1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
4 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
6 #include <linux/kernel.h>
7 #include <linux/wait.h>
8 #include <linux/blkdev.h>
9 #include <linux/slab.h>
10 #include <linux/raid/md_p.h>
11 #include <linux/crc32c.h>
12 #include <linux/random.h>
13 #include <linux/kthread.h>
14 #include <linux/types.h>
17 #include "md-bitmap.h"
18 #include "raid5-log.h"
21 * metadata/data stored in disk with 4k size unit (a block) regardless
22 * underneath hardware sector size. only works with PAGE_SIZE == 4096
24 #define BLOCK_SECTORS (8)
25 #define BLOCK_SECTOR_SHIFT (3)
28 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
30 * In write through mode, the reclaim runs every log->max_free_space.
31 * This can prevent the recovery scans for too long
33 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
34 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
36 /* wake up reclaim thread periodically */
37 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
38 /* start flush with these full stripes */
39 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
40 /* reclaim stripes in groups */
41 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
44 * We only need 2 bios per I/O unit to make progress, but ensure we
45 * have a few more available to not get too tight.
47 #define R5L_POOL_SIZE 4
49 static char *r5c_journal_mode_str[] = {"write-through",
52 * raid5 cache state machine
54 * With the RAID cache, each stripe works in two phases:
58 * These two phases are controlled by bit STRIPE_R5C_CACHING:
59 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
60 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
62 * When there is no journal, or the journal is in write-through mode,
63 * the stripe is always in writing-out phase.
65 * For write-back journal, the stripe is sent to caching phase on write
66 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
67 * the write-out phase by clearing STRIPE_R5C_CACHING.
69 * Stripes in caching phase do not write the raid disks. Instead, all
70 * writes are committed from the log device. Therefore, a stripe in
71 * caching phase handles writes as:
72 * - write to log device
75 * Stripes in writing-out phase handle writes as:
77 * - write pending data and parity to journal
78 * - write data and parity to raid disks
79 * - return IO for pending writes
87 sector_t device_size; /* log device size, round to
89 sector_t max_free_space; /* reclaim run if free space is at
92 sector_t last_checkpoint; /* log tail. where recovery scan
94 u64 last_cp_seq; /* log tail sequence */
96 sector_t log_start; /* log head. where new data appends */
97 u64 seq; /* log head sequence */
99 sector_t next_checkpoint;
101 struct mutex io_mutex;
102 struct r5l_io_unit *current_io; /* current io_unit accepting new data */
104 spinlock_t io_list_lock;
105 struct list_head running_ios; /* io_units which are still running,
106 * and have not yet been completely
107 * written to the log */
108 struct list_head io_end_ios; /* io_units which have been completely
109 * written to the log but not yet written
111 struct list_head flushing_ios; /* io_units which are waiting for log
113 struct list_head finished_ios; /* io_units which settle down in log disk */
114 struct bio flush_bio;
116 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */
118 struct kmem_cache *io_kc;
123 struct md_thread *reclaim_thread;
124 unsigned long reclaim_target; /* number of space that need to be
125 * reclaimed. if it's 0, reclaim spaces
126 * used by io_units which are in
127 * IO_UNIT_STRIPE_END state (eg, reclaim
128 * doesn't wait for specific io_unit
129 * switching to IO_UNIT_STRIPE_END
131 wait_queue_head_t iounit_wait;
133 struct list_head no_space_stripes; /* pending stripes, log has no space */
134 spinlock_t no_space_stripes_lock;
136 bool need_cache_flush;
139 enum r5c_journal_mode r5c_journal_mode;
141 /* all stripes in r5cache, in the order of seq at sh->log_start */
142 struct list_head stripe_in_journal_list;
144 spinlock_t stripe_in_journal_lock;
145 atomic_t stripe_in_journal_count;
147 /* to submit async io_units, to fulfill ordering of flush */
148 struct work_struct deferred_io_work;
149 /* to disable write back during in degraded mode */
150 struct work_struct disable_writeback_work;
152 /* to for chunk_aligned_read in writeback mode, details below */
153 spinlock_t tree_lock;
154 struct radix_tree_root big_stripe_tree;
158 * Enable chunk_aligned_read() with write back cache.
160 * Each chunk may contain more than one stripe (for example, a 256kB
161 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
162 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
163 * For each big_stripe, we count how many stripes of this big_stripe
164 * are in the write back cache. These data are tracked in a radix tree
165 * (big_stripe_tree). We use radix_tree item pointer as the counter.
166 * r5c_tree_index() is used to calculate keys for the radix tree.
168 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
169 * big_stripe of each chunk in the tree. If this big_stripe is in the
170 * tree, chunk_aligned_read() aborts. This look up is protected by
173 * It is necessary to remember whether a stripe is counted in
174 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
175 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
176 * two flags are set, the stripe is counted in big_stripe_tree. This
177 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
178 * r5c_try_caching_write(); and moving clear_bit of
179 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
180 * r5c_finish_stripe_write_out().
184 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
185 * So it is necessary to left shift the counter by 2 bits before using it
186 * as data pointer of the tree.
188 #define R5C_RADIX_COUNT_SHIFT 2
191 * calculate key for big_stripe_tree
193 * sect: align_bi->bi_iter.bi_sector or sh->sector
195 static inline sector_t r5c_tree_index(struct r5conf *conf,
198 sector_div(sect, conf->chunk_sectors);
203 * an IO range starts from a meta data block and end at the next meta data
204 * block. The io unit's the meta data block tracks data/parity followed it. io
205 * unit is written to log disk with normal write, as we always flush log disk
206 * first and then start move data to raid disks, there is no requirement to
207 * write io unit with FLUSH/FUA
212 struct page *meta_page; /* store meta block */
213 int meta_offset; /* current offset in meta_page */
215 struct bio *current_bio;/* current_bio accepting new data */
217 atomic_t pending_stripe;/* how many stripes not flushed to raid */
218 u64 seq; /* seq number of the metablock */
219 sector_t log_start; /* where the io_unit starts */
220 sector_t log_end; /* where the io_unit ends */
221 struct list_head log_sibling; /* log->running_ios */
222 struct list_head stripe_list; /* stripes added to the io_unit */
226 struct bio *split_bio;
228 unsigned int has_flush:1; /* include flush request */
229 unsigned int has_fua:1; /* include fua request */
230 unsigned int has_null_flush:1; /* include null flush request */
231 unsigned int has_flush_payload:1; /* include flush payload */
233 * io isn't sent yet, flush/fua request can only be submitted till it's
234 * the first IO in running_ios list
236 unsigned int io_deferred:1;
238 struct bio_list flush_barriers; /* size == 0 flush bios */
241 /* r5l_io_unit state */
242 enum r5l_io_unit_state {
243 IO_UNIT_RUNNING = 0, /* accepting new IO */
244 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log,
245 * don't accepting new bio */
246 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
247 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
250 bool r5c_is_writeback(struct r5l_log *log)
252 return (log != NULL &&
253 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
256 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
259 if (start >= log->device_size)
260 start = start - log->device_size;
264 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
270 return end + log->device_size - start;
273 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
277 used_size = r5l_ring_distance(log, log->last_checkpoint,
280 return log->device_size > used_size + size;
283 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
284 enum r5l_io_unit_state state)
286 if (WARN_ON(io->state >= state))
292 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
294 struct bio *wbi, *wbi2;
298 while (wbi && wbi->bi_iter.bi_sector <
299 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
300 wbi2 = r5_next_bio(conf, wbi, dev->sector);
301 md_write_end(conf->mddev);
307 void r5c_handle_cached_data_endio(struct r5conf *conf,
308 struct stripe_head *sh, int disks)
312 for (i = sh->disks; i--; ) {
313 if (sh->dev[i].written) {
314 set_bit(R5_UPTODATE, &sh->dev[i].flags);
315 r5c_return_dev_pending_writes(conf, &sh->dev[i]);
316 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
317 RAID5_STRIPE_SECTORS(conf),
318 !test_bit(STRIPE_DEGRADED, &sh->state),
324 void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
326 /* Check whether we should flush some stripes to free up stripe cache */
327 void r5c_check_stripe_cache_usage(struct r5conf *conf)
331 if (!r5c_is_writeback(conf->log))
334 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
335 atomic_read(&conf->r5c_cached_full_stripes);
338 * The following condition is true for either of the following:
339 * - stripe cache pressure high:
340 * total_cached > 3/4 min_nr_stripes ||
341 * empty_inactive_list_nr > 0
342 * - stripe cache pressure moderate:
343 * total_cached > 1/2 min_nr_stripes
345 if (total_cached > conf->min_nr_stripes * 1 / 2 ||
346 atomic_read(&conf->empty_inactive_list_nr) > 0)
347 r5l_wake_reclaim(conf->log, 0);
351 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
352 * stripes in the cache
354 void r5c_check_cached_full_stripe(struct r5conf *conf)
356 if (!r5c_is_writeback(conf->log))
360 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
361 * or a full stripe (chunk size / 4k stripes).
363 if (atomic_read(&conf->r5c_cached_full_stripes) >=
364 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
365 conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf)))
366 r5l_wake_reclaim(conf->log, 0);
370 * Total log space (in sectors) needed to flush all data in cache
372 * To avoid deadlock due to log space, it is necessary to reserve log
373 * space to flush critical stripes (stripes that occupying log space near
374 * last_checkpoint). This function helps check how much log space is
375 * required to flush all cached stripes.
377 * To reduce log space requirements, two mechanisms are used to give cache
378 * flush higher priorities:
379 * 1. In handle_stripe_dirtying() and schedule_reconstruction(),
380 * stripes ALREADY in journal can be flushed w/o pending writes;
381 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
382 * can be delayed (r5l_add_no_space_stripe).
384 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
385 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
386 * pages of journal space. For stripes that has not passed 1, flushing it
387 * requires (conf->raid_disks + 1) pages of journal space. There are at
388 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
389 * required to flush all cached stripes (in pages) is:
391 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
392 * (group_cnt + 1) * (raid_disks + 1)
394 * (stripe_in_journal_count) * (max_degraded + 1) +
395 * (group_cnt + 1) * (raid_disks - max_degraded)
397 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
399 struct r5l_log *log = conf->log;
401 if (!r5c_is_writeback(log))
404 return BLOCK_SECTORS *
405 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
406 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
410 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
412 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
413 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
414 * device is less than 2x of reclaim_required_space.
416 static inline void r5c_update_log_state(struct r5l_log *log)
418 struct r5conf *conf = log->rdev->mddev->private;
420 sector_t reclaim_space;
421 bool wake_reclaim = false;
423 if (!r5c_is_writeback(log))
426 free_space = r5l_ring_distance(log, log->log_start,
427 log->last_checkpoint);
428 reclaim_space = r5c_log_required_to_flush_cache(conf);
429 if (free_space < 2 * reclaim_space)
430 set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
432 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
434 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
436 if (free_space < 3 * reclaim_space)
437 set_bit(R5C_LOG_TIGHT, &conf->cache_state);
439 clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
442 r5l_wake_reclaim(log, 0);
446 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
447 * This function should only be called in write-back mode.
449 void r5c_make_stripe_write_out(struct stripe_head *sh)
451 struct r5conf *conf = sh->raid_conf;
452 struct r5l_log *log = conf->log;
454 BUG_ON(!r5c_is_writeback(log));
456 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
457 clear_bit(STRIPE_R5C_CACHING, &sh->state);
459 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
460 atomic_inc(&conf->preread_active_stripes);
463 static void r5c_handle_data_cached(struct stripe_head *sh)
467 for (i = sh->disks; i--; )
468 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
469 set_bit(R5_InJournal, &sh->dev[i].flags);
470 clear_bit(R5_LOCKED, &sh->dev[i].flags);
472 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
476 * this journal write must contain full parity,
477 * it may also contain some data pages
479 static void r5c_handle_parity_cached(struct stripe_head *sh)
483 for (i = sh->disks; i--; )
484 if (test_bit(R5_InJournal, &sh->dev[i].flags))
485 set_bit(R5_Wantwrite, &sh->dev[i].flags);
489 * Setting proper flags after writing (or flushing) data and/or parity to the
490 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
492 static void r5c_finish_cache_stripe(struct stripe_head *sh)
494 struct r5l_log *log = sh->raid_conf->log;
496 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
497 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
499 * Set R5_InJournal for parity dev[pd_idx]. This means
500 * all data AND parity in the journal. For RAID 6, it is
501 * NOT necessary to set the flag for dev[qd_idx], as the
502 * two parities are written out together.
504 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
505 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
506 r5c_handle_data_cached(sh);
508 r5c_handle_parity_cached(sh);
509 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
513 static void r5l_io_run_stripes(struct r5l_io_unit *io)
515 struct stripe_head *sh, *next;
517 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
518 list_del_init(&sh->log_list);
520 r5c_finish_cache_stripe(sh);
522 set_bit(STRIPE_HANDLE, &sh->state);
523 raid5_release_stripe(sh);
527 static void r5l_log_run_stripes(struct r5l_log *log)
529 struct r5l_io_unit *io, *next;
531 lockdep_assert_held(&log->io_list_lock);
533 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
534 /* don't change list order */
535 if (io->state < IO_UNIT_IO_END)
538 list_move_tail(&io->log_sibling, &log->finished_ios);
539 r5l_io_run_stripes(io);
543 static void r5l_move_to_end_ios(struct r5l_log *log)
545 struct r5l_io_unit *io, *next;
547 lockdep_assert_held(&log->io_list_lock);
549 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
550 /* don't change list order */
551 if (io->state < IO_UNIT_IO_END)
553 list_move_tail(&io->log_sibling, &log->io_end_ios);
557 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
558 static void r5l_log_endio(struct bio *bio)
560 struct r5l_io_unit *io = bio->bi_private;
561 struct r5l_io_unit *io_deferred;
562 struct r5l_log *log = io->log;
565 bool has_flush_payload;
568 md_error(log->rdev->mddev, log->rdev);
571 mempool_free(io->meta_page, &log->meta_pool);
573 spin_lock_irqsave(&log->io_list_lock, flags);
574 __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
577 * if the io doesn't not have null_flush or flush payload,
578 * it is not safe to access it after releasing io_list_lock.
579 * Therefore, it is necessary to check the condition with
582 has_null_flush = io->has_null_flush;
583 has_flush_payload = io->has_flush_payload;
585 if (log->need_cache_flush && !list_empty(&io->stripe_list))
586 r5l_move_to_end_ios(log);
588 r5l_log_run_stripes(log);
589 if (!list_empty(&log->running_ios)) {
591 * FLUSH/FUA io_unit is deferred because of ordering, now we
594 io_deferred = list_first_entry(&log->running_ios,
595 struct r5l_io_unit, log_sibling);
596 if (io_deferred->io_deferred)
597 schedule_work(&log->deferred_io_work);
600 spin_unlock_irqrestore(&log->io_list_lock, flags);
602 if (log->need_cache_flush)
603 md_wakeup_thread(log->rdev->mddev->thread);
605 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
606 if (has_null_flush) {
609 WARN_ON(bio_list_empty(&io->flush_barriers));
610 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
612 if (atomic_dec_and_test(&io->pending_stripe)) {
613 __r5l_stripe_write_finished(io);
618 /* decrease pending_stripe for flush payload */
619 if (has_flush_payload)
620 if (atomic_dec_and_test(&io->pending_stripe))
621 __r5l_stripe_write_finished(io);
624 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
628 spin_lock_irqsave(&log->io_list_lock, flags);
629 __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
630 spin_unlock_irqrestore(&log->io_list_lock, flags);
633 * In case of journal device failures, submit_bio will get error
634 * and calls endio, then active stripes will continue write
635 * process. Therefore, it is not necessary to check Faulty bit
636 * of journal device here.
638 * We can't check split_bio after current_bio is submitted. If
639 * io->split_bio is null, after current_bio is submitted, current_bio
640 * might already be completed and the io_unit is freed. We submit
641 * split_bio first to avoid the issue.
645 io->split_bio->bi_opf |= REQ_PREFLUSH;
647 io->split_bio->bi_opf |= REQ_FUA;
648 submit_bio(io->split_bio);
652 io->current_bio->bi_opf |= REQ_PREFLUSH;
654 io->current_bio->bi_opf |= REQ_FUA;
655 submit_bio(io->current_bio);
658 /* deferred io_unit will be dispatched here */
659 static void r5l_submit_io_async(struct work_struct *work)
661 struct r5l_log *log = container_of(work, struct r5l_log,
663 struct r5l_io_unit *io = NULL;
666 spin_lock_irqsave(&log->io_list_lock, flags);
667 if (!list_empty(&log->running_ios)) {
668 io = list_first_entry(&log->running_ios, struct r5l_io_unit,
670 if (!io->io_deferred)
675 spin_unlock_irqrestore(&log->io_list_lock, flags);
677 r5l_do_submit_io(log, io);
680 static void r5c_disable_writeback_async(struct work_struct *work)
682 struct r5l_log *log = container_of(work, struct r5l_log,
683 disable_writeback_work);
684 struct mddev *mddev = log->rdev->mddev;
685 struct r5conf *conf = mddev->private;
688 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
690 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
693 /* wait superblock change before suspend */
694 wait_event(mddev->sb_wait,
696 (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) &&
697 (locked = mddev_trylock(mddev))));
699 mddev_suspend(mddev);
700 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
706 static void r5l_submit_current_io(struct r5l_log *log)
708 struct r5l_io_unit *io = log->current_io;
709 struct r5l_meta_block *block;
712 bool do_submit = true;
717 block = page_address(io->meta_page);
718 block->meta_size = cpu_to_le32(io->meta_offset);
719 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
720 block->checksum = cpu_to_le32(crc);
722 log->current_io = NULL;
723 spin_lock_irqsave(&log->io_list_lock, flags);
724 if (io->has_flush || io->has_fua) {
725 if (io != list_first_entry(&log->running_ios,
726 struct r5l_io_unit, log_sibling)) {
731 spin_unlock_irqrestore(&log->io_list_lock, flags);
733 r5l_do_submit_io(log, io);
736 static struct bio *r5l_bio_alloc(struct r5l_log *log)
738 struct bio *bio = bio_alloc_bioset(log->rdev->bdev, BIO_MAX_VECS,
739 REQ_OP_WRITE, GFP_NOIO, &log->bs);
741 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
746 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
748 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
750 r5c_update_log_state(log);
752 * If we filled up the log device start from the beginning again,
753 * which will require a new bio.
755 * Note: for this to work properly the log size needs to me a multiple
758 if (log->log_start == 0)
759 io->need_split_bio = true;
761 io->log_end = log->log_start;
764 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
766 struct r5l_io_unit *io;
767 struct r5l_meta_block *block;
769 io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
772 memset(io, 0, sizeof(*io));
775 INIT_LIST_HEAD(&io->log_sibling);
776 INIT_LIST_HEAD(&io->stripe_list);
777 bio_list_init(&io->flush_barriers);
778 io->state = IO_UNIT_RUNNING;
780 io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
781 block = page_address(io->meta_page);
783 block->magic = cpu_to_le32(R5LOG_MAGIC);
784 block->version = R5LOG_VERSION;
785 block->seq = cpu_to_le64(log->seq);
786 block->position = cpu_to_le64(log->log_start);
788 io->log_start = log->log_start;
789 io->meta_offset = sizeof(struct r5l_meta_block);
790 io->seq = log->seq++;
792 io->current_bio = r5l_bio_alloc(log);
793 io->current_bio->bi_end_io = r5l_log_endio;
794 io->current_bio->bi_private = io;
795 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
797 r5_reserve_log_entry(log, io);
799 spin_lock_irq(&log->io_list_lock);
800 list_add_tail(&io->log_sibling, &log->running_ios);
801 spin_unlock_irq(&log->io_list_lock);
806 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
808 if (log->current_io &&
809 log->current_io->meta_offset + payload_size > PAGE_SIZE)
810 r5l_submit_current_io(log);
812 if (!log->current_io) {
813 log->current_io = r5l_new_meta(log);
814 if (!log->current_io)
821 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
823 u32 checksum1, u32 checksum2,
824 bool checksum2_valid)
826 struct r5l_io_unit *io = log->current_io;
827 struct r5l_payload_data_parity *payload;
829 payload = page_address(io->meta_page) + io->meta_offset;
830 payload->header.type = cpu_to_le16(type);
831 payload->header.flags = cpu_to_le16(0);
832 payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
834 payload->location = cpu_to_le64(location);
835 payload->checksum[0] = cpu_to_le32(checksum1);
837 payload->checksum[1] = cpu_to_le32(checksum2);
839 io->meta_offset += sizeof(struct r5l_payload_data_parity) +
840 sizeof(__le32) * (1 + !!checksum2_valid);
843 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
845 struct r5l_io_unit *io = log->current_io;
847 if (io->need_split_bio) {
848 BUG_ON(io->split_bio);
849 io->split_bio = io->current_bio;
850 io->current_bio = r5l_bio_alloc(log);
851 bio_chain(io->current_bio, io->split_bio);
852 io->need_split_bio = false;
855 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
858 r5_reserve_log_entry(log, io);
861 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
863 struct mddev *mddev = log->rdev->mddev;
864 struct r5conf *conf = mddev->private;
865 struct r5l_io_unit *io;
866 struct r5l_payload_flush *payload;
870 * payload_flush requires extra writes to the journal.
871 * To avoid handling the extra IO in quiesce, just skip
877 mutex_lock(&log->io_mutex);
878 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
880 if (r5l_get_meta(log, meta_size)) {
881 mutex_unlock(&log->io_mutex);
885 /* current implementation is one stripe per flush payload */
886 io = log->current_io;
887 payload = page_address(io->meta_page) + io->meta_offset;
888 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
889 payload->header.flags = cpu_to_le16(0);
890 payload->size = cpu_to_le32(sizeof(__le64));
891 payload->flush_stripes[0] = cpu_to_le64(sect);
892 io->meta_offset += meta_size;
893 /* multiple flush payloads count as one pending_stripe */
894 if (!io->has_flush_payload) {
895 io->has_flush_payload = 1;
896 atomic_inc(&io->pending_stripe);
898 mutex_unlock(&log->io_mutex);
901 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
902 int data_pages, int parity_pages)
907 struct r5l_io_unit *io;
910 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
912 sizeof(struct r5l_payload_data_parity) +
913 sizeof(__le32) * parity_pages;
915 ret = r5l_get_meta(log, meta_size);
919 io = log->current_io;
921 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
924 for (i = 0; i < sh->disks; i++) {
925 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
926 test_bit(R5_InJournal, &sh->dev[i].flags))
928 if (i == sh->pd_idx || i == sh->qd_idx)
930 if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
931 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
934 * we need to flush journal to make sure recovery can
935 * reach the data with fua flag
939 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
940 raid5_compute_blocknr(sh, i, 0),
941 sh->dev[i].log_checksum, 0, false);
942 r5l_append_payload_page(log, sh->dev[i].page);
945 if (parity_pages == 2) {
946 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
947 sh->sector, sh->dev[sh->pd_idx].log_checksum,
948 sh->dev[sh->qd_idx].log_checksum, true);
949 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
950 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
951 } else if (parity_pages == 1) {
952 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
953 sh->sector, sh->dev[sh->pd_idx].log_checksum,
955 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
956 } else /* Just writing data, not parity, in caching phase */
957 BUG_ON(parity_pages != 0);
959 list_add_tail(&sh->log_list, &io->stripe_list);
960 atomic_inc(&io->pending_stripe);
963 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
966 if (sh->log_start == MaxSector) {
967 BUG_ON(!list_empty(&sh->r5c));
968 sh->log_start = io->log_start;
969 spin_lock_irq(&log->stripe_in_journal_lock);
970 list_add_tail(&sh->r5c,
971 &log->stripe_in_journal_list);
972 spin_unlock_irq(&log->stripe_in_journal_lock);
973 atomic_inc(&log->stripe_in_journal_count);
978 /* add stripe to no_space_stripes, and then wake up reclaim */
979 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
980 struct stripe_head *sh)
982 spin_lock(&log->no_space_stripes_lock);
983 list_add_tail(&sh->log_list, &log->no_space_stripes);
984 spin_unlock(&log->no_space_stripes_lock);
988 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
989 * data from log to raid disks), so we shouldn't wait for reclaim here
991 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
993 struct r5conf *conf = sh->raid_conf;
995 int data_pages, parity_pages;
999 bool wake_reclaim = false;
1003 /* Don't support stripe batch */
1004 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1005 test_bit(STRIPE_SYNCING, &sh->state)) {
1006 /* the stripe is written to log, we start writing it to raid */
1007 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1011 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1013 for (i = 0; i < sh->disks; i++) {
1016 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1017 test_bit(R5_InJournal, &sh->dev[i].flags))
1021 /* checksum is already calculated in last run */
1022 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1024 addr = kmap_atomic(sh->dev[i].page);
1025 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1027 kunmap_atomic(addr);
1029 parity_pages = 1 + !!(sh->qd_idx >= 0);
1030 data_pages = write_disks - parity_pages;
1032 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1034 * The stripe must enter state machine again to finish the write, so
1037 clear_bit(STRIPE_DELAYED, &sh->state);
1038 atomic_inc(&sh->count);
1040 mutex_lock(&log->io_mutex);
1042 reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1044 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1045 if (!r5l_has_free_space(log, reserve)) {
1046 r5l_add_no_space_stripe(log, sh);
1047 wake_reclaim = true;
1049 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1051 spin_lock_irq(&log->io_list_lock);
1052 list_add_tail(&sh->log_list,
1053 &log->no_mem_stripes);
1054 spin_unlock_irq(&log->io_list_lock);
1057 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */
1059 * log space critical, do not process stripes that are
1060 * not in cache yet (sh->log_start == MaxSector).
1062 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1063 sh->log_start == MaxSector) {
1064 r5l_add_no_space_stripe(log, sh);
1065 wake_reclaim = true;
1067 } else if (!r5l_has_free_space(log, reserve)) {
1068 if (sh->log_start == log->last_checkpoint)
1071 r5l_add_no_space_stripe(log, sh);
1073 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1075 spin_lock_irq(&log->io_list_lock);
1076 list_add_tail(&sh->log_list,
1077 &log->no_mem_stripes);
1078 spin_unlock_irq(&log->io_list_lock);
1083 mutex_unlock(&log->io_mutex);
1085 r5l_wake_reclaim(log, reserve);
1089 void r5l_write_stripe_run(struct r5l_log *log)
1093 mutex_lock(&log->io_mutex);
1094 r5l_submit_current_io(log);
1095 mutex_unlock(&log->io_mutex);
1098 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1100 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1102 * in write through (journal only)
1103 * we flush log disk cache first, then write stripe data to
1104 * raid disks. So if bio is finished, the log disk cache is
1105 * flushed already. The recovery guarantees we can recovery
1106 * the bio from log disk, so we don't need to flush again
1108 if (bio->bi_iter.bi_size == 0) {
1112 bio->bi_opf &= ~REQ_PREFLUSH;
1114 /* write back (with cache) */
1115 if (bio->bi_iter.bi_size == 0) {
1116 mutex_lock(&log->io_mutex);
1117 r5l_get_meta(log, 0);
1118 bio_list_add(&log->current_io->flush_barriers, bio);
1119 log->current_io->has_flush = 1;
1120 log->current_io->has_null_flush = 1;
1121 atomic_inc(&log->current_io->pending_stripe);
1122 r5l_submit_current_io(log);
1123 mutex_unlock(&log->io_mutex);
1130 /* This will run after log space is reclaimed */
1131 static void r5l_run_no_space_stripes(struct r5l_log *log)
1133 struct stripe_head *sh;
1135 spin_lock(&log->no_space_stripes_lock);
1136 while (!list_empty(&log->no_space_stripes)) {
1137 sh = list_first_entry(&log->no_space_stripes,
1138 struct stripe_head, log_list);
1139 list_del_init(&sh->log_list);
1140 set_bit(STRIPE_HANDLE, &sh->state);
1141 raid5_release_stripe(sh);
1143 spin_unlock(&log->no_space_stripes_lock);
1147 * calculate new last_checkpoint
1148 * for write through mode, returns log->next_checkpoint
1149 * for write back, returns log_start of first sh in stripe_in_journal_list
1151 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1153 struct stripe_head *sh;
1154 struct r5l_log *log = conf->log;
1156 unsigned long flags;
1158 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1159 return log->next_checkpoint;
1161 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1162 if (list_empty(&conf->log->stripe_in_journal_list)) {
1163 /* all stripes flushed */
1164 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1165 return log->next_checkpoint;
1167 sh = list_first_entry(&conf->log->stripe_in_journal_list,
1168 struct stripe_head, r5c);
1169 new_cp = sh->log_start;
1170 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1174 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1176 struct r5conf *conf = log->rdev->mddev->private;
1178 return r5l_ring_distance(log, log->last_checkpoint,
1179 r5c_calculate_new_cp(conf));
1182 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1184 struct stripe_head *sh;
1186 lockdep_assert_held(&log->io_list_lock);
1188 if (!list_empty(&log->no_mem_stripes)) {
1189 sh = list_first_entry(&log->no_mem_stripes,
1190 struct stripe_head, log_list);
1191 list_del_init(&sh->log_list);
1192 set_bit(STRIPE_HANDLE, &sh->state);
1193 raid5_release_stripe(sh);
1197 static bool r5l_complete_finished_ios(struct r5l_log *log)
1199 struct r5l_io_unit *io, *next;
1202 lockdep_assert_held(&log->io_list_lock);
1204 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1205 /* don't change list order */
1206 if (io->state < IO_UNIT_STRIPE_END)
1209 log->next_checkpoint = io->log_start;
1211 list_del(&io->log_sibling);
1212 mempool_free(io, &log->io_pool);
1213 r5l_run_no_mem_stripe(log);
1221 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1223 struct r5l_log *log = io->log;
1224 struct r5conf *conf = log->rdev->mddev->private;
1225 unsigned long flags;
1227 spin_lock_irqsave(&log->io_list_lock, flags);
1228 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1230 if (!r5l_complete_finished_ios(log)) {
1231 spin_unlock_irqrestore(&log->io_list_lock, flags);
1235 if (r5l_reclaimable_space(log) > log->max_free_space ||
1236 test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1237 r5l_wake_reclaim(log, 0);
1239 spin_unlock_irqrestore(&log->io_list_lock, flags);
1240 wake_up(&log->iounit_wait);
1243 void r5l_stripe_write_finished(struct stripe_head *sh)
1245 struct r5l_io_unit *io;
1250 if (io && atomic_dec_and_test(&io->pending_stripe))
1251 __r5l_stripe_write_finished(io);
1254 static void r5l_log_flush_endio(struct bio *bio)
1256 struct r5l_log *log = container_of(bio, struct r5l_log,
1258 unsigned long flags;
1259 struct r5l_io_unit *io;
1262 md_error(log->rdev->mddev, log->rdev);
1264 spin_lock_irqsave(&log->io_list_lock, flags);
1265 list_for_each_entry(io, &log->flushing_ios, log_sibling)
1266 r5l_io_run_stripes(io);
1267 list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1268 spin_unlock_irqrestore(&log->io_list_lock, flags);
1274 * Starting dispatch IO to raid.
1275 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1276 * broken meta in the middle of a log causes recovery can't find meta at the
1277 * head of log. If operations require meta at the head persistent in log, we
1278 * must make sure meta before it persistent in log too. A case is:
1280 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1281 * data/parity must be persistent in log before we do the write to raid disks.
1283 * The solution is we restrictly maintain io_unit list order. In this case, we
1284 * only write stripes of an io_unit to raid disks till the io_unit is the first
1285 * one whose data/parity is in log.
1287 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1291 if (!log || !log->need_cache_flush)
1294 spin_lock_irq(&log->io_list_lock);
1295 /* flush bio is running */
1296 if (!list_empty(&log->flushing_ios)) {
1297 spin_unlock_irq(&log->io_list_lock);
1300 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1301 do_flush = !list_empty(&log->flushing_ios);
1302 spin_unlock_irq(&log->io_list_lock);
1306 bio_init(&log->flush_bio, log->rdev->bdev, NULL, 0,
1307 REQ_OP_WRITE | REQ_PREFLUSH);
1308 log->flush_bio.bi_end_io = r5l_log_flush_endio;
1309 submit_bio(&log->flush_bio);
1312 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1313 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1316 struct block_device *bdev = log->rdev->bdev;
1317 struct mddev *mddev;
1319 r5l_write_super(log, end);
1321 if (!bdev_max_discard_sectors(bdev))
1324 mddev = log->rdev->mddev;
1326 * Discard could zero data, so before discard we must make sure
1327 * superblock is updated to new log tail. Updating superblock (either
1328 * directly call md_update_sb() or depend on md thread) must hold
1329 * reconfig mutex. On the other hand, raid5_quiesce is called with
1330 * reconfig_mutex hold. The first step of raid5_quiesce() is waiting
1331 * for all IO finish, hence waiting for reclaim thread, while reclaim
1332 * thread is calling this function and waiting for reconfig mutex. So
1333 * there is a deadlock. We workaround this issue with a trylock.
1334 * FIXME: we could miss discard if we can't take reconfig mutex
1336 set_mask_bits(&mddev->sb_flags, 0,
1337 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1338 if (!mddev_trylock(mddev))
1340 md_update_sb(mddev, 1);
1341 mddev_unlock(mddev);
1343 /* discard IO error really doesn't matter, ignore it */
1344 if (log->last_checkpoint < end) {
1345 blkdev_issue_discard(bdev,
1346 log->last_checkpoint + log->rdev->data_offset,
1347 end - log->last_checkpoint, GFP_NOIO);
1349 blkdev_issue_discard(bdev,
1350 log->last_checkpoint + log->rdev->data_offset,
1351 log->device_size - log->last_checkpoint,
1353 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1359 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1360 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1362 * must hold conf->device_lock
1364 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1366 BUG_ON(list_empty(&sh->lru));
1367 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1368 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1371 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1372 * raid5_release_stripe() while holding conf->device_lock
1374 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1375 lockdep_assert_held(&conf->device_lock);
1377 list_del_init(&sh->lru);
1378 atomic_inc(&sh->count);
1380 set_bit(STRIPE_HANDLE, &sh->state);
1381 atomic_inc(&conf->active_stripes);
1382 r5c_make_stripe_write_out(sh);
1384 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1385 atomic_inc(&conf->r5c_flushing_partial_stripes);
1387 atomic_inc(&conf->r5c_flushing_full_stripes);
1388 raid5_release_stripe(sh);
1392 * if num == 0, flush all full stripes
1393 * if num > 0, flush all full stripes. If less than num full stripes are
1394 * flushed, flush some partial stripes until totally num stripes are
1395 * flushed or there is no more cached stripes.
1397 void r5c_flush_cache(struct r5conf *conf, int num)
1400 struct stripe_head *sh, *next;
1402 lockdep_assert_held(&conf->device_lock);
1407 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1408 r5c_flush_stripe(conf, sh);
1414 list_for_each_entry_safe(sh, next,
1415 &conf->r5c_partial_stripe_list, lru) {
1416 r5c_flush_stripe(conf, sh);
1422 static void r5c_do_reclaim(struct r5conf *conf)
1424 struct r5l_log *log = conf->log;
1425 struct stripe_head *sh;
1427 unsigned long flags;
1429 int stripes_to_flush;
1430 int flushing_partial, flushing_full;
1432 if (!r5c_is_writeback(log))
1435 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1436 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1437 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1438 atomic_read(&conf->r5c_cached_full_stripes) -
1439 flushing_full - flushing_partial;
1441 if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1442 atomic_read(&conf->empty_inactive_list_nr) > 0)
1444 * if stripe cache pressure high, flush all full stripes and
1445 * some partial stripes
1447 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1448 else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1449 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1450 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1452 * if stripe cache pressure moderate, or if there is many full
1453 * stripes,flush all full stripes
1455 stripes_to_flush = 0;
1457 /* no need to flush */
1458 stripes_to_flush = -1;
1460 if (stripes_to_flush >= 0) {
1461 spin_lock_irqsave(&conf->device_lock, flags);
1462 r5c_flush_cache(conf, stripes_to_flush);
1463 spin_unlock_irqrestore(&conf->device_lock, flags);
1466 /* if log space is tight, flush stripes on stripe_in_journal_list */
1467 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1468 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1469 spin_lock(&conf->device_lock);
1470 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1472 * stripes on stripe_in_journal_list could be in any
1473 * state of the stripe_cache state machine. In this
1474 * case, we only want to flush stripe on
1475 * r5c_cached_full/partial_stripes. The following
1476 * condition makes sure the stripe is on one of the
1479 if (!list_empty(&sh->lru) &&
1480 !test_bit(STRIPE_HANDLE, &sh->state) &&
1481 atomic_read(&sh->count) == 0) {
1482 r5c_flush_stripe(conf, sh);
1483 if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1487 spin_unlock(&conf->device_lock);
1488 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1491 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1492 r5l_run_no_space_stripes(log);
1494 md_wakeup_thread(conf->mddev->thread);
1497 static void r5l_do_reclaim(struct r5l_log *log)
1499 struct r5conf *conf = log->rdev->mddev->private;
1500 sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1501 sector_t reclaimable;
1502 sector_t next_checkpoint;
1505 spin_lock_irq(&log->io_list_lock);
1506 write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1507 reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1509 * move proper io_unit to reclaim list. We should not change the order.
1510 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1511 * shouldn't reuse space of an unreclaimable io_unit
1514 reclaimable = r5l_reclaimable_space(log);
1515 if (reclaimable >= reclaim_target ||
1516 (list_empty(&log->running_ios) &&
1517 list_empty(&log->io_end_ios) &&
1518 list_empty(&log->flushing_ios) &&
1519 list_empty(&log->finished_ios)))
1522 md_wakeup_thread(log->rdev->mddev->thread);
1523 wait_event_lock_irq(log->iounit_wait,
1524 r5l_reclaimable_space(log) > reclaimable,
1528 next_checkpoint = r5c_calculate_new_cp(conf);
1529 spin_unlock_irq(&log->io_list_lock);
1531 if (reclaimable == 0 || !write_super)
1535 * write_super will flush cache of each raid disk. We must write super
1536 * here, because the log area might be reused soon and we don't want to
1539 r5l_write_super_and_discard_space(log, next_checkpoint);
1541 mutex_lock(&log->io_mutex);
1542 log->last_checkpoint = next_checkpoint;
1543 r5c_update_log_state(log);
1544 mutex_unlock(&log->io_mutex);
1546 r5l_run_no_space_stripes(log);
1549 static void r5l_reclaim_thread(struct md_thread *thread)
1551 struct mddev *mddev = thread->mddev;
1552 struct r5conf *conf = mddev->private;
1553 struct r5l_log *log = conf->log;
1557 r5c_do_reclaim(conf);
1558 r5l_do_reclaim(log);
1561 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1563 unsigned long target;
1564 unsigned long new = (unsigned long)space; /* overflow in theory */
1569 target = log->reclaim_target;
1572 } while (cmpxchg(&log->reclaim_target, target, new) != target);
1573 md_wakeup_thread(log->reclaim_thread);
1576 void r5l_quiesce(struct r5l_log *log, int quiesce)
1578 struct mddev *mddev;
1581 /* make sure r5l_write_super_and_discard_space exits */
1582 mddev = log->rdev->mddev;
1583 wake_up(&mddev->sb_wait);
1584 kthread_park(log->reclaim_thread->tsk);
1585 r5l_wake_reclaim(log, MaxSector);
1586 r5l_do_reclaim(log);
1588 kthread_unpark(log->reclaim_thread->tsk);
1591 bool r5l_log_disk_error(struct r5conf *conf)
1593 struct r5l_log *log = conf->log;
1595 /* don't allow write if journal disk is missing */
1597 return test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1599 return test_bit(Faulty, &log->rdev->flags);
1602 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1604 struct r5l_recovery_ctx {
1605 struct page *meta_page; /* current meta */
1606 sector_t meta_total_blocks; /* total size of current meta and data */
1607 sector_t pos; /* recovery position */
1608 u64 seq; /* recovery position seq */
1609 int data_parity_stripes; /* number of data_parity stripes */
1610 int data_only_stripes; /* number of data_only stripes */
1611 struct list_head cached_list;
1614 * read ahead page pool (ra_pool)
1615 * in recovery, log is read sequentially. It is not efficient to
1616 * read every page with sync_page_io(). The read ahead page pool
1617 * reads multiple pages with one IO, so further log read can
1618 * just copy data from the pool.
1620 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1621 struct bio_vec ra_bvec[R5L_RECOVERY_PAGE_POOL_SIZE];
1622 sector_t pool_offset; /* offset of first page in the pool */
1623 int total_pages; /* total allocated pages */
1624 int valid_pages; /* pages with valid data */
1627 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1628 struct r5l_recovery_ctx *ctx)
1632 ctx->valid_pages = 0;
1633 ctx->total_pages = 0;
1634 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1635 page = alloc_page(GFP_KERNEL);
1639 ctx->ra_pool[ctx->total_pages] = page;
1640 ctx->total_pages += 1;
1643 if (ctx->total_pages == 0)
1646 ctx->pool_offset = 0;
1650 static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1651 struct r5l_recovery_ctx *ctx)
1655 for (i = 0; i < ctx->total_pages; ++i)
1656 put_page(ctx->ra_pool[i]);
1660 * fetch ctx->valid_pages pages from offset
1661 * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1662 * However, if the offset is close to the end of the journal device,
1663 * ctx->valid_pages could be smaller than ctx->total_pages
1665 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1666 struct r5l_recovery_ctx *ctx,
1672 bio_init(&bio, log->rdev->bdev, ctx->ra_bvec,
1673 R5L_RECOVERY_PAGE_POOL_SIZE, REQ_OP_READ);
1674 bio.bi_iter.bi_sector = log->rdev->data_offset + offset;
1676 ctx->valid_pages = 0;
1677 ctx->pool_offset = offset;
1679 while (ctx->valid_pages < ctx->total_pages) {
1680 __bio_add_page(&bio, ctx->ra_pool[ctx->valid_pages], PAGE_SIZE,
1682 ctx->valid_pages += 1;
1684 offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1686 if (offset == 0) /* reached end of the device */
1690 ret = submit_bio_wait(&bio);
1696 * try read a page from the read ahead page pool, if the page is not in the
1697 * pool, call r5l_recovery_fetch_ra_pool
1699 static int r5l_recovery_read_page(struct r5l_log *log,
1700 struct r5l_recovery_ctx *ctx,
1706 if (offset < ctx->pool_offset ||
1707 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1708 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1713 BUG_ON(offset < ctx->pool_offset ||
1714 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1716 memcpy(page_address(page),
1717 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1718 BLOCK_SECTOR_SHIFT]),
1723 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1724 struct r5l_recovery_ctx *ctx)
1726 struct page *page = ctx->meta_page;
1727 struct r5l_meta_block *mb;
1728 u32 crc, stored_crc;
1731 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1735 mb = page_address(page);
1736 stored_crc = le32_to_cpu(mb->checksum);
1739 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1740 le64_to_cpu(mb->seq) != ctx->seq ||
1741 mb->version != R5LOG_VERSION ||
1742 le64_to_cpu(mb->position) != ctx->pos)
1745 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1746 if (stored_crc != crc)
1749 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1752 ctx->meta_total_blocks = BLOCK_SECTORS;
1758 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1760 sector_t pos, u64 seq)
1762 struct r5l_meta_block *mb;
1764 mb = page_address(page);
1766 mb->magic = cpu_to_le32(R5LOG_MAGIC);
1767 mb->version = R5LOG_VERSION;
1768 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1769 mb->seq = cpu_to_le64(seq);
1770 mb->position = cpu_to_le64(pos);
1773 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1777 struct r5l_meta_block *mb;
1779 page = alloc_page(GFP_KERNEL);
1782 r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1783 mb = page_address(page);
1784 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1786 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE |
1787 REQ_SYNC | REQ_FUA, false)) {
1796 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1797 * to mark valid (potentially not flushed) data in the journal.
1799 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1800 * so there should not be any mismatch here.
1802 static void r5l_recovery_load_data(struct r5l_log *log,
1803 struct stripe_head *sh,
1804 struct r5l_recovery_ctx *ctx,
1805 struct r5l_payload_data_parity *payload,
1806 sector_t log_offset)
1808 struct mddev *mddev = log->rdev->mddev;
1809 struct r5conf *conf = mddev->private;
1812 raid5_compute_sector(conf,
1813 le64_to_cpu(payload->location), 0,
1815 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1816 sh->dev[dd_idx].log_checksum =
1817 le32_to_cpu(payload->checksum[0]);
1818 ctx->meta_total_blocks += BLOCK_SECTORS;
1820 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1821 set_bit(STRIPE_R5C_CACHING, &sh->state);
1824 static void r5l_recovery_load_parity(struct r5l_log *log,
1825 struct stripe_head *sh,
1826 struct r5l_recovery_ctx *ctx,
1827 struct r5l_payload_data_parity *payload,
1828 sector_t log_offset)
1830 struct mddev *mddev = log->rdev->mddev;
1831 struct r5conf *conf = mddev->private;
1833 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1834 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1835 sh->dev[sh->pd_idx].log_checksum =
1836 le32_to_cpu(payload->checksum[0]);
1837 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1839 if (sh->qd_idx >= 0) {
1840 r5l_recovery_read_page(
1841 log, ctx, sh->dev[sh->qd_idx].page,
1842 r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1843 sh->dev[sh->qd_idx].log_checksum =
1844 le32_to_cpu(payload->checksum[1]);
1845 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1847 clear_bit(STRIPE_R5C_CACHING, &sh->state);
1850 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1855 sh->log_start = MaxSector;
1856 for (i = sh->disks; i--; )
1857 sh->dev[i].flags = 0;
1861 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1862 struct stripe_head *sh,
1863 struct r5l_recovery_ctx *ctx)
1865 struct md_rdev *rdev, *rrdev;
1869 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1870 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1872 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1878 * stripes that only have parity must have been flushed
1879 * before the crash that we are now recovering from, so
1880 * there is nothing more to recovery.
1882 if (data_count == 0)
1885 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1886 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1889 /* in case device is broken */
1891 rdev = rcu_dereference(conf->disks[disk_index].rdev);
1893 atomic_inc(&rdev->nr_pending);
1895 sync_page_io(rdev, sh->sector, PAGE_SIZE,
1896 sh->dev[disk_index].page, REQ_OP_WRITE,
1898 rdev_dec_pending(rdev, rdev->mddev);
1901 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1903 atomic_inc(&rrdev->nr_pending);
1905 sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1906 sh->dev[disk_index].page, REQ_OP_WRITE,
1908 rdev_dec_pending(rrdev, rrdev->mddev);
1913 ctx->data_parity_stripes++;
1915 r5l_recovery_reset_stripe(sh);
1918 static struct stripe_head *
1919 r5c_recovery_alloc_stripe(
1920 struct r5conf *conf,
1921 sector_t stripe_sect,
1924 struct stripe_head *sh;
1926 sh = raid5_get_active_stripe(conf, NULL, stripe_sect,
1927 noblock ? R5_GAS_NOBLOCK : 0);
1929 return NULL; /* no more stripe available */
1931 r5l_recovery_reset_stripe(sh);
1936 static struct stripe_head *
1937 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1939 struct stripe_head *sh;
1941 list_for_each_entry(sh, list, lru)
1942 if (sh->sector == sect)
1948 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1949 struct r5l_recovery_ctx *ctx)
1951 struct stripe_head *sh, *next;
1953 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1954 r5l_recovery_reset_stripe(sh);
1955 list_del_init(&sh->lru);
1956 raid5_release_stripe(sh);
1961 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1962 struct r5l_recovery_ctx *ctx)
1964 struct stripe_head *sh, *next;
1966 list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1967 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1968 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1969 list_del_init(&sh->lru);
1970 raid5_release_stripe(sh);
1974 /* if matches return 0; otherwise return -EINVAL */
1976 r5l_recovery_verify_data_checksum(struct r5l_log *log,
1977 struct r5l_recovery_ctx *ctx,
1979 sector_t log_offset, __le32 log_checksum)
1984 r5l_recovery_read_page(log, ctx, page, log_offset);
1985 addr = kmap_atomic(page);
1986 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1987 kunmap_atomic(addr);
1988 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1992 * before loading data to stripe cache, we need verify checksum for all data,
1993 * if there is mismatch for any data page, we drop all data in the mata block
1996 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1997 struct r5l_recovery_ctx *ctx)
1999 struct mddev *mddev = log->rdev->mddev;
2000 struct r5conf *conf = mddev->private;
2001 struct r5l_meta_block *mb = page_address(ctx->meta_page);
2002 sector_t mb_offset = sizeof(struct r5l_meta_block);
2003 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2005 struct r5l_payload_data_parity *payload;
2006 struct r5l_payload_flush *payload_flush;
2008 page = alloc_page(GFP_KERNEL);
2012 while (mb_offset < le32_to_cpu(mb->meta_size)) {
2013 payload = (void *)mb + mb_offset;
2014 payload_flush = (void *)mb + mb_offset;
2016 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2017 if (r5l_recovery_verify_data_checksum(
2018 log, ctx, page, log_offset,
2019 payload->checksum[0]) < 0)
2021 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2022 if (r5l_recovery_verify_data_checksum(
2023 log, ctx, page, log_offset,
2024 payload->checksum[0]) < 0)
2026 if (conf->max_degraded == 2 && /* q for RAID 6 */
2027 r5l_recovery_verify_data_checksum(
2029 r5l_ring_add(log, log_offset,
2031 payload->checksum[1]) < 0)
2033 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2034 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2035 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2038 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2039 mb_offset += sizeof(struct r5l_payload_flush) +
2040 le32_to_cpu(payload_flush->size);
2042 /* DATA or PARITY payload */
2043 log_offset = r5l_ring_add(log, log_offset,
2044 le32_to_cpu(payload->size));
2045 mb_offset += sizeof(struct r5l_payload_data_parity) +
2047 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2061 * Analyze all data/parity pages in one meta block
2064 * -EINVAL for unknown playload type
2065 * -EAGAIN for checksum mismatch of data page
2066 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2069 r5c_recovery_analyze_meta_block(struct r5l_log *log,
2070 struct r5l_recovery_ctx *ctx,
2071 struct list_head *cached_stripe_list)
2073 struct mddev *mddev = log->rdev->mddev;
2074 struct r5conf *conf = mddev->private;
2075 struct r5l_meta_block *mb;
2076 struct r5l_payload_data_parity *payload;
2077 struct r5l_payload_flush *payload_flush;
2079 sector_t log_offset;
2080 sector_t stripe_sect;
2081 struct stripe_head *sh;
2085 * for mismatch in data blocks, we will drop all data in this mb, but
2086 * we will still read next mb for other data with FLUSH flag, as
2087 * io_unit could finish out of order.
2089 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2093 return ret; /* -ENOMEM duo to alloc_page() failed */
2095 mb = page_address(ctx->meta_page);
2096 mb_offset = sizeof(struct r5l_meta_block);
2097 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2099 while (mb_offset < le32_to_cpu(mb->meta_size)) {
2102 payload = (void *)mb + mb_offset;
2103 payload_flush = (void *)mb + mb_offset;
2105 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2108 count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2109 for (i = 0; i < count; ++i) {
2110 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2111 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2114 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2115 r5l_recovery_reset_stripe(sh);
2116 list_del_init(&sh->lru);
2117 raid5_release_stripe(sh);
2121 mb_offset += sizeof(struct r5l_payload_flush) +
2122 le32_to_cpu(payload_flush->size);
2126 /* DATA or PARITY payload */
2127 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2128 raid5_compute_sector(
2129 conf, le64_to_cpu(payload->location), 0, &dd,
2131 : le64_to_cpu(payload->location);
2133 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2137 sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1);
2139 * cannot get stripe from raid5_get_active_stripe
2140 * try replay some stripes
2143 r5c_recovery_replay_stripes(
2144 cached_stripe_list, ctx);
2145 sh = r5c_recovery_alloc_stripe(
2146 conf, stripe_sect, 1);
2149 int new_size = conf->min_nr_stripes * 2;
2150 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2153 ret = raid5_set_cache_size(mddev, new_size);
2154 if (conf->min_nr_stripes <= new_size / 2) {
2155 pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
2159 conf->min_nr_stripes,
2160 conf->max_nr_stripes);
2163 sh = r5c_recovery_alloc_stripe(
2164 conf, stripe_sect, 0);
2167 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2171 list_add_tail(&sh->lru, cached_stripe_list);
2174 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2175 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2176 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2177 r5l_recovery_replay_one_stripe(conf, sh, ctx);
2178 list_move_tail(&sh->lru, cached_stripe_list);
2180 r5l_recovery_load_data(log, sh, ctx, payload,
2182 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2183 r5l_recovery_load_parity(log, sh, ctx, payload,
2188 log_offset = r5l_ring_add(log, log_offset,
2189 le32_to_cpu(payload->size));
2191 mb_offset += sizeof(struct r5l_payload_data_parity) +
2193 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2200 * Load the stripe into cache. The stripe will be written out later by
2201 * the stripe cache state machine.
2203 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2204 struct stripe_head *sh)
2209 for (i = sh->disks; i--; ) {
2211 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2212 set_bit(R5_InJournal, &dev->flags);
2213 set_bit(R5_UPTODATE, &dev->flags);
2219 * Scan through the log for all to-be-flushed data
2221 * For stripes with data and parity, namely Data-Parity stripe
2222 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2224 * For stripes with only data, namely Data-Only stripe
2225 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2227 * For a stripe, if we see data after parity, we should discard all previous
2228 * data and parity for this stripe, as these data are already flushed to
2231 * At the end of the scan, we return the new journal_tail, which points to
2232 * first data-only stripe on the journal device, or next invalid meta block.
2234 static int r5c_recovery_flush_log(struct r5l_log *log,
2235 struct r5l_recovery_ctx *ctx)
2237 struct stripe_head *sh;
2240 /* scan through the log */
2242 if (r5l_recovery_read_meta_block(log, ctx))
2245 ret = r5c_recovery_analyze_meta_block(log, ctx,
2248 * -EAGAIN means mismatch in data block, in this case, we still
2249 * try scan the next metablock
2251 if (ret && ret != -EAGAIN)
2252 break; /* ret == -EINVAL or -ENOMEM */
2254 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2257 if (ret == -ENOMEM) {
2258 r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2262 /* replay data-parity stripes */
2263 r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2265 /* load data-only stripes to stripe cache */
2266 list_for_each_entry(sh, &ctx->cached_list, lru) {
2267 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2268 r5c_recovery_load_one_stripe(log, sh);
2269 ctx->data_only_stripes++;
2276 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2277 * log will start here. but we can't let superblock point to last valid
2278 * meta block. The log might looks like:
2279 * | meta 1| meta 2| meta 3|
2280 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2281 * superblock points to meta 1, we write a new valid meta 2n. if crash
2282 * happens again, new recovery will start from meta 1. Since meta 2n is
2283 * valid now, recovery will think meta 3 is valid, which is wrong.
2284 * The solution is we create a new meta in meta2 with its seq == meta
2285 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2286 * will not think meta 3 is a valid meta, because its seq doesn't match
2290 * Before recovery, the log looks like the following
2292 * ---------------------------------------------
2293 * | valid log | invalid log |
2294 * ---------------------------------------------
2296 * |- log->last_checkpoint
2297 * |- log->last_cp_seq
2299 * Now we scan through the log until we see invalid entry
2301 * ---------------------------------------------
2302 * | valid log | invalid log |
2303 * ---------------------------------------------
2305 * |- log->last_checkpoint |- ctx->pos
2306 * |- log->last_cp_seq |- ctx->seq
2308 * From this point, we need to increase seq number by 10 to avoid
2309 * confusing next recovery.
2311 * ---------------------------------------------
2312 * | valid log | invalid log |
2313 * ---------------------------------------------
2315 * |- log->last_checkpoint |- ctx->pos+1
2316 * |- log->last_cp_seq |- ctx->seq+10001
2318 * However, it is not safe to start the state machine yet, because data only
2319 * parities are not yet secured in RAID. To save these data only parities, we
2320 * rewrite them from seq+11.
2322 * -----------------------------------------------------------------
2323 * | valid log | data only stripes | invalid log |
2324 * -----------------------------------------------------------------
2326 * |- log->last_checkpoint |- ctx->pos+n
2327 * |- log->last_cp_seq |- ctx->seq+10000+n
2329 * If failure happens again during this process, the recovery can safe start
2330 * again from log->last_checkpoint.
2332 * Once data only stripes are rewritten to journal, we move log_tail
2334 * -----------------------------------------------------------------
2335 * | old log | data only stripes | invalid log |
2336 * -----------------------------------------------------------------
2338 * |- log->last_checkpoint |- ctx->pos+n
2339 * |- log->last_cp_seq |- ctx->seq+10000+n
2341 * Then we can safely start the state machine. If failure happens from this
2342 * point on, the recovery will start from new log->last_checkpoint.
2345 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2346 struct r5l_recovery_ctx *ctx)
2348 struct stripe_head *sh;
2349 struct mddev *mddev = log->rdev->mddev;
2351 sector_t next_checkpoint = MaxSector;
2353 page = alloc_page(GFP_KERNEL);
2355 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2360 WARN_ON(list_empty(&ctx->cached_list));
2362 list_for_each_entry(sh, &ctx->cached_list, lru) {
2363 struct r5l_meta_block *mb;
2368 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2369 r5l_recovery_create_empty_meta_block(log, page,
2370 ctx->pos, ctx->seq);
2371 mb = page_address(page);
2372 offset = le32_to_cpu(mb->meta_size);
2373 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2375 for (i = sh->disks; i--; ) {
2376 struct r5dev *dev = &sh->dev[i];
2377 struct r5l_payload_data_parity *payload;
2380 if (test_bit(R5_InJournal, &dev->flags)) {
2381 payload = (void *)mb + offset;
2382 payload->header.type = cpu_to_le16(
2383 R5LOG_PAYLOAD_DATA);
2384 payload->size = cpu_to_le32(BLOCK_SECTORS);
2385 payload->location = cpu_to_le64(
2386 raid5_compute_blocknr(sh, i, 0));
2387 addr = kmap_atomic(dev->page);
2388 payload->checksum[0] = cpu_to_le32(
2389 crc32c_le(log->uuid_checksum, addr,
2391 kunmap_atomic(addr);
2392 sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2393 dev->page, REQ_OP_WRITE, false);
2394 write_pos = r5l_ring_add(log, write_pos,
2396 offset += sizeof(__le32) +
2397 sizeof(struct r5l_payload_data_parity);
2401 mb->meta_size = cpu_to_le32(offset);
2402 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2404 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2405 REQ_OP_WRITE | REQ_SYNC | REQ_FUA, false);
2406 sh->log_start = ctx->pos;
2407 list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2408 atomic_inc(&log->stripe_in_journal_count);
2409 ctx->pos = write_pos;
2411 next_checkpoint = sh->log_start;
2413 log->next_checkpoint = next_checkpoint;
2418 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2419 struct r5l_recovery_ctx *ctx)
2421 struct mddev *mddev = log->rdev->mddev;
2422 struct r5conf *conf = mddev->private;
2423 struct stripe_head *sh, *next;
2424 bool cleared_pending = false;
2426 if (ctx->data_only_stripes == 0)
2429 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2430 cleared_pending = true;
2431 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2433 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2435 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2436 r5c_make_stripe_write_out(sh);
2437 set_bit(STRIPE_HANDLE, &sh->state);
2438 list_del_init(&sh->lru);
2439 raid5_release_stripe(sh);
2442 /* reuse conf->wait_for_quiescent in recovery */
2443 wait_event(conf->wait_for_quiescent,
2444 atomic_read(&conf->active_stripes) == 0);
2446 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2447 if (cleared_pending)
2448 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2451 static int r5l_recovery_log(struct r5l_log *log)
2453 struct mddev *mddev = log->rdev->mddev;
2454 struct r5l_recovery_ctx *ctx;
2458 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2462 ctx->pos = log->last_checkpoint;
2463 ctx->seq = log->last_cp_seq;
2464 INIT_LIST_HEAD(&ctx->cached_list);
2465 ctx->meta_page = alloc_page(GFP_KERNEL);
2467 if (!ctx->meta_page) {
2472 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2477 ret = r5c_recovery_flush_log(log, ctx);
2485 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2486 pr_info("md/raid:%s: starting from clean shutdown\n",
2489 pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2490 mdname(mddev), ctx->data_only_stripes,
2491 ctx->data_parity_stripes);
2493 if (ctx->data_only_stripes == 0) {
2494 log->next_checkpoint = ctx->pos;
2495 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2496 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2497 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2498 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2504 log->log_start = ctx->pos;
2505 log->seq = ctx->seq;
2506 log->last_checkpoint = pos;
2507 r5l_write_super(log, pos);
2509 r5c_recovery_flush_data_only_stripes(log, ctx);
2512 r5l_recovery_free_ra_pool(log, ctx);
2514 __free_page(ctx->meta_page);
2520 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2522 struct mddev *mddev = log->rdev->mddev;
2524 log->rdev->journal_tail = cp;
2525 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2528 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2530 struct r5conf *conf;
2533 ret = mddev_lock(mddev);
2537 conf = mddev->private;
2538 if (!conf || !conf->log)
2541 switch (conf->log->r5c_journal_mode) {
2542 case R5C_JOURNAL_MODE_WRITE_THROUGH:
2544 page, PAGE_SIZE, "[%s] %s\n",
2545 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2546 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2548 case R5C_JOURNAL_MODE_WRITE_BACK:
2550 page, PAGE_SIZE, "%s [%s]\n",
2551 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2552 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2559 mddev_unlock(mddev);
2564 * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2566 * @mode as defined in 'enum r5c_journal_mode'.
2569 int r5c_journal_mode_set(struct mddev *mddev, int mode)
2571 struct r5conf *conf;
2573 if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2574 mode > R5C_JOURNAL_MODE_WRITE_BACK)
2577 conf = mddev->private;
2578 if (!conf || !conf->log)
2581 if (raid5_calc_degraded(conf) > 0 &&
2582 mode == R5C_JOURNAL_MODE_WRITE_BACK)
2585 mddev_suspend(mddev);
2586 conf->log->r5c_journal_mode = mode;
2587 mddev_resume(mddev);
2589 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2590 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2593 EXPORT_SYMBOL(r5c_journal_mode_set);
2595 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2596 const char *page, size_t length)
2598 int mode = ARRAY_SIZE(r5c_journal_mode_str);
2599 size_t len = length;
2605 if (page[len - 1] == '\n')
2609 if (strlen(r5c_journal_mode_str[mode]) == len &&
2610 !strncmp(page, r5c_journal_mode_str[mode], len))
2612 ret = mddev_lock(mddev);
2615 ret = r5c_journal_mode_set(mddev, mode);
2616 mddev_unlock(mddev);
2617 return ret ?: length;
2620 struct md_sysfs_entry
2621 r5c_journal_mode = __ATTR(journal_mode, 0644,
2622 r5c_journal_mode_show, r5c_journal_mode_store);
2625 * Try handle write operation in caching phase. This function should only
2626 * be called in write-back mode.
2628 * If all outstanding writes can be handled in caching phase, returns 0
2629 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2630 * and returns -EAGAIN
2632 int r5c_try_caching_write(struct r5conf *conf,
2633 struct stripe_head *sh,
2634 struct stripe_head_state *s,
2637 struct r5l_log *log = conf->log;
2642 sector_t tree_index;
2646 BUG_ON(!r5c_is_writeback(log));
2648 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2650 * There are two different scenarios here:
2651 * 1. The stripe has some data cached, and it is sent to
2652 * write-out phase for reclaim
2653 * 2. The stripe is clean, and this is the first write
2655 * For 1, return -EAGAIN, so we continue with
2656 * handle_stripe_dirtying().
2658 * For 2, set STRIPE_R5C_CACHING and continue with caching
2662 /* case 1: anything injournal or anything in written */
2663 if (s->injournal > 0 || s->written > 0)
2666 set_bit(STRIPE_R5C_CACHING, &sh->state);
2670 * When run in degraded mode, array is set to write-through mode.
2671 * This check helps drain pending write safely in the transition to
2672 * write-through mode.
2674 * When a stripe is syncing, the write is also handled in write
2677 if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2678 r5c_make_stripe_write_out(sh);
2682 for (i = disks; i--; ) {
2684 /* if non-overwrite, use writing-out phase */
2685 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2686 !test_bit(R5_InJournal, &dev->flags)) {
2687 r5c_make_stripe_write_out(sh);
2692 /* if the stripe is not counted in big_stripe_tree, add it now */
2693 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2694 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2695 tree_index = r5c_tree_index(conf, sh->sector);
2696 spin_lock(&log->tree_lock);
2697 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2700 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2701 pslot, &log->tree_lock) >>
2702 R5C_RADIX_COUNT_SHIFT;
2703 radix_tree_replace_slot(
2704 &log->big_stripe_tree, pslot,
2705 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2708 * this radix_tree_insert can fail safely, so no
2709 * need to call radix_tree_preload()
2711 ret = radix_tree_insert(
2712 &log->big_stripe_tree, tree_index,
2713 (void *)(1 << R5C_RADIX_COUNT_SHIFT));
2715 spin_unlock(&log->tree_lock);
2716 r5c_make_stripe_write_out(sh);
2720 spin_unlock(&log->tree_lock);
2723 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2724 * counted in the radix tree
2726 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2727 atomic_inc(&conf->r5c_cached_partial_stripes);
2730 for (i = disks; i--; ) {
2733 set_bit(R5_Wantwrite, &dev->flags);
2734 set_bit(R5_Wantdrain, &dev->flags);
2735 set_bit(R5_LOCKED, &dev->flags);
2741 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2743 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2744 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2745 * r5c_handle_data_cached()
2747 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2754 * free extra pages (orig_page) we allocated for prexor
2756 void r5c_release_extra_page(struct stripe_head *sh)
2758 struct r5conf *conf = sh->raid_conf;
2760 bool using_disk_info_extra_page;
2762 using_disk_info_extra_page =
2763 sh->dev[0].orig_page == conf->disks[0].extra_page;
2765 for (i = sh->disks; i--; )
2766 if (sh->dev[i].page != sh->dev[i].orig_page) {
2767 struct page *p = sh->dev[i].orig_page;
2769 sh->dev[i].orig_page = sh->dev[i].page;
2770 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2772 if (!using_disk_info_extra_page)
2776 if (using_disk_info_extra_page) {
2777 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2778 md_wakeup_thread(conf->mddev->thread);
2782 void r5c_use_extra_page(struct stripe_head *sh)
2784 struct r5conf *conf = sh->raid_conf;
2788 for (i = sh->disks; i--; ) {
2790 if (dev->orig_page != dev->page)
2791 put_page(dev->orig_page);
2792 dev->orig_page = conf->disks[i].extra_page;
2797 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2798 * stripe is committed to RAID disks.
2800 void r5c_finish_stripe_write_out(struct r5conf *conf,
2801 struct stripe_head *sh,
2802 struct stripe_head_state *s)
2804 struct r5l_log *log = conf->log;
2807 sector_t tree_index;
2811 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2814 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2815 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2817 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2820 for (i = sh->disks; i--; ) {
2821 clear_bit(R5_InJournal, &sh->dev[i].flags);
2822 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2827 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2828 * We updated R5_InJournal, so we also update s->injournal.
2832 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2833 if (atomic_dec_and_test(&conf->pending_full_writes))
2834 md_wakeup_thread(conf->mddev->thread);
2837 wake_up(&conf->wait_for_overlap);
2839 spin_lock_irq(&log->stripe_in_journal_lock);
2840 list_del_init(&sh->r5c);
2841 spin_unlock_irq(&log->stripe_in_journal_lock);
2842 sh->log_start = MaxSector;
2844 atomic_dec(&log->stripe_in_journal_count);
2845 r5c_update_log_state(log);
2847 /* stop counting this stripe in big_stripe_tree */
2848 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2849 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2850 tree_index = r5c_tree_index(conf, sh->sector);
2851 spin_lock(&log->tree_lock);
2852 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2854 BUG_ON(pslot == NULL);
2855 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2856 pslot, &log->tree_lock) >>
2857 R5C_RADIX_COUNT_SHIFT;
2859 radix_tree_delete(&log->big_stripe_tree, tree_index);
2861 radix_tree_replace_slot(
2862 &log->big_stripe_tree, pslot,
2863 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2864 spin_unlock(&log->tree_lock);
2867 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2868 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2869 atomic_dec(&conf->r5c_flushing_partial_stripes);
2870 atomic_dec(&conf->r5c_cached_partial_stripes);
2873 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2874 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2875 atomic_dec(&conf->r5c_flushing_full_stripes);
2876 atomic_dec(&conf->r5c_cached_full_stripes);
2879 r5l_append_flush_payload(log, sh->sector);
2880 /* stripe is flused to raid disks, we can do resync now */
2881 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2882 set_bit(STRIPE_HANDLE, &sh->state);
2885 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2887 struct r5conf *conf = sh->raid_conf;
2895 for (i = 0; i < sh->disks; i++) {
2898 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2900 addr = kmap_atomic(sh->dev[i].page);
2901 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2903 kunmap_atomic(addr);
2906 WARN_ON(pages == 0);
2909 * The stripe must enter state machine again to call endio, so
2912 clear_bit(STRIPE_DELAYED, &sh->state);
2913 atomic_inc(&sh->count);
2915 mutex_lock(&log->io_mutex);
2917 reserve = (1 + pages) << (PAGE_SHIFT - 9);
2919 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2920 sh->log_start == MaxSector)
2921 r5l_add_no_space_stripe(log, sh);
2922 else if (!r5l_has_free_space(log, reserve)) {
2923 if (sh->log_start == log->last_checkpoint)
2926 r5l_add_no_space_stripe(log, sh);
2928 ret = r5l_log_stripe(log, sh, pages, 0);
2930 spin_lock_irq(&log->io_list_lock);
2931 list_add_tail(&sh->log_list, &log->no_mem_stripes);
2932 spin_unlock_irq(&log->io_list_lock);
2936 mutex_unlock(&log->io_mutex);
2940 /* check whether this big stripe is in write back cache. */
2941 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2943 struct r5l_log *log = conf->log;
2944 sector_t tree_index;
2950 WARN_ON_ONCE(!rcu_read_lock_held());
2951 tree_index = r5c_tree_index(conf, sect);
2952 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2953 return slot != NULL;
2956 static int r5l_load_log(struct r5l_log *log)
2958 struct md_rdev *rdev = log->rdev;
2960 struct r5l_meta_block *mb;
2961 sector_t cp = log->rdev->journal_tail;
2962 u32 stored_crc, expected_crc;
2963 bool create_super = false;
2966 /* Make sure it's valid */
2967 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2969 page = alloc_page(GFP_KERNEL);
2973 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, false)) {
2977 mb = page_address(page);
2979 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2980 mb->version != R5LOG_VERSION) {
2981 create_super = true;
2984 stored_crc = le32_to_cpu(mb->checksum);
2986 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2987 if (stored_crc != expected_crc) {
2988 create_super = true;
2991 if (le64_to_cpu(mb->position) != cp) {
2992 create_super = true;
2997 log->last_cp_seq = prandom_u32();
2999 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
3001 * Make sure super points to correct address. Log might have
3002 * data very soon. If super hasn't correct log tail address,
3003 * recovery can't find the log
3005 r5l_write_super(log, cp);
3007 log->last_cp_seq = le64_to_cpu(mb->seq);
3009 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
3010 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3011 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3012 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
3013 log->last_checkpoint = cp;
3018 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3019 log->seq = log->last_cp_seq + 1;
3020 log->next_checkpoint = cp;
3022 ret = r5l_recovery_log(log);
3024 r5c_update_log_state(log);
3031 int r5l_start(struct r5l_log *log)
3038 ret = r5l_load_log(log);
3040 struct mddev *mddev = log->rdev->mddev;
3041 struct r5conf *conf = mddev->private;
3048 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3050 struct r5conf *conf = mddev->private;
3051 struct r5l_log *log = conf->log;
3056 if ((raid5_calc_degraded(conf) > 0 ||
3057 test_bit(Journal, &rdev->flags)) &&
3058 conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3059 schedule_work(&log->disable_writeback_work);
3062 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3064 struct request_queue *q = bdev_get_queue(rdev->bdev);
3065 struct r5l_log *log;
3068 pr_debug("md/raid:%s: using device %pg as journal\n",
3069 mdname(conf->mddev), rdev->bdev);
3071 if (PAGE_SIZE != 4096)
3075 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3076 * raid_disks r5l_payload_data_parity.
3078 * Write journal and cache does not work for very big array
3079 * (raid_disks > 203)
3081 if (sizeof(struct r5l_meta_block) +
3082 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3083 conf->raid_disks) > PAGE_SIZE) {
3084 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3085 mdname(conf->mddev), conf->raid_disks);
3089 log = kzalloc(sizeof(*log), GFP_KERNEL);
3094 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
3096 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3097 sizeof(rdev->mddev->uuid));
3099 mutex_init(&log->io_mutex);
3101 spin_lock_init(&log->io_list_lock);
3102 INIT_LIST_HEAD(&log->running_ios);
3103 INIT_LIST_HEAD(&log->io_end_ios);
3104 INIT_LIST_HEAD(&log->flushing_ios);
3105 INIT_LIST_HEAD(&log->finished_ios);
3107 log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3111 ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
3115 ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3119 ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
3123 spin_lock_init(&log->tree_lock);
3124 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3126 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3127 log->rdev->mddev, "reclaim");
3128 if (!log->reclaim_thread)
3129 goto reclaim_thread;
3130 log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3132 init_waitqueue_head(&log->iounit_wait);
3134 INIT_LIST_HEAD(&log->no_mem_stripes);
3136 INIT_LIST_HEAD(&log->no_space_stripes);
3137 spin_lock_init(&log->no_space_stripes_lock);
3139 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3140 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3142 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3143 INIT_LIST_HEAD(&log->stripe_in_journal_list);
3144 spin_lock_init(&log->stripe_in_journal_lock);
3145 atomic_set(&log->stripe_in_journal_count, 0);
3149 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3153 mempool_exit(&log->meta_pool);
3155 bioset_exit(&log->bs);
3157 mempool_exit(&log->io_pool);
3159 kmem_cache_destroy(log->io_kc);
3165 void r5l_exit_log(struct r5conf *conf)
3167 struct r5l_log *log = conf->log;
3169 /* Ensure disable_writeback_work wakes up and exits */
3170 wake_up(&conf->mddev->sb_wait);
3171 flush_work(&log->disable_writeback_work);
3172 md_unregister_thread(&log->reclaim_thread);
3176 mempool_exit(&log->meta_pool);
3177 bioset_exit(&log->bs);
3178 mempool_exit(&log->io_pool);
3179 kmem_cache_destroy(log->io_kc);