover_raid0(mddev, 4);
6113         if (mddev->level == 5 &&
6114             mddev->layout == ALGORITHM_PARITY_N) {
6115                 mddev->new_layout = 0;
6116                 mddev->new_level = 4;
6117                 return setup_conf(mddev);
6118         }
6119         return ERR_PTR(-EINVAL);
6120 }
6121
6122 static struct md_personality raid5_personality;
6123
6124 static void *raid6_takeover(struct mddev *mddev)
6125 {
6126         /* Currently can only take over a raid5.  We map the
6127          * personality to an equivalent raid6 personality
6128          * with the Q block at the end.
6129          */
6130         int new_layout;
6131
6132         if (mddev->pers != &raid5_personality)
6133                 return ERR_PTR(-EINVAL);
6134         if (mddev->degraded > 1)
6135                 return ERR_PTR(-EINVAL);
6136         if (mddev->raid_disks > 253)
6137                 return ERR_PTR(-EINVAL);
6138         if (mddev->raid_disks < 3)
6139                 return ERR_PTR(-EINVAL);
6140
6141         switch (mddev->layout) {
6142         case ALGORITHM_LEFT_ASYMMETRIC:
6143                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6144                 break;
6145         case ALGORITHM_RIGHT_ASYMMETRIC:
6146                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6147                 break;
6148         case ALGORITHM_LEFT_SYMMETRIC:
6149                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6150                 break;
6151         case ALGORITHM_RIGHT_SYMMETRIC:
6152                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6153                 break;
6154         case ALGORITHM_PARITY_0:
6155                 new_layout = ALGORITHM_PARITY_0_6;
6156                 break;
6157         case ALGORITHM_PARITY_N:
6158                 new_layout = ALGORITHM_PARITY_N;
6159                 break;
6160         default:
6161                 return ERR_PTR(-EINVAL);
6162         }
6163         mddev->new_level = 6;
6164         mddev->new_layout = new_layout;
6165         mddev->delta_disks = 1;
6166         mddev->raid_disks += 1;
6167         return setup_conf(mddev);
6168 }
6169
6170
6171 static struct md_personality raid6_personality =
6172 {
6173         .name           = "raid6",
6174         .level          = 6,
6175         .owner          = THIS_MODULE,
6176         .make_request   = make_request,
6177         .run            = run,
6178         .stop           = stop,
6179         .status         = status,
6180         .error_handler  = error,
6181         .hot_add_disk   = raid5_add_disk,
6182         .hot_remove_disk= raid5_remove_disk,
6183         .spare_active   = raid5_spare_active,
6184         .sync_request   = sync_request,
6185         .resize         = raid5_resize,
6186         .size           = raid5_size,
6187         .check_reshape  = raid6_check_reshape,
6188         .start_reshape  = raid5_start_reshape,
6189         .finish_reshape = raid5_finish_reshape,
6190         .quiesce        = raid5_quiesce,
6191         .takeover       = raid6_takeover,
6192 };
6193 static struct md_personality raid5_personality =
6194 {
6195         .name           = "raid5",
6196         .level          = 5,
6197         .owner          = THIS_MODULE,
6198         .make_request   = make_request,
6199         .run            = run,
6200         .stop           = stop,
6201         .status         = status,
6202         .error_handler  = error,
6203         .hot_add_disk   = raid5_add_disk,
6204         .hot_remove_disk= raid5_remove_disk,
6205         .spare_active   = raid5_spare_active,
6206         .sync_request   = sync_request,
6207         .resize         = raid5_resize,
6208         .size           = raid5_size,
6209         .check_reshape  = raid5_check_reshape,
6210         .start_reshape  = raid5_start_reshape,
6211         .finish_reshape = raid5_finish_reshape,
6212         .quiesce        = raid5_quiesce,
6213         .takeover       = raid5_takeover,
6214 };
6215
6216 static struct md_personality raid4_personality =
6217 {
6218         .name           = "raid4",
6219         .level          = 4,
6220         .owner          = THIS_MODULE,
6221         .make_request   = make_request,
6222         .run            = run,
6223         .stop           = stop,
6224         .status         = status,
6225         .error_handler  = error,
6226         .hot_add_disk   = raid5_add_disk,
6227         .hot_remove_disk= raid5_remove_disk,
6228         .spare_active   = raid5_spare_active,
6229         .sync_request   = sync_request,
6230         .resize         = raid5_resize,
6231         .size           = raid5_size,
6232         .check_reshape  = raid5_check_reshape,
6233         .start_reshape  = raid5_start_reshape,
6234         .finish_reshape = raid5_finish_reshape,
6235         .quiesce        = raid5_quiesce,
6236         .takeover       = raid4_takeover,
6237 };
6238
6239 static int __init raid5_init(void)
6240 {
6241         register_md_personality(&raid6_personality);
6242         register_md_personality(&raid5_personality);
6243         register_md_personality(&raid4_personality);
6244         return 0;
6245 }
6246
6247 static void raid5_exit(void)
6248 {
6249         unregister_md_personality(&raid6_personality);
6250         unregister_md_personality(&raid5_personality);
6251         unregister_md_personality(&raid4_personality);
6252 }
6253
6254 module_init(raid5_init);
6255 module_exit(raid5_exit);
6256 MODULE_LICENSE("GPL");
6257 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6258 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6259 MODULE_ALIAS("md-raid5");
6260 MODULE_ALIAS("md-raid4");
6261 MODULE_ALIAS("md-level-5");
6262 MODULE_ALIAS("md-level-4");
6263 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6264 MODULE_ALIAS("md-raid6");
6265 MODULE_ALIAS("md-level-6");
6266
6267 /* This used to be two separate modules, they were: */
6268 MODULE_ALIAS("raid5");
6269 MODULE_ALIAS("raid6");