md/bitmap: avoid race window between md_bitmap_resize and bitmap_file_clear_bit
[platform/kernel/linux-rpi.git] / drivers / md / raid5-ppl.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Partial Parity Log for closing the RAID5 write hole
4  * Copyright (c) 2017, Intel Corporation.
5  */
6
7 #include <linux/kernel.h>
8 #include <linux/blkdev.h>
9 #include <linux/slab.h>
10 #include <linux/crc32c.h>
11 #include <linux/async_tx.h>
12 #include <linux/raid/md_p.h>
13 #include "md.h"
14 #include "raid5.h"
15 #include "raid5-log.h"
16
17 /*
18  * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for
19  * partial parity data. The header contains an array of entries
20  * (struct ppl_header_entry) which describe the logged write requests.
21  * Partial parity for the entries comes after the header, written in the same
22  * sequence as the entries:
23  *
24  * Header
25  *   entry0
26  *   ...
27  *   entryN
28  * PP data
29  *   PP for entry0
30  *   ...
31  *   PP for entryN
32  *
33  * An entry describes one or more consecutive stripe_heads, up to a full
34  * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the
35  * number of stripe_heads in the entry and n is the number of modified data
36  * disks. Every stripe_head in the entry must write to the same data disks.
37  * An example of a valid case described by a single entry (writes to the first
38  * stripe of a 4 disk array, 16k chunk size):
39  *
40  * sh->sector   dd0   dd1   dd2    ppl
41  *            +-----+-----+-----+
42  * 0          | --- | --- | --- | +----+
43  * 8          | -W- | -W- | --- | | pp |   data_sector = 8
44  * 16         | -W- | -W- | --- | | pp |   data_size = 3 * 2 * 4k
45  * 24         | -W- | -W- | --- | | pp |   pp_size = 3 * 4k
46  *            +-----+-----+-----+ +----+
47  *
48  * data_sector is the first raid sector of the modified data, data_size is the
49  * total size of modified data and pp_size is the size of partial parity for
50  * this entry. Entries for full stripe writes contain no partial parity
51  * (pp_size = 0), they only mark the stripes for which parity should be
52  * recalculated after an unclean shutdown. Every entry holds a checksum of its
53  * partial parity, the header also has a checksum of the header itself.
54  *
55  * A write request is always logged to the PPL instance stored on the parity
56  * disk of the corresponding stripe. For each member disk there is one ppl_log
57  * used to handle logging for this disk, independently from others. They are
58  * grouped in child_logs array in struct ppl_conf, which is assigned to
59  * r5conf->log_private.
60  *
61  * ppl_io_unit represents a full PPL write, header_page contains the ppl_header.
62  * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head
63  * can be appended to the last entry if it meets the conditions for a valid
64  * entry described above, otherwise a new entry is added. Checksums of entries
65  * are calculated incrementally as stripes containing partial parity are being
66  * added. ppl_submit_iounit() calculates the checksum of the header and submits
67  * a bio containing the header page and partial parity pages (sh->ppl_page) for
68  * all stripes of the io_unit. When the PPL write completes, the stripes
69  * associated with the io_unit are released and raid5d starts writing their data
70  * and parity. When all stripes are written, the io_unit is freed and the next
71  * can be submitted.
72  *
73  * An io_unit is used to gather stripes until it is submitted or becomes full
74  * (if the maximum number of entries or size of PPL is reached). Another io_unit
75  * can't be submitted until the previous has completed (PPL and stripe
76  * data+parity is written). The log->io_list tracks all io_units of a log
77  * (for a single member disk). New io_units are added to the end of the list
78  * and the first io_unit is submitted, if it is not submitted already.
79  * The current io_unit accepting new stripes is always at the end of the list.
80  *
81  * If write-back cache is enabled for any of the disks in the array, its data
82  * must be flushed before next io_unit is submitted.
83  */
84
85 #define PPL_SPACE_SIZE (128 * 1024)
86
87 struct ppl_conf {
88         struct mddev *mddev;
89
90         /* array of child logs, one for each raid disk */
91         struct ppl_log *child_logs;
92         int count;
93
94         int block_size;         /* the logical block size used for data_sector
95                                  * in ppl_header_entry */
96         u32 signature;          /* raid array identifier */
97         atomic64_t seq;         /* current log write sequence number */
98
99         struct kmem_cache *io_kc;
100         mempool_t io_pool;
101         struct bio_set bs;
102         struct bio_set flush_bs;
103
104         /* used only for recovery */
105         int recovered_entries;
106         int mismatch_count;
107
108         /* stripes to retry if failed to allocate io_unit */
109         struct list_head no_mem_stripes;
110         spinlock_t no_mem_stripes_lock;
111
112         unsigned short write_hint;
113 };
114
115 struct ppl_log {
116         struct ppl_conf *ppl_conf;      /* shared between all log instances */
117
118         struct md_rdev *rdev;           /* array member disk associated with
119                                          * this log instance */
120         struct mutex io_mutex;
121         struct ppl_io_unit *current_io; /* current io_unit accepting new data
122                                          * always at the end of io_list */
123         spinlock_t io_list_lock;
124         struct list_head io_list;       /* all io_units of this log */
125
126         sector_t next_io_sector;
127         unsigned int entry_space;
128         bool use_multippl;
129         bool wb_cache_on;
130         unsigned long disk_flush_bitmap;
131 };
132
133 #define PPL_IO_INLINE_BVECS 32
134
135 struct ppl_io_unit {
136         struct ppl_log *log;
137
138         struct page *header_page;       /* for ppl_header */
139
140         unsigned int entries_count;     /* number of entries in ppl_header */
141         unsigned int pp_size;           /* total size current of partial parity */
142
143         u64 seq;                        /* sequence number of this log write */
144         struct list_head log_sibling;   /* log->io_list */
145
146         struct list_head stripe_list;   /* stripes added to the io_unit */
147         atomic_t pending_stripes;       /* how many stripes not written to raid */
148         atomic_t pending_flushes;       /* how many disk flushes are in progress */
149
150         bool submitted;                 /* true if write to log started */
151
152         /* inline bio and its biovec for submitting the iounit */
153         struct bio bio;
154         struct bio_vec biovec[PPL_IO_INLINE_BVECS];
155 };
156
157 struct dma_async_tx_descriptor *
158 ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu,
159                        struct dma_async_tx_descriptor *tx)
160 {
161         int disks = sh->disks;
162         struct page **srcs = percpu->scribble;
163         int count = 0, pd_idx = sh->pd_idx, i;
164         struct async_submit_ctl submit;
165
166         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
167
168         /*
169          * Partial parity is the XOR of stripe data chunks that are not changed
170          * during the write request. Depending on available data
171          * (read-modify-write vs. reconstruct-write case) we calculate it
172          * differently.
173          */
174         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
175                 /*
176                  * rmw: xor old data and parity from updated disks
177                  * This is calculated earlier by ops_run_prexor5() so just copy
178                  * the parity dev page.
179                  */
180                 srcs[count++] = sh->dev[pd_idx].page;
181         } else if (sh->reconstruct_state == reconstruct_state_drain_run) {
182                 /* rcw: xor data from all not updated disks */
183                 for (i = disks; i--;) {
184                         struct r5dev *dev = &sh->dev[i];
185                         if (test_bit(R5_UPTODATE, &dev->flags))
186                                 srcs[count++] = dev->page;
187                 }
188         } else {
189                 return tx;
190         }
191
192         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx,
193                           NULL, sh, (void *) (srcs + sh->disks + 2));
194
195         if (count == 1)
196                 tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE,
197                                   &submit);
198         else
199                 tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE,
200                                &submit);
201
202         return tx;
203 }
204
205 static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data)
206 {
207         struct kmem_cache *kc = pool_data;
208         struct ppl_io_unit *io;
209
210         io = kmem_cache_alloc(kc, gfp_mask);
211         if (!io)
212                 return NULL;
213
214         io->header_page = alloc_page(gfp_mask);
215         if (!io->header_page) {
216                 kmem_cache_free(kc, io);
217                 return NULL;
218         }
219
220         return io;
221 }
222
223 static void ppl_io_pool_free(void *element, void *pool_data)
224 {
225         struct kmem_cache *kc = pool_data;
226         struct ppl_io_unit *io = element;
227
228         __free_page(io->header_page);
229         kmem_cache_free(kc, io);
230 }
231
232 static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log,
233                                           struct stripe_head *sh)
234 {
235         struct ppl_conf *ppl_conf = log->ppl_conf;
236         struct ppl_io_unit *io;
237         struct ppl_header *pplhdr;
238         struct page *header_page;
239
240         io = mempool_alloc(&ppl_conf->io_pool, GFP_NOWAIT);
241         if (!io)
242                 return NULL;
243
244         header_page = io->header_page;
245         memset(io, 0, sizeof(*io));
246         io->header_page = header_page;
247
248         io->log = log;
249         INIT_LIST_HEAD(&io->log_sibling);
250         INIT_LIST_HEAD(&io->stripe_list);
251         atomic_set(&io->pending_stripes, 0);
252         atomic_set(&io->pending_flushes, 0);
253         bio_init(&io->bio, io->biovec, PPL_IO_INLINE_BVECS);
254
255         pplhdr = page_address(io->header_page);
256         clear_page(pplhdr);
257         memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
258         pplhdr->signature = cpu_to_le32(ppl_conf->signature);
259
260         io->seq = atomic64_add_return(1, &ppl_conf->seq);
261         pplhdr->generation = cpu_to_le64(io->seq);
262
263         return io;
264 }
265
266 static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh)
267 {
268         struct ppl_io_unit *io = log->current_io;
269         struct ppl_header_entry *e = NULL;
270         struct ppl_header *pplhdr;
271         int i;
272         sector_t data_sector = 0;
273         int data_disks = 0;
274         struct r5conf *conf = sh->raid_conf;
275
276         pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector);
277
278         /* check if current io_unit is full */
279         if (io && (io->pp_size == log->entry_space ||
280                    io->entries_count == PPL_HDR_MAX_ENTRIES)) {
281                 pr_debug("%s: add io_unit blocked by seq: %llu\n",
282                          __func__, io->seq);
283                 io = NULL;
284         }
285
286         /* add a new unit if there is none or the current is full */
287         if (!io) {
288                 io = ppl_new_iounit(log, sh);
289                 if (!io)
290                         return -ENOMEM;
291                 spin_lock_irq(&log->io_list_lock);
292                 list_add_tail(&io->log_sibling, &log->io_list);
293                 spin_unlock_irq(&log->io_list_lock);
294
295                 log->current_io = io;
296         }
297
298         for (i = 0; i < sh->disks; i++) {
299                 struct r5dev *dev = &sh->dev[i];
300
301                 if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) {
302                         if (!data_disks || dev->sector < data_sector)
303                                 data_sector = dev->sector;
304                         data_disks++;
305                 }
306         }
307         BUG_ON(!data_disks);
308
309         pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__,
310                  io->seq, (unsigned long long)data_sector, data_disks);
311
312         pplhdr = page_address(io->header_page);
313
314         if (io->entries_count > 0) {
315                 struct ppl_header_entry *last =
316                                 &pplhdr->entries[io->entries_count - 1];
317                 struct stripe_head *sh_last = list_last_entry(
318                                 &io->stripe_list, struct stripe_head, log_list);
319                 u64 data_sector_last = le64_to_cpu(last->data_sector);
320                 u32 data_size_last = le32_to_cpu(last->data_size);
321
322                 /*
323                  * Check if we can append the stripe to the last entry. It must
324                  * be just after the last logged stripe and write to the same
325                  * disks. Use bit shift and logarithm to avoid 64-bit division.
326                  */
327                 if ((sh->sector == sh_last->sector + STRIPE_SECTORS) &&
328                     (data_sector >> ilog2(conf->chunk_sectors) ==
329                      data_sector_last >> ilog2(conf->chunk_sectors)) &&
330                     ((data_sector - data_sector_last) * data_disks ==
331                      data_size_last >> 9))
332                         e = last;
333         }
334
335         if (!e) {
336                 e = &pplhdr->entries[io->entries_count++];
337                 e->data_sector = cpu_to_le64(data_sector);
338                 e->parity_disk = cpu_to_le32(sh->pd_idx);
339                 e->checksum = cpu_to_le32(~0);
340         }
341
342         le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT);
343
344         /* don't write any PP if full stripe write */
345         if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) {
346                 le32_add_cpu(&e->pp_size, PAGE_SIZE);
347                 io->pp_size += PAGE_SIZE;
348                 e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum),
349                                                     page_address(sh->ppl_page),
350                                                     PAGE_SIZE));
351         }
352
353         list_add_tail(&sh->log_list, &io->stripe_list);
354         atomic_inc(&io->pending_stripes);
355         sh->ppl_io = io;
356
357         return 0;
358 }
359
360 int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh)
361 {
362         struct ppl_conf *ppl_conf = conf->log_private;
363         struct ppl_io_unit *io = sh->ppl_io;
364         struct ppl_log *log;
365
366         if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page ||
367             !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
368             !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) {
369                 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
370                 return -EAGAIN;
371         }
372
373         log = &ppl_conf->child_logs[sh->pd_idx];
374
375         mutex_lock(&log->io_mutex);
376
377         if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
378                 mutex_unlock(&log->io_mutex);
379                 return -EAGAIN;
380         }
381
382         set_bit(STRIPE_LOG_TRAPPED, &sh->state);
383         clear_bit(STRIPE_DELAYED, &sh->state);
384         atomic_inc(&sh->count);
385
386         if (ppl_log_stripe(log, sh)) {
387                 spin_lock_irq(&ppl_conf->no_mem_stripes_lock);
388                 list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes);
389                 spin_unlock_irq(&ppl_conf->no_mem_stripes_lock);
390         }
391
392         mutex_unlock(&log->io_mutex);
393
394         return 0;
395 }
396
397 static void ppl_log_endio(struct bio *bio)
398 {
399         struct ppl_io_unit *io = bio->bi_private;
400         struct ppl_log *log = io->log;
401         struct ppl_conf *ppl_conf = log->ppl_conf;
402         struct stripe_head *sh, *next;
403
404         pr_debug("%s: seq: %llu\n", __func__, io->seq);
405
406         if (bio->bi_status)
407                 md_error(ppl_conf->mddev, log->rdev);
408
409         list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
410                 list_del_init(&sh->log_list);
411
412                 set_bit(STRIPE_HANDLE, &sh->state);
413                 raid5_release_stripe(sh);
414         }
415 }
416
417 static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio)
418 {
419         char b[BDEVNAME_SIZE];
420
421         pr_debug("%s: seq: %llu size: %u sector: %llu dev: %s\n",
422                  __func__, io->seq, bio->bi_iter.bi_size,
423                  (unsigned long long)bio->bi_iter.bi_sector,
424                  bio_devname(bio, b));
425
426         submit_bio(bio);
427 }
428
429 static void ppl_submit_iounit(struct ppl_io_unit *io)
430 {
431         struct ppl_log *log = io->log;
432         struct ppl_conf *ppl_conf = log->ppl_conf;
433         struct ppl_header *pplhdr = page_address(io->header_page);
434         struct bio *bio = &io->bio;
435         struct stripe_head *sh;
436         int i;
437
438         bio->bi_private = io;
439
440         if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
441                 ppl_log_endio(bio);
442                 return;
443         }
444
445         for (i = 0; i < io->entries_count; i++) {
446                 struct ppl_header_entry *e = &pplhdr->entries[i];
447
448                 pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n",
449                          __func__, io->seq, i, le64_to_cpu(e->data_sector),
450                          le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size));
451
452                 e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >>
453                                              ilog2(ppl_conf->block_size >> 9));
454                 e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum));
455         }
456
457         pplhdr->entries_count = cpu_to_le32(io->entries_count);
458         pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE));
459
460         /* Rewind the buffer if current PPL is larger then remaining space */
461         if (log->use_multippl &&
462             log->rdev->ppl.sector + log->rdev->ppl.size - log->next_io_sector <
463             (PPL_HEADER_SIZE + io->pp_size) >> 9)
464                 log->next_io_sector = log->rdev->ppl.sector;
465
466
467         bio->bi_end_io = ppl_log_endio;
468         bio->bi_opf = REQ_OP_WRITE | REQ_FUA;
469         bio_set_dev(bio, log->rdev->bdev);
470         bio->bi_iter.bi_sector = log->next_io_sector;
471         bio_add_page(bio, io->header_page, PAGE_SIZE, 0);
472         bio->bi_write_hint = ppl_conf->write_hint;
473
474         pr_debug("%s: log->current_io_sector: %llu\n", __func__,
475             (unsigned long long)log->next_io_sector);
476
477         if (log->use_multippl)
478                 log->next_io_sector += (PPL_HEADER_SIZE + io->pp_size) >> 9;
479
480         WARN_ON(log->disk_flush_bitmap != 0);
481
482         list_for_each_entry(sh, &io->stripe_list, log_list) {
483                 for (i = 0; i < sh->disks; i++) {
484                         struct r5dev *dev = &sh->dev[i];
485
486                         if ((ppl_conf->child_logs[i].wb_cache_on) &&
487                             (test_bit(R5_Wantwrite, &dev->flags))) {
488                                 set_bit(i, &log->disk_flush_bitmap);
489                         }
490                 }
491
492                 /* entries for full stripe writes have no partial parity */
493                 if (test_bit(STRIPE_FULL_WRITE, &sh->state))
494                         continue;
495
496                 if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) {
497                         struct bio *prev = bio;
498
499                         bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES,
500                                                &ppl_conf->bs);
501                         bio->bi_opf = prev->bi_opf;
502                         bio->bi_write_hint = prev->bi_write_hint;
503                         bio_copy_dev(bio, prev);
504                         bio->bi_iter.bi_sector = bio_end_sector(prev);
505                         bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0);
506
507                         bio_chain(bio, prev);
508                         ppl_submit_iounit_bio(io, prev);
509                 }
510         }
511
512         ppl_submit_iounit_bio(io, bio);
513 }
514
515 static void ppl_submit_current_io(struct ppl_log *log)
516 {
517         struct ppl_io_unit *io;
518
519         spin_lock_irq(&log->io_list_lock);
520
521         io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
522                                       log_sibling);
523         if (io && io->submitted)
524                 io = NULL;
525
526         spin_unlock_irq(&log->io_list_lock);
527
528         if (io) {
529                 io->submitted = true;
530
531                 if (io == log->current_io)
532                         log->current_io = NULL;
533
534                 ppl_submit_iounit(io);
535         }
536 }
537
538 void ppl_write_stripe_run(struct r5conf *conf)
539 {
540         struct ppl_conf *ppl_conf = conf->log_private;
541         struct ppl_log *log;
542         int i;
543
544         for (i = 0; i < ppl_conf->count; i++) {
545                 log = &ppl_conf->child_logs[i];
546
547                 mutex_lock(&log->io_mutex);
548                 ppl_submit_current_io(log);
549                 mutex_unlock(&log->io_mutex);
550         }
551 }
552
553 static void ppl_io_unit_finished(struct ppl_io_unit *io)
554 {
555         struct ppl_log *log = io->log;
556         struct ppl_conf *ppl_conf = log->ppl_conf;
557         struct r5conf *conf = ppl_conf->mddev->private;
558         unsigned long flags;
559
560         pr_debug("%s: seq: %llu\n", __func__, io->seq);
561
562         local_irq_save(flags);
563
564         spin_lock(&log->io_list_lock);
565         list_del(&io->log_sibling);
566         spin_unlock(&log->io_list_lock);
567
568         mempool_free(io, &ppl_conf->io_pool);
569
570         spin_lock(&ppl_conf->no_mem_stripes_lock);
571         if (!list_empty(&ppl_conf->no_mem_stripes)) {
572                 struct stripe_head *sh;
573
574                 sh = list_first_entry(&ppl_conf->no_mem_stripes,
575                                       struct stripe_head, log_list);
576                 list_del_init(&sh->log_list);
577                 set_bit(STRIPE_HANDLE, &sh->state);
578                 raid5_release_stripe(sh);
579         }
580         spin_unlock(&ppl_conf->no_mem_stripes_lock);
581
582         local_irq_restore(flags);
583
584         wake_up(&conf->wait_for_quiescent);
585 }
586
587 static void ppl_flush_endio(struct bio *bio)
588 {
589         struct ppl_io_unit *io = bio->bi_private;
590         struct ppl_log *log = io->log;
591         struct ppl_conf *ppl_conf = log->ppl_conf;
592         struct r5conf *conf = ppl_conf->mddev->private;
593         char b[BDEVNAME_SIZE];
594
595         pr_debug("%s: dev: %s\n", __func__, bio_devname(bio, b));
596
597         if (bio->bi_status) {
598                 struct md_rdev *rdev;
599
600                 rcu_read_lock();
601                 rdev = md_find_rdev_rcu(conf->mddev, bio_dev(bio));
602                 if (rdev)
603                         md_error(rdev->mddev, rdev);
604                 rcu_read_unlock();
605         }
606
607         bio_put(bio);
608
609         if (atomic_dec_and_test(&io->pending_flushes)) {
610                 ppl_io_unit_finished(io);
611                 md_wakeup_thread(conf->mddev->thread);
612         }
613 }
614
615 static void ppl_do_flush(struct ppl_io_unit *io)
616 {
617         struct ppl_log *log = io->log;
618         struct ppl_conf *ppl_conf = log->ppl_conf;
619         struct r5conf *conf = ppl_conf->mddev->private;
620         int raid_disks = conf->raid_disks;
621         int flushed_disks = 0;
622         int i;
623
624         atomic_set(&io->pending_flushes, raid_disks);
625
626         for_each_set_bit(i, &log->disk_flush_bitmap, raid_disks) {
627                 struct md_rdev *rdev;
628                 struct block_device *bdev = NULL;
629
630                 rcu_read_lock();
631                 rdev = rcu_dereference(conf->disks[i].rdev);
632                 if (rdev && !test_bit(Faulty, &rdev->flags))
633                         bdev = rdev->bdev;
634                 rcu_read_unlock();
635
636                 if (bdev) {
637                         struct bio *bio;
638                         char b[BDEVNAME_SIZE];
639
640                         bio = bio_alloc_bioset(GFP_NOIO, 0, &ppl_conf->flush_bs);
641                         bio_set_dev(bio, bdev);
642                         bio->bi_private = io;
643                         bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
644                         bio->bi_end_io = ppl_flush_endio;
645
646                         pr_debug("%s: dev: %s\n", __func__,
647                                  bio_devname(bio, b));
648
649                         submit_bio(bio);
650                         flushed_disks++;
651                 }
652         }
653
654         log->disk_flush_bitmap = 0;
655
656         for (i = flushed_disks ; i < raid_disks; i++) {
657                 if (atomic_dec_and_test(&io->pending_flushes))
658                         ppl_io_unit_finished(io);
659         }
660 }
661
662 static inline bool ppl_no_io_unit_submitted(struct r5conf *conf,
663                                             struct ppl_log *log)
664 {
665         struct ppl_io_unit *io;
666
667         io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
668                                       log_sibling);
669
670         return !io || !io->submitted;
671 }
672
673 void ppl_quiesce(struct r5conf *conf, int quiesce)
674 {
675         struct ppl_conf *ppl_conf = conf->log_private;
676         int i;
677
678         if (quiesce) {
679                 for (i = 0; i < ppl_conf->count; i++) {
680                         struct ppl_log *log = &ppl_conf->child_logs[i];
681
682                         spin_lock_irq(&log->io_list_lock);
683                         wait_event_lock_irq(conf->wait_for_quiescent,
684                                             ppl_no_io_unit_submitted(conf, log),
685                                             log->io_list_lock);
686                         spin_unlock_irq(&log->io_list_lock);
687                 }
688         }
689 }
690
691 int ppl_handle_flush_request(struct r5l_log *log, struct bio *bio)
692 {
693         if (bio->bi_iter.bi_size == 0) {
694                 bio_endio(bio);
695                 return 0;
696         }
697         bio->bi_opf &= ~REQ_PREFLUSH;
698         return -EAGAIN;
699 }
700
701 void ppl_stripe_write_finished(struct stripe_head *sh)
702 {
703         struct ppl_io_unit *io;
704
705         io = sh->ppl_io;
706         sh->ppl_io = NULL;
707
708         if (io && atomic_dec_and_test(&io->pending_stripes)) {
709                 if (io->log->disk_flush_bitmap)
710                         ppl_do_flush(io);
711                 else
712                         ppl_io_unit_finished(io);
713         }
714 }
715
716 static void ppl_xor(int size, struct page *page1, struct page *page2)
717 {
718         struct async_submit_ctl submit;
719         struct dma_async_tx_descriptor *tx;
720         struct page *xor_srcs[] = { page1, page2 };
721
722         init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST,
723                           NULL, NULL, NULL, NULL);
724         tx = async_xor(page1, xor_srcs, 0, 2, size, &submit);
725
726         async_tx_quiesce(&tx);
727 }
728
729 /*
730  * PPL recovery strategy: xor partial parity and data from all modified data
731  * disks within a stripe and write the result as the new stripe parity. If all
732  * stripe data disks are modified (full stripe write), no partial parity is
733  * available, so just xor the data disks.
734  *
735  * Recovery of a PPL entry shall occur only if all modified data disks are
736  * available and read from all of them succeeds.
737  *
738  * A PPL entry applies to a stripe, partial parity size for an entry is at most
739  * the size of the chunk. Examples of possible cases for a single entry:
740  *
741  * case 0: single data disk write:
742  *   data0    data1    data2     ppl        parity
743  * +--------+--------+--------+           +--------------------+
744  * | ------ | ------ | ------ | +----+    | (no change)        |
745  * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
746  * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
747  * | ------ | ------ | ------ | +----+    | (no change)        |
748  * +--------+--------+--------+           +--------------------+
749  * pp_size = data_size
750  *
751  * case 1: more than one data disk write:
752  *   data0    data1    data2     ppl        parity
753  * +--------+--------+--------+           +--------------------+
754  * | ------ | ------ | ------ | +----+    | (no change)        |
755  * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
756  * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
757  * | ------ | ------ | ------ | +----+    | (no change)        |
758  * +--------+--------+--------+           +--------------------+
759  * pp_size = data_size / modified_data_disks
760  *
761  * case 2: write to all data disks (also full stripe write):
762  *   data0    data1    data2                parity
763  * +--------+--------+--------+           +--------------------+
764  * | ------ | ------ | ------ |           | (no change)        |
765  * | -data- | -data- | -data- | --------> | xor all data       |
766  * | ------ | ------ | ------ | --------> | (no change)        |
767  * | ------ | ------ | ------ |           | (no change)        |
768  * +--------+--------+--------+           +--------------------+
769  * pp_size = 0
770  *
771  * The following cases are possible only in other implementations. The recovery
772  * code can handle them, but they are not generated at runtime because they can
773  * be reduced to cases 0, 1 and 2:
774  *
775  * case 3:
776  *   data0    data1    data2     ppl        parity
777  * +--------+--------+--------+ +----+    +--------------------+
778  * | ------ | -data- | -data- | | pp |    | data1 ^ data2 ^ pp |
779  * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp |
780  * | -data- | -data- | -data- | | -- | -> | xor all data       |
781  * | -data- | -data- | ------ | | pp |    | data0 ^ data1 ^ pp |
782  * +--------+--------+--------+ +----+    +--------------------+
783  * pp_size = chunk_size
784  *
785  * case 4:
786  *   data0    data1    data2     ppl        parity
787  * +--------+--------+--------+ +----+    +--------------------+
788  * | ------ | -data- | ------ | | pp |    | data1 ^ pp         |
789  * | ------ | ------ | ------ | | -- | -> | (no change)        |
790  * | ------ | ------ | ------ | | -- | -> | (no change)        |
791  * | -data- | ------ | ------ | | pp |    | data0 ^ pp         |
792  * +--------+--------+--------+ +----+    +--------------------+
793  * pp_size = chunk_size
794  */
795 static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e,
796                              sector_t ppl_sector)
797 {
798         struct ppl_conf *ppl_conf = log->ppl_conf;
799         struct mddev *mddev = ppl_conf->mddev;
800         struct r5conf *conf = mddev->private;
801         int block_size = ppl_conf->block_size;
802         struct page *page1;
803         struct page *page2;
804         sector_t r_sector_first;
805         sector_t r_sector_last;
806         int strip_sectors;
807         int data_disks;
808         int i;
809         int ret = 0;
810         char b[BDEVNAME_SIZE];
811         unsigned int pp_size = le32_to_cpu(e->pp_size);
812         unsigned int data_size = le32_to_cpu(e->data_size);
813
814         page1 = alloc_page(GFP_KERNEL);
815         page2 = alloc_page(GFP_KERNEL);
816
817         if (!page1 || !page2) {
818                 ret = -ENOMEM;
819                 goto out;
820         }
821
822         r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9);
823
824         if ((pp_size >> 9) < conf->chunk_sectors) {
825                 if (pp_size > 0) {
826                         data_disks = data_size / pp_size;
827                         strip_sectors = pp_size >> 9;
828                 } else {
829                         data_disks = conf->raid_disks - conf->max_degraded;
830                         strip_sectors = (data_size >> 9) / data_disks;
831                 }
832                 r_sector_last = r_sector_first +
833                                 (data_disks - 1) * conf->chunk_sectors +
834                                 strip_sectors;
835         } else {
836                 data_disks = conf->raid_disks - conf->max_degraded;
837                 strip_sectors = conf->chunk_sectors;
838                 r_sector_last = r_sector_first + (data_size >> 9);
839         }
840
841         pr_debug("%s: array sector first: %llu last: %llu\n", __func__,
842                  (unsigned long long)r_sector_first,
843                  (unsigned long long)r_sector_last);
844
845         /* if start and end is 4k aligned, use a 4k block */
846         if (block_size == 512 &&
847             (r_sector_first & (STRIPE_SECTORS - 1)) == 0 &&
848             (r_sector_last & (STRIPE_SECTORS - 1)) == 0)
849                 block_size = STRIPE_SIZE;
850
851         /* iterate through blocks in strip */
852         for (i = 0; i < strip_sectors; i += (block_size >> 9)) {
853                 bool update_parity = false;
854                 sector_t parity_sector;
855                 struct md_rdev *parity_rdev;
856                 struct stripe_head sh;
857                 int disk;
858                 int indent = 0;
859
860                 pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i);
861                 indent += 2;
862
863                 memset(page_address(page1), 0, PAGE_SIZE);
864
865                 /* iterate through data member disks */
866                 for (disk = 0; disk < data_disks; disk++) {
867                         int dd_idx;
868                         struct md_rdev *rdev;
869                         sector_t sector;
870                         sector_t r_sector = r_sector_first + i +
871                                             (disk * conf->chunk_sectors);
872
873                         pr_debug("%s:%*s data member disk %d start\n",
874                                  __func__, indent, "", disk);
875                         indent += 2;
876
877                         if (r_sector >= r_sector_last) {
878                                 pr_debug("%s:%*s array sector %llu doesn't need parity update\n",
879                                          __func__, indent, "",
880                                          (unsigned long long)r_sector);
881                                 indent -= 2;
882                                 continue;
883                         }
884
885                         update_parity = true;
886
887                         /* map raid sector to member disk */
888                         sector = raid5_compute_sector(conf, r_sector, 0,
889                                                       &dd_idx, NULL);
890                         pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n",
891                                  __func__, indent, "",
892                                  (unsigned long long)r_sector, dd_idx,
893                                  (unsigned long long)sector);
894
895                         rdev = conf->disks[dd_idx].rdev;
896                         if (!rdev || (!test_bit(In_sync, &rdev->flags) &&
897                                       sector >= rdev->recovery_offset)) {
898                                 pr_debug("%s:%*s data member disk %d missing\n",
899                                          __func__, indent, "", dd_idx);
900                                 update_parity = false;
901                                 break;
902                         }
903
904                         pr_debug("%s:%*s reading data member disk %s sector %llu\n",
905                                  __func__, indent, "", bdevname(rdev->bdev, b),
906                                  (unsigned long long)sector);
907                         if (!sync_page_io(rdev, sector, block_size, page2,
908                                         REQ_OP_READ, 0, false)) {
909                                 md_error(mddev, rdev);
910                                 pr_debug("%s:%*s read failed!\n", __func__,
911                                          indent, "");
912                                 ret = -EIO;
913                                 goto out;
914                         }
915
916                         ppl_xor(block_size, page1, page2);
917
918                         indent -= 2;
919                 }
920
921                 if (!update_parity)
922                         continue;
923
924                 if (pp_size > 0) {
925                         pr_debug("%s:%*s reading pp disk sector %llu\n",
926                                  __func__, indent, "",
927                                  (unsigned long long)(ppl_sector + i));
928                         if (!sync_page_io(log->rdev,
929                                         ppl_sector - log->rdev->data_offset + i,
930                                         block_size, page2, REQ_OP_READ, 0,
931                                         false)) {
932                                 pr_debug("%s:%*s read failed!\n", __func__,
933                                          indent, "");
934                                 md_error(mddev, log->rdev);
935                                 ret = -EIO;
936                                 goto out;
937                         }
938
939                         ppl_xor(block_size, page1, page2);
940                 }
941
942                 /* map raid sector to parity disk */
943                 parity_sector = raid5_compute_sector(conf, r_sector_first + i,
944                                 0, &disk, &sh);
945                 BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk));
946                 parity_rdev = conf->disks[sh.pd_idx].rdev;
947
948                 BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev);
949                 pr_debug("%s:%*s write parity at sector %llu, disk %s\n",
950                          __func__, indent, "",
951                          (unsigned long long)parity_sector,
952                          bdevname(parity_rdev->bdev, b));
953                 if (!sync_page_io(parity_rdev, parity_sector, block_size,
954                                 page1, REQ_OP_WRITE, 0, false)) {
955                         pr_debug("%s:%*s parity write error!\n", __func__,
956                                  indent, "");
957                         md_error(mddev, parity_rdev);
958                         ret = -EIO;
959                         goto out;
960                 }
961         }
962 out:
963         if (page1)
964                 __free_page(page1);
965         if (page2)
966                 __free_page(page2);
967         return ret;
968 }
969
970 static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr,
971                        sector_t offset)
972 {
973         struct ppl_conf *ppl_conf = log->ppl_conf;
974         struct md_rdev *rdev = log->rdev;
975         struct mddev *mddev = rdev->mddev;
976         sector_t ppl_sector = rdev->ppl.sector + offset +
977                               (PPL_HEADER_SIZE >> 9);
978         struct page *page;
979         int i;
980         int ret = 0;
981
982         page = alloc_page(GFP_KERNEL);
983         if (!page)
984                 return -ENOMEM;
985
986         /* iterate through all PPL entries saved */
987         for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) {
988                 struct ppl_header_entry *e = &pplhdr->entries[i];
989                 u32 pp_size = le32_to_cpu(e->pp_size);
990                 sector_t sector = ppl_sector;
991                 int ppl_entry_sectors = pp_size >> 9;
992                 u32 crc, crc_stored;
993
994                 pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n",
995                          __func__, rdev->raid_disk, i,
996                          (unsigned long long)ppl_sector, pp_size);
997
998                 crc = ~0;
999                 crc_stored = le32_to_cpu(e->checksum);
1000
1001                 /* read parial parity for this entry and calculate its checksum */
1002                 while (pp_size) {
1003                         int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size;
1004
1005                         if (!sync_page_io(rdev, sector - rdev->data_offset,
1006                                         s, page, REQ_OP_READ, 0, false)) {
1007                                 md_error(mddev, rdev);
1008                                 ret = -EIO;
1009                                 goto out;
1010                         }
1011
1012                         crc = crc32c_le(crc, page_address(page), s);
1013
1014                         pp_size -= s;
1015                         sector += s >> 9;
1016                 }
1017
1018                 crc = ~crc;
1019
1020                 if (crc != crc_stored) {
1021                         /*
1022                          * Don't recover this entry if the checksum does not
1023                          * match, but keep going and try to recover other
1024                          * entries.
1025                          */
1026                         pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n",
1027                                  __func__, crc_stored, crc);
1028                         ppl_conf->mismatch_count++;
1029                 } else {
1030                         ret = ppl_recover_entry(log, e, ppl_sector);
1031                         if (ret)
1032                                 goto out;
1033                         ppl_conf->recovered_entries++;
1034                 }
1035
1036                 ppl_sector += ppl_entry_sectors;
1037         }
1038
1039         /* flush the disk cache after recovery if necessary */
1040         ret = blkdev_issue_flush(rdev->bdev, GFP_KERNEL, NULL);
1041 out:
1042         __free_page(page);
1043         return ret;
1044 }
1045
1046 static int ppl_write_empty_header(struct ppl_log *log)
1047 {
1048         struct page *page;
1049         struct ppl_header *pplhdr;
1050         struct md_rdev *rdev = log->rdev;
1051         int ret = 0;
1052
1053         pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__,
1054                  rdev->raid_disk, (unsigned long long)rdev->ppl.sector);
1055
1056         page = alloc_page(GFP_NOIO | __GFP_ZERO);
1057         if (!page)
1058                 return -ENOMEM;
1059
1060         pplhdr = page_address(page);
1061         /* zero out PPL space to avoid collision with old PPLs */
1062         blkdev_issue_zeroout(rdev->bdev, rdev->ppl.sector,
1063                             log->rdev->ppl.size, GFP_NOIO, 0);
1064         memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
1065         pplhdr->signature = cpu_to_le32(log->ppl_conf->signature);
1066         pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE));
1067
1068         if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset,
1069                           PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_SYNC |
1070                           REQ_FUA, 0, false)) {
1071                 md_error(rdev->mddev, rdev);
1072                 ret = -EIO;
1073         }
1074
1075         __free_page(page);
1076         return ret;
1077 }
1078
1079 static int ppl_load_distributed(struct ppl_log *log)
1080 {
1081         struct ppl_conf *ppl_conf = log->ppl_conf;
1082         struct md_rdev *rdev = log->rdev;
1083         struct mddev *mddev = rdev->mddev;
1084         struct page *page, *page2, *tmp;
1085         struct ppl_header *pplhdr = NULL, *prev_pplhdr = NULL;
1086         u32 crc, crc_stored;
1087         u32 signature;
1088         int ret = 0, i;
1089         sector_t pplhdr_offset = 0, prev_pplhdr_offset = 0;
1090
1091         pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk);
1092         /* read PPL headers, find the recent one */
1093         page = alloc_page(GFP_KERNEL);
1094         if (!page)
1095                 return -ENOMEM;
1096
1097         page2 = alloc_page(GFP_KERNEL);
1098         if (!page2) {
1099                 __free_page(page);
1100                 return -ENOMEM;
1101         }
1102
1103         /* searching ppl area for latest ppl */
1104         while (pplhdr_offset < rdev->ppl.size - (PPL_HEADER_SIZE >> 9)) {
1105                 if (!sync_page_io(rdev,
1106                                   rdev->ppl.sector - rdev->data_offset +
1107                                   pplhdr_offset, PAGE_SIZE, page, REQ_OP_READ,
1108                                   0, false)) {
1109                         md_error(mddev, rdev);
1110                         ret = -EIO;
1111                         /* if not able to read - don't recover any PPL */
1112                         pplhdr = NULL;
1113                         break;
1114                 }
1115                 pplhdr = page_address(page);
1116
1117                 /* check header validity */
1118                 crc_stored = le32_to_cpu(pplhdr->checksum);
1119                 pplhdr->checksum = 0;
1120                 crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE);
1121
1122                 if (crc_stored != crc) {
1123                         pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x (offset: %llu)\n",
1124                                  __func__, crc_stored, crc,
1125                                  (unsigned long long)pplhdr_offset);
1126                         pplhdr = prev_pplhdr;
1127                         pplhdr_offset = prev_pplhdr_offset;
1128                         break;
1129                 }
1130
1131                 signature = le32_to_cpu(pplhdr->signature);
1132
1133                 if (mddev->external) {
1134                         /*
1135                          * For external metadata the header signature is set and
1136                          * validated in userspace.
1137                          */
1138                         ppl_conf->signature = signature;
1139                 } else if (ppl_conf->signature != signature) {
1140                         pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x (offset: %llu)\n",
1141                                  __func__, signature, ppl_conf->signature,
1142                                  (unsigned long long)pplhdr_offset);
1143                         pplhdr = prev_pplhdr;
1144                         pplhdr_offset = prev_pplhdr_offset;
1145                         break;
1146                 }
1147
1148                 if (prev_pplhdr && le64_to_cpu(prev_pplhdr->generation) >
1149                     le64_to_cpu(pplhdr->generation)) {
1150                         /* previous was newest */
1151                         pplhdr = prev_pplhdr;
1152                         pplhdr_offset = prev_pplhdr_offset;
1153                         break;
1154                 }
1155
1156                 prev_pplhdr_offset = pplhdr_offset;
1157                 prev_pplhdr = pplhdr;
1158
1159                 tmp = page;
1160                 page = page2;
1161                 page2 = tmp;
1162
1163                 /* calculate next potential ppl offset */
1164                 for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++)
1165                         pplhdr_offset +=
1166                             le32_to_cpu(pplhdr->entries[i].pp_size) >> 9;
1167                 pplhdr_offset += PPL_HEADER_SIZE >> 9;
1168         }
1169
1170         /* no valid ppl found */
1171         if (!pplhdr)
1172                 ppl_conf->mismatch_count++;
1173         else
1174                 pr_debug("%s: latest PPL found at offset: %llu, with generation: %llu\n",
1175                     __func__, (unsigned long long)pplhdr_offset,
1176                     le64_to_cpu(pplhdr->generation));
1177
1178         /* attempt to recover from log if we are starting a dirty array */
1179         if (pplhdr && !mddev->pers && mddev->recovery_cp != MaxSector)
1180                 ret = ppl_recover(log, pplhdr, pplhdr_offset);
1181
1182         /* write empty header if we are starting the array */
1183         if (!ret && !mddev->pers)
1184                 ret = ppl_write_empty_header(log);
1185
1186         __free_page(page);
1187         __free_page(page2);
1188
1189         pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1190                  __func__, ret, ppl_conf->mismatch_count,
1191                  ppl_conf->recovered_entries);
1192         return ret;
1193 }
1194
1195 static int ppl_load(struct ppl_conf *ppl_conf)
1196 {
1197         int ret = 0;
1198         u32 signature = 0;
1199         bool signature_set = false;
1200         int i;
1201
1202         for (i = 0; i < ppl_conf->count; i++) {
1203                 struct ppl_log *log = &ppl_conf->child_logs[i];
1204
1205                 /* skip missing drive */
1206                 if (!log->rdev)
1207                         continue;
1208
1209                 ret = ppl_load_distributed(log);
1210                 if (ret)
1211                         break;
1212
1213                 /*
1214                  * For external metadata we can't check if the signature is
1215                  * correct on a single drive, but we can check if it is the same
1216                  * on all drives.
1217                  */
1218                 if (ppl_conf->mddev->external) {
1219                         if (!signature_set) {
1220                                 signature = ppl_conf->signature;
1221                                 signature_set = true;
1222                         } else if (signature != ppl_conf->signature) {
1223                                 pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n",
1224                                         mdname(ppl_conf->mddev));
1225                                 ret = -EINVAL;
1226                                 break;
1227                         }
1228                 }
1229         }
1230
1231         pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1232                  __func__, ret, ppl_conf->mismatch_count,
1233                  ppl_conf->recovered_entries);
1234         return ret;
1235 }
1236
1237 static void __ppl_exit_log(struct ppl_conf *ppl_conf)
1238 {
1239         clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1240         clear_bit(MD_HAS_MULTIPLE_PPLS, &ppl_conf->mddev->flags);
1241
1242         kfree(ppl_conf->child_logs);
1243
1244         bioset_exit(&ppl_conf->bs);
1245         bioset_exit(&ppl_conf->flush_bs);
1246         mempool_exit(&ppl_conf->io_pool);
1247         kmem_cache_destroy(ppl_conf->io_kc);
1248
1249         kfree(ppl_conf);
1250 }
1251
1252 void ppl_exit_log(struct r5conf *conf)
1253 {
1254         struct ppl_conf *ppl_conf = conf->log_private;
1255
1256         if (ppl_conf) {
1257                 __ppl_exit_log(ppl_conf);
1258                 conf->log_private = NULL;
1259         }
1260 }
1261
1262 static int ppl_validate_rdev(struct md_rdev *rdev)
1263 {
1264         char b[BDEVNAME_SIZE];
1265         int ppl_data_sectors;
1266         int ppl_size_new;
1267
1268         /*
1269          * The configured PPL size must be enough to store
1270          * the header and (at the very least) partial parity
1271          * for one stripe. Round it down to ensure the data
1272          * space is cleanly divisible by stripe size.
1273          */
1274         ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9);
1275
1276         if (ppl_data_sectors > 0)
1277                 ppl_data_sectors = rounddown(ppl_data_sectors, STRIPE_SECTORS);
1278
1279         if (ppl_data_sectors <= 0) {
1280                 pr_warn("md/raid:%s: PPL space too small on %s\n",
1281                         mdname(rdev->mddev), bdevname(rdev->bdev, b));
1282                 return -ENOSPC;
1283         }
1284
1285         ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9);
1286
1287         if ((rdev->ppl.sector < rdev->data_offset &&
1288              rdev->ppl.sector + ppl_size_new > rdev->data_offset) ||
1289             (rdev->ppl.sector >= rdev->data_offset &&
1290              rdev->data_offset + rdev->sectors > rdev->ppl.sector)) {
1291                 pr_warn("md/raid:%s: PPL space overlaps with data on %s\n",
1292                         mdname(rdev->mddev), bdevname(rdev->bdev, b));
1293                 return -EINVAL;
1294         }
1295
1296         if (!rdev->mddev->external &&
1297             ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) ||
1298              (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) {
1299                 pr_warn("md/raid:%s: PPL space overlaps with superblock on %s\n",
1300                         mdname(rdev->mddev), bdevname(rdev->bdev, b));
1301                 return -EINVAL;
1302         }
1303
1304         rdev->ppl.size = ppl_size_new;
1305
1306         return 0;
1307 }
1308
1309 static void ppl_init_child_log(struct ppl_log *log, struct md_rdev *rdev)
1310 {
1311         struct request_queue *q;
1312
1313         if ((rdev->ppl.size << 9) >= (PPL_SPACE_SIZE +
1314                                       PPL_HEADER_SIZE) * 2) {
1315                 log->use_multippl = true;
1316                 set_bit(MD_HAS_MULTIPLE_PPLS,
1317                         &log->ppl_conf->mddev->flags);
1318                 log->entry_space = PPL_SPACE_SIZE;
1319         } else {
1320                 log->use_multippl = false;
1321                 log->entry_space = (log->rdev->ppl.size << 9) -
1322                                    PPL_HEADER_SIZE;
1323         }
1324         log->next_io_sector = rdev->ppl.sector;
1325
1326         q = bdev_get_queue(rdev->bdev);
1327         if (test_bit(QUEUE_FLAG_WC, &q->queue_flags))
1328                 log->wb_cache_on = true;
1329 }
1330
1331 int ppl_init_log(struct r5conf *conf)
1332 {
1333         struct ppl_conf *ppl_conf;
1334         struct mddev *mddev = conf->mddev;
1335         int ret = 0;
1336         int max_disks;
1337         int i;
1338
1339         pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n",
1340                  mdname(conf->mddev));
1341
1342         if (PAGE_SIZE != 4096)
1343                 return -EINVAL;
1344
1345         if (mddev->level != 5) {
1346                 pr_warn("md/raid:%s PPL is not compatible with raid level %d\n",
1347                         mdname(mddev), mddev->level);
1348                 return -EINVAL;
1349         }
1350
1351         if (mddev->bitmap_info.file || mddev->bitmap_info.offset) {
1352                 pr_warn("md/raid:%s PPL is not compatible with bitmap\n",
1353                         mdname(mddev));
1354                 return -EINVAL;
1355         }
1356
1357         if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
1358                 pr_warn("md/raid:%s PPL is not compatible with journal\n",
1359                         mdname(mddev));
1360                 return -EINVAL;
1361         }
1362
1363         max_disks = FIELD_SIZEOF(struct ppl_log, disk_flush_bitmap) *
1364                 BITS_PER_BYTE;
1365         if (conf->raid_disks > max_disks) {
1366                 pr_warn("md/raid:%s PPL doesn't support over %d disks in the array\n",
1367                         mdname(mddev), max_disks);
1368                 return -EINVAL;
1369         }
1370
1371         ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL);
1372         if (!ppl_conf)
1373                 return -ENOMEM;
1374
1375         ppl_conf->mddev = mddev;
1376
1377         ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0);
1378         if (!ppl_conf->io_kc) {
1379                 ret = -ENOMEM;
1380                 goto err;
1381         }
1382
1383         ret = mempool_init(&ppl_conf->io_pool, conf->raid_disks, ppl_io_pool_alloc,
1384                            ppl_io_pool_free, ppl_conf->io_kc);
1385         if (ret)
1386                 goto err;
1387
1388         ret = bioset_init(&ppl_conf->bs, conf->raid_disks, 0, BIOSET_NEED_BVECS);
1389         if (ret)
1390                 goto err;
1391
1392         ret = bioset_init(&ppl_conf->flush_bs, conf->raid_disks, 0, 0);
1393         if (ret)
1394                 goto err;
1395
1396         ppl_conf->count = conf->raid_disks;
1397         ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log),
1398                                        GFP_KERNEL);
1399         if (!ppl_conf->child_logs) {
1400                 ret = -ENOMEM;
1401                 goto err;
1402         }
1403
1404         atomic64_set(&ppl_conf->seq, 0);
1405         INIT_LIST_HEAD(&ppl_conf->no_mem_stripes);
1406         spin_lock_init(&ppl_conf->no_mem_stripes_lock);
1407         ppl_conf->write_hint = RWF_WRITE_LIFE_NOT_SET;
1408
1409         if (!mddev->external) {
1410                 ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid));
1411                 ppl_conf->block_size = 512;
1412         } else {
1413                 ppl_conf->block_size = queue_logical_block_size(mddev->queue);
1414         }
1415
1416         for (i = 0; i < ppl_conf->count; i++) {
1417                 struct ppl_log *log = &ppl_conf->child_logs[i];
1418                 struct md_rdev *rdev = conf->disks[i].rdev;
1419
1420                 mutex_init(&log->io_mutex);
1421                 spin_lock_init(&log->io_list_lock);
1422                 INIT_LIST_HEAD(&log->io_list);
1423
1424                 log->ppl_conf = ppl_conf;
1425                 log->rdev = rdev;
1426
1427                 if (rdev) {
1428                         ret = ppl_validate_rdev(rdev);
1429                         if (ret)
1430                                 goto err;
1431
1432                         ppl_init_child_log(log, rdev);
1433                 }
1434         }
1435
1436         /* load and possibly recover the logs from the member disks */
1437         ret = ppl_load(ppl_conf);
1438
1439         if (ret) {
1440                 goto err;
1441         } else if (!mddev->pers && mddev->recovery_cp == 0 &&
1442                    ppl_conf->recovered_entries > 0 &&
1443                    ppl_conf->mismatch_count == 0) {
1444                 /*
1445                  * If we are starting a dirty array and the recovery succeeds
1446                  * without any issues, set the array as clean.
1447                  */
1448                 mddev->recovery_cp = MaxSector;
1449                 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
1450         } else if (mddev->pers && ppl_conf->mismatch_count > 0) {
1451                 /* no mismatch allowed when enabling PPL for a running array */
1452                 ret = -EINVAL;
1453                 goto err;
1454         }
1455
1456         conf->log_private = ppl_conf;
1457         set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1458
1459         return 0;
1460 err:
1461         __ppl_exit_log(ppl_conf);
1462         return ret;
1463 }
1464
1465 int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add)
1466 {
1467         struct ppl_conf *ppl_conf = conf->log_private;
1468         struct ppl_log *log;
1469         int ret = 0;
1470         char b[BDEVNAME_SIZE];
1471
1472         if (!rdev)
1473                 return -EINVAL;
1474
1475         pr_debug("%s: disk: %d operation: %s dev: %s\n",
1476                  __func__, rdev->raid_disk, add ? "add" : "remove",
1477                  bdevname(rdev->bdev, b));
1478
1479         if (rdev->raid_disk < 0)
1480                 return 0;
1481
1482         if (rdev->raid_disk >= ppl_conf->count)
1483                 return -ENODEV;
1484
1485         log = &ppl_conf->child_logs[rdev->raid_disk];
1486
1487         mutex_lock(&log->io_mutex);
1488         if (add) {
1489                 ret = ppl_validate_rdev(rdev);
1490                 if (!ret) {
1491                         log->rdev = rdev;
1492                         ret = ppl_write_empty_header(log);
1493                         ppl_init_child_log(log, rdev);
1494                 }
1495         } else {
1496                 log->rdev = NULL;
1497         }
1498         mutex_unlock(&log->io_mutex);
1499
1500         return ret;
1501 }
1502
1503 static ssize_t
1504 ppl_write_hint_show(struct mddev *mddev, char *buf)
1505 {
1506         size_t ret = 0;
1507         struct r5conf *conf;
1508         struct ppl_conf *ppl_conf = NULL;
1509
1510         spin_lock(&mddev->lock);
1511         conf = mddev->private;
1512         if (conf && raid5_has_ppl(conf))
1513                 ppl_conf = conf->log_private;
1514         ret = sprintf(buf, "%d\n", ppl_conf ? ppl_conf->write_hint : 0);
1515         spin_unlock(&mddev->lock);
1516
1517         return ret;
1518 }
1519
1520 static ssize_t
1521 ppl_write_hint_store(struct mddev *mddev, const char *page, size_t len)
1522 {
1523         struct r5conf *conf;
1524         struct ppl_conf *ppl_conf;
1525         int err = 0;
1526         unsigned short new;
1527
1528         if (len >= PAGE_SIZE)
1529                 return -EINVAL;
1530         if (kstrtou16(page, 10, &new))
1531                 return -EINVAL;
1532
1533         err = mddev_lock(mddev);
1534         if (err)
1535                 return err;
1536
1537         conf = mddev->private;
1538         if (!conf) {
1539                 err = -ENODEV;
1540         } else if (raid5_has_ppl(conf)) {
1541                 ppl_conf = conf->log_private;
1542                 if (!ppl_conf)
1543                         err = -EINVAL;
1544                 else
1545                         ppl_conf->write_hint = new;
1546         } else {
1547                 err = -EINVAL;
1548         }
1549
1550         mddev_unlock(mddev);
1551
1552         return err ?: len;
1553 }
1554
1555 struct md_sysfs_entry
1556 ppl_write_hint = __ATTR(ppl_write_hint, S_IRUGO | S_IWUSR,
1557                         ppl_write_hint_show,
1558                         ppl_write_hint_store);