Merge tag 'leds-6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/pavel/linux...
[platform/kernel/linux-starfive.git] / drivers / md / raid5-cache.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
4  * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
5  */
6 #include <linux/kernel.h>
7 #include <linux/wait.h>
8 #include <linux/blkdev.h>
9 #include <linux/slab.h>
10 #include <linux/raid/md_p.h>
11 #include <linux/crc32c.h>
12 #include <linux/random.h>
13 #include <linux/kthread.h>
14 #include <linux/types.h>
15 #include "md.h"
16 #include "raid5.h"
17 #include "md-bitmap.h"
18 #include "raid5-log.h"
19
20 /*
21  * metadata/data stored in disk with 4k size unit (a block) regardless
22  * underneath hardware sector size. only works with PAGE_SIZE == 4096
23  */
24 #define BLOCK_SECTORS (8)
25 #define BLOCK_SECTOR_SHIFT (3)
26
27 /*
28  * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
29  *
30  * In write through mode, the reclaim runs every log->max_free_space.
31  * This can prevent the recovery scans for too long
32  */
33 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
34 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
35
36 /* wake up reclaim thread periodically */
37 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
38 /* start flush with these full stripes */
39 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
40 /* reclaim stripes in groups */
41 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
42
43 /*
44  * We only need 2 bios per I/O unit to make progress, but ensure we
45  * have a few more available to not get too tight.
46  */
47 #define R5L_POOL_SIZE   4
48
49 static char *r5c_journal_mode_str[] = {"write-through",
50                                        "write-back"};
51 /*
52  * raid5 cache state machine
53  *
54  * With the RAID cache, each stripe works in two phases:
55  *      - caching phase
56  *      - writing-out phase
57  *
58  * These two phases are controlled by bit STRIPE_R5C_CACHING:
59  *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
60  *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
61  *
62  * When there is no journal, or the journal is in write-through mode,
63  * the stripe is always in writing-out phase.
64  *
65  * For write-back journal, the stripe is sent to caching phase on write
66  * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
67  * the write-out phase by clearing STRIPE_R5C_CACHING.
68  *
69  * Stripes in caching phase do not write the raid disks. Instead, all
70  * writes are committed from the log device. Therefore, a stripe in
71  * caching phase handles writes as:
72  *      - write to log device
73  *      - return IO
74  *
75  * Stripes in writing-out phase handle writes as:
76  *      - calculate parity
77  *      - write pending data and parity to journal
78  *      - write data and parity to raid disks
79  *      - return IO for pending writes
80  */
81
82 struct r5l_log {
83         struct md_rdev *rdev;
84
85         u32 uuid_checksum;
86
87         sector_t device_size;           /* log device size, round to
88                                          * BLOCK_SECTORS */
89         sector_t max_free_space;        /* reclaim run if free space is at
90                                          * this size */
91
92         sector_t last_checkpoint;       /* log tail. where recovery scan
93                                          * starts from */
94         u64 last_cp_seq;                /* log tail sequence */
95
96         sector_t log_start;             /* log head. where new data appends */
97         u64 seq;                        /* log head sequence */
98
99         sector_t next_checkpoint;
100
101         struct mutex io_mutex;
102         struct r5l_io_unit *current_io; /* current io_unit accepting new data */
103
104         spinlock_t io_list_lock;
105         struct list_head running_ios;   /* io_units which are still running,
106                                          * and have not yet been completely
107                                          * written to the log */
108         struct list_head io_end_ios;    /* io_units which have been completely
109                                          * written to the log but not yet written
110                                          * to the RAID */
111         struct list_head flushing_ios;  /* io_units which are waiting for log
112                                          * cache flush */
113         struct list_head finished_ios;  /* io_units which settle down in log disk */
114         struct bio flush_bio;
115
116         struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
117
118         struct kmem_cache *io_kc;
119         mempool_t io_pool;
120         struct bio_set bs;
121         mempool_t meta_pool;
122
123         struct md_thread *reclaim_thread;
124         unsigned long reclaim_target;   /* number of space that need to be
125                                          * reclaimed.  if it's 0, reclaim spaces
126                                          * used by io_units which are in
127                                          * IO_UNIT_STRIPE_END state (eg, reclaim
128                                          * doesn't wait for specific io_unit
129                                          * switching to IO_UNIT_STRIPE_END
130                                          * state) */
131         wait_queue_head_t iounit_wait;
132
133         struct list_head no_space_stripes; /* pending stripes, log has no space */
134         spinlock_t no_space_stripes_lock;
135
136         bool need_cache_flush;
137
138         /* for r5c_cache */
139         enum r5c_journal_mode r5c_journal_mode;
140
141         /* all stripes in r5cache, in the order of seq at sh->log_start */
142         struct list_head stripe_in_journal_list;
143
144         spinlock_t stripe_in_journal_lock;
145         atomic_t stripe_in_journal_count;
146
147         /* to submit async io_units, to fulfill ordering of flush */
148         struct work_struct deferred_io_work;
149         /* to disable write back during in degraded mode */
150         struct work_struct disable_writeback_work;
151
152         /* to for chunk_aligned_read in writeback mode, details below */
153         spinlock_t tree_lock;
154         struct radix_tree_root big_stripe_tree;
155 };
156
157 /*
158  * Enable chunk_aligned_read() with write back cache.
159  *
160  * Each chunk may contain more than one stripe (for example, a 256kB
161  * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
162  * chunk_aligned_read, these stripes are grouped into one "big_stripe".
163  * For each big_stripe, we count how many stripes of this big_stripe
164  * are in the write back cache. These data are tracked in a radix tree
165  * (big_stripe_tree). We use radix_tree item pointer as the counter.
166  * r5c_tree_index() is used to calculate keys for the radix tree.
167  *
168  * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
169  * big_stripe of each chunk in the tree. If this big_stripe is in the
170  * tree, chunk_aligned_read() aborts. This look up is protected by
171  * rcu_read_lock().
172  *
173  * It is necessary to remember whether a stripe is counted in
174  * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
175  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
176  * two flags are set, the stripe is counted in big_stripe_tree. This
177  * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
178  * r5c_try_caching_write(); and moving clear_bit of
179  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
180  * r5c_finish_stripe_write_out().
181  */
182
183 /*
184  * radix tree requests lowest 2 bits of data pointer to be 2b'00.
185  * So it is necessary to left shift the counter by 2 bits before using it
186  * as data pointer of the tree.
187  */
188 #define R5C_RADIX_COUNT_SHIFT 2
189
190 /*
191  * calculate key for big_stripe_tree
192  *
193  * sect: align_bi->bi_iter.bi_sector or sh->sector
194  */
195 static inline sector_t r5c_tree_index(struct r5conf *conf,
196                                       sector_t sect)
197 {
198         sector_div(sect, conf->chunk_sectors);
199         return sect;
200 }
201
202 /*
203  * an IO range starts from a meta data block and end at the next meta data
204  * block. The io unit's the meta data block tracks data/parity followed it. io
205  * unit is written to log disk with normal write, as we always flush log disk
206  * first and then start move data to raid disks, there is no requirement to
207  * write io unit with FLUSH/FUA
208  */
209 struct r5l_io_unit {
210         struct r5l_log *log;
211
212         struct page *meta_page; /* store meta block */
213         int meta_offset;        /* current offset in meta_page */
214
215         struct bio *current_bio;/* current_bio accepting new data */
216
217         atomic_t pending_stripe;/* how many stripes not flushed to raid */
218         u64 seq;                /* seq number of the metablock */
219         sector_t log_start;     /* where the io_unit starts */
220         sector_t log_end;       /* where the io_unit ends */
221         struct list_head log_sibling; /* log->running_ios */
222         struct list_head stripe_list; /* stripes added to the io_unit */
223
224         int state;
225         bool need_split_bio;
226         struct bio *split_bio;
227
228         unsigned int has_flush:1;               /* include flush request */
229         unsigned int has_fua:1;                 /* include fua request */
230         unsigned int has_null_flush:1;          /* include null flush request */
231         unsigned int has_flush_payload:1;       /* include flush payload  */
232         /*
233          * io isn't sent yet, flush/fua request can only be submitted till it's
234          * the first IO in running_ios list
235          */
236         unsigned int io_deferred:1;
237
238         struct bio_list flush_barriers;   /* size == 0 flush bios */
239 };
240
241 /* r5l_io_unit state */
242 enum r5l_io_unit_state {
243         IO_UNIT_RUNNING = 0,    /* accepting new IO */
244         IO_UNIT_IO_START = 1,   /* io_unit bio start writing to log,
245                                  * don't accepting new bio */
246         IO_UNIT_IO_END = 2,     /* io_unit bio finish writing to log */
247         IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
248 };
249
250 bool r5c_is_writeback(struct r5l_log *log)
251 {
252         return (log != NULL &&
253                 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
254 }
255
256 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
257 {
258         start += inc;
259         if (start >= log->device_size)
260                 start = start - log->device_size;
261         return start;
262 }
263
264 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
265                                   sector_t end)
266 {
267         if (end >= start)
268                 return end - start;
269         else
270                 return end + log->device_size - start;
271 }
272
273 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
274 {
275         sector_t used_size;
276
277         used_size = r5l_ring_distance(log, log->last_checkpoint,
278                                         log->log_start);
279
280         return log->device_size > used_size + size;
281 }
282
283 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
284                                     enum r5l_io_unit_state state)
285 {
286         if (WARN_ON(io->state >= state))
287                 return;
288         io->state = state;
289 }
290
291 static void
292 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
293 {
294         struct bio *wbi, *wbi2;
295
296         wbi = dev->written;
297         dev->written = NULL;
298         while (wbi && wbi->bi_iter.bi_sector <
299                dev->sector + RAID5_STRIPE_SECTORS(conf)) {
300                 wbi2 = r5_next_bio(conf, wbi, dev->sector);
301                 md_write_end(conf->mddev);
302                 bio_endio(wbi);
303                 wbi = wbi2;
304         }
305 }
306
307 void r5c_handle_cached_data_endio(struct r5conf *conf,
308                                   struct stripe_head *sh, int disks)
309 {
310         int i;
311
312         for (i = sh->disks; i--; ) {
313                 if (sh->dev[i].written) {
314                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
315                         r5c_return_dev_pending_writes(conf, &sh->dev[i]);
316                         md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
317                                            RAID5_STRIPE_SECTORS(conf),
318                                            !test_bit(STRIPE_DEGRADED, &sh->state),
319                                            0);
320                 }
321         }
322 }
323
324 void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
325
326 /* Check whether we should flush some stripes to free up stripe cache */
327 void r5c_check_stripe_cache_usage(struct r5conf *conf)
328 {
329         int total_cached;
330
331         if (!r5c_is_writeback(conf->log))
332                 return;
333
334         total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
335                 atomic_read(&conf->r5c_cached_full_stripes);
336
337         /*
338          * The following condition is true for either of the following:
339          *   - stripe cache pressure high:
340          *          total_cached > 3/4 min_nr_stripes ||
341          *          empty_inactive_list_nr > 0
342          *   - stripe cache pressure moderate:
343          *          total_cached > 1/2 min_nr_stripes
344          */
345         if (total_cached > conf->min_nr_stripes * 1 / 2 ||
346             atomic_read(&conf->empty_inactive_list_nr) > 0)
347                 r5l_wake_reclaim(conf->log, 0);
348 }
349
350 /*
351  * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
352  * stripes in the cache
353  */
354 void r5c_check_cached_full_stripe(struct r5conf *conf)
355 {
356         if (!r5c_is_writeback(conf->log))
357                 return;
358
359         /*
360          * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
361          * or a full stripe (chunk size / 4k stripes).
362          */
363         if (atomic_read(&conf->r5c_cached_full_stripes) >=
364             min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
365                 conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf)))
366                 r5l_wake_reclaim(conf->log, 0);
367 }
368
369 /*
370  * Total log space (in sectors) needed to flush all data in cache
371  *
372  * To avoid deadlock due to log space, it is necessary to reserve log
373  * space to flush critical stripes (stripes that occupying log space near
374  * last_checkpoint). This function helps check how much log space is
375  * required to flush all cached stripes.
376  *
377  * To reduce log space requirements, two mechanisms are used to give cache
378  * flush higher priorities:
379  *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
380  *       stripes ALREADY in journal can be flushed w/o pending writes;
381  *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
382  *       can be delayed (r5l_add_no_space_stripe).
383  *
384  * In cache flush, the stripe goes through 1 and then 2. For a stripe that
385  * already passed 1, flushing it requires at most (conf->max_degraded + 1)
386  * pages of journal space. For stripes that has not passed 1, flushing it
387  * requires (conf->raid_disks + 1) pages of journal space. There are at
388  * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
389  * required to flush all cached stripes (in pages) is:
390  *
391  *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
392  *     (group_cnt + 1) * (raid_disks + 1)
393  * or
394  *     (stripe_in_journal_count) * (max_degraded + 1) +
395  *     (group_cnt + 1) * (raid_disks - max_degraded)
396  */
397 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
398 {
399         struct r5l_log *log = conf->log;
400
401         if (!r5c_is_writeback(log))
402                 return 0;
403
404         return BLOCK_SECTORS *
405                 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
406                  (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
407 }
408
409 /*
410  * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
411  *
412  * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
413  * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
414  * device is less than 2x of reclaim_required_space.
415  */
416 static inline void r5c_update_log_state(struct r5l_log *log)
417 {
418         struct r5conf *conf = log->rdev->mddev->private;
419         sector_t free_space;
420         sector_t reclaim_space;
421         bool wake_reclaim = false;
422
423         if (!r5c_is_writeback(log))
424                 return;
425
426         free_space = r5l_ring_distance(log, log->log_start,
427                                        log->last_checkpoint);
428         reclaim_space = r5c_log_required_to_flush_cache(conf);
429         if (free_space < 2 * reclaim_space)
430                 set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
431         else {
432                 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
433                         wake_reclaim = true;
434                 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
435         }
436         if (free_space < 3 * reclaim_space)
437                 set_bit(R5C_LOG_TIGHT, &conf->cache_state);
438         else
439                 clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
440
441         if (wake_reclaim)
442                 r5l_wake_reclaim(log, 0);
443 }
444
445 /*
446  * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
447  * This function should only be called in write-back mode.
448  */
449 void r5c_make_stripe_write_out(struct stripe_head *sh)
450 {
451         struct r5conf *conf = sh->raid_conf;
452         struct r5l_log *log = conf->log;
453
454         BUG_ON(!r5c_is_writeback(log));
455
456         WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
457         clear_bit(STRIPE_R5C_CACHING, &sh->state);
458
459         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
460                 atomic_inc(&conf->preread_active_stripes);
461 }
462
463 static void r5c_handle_data_cached(struct stripe_head *sh)
464 {
465         int i;
466
467         for (i = sh->disks; i--; )
468                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
469                         set_bit(R5_InJournal, &sh->dev[i].flags);
470                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
471                 }
472         clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
473 }
474
475 /*
476  * this journal write must contain full parity,
477  * it may also contain some data pages
478  */
479 static void r5c_handle_parity_cached(struct stripe_head *sh)
480 {
481         int i;
482
483         for (i = sh->disks; i--; )
484                 if (test_bit(R5_InJournal, &sh->dev[i].flags))
485                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
486 }
487
488 /*
489  * Setting proper flags after writing (or flushing) data and/or parity to the
490  * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
491  */
492 static void r5c_finish_cache_stripe(struct stripe_head *sh)
493 {
494         struct r5l_log *log = sh->raid_conf->log;
495
496         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
497                 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
498                 /*
499                  * Set R5_InJournal for parity dev[pd_idx]. This means
500                  * all data AND parity in the journal. For RAID 6, it is
501                  * NOT necessary to set the flag for dev[qd_idx], as the
502                  * two parities are written out together.
503                  */
504                 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
505         } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
506                 r5c_handle_data_cached(sh);
507         } else {
508                 r5c_handle_parity_cached(sh);
509                 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
510         }
511 }
512
513 static void r5l_io_run_stripes(struct r5l_io_unit *io)
514 {
515         struct stripe_head *sh, *next;
516
517         list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
518                 list_del_init(&sh->log_list);
519
520                 r5c_finish_cache_stripe(sh);
521
522                 set_bit(STRIPE_HANDLE, &sh->state);
523                 raid5_release_stripe(sh);
524         }
525 }
526
527 static void r5l_log_run_stripes(struct r5l_log *log)
528 {
529         struct r5l_io_unit *io, *next;
530
531         lockdep_assert_held(&log->io_list_lock);
532
533         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
534                 /* don't change list order */
535                 if (io->state < IO_UNIT_IO_END)
536                         break;
537
538                 list_move_tail(&io->log_sibling, &log->finished_ios);
539                 r5l_io_run_stripes(io);
540         }
541 }
542
543 static void r5l_move_to_end_ios(struct r5l_log *log)
544 {
545         struct r5l_io_unit *io, *next;
546
547         lockdep_assert_held(&log->io_list_lock);
548
549         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
550                 /* don't change list order */
551                 if (io->state < IO_UNIT_IO_END)
552                         break;
553                 list_move_tail(&io->log_sibling, &log->io_end_ios);
554         }
555 }
556
557 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
558 static void r5l_log_endio(struct bio *bio)
559 {
560         struct r5l_io_unit *io = bio->bi_private;
561         struct r5l_io_unit *io_deferred;
562         struct r5l_log *log = io->log;
563         unsigned long flags;
564         bool has_null_flush;
565         bool has_flush_payload;
566
567         if (bio->bi_status)
568                 md_error(log->rdev->mddev, log->rdev);
569
570         bio_put(bio);
571         mempool_free(io->meta_page, &log->meta_pool);
572
573         spin_lock_irqsave(&log->io_list_lock, flags);
574         __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
575
576         /*
577          * if the io doesn't not have null_flush or flush payload,
578          * it is not safe to access it after releasing io_list_lock.
579          * Therefore, it is necessary to check the condition with
580          * the lock held.
581          */
582         has_null_flush = io->has_null_flush;
583         has_flush_payload = io->has_flush_payload;
584
585         if (log->need_cache_flush && !list_empty(&io->stripe_list))
586                 r5l_move_to_end_ios(log);
587         else
588                 r5l_log_run_stripes(log);
589         if (!list_empty(&log->running_ios)) {
590                 /*
591                  * FLUSH/FUA io_unit is deferred because of ordering, now we
592                  * can dispatch it
593                  */
594                 io_deferred = list_first_entry(&log->running_ios,
595                                                struct r5l_io_unit, log_sibling);
596                 if (io_deferred->io_deferred)
597                         schedule_work(&log->deferred_io_work);
598         }
599
600         spin_unlock_irqrestore(&log->io_list_lock, flags);
601
602         if (log->need_cache_flush)
603                 md_wakeup_thread(log->rdev->mddev->thread);
604
605         /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
606         if (has_null_flush) {
607                 struct bio *bi;
608
609                 WARN_ON(bio_list_empty(&io->flush_barriers));
610                 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
611                         bio_endio(bi);
612                         if (atomic_dec_and_test(&io->pending_stripe)) {
613                                 __r5l_stripe_write_finished(io);
614                                 return;
615                         }
616                 }
617         }
618         /* decrease pending_stripe for flush payload */
619         if (has_flush_payload)
620                 if (atomic_dec_and_test(&io->pending_stripe))
621                         __r5l_stripe_write_finished(io);
622 }
623
624 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
625 {
626         unsigned long flags;
627
628         spin_lock_irqsave(&log->io_list_lock, flags);
629         __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
630         spin_unlock_irqrestore(&log->io_list_lock, flags);
631
632         /*
633          * In case of journal device failures, submit_bio will get error
634          * and calls endio, then active stripes will continue write
635          * process. Therefore, it is not necessary to check Faulty bit
636          * of journal device here.
637          *
638          * We can't check split_bio after current_bio is submitted. If
639          * io->split_bio is null, after current_bio is submitted, current_bio
640          * might already be completed and the io_unit is freed. We submit
641          * split_bio first to avoid the issue.
642          */
643         if (io->split_bio) {
644                 if (io->has_flush)
645                         io->split_bio->bi_opf |= REQ_PREFLUSH;
646                 if (io->has_fua)
647                         io->split_bio->bi_opf |= REQ_FUA;
648                 submit_bio(io->split_bio);
649         }
650
651         if (io->has_flush)
652                 io->current_bio->bi_opf |= REQ_PREFLUSH;
653         if (io->has_fua)
654                 io->current_bio->bi_opf |= REQ_FUA;
655         submit_bio(io->current_bio);
656 }
657
658 /* deferred io_unit will be dispatched here */
659 static void r5l_submit_io_async(struct work_struct *work)
660 {
661         struct r5l_log *log = container_of(work, struct r5l_log,
662                                            deferred_io_work);
663         struct r5l_io_unit *io = NULL;
664         unsigned long flags;
665
666         spin_lock_irqsave(&log->io_list_lock, flags);
667         if (!list_empty(&log->running_ios)) {
668                 io = list_first_entry(&log->running_ios, struct r5l_io_unit,
669                                       log_sibling);
670                 if (!io->io_deferred)
671                         io = NULL;
672                 else
673                         io->io_deferred = 0;
674         }
675         spin_unlock_irqrestore(&log->io_list_lock, flags);
676         if (io)
677                 r5l_do_submit_io(log, io);
678 }
679
680 static void r5c_disable_writeback_async(struct work_struct *work)
681 {
682         struct r5l_log *log = container_of(work, struct r5l_log,
683                                            disable_writeback_work);
684         struct mddev *mddev = log->rdev->mddev;
685         struct r5conf *conf = mddev->private;
686         int locked = 0;
687
688         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
689                 return;
690         pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
691                 mdname(mddev));
692
693         /* wait superblock change before suspend */
694         wait_event(mddev->sb_wait,
695                    conf->log == NULL ||
696                    (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) &&
697                     (locked = mddev_trylock(mddev))));
698         if (locked) {
699                 mddev_suspend(mddev);
700                 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
701                 mddev_resume(mddev);
702                 mddev_unlock(mddev);
703         }
704 }
705
706 static void r5l_submit_current_io(struct r5l_log *log)
707 {
708         struct r5l_io_unit *io = log->current_io;
709         struct r5l_meta_block *block;
710         unsigned long flags;
711         u32 crc;
712         bool do_submit = true;
713
714         if (!io)
715                 return;
716
717         block = page_address(io->meta_page);
718         block->meta_size = cpu_to_le32(io->meta_offset);
719         crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
720         block->checksum = cpu_to_le32(crc);
721
722         log->current_io = NULL;
723         spin_lock_irqsave(&log->io_list_lock, flags);
724         if (io->has_flush || io->has_fua) {
725                 if (io != list_first_entry(&log->running_ios,
726                                            struct r5l_io_unit, log_sibling)) {
727                         io->io_deferred = 1;
728                         do_submit = false;
729                 }
730         }
731         spin_unlock_irqrestore(&log->io_list_lock, flags);
732         if (do_submit)
733                 r5l_do_submit_io(log, io);
734 }
735
736 static struct bio *r5l_bio_alloc(struct r5l_log *log)
737 {
738         struct bio *bio = bio_alloc_bioset(log->rdev->bdev, BIO_MAX_VECS,
739                                            REQ_OP_WRITE, GFP_NOIO, &log->bs);
740
741         bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
742
743         return bio;
744 }
745
746 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
747 {
748         log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
749
750         r5c_update_log_state(log);
751         /*
752          * If we filled up the log device start from the beginning again,
753          * which will require a new bio.
754          *
755          * Note: for this to work properly the log size needs to me a multiple
756          * of BLOCK_SECTORS.
757          */
758         if (log->log_start == 0)
759                 io->need_split_bio = true;
760
761         io->log_end = log->log_start;
762 }
763
764 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
765 {
766         struct r5l_io_unit *io;
767         struct r5l_meta_block *block;
768
769         io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
770         if (!io)
771                 return NULL;
772         memset(io, 0, sizeof(*io));
773
774         io->log = log;
775         INIT_LIST_HEAD(&io->log_sibling);
776         INIT_LIST_HEAD(&io->stripe_list);
777         bio_list_init(&io->flush_barriers);
778         io->state = IO_UNIT_RUNNING;
779
780         io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
781         block = page_address(io->meta_page);
782         clear_page(block);
783         block->magic = cpu_to_le32(R5LOG_MAGIC);
784         block->version = R5LOG_VERSION;
785         block->seq = cpu_to_le64(log->seq);
786         block->position = cpu_to_le64(log->log_start);
787
788         io->log_start = log->log_start;
789         io->meta_offset = sizeof(struct r5l_meta_block);
790         io->seq = log->seq++;
791
792         io->current_bio = r5l_bio_alloc(log);
793         io->current_bio->bi_end_io = r5l_log_endio;
794         io->current_bio->bi_private = io;
795         bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
796
797         r5_reserve_log_entry(log, io);
798
799         spin_lock_irq(&log->io_list_lock);
800         list_add_tail(&io->log_sibling, &log->running_ios);
801         spin_unlock_irq(&log->io_list_lock);
802
803         return io;
804 }
805
806 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
807 {
808         if (log->current_io &&
809             log->current_io->meta_offset + payload_size > PAGE_SIZE)
810                 r5l_submit_current_io(log);
811
812         if (!log->current_io) {
813                 log->current_io = r5l_new_meta(log);
814                 if (!log->current_io)
815                         return -ENOMEM;
816         }
817
818         return 0;
819 }
820
821 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
822                                     sector_t location,
823                                     u32 checksum1, u32 checksum2,
824                                     bool checksum2_valid)
825 {
826         struct r5l_io_unit *io = log->current_io;
827         struct r5l_payload_data_parity *payload;
828
829         payload = page_address(io->meta_page) + io->meta_offset;
830         payload->header.type = cpu_to_le16(type);
831         payload->header.flags = cpu_to_le16(0);
832         payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
833                                     (PAGE_SHIFT - 9));
834         payload->location = cpu_to_le64(location);
835         payload->checksum[0] = cpu_to_le32(checksum1);
836         if (checksum2_valid)
837                 payload->checksum[1] = cpu_to_le32(checksum2);
838
839         io->meta_offset += sizeof(struct r5l_payload_data_parity) +
840                 sizeof(__le32) * (1 + !!checksum2_valid);
841 }
842
843 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
844 {
845         struct r5l_io_unit *io = log->current_io;
846
847         if (io->need_split_bio) {
848                 BUG_ON(io->split_bio);
849                 io->split_bio = io->current_bio;
850                 io->current_bio = r5l_bio_alloc(log);
851                 bio_chain(io->current_bio, io->split_bio);
852                 io->need_split_bio = false;
853         }
854
855         if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
856                 BUG();
857
858         r5_reserve_log_entry(log, io);
859 }
860
861 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
862 {
863         struct mddev *mddev = log->rdev->mddev;
864         struct r5conf *conf = mddev->private;
865         struct r5l_io_unit *io;
866         struct r5l_payload_flush *payload;
867         int meta_size;
868
869         /*
870          * payload_flush requires extra writes to the journal.
871          * To avoid handling the extra IO in quiesce, just skip
872          * flush_payload
873          */
874         if (conf->quiesce)
875                 return;
876
877         mutex_lock(&log->io_mutex);
878         meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
879
880         if (r5l_get_meta(log, meta_size)) {
881                 mutex_unlock(&log->io_mutex);
882                 return;
883         }
884
885         /* current implementation is one stripe per flush payload */
886         io = log->current_io;
887         payload = page_address(io->meta_page) + io->meta_offset;
888         payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
889         payload->header.flags = cpu_to_le16(0);
890         payload->size = cpu_to_le32(sizeof(__le64));
891         payload->flush_stripes[0] = cpu_to_le64(sect);
892         io->meta_offset += meta_size;
893         /* multiple flush payloads count as one pending_stripe */
894         if (!io->has_flush_payload) {
895                 io->has_flush_payload = 1;
896                 atomic_inc(&io->pending_stripe);
897         }
898         mutex_unlock(&log->io_mutex);
899 }
900
901 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
902                            int data_pages, int parity_pages)
903 {
904         int i;
905         int meta_size;
906         int ret;
907         struct r5l_io_unit *io;
908
909         meta_size =
910                 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
911                  * data_pages) +
912                 sizeof(struct r5l_payload_data_parity) +
913                 sizeof(__le32) * parity_pages;
914
915         ret = r5l_get_meta(log, meta_size);
916         if (ret)
917                 return ret;
918
919         io = log->current_io;
920
921         if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
922                 io->has_flush = 1;
923
924         for (i = 0; i < sh->disks; i++) {
925                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
926                     test_bit(R5_InJournal, &sh->dev[i].flags))
927                         continue;
928                 if (i == sh->pd_idx || i == sh->qd_idx)
929                         continue;
930                 if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
931                     log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
932                         io->has_fua = 1;
933                         /*
934                          * we need to flush journal to make sure recovery can
935                          * reach the data with fua flag
936                          */
937                         io->has_flush = 1;
938                 }
939                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
940                                         raid5_compute_blocknr(sh, i, 0),
941                                         sh->dev[i].log_checksum, 0, false);
942                 r5l_append_payload_page(log, sh->dev[i].page);
943         }
944
945         if (parity_pages == 2) {
946                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
947                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
948                                         sh->dev[sh->qd_idx].log_checksum, true);
949                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
950                 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
951         } else if (parity_pages == 1) {
952                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
953                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
954                                         0, false);
955                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
956         } else  /* Just writing data, not parity, in caching phase */
957                 BUG_ON(parity_pages != 0);
958
959         list_add_tail(&sh->log_list, &io->stripe_list);
960         atomic_inc(&io->pending_stripe);
961         sh->log_io = io;
962
963         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
964                 return 0;
965
966         if (sh->log_start == MaxSector) {
967                 BUG_ON(!list_empty(&sh->r5c));
968                 sh->log_start = io->log_start;
969                 spin_lock_irq(&log->stripe_in_journal_lock);
970                 list_add_tail(&sh->r5c,
971                               &log->stripe_in_journal_list);
972                 spin_unlock_irq(&log->stripe_in_journal_lock);
973                 atomic_inc(&log->stripe_in_journal_count);
974         }
975         return 0;
976 }
977
978 /* add stripe to no_space_stripes, and then wake up reclaim */
979 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
980                                            struct stripe_head *sh)
981 {
982         spin_lock(&log->no_space_stripes_lock);
983         list_add_tail(&sh->log_list, &log->no_space_stripes);
984         spin_unlock(&log->no_space_stripes_lock);
985 }
986
987 /*
988  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
989  * data from log to raid disks), so we shouldn't wait for reclaim here
990  */
991 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
992 {
993         struct r5conf *conf = sh->raid_conf;
994         int write_disks = 0;
995         int data_pages, parity_pages;
996         int reserve;
997         int i;
998         int ret = 0;
999         bool wake_reclaim = false;
1000
1001         if (!log)
1002                 return -EAGAIN;
1003         /* Don't support stripe batch */
1004         if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1005             test_bit(STRIPE_SYNCING, &sh->state)) {
1006                 /* the stripe is written to log, we start writing it to raid */
1007                 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1008                 return -EAGAIN;
1009         }
1010
1011         WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1012
1013         for (i = 0; i < sh->disks; i++) {
1014                 void *addr;
1015
1016                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1017                     test_bit(R5_InJournal, &sh->dev[i].flags))
1018                         continue;
1019
1020                 write_disks++;
1021                 /* checksum is already calculated in last run */
1022                 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1023                         continue;
1024                 addr = kmap_atomic(sh->dev[i].page);
1025                 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1026                                                     addr, PAGE_SIZE);
1027                 kunmap_atomic(addr);
1028         }
1029         parity_pages = 1 + !!(sh->qd_idx >= 0);
1030         data_pages = write_disks - parity_pages;
1031
1032         set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1033         /*
1034          * The stripe must enter state machine again to finish the write, so
1035          * don't delay.
1036          */
1037         clear_bit(STRIPE_DELAYED, &sh->state);
1038         atomic_inc(&sh->count);
1039
1040         mutex_lock(&log->io_mutex);
1041         /* meta + data */
1042         reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1043
1044         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1045                 if (!r5l_has_free_space(log, reserve)) {
1046                         r5l_add_no_space_stripe(log, sh);
1047                         wake_reclaim = true;
1048                 } else {
1049                         ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1050                         if (ret) {
1051                                 spin_lock_irq(&log->io_list_lock);
1052                                 list_add_tail(&sh->log_list,
1053                                               &log->no_mem_stripes);
1054                                 spin_unlock_irq(&log->io_list_lock);
1055                         }
1056                 }
1057         } else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
1058                 /*
1059                  * log space critical, do not process stripes that are
1060                  * not in cache yet (sh->log_start == MaxSector).
1061                  */
1062                 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1063                     sh->log_start == MaxSector) {
1064                         r5l_add_no_space_stripe(log, sh);
1065                         wake_reclaim = true;
1066                         reserve = 0;
1067                 } else if (!r5l_has_free_space(log, reserve)) {
1068                         if (sh->log_start == log->last_checkpoint)
1069                                 BUG();
1070                         else
1071                                 r5l_add_no_space_stripe(log, sh);
1072                 } else {
1073                         ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1074                         if (ret) {
1075                                 spin_lock_irq(&log->io_list_lock);
1076                                 list_add_tail(&sh->log_list,
1077                                               &log->no_mem_stripes);
1078                                 spin_unlock_irq(&log->io_list_lock);
1079                         }
1080                 }
1081         }
1082
1083         mutex_unlock(&log->io_mutex);
1084         if (wake_reclaim)
1085                 r5l_wake_reclaim(log, reserve);
1086         return 0;
1087 }
1088
1089 void r5l_write_stripe_run(struct r5l_log *log)
1090 {
1091         if (!log)
1092                 return;
1093         mutex_lock(&log->io_mutex);
1094         r5l_submit_current_io(log);
1095         mutex_unlock(&log->io_mutex);
1096 }
1097
1098 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1099 {
1100         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1101                 /*
1102                  * in write through (journal only)
1103                  * we flush log disk cache first, then write stripe data to
1104                  * raid disks. So if bio is finished, the log disk cache is
1105                  * flushed already. The recovery guarantees we can recovery
1106                  * the bio from log disk, so we don't need to flush again
1107                  */
1108                 if (bio->bi_iter.bi_size == 0) {
1109                         bio_endio(bio);
1110                         return 0;
1111                 }
1112                 bio->bi_opf &= ~REQ_PREFLUSH;
1113         } else {
1114                 /* write back (with cache) */
1115                 if (bio->bi_iter.bi_size == 0) {
1116                         mutex_lock(&log->io_mutex);
1117                         r5l_get_meta(log, 0);
1118                         bio_list_add(&log->current_io->flush_barriers, bio);
1119                         log->current_io->has_flush = 1;
1120                         log->current_io->has_null_flush = 1;
1121                         atomic_inc(&log->current_io->pending_stripe);
1122                         r5l_submit_current_io(log);
1123                         mutex_unlock(&log->io_mutex);
1124                         return 0;
1125                 }
1126         }
1127         return -EAGAIN;
1128 }
1129
1130 /* This will run after log space is reclaimed */
1131 static void r5l_run_no_space_stripes(struct r5l_log *log)
1132 {
1133         struct stripe_head *sh;
1134
1135         spin_lock(&log->no_space_stripes_lock);
1136         while (!list_empty(&log->no_space_stripes)) {
1137                 sh = list_first_entry(&log->no_space_stripes,
1138                                       struct stripe_head, log_list);
1139                 list_del_init(&sh->log_list);
1140                 set_bit(STRIPE_HANDLE, &sh->state);
1141                 raid5_release_stripe(sh);
1142         }
1143         spin_unlock(&log->no_space_stripes_lock);
1144 }
1145
1146 /*
1147  * calculate new last_checkpoint
1148  * for write through mode, returns log->next_checkpoint
1149  * for write back, returns log_start of first sh in stripe_in_journal_list
1150  */
1151 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1152 {
1153         struct stripe_head *sh;
1154         struct r5l_log *log = conf->log;
1155         sector_t new_cp;
1156         unsigned long flags;
1157
1158         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1159                 return log->next_checkpoint;
1160
1161         spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1162         if (list_empty(&conf->log->stripe_in_journal_list)) {
1163                 /* all stripes flushed */
1164                 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1165                 return log->next_checkpoint;
1166         }
1167         sh = list_first_entry(&conf->log->stripe_in_journal_list,
1168                               struct stripe_head, r5c);
1169         new_cp = sh->log_start;
1170         spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1171         return new_cp;
1172 }
1173
1174 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1175 {
1176         struct r5conf *conf = log->rdev->mddev->private;
1177
1178         return r5l_ring_distance(log, log->last_checkpoint,
1179                                  r5c_calculate_new_cp(conf));
1180 }
1181
1182 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1183 {
1184         struct stripe_head *sh;
1185
1186         lockdep_assert_held(&log->io_list_lock);
1187
1188         if (!list_empty(&log->no_mem_stripes)) {
1189                 sh = list_first_entry(&log->no_mem_stripes,
1190                                       struct stripe_head, log_list);
1191                 list_del_init(&sh->log_list);
1192                 set_bit(STRIPE_HANDLE, &sh->state);
1193                 raid5_release_stripe(sh);
1194         }
1195 }
1196
1197 static bool r5l_complete_finished_ios(struct r5l_log *log)
1198 {
1199         struct r5l_io_unit *io, *next;
1200         bool found = false;
1201
1202         lockdep_assert_held(&log->io_list_lock);
1203
1204         list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1205                 /* don't change list order */
1206                 if (io->state < IO_UNIT_STRIPE_END)
1207                         break;
1208
1209                 log->next_checkpoint = io->log_start;
1210
1211                 list_del(&io->log_sibling);
1212                 mempool_free(io, &log->io_pool);
1213                 r5l_run_no_mem_stripe(log);
1214
1215                 found = true;
1216         }
1217
1218         return found;
1219 }
1220
1221 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1222 {
1223         struct r5l_log *log = io->log;
1224         struct r5conf *conf = log->rdev->mddev->private;
1225         unsigned long flags;
1226
1227         spin_lock_irqsave(&log->io_list_lock, flags);
1228         __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1229
1230         if (!r5l_complete_finished_ios(log)) {
1231                 spin_unlock_irqrestore(&log->io_list_lock, flags);
1232                 return;
1233         }
1234
1235         if (r5l_reclaimable_space(log) > log->max_free_space ||
1236             test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1237                 r5l_wake_reclaim(log, 0);
1238
1239         spin_unlock_irqrestore(&log->io_list_lock, flags);
1240         wake_up(&log->iounit_wait);
1241 }
1242
1243 void r5l_stripe_write_finished(struct stripe_head *sh)
1244 {
1245         struct r5l_io_unit *io;
1246
1247         io = sh->log_io;
1248         sh->log_io = NULL;
1249
1250         if (io && atomic_dec_and_test(&io->pending_stripe))
1251                 __r5l_stripe_write_finished(io);
1252 }
1253
1254 static void r5l_log_flush_endio(struct bio *bio)
1255 {
1256         struct r5l_log *log = container_of(bio, struct r5l_log,
1257                 flush_bio);
1258         unsigned long flags;
1259         struct r5l_io_unit *io;
1260
1261         if (bio->bi_status)
1262                 md_error(log->rdev->mddev, log->rdev);
1263
1264         spin_lock_irqsave(&log->io_list_lock, flags);
1265         list_for_each_entry(io, &log->flushing_ios, log_sibling)
1266                 r5l_io_run_stripes(io);
1267         list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1268         spin_unlock_irqrestore(&log->io_list_lock, flags);
1269
1270         bio_uninit(bio);
1271 }
1272
1273 /*
1274  * Starting dispatch IO to raid.
1275  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1276  * broken meta in the middle of a log causes recovery can't find meta at the
1277  * head of log. If operations require meta at the head persistent in log, we
1278  * must make sure meta before it persistent in log too. A case is:
1279  *
1280  * stripe data/parity is in log, we start write stripe to raid disks. stripe
1281  * data/parity must be persistent in log before we do the write to raid disks.
1282  *
1283  * The solution is we restrictly maintain io_unit list order. In this case, we
1284  * only write stripes of an io_unit to raid disks till the io_unit is the first
1285  * one whose data/parity is in log.
1286  */
1287 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1288 {
1289         bool do_flush;
1290
1291         if (!log || !log->need_cache_flush)
1292                 return;
1293
1294         spin_lock_irq(&log->io_list_lock);
1295         /* flush bio is running */
1296         if (!list_empty(&log->flushing_ios)) {
1297                 spin_unlock_irq(&log->io_list_lock);
1298                 return;
1299         }
1300         list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1301         do_flush = !list_empty(&log->flushing_ios);
1302         spin_unlock_irq(&log->io_list_lock);
1303
1304         if (!do_flush)
1305                 return;
1306         bio_init(&log->flush_bio, log->rdev->bdev, NULL, 0,
1307                   REQ_OP_WRITE | REQ_PREFLUSH);
1308         log->flush_bio.bi_end_io = r5l_log_flush_endio;
1309         submit_bio(&log->flush_bio);
1310 }
1311
1312 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1313 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1314         sector_t end)
1315 {
1316         struct block_device *bdev = log->rdev->bdev;
1317         struct mddev *mddev;
1318
1319         r5l_write_super(log, end);
1320
1321         if (!bdev_max_discard_sectors(bdev))
1322                 return;
1323
1324         mddev = log->rdev->mddev;
1325         /*
1326          * Discard could zero data, so before discard we must make sure
1327          * superblock is updated to new log tail. Updating superblock (either
1328          * directly call md_update_sb() or depend on md thread) must hold
1329          * reconfig mutex. On the other hand, raid5_quiesce is called with
1330          * reconfig_mutex hold. The first step of raid5_quiesce() is waiting
1331          * for all IO finish, hence waiting for reclaim thread, while reclaim
1332          * thread is calling this function and waiting for reconfig mutex. So
1333          * there is a deadlock. We workaround this issue with a trylock.
1334          * FIXME: we could miss discard if we can't take reconfig mutex
1335          */
1336         set_mask_bits(&mddev->sb_flags, 0,
1337                 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1338         if (!mddev_trylock(mddev))
1339                 return;
1340         md_update_sb(mddev, 1);
1341         mddev_unlock(mddev);
1342
1343         /* discard IO error really doesn't matter, ignore it */
1344         if (log->last_checkpoint < end) {
1345                 blkdev_issue_discard(bdev,
1346                                 log->last_checkpoint + log->rdev->data_offset,
1347                                 end - log->last_checkpoint, GFP_NOIO);
1348         } else {
1349                 blkdev_issue_discard(bdev,
1350                                 log->last_checkpoint + log->rdev->data_offset,
1351                                 log->device_size - log->last_checkpoint,
1352                                 GFP_NOIO);
1353                 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1354                                 GFP_NOIO);
1355         }
1356 }
1357
1358 /*
1359  * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1360  * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1361  *
1362  * must hold conf->device_lock
1363  */
1364 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1365 {
1366         BUG_ON(list_empty(&sh->lru));
1367         BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1368         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1369
1370         /*
1371          * The stripe is not ON_RELEASE_LIST, so it is safe to call
1372          * raid5_release_stripe() while holding conf->device_lock
1373          */
1374         BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1375         lockdep_assert_held(&conf->device_lock);
1376
1377         list_del_init(&sh->lru);
1378         atomic_inc(&sh->count);
1379
1380         set_bit(STRIPE_HANDLE, &sh->state);
1381         atomic_inc(&conf->active_stripes);
1382         r5c_make_stripe_write_out(sh);
1383
1384         if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1385                 atomic_inc(&conf->r5c_flushing_partial_stripes);
1386         else
1387                 atomic_inc(&conf->r5c_flushing_full_stripes);
1388         raid5_release_stripe(sh);
1389 }
1390
1391 /*
1392  * if num == 0, flush all full stripes
1393  * if num > 0, flush all full stripes. If less than num full stripes are
1394  *             flushed, flush some partial stripes until totally num stripes are
1395  *             flushed or there is no more cached stripes.
1396  */
1397 void r5c_flush_cache(struct r5conf *conf, int num)
1398 {
1399         int count;
1400         struct stripe_head *sh, *next;
1401
1402         lockdep_assert_held(&conf->device_lock);
1403         if (!conf->log)
1404                 return;
1405
1406         count = 0;
1407         list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1408                 r5c_flush_stripe(conf, sh);
1409                 count++;
1410         }
1411
1412         if (count >= num)
1413                 return;
1414         list_for_each_entry_safe(sh, next,
1415                                  &conf->r5c_partial_stripe_list, lru) {
1416                 r5c_flush_stripe(conf, sh);
1417                 if (++count >= num)
1418                         break;
1419         }
1420 }
1421
1422 static void r5c_do_reclaim(struct r5conf *conf)
1423 {
1424         struct r5l_log *log = conf->log;
1425         struct stripe_head *sh;
1426         int count = 0;
1427         unsigned long flags;
1428         int total_cached;
1429         int stripes_to_flush;
1430         int flushing_partial, flushing_full;
1431
1432         if (!r5c_is_writeback(log))
1433                 return;
1434
1435         flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1436         flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1437         total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1438                 atomic_read(&conf->r5c_cached_full_stripes) -
1439                 flushing_full - flushing_partial;
1440
1441         if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1442             atomic_read(&conf->empty_inactive_list_nr) > 0)
1443                 /*
1444                  * if stripe cache pressure high, flush all full stripes and
1445                  * some partial stripes
1446                  */
1447                 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1448         else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1449                  atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1450                  R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1451                 /*
1452                  * if stripe cache pressure moderate, or if there is many full
1453                  * stripes,flush all full stripes
1454                  */
1455                 stripes_to_flush = 0;
1456         else
1457                 /* no need to flush */
1458                 stripes_to_flush = -1;
1459
1460         if (stripes_to_flush >= 0) {
1461                 spin_lock_irqsave(&conf->device_lock, flags);
1462                 r5c_flush_cache(conf, stripes_to_flush);
1463                 spin_unlock_irqrestore(&conf->device_lock, flags);
1464         }
1465
1466         /* if log space is tight, flush stripes on stripe_in_journal_list */
1467         if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1468                 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1469                 spin_lock(&conf->device_lock);
1470                 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1471                         /*
1472                          * stripes on stripe_in_journal_list could be in any
1473                          * state of the stripe_cache state machine. In this
1474                          * case, we only want to flush stripe on
1475                          * r5c_cached_full/partial_stripes. The following
1476                          * condition makes sure the stripe is on one of the
1477                          * two lists.
1478                          */
1479                         if (!list_empty(&sh->lru) &&
1480                             !test_bit(STRIPE_HANDLE, &sh->state) &&
1481                             atomic_read(&sh->count) == 0) {
1482                                 r5c_flush_stripe(conf, sh);
1483                                 if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1484                                         break;
1485                         }
1486                 }
1487                 spin_unlock(&conf->device_lock);
1488                 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1489         }
1490
1491         if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1492                 r5l_run_no_space_stripes(log);
1493
1494         md_wakeup_thread(conf->mddev->thread);
1495 }
1496
1497 static void r5l_do_reclaim(struct r5l_log *log)
1498 {
1499         struct r5conf *conf = log->rdev->mddev->private;
1500         sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1501         sector_t reclaimable;
1502         sector_t next_checkpoint;
1503         bool write_super;
1504
1505         spin_lock_irq(&log->io_list_lock);
1506         write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1507                 reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1508         /*
1509          * move proper io_unit to reclaim list. We should not change the order.
1510          * reclaimable/unreclaimable io_unit can be mixed in the list, we
1511          * shouldn't reuse space of an unreclaimable io_unit
1512          */
1513         while (1) {
1514                 reclaimable = r5l_reclaimable_space(log);
1515                 if (reclaimable >= reclaim_target ||
1516                     (list_empty(&log->running_ios) &&
1517                      list_empty(&log->io_end_ios) &&
1518                      list_empty(&log->flushing_ios) &&
1519                      list_empty(&log->finished_ios)))
1520                         break;
1521
1522                 md_wakeup_thread(log->rdev->mddev->thread);
1523                 wait_event_lock_irq(log->iounit_wait,
1524                                     r5l_reclaimable_space(log) > reclaimable,
1525                                     log->io_list_lock);
1526         }
1527
1528         next_checkpoint = r5c_calculate_new_cp(conf);
1529         spin_unlock_irq(&log->io_list_lock);
1530
1531         if (reclaimable == 0 || !write_super)
1532                 return;
1533
1534         /*
1535          * write_super will flush cache of each raid disk. We must write super
1536          * here, because the log area might be reused soon and we don't want to
1537          * confuse recovery
1538          */
1539         r5l_write_super_and_discard_space(log, next_checkpoint);
1540
1541         mutex_lock(&log->io_mutex);
1542         log->last_checkpoint = next_checkpoint;
1543         r5c_update_log_state(log);
1544         mutex_unlock(&log->io_mutex);
1545
1546         r5l_run_no_space_stripes(log);
1547 }
1548
1549 static void r5l_reclaim_thread(struct md_thread *thread)
1550 {
1551         struct mddev *mddev = thread->mddev;
1552         struct r5conf *conf = mddev->private;
1553         struct r5l_log *log = conf->log;
1554
1555         if (!log)
1556                 return;
1557         r5c_do_reclaim(conf);
1558         r5l_do_reclaim(log);
1559 }
1560
1561 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1562 {
1563         unsigned long target;
1564         unsigned long new = (unsigned long)space; /* overflow in theory */
1565
1566         if (!log)
1567                 return;
1568         do {
1569                 target = log->reclaim_target;
1570                 if (new < target)
1571                         return;
1572         } while (cmpxchg(&log->reclaim_target, target, new) != target);
1573         md_wakeup_thread(log->reclaim_thread);
1574 }
1575
1576 void r5l_quiesce(struct r5l_log *log, int quiesce)
1577 {
1578         struct mddev *mddev;
1579
1580         if (quiesce) {
1581                 /* make sure r5l_write_super_and_discard_space exits */
1582                 mddev = log->rdev->mddev;
1583                 wake_up(&mddev->sb_wait);
1584                 kthread_park(log->reclaim_thread->tsk);
1585                 r5l_wake_reclaim(log, MaxSector);
1586                 r5l_do_reclaim(log);
1587         } else
1588                 kthread_unpark(log->reclaim_thread->tsk);
1589 }
1590
1591 bool r5l_log_disk_error(struct r5conf *conf)
1592 {
1593         struct r5l_log *log = conf->log;
1594
1595         /* don't allow write if journal disk is missing */
1596         if (!log)
1597                 return test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1598         else
1599                 return test_bit(Faulty, &log->rdev->flags);
1600 }
1601
1602 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1603
1604 struct r5l_recovery_ctx {
1605         struct page *meta_page;         /* current meta */
1606         sector_t meta_total_blocks;     /* total size of current meta and data */
1607         sector_t pos;                   /* recovery position */
1608         u64 seq;                        /* recovery position seq */
1609         int data_parity_stripes;        /* number of data_parity stripes */
1610         int data_only_stripes;          /* number of data_only stripes */
1611         struct list_head cached_list;
1612
1613         /*
1614          * read ahead page pool (ra_pool)
1615          * in recovery, log is read sequentially. It is not efficient to
1616          * read every page with sync_page_io(). The read ahead page pool
1617          * reads multiple pages with one IO, so further log read can
1618          * just copy data from the pool.
1619          */
1620         struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1621         struct bio_vec ra_bvec[R5L_RECOVERY_PAGE_POOL_SIZE];
1622         sector_t pool_offset;   /* offset of first page in the pool */
1623         int total_pages;        /* total allocated pages */
1624         int valid_pages;        /* pages with valid data */
1625 };
1626
1627 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1628                                             struct r5l_recovery_ctx *ctx)
1629 {
1630         struct page *page;
1631
1632         ctx->valid_pages = 0;
1633         ctx->total_pages = 0;
1634         while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1635                 page = alloc_page(GFP_KERNEL);
1636
1637                 if (!page)
1638                         break;
1639                 ctx->ra_pool[ctx->total_pages] = page;
1640                 ctx->total_pages += 1;
1641         }
1642
1643         if (ctx->total_pages == 0)
1644                 return -ENOMEM;
1645
1646         ctx->pool_offset = 0;
1647         return 0;
1648 }
1649
1650 static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1651                                         struct r5l_recovery_ctx *ctx)
1652 {
1653         int i;
1654
1655         for (i = 0; i < ctx->total_pages; ++i)
1656                 put_page(ctx->ra_pool[i]);
1657 }
1658
1659 /*
1660  * fetch ctx->valid_pages pages from offset
1661  * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1662  * However, if the offset is close to the end of the journal device,
1663  * ctx->valid_pages could be smaller than ctx->total_pages
1664  */
1665 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1666                                       struct r5l_recovery_ctx *ctx,
1667                                       sector_t offset)
1668 {
1669         struct bio bio;
1670         int ret;
1671
1672         bio_init(&bio, log->rdev->bdev, ctx->ra_bvec,
1673                  R5L_RECOVERY_PAGE_POOL_SIZE, REQ_OP_READ);
1674         bio.bi_iter.bi_sector = log->rdev->data_offset + offset;
1675
1676         ctx->valid_pages = 0;
1677         ctx->pool_offset = offset;
1678
1679         while (ctx->valid_pages < ctx->total_pages) {
1680                 __bio_add_page(&bio, ctx->ra_pool[ctx->valid_pages], PAGE_SIZE,
1681                                0);
1682                 ctx->valid_pages += 1;
1683
1684                 offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1685
1686                 if (offset == 0)  /* reached end of the device */
1687                         break;
1688         }
1689
1690         ret = submit_bio_wait(&bio);
1691         bio_uninit(&bio);
1692         return ret;
1693 }
1694
1695 /*
1696  * try read a page from the read ahead page pool, if the page is not in the
1697  * pool, call r5l_recovery_fetch_ra_pool
1698  */
1699 static int r5l_recovery_read_page(struct r5l_log *log,
1700                                   struct r5l_recovery_ctx *ctx,
1701                                   struct page *page,
1702                                   sector_t offset)
1703 {
1704         int ret;
1705
1706         if (offset < ctx->pool_offset ||
1707             offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1708                 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1709                 if (ret)
1710                         return ret;
1711         }
1712
1713         BUG_ON(offset < ctx->pool_offset ||
1714                offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1715
1716         memcpy(page_address(page),
1717                page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1718                                          BLOCK_SECTOR_SHIFT]),
1719                PAGE_SIZE);
1720         return 0;
1721 }
1722
1723 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1724                                         struct r5l_recovery_ctx *ctx)
1725 {
1726         struct page *page = ctx->meta_page;
1727         struct r5l_meta_block *mb;
1728         u32 crc, stored_crc;
1729         int ret;
1730
1731         ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1732         if (ret != 0)
1733                 return ret;
1734
1735         mb = page_address(page);
1736         stored_crc = le32_to_cpu(mb->checksum);
1737         mb->checksum = 0;
1738
1739         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1740             le64_to_cpu(mb->seq) != ctx->seq ||
1741             mb->version != R5LOG_VERSION ||
1742             le64_to_cpu(mb->position) != ctx->pos)
1743                 return -EINVAL;
1744
1745         crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1746         if (stored_crc != crc)
1747                 return -EINVAL;
1748
1749         if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1750                 return -EINVAL;
1751
1752         ctx->meta_total_blocks = BLOCK_SECTORS;
1753
1754         return 0;
1755 }
1756
1757 static void
1758 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1759                                      struct page *page,
1760                                      sector_t pos, u64 seq)
1761 {
1762         struct r5l_meta_block *mb;
1763
1764         mb = page_address(page);
1765         clear_page(mb);
1766         mb->magic = cpu_to_le32(R5LOG_MAGIC);
1767         mb->version = R5LOG_VERSION;
1768         mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1769         mb->seq = cpu_to_le64(seq);
1770         mb->position = cpu_to_le64(pos);
1771 }
1772
1773 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1774                                           u64 seq)
1775 {
1776         struct page *page;
1777         struct r5l_meta_block *mb;
1778
1779         page = alloc_page(GFP_KERNEL);
1780         if (!page)
1781                 return -ENOMEM;
1782         r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1783         mb = page_address(page);
1784         mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1785                                              mb, PAGE_SIZE));
1786         if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE |
1787                           REQ_SYNC | REQ_FUA, false)) {
1788                 __free_page(page);
1789                 return -EIO;
1790         }
1791         __free_page(page);
1792         return 0;
1793 }
1794
1795 /*
1796  * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1797  * to mark valid (potentially not flushed) data in the journal.
1798  *
1799  * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1800  * so there should not be any mismatch here.
1801  */
1802 static void r5l_recovery_load_data(struct r5l_log *log,
1803                                    struct stripe_head *sh,
1804                                    struct r5l_recovery_ctx *ctx,
1805                                    struct r5l_payload_data_parity *payload,
1806                                    sector_t log_offset)
1807 {
1808         struct mddev *mddev = log->rdev->mddev;
1809         struct r5conf *conf = mddev->private;
1810         int dd_idx;
1811
1812         raid5_compute_sector(conf,
1813                              le64_to_cpu(payload->location), 0,
1814                              &dd_idx, sh);
1815         r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1816         sh->dev[dd_idx].log_checksum =
1817                 le32_to_cpu(payload->checksum[0]);
1818         ctx->meta_total_blocks += BLOCK_SECTORS;
1819
1820         set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1821         set_bit(STRIPE_R5C_CACHING, &sh->state);
1822 }
1823
1824 static void r5l_recovery_load_parity(struct r5l_log *log,
1825                                      struct stripe_head *sh,
1826                                      struct r5l_recovery_ctx *ctx,
1827                                      struct r5l_payload_data_parity *payload,
1828                                      sector_t log_offset)
1829 {
1830         struct mddev *mddev = log->rdev->mddev;
1831         struct r5conf *conf = mddev->private;
1832
1833         ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1834         r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1835         sh->dev[sh->pd_idx].log_checksum =
1836                 le32_to_cpu(payload->checksum[0]);
1837         set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1838
1839         if (sh->qd_idx >= 0) {
1840                 r5l_recovery_read_page(
1841                         log, ctx, sh->dev[sh->qd_idx].page,
1842                         r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1843                 sh->dev[sh->qd_idx].log_checksum =
1844                         le32_to_cpu(payload->checksum[1]);
1845                 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1846         }
1847         clear_bit(STRIPE_R5C_CACHING, &sh->state);
1848 }
1849
1850 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1851 {
1852         int i;
1853
1854         sh->state = 0;
1855         sh->log_start = MaxSector;
1856         for (i = sh->disks; i--; )
1857                 sh->dev[i].flags = 0;
1858 }
1859
1860 static void
1861 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1862                                struct stripe_head *sh,
1863                                struct r5l_recovery_ctx *ctx)
1864 {
1865         struct md_rdev *rdev, *rrdev;
1866         int disk_index;
1867         int data_count = 0;
1868
1869         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1870                 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1871                         continue;
1872                 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1873                         continue;
1874                 data_count++;
1875         }
1876
1877         /*
1878          * stripes that only have parity must have been flushed
1879          * before the crash that we are now recovering from, so
1880          * there is nothing more to recovery.
1881          */
1882         if (data_count == 0)
1883                 goto out;
1884
1885         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1886                 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1887                         continue;
1888
1889                 /* in case device is broken */
1890                 rcu_read_lock();
1891                 rdev = rcu_dereference(conf->disks[disk_index].rdev);
1892                 if (rdev) {
1893                         atomic_inc(&rdev->nr_pending);
1894                         rcu_read_unlock();
1895                         sync_page_io(rdev, sh->sector, PAGE_SIZE,
1896                                      sh->dev[disk_index].page, REQ_OP_WRITE,
1897                                      false);
1898                         rdev_dec_pending(rdev, rdev->mddev);
1899                         rcu_read_lock();
1900                 }
1901                 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1902                 if (rrdev) {
1903                         atomic_inc(&rrdev->nr_pending);
1904                         rcu_read_unlock();
1905                         sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1906                                      sh->dev[disk_index].page, REQ_OP_WRITE,
1907                                      false);
1908                         rdev_dec_pending(rrdev, rrdev->mddev);
1909                         rcu_read_lock();
1910                 }
1911                 rcu_read_unlock();
1912         }
1913         ctx->data_parity_stripes++;
1914 out:
1915         r5l_recovery_reset_stripe(sh);
1916 }
1917
1918 static struct stripe_head *
1919 r5c_recovery_alloc_stripe(
1920                 struct r5conf *conf,
1921                 sector_t stripe_sect,
1922                 int noblock)
1923 {
1924         struct stripe_head *sh;
1925
1926         sh = raid5_get_active_stripe(conf, NULL, stripe_sect,
1927                                      noblock ? R5_GAS_NOBLOCK : 0);
1928         if (!sh)
1929                 return NULL;  /* no more stripe available */
1930
1931         r5l_recovery_reset_stripe(sh);
1932
1933         return sh;
1934 }
1935
1936 static struct stripe_head *
1937 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1938 {
1939         struct stripe_head *sh;
1940
1941         list_for_each_entry(sh, list, lru)
1942                 if (sh->sector == sect)
1943                         return sh;
1944         return NULL;
1945 }
1946
1947 static void
1948 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1949                           struct r5l_recovery_ctx *ctx)
1950 {
1951         struct stripe_head *sh, *next;
1952
1953         list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1954                 r5l_recovery_reset_stripe(sh);
1955                 list_del_init(&sh->lru);
1956                 raid5_release_stripe(sh);
1957         }
1958 }
1959
1960 static void
1961 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1962                             struct r5l_recovery_ctx *ctx)
1963 {
1964         struct stripe_head *sh, *next;
1965
1966         list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1967                 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1968                         r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1969                         list_del_init(&sh->lru);
1970                         raid5_release_stripe(sh);
1971                 }
1972 }
1973
1974 /* if matches return 0; otherwise return -EINVAL */
1975 static int
1976 r5l_recovery_verify_data_checksum(struct r5l_log *log,
1977                                   struct r5l_recovery_ctx *ctx,
1978                                   struct page *page,
1979                                   sector_t log_offset, __le32 log_checksum)
1980 {
1981         void *addr;
1982         u32 checksum;
1983
1984         r5l_recovery_read_page(log, ctx, page, log_offset);
1985         addr = kmap_atomic(page);
1986         checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1987         kunmap_atomic(addr);
1988         return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1989 }
1990
1991 /*
1992  * before loading data to stripe cache, we need verify checksum for all data,
1993  * if there is mismatch for any data page, we drop all data in the mata block
1994  */
1995 static int
1996 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1997                                          struct r5l_recovery_ctx *ctx)
1998 {
1999         struct mddev *mddev = log->rdev->mddev;
2000         struct r5conf *conf = mddev->private;
2001         struct r5l_meta_block *mb = page_address(ctx->meta_page);
2002         sector_t mb_offset = sizeof(struct r5l_meta_block);
2003         sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2004         struct page *page;
2005         struct r5l_payload_data_parity *payload;
2006         struct r5l_payload_flush *payload_flush;
2007
2008         page = alloc_page(GFP_KERNEL);
2009         if (!page)
2010                 return -ENOMEM;
2011
2012         while (mb_offset < le32_to_cpu(mb->meta_size)) {
2013                 payload = (void *)mb + mb_offset;
2014                 payload_flush = (void *)mb + mb_offset;
2015
2016                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2017                         if (r5l_recovery_verify_data_checksum(
2018                                     log, ctx, page, log_offset,
2019                                     payload->checksum[0]) < 0)
2020                                 goto mismatch;
2021                 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2022                         if (r5l_recovery_verify_data_checksum(
2023                                     log, ctx, page, log_offset,
2024                                     payload->checksum[0]) < 0)
2025                                 goto mismatch;
2026                         if (conf->max_degraded == 2 && /* q for RAID 6 */
2027                             r5l_recovery_verify_data_checksum(
2028                                     log, ctx, page,
2029                                     r5l_ring_add(log, log_offset,
2030                                                  BLOCK_SECTORS),
2031                                     payload->checksum[1]) < 0)
2032                                 goto mismatch;
2033                 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2034                         /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2035                 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2036                         goto mismatch;
2037
2038                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2039                         mb_offset += sizeof(struct r5l_payload_flush) +
2040                                 le32_to_cpu(payload_flush->size);
2041                 } else {
2042                         /* DATA or PARITY payload */
2043                         log_offset = r5l_ring_add(log, log_offset,
2044                                                   le32_to_cpu(payload->size));
2045                         mb_offset += sizeof(struct r5l_payload_data_parity) +
2046                                 sizeof(__le32) *
2047                                 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2048                 }
2049
2050         }
2051
2052         put_page(page);
2053         return 0;
2054
2055 mismatch:
2056         put_page(page);
2057         return -EINVAL;
2058 }
2059
2060 /*
2061  * Analyze all data/parity pages in one meta block
2062  * Returns:
2063  * 0 for success
2064  * -EINVAL for unknown playload type
2065  * -EAGAIN for checksum mismatch of data page
2066  * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2067  */
2068 static int
2069 r5c_recovery_analyze_meta_block(struct r5l_log *log,
2070                                 struct r5l_recovery_ctx *ctx,
2071                                 struct list_head *cached_stripe_list)
2072 {
2073         struct mddev *mddev = log->rdev->mddev;
2074         struct r5conf *conf = mddev->private;
2075         struct r5l_meta_block *mb;
2076         struct r5l_payload_data_parity *payload;
2077         struct r5l_payload_flush *payload_flush;
2078         int mb_offset;
2079         sector_t log_offset;
2080         sector_t stripe_sect;
2081         struct stripe_head *sh;
2082         int ret;
2083
2084         /*
2085          * for mismatch in data blocks, we will drop all data in this mb, but
2086          * we will still read next mb for other data with FLUSH flag, as
2087          * io_unit could finish out of order.
2088          */
2089         ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2090         if (ret == -EINVAL)
2091                 return -EAGAIN;
2092         else if (ret)
2093                 return ret;   /* -ENOMEM duo to alloc_page() failed */
2094
2095         mb = page_address(ctx->meta_page);
2096         mb_offset = sizeof(struct r5l_meta_block);
2097         log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2098
2099         while (mb_offset < le32_to_cpu(mb->meta_size)) {
2100                 int dd;
2101
2102                 payload = (void *)mb + mb_offset;
2103                 payload_flush = (void *)mb + mb_offset;
2104
2105                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2106                         int i, count;
2107
2108                         count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2109                         for (i = 0; i < count; ++i) {
2110                                 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2111                                 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2112                                                                 stripe_sect);
2113                                 if (sh) {
2114                                         WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2115                                         r5l_recovery_reset_stripe(sh);
2116                                         list_del_init(&sh->lru);
2117                                         raid5_release_stripe(sh);
2118                                 }
2119                         }
2120
2121                         mb_offset += sizeof(struct r5l_payload_flush) +
2122                                 le32_to_cpu(payload_flush->size);
2123                         continue;
2124                 }
2125
2126                 /* DATA or PARITY payload */
2127                 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2128                         raid5_compute_sector(
2129                                 conf, le64_to_cpu(payload->location), 0, &dd,
2130                                 NULL)
2131                         : le64_to_cpu(payload->location);
2132
2133                 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2134                                                 stripe_sect);
2135
2136                 if (!sh) {
2137                         sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1);
2138                         /*
2139                          * cannot get stripe from raid5_get_active_stripe
2140                          * try replay some stripes
2141                          */
2142                         if (!sh) {
2143                                 r5c_recovery_replay_stripes(
2144                                         cached_stripe_list, ctx);
2145                                 sh = r5c_recovery_alloc_stripe(
2146                                         conf, stripe_sect, 1);
2147                         }
2148                         if (!sh) {
2149                                 int new_size = conf->min_nr_stripes * 2;
2150                                 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2151                                         mdname(mddev),
2152                                         new_size);
2153                                 ret = raid5_set_cache_size(mddev, new_size);
2154                                 if (conf->min_nr_stripes <= new_size / 2) {
2155                                         pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
2156                                                 mdname(mddev),
2157                                                 ret,
2158                                                 new_size,
2159                                                 conf->min_nr_stripes,
2160                                                 conf->max_nr_stripes);
2161                                         return -ENOMEM;
2162                                 }
2163                                 sh = r5c_recovery_alloc_stripe(
2164                                         conf, stripe_sect, 0);
2165                         }
2166                         if (!sh) {
2167                                 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2168                                         mdname(mddev));
2169                                 return -ENOMEM;
2170                         }
2171                         list_add_tail(&sh->lru, cached_stripe_list);
2172                 }
2173
2174                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2175                         if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2176                             test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2177                                 r5l_recovery_replay_one_stripe(conf, sh, ctx);
2178                                 list_move_tail(&sh->lru, cached_stripe_list);
2179                         }
2180                         r5l_recovery_load_data(log, sh, ctx, payload,
2181                                                log_offset);
2182                 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2183                         r5l_recovery_load_parity(log, sh, ctx, payload,
2184                                                  log_offset);
2185                 else
2186                         return -EINVAL;
2187
2188                 log_offset = r5l_ring_add(log, log_offset,
2189                                           le32_to_cpu(payload->size));
2190
2191                 mb_offset += sizeof(struct r5l_payload_data_parity) +
2192                         sizeof(__le32) *
2193                         (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2194         }
2195
2196         return 0;
2197 }
2198
2199 /*
2200  * Load the stripe into cache. The stripe will be written out later by
2201  * the stripe cache state machine.
2202  */
2203 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2204                                          struct stripe_head *sh)
2205 {
2206         struct r5dev *dev;
2207         int i;
2208
2209         for (i = sh->disks; i--; ) {
2210                 dev = sh->dev + i;
2211                 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2212                         set_bit(R5_InJournal, &dev->flags);
2213                         set_bit(R5_UPTODATE, &dev->flags);
2214                 }
2215         }
2216 }
2217
2218 /*
2219  * Scan through the log for all to-be-flushed data
2220  *
2221  * For stripes with data and parity, namely Data-Parity stripe
2222  * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2223  *
2224  * For stripes with only data, namely Data-Only stripe
2225  * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2226  *
2227  * For a stripe, if we see data after parity, we should discard all previous
2228  * data and parity for this stripe, as these data are already flushed to
2229  * the array.
2230  *
2231  * At the end of the scan, we return the new journal_tail, which points to
2232  * first data-only stripe on the journal device, or next invalid meta block.
2233  */
2234 static int r5c_recovery_flush_log(struct r5l_log *log,
2235                                   struct r5l_recovery_ctx *ctx)
2236 {
2237         struct stripe_head *sh;
2238         int ret = 0;
2239
2240         /* scan through the log */
2241         while (1) {
2242                 if (r5l_recovery_read_meta_block(log, ctx))
2243                         break;
2244
2245                 ret = r5c_recovery_analyze_meta_block(log, ctx,
2246                                                       &ctx->cached_list);
2247                 /*
2248                  * -EAGAIN means mismatch in data block, in this case, we still
2249                  * try scan the next metablock
2250                  */
2251                 if (ret && ret != -EAGAIN)
2252                         break;   /* ret == -EINVAL or -ENOMEM */
2253                 ctx->seq++;
2254                 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2255         }
2256
2257         if (ret == -ENOMEM) {
2258                 r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2259                 return ret;
2260         }
2261
2262         /* replay data-parity stripes */
2263         r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2264
2265         /* load data-only stripes to stripe cache */
2266         list_for_each_entry(sh, &ctx->cached_list, lru) {
2267                 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2268                 r5c_recovery_load_one_stripe(log, sh);
2269                 ctx->data_only_stripes++;
2270         }
2271
2272         return 0;
2273 }
2274
2275 /*
2276  * we did a recovery. Now ctx.pos points to an invalid meta block. New
2277  * log will start here. but we can't let superblock point to last valid
2278  * meta block. The log might looks like:
2279  * | meta 1| meta 2| meta 3|
2280  * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2281  * superblock points to meta 1, we write a new valid meta 2n.  if crash
2282  * happens again, new recovery will start from meta 1. Since meta 2n is
2283  * valid now, recovery will think meta 3 is valid, which is wrong.
2284  * The solution is we create a new meta in meta2 with its seq == meta
2285  * 1's seq + 10000 and let superblock points to meta2. The same recovery
2286  * will not think meta 3 is a valid meta, because its seq doesn't match
2287  */
2288
2289 /*
2290  * Before recovery, the log looks like the following
2291  *
2292  *   ---------------------------------------------
2293  *   |           valid log        | invalid log  |
2294  *   ---------------------------------------------
2295  *   ^
2296  *   |- log->last_checkpoint
2297  *   |- log->last_cp_seq
2298  *
2299  * Now we scan through the log until we see invalid entry
2300  *
2301  *   ---------------------------------------------
2302  *   |           valid log        | invalid log  |
2303  *   ---------------------------------------------
2304  *   ^                            ^
2305  *   |- log->last_checkpoint      |- ctx->pos
2306  *   |- log->last_cp_seq          |- ctx->seq
2307  *
2308  * From this point, we need to increase seq number by 10 to avoid
2309  * confusing next recovery.
2310  *
2311  *   ---------------------------------------------
2312  *   |           valid log        | invalid log  |
2313  *   ---------------------------------------------
2314  *   ^                              ^
2315  *   |- log->last_checkpoint        |- ctx->pos+1
2316  *   |- log->last_cp_seq            |- ctx->seq+10001
2317  *
2318  * However, it is not safe to start the state machine yet, because data only
2319  * parities are not yet secured in RAID. To save these data only parities, we
2320  * rewrite them from seq+11.
2321  *
2322  *   -----------------------------------------------------------------
2323  *   |           valid log        | data only stripes | invalid log  |
2324  *   -----------------------------------------------------------------
2325  *   ^                                                ^
2326  *   |- log->last_checkpoint                          |- ctx->pos+n
2327  *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2328  *
2329  * If failure happens again during this process, the recovery can safe start
2330  * again from log->last_checkpoint.
2331  *
2332  * Once data only stripes are rewritten to journal, we move log_tail
2333  *
2334  *   -----------------------------------------------------------------
2335  *   |     old log        |    data only stripes    | invalid log  |
2336  *   -----------------------------------------------------------------
2337  *                        ^                         ^
2338  *                        |- log->last_checkpoint   |- ctx->pos+n
2339  *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2340  *
2341  * Then we can safely start the state machine. If failure happens from this
2342  * point on, the recovery will start from new log->last_checkpoint.
2343  */
2344 static int
2345 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2346                                        struct r5l_recovery_ctx *ctx)
2347 {
2348         struct stripe_head *sh;
2349         struct mddev *mddev = log->rdev->mddev;
2350         struct page *page;
2351         sector_t next_checkpoint = MaxSector;
2352
2353         page = alloc_page(GFP_KERNEL);
2354         if (!page) {
2355                 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2356                        mdname(mddev));
2357                 return -ENOMEM;
2358         }
2359
2360         WARN_ON(list_empty(&ctx->cached_list));
2361
2362         list_for_each_entry(sh, &ctx->cached_list, lru) {
2363                 struct r5l_meta_block *mb;
2364                 int i;
2365                 int offset;
2366                 sector_t write_pos;
2367
2368                 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2369                 r5l_recovery_create_empty_meta_block(log, page,
2370                                                      ctx->pos, ctx->seq);
2371                 mb = page_address(page);
2372                 offset = le32_to_cpu(mb->meta_size);
2373                 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2374
2375                 for (i = sh->disks; i--; ) {
2376                         struct r5dev *dev = &sh->dev[i];
2377                         struct r5l_payload_data_parity *payload;
2378                         void *addr;
2379
2380                         if (test_bit(R5_InJournal, &dev->flags)) {
2381                                 payload = (void *)mb + offset;
2382                                 payload->header.type = cpu_to_le16(
2383                                         R5LOG_PAYLOAD_DATA);
2384                                 payload->size = cpu_to_le32(BLOCK_SECTORS);
2385                                 payload->location = cpu_to_le64(
2386                                         raid5_compute_blocknr(sh, i, 0));
2387                                 addr = kmap_atomic(dev->page);
2388                                 payload->checksum[0] = cpu_to_le32(
2389                                         crc32c_le(log->uuid_checksum, addr,
2390                                                   PAGE_SIZE));
2391                                 kunmap_atomic(addr);
2392                                 sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2393                                              dev->page, REQ_OP_WRITE, false);
2394                                 write_pos = r5l_ring_add(log, write_pos,
2395                                                          BLOCK_SECTORS);
2396                                 offset += sizeof(__le32) +
2397                                         sizeof(struct r5l_payload_data_parity);
2398
2399                         }
2400                 }
2401                 mb->meta_size = cpu_to_le32(offset);
2402                 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2403                                                      mb, PAGE_SIZE));
2404                 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2405                              REQ_OP_WRITE | REQ_SYNC | REQ_FUA, false);
2406                 sh->log_start = ctx->pos;
2407                 list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2408                 atomic_inc(&log->stripe_in_journal_count);
2409                 ctx->pos = write_pos;
2410                 ctx->seq += 1;
2411                 next_checkpoint = sh->log_start;
2412         }
2413         log->next_checkpoint = next_checkpoint;
2414         __free_page(page);
2415         return 0;
2416 }
2417
2418 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2419                                                  struct r5l_recovery_ctx *ctx)
2420 {
2421         struct mddev *mddev = log->rdev->mddev;
2422         struct r5conf *conf = mddev->private;
2423         struct stripe_head *sh, *next;
2424         bool cleared_pending = false;
2425
2426         if (ctx->data_only_stripes == 0)
2427                 return;
2428
2429         if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2430                 cleared_pending = true;
2431                 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2432         }
2433         log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2434
2435         list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2436                 r5c_make_stripe_write_out(sh);
2437                 set_bit(STRIPE_HANDLE, &sh->state);
2438                 list_del_init(&sh->lru);
2439                 raid5_release_stripe(sh);
2440         }
2441
2442         /* reuse conf->wait_for_quiescent in recovery */
2443         wait_event(conf->wait_for_quiescent,
2444                    atomic_read(&conf->active_stripes) == 0);
2445
2446         log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2447         if (cleared_pending)
2448                 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2449 }
2450
2451 static int r5l_recovery_log(struct r5l_log *log)
2452 {
2453         struct mddev *mddev = log->rdev->mddev;
2454         struct r5l_recovery_ctx *ctx;
2455         int ret;
2456         sector_t pos;
2457
2458         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2459         if (!ctx)
2460                 return -ENOMEM;
2461
2462         ctx->pos = log->last_checkpoint;
2463         ctx->seq = log->last_cp_seq;
2464         INIT_LIST_HEAD(&ctx->cached_list);
2465         ctx->meta_page = alloc_page(GFP_KERNEL);
2466
2467         if (!ctx->meta_page) {
2468                 ret =  -ENOMEM;
2469                 goto meta_page;
2470         }
2471
2472         if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2473                 ret = -ENOMEM;
2474                 goto ra_pool;
2475         }
2476
2477         ret = r5c_recovery_flush_log(log, ctx);
2478
2479         if (ret)
2480                 goto error;
2481
2482         pos = ctx->pos;
2483         ctx->seq += 10000;
2484
2485         if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2486                 pr_info("md/raid:%s: starting from clean shutdown\n",
2487                          mdname(mddev));
2488         else
2489                 pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2490                          mdname(mddev), ctx->data_only_stripes,
2491                          ctx->data_parity_stripes);
2492
2493         if (ctx->data_only_stripes == 0) {
2494                 log->next_checkpoint = ctx->pos;
2495                 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2496                 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2497         } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2498                 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2499                        mdname(mddev));
2500                 ret =  -EIO;
2501                 goto error;
2502         }
2503
2504         log->log_start = ctx->pos;
2505         log->seq = ctx->seq;
2506         log->last_checkpoint = pos;
2507         r5l_write_super(log, pos);
2508
2509         r5c_recovery_flush_data_only_stripes(log, ctx);
2510         ret = 0;
2511 error:
2512         r5l_recovery_free_ra_pool(log, ctx);
2513 ra_pool:
2514         __free_page(ctx->meta_page);
2515 meta_page:
2516         kfree(ctx);
2517         return ret;
2518 }
2519
2520 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2521 {
2522         struct mddev *mddev = log->rdev->mddev;
2523
2524         log->rdev->journal_tail = cp;
2525         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2526 }
2527
2528 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2529 {
2530         struct r5conf *conf;
2531         int ret;
2532
2533         ret = mddev_lock(mddev);
2534         if (ret)
2535                 return ret;
2536
2537         conf = mddev->private;
2538         if (!conf || !conf->log)
2539                 goto out_unlock;
2540
2541         switch (conf->log->r5c_journal_mode) {
2542         case R5C_JOURNAL_MODE_WRITE_THROUGH:
2543                 ret = snprintf(
2544                         page, PAGE_SIZE, "[%s] %s\n",
2545                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2546                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2547                 break;
2548         case R5C_JOURNAL_MODE_WRITE_BACK:
2549                 ret = snprintf(
2550                         page, PAGE_SIZE, "%s [%s]\n",
2551                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2552                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2553                 break;
2554         default:
2555                 ret = 0;
2556         }
2557
2558 out_unlock:
2559         mddev_unlock(mddev);
2560         return ret;
2561 }
2562
2563 /*
2564  * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2565  *
2566  * @mode as defined in 'enum r5c_journal_mode'.
2567  *
2568  */
2569 int r5c_journal_mode_set(struct mddev *mddev, int mode)
2570 {
2571         struct r5conf *conf;
2572
2573         if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2574             mode > R5C_JOURNAL_MODE_WRITE_BACK)
2575                 return -EINVAL;
2576
2577         conf = mddev->private;
2578         if (!conf || !conf->log)
2579                 return -ENODEV;
2580
2581         if (raid5_calc_degraded(conf) > 0 &&
2582             mode == R5C_JOURNAL_MODE_WRITE_BACK)
2583                 return -EINVAL;
2584
2585         mddev_suspend(mddev);
2586         conf->log->r5c_journal_mode = mode;
2587         mddev_resume(mddev);
2588
2589         pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2590                  mdname(mddev), mode, r5c_journal_mode_str[mode]);
2591         return 0;
2592 }
2593 EXPORT_SYMBOL(r5c_journal_mode_set);
2594
2595 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2596                                       const char *page, size_t length)
2597 {
2598         int mode = ARRAY_SIZE(r5c_journal_mode_str);
2599         size_t len = length;
2600         int ret;
2601
2602         if (len < 2)
2603                 return -EINVAL;
2604
2605         if (page[len - 1] == '\n')
2606                 len--;
2607
2608         while (mode--)
2609                 if (strlen(r5c_journal_mode_str[mode]) == len &&
2610                     !strncmp(page, r5c_journal_mode_str[mode], len))
2611                         break;
2612         ret = mddev_lock(mddev);
2613         if (ret)
2614                 return ret;
2615         ret = r5c_journal_mode_set(mddev, mode);
2616         mddev_unlock(mddev);
2617         return ret ?: length;
2618 }
2619
2620 struct md_sysfs_entry
2621 r5c_journal_mode = __ATTR(journal_mode, 0644,
2622                           r5c_journal_mode_show, r5c_journal_mode_store);
2623
2624 /*
2625  * Try handle write operation in caching phase. This function should only
2626  * be called in write-back mode.
2627  *
2628  * If all outstanding writes can be handled in caching phase, returns 0
2629  * If writes requires write-out phase, call r5c_make_stripe_write_out()
2630  * and returns -EAGAIN
2631  */
2632 int r5c_try_caching_write(struct r5conf *conf,
2633                           struct stripe_head *sh,
2634                           struct stripe_head_state *s,
2635                           int disks)
2636 {
2637         struct r5l_log *log = conf->log;
2638         int i;
2639         struct r5dev *dev;
2640         int to_cache = 0;
2641         void __rcu **pslot;
2642         sector_t tree_index;
2643         int ret;
2644         uintptr_t refcount;
2645
2646         BUG_ON(!r5c_is_writeback(log));
2647
2648         if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2649                 /*
2650                  * There are two different scenarios here:
2651                  *  1. The stripe has some data cached, and it is sent to
2652                  *     write-out phase for reclaim
2653                  *  2. The stripe is clean, and this is the first write
2654                  *
2655                  * For 1, return -EAGAIN, so we continue with
2656                  * handle_stripe_dirtying().
2657                  *
2658                  * For 2, set STRIPE_R5C_CACHING and continue with caching
2659                  * write.
2660                  */
2661
2662                 /* case 1: anything injournal or anything in written */
2663                 if (s->injournal > 0 || s->written > 0)
2664                         return -EAGAIN;
2665                 /* case 2 */
2666                 set_bit(STRIPE_R5C_CACHING, &sh->state);
2667         }
2668
2669         /*
2670          * When run in degraded mode, array is set to write-through mode.
2671          * This check helps drain pending write safely in the transition to
2672          * write-through mode.
2673          *
2674          * When a stripe is syncing, the write is also handled in write
2675          * through mode.
2676          */
2677         if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2678                 r5c_make_stripe_write_out(sh);
2679                 return -EAGAIN;
2680         }
2681
2682         for (i = disks; i--; ) {
2683                 dev = &sh->dev[i];
2684                 /* if non-overwrite, use writing-out phase */
2685                 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2686                     !test_bit(R5_InJournal, &dev->flags)) {
2687                         r5c_make_stripe_write_out(sh);
2688                         return -EAGAIN;
2689                 }
2690         }
2691
2692         /* if the stripe is not counted in big_stripe_tree, add it now */
2693         if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2694             !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2695                 tree_index = r5c_tree_index(conf, sh->sector);
2696                 spin_lock(&log->tree_lock);
2697                 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2698                                                tree_index);
2699                 if (pslot) {
2700                         refcount = (uintptr_t)radix_tree_deref_slot_protected(
2701                                 pslot, &log->tree_lock) >>
2702                                 R5C_RADIX_COUNT_SHIFT;
2703                         radix_tree_replace_slot(
2704                                 &log->big_stripe_tree, pslot,
2705                                 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2706                 } else {
2707                         /*
2708                          * this radix_tree_insert can fail safely, so no
2709                          * need to call radix_tree_preload()
2710                          */
2711                         ret = radix_tree_insert(
2712                                 &log->big_stripe_tree, tree_index,
2713                                 (void *)(1 << R5C_RADIX_COUNT_SHIFT));
2714                         if (ret) {
2715                                 spin_unlock(&log->tree_lock);
2716                                 r5c_make_stripe_write_out(sh);
2717                                 return -EAGAIN;
2718                         }
2719                 }
2720                 spin_unlock(&log->tree_lock);
2721
2722                 /*
2723                  * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2724                  * counted in the radix tree
2725                  */
2726                 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2727                 atomic_inc(&conf->r5c_cached_partial_stripes);
2728         }
2729
2730         for (i = disks; i--; ) {
2731                 dev = &sh->dev[i];
2732                 if (dev->towrite) {
2733                         set_bit(R5_Wantwrite, &dev->flags);
2734                         set_bit(R5_Wantdrain, &dev->flags);
2735                         set_bit(R5_LOCKED, &dev->flags);
2736                         to_cache++;
2737                 }
2738         }
2739
2740         if (to_cache) {
2741                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2742                 /*
2743                  * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2744                  * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2745                  * r5c_handle_data_cached()
2746                  */
2747                 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2748         }
2749
2750         return 0;
2751 }
2752
2753 /*
2754  * free extra pages (orig_page) we allocated for prexor
2755  */
2756 void r5c_release_extra_page(struct stripe_head *sh)
2757 {
2758         struct r5conf *conf = sh->raid_conf;
2759         int i;
2760         bool using_disk_info_extra_page;
2761
2762         using_disk_info_extra_page =
2763                 sh->dev[0].orig_page == conf->disks[0].extra_page;
2764
2765         for (i = sh->disks; i--; )
2766                 if (sh->dev[i].page != sh->dev[i].orig_page) {
2767                         struct page *p = sh->dev[i].orig_page;
2768
2769                         sh->dev[i].orig_page = sh->dev[i].page;
2770                         clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2771
2772                         if (!using_disk_info_extra_page)
2773                                 put_page(p);
2774                 }
2775
2776         if (using_disk_info_extra_page) {
2777                 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2778                 md_wakeup_thread(conf->mddev->thread);
2779         }
2780 }
2781
2782 void r5c_use_extra_page(struct stripe_head *sh)
2783 {
2784         struct r5conf *conf = sh->raid_conf;
2785         int i;
2786         struct r5dev *dev;
2787
2788         for (i = sh->disks; i--; ) {
2789                 dev = &sh->dev[i];
2790                 if (dev->orig_page != dev->page)
2791                         put_page(dev->orig_page);
2792                 dev->orig_page = conf->disks[i].extra_page;
2793         }
2794 }
2795
2796 /*
2797  * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2798  * stripe is committed to RAID disks.
2799  */
2800 void r5c_finish_stripe_write_out(struct r5conf *conf,
2801                                  struct stripe_head *sh,
2802                                  struct stripe_head_state *s)
2803 {
2804         struct r5l_log *log = conf->log;
2805         int i;
2806         int do_wakeup = 0;
2807         sector_t tree_index;
2808         void __rcu **pslot;
2809         uintptr_t refcount;
2810
2811         if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2812                 return;
2813
2814         WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2815         clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2816
2817         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2818                 return;
2819
2820         for (i = sh->disks; i--; ) {
2821                 clear_bit(R5_InJournal, &sh->dev[i].flags);
2822                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2823                         do_wakeup = 1;
2824         }
2825
2826         /*
2827          * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2828          * We updated R5_InJournal, so we also update s->injournal.
2829          */
2830         s->injournal = 0;
2831
2832         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2833                 if (atomic_dec_and_test(&conf->pending_full_writes))
2834                         md_wakeup_thread(conf->mddev->thread);
2835
2836         if (do_wakeup)
2837                 wake_up(&conf->wait_for_overlap);
2838
2839         spin_lock_irq(&log->stripe_in_journal_lock);
2840         list_del_init(&sh->r5c);
2841         spin_unlock_irq(&log->stripe_in_journal_lock);
2842         sh->log_start = MaxSector;
2843
2844         atomic_dec(&log->stripe_in_journal_count);
2845         r5c_update_log_state(log);
2846
2847         /* stop counting this stripe in big_stripe_tree */
2848         if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2849             test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2850                 tree_index = r5c_tree_index(conf, sh->sector);
2851                 spin_lock(&log->tree_lock);
2852                 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2853                                                tree_index);
2854                 BUG_ON(pslot == NULL);
2855                 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2856                         pslot, &log->tree_lock) >>
2857                         R5C_RADIX_COUNT_SHIFT;
2858                 if (refcount == 1)
2859                         radix_tree_delete(&log->big_stripe_tree, tree_index);
2860                 else
2861                         radix_tree_replace_slot(
2862                                 &log->big_stripe_tree, pslot,
2863                                 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2864                 spin_unlock(&log->tree_lock);
2865         }
2866
2867         if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2868                 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2869                 atomic_dec(&conf->r5c_flushing_partial_stripes);
2870                 atomic_dec(&conf->r5c_cached_partial_stripes);
2871         }
2872
2873         if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2874                 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2875                 atomic_dec(&conf->r5c_flushing_full_stripes);
2876                 atomic_dec(&conf->r5c_cached_full_stripes);
2877         }
2878
2879         r5l_append_flush_payload(log, sh->sector);
2880         /* stripe is flused to raid disks, we can do resync now */
2881         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2882                 set_bit(STRIPE_HANDLE, &sh->state);
2883 }
2884
2885 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2886 {
2887         struct r5conf *conf = sh->raid_conf;
2888         int pages = 0;
2889         int reserve;
2890         int i;
2891         int ret = 0;
2892
2893         BUG_ON(!log);
2894
2895         for (i = 0; i < sh->disks; i++) {
2896                 void *addr;
2897
2898                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2899                         continue;
2900                 addr = kmap_atomic(sh->dev[i].page);
2901                 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2902                                                     addr, PAGE_SIZE);
2903                 kunmap_atomic(addr);
2904                 pages++;
2905         }
2906         WARN_ON(pages == 0);
2907
2908         /*
2909          * The stripe must enter state machine again to call endio, so
2910          * don't delay.
2911          */
2912         clear_bit(STRIPE_DELAYED, &sh->state);
2913         atomic_inc(&sh->count);
2914
2915         mutex_lock(&log->io_mutex);
2916         /* meta + data */
2917         reserve = (1 + pages) << (PAGE_SHIFT - 9);
2918
2919         if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2920             sh->log_start == MaxSector)
2921                 r5l_add_no_space_stripe(log, sh);
2922         else if (!r5l_has_free_space(log, reserve)) {
2923                 if (sh->log_start == log->last_checkpoint)
2924                         BUG();
2925                 else
2926                         r5l_add_no_space_stripe(log, sh);
2927         } else {
2928                 ret = r5l_log_stripe(log, sh, pages, 0);
2929                 if (ret) {
2930                         spin_lock_irq(&log->io_list_lock);
2931                         list_add_tail(&sh->log_list, &log->no_mem_stripes);
2932                         spin_unlock_irq(&log->io_list_lock);
2933                 }
2934         }
2935
2936         mutex_unlock(&log->io_mutex);
2937         return 0;
2938 }
2939
2940 /* check whether this big stripe is in write back cache. */
2941 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2942 {
2943         struct r5l_log *log = conf->log;
2944         sector_t tree_index;
2945         void *slot;
2946
2947         if (!log)
2948                 return false;
2949
2950         WARN_ON_ONCE(!rcu_read_lock_held());
2951         tree_index = r5c_tree_index(conf, sect);
2952         slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2953         return slot != NULL;
2954 }
2955
2956 static int r5l_load_log(struct r5l_log *log)
2957 {
2958         struct md_rdev *rdev = log->rdev;
2959         struct page *page;
2960         struct r5l_meta_block *mb;
2961         sector_t cp = log->rdev->journal_tail;
2962         u32 stored_crc, expected_crc;
2963         bool create_super = false;
2964         int ret = 0;
2965
2966         /* Make sure it's valid */
2967         if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2968                 cp = 0;
2969         page = alloc_page(GFP_KERNEL);
2970         if (!page)
2971                 return -ENOMEM;
2972
2973         if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, false)) {
2974                 ret = -EIO;
2975                 goto ioerr;
2976         }
2977         mb = page_address(page);
2978
2979         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2980             mb->version != R5LOG_VERSION) {
2981                 create_super = true;
2982                 goto create;
2983         }
2984         stored_crc = le32_to_cpu(mb->checksum);
2985         mb->checksum = 0;
2986         expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2987         if (stored_crc != expected_crc) {
2988                 create_super = true;
2989                 goto create;
2990         }
2991         if (le64_to_cpu(mb->position) != cp) {
2992                 create_super = true;
2993                 goto create;
2994         }
2995 create:
2996         if (create_super) {
2997                 log->last_cp_seq = prandom_u32();
2998                 cp = 0;
2999                 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
3000                 /*
3001                  * Make sure super points to correct address. Log might have
3002                  * data very soon. If super hasn't correct log tail address,
3003                  * recovery can't find the log
3004                  */
3005                 r5l_write_super(log, cp);
3006         } else
3007                 log->last_cp_seq = le64_to_cpu(mb->seq);
3008
3009         log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
3010         log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3011         if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3012                 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
3013         log->last_checkpoint = cp;
3014
3015         __free_page(page);
3016
3017         if (create_super) {
3018                 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3019                 log->seq = log->last_cp_seq + 1;
3020                 log->next_checkpoint = cp;
3021         } else
3022                 ret = r5l_recovery_log(log);
3023
3024         r5c_update_log_state(log);
3025         return ret;
3026 ioerr:
3027         __free_page(page);
3028         return ret;
3029 }
3030
3031 int r5l_start(struct r5l_log *log)
3032 {
3033         int ret;
3034
3035         if (!log)
3036                 return 0;
3037
3038         ret = r5l_load_log(log);
3039         if (ret) {
3040                 struct mddev *mddev = log->rdev->mddev;
3041                 struct r5conf *conf = mddev->private;
3042
3043                 r5l_exit_log(conf);
3044         }
3045         return ret;
3046 }
3047
3048 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3049 {
3050         struct r5conf *conf = mddev->private;
3051         struct r5l_log *log = conf->log;
3052
3053         if (!log)
3054                 return;
3055
3056         if ((raid5_calc_degraded(conf) > 0 ||
3057              test_bit(Journal, &rdev->flags)) &&
3058             conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3059                 schedule_work(&log->disable_writeback_work);
3060 }
3061
3062 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3063 {
3064         struct request_queue *q = bdev_get_queue(rdev->bdev);
3065         struct r5l_log *log;
3066         int ret;
3067
3068         pr_debug("md/raid:%s: using device %pg as journal\n",
3069                  mdname(conf->mddev), rdev->bdev);
3070
3071         if (PAGE_SIZE != 4096)
3072                 return -EINVAL;
3073
3074         /*
3075          * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3076          * raid_disks r5l_payload_data_parity.
3077          *
3078          * Write journal and cache does not work for very big array
3079          * (raid_disks > 203)
3080          */
3081         if (sizeof(struct r5l_meta_block) +
3082             ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3083              conf->raid_disks) > PAGE_SIZE) {
3084                 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3085                        mdname(conf->mddev), conf->raid_disks);
3086                 return -EINVAL;
3087         }
3088
3089         log = kzalloc(sizeof(*log), GFP_KERNEL);
3090         if (!log)
3091                 return -ENOMEM;
3092         log->rdev = rdev;
3093
3094         log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
3095
3096         log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3097                                        sizeof(rdev->mddev->uuid));
3098
3099         mutex_init(&log->io_mutex);
3100
3101         spin_lock_init(&log->io_list_lock);
3102         INIT_LIST_HEAD(&log->running_ios);
3103         INIT_LIST_HEAD(&log->io_end_ios);
3104         INIT_LIST_HEAD(&log->flushing_ios);
3105         INIT_LIST_HEAD(&log->finished_ios);
3106
3107         log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3108         if (!log->io_kc)
3109                 goto io_kc;
3110
3111         ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
3112         if (ret)
3113                 goto io_pool;
3114
3115         ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3116         if (ret)
3117                 goto io_bs;
3118
3119         ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
3120         if (ret)
3121                 goto out_mempool;
3122
3123         spin_lock_init(&log->tree_lock);
3124         INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3125
3126         log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3127                                                  log->rdev->mddev, "reclaim");
3128         if (!log->reclaim_thread)
3129                 goto reclaim_thread;
3130         log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3131
3132         init_waitqueue_head(&log->iounit_wait);
3133
3134         INIT_LIST_HEAD(&log->no_mem_stripes);
3135
3136         INIT_LIST_HEAD(&log->no_space_stripes);
3137         spin_lock_init(&log->no_space_stripes_lock);
3138
3139         INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3140         INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3141
3142         log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3143         INIT_LIST_HEAD(&log->stripe_in_journal_list);
3144         spin_lock_init(&log->stripe_in_journal_lock);
3145         atomic_set(&log->stripe_in_journal_count, 0);
3146
3147         conf->log = log;
3148
3149         set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3150         return 0;
3151
3152 reclaim_thread:
3153         mempool_exit(&log->meta_pool);
3154 out_mempool:
3155         bioset_exit(&log->bs);
3156 io_bs:
3157         mempool_exit(&log->io_pool);
3158 io_pool:
3159         kmem_cache_destroy(log->io_kc);
3160 io_kc:
3161         kfree(log);
3162         return -EINVAL;
3163 }
3164
3165 void r5l_exit_log(struct r5conf *conf)
3166 {
3167         struct r5l_log *log = conf->log;
3168
3169         /* Ensure disable_writeback_work wakes up and exits */
3170         wake_up(&conf->mddev->sb_wait);
3171         flush_work(&log->disable_writeback_work);
3172         md_unregister_thread(&log->reclaim_thread);
3173
3174         conf->log = NULL;
3175
3176         mempool_exit(&log->meta_pool);
3177         bioset_exit(&log->bs);
3178         mempool_exit(&log->io_pool);
3179         kmem_cache_destroy(log->io_kc);
3180         kfree(log);
3181 }