1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * raid10.c : Multiple Devices driver for Linux
5 * Copyright (C) 2000-2004 Neil Brown
7 * RAID-10 support for md.
9 * Base on code in raid1.c. See raid1.c for further copyright information.
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
24 #include "md-bitmap.h"
27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
28 * The layout of data is defined by
31 * near_copies (stored in low byte of layout)
32 * far_copies (stored in second byte of layout)
33 * far_offset (stored in bit 16 of layout )
34 * use_far_sets (stored in bit 17 of layout )
35 * use_far_sets_bugfixed (stored in bit 18 of layout )
37 * The data to be stored is divided into chunks using chunksize. Each device
38 * is divided into far_copies sections. In each section, chunks are laid out
39 * in a style similar to raid0, but near_copies copies of each chunk is stored
40 * (each on a different drive). The starting device for each section is offset
41 * near_copies from the starting device of the previous section. Thus there
42 * are (near_copies * far_copies) of each chunk, and each is on a different
43 * drive. near_copies and far_copies must be at least one, and their product
44 * is at most raid_disks.
46 * If far_offset is true, then the far_copies are handled a bit differently.
47 * The copies are still in different stripes, but instead of being very far
48 * apart on disk, there are adjacent stripes.
50 * The far and offset algorithms are handled slightly differently if
51 * 'use_far_sets' is true. In this case, the array's devices are grouped into
52 * sets that are (near_copies * far_copies) in size. The far copied stripes
53 * are still shifted by 'near_copies' devices, but this shifting stays confined
54 * to the set rather than the entire array. This is done to improve the number
55 * of device combinations that can fail without causing the array to fail.
56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62 * [A B] [C D] [A B] [C D E]
63 * |...| |...| |...| | ... |
64 * [B A] [D C] [B A] [E C D]
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
77 #define raid10_log(md, fmt, args...) \
78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
83 #define cmd_before(conf, cmd) \
85 write_sequnlock_irq(&(conf)->resync_lock); \
88 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
90 #define wait_event_barrier_cmd(conf, cond, cmd) \
91 wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
94 #define wait_event_barrier(conf, cond) \
95 wait_event_barrier_cmd(conf, cond, NULL_CMD)
98 * for resync bio, r10bio pointer can be retrieved from the per-bio
99 * 'struct resync_pages'.
101 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
103 return get_resync_pages(bio)->raid_bio;
106 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 struct r10conf *conf = data;
109 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
111 /* allocate a r10bio with room for raid_disks entries in the
113 return kzalloc(size, gfp_flags);
116 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
117 /* amount of memory to reserve for resync requests */
118 #define RESYNC_WINDOW (1024*1024)
119 /* maximum number of concurrent requests, memory permitting */
120 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
121 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
122 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
125 * When performing a resync, we need to read and compare, so
126 * we need as many pages are there are copies.
127 * When performing a recovery, we need 2 bios, one for read,
128 * one for write (we recover only one drive per r10buf)
131 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
133 struct r10conf *conf = data;
134 struct r10bio *r10_bio;
137 int nalloc, nalloc_rp;
138 struct resync_pages *rps;
140 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
144 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
145 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
146 nalloc = conf->copies; /* resync */
148 nalloc = 2; /* recovery */
150 /* allocate once for all bios */
151 if (!conf->have_replacement)
154 nalloc_rp = nalloc * 2;
155 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
157 goto out_free_r10bio;
162 for (j = nalloc ; j-- ; ) {
163 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
166 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
167 r10_bio->devs[j].bio = bio;
168 if (!conf->have_replacement)
170 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
173 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
174 r10_bio->devs[j].repl_bio = bio;
177 * Allocate RESYNC_PAGES data pages and attach them
180 for (j = 0; j < nalloc; j++) {
181 struct bio *rbio = r10_bio->devs[j].repl_bio;
182 struct resync_pages *rp, *rp_repl;
186 rp_repl = &rps[nalloc + j];
188 bio = r10_bio->devs[j].bio;
190 if (!j || test_bit(MD_RECOVERY_SYNC,
191 &conf->mddev->recovery)) {
192 if (resync_alloc_pages(rp, gfp_flags))
195 memcpy(rp, &rps[0], sizeof(*rp));
196 resync_get_all_pages(rp);
199 rp->raid_bio = r10_bio;
200 bio->bi_private = rp;
202 memcpy(rp_repl, rp, sizeof(*rp));
203 rbio->bi_private = rp_repl;
211 resync_free_pages(&rps[j]);
215 for ( ; j < nalloc; j++) {
216 if (r10_bio->devs[j].bio)
217 bio_uninit(r10_bio->devs[j].bio);
218 kfree(r10_bio->devs[j].bio);
219 if (r10_bio->devs[j].repl_bio)
220 bio_uninit(r10_bio->devs[j].repl_bio);
221 kfree(r10_bio->devs[j].repl_bio);
225 rbio_pool_free(r10_bio, conf);
229 static void r10buf_pool_free(void *__r10_bio, void *data)
231 struct r10conf *conf = data;
232 struct r10bio *r10bio = __r10_bio;
234 struct resync_pages *rp = NULL;
236 for (j = conf->copies; j--; ) {
237 struct bio *bio = r10bio->devs[j].bio;
240 rp = get_resync_pages(bio);
241 resync_free_pages(rp);
246 bio = r10bio->devs[j].repl_bio;
253 /* resync pages array stored in the 1st bio's .bi_private */
256 rbio_pool_free(r10bio, conf);
259 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
263 for (i = 0; i < conf->geo.raid_disks; i++) {
264 struct bio **bio = & r10_bio->devs[i].bio;
265 if (!BIO_SPECIAL(*bio))
268 bio = &r10_bio->devs[i].repl_bio;
269 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
275 static void free_r10bio(struct r10bio *r10_bio)
277 struct r10conf *conf = r10_bio->mddev->private;
279 put_all_bios(conf, r10_bio);
280 mempool_free(r10_bio, &conf->r10bio_pool);
283 static void put_buf(struct r10bio *r10_bio)
285 struct r10conf *conf = r10_bio->mddev->private;
287 mempool_free(r10_bio, &conf->r10buf_pool);
292 static void wake_up_barrier(struct r10conf *conf)
294 if (wq_has_sleeper(&conf->wait_barrier))
295 wake_up(&conf->wait_barrier);
298 static void reschedule_retry(struct r10bio *r10_bio)
301 struct mddev *mddev = r10_bio->mddev;
302 struct r10conf *conf = mddev->private;
304 spin_lock_irqsave(&conf->device_lock, flags);
305 list_add(&r10_bio->retry_list, &conf->retry_list);
307 spin_unlock_irqrestore(&conf->device_lock, flags);
309 /* wake up frozen array... */
310 wake_up(&conf->wait_barrier);
312 md_wakeup_thread(mddev->thread);
316 * raid_end_bio_io() is called when we have finished servicing a mirrored
317 * operation and are ready to return a success/failure code to the buffer
320 static void raid_end_bio_io(struct r10bio *r10_bio)
322 struct bio *bio = r10_bio->master_bio;
323 struct r10conf *conf = r10_bio->mddev->private;
325 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
326 bio->bi_status = BLK_STS_IOERR;
330 * Wake up any possible resync thread that waits for the device
335 free_r10bio(r10_bio);
339 * Update disk head position estimator based on IRQ completion info.
341 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
343 struct r10conf *conf = r10_bio->mddev->private;
345 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
346 r10_bio->devs[slot].addr + (r10_bio->sectors);
350 * Find the disk number which triggered given bio
352 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
353 struct bio *bio, int *slotp, int *replp)
358 for (slot = 0; slot < conf->geo.raid_disks; slot++) {
359 if (r10_bio->devs[slot].bio == bio)
361 if (r10_bio->devs[slot].repl_bio == bio) {
367 update_head_pos(slot, r10_bio);
373 return r10_bio->devs[slot].devnum;
376 static void raid10_end_read_request(struct bio *bio)
378 int uptodate = !bio->bi_status;
379 struct r10bio *r10_bio = bio->bi_private;
381 struct md_rdev *rdev;
382 struct r10conf *conf = r10_bio->mddev->private;
384 slot = r10_bio->read_slot;
385 rdev = r10_bio->devs[slot].rdev;
387 * this branch is our 'one mirror IO has finished' event handler:
389 update_head_pos(slot, r10_bio);
393 * Set R10BIO_Uptodate in our master bio, so that
394 * we will return a good error code to the higher
395 * levels even if IO on some other mirrored buffer fails.
397 * The 'master' represents the composite IO operation to
398 * user-side. So if something waits for IO, then it will
399 * wait for the 'master' bio.
401 set_bit(R10BIO_Uptodate, &r10_bio->state);
403 /* If all other devices that store this block have
404 * failed, we want to return the error upwards rather
405 * than fail the last device. Here we redefine
406 * "uptodate" to mean "Don't want to retry"
408 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
413 raid_end_bio_io(r10_bio);
414 rdev_dec_pending(rdev, conf->mddev);
417 * oops, read error - keep the refcount on the rdev
419 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
422 (unsigned long long)r10_bio->sector);
423 set_bit(R10BIO_ReadError, &r10_bio->state);
424 reschedule_retry(r10_bio);
428 static void close_write(struct r10bio *r10_bio)
430 /* clear the bitmap if all writes complete successfully */
431 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
433 !test_bit(R10BIO_Degraded, &r10_bio->state),
435 md_write_end(r10_bio->mddev);
438 static void one_write_done(struct r10bio *r10_bio)
440 if (atomic_dec_and_test(&r10_bio->remaining)) {
441 if (test_bit(R10BIO_WriteError, &r10_bio->state))
442 reschedule_retry(r10_bio);
444 close_write(r10_bio);
445 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
446 reschedule_retry(r10_bio);
448 raid_end_bio_io(r10_bio);
453 static void raid10_end_write_request(struct bio *bio)
455 struct r10bio *r10_bio = bio->bi_private;
458 struct r10conf *conf = r10_bio->mddev->private;
460 struct md_rdev *rdev = NULL;
461 struct bio *to_put = NULL;
464 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
466 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
469 rdev = conf->mirrors[dev].replacement;
473 rdev = conf->mirrors[dev].rdev;
476 * this branch is our 'one mirror IO has finished' event handler:
478 if (bio->bi_status && !discard_error) {
480 /* Never record new bad blocks to replacement,
483 md_error(rdev->mddev, rdev);
485 set_bit(WriteErrorSeen, &rdev->flags);
486 if (!test_and_set_bit(WantReplacement, &rdev->flags))
487 set_bit(MD_RECOVERY_NEEDED,
488 &rdev->mddev->recovery);
491 if (test_bit(FailFast, &rdev->flags) &&
492 (bio->bi_opf & MD_FAILFAST)) {
493 md_error(rdev->mddev, rdev);
497 * When the device is faulty, it is not necessary to
498 * handle write error.
500 if (!test_bit(Faulty, &rdev->flags))
501 set_bit(R10BIO_WriteError, &r10_bio->state);
503 /* Fail the request */
504 set_bit(R10BIO_Degraded, &r10_bio->state);
505 r10_bio->devs[slot].bio = NULL;
512 * Set R10BIO_Uptodate in our master bio, so that
513 * we will return a good error code for to the higher
514 * levels even if IO on some other mirrored buffer fails.
516 * The 'master' represents the composite IO operation to
517 * user-side. So if something waits for IO, then it will
518 * wait for the 'master' bio.
524 * Do not set R10BIO_Uptodate if the current device is
525 * rebuilding or Faulty. This is because we cannot use
526 * such device for properly reading the data back (we could
527 * potentially use it, if the current write would have felt
528 * before rdev->recovery_offset, but for simplicity we don't
531 if (test_bit(In_sync, &rdev->flags) &&
532 !test_bit(Faulty, &rdev->flags))
533 set_bit(R10BIO_Uptodate, &r10_bio->state);
535 /* Maybe we can clear some bad blocks. */
536 if (is_badblock(rdev,
537 r10_bio->devs[slot].addr,
539 &first_bad, &bad_sectors) && !discard_error) {
542 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
544 r10_bio->devs[slot].bio = IO_MADE_GOOD;
546 set_bit(R10BIO_MadeGood, &r10_bio->state);
552 * Let's see if all mirrored write operations have finished
555 one_write_done(r10_bio);
557 rdev_dec_pending(rdev, conf->mddev);
563 * RAID10 layout manager
564 * As well as the chunksize and raid_disks count, there are two
565 * parameters: near_copies and far_copies.
566 * near_copies * far_copies must be <= raid_disks.
567 * Normally one of these will be 1.
568 * If both are 1, we get raid0.
569 * If near_copies == raid_disks, we get raid1.
571 * Chunks are laid out in raid0 style with near_copies copies of the
572 * first chunk, followed by near_copies copies of the next chunk and
574 * If far_copies > 1, then after 1/far_copies of the array has been assigned
575 * as described above, we start again with a device offset of near_copies.
576 * So we effectively have another copy of the whole array further down all
577 * the drives, but with blocks on different drives.
578 * With this layout, and block is never stored twice on the one device.
580 * raid10_find_phys finds the sector offset of a given virtual sector
581 * on each device that it is on.
583 * raid10_find_virt does the reverse mapping, from a device and a
584 * sector offset to a virtual address
587 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
595 int last_far_set_start, last_far_set_size;
597 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
598 last_far_set_start *= geo->far_set_size;
600 last_far_set_size = geo->far_set_size;
601 last_far_set_size += (geo->raid_disks % geo->far_set_size);
603 /* now calculate first sector/dev */
604 chunk = r10bio->sector >> geo->chunk_shift;
605 sector = r10bio->sector & geo->chunk_mask;
607 chunk *= geo->near_copies;
609 dev = sector_div(stripe, geo->raid_disks);
611 stripe *= geo->far_copies;
613 sector += stripe << geo->chunk_shift;
615 /* and calculate all the others */
616 for (n = 0; n < geo->near_copies; n++) {
620 r10bio->devs[slot].devnum = d;
621 r10bio->devs[slot].addr = s;
624 for (f = 1; f < geo->far_copies; f++) {
625 set = d / geo->far_set_size;
626 d += geo->near_copies;
628 if ((geo->raid_disks % geo->far_set_size) &&
629 (d > last_far_set_start)) {
630 d -= last_far_set_start;
631 d %= last_far_set_size;
632 d += last_far_set_start;
634 d %= geo->far_set_size;
635 d += geo->far_set_size * set;
638 r10bio->devs[slot].devnum = d;
639 r10bio->devs[slot].addr = s;
643 if (dev >= geo->raid_disks) {
645 sector += (geo->chunk_mask + 1);
650 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
652 struct geom *geo = &conf->geo;
654 if (conf->reshape_progress != MaxSector &&
655 ((r10bio->sector >= conf->reshape_progress) !=
656 conf->mddev->reshape_backwards)) {
657 set_bit(R10BIO_Previous, &r10bio->state);
660 clear_bit(R10BIO_Previous, &r10bio->state);
662 __raid10_find_phys(geo, r10bio);
665 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
667 sector_t offset, chunk, vchunk;
668 /* Never use conf->prev as this is only called during resync
669 * or recovery, so reshape isn't happening
671 struct geom *geo = &conf->geo;
672 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
673 int far_set_size = geo->far_set_size;
674 int last_far_set_start;
676 if (geo->raid_disks % geo->far_set_size) {
677 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
678 last_far_set_start *= geo->far_set_size;
680 if (dev >= last_far_set_start) {
681 far_set_size = geo->far_set_size;
682 far_set_size += (geo->raid_disks % geo->far_set_size);
683 far_set_start = last_far_set_start;
687 offset = sector & geo->chunk_mask;
688 if (geo->far_offset) {
690 chunk = sector >> geo->chunk_shift;
691 fc = sector_div(chunk, geo->far_copies);
692 dev -= fc * geo->near_copies;
693 if (dev < far_set_start)
696 while (sector >= geo->stride) {
697 sector -= geo->stride;
698 if (dev < (geo->near_copies + far_set_start))
699 dev += far_set_size - geo->near_copies;
701 dev -= geo->near_copies;
703 chunk = sector >> geo->chunk_shift;
705 vchunk = chunk * geo->raid_disks + dev;
706 sector_div(vchunk, geo->near_copies);
707 return (vchunk << geo->chunk_shift) + offset;
711 * This routine returns the disk from which the requested read should
712 * be done. There is a per-array 'next expected sequential IO' sector
713 * number - if this matches on the next IO then we use the last disk.
714 * There is also a per-disk 'last know head position' sector that is
715 * maintained from IRQ contexts, both the normal and the resync IO
716 * completion handlers update this position correctly. If there is no
717 * perfect sequential match then we pick the disk whose head is closest.
719 * If there are 2 mirrors in the same 2 devices, performance degrades
720 * because position is mirror, not device based.
722 * The rdev for the device selected will have nr_pending incremented.
726 * FIXME: possibly should rethink readbalancing and do it differently
727 * depending on near_copies / far_copies geometry.
729 static struct md_rdev *read_balance(struct r10conf *conf,
730 struct r10bio *r10_bio,
733 const sector_t this_sector = r10_bio->sector;
735 int sectors = r10_bio->sectors;
736 int best_good_sectors;
737 sector_t new_distance, best_dist;
738 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
740 int best_dist_slot, best_pending_slot;
741 bool has_nonrot_disk = false;
742 unsigned int min_pending;
743 struct geom *geo = &conf->geo;
745 raid10_find_phys(conf, r10_bio);
748 min_pending = UINT_MAX;
749 best_dist_rdev = NULL;
750 best_pending_rdev = NULL;
751 best_dist = MaxSector;
752 best_good_sectors = 0;
754 clear_bit(R10BIO_FailFast, &r10_bio->state);
756 * Check if we can balance. We can balance on the whole
757 * device if no resync is going on (recovery is ok), or below
758 * the resync window. We take the first readable disk when
759 * above the resync window.
761 if ((conf->mddev->recovery_cp < MaxSector
762 && (this_sector + sectors >= conf->next_resync)) ||
763 (mddev_is_clustered(conf->mddev) &&
764 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
765 this_sector + sectors)))
768 for (slot = 0; slot < conf->copies ; slot++) {
772 unsigned int pending;
775 if (r10_bio->devs[slot].bio == IO_BLOCKED)
777 disk = r10_bio->devs[slot].devnum;
778 rdev = rcu_dereference(conf->mirrors[disk].replacement);
779 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
780 r10_bio->devs[slot].addr + sectors >
781 rdev->recovery_offset) {
783 * Read replacement first to prevent reading both rdev
784 * and replacement as NULL during replacement replace
788 rdev = rcu_dereference(conf->mirrors[disk].rdev);
791 test_bit(Faulty, &rdev->flags))
793 if (!test_bit(In_sync, &rdev->flags) &&
794 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
797 dev_sector = r10_bio->devs[slot].addr;
798 if (is_badblock(rdev, dev_sector, sectors,
799 &first_bad, &bad_sectors)) {
800 if (best_dist < MaxSector)
801 /* Already have a better slot */
803 if (first_bad <= dev_sector) {
804 /* Cannot read here. If this is the
805 * 'primary' device, then we must not read
806 * beyond 'bad_sectors' from another device.
808 bad_sectors -= (dev_sector - first_bad);
809 if (!do_balance && sectors > bad_sectors)
810 sectors = bad_sectors;
811 if (best_good_sectors > sectors)
812 best_good_sectors = sectors;
814 sector_t good_sectors =
815 first_bad - dev_sector;
816 if (good_sectors > best_good_sectors) {
817 best_good_sectors = good_sectors;
818 best_dist_slot = slot;
819 best_dist_rdev = rdev;
822 /* Must read from here */
827 best_good_sectors = sectors;
832 nonrot = bdev_nonrot(rdev->bdev);
833 has_nonrot_disk |= nonrot;
834 pending = atomic_read(&rdev->nr_pending);
835 if (min_pending > pending && nonrot) {
836 min_pending = pending;
837 best_pending_slot = slot;
838 best_pending_rdev = rdev;
841 if (best_dist_slot >= 0)
842 /* At least 2 disks to choose from so failfast is OK */
843 set_bit(R10BIO_FailFast, &r10_bio->state);
844 /* This optimisation is debatable, and completely destroys
845 * sequential read speed for 'far copies' arrays. So only
846 * keep it for 'near' arrays, and review those later.
848 if (geo->near_copies > 1 && !pending)
851 /* for far > 1 always use the lowest address */
852 else if (geo->far_copies > 1)
853 new_distance = r10_bio->devs[slot].addr;
855 new_distance = abs(r10_bio->devs[slot].addr -
856 conf->mirrors[disk].head_position);
858 if (new_distance < best_dist) {
859 best_dist = new_distance;
860 best_dist_slot = slot;
861 best_dist_rdev = rdev;
864 if (slot >= conf->copies) {
865 if (has_nonrot_disk) {
866 slot = best_pending_slot;
867 rdev = best_pending_rdev;
869 slot = best_dist_slot;
870 rdev = best_dist_rdev;
875 atomic_inc(&rdev->nr_pending);
876 r10_bio->read_slot = slot;
880 *max_sectors = best_good_sectors;
885 static void flush_pending_writes(struct r10conf *conf)
887 /* Any writes that have been queued but are awaiting
888 * bitmap updates get flushed here.
890 spin_lock_irq(&conf->device_lock);
892 if (conf->pending_bio_list.head) {
893 struct blk_plug plug;
896 bio = bio_list_get(&conf->pending_bio_list);
897 spin_unlock_irq(&conf->device_lock);
900 * As this is called in a wait_event() loop (see freeze_array),
901 * current->state might be TASK_UNINTERRUPTIBLE which will
902 * cause a warning when we prepare to wait again. As it is
903 * rare that this path is taken, it is perfectly safe to force
904 * us to go around the wait_event() loop again, so the warning
905 * is a false-positive. Silence the warning by resetting
908 __set_current_state(TASK_RUNNING);
910 blk_start_plug(&plug);
911 raid1_prepare_flush_writes(conf->mddev->bitmap);
912 wake_up(&conf->wait_barrier);
914 while (bio) { /* submit pending writes */
915 struct bio *next = bio->bi_next;
917 raid1_submit_write(bio);
921 blk_finish_plug(&plug);
923 spin_unlock_irq(&conf->device_lock);
927 * Sometimes we need to suspend IO while we do something else,
928 * either some resync/recovery, or reconfigure the array.
929 * To do this we raise a 'barrier'.
930 * The 'barrier' is a counter that can be raised multiple times
931 * to count how many activities are happening which preclude
933 * We can only raise the barrier if there is no pending IO.
934 * i.e. if nr_pending == 0.
935 * We choose only to raise the barrier if no-one is waiting for the
936 * barrier to go down. This means that as soon as an IO request
937 * is ready, no other operations which require a barrier will start
938 * until the IO request has had a chance.
940 * So: regular IO calls 'wait_barrier'. When that returns there
941 * is no backgroup IO happening, It must arrange to call
942 * allow_barrier when it has finished its IO.
943 * backgroup IO calls must call raise_barrier. Once that returns
944 * there is no normal IO happeing. It must arrange to call
945 * lower_barrier when the particular background IO completes.
948 static void raise_barrier(struct r10conf *conf, int force)
950 write_seqlock_irq(&conf->resync_lock);
952 if (WARN_ON_ONCE(force && !conf->barrier))
955 /* Wait until no block IO is waiting (unless 'force') */
956 wait_event_barrier(conf, force || !conf->nr_waiting);
958 /* block any new IO from starting */
959 WRITE_ONCE(conf->barrier, conf->barrier + 1);
961 /* Now wait for all pending IO to complete */
962 wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
963 conf->barrier < RESYNC_DEPTH);
965 write_sequnlock_irq(&conf->resync_lock);
968 static void lower_barrier(struct r10conf *conf)
972 write_seqlock_irqsave(&conf->resync_lock, flags);
973 WRITE_ONCE(conf->barrier, conf->barrier - 1);
974 write_sequnlock_irqrestore(&conf->resync_lock, flags);
975 wake_up(&conf->wait_barrier);
978 static bool stop_waiting_barrier(struct r10conf *conf)
980 struct bio_list *bio_list = current->bio_list;
981 struct md_thread *thread;
983 /* barrier is dropped */
988 * If there are already pending requests (preventing the barrier from
989 * rising completely), and the pre-process bio queue isn't empty, then
990 * don't wait, as we need to empty that queue to get the nr_pending
993 if (atomic_read(&conf->nr_pending) && bio_list &&
994 (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
997 /* daemon thread must exist while handling io */
998 thread = rcu_dereference_protected(conf->mddev->thread, true);
1000 * move on if io is issued from raid10d(), nr_pending is not released
1001 * from original io(see handle_read_error()). All raise barrier is
1002 * blocked until this io is done.
1004 if (thread->tsk == current) {
1005 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
1012 static bool wait_barrier_nolock(struct r10conf *conf)
1014 unsigned int seq = read_seqbegin(&conf->resync_lock);
1016 if (READ_ONCE(conf->barrier))
1019 atomic_inc(&conf->nr_pending);
1020 if (!read_seqretry(&conf->resync_lock, seq))
1023 if (atomic_dec_and_test(&conf->nr_pending))
1024 wake_up_barrier(conf);
1029 static bool wait_barrier(struct r10conf *conf, bool nowait)
1033 if (wait_barrier_nolock(conf))
1036 write_seqlock_irq(&conf->resync_lock);
1037 if (conf->barrier) {
1038 /* Return false when nowait flag is set */
1043 raid10_log(conf->mddev, "wait barrier");
1044 wait_event_barrier(conf, stop_waiting_barrier(conf));
1047 if (!conf->nr_waiting)
1048 wake_up(&conf->wait_barrier);
1050 /* Only increment nr_pending when we wait */
1052 atomic_inc(&conf->nr_pending);
1053 write_sequnlock_irq(&conf->resync_lock);
1057 static void allow_barrier(struct r10conf *conf)
1059 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1060 (conf->array_freeze_pending))
1061 wake_up_barrier(conf);
1064 static void freeze_array(struct r10conf *conf, int extra)
1066 /* stop syncio and normal IO and wait for everything to
1068 * We increment barrier and nr_waiting, and then
1069 * wait until nr_pending match nr_queued+extra
1070 * This is called in the context of one normal IO request
1071 * that has failed. Thus any sync request that might be pending
1072 * will be blocked by nr_pending, and we need to wait for
1073 * pending IO requests to complete or be queued for re-try.
1074 * Thus the number queued (nr_queued) plus this request (extra)
1075 * must match the number of pending IOs (nr_pending) before
1078 write_seqlock_irq(&conf->resync_lock);
1079 conf->array_freeze_pending++;
1080 WRITE_ONCE(conf->barrier, conf->barrier + 1);
1082 wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1083 conf->nr_queued + extra, flush_pending_writes(conf));
1084 conf->array_freeze_pending--;
1085 write_sequnlock_irq(&conf->resync_lock);
1088 static void unfreeze_array(struct r10conf *conf)
1090 /* reverse the effect of the freeze */
1091 write_seqlock_irq(&conf->resync_lock);
1092 WRITE_ONCE(conf->barrier, conf->barrier - 1);
1094 wake_up(&conf->wait_barrier);
1095 write_sequnlock_irq(&conf->resync_lock);
1098 static sector_t choose_data_offset(struct r10bio *r10_bio,
1099 struct md_rdev *rdev)
1101 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1102 test_bit(R10BIO_Previous, &r10_bio->state))
1103 return rdev->data_offset;
1105 return rdev->new_data_offset;
1108 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1110 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1111 struct mddev *mddev = plug->cb.data;
1112 struct r10conf *conf = mddev->private;
1115 if (from_schedule) {
1116 spin_lock_irq(&conf->device_lock);
1117 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1118 spin_unlock_irq(&conf->device_lock);
1119 wake_up_barrier(conf);
1120 md_wakeup_thread(mddev->thread);
1125 /* we aren't scheduling, so we can do the write-out directly. */
1126 bio = bio_list_get(&plug->pending);
1127 raid1_prepare_flush_writes(mddev->bitmap);
1128 wake_up_barrier(conf);
1130 while (bio) { /* submit pending writes */
1131 struct bio *next = bio->bi_next;
1133 raid1_submit_write(bio);
1141 * 1. Register the new request and wait if the reconstruction thread has put
1142 * up a bar for new requests. Continue immediately if no resync is active
1144 * 2. If IO spans the reshape position. Need to wait for reshape to pass.
1146 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1147 struct bio *bio, sector_t sectors)
1149 /* Bail out if REQ_NOWAIT is set for the bio */
1150 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1151 bio_wouldblock_error(bio);
1154 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1155 bio->bi_iter.bi_sector < conf->reshape_progress &&
1156 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1157 allow_barrier(conf);
1158 if (bio->bi_opf & REQ_NOWAIT) {
1159 bio_wouldblock_error(bio);
1162 raid10_log(conf->mddev, "wait reshape");
1163 wait_event(conf->wait_barrier,
1164 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1165 conf->reshape_progress >= bio->bi_iter.bi_sector +
1167 wait_barrier(conf, false);
1172 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1173 struct r10bio *r10_bio, bool io_accounting)
1175 struct r10conf *conf = mddev->private;
1176 struct bio *read_bio;
1177 const enum req_op op = bio_op(bio);
1178 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1180 struct md_rdev *rdev;
1181 char b[BDEVNAME_SIZE];
1182 int slot = r10_bio->read_slot;
1183 struct md_rdev *err_rdev = NULL;
1184 gfp_t gfp = GFP_NOIO;
1186 if (slot >= 0 && r10_bio->devs[slot].rdev) {
1188 * This is an error retry, but we cannot
1189 * safely dereference the rdev in the r10_bio,
1190 * we must use the one in conf.
1191 * If it has already been disconnected (unlikely)
1192 * we lose the device name in error messages.
1196 * As we are blocking raid10, it is a little safer to
1199 gfp = GFP_NOIO | __GFP_HIGH;
1202 disk = r10_bio->devs[slot].devnum;
1203 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1205 snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1208 /* This never gets dereferenced */
1209 err_rdev = r10_bio->devs[slot].rdev;
1214 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1216 rdev = read_balance(conf, r10_bio, &max_sectors);
1219 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1221 (unsigned long long)r10_bio->sector);
1223 raid_end_bio_io(r10_bio);
1227 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1230 (unsigned long long)r10_bio->sector);
1231 if (max_sectors < bio_sectors(bio)) {
1232 struct bio *split = bio_split(bio, max_sectors,
1233 gfp, &conf->bio_split);
1234 bio_chain(split, bio);
1235 allow_barrier(conf);
1236 submit_bio_noacct(bio);
1237 wait_barrier(conf, false);
1239 r10_bio->master_bio = bio;
1240 r10_bio->sectors = max_sectors;
1242 slot = r10_bio->read_slot;
1244 if (io_accounting) {
1245 md_account_bio(mddev, &bio);
1246 r10_bio->master_bio = bio;
1248 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1250 r10_bio->devs[slot].bio = read_bio;
1251 r10_bio->devs[slot].rdev = rdev;
1253 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1254 choose_data_offset(r10_bio, rdev);
1255 read_bio->bi_end_io = raid10_end_read_request;
1256 read_bio->bi_opf = op | do_sync;
1257 if (test_bit(FailFast, &rdev->flags) &&
1258 test_bit(R10BIO_FailFast, &r10_bio->state))
1259 read_bio->bi_opf |= MD_FAILFAST;
1260 read_bio->bi_private = r10_bio;
1263 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1265 submit_bio_noacct(read_bio);
1269 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1270 struct bio *bio, bool replacement,
1273 const enum req_op op = bio_op(bio);
1274 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1275 const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1276 unsigned long flags;
1277 struct r10conf *conf = mddev->private;
1278 struct md_rdev *rdev;
1279 int devnum = r10_bio->devs[n_copy].devnum;
1283 rdev = conf->mirrors[devnum].replacement;
1285 /* Replacement just got moved to main 'rdev' */
1287 rdev = conf->mirrors[devnum].rdev;
1290 rdev = conf->mirrors[devnum].rdev;
1292 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1294 r10_bio->devs[n_copy].repl_bio = mbio;
1296 r10_bio->devs[n_copy].bio = mbio;
1298 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1299 choose_data_offset(r10_bio, rdev));
1300 mbio->bi_end_io = raid10_end_write_request;
1301 mbio->bi_opf = op | do_sync | do_fua;
1302 if (!replacement && test_bit(FailFast,
1303 &conf->mirrors[devnum].rdev->flags)
1304 && enough(conf, devnum))
1305 mbio->bi_opf |= MD_FAILFAST;
1306 mbio->bi_private = r10_bio;
1308 if (conf->mddev->gendisk)
1309 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1311 /* flush_pending_writes() needs access to the rdev so...*/
1312 mbio->bi_bdev = (void *)rdev;
1314 atomic_inc(&r10_bio->remaining);
1316 if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1317 spin_lock_irqsave(&conf->device_lock, flags);
1318 bio_list_add(&conf->pending_bio_list, mbio);
1319 spin_unlock_irqrestore(&conf->device_lock, flags);
1320 md_wakeup_thread(mddev->thread);
1324 static struct md_rdev *dereference_rdev_and_rrdev(struct raid10_info *mirror,
1325 struct md_rdev **prrdev)
1327 struct md_rdev *rdev, *rrdev;
1329 rrdev = rcu_dereference(mirror->replacement);
1331 * Read replacement first to prevent reading both rdev and
1332 * replacement as NULL during replacement replace rdev.
1335 rdev = rcu_dereference(mirror->rdev);
1343 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1346 struct r10conf *conf = mddev->private;
1347 struct md_rdev *blocked_rdev;
1350 blocked_rdev = NULL;
1352 for (i = 0; i < conf->copies; i++) {
1353 struct md_rdev *rdev, *rrdev;
1355 rdev = dereference_rdev_and_rrdev(&conf->mirrors[i], &rrdev);
1356 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1357 atomic_inc(&rdev->nr_pending);
1358 blocked_rdev = rdev;
1361 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1362 atomic_inc(&rrdev->nr_pending);
1363 blocked_rdev = rrdev;
1367 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1369 sector_t dev_sector = r10_bio->devs[i].addr;
1374 * Discard request doesn't care the write result
1375 * so it doesn't need to wait blocked disk here.
1377 if (!r10_bio->sectors)
1380 is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1381 &first_bad, &bad_sectors);
1384 * Mustn't write here until the bad block
1387 atomic_inc(&rdev->nr_pending);
1388 set_bit(BlockedBadBlocks, &rdev->flags);
1389 blocked_rdev = rdev;
1396 if (unlikely(blocked_rdev)) {
1397 /* Have to wait for this device to get unblocked, then retry */
1398 allow_barrier(conf);
1399 raid10_log(conf->mddev, "%s wait rdev %d blocked",
1400 __func__, blocked_rdev->raid_disk);
1401 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1402 wait_barrier(conf, false);
1407 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1408 struct r10bio *r10_bio)
1410 struct r10conf *conf = mddev->private;
1415 if ((mddev_is_clustered(mddev) &&
1416 md_cluster_ops->area_resyncing(mddev, WRITE,
1417 bio->bi_iter.bi_sector,
1418 bio_end_sector(bio)))) {
1420 /* Bail out if REQ_NOWAIT is set for the bio */
1421 if (bio->bi_opf & REQ_NOWAIT) {
1422 bio_wouldblock_error(bio);
1426 prepare_to_wait(&conf->wait_barrier,
1428 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1429 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1433 finish_wait(&conf->wait_barrier, &w);
1436 sectors = r10_bio->sectors;
1437 if (!regular_request_wait(mddev, conf, bio, sectors))
1439 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1440 (mddev->reshape_backwards
1441 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1442 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1443 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1444 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1445 /* Need to update reshape_position in metadata */
1446 mddev->reshape_position = conf->reshape_progress;
1447 set_mask_bits(&mddev->sb_flags, 0,
1448 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1449 md_wakeup_thread(mddev->thread);
1450 if (bio->bi_opf & REQ_NOWAIT) {
1451 allow_barrier(conf);
1452 bio_wouldblock_error(bio);
1455 raid10_log(conf->mddev, "wait reshape metadata");
1456 wait_event(mddev->sb_wait,
1457 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1459 conf->reshape_safe = mddev->reshape_position;
1462 /* first select target devices under rcu_lock and
1463 * inc refcount on their rdev. Record them by setting
1465 * If there are known/acknowledged bad blocks on any device
1466 * on which we have seen a write error, we want to avoid
1467 * writing to those blocks. This potentially requires several
1468 * writes to write around the bad blocks. Each set of writes
1469 * gets its own r10_bio with a set of bios attached.
1472 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1473 raid10_find_phys(conf, r10_bio);
1475 wait_blocked_dev(mddev, r10_bio);
1478 max_sectors = r10_bio->sectors;
1480 for (i = 0; i < conf->copies; i++) {
1481 int d = r10_bio->devs[i].devnum;
1482 struct md_rdev *rdev, *rrdev;
1484 rdev = dereference_rdev_and_rrdev(&conf->mirrors[d], &rrdev);
1485 if (rdev && (test_bit(Faulty, &rdev->flags)))
1487 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1490 r10_bio->devs[i].bio = NULL;
1491 r10_bio->devs[i].repl_bio = NULL;
1493 if (!rdev && !rrdev) {
1494 set_bit(R10BIO_Degraded, &r10_bio->state);
1497 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1499 sector_t dev_sector = r10_bio->devs[i].addr;
1503 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1504 &first_bad, &bad_sectors);
1505 if (is_bad && first_bad <= dev_sector) {
1506 /* Cannot write here at all */
1507 bad_sectors -= (dev_sector - first_bad);
1508 if (bad_sectors < max_sectors)
1509 /* Mustn't write more than bad_sectors
1510 * to other devices yet
1512 max_sectors = bad_sectors;
1513 /* We don't set R10BIO_Degraded as that
1514 * only applies if the disk is missing,
1515 * so it might be re-added, and we want to
1516 * know to recover this chunk.
1517 * In this case the device is here, and the
1518 * fact that this chunk is not in-sync is
1519 * recorded in the bad block log.
1524 int good_sectors = first_bad - dev_sector;
1525 if (good_sectors < max_sectors)
1526 max_sectors = good_sectors;
1530 r10_bio->devs[i].bio = bio;
1531 atomic_inc(&rdev->nr_pending);
1534 r10_bio->devs[i].repl_bio = bio;
1535 atomic_inc(&rrdev->nr_pending);
1540 if (max_sectors < r10_bio->sectors)
1541 r10_bio->sectors = max_sectors;
1543 if (r10_bio->sectors < bio_sectors(bio)) {
1544 struct bio *split = bio_split(bio, r10_bio->sectors,
1545 GFP_NOIO, &conf->bio_split);
1546 bio_chain(split, bio);
1547 allow_barrier(conf);
1548 submit_bio_noacct(bio);
1549 wait_barrier(conf, false);
1551 r10_bio->master_bio = bio;
1554 md_account_bio(mddev, &bio);
1555 r10_bio->master_bio = bio;
1556 atomic_set(&r10_bio->remaining, 1);
1557 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1559 for (i = 0; i < conf->copies; i++) {
1560 if (r10_bio->devs[i].bio)
1561 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1562 if (r10_bio->devs[i].repl_bio)
1563 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1565 one_write_done(r10_bio);
1568 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1570 struct r10conf *conf = mddev->private;
1571 struct r10bio *r10_bio;
1573 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1575 r10_bio->master_bio = bio;
1576 r10_bio->sectors = sectors;
1578 r10_bio->mddev = mddev;
1579 r10_bio->sector = bio->bi_iter.bi_sector;
1581 r10_bio->read_slot = -1;
1582 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1583 conf->geo.raid_disks);
1585 if (bio_data_dir(bio) == READ)
1586 raid10_read_request(mddev, bio, r10_bio, true);
1588 raid10_write_request(mddev, bio, r10_bio);
1591 static void raid_end_discard_bio(struct r10bio *r10bio)
1593 struct r10conf *conf = r10bio->mddev->private;
1594 struct r10bio *first_r10bio;
1596 while (atomic_dec_and_test(&r10bio->remaining)) {
1598 allow_barrier(conf);
1600 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1601 first_r10bio = (struct r10bio *)r10bio->master_bio;
1602 free_r10bio(r10bio);
1603 r10bio = first_r10bio;
1605 md_write_end(r10bio->mddev);
1606 bio_endio(r10bio->master_bio);
1607 free_r10bio(r10bio);
1613 static void raid10_end_discard_request(struct bio *bio)
1615 struct r10bio *r10_bio = bio->bi_private;
1616 struct r10conf *conf = r10_bio->mddev->private;
1617 struct md_rdev *rdev = NULL;
1622 * We don't care the return value of discard bio
1624 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1625 set_bit(R10BIO_Uptodate, &r10_bio->state);
1627 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1629 rdev = conf->mirrors[dev].replacement;
1632 * raid10_remove_disk uses smp_mb to make sure rdev is set to
1633 * replacement before setting replacement to NULL. It can read
1634 * rdev first without barrier protect even replacement is NULL
1637 rdev = conf->mirrors[dev].rdev;
1640 raid_end_discard_bio(r10_bio);
1641 rdev_dec_pending(rdev, conf->mddev);
1645 * There are some limitations to handle discard bio
1646 * 1st, the discard size is bigger than stripe_size*2.
1647 * 2st, if the discard bio spans reshape progress, we use the old way to
1648 * handle discard bio
1650 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1652 struct r10conf *conf = mddev->private;
1653 struct geom *geo = &conf->geo;
1654 int far_copies = geo->far_copies;
1655 bool first_copy = true;
1656 struct r10bio *r10_bio, *first_r10bio;
1660 unsigned int stripe_size;
1661 unsigned int stripe_data_disks;
1662 sector_t split_size;
1663 sector_t bio_start, bio_end;
1664 sector_t first_stripe_index, last_stripe_index;
1665 sector_t start_disk_offset;
1666 unsigned int start_disk_index;
1667 sector_t end_disk_offset;
1668 unsigned int end_disk_index;
1669 unsigned int remainder;
1671 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1674 if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1675 bio_wouldblock_error(bio);
1678 wait_barrier(conf, false);
1681 * Check reshape again to avoid reshape happens after checking
1682 * MD_RECOVERY_RESHAPE and before wait_barrier
1684 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1687 if (geo->near_copies)
1688 stripe_data_disks = geo->raid_disks / geo->near_copies +
1689 geo->raid_disks % geo->near_copies;
1691 stripe_data_disks = geo->raid_disks;
1693 stripe_size = stripe_data_disks << geo->chunk_shift;
1695 bio_start = bio->bi_iter.bi_sector;
1696 bio_end = bio_end_sector(bio);
1699 * Maybe one discard bio is smaller than strip size or across one
1700 * stripe and discard region is larger than one stripe size. For far
1701 * offset layout, if the discard region is not aligned with stripe
1702 * size, there is hole when we submit discard bio to member disk.
1703 * For simplicity, we only handle discard bio which discard region
1704 * is bigger than stripe_size * 2
1706 if (bio_sectors(bio) < stripe_size*2)
1710 * Keep bio aligned with strip size.
1712 div_u64_rem(bio_start, stripe_size, &remainder);
1714 split_size = stripe_size - remainder;
1715 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1716 bio_chain(split, bio);
1717 allow_barrier(conf);
1718 /* Resend the fist split part */
1719 submit_bio_noacct(split);
1720 wait_barrier(conf, false);
1722 div_u64_rem(bio_end, stripe_size, &remainder);
1724 split_size = bio_sectors(bio) - remainder;
1725 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1726 bio_chain(split, bio);
1727 allow_barrier(conf);
1728 /* Resend the second split part */
1729 submit_bio_noacct(bio);
1731 wait_barrier(conf, false);
1734 bio_start = bio->bi_iter.bi_sector;
1735 bio_end = bio_end_sector(bio);
1738 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1739 * One stripe contains the chunks from all member disk (one chunk from
1740 * one disk at the same HBA address). For layout detail, see 'man md 4'
1742 chunk = bio_start >> geo->chunk_shift;
1743 chunk *= geo->near_copies;
1744 first_stripe_index = chunk;
1745 start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1746 if (geo->far_offset)
1747 first_stripe_index *= geo->far_copies;
1748 start_disk_offset = (bio_start & geo->chunk_mask) +
1749 (first_stripe_index << geo->chunk_shift);
1751 chunk = bio_end >> geo->chunk_shift;
1752 chunk *= geo->near_copies;
1753 last_stripe_index = chunk;
1754 end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1755 if (geo->far_offset)
1756 last_stripe_index *= geo->far_copies;
1757 end_disk_offset = (bio_end & geo->chunk_mask) +
1758 (last_stripe_index << geo->chunk_shift);
1761 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1762 r10_bio->mddev = mddev;
1764 r10_bio->sectors = 0;
1765 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1766 wait_blocked_dev(mddev, r10_bio);
1769 * For far layout it needs more than one r10bio to cover all regions.
1770 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1771 * to record the discard bio. Other r10bio->master_bio record the first
1772 * r10bio. The first r10bio only release after all other r10bios finish.
1773 * The discard bio returns only first r10bio finishes
1776 r10_bio->master_bio = bio;
1777 set_bit(R10BIO_Discard, &r10_bio->state);
1779 first_r10bio = r10_bio;
1781 r10_bio->master_bio = (struct bio *)first_r10bio;
1784 * first select target devices under rcu_lock and
1785 * inc refcount on their rdev. Record them by setting
1789 for (disk = 0; disk < geo->raid_disks; disk++) {
1790 struct md_rdev *rdev, *rrdev;
1792 rdev = dereference_rdev_and_rrdev(&conf->mirrors[disk], &rrdev);
1793 r10_bio->devs[disk].bio = NULL;
1794 r10_bio->devs[disk].repl_bio = NULL;
1796 if (rdev && (test_bit(Faulty, &rdev->flags)))
1798 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1800 if (!rdev && !rrdev)
1804 r10_bio->devs[disk].bio = bio;
1805 atomic_inc(&rdev->nr_pending);
1808 r10_bio->devs[disk].repl_bio = bio;
1809 atomic_inc(&rrdev->nr_pending);
1814 atomic_set(&r10_bio->remaining, 1);
1815 for (disk = 0; disk < geo->raid_disks; disk++) {
1816 sector_t dev_start, dev_end;
1817 struct bio *mbio, *rbio = NULL;
1820 * Now start to calculate the start and end address for each disk.
1821 * The space between dev_start and dev_end is the discard region.
1823 * For dev_start, it needs to consider three conditions:
1824 * 1st, the disk is before start_disk, you can imagine the disk in
1825 * the next stripe. So the dev_start is the start address of next
1827 * 2st, the disk is after start_disk, it means the disk is at the
1828 * same stripe of first disk
1829 * 3st, the first disk itself, we can use start_disk_offset directly
1831 if (disk < start_disk_index)
1832 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1833 else if (disk > start_disk_index)
1834 dev_start = first_stripe_index * mddev->chunk_sectors;
1836 dev_start = start_disk_offset;
1838 if (disk < end_disk_index)
1839 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1840 else if (disk > end_disk_index)
1841 dev_end = last_stripe_index * mddev->chunk_sectors;
1843 dev_end = end_disk_offset;
1846 * It only handles discard bio which size is >= stripe size, so
1847 * dev_end > dev_start all the time.
1848 * It doesn't need to use rcu lock to get rdev here. We already
1849 * add rdev->nr_pending in the first loop.
1851 if (r10_bio->devs[disk].bio) {
1852 struct md_rdev *rdev = conf->mirrors[disk].rdev;
1853 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1855 mbio->bi_end_io = raid10_end_discard_request;
1856 mbio->bi_private = r10_bio;
1857 r10_bio->devs[disk].bio = mbio;
1858 r10_bio->devs[disk].devnum = disk;
1859 atomic_inc(&r10_bio->remaining);
1860 md_submit_discard_bio(mddev, rdev, mbio,
1861 dev_start + choose_data_offset(r10_bio, rdev),
1862 dev_end - dev_start);
1865 if (r10_bio->devs[disk].repl_bio) {
1866 struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1867 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1869 rbio->bi_end_io = raid10_end_discard_request;
1870 rbio->bi_private = r10_bio;
1871 r10_bio->devs[disk].repl_bio = rbio;
1872 r10_bio->devs[disk].devnum = disk;
1873 atomic_inc(&r10_bio->remaining);
1874 md_submit_discard_bio(mddev, rrdev, rbio,
1875 dev_start + choose_data_offset(r10_bio, rrdev),
1876 dev_end - dev_start);
1881 if (!geo->far_offset && --far_copies) {
1882 first_stripe_index += geo->stride >> geo->chunk_shift;
1883 start_disk_offset += geo->stride;
1884 last_stripe_index += geo->stride >> geo->chunk_shift;
1885 end_disk_offset += geo->stride;
1886 atomic_inc(&first_r10bio->remaining);
1887 raid_end_discard_bio(r10_bio);
1888 wait_barrier(conf, false);
1892 raid_end_discard_bio(r10_bio);
1896 allow_barrier(conf);
1900 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1902 struct r10conf *conf = mddev->private;
1903 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1904 int chunk_sects = chunk_mask + 1;
1905 int sectors = bio_sectors(bio);
1907 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1908 && md_flush_request(mddev, bio))
1911 if (!md_write_start(mddev, bio))
1914 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1915 if (!raid10_handle_discard(mddev, bio))
1919 * If this request crosses a chunk boundary, we need to split
1922 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1923 sectors > chunk_sects
1924 && (conf->geo.near_copies < conf->geo.raid_disks
1925 || conf->prev.near_copies <
1926 conf->prev.raid_disks)))
1927 sectors = chunk_sects -
1928 (bio->bi_iter.bi_sector &
1930 __make_request(mddev, bio, sectors);
1932 /* In case raid10d snuck in to freeze_array */
1933 wake_up_barrier(conf);
1937 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1939 struct r10conf *conf = mddev->private;
1942 if (conf->geo.near_copies < conf->geo.raid_disks)
1943 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1944 if (conf->geo.near_copies > 1)
1945 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1946 if (conf->geo.far_copies > 1) {
1947 if (conf->geo.far_offset)
1948 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1950 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1951 if (conf->geo.far_set_size != conf->geo.raid_disks)
1952 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1954 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1955 conf->geo.raid_disks - mddev->degraded);
1957 for (i = 0; i < conf->geo.raid_disks; i++) {
1958 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1959 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1962 seq_printf(seq, "]");
1965 /* check if there are enough drives for
1966 * every block to appear on atleast one.
1967 * Don't consider the device numbered 'ignore'
1968 * as we might be about to remove it.
1970 static int _enough(struct r10conf *conf, int previous, int ignore)
1976 disks = conf->prev.raid_disks;
1977 ncopies = conf->prev.near_copies;
1979 disks = conf->geo.raid_disks;
1980 ncopies = conf->geo.near_copies;
1985 int n = conf->copies;
1989 struct md_rdev *rdev;
1990 if (this != ignore &&
1991 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1992 test_bit(In_sync, &rdev->flags))
1994 this = (this+1) % disks;
1998 first = (first + ncopies) % disks;
1999 } while (first != 0);
2006 static int enough(struct r10conf *conf, int ignore)
2008 /* when calling 'enough', both 'prev' and 'geo' must
2010 * This is ensured if ->reconfig_mutex or ->device_lock
2013 return _enough(conf, 0, ignore) &&
2014 _enough(conf, 1, ignore);
2018 * raid10_error() - RAID10 error handler.
2019 * @mddev: affected md device.
2020 * @rdev: member device to fail.
2022 * The routine acknowledges &rdev failure and determines new @mddev state.
2023 * If it failed, then:
2024 * - &MD_BROKEN flag is set in &mddev->flags.
2025 * Otherwise, it must be degraded:
2026 * - recovery is interrupted.
2027 * - &mddev->degraded is bumped.
2029 * @rdev is marked as &Faulty excluding case when array is failed and
2030 * &mddev->fail_last_dev is off.
2032 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
2034 struct r10conf *conf = mddev->private;
2035 unsigned long flags;
2037 spin_lock_irqsave(&conf->device_lock, flags);
2039 if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
2040 set_bit(MD_BROKEN, &mddev->flags);
2042 if (!mddev->fail_last_dev) {
2043 spin_unlock_irqrestore(&conf->device_lock, flags);
2047 if (test_and_clear_bit(In_sync, &rdev->flags))
2050 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2051 set_bit(Blocked, &rdev->flags);
2052 set_bit(Faulty, &rdev->flags);
2053 set_mask_bits(&mddev->sb_flags, 0,
2054 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2055 spin_unlock_irqrestore(&conf->device_lock, flags);
2056 pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2057 "md/raid10:%s: Operation continuing on %d devices.\n",
2058 mdname(mddev), rdev->bdev,
2059 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2062 static void print_conf(struct r10conf *conf)
2065 struct md_rdev *rdev;
2067 pr_debug("RAID10 conf printout:\n");
2069 pr_debug("(!conf)\n");
2072 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2073 conf->geo.raid_disks);
2075 /* This is only called with ->reconfix_mutex held, so
2076 * rcu protection of rdev is not needed */
2077 for (i = 0; i < conf->geo.raid_disks; i++) {
2078 rdev = conf->mirrors[i].rdev;
2080 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2081 i, !test_bit(In_sync, &rdev->flags),
2082 !test_bit(Faulty, &rdev->flags),
2087 static void close_sync(struct r10conf *conf)
2089 wait_barrier(conf, false);
2090 allow_barrier(conf);
2092 mempool_exit(&conf->r10buf_pool);
2095 static int raid10_spare_active(struct mddev *mddev)
2098 struct r10conf *conf = mddev->private;
2099 struct raid10_info *tmp;
2101 unsigned long flags;
2104 * Find all non-in_sync disks within the RAID10 configuration
2105 * and mark them in_sync
2107 for (i = 0; i < conf->geo.raid_disks; i++) {
2108 tmp = conf->mirrors + i;
2109 if (tmp->replacement
2110 && tmp->replacement->recovery_offset == MaxSector
2111 && !test_bit(Faulty, &tmp->replacement->flags)
2112 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2113 /* Replacement has just become active */
2115 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2118 /* Replaced device not technically faulty,
2119 * but we need to be sure it gets removed
2120 * and never re-added.
2122 set_bit(Faulty, &tmp->rdev->flags);
2123 sysfs_notify_dirent_safe(
2124 tmp->rdev->sysfs_state);
2126 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2127 } else if (tmp->rdev
2128 && tmp->rdev->recovery_offset == MaxSector
2129 && !test_bit(Faulty, &tmp->rdev->flags)
2130 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2132 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2135 spin_lock_irqsave(&conf->device_lock, flags);
2136 mddev->degraded -= count;
2137 spin_unlock_irqrestore(&conf->device_lock, flags);
2143 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2145 struct r10conf *conf = mddev->private;
2147 int mirror, repl_slot = -1;
2149 int last = conf->geo.raid_disks - 1;
2150 struct raid10_info *p;
2152 if (mddev->recovery_cp < MaxSector)
2153 /* only hot-add to in-sync arrays, as recovery is
2154 * very different from resync
2157 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2160 if (md_integrity_add_rdev(rdev, mddev))
2163 if (rdev->raid_disk >= 0)
2164 first = last = rdev->raid_disk;
2166 if (rdev->saved_raid_disk >= first &&
2167 rdev->saved_raid_disk < conf->geo.raid_disks &&
2168 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2169 mirror = rdev->saved_raid_disk;
2172 for ( ; mirror <= last ; mirror++) {
2173 p = &conf->mirrors[mirror];
2174 if (p->recovery_disabled == mddev->recovery_disabled)
2177 if (test_bit(WantReplacement, &p->rdev->flags) &&
2178 p->replacement == NULL && repl_slot < 0)
2184 disk_stack_limits(mddev->gendisk, rdev->bdev,
2185 rdev->data_offset << 9);
2187 p->head_position = 0;
2188 p->recovery_disabled = mddev->recovery_disabled - 1;
2189 rdev->raid_disk = mirror;
2191 if (rdev->saved_raid_disk != mirror)
2193 rcu_assign_pointer(p->rdev, rdev);
2197 if (err && repl_slot >= 0) {
2198 p = &conf->mirrors[repl_slot];
2199 clear_bit(In_sync, &rdev->flags);
2200 set_bit(Replacement, &rdev->flags);
2201 rdev->raid_disk = repl_slot;
2204 disk_stack_limits(mddev->gendisk, rdev->bdev,
2205 rdev->data_offset << 9);
2207 rcu_assign_pointer(p->replacement, rdev);
2214 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2216 struct r10conf *conf = mddev->private;
2218 int number = rdev->raid_disk;
2219 struct md_rdev **rdevp;
2220 struct raid10_info *p;
2223 if (unlikely(number >= mddev->raid_disks))
2225 p = conf->mirrors + number;
2226 if (rdev == p->rdev)
2228 else if (rdev == p->replacement)
2229 rdevp = &p->replacement;
2233 if (test_bit(In_sync, &rdev->flags) ||
2234 atomic_read(&rdev->nr_pending)) {
2238 /* Only remove non-faulty devices if recovery
2241 if (!test_bit(Faulty, &rdev->flags) &&
2242 mddev->recovery_disabled != p->recovery_disabled &&
2243 (!p->replacement || p->replacement == rdev) &&
2244 number < conf->geo.raid_disks &&
2250 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2252 if (atomic_read(&rdev->nr_pending)) {
2253 /* lost the race, try later */
2259 if (p->replacement) {
2260 /* We must have just cleared 'rdev' */
2261 p->rdev = p->replacement;
2262 clear_bit(Replacement, &p->replacement->flags);
2263 smp_mb(); /* Make sure other CPUs may see both as identical
2264 * but will never see neither -- if they are careful.
2266 p->replacement = NULL;
2269 clear_bit(WantReplacement, &rdev->flags);
2270 err = md_integrity_register(mddev);
2278 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2280 struct r10conf *conf = r10_bio->mddev->private;
2282 if (!bio->bi_status)
2283 set_bit(R10BIO_Uptodate, &r10_bio->state);
2285 /* The write handler will notice the lack of
2286 * R10BIO_Uptodate and record any errors etc
2288 atomic_add(r10_bio->sectors,
2289 &conf->mirrors[d].rdev->corrected_errors);
2291 /* for reconstruct, we always reschedule after a read.
2292 * for resync, only after all reads
2294 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2295 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2296 atomic_dec_and_test(&r10_bio->remaining)) {
2297 /* we have read all the blocks,
2298 * do the comparison in process context in raid10d
2300 reschedule_retry(r10_bio);
2304 static void end_sync_read(struct bio *bio)
2306 struct r10bio *r10_bio = get_resync_r10bio(bio);
2307 struct r10conf *conf = r10_bio->mddev->private;
2308 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2310 __end_sync_read(r10_bio, bio, d);
2313 static void end_reshape_read(struct bio *bio)
2315 /* reshape read bio isn't allocated from r10buf_pool */
2316 struct r10bio *r10_bio = bio->bi_private;
2318 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2321 static void end_sync_request(struct r10bio *r10_bio)
2323 struct mddev *mddev = r10_bio->mddev;
2325 while (atomic_dec_and_test(&r10_bio->remaining)) {
2326 if (r10_bio->master_bio == NULL) {
2327 /* the primary of several recovery bios */
2328 sector_t s = r10_bio->sectors;
2329 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2330 test_bit(R10BIO_WriteError, &r10_bio->state))
2331 reschedule_retry(r10_bio);
2334 md_done_sync(mddev, s, 1);
2337 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2338 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2339 test_bit(R10BIO_WriteError, &r10_bio->state))
2340 reschedule_retry(r10_bio);
2348 static void end_sync_write(struct bio *bio)
2350 struct r10bio *r10_bio = get_resync_r10bio(bio);
2351 struct mddev *mddev = r10_bio->mddev;
2352 struct r10conf *conf = mddev->private;
2358 struct md_rdev *rdev = NULL;
2360 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2362 rdev = conf->mirrors[d].replacement;
2364 rdev = conf->mirrors[d].rdev;
2366 if (bio->bi_status) {
2368 md_error(mddev, rdev);
2370 set_bit(WriteErrorSeen, &rdev->flags);
2371 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2372 set_bit(MD_RECOVERY_NEEDED,
2373 &rdev->mddev->recovery);
2374 set_bit(R10BIO_WriteError, &r10_bio->state);
2376 } else if (is_badblock(rdev,
2377 r10_bio->devs[slot].addr,
2379 &first_bad, &bad_sectors))
2380 set_bit(R10BIO_MadeGood, &r10_bio->state);
2382 rdev_dec_pending(rdev, mddev);
2384 end_sync_request(r10_bio);
2388 * Note: sync and recover and handled very differently for raid10
2389 * This code is for resync.
2390 * For resync, we read through virtual addresses and read all blocks.
2391 * If there is any error, we schedule a write. The lowest numbered
2392 * drive is authoritative.
2393 * However requests come for physical address, so we need to map.
2394 * For every physical address there are raid_disks/copies virtual addresses,
2395 * which is always are least one, but is not necessarly an integer.
2396 * This means that a physical address can span multiple chunks, so we may
2397 * have to submit multiple io requests for a single sync request.
2400 * We check if all blocks are in-sync and only write to blocks that
2403 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2405 struct r10conf *conf = mddev->private;
2407 struct bio *tbio, *fbio;
2409 struct page **tpages, **fpages;
2411 atomic_set(&r10_bio->remaining, 1);
2413 /* find the first device with a block */
2414 for (i=0; i<conf->copies; i++)
2415 if (!r10_bio->devs[i].bio->bi_status)
2418 if (i == conf->copies)
2422 fbio = r10_bio->devs[i].bio;
2423 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2424 fbio->bi_iter.bi_idx = 0;
2425 fpages = get_resync_pages(fbio)->pages;
2427 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2428 /* now find blocks with errors */
2429 for (i=0 ; i < conf->copies ; i++) {
2431 struct md_rdev *rdev;
2432 struct resync_pages *rp;
2434 tbio = r10_bio->devs[i].bio;
2436 if (tbio->bi_end_io != end_sync_read)
2441 tpages = get_resync_pages(tbio)->pages;
2442 d = r10_bio->devs[i].devnum;
2443 rdev = conf->mirrors[d].rdev;
2444 if (!r10_bio->devs[i].bio->bi_status) {
2445 /* We know that the bi_io_vec layout is the same for
2446 * both 'first' and 'i', so we just compare them.
2447 * All vec entries are PAGE_SIZE;
2449 int sectors = r10_bio->sectors;
2450 for (j = 0; j < vcnt; j++) {
2451 int len = PAGE_SIZE;
2452 if (sectors < (len / 512))
2453 len = sectors * 512;
2454 if (memcmp(page_address(fpages[j]),
2455 page_address(tpages[j]),
2462 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2463 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2464 /* Don't fix anything. */
2466 } else if (test_bit(FailFast, &rdev->flags)) {
2467 /* Just give up on this device */
2468 md_error(rdev->mddev, rdev);
2471 /* Ok, we need to write this bio, either to correct an
2472 * inconsistency or to correct an unreadable block.
2473 * First we need to fixup bv_offset, bv_len and
2474 * bi_vecs, as the read request might have corrupted these
2476 rp = get_resync_pages(tbio);
2477 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2479 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2481 rp->raid_bio = r10_bio;
2482 tbio->bi_private = rp;
2483 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2484 tbio->bi_end_io = end_sync_write;
2486 bio_copy_data(tbio, fbio);
2488 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2489 atomic_inc(&r10_bio->remaining);
2490 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2492 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2493 tbio->bi_opf |= MD_FAILFAST;
2494 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2495 submit_bio_noacct(tbio);
2498 /* Now write out to any replacement devices
2501 for (i = 0; i < conf->copies; i++) {
2504 tbio = r10_bio->devs[i].repl_bio;
2505 if (!tbio || !tbio->bi_end_io)
2507 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2508 && r10_bio->devs[i].bio != fbio)
2509 bio_copy_data(tbio, fbio);
2510 d = r10_bio->devs[i].devnum;
2511 atomic_inc(&r10_bio->remaining);
2512 md_sync_acct(conf->mirrors[d].replacement->bdev,
2514 submit_bio_noacct(tbio);
2518 if (atomic_dec_and_test(&r10_bio->remaining)) {
2519 md_done_sync(mddev, r10_bio->sectors, 1);
2525 * Now for the recovery code.
2526 * Recovery happens across physical sectors.
2527 * We recover all non-is_sync drives by finding the virtual address of
2528 * each, and then choose a working drive that also has that virt address.
2529 * There is a separate r10_bio for each non-in_sync drive.
2530 * Only the first two slots are in use. The first for reading,
2531 * The second for writing.
2534 static void fix_recovery_read_error(struct r10bio *r10_bio)
2536 /* We got a read error during recovery.
2537 * We repeat the read in smaller page-sized sections.
2538 * If a read succeeds, write it to the new device or record
2539 * a bad block if we cannot.
2540 * If a read fails, record a bad block on both old and
2543 struct mddev *mddev = r10_bio->mddev;
2544 struct r10conf *conf = mddev->private;
2545 struct bio *bio = r10_bio->devs[0].bio;
2547 int sectors = r10_bio->sectors;
2549 int dr = r10_bio->devs[0].devnum;
2550 int dw = r10_bio->devs[1].devnum;
2551 struct page **pages = get_resync_pages(bio)->pages;
2555 struct md_rdev *rdev;
2559 if (s > (PAGE_SIZE>>9))
2562 rdev = conf->mirrors[dr].rdev;
2563 addr = r10_bio->devs[0].addr + sect,
2564 ok = sync_page_io(rdev,
2568 REQ_OP_READ, false);
2570 rdev = conf->mirrors[dw].rdev;
2571 addr = r10_bio->devs[1].addr + sect;
2572 ok = sync_page_io(rdev,
2576 REQ_OP_WRITE, false);
2578 set_bit(WriteErrorSeen, &rdev->flags);
2579 if (!test_and_set_bit(WantReplacement,
2581 set_bit(MD_RECOVERY_NEEDED,
2582 &rdev->mddev->recovery);
2586 /* We don't worry if we cannot set a bad block -
2587 * it really is bad so there is no loss in not
2590 rdev_set_badblocks(rdev, addr, s, 0);
2592 if (rdev != conf->mirrors[dw].rdev) {
2593 /* need bad block on destination too */
2594 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2595 addr = r10_bio->devs[1].addr + sect;
2596 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2598 /* just abort the recovery */
2599 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2602 conf->mirrors[dw].recovery_disabled
2603 = mddev->recovery_disabled;
2604 set_bit(MD_RECOVERY_INTR,
2617 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2619 struct r10conf *conf = mddev->private;
2621 struct bio *wbio = r10_bio->devs[1].bio;
2622 struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2624 /* Need to test wbio2->bi_end_io before we call
2625 * submit_bio_noacct as if the former is NULL,
2626 * the latter is free to free wbio2.
2628 if (wbio2 && !wbio2->bi_end_io)
2631 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2632 fix_recovery_read_error(r10_bio);
2633 if (wbio->bi_end_io)
2634 end_sync_request(r10_bio);
2636 end_sync_request(r10_bio);
2641 * share the pages with the first bio
2642 * and submit the write request
2644 d = r10_bio->devs[1].devnum;
2645 if (wbio->bi_end_io) {
2646 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2647 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2648 submit_bio_noacct(wbio);
2651 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2652 md_sync_acct(conf->mirrors[d].replacement->bdev,
2653 bio_sectors(wbio2));
2654 submit_bio_noacct(wbio2);
2659 * Used by fix_read_error() to decay the per rdev read_errors.
2660 * We halve the read error count for every hour that has elapsed
2661 * since the last recorded read error.
2664 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2667 unsigned long hours_since_last;
2668 unsigned int read_errors = atomic_read(&rdev->read_errors);
2670 cur_time_mon = ktime_get_seconds();
2672 if (rdev->last_read_error == 0) {
2673 /* first time we've seen a read error */
2674 rdev->last_read_error = cur_time_mon;
2678 hours_since_last = (long)(cur_time_mon -
2679 rdev->last_read_error) / 3600;
2681 rdev->last_read_error = cur_time_mon;
2684 * if hours_since_last is > the number of bits in read_errors
2685 * just set read errors to 0. We do this to avoid
2686 * overflowing the shift of read_errors by hours_since_last.
2688 if (hours_since_last >= 8 * sizeof(read_errors))
2689 atomic_set(&rdev->read_errors, 0);
2691 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2694 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2695 int sectors, struct page *page, enum req_op op)
2700 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2701 && (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2703 if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2706 if (op == REQ_OP_WRITE) {
2707 set_bit(WriteErrorSeen, &rdev->flags);
2708 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2709 set_bit(MD_RECOVERY_NEEDED,
2710 &rdev->mddev->recovery);
2712 /* need to record an error - either for the block or the device */
2713 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2714 md_error(rdev->mddev, rdev);
2719 * This is a kernel thread which:
2721 * 1. Retries failed read operations on working mirrors.
2722 * 2. Updates the raid superblock when problems encounter.
2723 * 3. Performs writes following reads for array synchronising.
2726 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2728 int sect = 0; /* Offset from r10_bio->sector */
2729 int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2730 struct md_rdev *rdev;
2731 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2732 int d = r10_bio->devs[slot].devnum;
2734 /* still own a reference to this rdev, so it cannot
2735 * have been cleared recently.
2737 rdev = conf->mirrors[d].rdev;
2739 if (test_bit(Faulty, &rdev->flags))
2740 /* drive has already been failed, just ignore any
2741 more fix_read_error() attempts */
2744 check_decay_read_errors(mddev, rdev);
2745 atomic_inc(&rdev->read_errors);
2746 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2747 pr_notice("md/raid10:%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2748 mdname(mddev), rdev->bdev,
2749 atomic_read(&rdev->read_errors), max_read_errors);
2750 pr_notice("md/raid10:%s: %pg: Failing raid device\n",
2751 mdname(mddev), rdev->bdev);
2752 md_error(mddev, rdev);
2753 r10_bio->devs[slot].bio = IO_BLOCKED;
2763 if (s > (PAGE_SIZE>>9))
2771 d = r10_bio->devs[sl].devnum;
2772 rdev = rcu_dereference(conf->mirrors[d].rdev);
2774 test_bit(In_sync, &rdev->flags) &&
2775 !test_bit(Faulty, &rdev->flags) &&
2776 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2777 &first_bad, &bad_sectors) == 0) {
2778 atomic_inc(&rdev->nr_pending);
2780 success = sync_page_io(rdev,
2781 r10_bio->devs[sl].addr +
2785 REQ_OP_READ, false);
2786 rdev_dec_pending(rdev, mddev);
2792 if (sl == conf->copies)
2794 } while (sl != slot);
2798 /* Cannot read from anywhere, just mark the block
2799 * as bad on the first device to discourage future
2802 int dn = r10_bio->devs[slot].devnum;
2803 rdev = conf->mirrors[dn].rdev;
2805 if (!rdev_set_badblocks(
2807 r10_bio->devs[slot].addr
2810 md_error(mddev, rdev);
2811 r10_bio->devs[slot].bio
2818 /* write it back and re-read */
2820 while (sl != slot) {
2824 d = r10_bio->devs[sl].devnum;
2825 rdev = rcu_dereference(conf->mirrors[d].rdev);
2827 test_bit(Faulty, &rdev->flags) ||
2828 !test_bit(In_sync, &rdev->flags))
2831 atomic_inc(&rdev->nr_pending);
2833 if (r10_sync_page_io(rdev,
2834 r10_bio->devs[sl].addr +
2836 s, conf->tmppage, REQ_OP_WRITE)
2838 /* Well, this device is dead */
2839 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2841 (unsigned long long)(
2843 choose_data_offset(r10_bio,
2846 pr_notice("md/raid10:%s: %pg: failing drive\n",
2850 rdev_dec_pending(rdev, mddev);
2854 while (sl != slot) {
2858 d = r10_bio->devs[sl].devnum;
2859 rdev = rcu_dereference(conf->mirrors[d].rdev);
2861 test_bit(Faulty, &rdev->flags) ||
2862 !test_bit(In_sync, &rdev->flags))
2865 atomic_inc(&rdev->nr_pending);
2867 switch (r10_sync_page_io(rdev,
2868 r10_bio->devs[sl].addr +
2870 s, conf->tmppage, REQ_OP_READ)) {
2872 /* Well, this device is dead */
2873 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2875 (unsigned long long)(
2877 choose_data_offset(r10_bio, rdev)),
2879 pr_notice("md/raid10:%s: %pg: failing drive\n",
2884 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2886 (unsigned long long)(
2888 choose_data_offset(r10_bio, rdev)),
2890 atomic_add(s, &rdev->corrected_errors);
2893 rdev_dec_pending(rdev, mddev);
2903 static int narrow_write_error(struct r10bio *r10_bio, int i)
2905 struct bio *bio = r10_bio->master_bio;
2906 struct mddev *mddev = r10_bio->mddev;
2907 struct r10conf *conf = mddev->private;
2908 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2909 /* bio has the data to be written to slot 'i' where
2910 * we just recently had a write error.
2911 * We repeatedly clone the bio and trim down to one block,
2912 * then try the write. Where the write fails we record
2914 * It is conceivable that the bio doesn't exactly align with
2915 * blocks. We must handle this.
2917 * We currently own a reference to the rdev.
2923 int sect_to_write = r10_bio->sectors;
2926 if (rdev->badblocks.shift < 0)
2929 block_sectors = roundup(1 << rdev->badblocks.shift,
2930 bdev_logical_block_size(rdev->bdev) >> 9);
2931 sector = r10_bio->sector;
2932 sectors = ((r10_bio->sector + block_sectors)
2933 & ~(sector_t)(block_sectors - 1))
2936 while (sect_to_write) {
2939 if (sectors > sect_to_write)
2940 sectors = sect_to_write;
2941 /* Write at 'sector' for 'sectors' */
2942 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2944 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2945 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2946 wbio->bi_iter.bi_sector = wsector +
2947 choose_data_offset(r10_bio, rdev);
2948 wbio->bi_opf = REQ_OP_WRITE;
2950 if (submit_bio_wait(wbio) < 0)
2952 ok = rdev_set_badblocks(rdev, wsector,
2957 sect_to_write -= sectors;
2959 sectors = block_sectors;
2964 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2966 int slot = r10_bio->read_slot;
2968 struct r10conf *conf = mddev->private;
2969 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2971 /* we got a read error. Maybe the drive is bad. Maybe just
2972 * the block and we can fix it.
2973 * We freeze all other IO, and try reading the block from
2974 * other devices. When we find one, we re-write
2975 * and check it that fixes the read error.
2976 * This is all done synchronously while the array is
2979 bio = r10_bio->devs[slot].bio;
2981 r10_bio->devs[slot].bio = NULL;
2984 r10_bio->devs[slot].bio = IO_BLOCKED;
2985 else if (!test_bit(FailFast, &rdev->flags)) {
2986 freeze_array(conf, 1);
2987 fix_read_error(conf, mddev, r10_bio);
2988 unfreeze_array(conf);
2990 md_error(mddev, rdev);
2992 rdev_dec_pending(rdev, mddev);
2994 raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2996 * allow_barrier after re-submit to ensure no sync io
2997 * can be issued while regular io pending.
2999 allow_barrier(conf);
3002 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
3004 /* Some sort of write request has finished and it
3005 * succeeded in writing where we thought there was a
3006 * bad block. So forget the bad block.
3007 * Or possibly if failed and we need to record
3011 struct md_rdev *rdev;
3013 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
3014 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
3015 for (m = 0; m < conf->copies; m++) {
3016 int dev = r10_bio->devs[m].devnum;
3017 rdev = conf->mirrors[dev].rdev;
3018 if (r10_bio->devs[m].bio == NULL ||
3019 r10_bio->devs[m].bio->bi_end_io == NULL)
3021 if (!r10_bio->devs[m].bio->bi_status) {
3022 rdev_clear_badblocks(
3024 r10_bio->devs[m].addr,
3025 r10_bio->sectors, 0);
3027 if (!rdev_set_badblocks(
3029 r10_bio->devs[m].addr,
3030 r10_bio->sectors, 0))
3031 md_error(conf->mddev, rdev);
3033 rdev = conf->mirrors[dev].replacement;
3034 if (r10_bio->devs[m].repl_bio == NULL ||
3035 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
3038 if (!r10_bio->devs[m].repl_bio->bi_status) {
3039 rdev_clear_badblocks(
3041 r10_bio->devs[m].addr,
3042 r10_bio->sectors, 0);
3044 if (!rdev_set_badblocks(
3046 r10_bio->devs[m].addr,
3047 r10_bio->sectors, 0))
3048 md_error(conf->mddev, rdev);
3054 for (m = 0; m < conf->copies; m++) {
3055 int dev = r10_bio->devs[m].devnum;
3056 struct bio *bio = r10_bio->devs[m].bio;
3057 rdev = conf->mirrors[dev].rdev;
3058 if (bio == IO_MADE_GOOD) {
3059 rdev_clear_badblocks(
3061 r10_bio->devs[m].addr,
3062 r10_bio->sectors, 0);
3063 rdev_dec_pending(rdev, conf->mddev);
3064 } else if (bio != NULL && bio->bi_status) {
3066 if (!narrow_write_error(r10_bio, m)) {
3067 md_error(conf->mddev, rdev);
3068 set_bit(R10BIO_Degraded,
3071 rdev_dec_pending(rdev, conf->mddev);
3073 bio = r10_bio->devs[m].repl_bio;
3074 rdev = conf->mirrors[dev].replacement;
3075 if (rdev && bio == IO_MADE_GOOD) {
3076 rdev_clear_badblocks(
3078 r10_bio->devs[m].addr,
3079 r10_bio->sectors, 0);
3080 rdev_dec_pending(rdev, conf->mddev);
3084 spin_lock_irq(&conf->device_lock);
3085 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3087 spin_unlock_irq(&conf->device_lock);
3089 * In case freeze_array() is waiting for condition
3090 * nr_pending == nr_queued + extra to be true.
3092 wake_up(&conf->wait_barrier);
3093 md_wakeup_thread(conf->mddev->thread);
3095 if (test_bit(R10BIO_WriteError,
3097 close_write(r10_bio);
3098 raid_end_bio_io(r10_bio);
3103 static void raid10d(struct md_thread *thread)
3105 struct mddev *mddev = thread->mddev;
3106 struct r10bio *r10_bio;
3107 unsigned long flags;
3108 struct r10conf *conf = mddev->private;
3109 struct list_head *head = &conf->retry_list;
3110 struct blk_plug plug;
3112 md_check_recovery(mddev);
3114 if (!list_empty_careful(&conf->bio_end_io_list) &&
3115 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3117 spin_lock_irqsave(&conf->device_lock, flags);
3118 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3119 while (!list_empty(&conf->bio_end_io_list)) {
3120 list_move(conf->bio_end_io_list.prev, &tmp);
3124 spin_unlock_irqrestore(&conf->device_lock, flags);
3125 while (!list_empty(&tmp)) {
3126 r10_bio = list_first_entry(&tmp, struct r10bio,
3128 list_del(&r10_bio->retry_list);
3129 if (mddev->degraded)
3130 set_bit(R10BIO_Degraded, &r10_bio->state);
3132 if (test_bit(R10BIO_WriteError,
3134 close_write(r10_bio);
3135 raid_end_bio_io(r10_bio);
3139 blk_start_plug(&plug);
3142 flush_pending_writes(conf);
3144 spin_lock_irqsave(&conf->device_lock, flags);
3145 if (list_empty(head)) {
3146 spin_unlock_irqrestore(&conf->device_lock, flags);
3149 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3150 list_del(head->prev);
3152 spin_unlock_irqrestore(&conf->device_lock, flags);
3154 mddev = r10_bio->mddev;
3155 conf = mddev->private;
3156 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3157 test_bit(R10BIO_WriteError, &r10_bio->state))
3158 handle_write_completed(conf, r10_bio);
3159 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3160 reshape_request_write(mddev, r10_bio);
3161 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3162 sync_request_write(mddev, r10_bio);
3163 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3164 recovery_request_write(mddev, r10_bio);
3165 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3166 handle_read_error(mddev, r10_bio);
3171 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3172 md_check_recovery(mddev);
3174 blk_finish_plug(&plug);
3177 static int init_resync(struct r10conf *conf)
3181 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3182 BUG_ON(mempool_initialized(&conf->r10buf_pool));
3183 conf->have_replacement = 0;
3184 for (i = 0; i < conf->geo.raid_disks; i++)
3185 if (conf->mirrors[i].replacement)
3186 conf->have_replacement = 1;
3187 ret = mempool_init(&conf->r10buf_pool, buffs,
3188 r10buf_pool_alloc, r10buf_pool_free, conf);
3191 conf->next_resync = 0;
3195 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3197 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3198 struct rsync_pages *rp;
3203 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3204 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3205 nalloc = conf->copies; /* resync */
3207 nalloc = 2; /* recovery */
3209 for (i = 0; i < nalloc; i++) {
3210 bio = r10bio->devs[i].bio;
3211 rp = bio->bi_private;
3212 bio_reset(bio, NULL, 0);
3213 bio->bi_private = rp;
3214 bio = r10bio->devs[i].repl_bio;
3216 rp = bio->bi_private;
3217 bio_reset(bio, NULL, 0);
3218 bio->bi_private = rp;
3225 * Set cluster_sync_high since we need other nodes to add the
3226 * range [cluster_sync_low, cluster_sync_high] to suspend list.
3228 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3230 sector_t window_size;
3231 int extra_chunk, chunks;
3234 * First, here we define "stripe" as a unit which across
3235 * all member devices one time, so we get chunks by use
3236 * raid_disks / near_copies. Otherwise, if near_copies is
3237 * close to raid_disks, then resync window could increases
3238 * linearly with the increase of raid_disks, which means
3239 * we will suspend a really large IO window while it is not
3240 * necessary. If raid_disks is not divisible by near_copies,
3241 * an extra chunk is needed to ensure the whole "stripe" is
3245 chunks = conf->geo.raid_disks / conf->geo.near_copies;
3246 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3250 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3253 * At least use a 32M window to align with raid1's resync window
3255 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3256 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3258 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3262 * perform a "sync" on one "block"
3264 * We need to make sure that no normal I/O request - particularly write
3265 * requests - conflict with active sync requests.
3267 * This is achieved by tracking pending requests and a 'barrier' concept
3268 * that can be installed to exclude normal IO requests.
3270 * Resync and recovery are handled very differently.
3271 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3273 * For resync, we iterate over virtual addresses, read all copies,
3274 * and update if there are differences. If only one copy is live,
3276 * For recovery, we iterate over physical addresses, read a good
3277 * value for each non-in_sync drive, and over-write.
3279 * So, for recovery we may have several outstanding complex requests for a
3280 * given address, one for each out-of-sync device. We model this by allocating
3281 * a number of r10_bio structures, one for each out-of-sync device.
3282 * As we setup these structures, we collect all bio's together into a list
3283 * which we then process collectively to add pages, and then process again
3284 * to pass to submit_bio_noacct.
3286 * The r10_bio structures are linked using a borrowed master_bio pointer.
3287 * This link is counted in ->remaining. When the r10_bio that points to NULL
3288 * has its remaining count decremented to 0, the whole complex operation
3293 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3296 struct r10conf *conf = mddev->private;
3297 struct r10bio *r10_bio;
3298 struct bio *biolist = NULL, *bio;
3299 sector_t max_sector, nr_sectors;
3302 sector_t sync_blocks;
3303 sector_t sectors_skipped = 0;
3304 int chunks_skipped = 0;
3305 sector_t chunk_mask = conf->geo.chunk_mask;
3307 int error_disk = -1;
3310 * Allow skipping a full rebuild for incremental assembly
3311 * of a clean array, like RAID1 does.
3313 if (mddev->bitmap == NULL &&
3314 mddev->recovery_cp == MaxSector &&
3315 mddev->reshape_position == MaxSector &&
3316 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3317 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3318 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3319 conf->fullsync == 0) {
3321 return mddev->dev_sectors - sector_nr;
3324 if (!mempool_initialized(&conf->r10buf_pool))
3325 if (init_resync(conf))
3329 max_sector = mddev->dev_sectors;
3330 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3331 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3332 max_sector = mddev->resync_max_sectors;
3333 if (sector_nr >= max_sector) {
3334 conf->cluster_sync_low = 0;
3335 conf->cluster_sync_high = 0;
3337 /* If we aborted, we need to abort the
3338 * sync on the 'current' bitmap chucks (there can
3339 * be several when recovering multiple devices).
3340 * as we may have started syncing it but not finished.
3341 * We can find the current address in
3342 * mddev->curr_resync, but for recovery,
3343 * we need to convert that to several
3344 * virtual addresses.
3346 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3352 if (mddev->curr_resync < max_sector) { /* aborted */
3353 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3354 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3356 else for (i = 0; i < conf->geo.raid_disks; i++) {
3358 raid10_find_virt(conf, mddev->curr_resync, i);
3359 md_bitmap_end_sync(mddev->bitmap, sect,
3363 /* completed sync */
3364 if ((!mddev->bitmap || conf->fullsync)
3365 && conf->have_replacement
3366 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3367 /* Completed a full sync so the replacements
3368 * are now fully recovered.
3371 for (i = 0; i < conf->geo.raid_disks; i++) {
3372 struct md_rdev *rdev =
3373 rcu_dereference(conf->mirrors[i].replacement);
3375 rdev->recovery_offset = MaxSector;
3381 md_bitmap_close_sync(mddev->bitmap);
3384 return sectors_skipped;
3387 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3388 return reshape_request(mddev, sector_nr, skipped);
3390 if (chunks_skipped >= conf->geo.raid_disks) {
3391 pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3392 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? "resync" : "recovery");
3393 if (error_disk >= 0 &&
3394 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3396 * recovery fails, set mirrors.recovery_disabled,
3397 * device shouldn't be added to there.
3399 conf->mirrors[error_disk].recovery_disabled =
3400 mddev->recovery_disabled;
3404 * if there has been nothing to do on any drive,
3405 * then there is nothing to do at all.
3408 return (max_sector - sector_nr) + sectors_skipped;
3411 if (max_sector > mddev->resync_max)
3412 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3414 /* make sure whole request will fit in a chunk - if chunks
3417 if (conf->geo.near_copies < conf->geo.raid_disks &&
3418 max_sector > (sector_nr | chunk_mask))
3419 max_sector = (sector_nr | chunk_mask) + 1;
3422 * If there is non-resync activity waiting for a turn, then let it
3423 * though before starting on this new sync request.
3425 if (conf->nr_waiting)
3426 schedule_timeout_uninterruptible(1);
3428 /* Again, very different code for resync and recovery.
3429 * Both must result in an r10bio with a list of bios that
3430 * have bi_end_io, bi_sector, bi_bdev set,
3431 * and bi_private set to the r10bio.
3432 * For recovery, we may actually create several r10bios
3433 * with 2 bios in each, that correspond to the bios in the main one.
3434 * In this case, the subordinate r10bios link back through a
3435 * borrowed master_bio pointer, and the counter in the master
3436 * includes a ref from each subordinate.
3438 /* First, we decide what to do and set ->bi_end_io
3439 * To end_sync_read if we want to read, and
3440 * end_sync_write if we will want to write.
3443 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3444 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3445 /* recovery... the complicated one */
3449 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3455 struct raid10_info *mirror = &conf->mirrors[i];
3456 struct md_rdev *mrdev, *mreplace;
3459 mrdev = rcu_dereference(mirror->rdev);
3460 mreplace = rcu_dereference(mirror->replacement);
3462 if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3463 test_bit(In_sync, &mrdev->flags)))
3465 if (mreplace && test_bit(Faulty, &mreplace->flags))
3468 if (!mrdev && !mreplace) {
3474 /* want to reconstruct this device */
3476 sect = raid10_find_virt(conf, sector_nr, i);
3477 if (sect >= mddev->resync_max_sectors) {
3478 /* last stripe is not complete - don't
3479 * try to recover this sector.
3484 /* Unless we are doing a full sync, or a replacement
3485 * we only need to recover the block if it is set in
3488 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3490 if (sync_blocks < max_sync)
3491 max_sync = sync_blocks;
3495 /* yep, skip the sync_blocks here, but don't assume
3496 * that there will never be anything to do here
3498 chunks_skipped = -1;
3503 atomic_inc(&mrdev->nr_pending);
3505 atomic_inc(&mreplace->nr_pending);
3508 r10_bio = raid10_alloc_init_r10buf(conf);
3510 raise_barrier(conf, rb2 != NULL);
3511 atomic_set(&r10_bio->remaining, 0);
3513 r10_bio->master_bio = (struct bio*)rb2;
3515 atomic_inc(&rb2->remaining);
3516 r10_bio->mddev = mddev;
3517 set_bit(R10BIO_IsRecover, &r10_bio->state);
3518 r10_bio->sector = sect;
3520 raid10_find_phys(conf, r10_bio);
3522 /* Need to check if the array will still be
3526 for (j = 0; j < conf->geo.raid_disks; j++) {
3527 struct md_rdev *rdev = rcu_dereference(
3528 conf->mirrors[j].rdev);
3529 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3535 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3536 &sync_blocks, still_degraded);
3539 for (j=0; j<conf->copies;j++) {
3541 int d = r10_bio->devs[j].devnum;
3542 sector_t from_addr, to_addr;
3543 struct md_rdev *rdev =
3544 rcu_dereference(conf->mirrors[d].rdev);
3545 sector_t sector, first_bad;
3548 !test_bit(In_sync, &rdev->flags))
3550 /* This is where we read from */
3552 sector = r10_bio->devs[j].addr;
3554 if (is_badblock(rdev, sector, max_sync,
3555 &first_bad, &bad_sectors)) {
3556 if (first_bad > sector)
3557 max_sync = first_bad - sector;
3559 bad_sectors -= (sector
3561 if (max_sync > bad_sectors)
3562 max_sync = bad_sectors;
3566 bio = r10_bio->devs[0].bio;
3567 bio->bi_next = biolist;
3569 bio->bi_end_io = end_sync_read;
3570 bio->bi_opf = REQ_OP_READ;
3571 if (test_bit(FailFast, &rdev->flags))
3572 bio->bi_opf |= MD_FAILFAST;
3573 from_addr = r10_bio->devs[j].addr;
3574 bio->bi_iter.bi_sector = from_addr +
3576 bio_set_dev(bio, rdev->bdev);
3577 atomic_inc(&rdev->nr_pending);
3578 /* and we write to 'i' (if not in_sync) */
3580 for (k=0; k<conf->copies; k++)
3581 if (r10_bio->devs[k].devnum == i)
3583 BUG_ON(k == conf->copies);
3584 to_addr = r10_bio->devs[k].addr;
3585 r10_bio->devs[0].devnum = d;
3586 r10_bio->devs[0].addr = from_addr;
3587 r10_bio->devs[1].devnum = i;
3588 r10_bio->devs[1].addr = to_addr;
3591 bio = r10_bio->devs[1].bio;
3592 bio->bi_next = biolist;
3594 bio->bi_end_io = end_sync_write;
3595 bio->bi_opf = REQ_OP_WRITE;
3596 bio->bi_iter.bi_sector = to_addr
3597 + mrdev->data_offset;
3598 bio_set_dev(bio, mrdev->bdev);
3599 atomic_inc(&r10_bio->remaining);
3601 r10_bio->devs[1].bio->bi_end_io = NULL;
3603 /* and maybe write to replacement */
3604 bio = r10_bio->devs[1].repl_bio;
3606 bio->bi_end_io = NULL;
3607 /* Note: if replace is not NULL, then bio
3608 * cannot be NULL as r10buf_pool_alloc will
3609 * have allocated it.
3613 bio->bi_next = biolist;
3615 bio->bi_end_io = end_sync_write;
3616 bio->bi_opf = REQ_OP_WRITE;
3617 bio->bi_iter.bi_sector = to_addr +
3618 mreplace->data_offset;
3619 bio_set_dev(bio, mreplace->bdev);
3620 atomic_inc(&r10_bio->remaining);
3624 if (j == conf->copies) {
3625 /* Cannot recover, so abort the recovery or
3626 * record a bad block */
3628 /* problem is that there are bad blocks
3629 * on other device(s)
3632 for (k = 0; k < conf->copies; k++)
3633 if (r10_bio->devs[k].devnum == i)
3635 if (mrdev && !test_bit(In_sync,
3637 && !rdev_set_badblocks(
3639 r10_bio->devs[k].addr,
3643 !rdev_set_badblocks(
3645 r10_bio->devs[k].addr,
3650 if (!test_and_set_bit(MD_RECOVERY_INTR,
3652 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3654 mirror->recovery_disabled
3655 = mddev->recovery_disabled;
3661 atomic_dec(&rb2->remaining);
3664 rdev_dec_pending(mrdev, mddev);
3666 rdev_dec_pending(mreplace, mddev);
3670 rdev_dec_pending(mrdev, mddev);
3672 rdev_dec_pending(mreplace, mddev);
3673 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3674 /* Only want this if there is elsewhere to
3675 * read from. 'j' is currently the first
3679 for (; j < conf->copies; j++) {
3680 int d = r10_bio->devs[j].devnum;
3681 if (conf->mirrors[d].rdev &&
3683 &conf->mirrors[d].rdev->flags))
3687 r10_bio->devs[0].bio->bi_opf
3691 if (biolist == NULL) {
3693 struct r10bio *rb2 = r10_bio;
3694 r10_bio = (struct r10bio*) rb2->master_bio;
3695 rb2->master_bio = NULL;
3701 /* resync. Schedule a read for every block at this virt offset */
3705 * Since curr_resync_completed could probably not update in
3706 * time, and we will set cluster_sync_low based on it.
3707 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3708 * safety reason, which ensures curr_resync_completed is
3709 * updated in bitmap_cond_end_sync.
3711 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3712 mddev_is_clustered(mddev) &&
3713 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3715 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3716 &sync_blocks, mddev->degraded) &&
3717 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3718 &mddev->recovery)) {
3719 /* We can skip this block */
3721 return sync_blocks + sectors_skipped;
3723 if (sync_blocks < max_sync)
3724 max_sync = sync_blocks;
3725 r10_bio = raid10_alloc_init_r10buf(conf);
3728 r10_bio->mddev = mddev;
3729 atomic_set(&r10_bio->remaining, 0);
3730 raise_barrier(conf, 0);
3731 conf->next_resync = sector_nr;
3733 r10_bio->master_bio = NULL;
3734 r10_bio->sector = sector_nr;
3735 set_bit(R10BIO_IsSync, &r10_bio->state);
3736 raid10_find_phys(conf, r10_bio);
3737 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3739 for (i = 0; i < conf->copies; i++) {
3740 int d = r10_bio->devs[i].devnum;
3741 sector_t first_bad, sector;
3743 struct md_rdev *rdev;
3745 if (r10_bio->devs[i].repl_bio)
3746 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3748 bio = r10_bio->devs[i].bio;
3749 bio->bi_status = BLK_STS_IOERR;
3751 rdev = rcu_dereference(conf->mirrors[d].rdev);
3752 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3756 sector = r10_bio->devs[i].addr;
3757 if (is_badblock(rdev, sector, max_sync,
3758 &first_bad, &bad_sectors)) {
3759 if (first_bad > sector)
3760 max_sync = first_bad - sector;
3762 bad_sectors -= (sector - first_bad);
3763 if (max_sync > bad_sectors)
3764 max_sync = bad_sectors;
3769 atomic_inc(&rdev->nr_pending);
3770 atomic_inc(&r10_bio->remaining);
3771 bio->bi_next = biolist;
3773 bio->bi_end_io = end_sync_read;
3774 bio->bi_opf = REQ_OP_READ;
3775 if (test_bit(FailFast, &rdev->flags))
3776 bio->bi_opf |= MD_FAILFAST;
3777 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3778 bio_set_dev(bio, rdev->bdev);
3781 rdev = rcu_dereference(conf->mirrors[d].replacement);
3782 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3786 atomic_inc(&rdev->nr_pending);
3788 /* Need to set up for writing to the replacement */
3789 bio = r10_bio->devs[i].repl_bio;
3790 bio->bi_status = BLK_STS_IOERR;
3792 sector = r10_bio->devs[i].addr;
3793 bio->bi_next = biolist;
3795 bio->bi_end_io = end_sync_write;
3796 bio->bi_opf = REQ_OP_WRITE;
3797 if (test_bit(FailFast, &rdev->flags))
3798 bio->bi_opf |= MD_FAILFAST;
3799 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3800 bio_set_dev(bio, rdev->bdev);
3806 for (i=0; i<conf->copies; i++) {
3807 int d = r10_bio->devs[i].devnum;
3808 if (r10_bio->devs[i].bio->bi_end_io)
3809 rdev_dec_pending(conf->mirrors[d].rdev,
3811 if (r10_bio->devs[i].repl_bio &&
3812 r10_bio->devs[i].repl_bio->bi_end_io)
3814 conf->mirrors[d].replacement,
3824 if (sector_nr + max_sync < max_sector)
3825 max_sector = sector_nr + max_sync;
3828 int len = PAGE_SIZE;
3829 if (sector_nr + (len>>9) > max_sector)
3830 len = (max_sector - sector_nr) << 9;
3833 for (bio= biolist ; bio ; bio=bio->bi_next) {
3834 struct resync_pages *rp = get_resync_pages(bio);
3835 page = resync_fetch_page(rp, page_idx);
3836 if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3837 bio->bi_status = BLK_STS_RESOURCE;
3842 nr_sectors += len>>9;
3843 sector_nr += len>>9;
3844 } while (++page_idx < RESYNC_PAGES);
3845 r10_bio->sectors = nr_sectors;
3847 if (mddev_is_clustered(mddev) &&
3848 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3849 /* It is resync not recovery */
3850 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3851 conf->cluster_sync_low = mddev->curr_resync_completed;
3852 raid10_set_cluster_sync_high(conf);
3853 /* Send resync message */
3854 md_cluster_ops->resync_info_update(mddev,
3855 conf->cluster_sync_low,
3856 conf->cluster_sync_high);
3858 } else if (mddev_is_clustered(mddev)) {
3859 /* This is recovery not resync */
3860 sector_t sect_va1, sect_va2;
3861 bool broadcast_msg = false;
3863 for (i = 0; i < conf->geo.raid_disks; i++) {
3865 * sector_nr is a device address for recovery, so we
3866 * need translate it to array address before compare
3867 * with cluster_sync_high.
3869 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3871 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3872 broadcast_msg = true;
3874 * curr_resync_completed is similar as
3875 * sector_nr, so make the translation too.
3877 sect_va2 = raid10_find_virt(conf,
3878 mddev->curr_resync_completed, i);
3880 if (conf->cluster_sync_low == 0 ||
3881 conf->cluster_sync_low > sect_va2)
3882 conf->cluster_sync_low = sect_va2;
3885 if (broadcast_msg) {
3886 raid10_set_cluster_sync_high(conf);
3887 md_cluster_ops->resync_info_update(mddev,
3888 conf->cluster_sync_low,
3889 conf->cluster_sync_high);
3895 biolist = biolist->bi_next;
3897 bio->bi_next = NULL;
3898 r10_bio = get_resync_r10bio(bio);
3899 r10_bio->sectors = nr_sectors;
3901 if (bio->bi_end_io == end_sync_read) {
3902 md_sync_acct_bio(bio, nr_sectors);
3904 submit_bio_noacct(bio);
3908 if (sectors_skipped)
3909 /* pretend they weren't skipped, it makes
3910 * no important difference in this case
3912 md_done_sync(mddev, sectors_skipped, 1);
3914 return sectors_skipped + nr_sectors;
3916 /* There is nowhere to write, so all non-sync
3917 * drives must be failed or in resync, all drives
3918 * have a bad block, so try the next chunk...
3920 if (sector_nr + max_sync < max_sector)
3921 max_sector = sector_nr + max_sync;
3923 sectors_skipped += (max_sector - sector_nr);
3925 sector_nr = max_sector;
3930 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3933 struct r10conf *conf = mddev->private;
3936 raid_disks = min(conf->geo.raid_disks,
3937 conf->prev.raid_disks);
3939 sectors = conf->dev_sectors;
3941 size = sectors >> conf->geo.chunk_shift;
3942 sector_div(size, conf->geo.far_copies);
3943 size = size * raid_disks;
3944 sector_div(size, conf->geo.near_copies);
3946 return size << conf->geo.chunk_shift;
3949 static void calc_sectors(struct r10conf *conf, sector_t size)
3951 /* Calculate the number of sectors-per-device that will
3952 * actually be used, and set conf->dev_sectors and
3956 size = size >> conf->geo.chunk_shift;
3957 sector_div(size, conf->geo.far_copies);
3958 size = size * conf->geo.raid_disks;
3959 sector_div(size, conf->geo.near_copies);
3960 /* 'size' is now the number of chunks in the array */
3961 /* calculate "used chunks per device" */
3962 size = size * conf->copies;
3964 /* We need to round up when dividing by raid_disks to
3965 * get the stride size.
3967 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3969 conf->dev_sectors = size << conf->geo.chunk_shift;
3971 if (conf->geo.far_offset)
3972 conf->geo.stride = 1 << conf->geo.chunk_shift;
3974 sector_div(size, conf->geo.far_copies);
3975 conf->geo.stride = size << conf->geo.chunk_shift;
3979 enum geo_type {geo_new, geo_old, geo_start};
3980 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3983 int layout, chunk, disks;
3986 layout = mddev->layout;
3987 chunk = mddev->chunk_sectors;
3988 disks = mddev->raid_disks - mddev->delta_disks;
3991 layout = mddev->new_layout;
3992 chunk = mddev->new_chunk_sectors;
3993 disks = mddev->raid_disks;
3995 default: /* avoid 'may be unused' warnings */
3996 case geo_start: /* new when starting reshape - raid_disks not
3998 layout = mddev->new_layout;
3999 chunk = mddev->new_chunk_sectors;
4000 disks = mddev->raid_disks + mddev->delta_disks;
4005 if (chunk < (PAGE_SIZE >> 9) ||
4006 !is_power_of_2(chunk))
4009 fc = (layout >> 8) & 255;
4010 fo = layout & (1<<16);
4011 geo->raid_disks = disks;
4012 geo->near_copies = nc;
4013 geo->far_copies = fc;
4014 geo->far_offset = fo;
4015 switch (layout >> 17) {
4016 case 0: /* original layout. simple but not always optimal */
4017 geo->far_set_size = disks;
4019 case 1: /* "improved" layout which was buggy. Hopefully no-one is
4020 * actually using this, but leave code here just in case.*/
4021 geo->far_set_size = disks/fc;
4022 WARN(geo->far_set_size < fc,
4023 "This RAID10 layout does not provide data safety - please backup and create new array\n");
4025 case 2: /* "improved" layout fixed to match documentation */
4026 geo->far_set_size = fc * nc;
4028 default: /* Not a valid layout */
4031 geo->chunk_mask = chunk - 1;
4032 geo->chunk_shift = ffz(~chunk);
4036 static void raid10_free_conf(struct r10conf *conf)
4041 mempool_exit(&conf->r10bio_pool);
4042 kfree(conf->mirrors);
4043 kfree(conf->mirrors_old);
4044 kfree(conf->mirrors_new);
4045 safe_put_page(conf->tmppage);
4046 bioset_exit(&conf->bio_split);
4050 static struct r10conf *setup_conf(struct mddev *mddev)
4052 struct r10conf *conf = NULL;
4057 copies = setup_geo(&geo, mddev, geo_new);
4060 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
4061 mdname(mddev), PAGE_SIZE);
4065 if (copies < 2 || copies > mddev->raid_disks) {
4066 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
4067 mdname(mddev), mddev->new_layout);
4072 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
4076 /* FIXME calc properly */
4077 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
4078 sizeof(struct raid10_info),
4083 conf->tmppage = alloc_page(GFP_KERNEL);
4088 conf->copies = copies;
4089 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
4090 rbio_pool_free, conf);
4094 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
4098 calc_sectors(conf, mddev->dev_sectors);
4099 if (mddev->reshape_position == MaxSector) {
4100 conf->prev = conf->geo;
4101 conf->reshape_progress = MaxSector;
4103 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
4107 conf->reshape_progress = mddev->reshape_position;
4108 if (conf->prev.far_offset)
4109 conf->prev.stride = 1 << conf->prev.chunk_shift;
4111 /* far_copies must be 1 */
4112 conf->prev.stride = conf->dev_sectors;
4114 conf->reshape_safe = conf->reshape_progress;
4115 spin_lock_init(&conf->device_lock);
4116 INIT_LIST_HEAD(&conf->retry_list);
4117 INIT_LIST_HEAD(&conf->bio_end_io_list);
4119 seqlock_init(&conf->resync_lock);
4120 init_waitqueue_head(&conf->wait_barrier);
4121 atomic_set(&conf->nr_pending, 0);
4124 rcu_assign_pointer(conf->thread,
4125 md_register_thread(raid10d, mddev, "raid10"));
4129 conf->mddev = mddev;
4133 raid10_free_conf(conf);
4134 return ERR_PTR(err);
4137 static void raid10_set_io_opt(struct r10conf *conf)
4139 int raid_disks = conf->geo.raid_disks;
4141 if (!(conf->geo.raid_disks % conf->geo.near_copies))
4142 raid_disks /= conf->geo.near_copies;
4143 blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4147 static int raid10_run(struct mddev *mddev)
4149 struct r10conf *conf;
4151 struct raid10_info *disk;
4152 struct md_rdev *rdev;
4154 sector_t min_offset_diff = 0;
4157 if (mddev_init_writes_pending(mddev) < 0)
4160 if (mddev->private == NULL) {
4161 conf = setup_conf(mddev);
4163 return PTR_ERR(conf);
4164 mddev->private = conf;
4166 conf = mddev->private;
4170 rcu_assign_pointer(mddev->thread, conf->thread);
4171 rcu_assign_pointer(conf->thread, NULL);
4173 if (mddev_is_clustered(conf->mddev)) {
4176 fc = (mddev->layout >> 8) & 255;
4177 fo = mddev->layout & (1<<16);
4178 if (fc > 1 || fo > 0) {
4179 pr_err("only near layout is supported by clustered"
4186 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4187 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4188 raid10_set_io_opt(conf);
4191 rdev_for_each(rdev, mddev) {
4194 disk_idx = rdev->raid_disk;
4197 if (disk_idx >= conf->geo.raid_disks &&
4198 disk_idx >= conf->prev.raid_disks)
4200 disk = conf->mirrors + disk_idx;
4202 if (test_bit(Replacement, &rdev->flags)) {
4203 if (disk->replacement)
4205 disk->replacement = rdev;
4211 diff = (rdev->new_data_offset - rdev->data_offset);
4212 if (!mddev->reshape_backwards)
4216 if (first || diff < min_offset_diff)
4217 min_offset_diff = diff;
4220 disk_stack_limits(mddev->gendisk, rdev->bdev,
4221 rdev->data_offset << 9);
4223 disk->head_position = 0;
4227 /* need to check that every block has at least one working mirror */
4228 if (!enough(conf, -1)) {
4229 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4234 if (conf->reshape_progress != MaxSector) {
4235 /* must ensure that shape change is supported */
4236 if (conf->geo.far_copies != 1 &&
4237 conf->geo.far_offset == 0)
4239 if (conf->prev.far_copies != 1 &&
4240 conf->prev.far_offset == 0)
4244 mddev->degraded = 0;
4246 i < conf->geo.raid_disks
4247 || i < conf->prev.raid_disks;
4250 disk = conf->mirrors + i;
4252 if (!disk->rdev && disk->replacement) {
4253 /* The replacement is all we have - use it */
4254 disk->rdev = disk->replacement;
4255 disk->replacement = NULL;
4256 clear_bit(Replacement, &disk->rdev->flags);
4260 !test_bit(In_sync, &disk->rdev->flags)) {
4261 disk->head_position = 0;
4264 disk->rdev->saved_raid_disk < 0)
4268 if (disk->replacement &&
4269 !test_bit(In_sync, &disk->replacement->flags) &&
4270 disk->replacement->saved_raid_disk < 0) {
4274 disk->recovery_disabled = mddev->recovery_disabled - 1;
4277 if (mddev->recovery_cp != MaxSector)
4278 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4280 pr_info("md/raid10:%s: active with %d out of %d devices\n",
4281 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4282 conf->geo.raid_disks);
4284 * Ok, everything is just fine now
4286 mddev->dev_sectors = conf->dev_sectors;
4287 size = raid10_size(mddev, 0, 0);
4288 md_set_array_sectors(mddev, size);
4289 mddev->resync_max_sectors = size;
4290 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4292 if (md_integrity_register(mddev))
4295 if (conf->reshape_progress != MaxSector) {
4296 unsigned long before_length, after_length;
4298 before_length = ((1 << conf->prev.chunk_shift) *
4299 conf->prev.far_copies);
4300 after_length = ((1 << conf->geo.chunk_shift) *
4301 conf->geo.far_copies);
4303 if (max(before_length, after_length) > min_offset_diff) {
4304 /* This cannot work */
4305 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4308 conf->offset_diff = min_offset_diff;
4310 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4311 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4312 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4313 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4314 rcu_assign_pointer(mddev->sync_thread,
4315 md_register_thread(md_do_sync, mddev, "reshape"));
4316 if (!mddev->sync_thread)
4323 md_unregister_thread(mddev, &mddev->thread);
4324 raid10_free_conf(conf);
4325 mddev->private = NULL;
4330 static void raid10_free(struct mddev *mddev, void *priv)
4332 raid10_free_conf(priv);
4335 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4337 struct r10conf *conf = mddev->private;
4340 raise_barrier(conf, 0);
4342 lower_barrier(conf);
4345 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4347 /* Resize of 'far' arrays is not supported.
4348 * For 'near' and 'offset' arrays we can set the
4349 * number of sectors used to be an appropriate multiple
4350 * of the chunk size.
4351 * For 'offset', this is far_copies*chunksize.
4352 * For 'near' the multiplier is the LCM of
4353 * near_copies and raid_disks.
4354 * So if far_copies > 1 && !far_offset, fail.
4355 * Else find LCM(raid_disks, near_copy)*far_copies and
4356 * multiply by chunk_size. Then round to this number.
4357 * This is mostly done by raid10_size()
4359 struct r10conf *conf = mddev->private;
4360 sector_t oldsize, size;
4362 if (mddev->reshape_position != MaxSector)
4365 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4368 oldsize = raid10_size(mddev, 0, 0);
4369 size = raid10_size(mddev, sectors, 0);
4370 if (mddev->external_size &&
4371 mddev->array_sectors > size)
4373 if (mddev->bitmap) {
4374 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4378 md_set_array_sectors(mddev, size);
4379 if (sectors > mddev->dev_sectors &&
4380 mddev->recovery_cp > oldsize) {
4381 mddev->recovery_cp = oldsize;
4382 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4384 calc_sectors(conf, sectors);
4385 mddev->dev_sectors = conf->dev_sectors;
4386 mddev->resync_max_sectors = size;
4390 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4392 struct md_rdev *rdev;
4393 struct r10conf *conf;
4395 if (mddev->degraded > 0) {
4396 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4398 return ERR_PTR(-EINVAL);
4400 sector_div(size, devs);
4402 /* Set new parameters */
4403 mddev->new_level = 10;
4404 /* new layout: far_copies = 1, near_copies = 2 */
4405 mddev->new_layout = (1<<8) + 2;
4406 mddev->new_chunk_sectors = mddev->chunk_sectors;
4407 mddev->delta_disks = mddev->raid_disks;
4408 mddev->raid_disks *= 2;
4409 /* make sure it will be not marked as dirty */
4410 mddev->recovery_cp = MaxSector;
4411 mddev->dev_sectors = size;
4413 conf = setup_conf(mddev);
4414 if (!IS_ERR(conf)) {
4415 rdev_for_each(rdev, mddev)
4416 if (rdev->raid_disk >= 0) {
4417 rdev->new_raid_disk = rdev->raid_disk * 2;
4418 rdev->sectors = size;
4425 static void *raid10_takeover(struct mddev *mddev)
4427 struct r0conf *raid0_conf;
4429 /* raid10 can take over:
4430 * raid0 - providing it has only two drives
4432 if (mddev->level == 0) {
4433 /* for raid0 takeover only one zone is supported */
4434 raid0_conf = mddev->private;
4435 if (raid0_conf->nr_strip_zones > 1) {
4436 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4438 return ERR_PTR(-EINVAL);
4440 return raid10_takeover_raid0(mddev,
4441 raid0_conf->strip_zone->zone_end,
4442 raid0_conf->strip_zone->nb_dev);
4444 return ERR_PTR(-EINVAL);
4447 static int raid10_check_reshape(struct mddev *mddev)
4449 /* Called when there is a request to change
4450 * - layout (to ->new_layout)
4451 * - chunk size (to ->new_chunk_sectors)
4452 * - raid_disks (by delta_disks)
4453 * or when trying to restart a reshape that was ongoing.
4455 * We need to validate the request and possibly allocate
4456 * space if that might be an issue later.
4458 * Currently we reject any reshape of a 'far' mode array,
4459 * allow chunk size to change if new is generally acceptable,
4460 * allow raid_disks to increase, and allow
4461 * a switch between 'near' mode and 'offset' mode.
4463 struct r10conf *conf = mddev->private;
4466 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4469 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4470 /* mustn't change number of copies */
4472 if (geo.far_copies > 1 && !geo.far_offset)
4473 /* Cannot switch to 'far' mode */
4476 if (mddev->array_sectors & geo.chunk_mask)
4477 /* not factor of array size */
4480 if (!enough(conf, -1))
4483 kfree(conf->mirrors_new);
4484 conf->mirrors_new = NULL;
4485 if (mddev->delta_disks > 0) {
4486 /* allocate new 'mirrors' list */
4488 kcalloc(mddev->raid_disks + mddev->delta_disks,
4489 sizeof(struct raid10_info),
4491 if (!conf->mirrors_new)
4498 * Need to check if array has failed when deciding whether to:
4500 * - remove non-faulty devices
4503 * This determination is simple when no reshape is happening.
4504 * However if there is a reshape, we need to carefully check
4505 * both the before and after sections.
4506 * This is because some failed devices may only affect one
4507 * of the two sections, and some non-in_sync devices may
4508 * be insync in the section most affected by failed devices.
4510 static int calc_degraded(struct r10conf *conf)
4512 int degraded, degraded2;
4517 /* 'prev' section first */
4518 for (i = 0; i < conf->prev.raid_disks; i++) {
4519 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4520 if (!rdev || test_bit(Faulty, &rdev->flags))
4522 else if (!test_bit(In_sync, &rdev->flags))
4523 /* When we can reduce the number of devices in
4524 * an array, this might not contribute to
4525 * 'degraded'. It does now.
4530 if (conf->geo.raid_disks == conf->prev.raid_disks)
4534 for (i = 0; i < conf->geo.raid_disks; i++) {
4535 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4536 if (!rdev || test_bit(Faulty, &rdev->flags))
4538 else if (!test_bit(In_sync, &rdev->flags)) {
4539 /* If reshape is increasing the number of devices,
4540 * this section has already been recovered, so
4541 * it doesn't contribute to degraded.
4544 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4549 if (degraded2 > degraded)
4554 static int raid10_start_reshape(struct mddev *mddev)
4556 /* A 'reshape' has been requested. This commits
4557 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4558 * This also checks if there are enough spares and adds them
4560 * We currently require enough spares to make the final
4561 * array non-degraded. We also require that the difference
4562 * between old and new data_offset - on each device - is
4563 * enough that we never risk over-writing.
4566 unsigned long before_length, after_length;
4567 sector_t min_offset_diff = 0;
4570 struct r10conf *conf = mddev->private;
4571 struct md_rdev *rdev;
4575 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4578 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4581 before_length = ((1 << conf->prev.chunk_shift) *
4582 conf->prev.far_copies);
4583 after_length = ((1 << conf->geo.chunk_shift) *
4584 conf->geo.far_copies);
4586 rdev_for_each(rdev, mddev) {
4587 if (!test_bit(In_sync, &rdev->flags)
4588 && !test_bit(Faulty, &rdev->flags))
4590 if (rdev->raid_disk >= 0) {
4591 long long diff = (rdev->new_data_offset
4592 - rdev->data_offset);
4593 if (!mddev->reshape_backwards)
4597 if (first || diff < min_offset_diff)
4598 min_offset_diff = diff;
4603 if (max(before_length, after_length) > min_offset_diff)
4606 if (spares < mddev->delta_disks)
4609 conf->offset_diff = min_offset_diff;
4610 spin_lock_irq(&conf->device_lock);
4611 if (conf->mirrors_new) {
4612 memcpy(conf->mirrors_new, conf->mirrors,
4613 sizeof(struct raid10_info)*conf->prev.raid_disks);
4615 kfree(conf->mirrors_old);
4616 conf->mirrors_old = conf->mirrors;
4617 conf->mirrors = conf->mirrors_new;
4618 conf->mirrors_new = NULL;
4620 setup_geo(&conf->geo, mddev, geo_start);
4622 if (mddev->reshape_backwards) {
4623 sector_t size = raid10_size(mddev, 0, 0);
4624 if (size < mddev->array_sectors) {
4625 spin_unlock_irq(&conf->device_lock);
4626 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4630 mddev->resync_max_sectors = size;
4631 conf->reshape_progress = size;
4633 conf->reshape_progress = 0;
4634 conf->reshape_safe = conf->reshape_progress;
4635 spin_unlock_irq(&conf->device_lock);
4637 if (mddev->delta_disks && mddev->bitmap) {
4638 struct mdp_superblock_1 *sb = NULL;
4639 sector_t oldsize, newsize;
4641 oldsize = raid10_size(mddev, 0, 0);
4642 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4644 if (!mddev_is_clustered(mddev)) {
4645 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4652 rdev_for_each(rdev, mddev) {
4653 if (rdev->raid_disk > -1 &&
4654 !test_bit(Faulty, &rdev->flags))
4655 sb = page_address(rdev->sb_page);
4659 * some node is already performing reshape, and no need to
4660 * call md_bitmap_resize again since it should be called when
4661 * receiving BITMAP_RESIZE msg
4663 if ((sb && (le32_to_cpu(sb->feature_map) &
4664 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4667 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4671 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4673 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4678 if (mddev->delta_disks > 0) {
4679 rdev_for_each(rdev, mddev)
4680 if (rdev->raid_disk < 0 &&
4681 !test_bit(Faulty, &rdev->flags)) {
4682 if (raid10_add_disk(mddev, rdev) == 0) {
4683 if (rdev->raid_disk >=
4684 conf->prev.raid_disks)
4685 set_bit(In_sync, &rdev->flags);
4687 rdev->recovery_offset = 0;
4689 /* Failure here is OK */
4690 sysfs_link_rdev(mddev, rdev);
4692 } else if (rdev->raid_disk >= conf->prev.raid_disks
4693 && !test_bit(Faulty, &rdev->flags)) {
4694 /* This is a spare that was manually added */
4695 set_bit(In_sync, &rdev->flags);
4698 /* When a reshape changes the number of devices,
4699 * ->degraded is measured against the larger of the
4700 * pre and post numbers.
4702 spin_lock_irq(&conf->device_lock);
4703 mddev->degraded = calc_degraded(conf);
4704 spin_unlock_irq(&conf->device_lock);
4705 mddev->raid_disks = conf->geo.raid_disks;
4706 mddev->reshape_position = conf->reshape_progress;
4707 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4709 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4710 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4711 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4712 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4713 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4715 rcu_assign_pointer(mddev->sync_thread,
4716 md_register_thread(md_do_sync, mddev, "reshape"));
4717 if (!mddev->sync_thread) {
4721 conf->reshape_checkpoint = jiffies;
4722 md_wakeup_thread(mddev->sync_thread);
4727 mddev->recovery = 0;
4728 spin_lock_irq(&conf->device_lock);
4729 conf->geo = conf->prev;
4730 mddev->raid_disks = conf->geo.raid_disks;
4731 rdev_for_each(rdev, mddev)
4732 rdev->new_data_offset = rdev->data_offset;
4734 conf->reshape_progress = MaxSector;
4735 conf->reshape_safe = MaxSector;
4736 mddev->reshape_position = MaxSector;
4737 spin_unlock_irq(&conf->device_lock);
4741 /* Calculate the last device-address that could contain
4742 * any block from the chunk that includes the array-address 's'
4743 * and report the next address.
4744 * i.e. the address returned will be chunk-aligned and after
4745 * any data that is in the chunk containing 's'.
4747 static sector_t last_dev_address(sector_t s, struct geom *geo)
4749 s = (s | geo->chunk_mask) + 1;
4750 s >>= geo->chunk_shift;
4751 s *= geo->near_copies;
4752 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4753 s *= geo->far_copies;
4754 s <<= geo->chunk_shift;
4758 /* Calculate the first device-address that could contain
4759 * any block from the chunk that includes the array-address 's'.
4760 * This too will be the start of a chunk
4762 static sector_t first_dev_address(sector_t s, struct geom *geo)
4764 s >>= geo->chunk_shift;
4765 s *= geo->near_copies;
4766 sector_div(s, geo->raid_disks);
4767 s *= geo->far_copies;
4768 s <<= geo->chunk_shift;
4772 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4775 /* We simply copy at most one chunk (smallest of old and new)
4776 * at a time, possibly less if that exceeds RESYNC_PAGES,
4777 * or we hit a bad block or something.
4778 * This might mean we pause for normal IO in the middle of
4779 * a chunk, but that is not a problem as mddev->reshape_position
4780 * can record any location.
4782 * If we will want to write to a location that isn't
4783 * yet recorded as 'safe' (i.e. in metadata on disk) then
4784 * we need to flush all reshape requests and update the metadata.
4786 * When reshaping forwards (e.g. to more devices), we interpret
4787 * 'safe' as the earliest block which might not have been copied
4788 * down yet. We divide this by previous stripe size and multiply
4789 * by previous stripe length to get lowest device offset that we
4790 * cannot write to yet.
4791 * We interpret 'sector_nr' as an address that we want to write to.
4792 * From this we use last_device_address() to find where we might
4793 * write to, and first_device_address on the 'safe' position.
4794 * If this 'next' write position is after the 'safe' position,
4795 * we must update the metadata to increase the 'safe' position.
4797 * When reshaping backwards, we round in the opposite direction
4798 * and perform the reverse test: next write position must not be
4799 * less than current safe position.
4801 * In all this the minimum difference in data offsets
4802 * (conf->offset_diff - always positive) allows a bit of slack,
4803 * so next can be after 'safe', but not by more than offset_diff
4805 * We need to prepare all the bios here before we start any IO
4806 * to ensure the size we choose is acceptable to all devices.
4807 * The means one for each copy for write-out and an extra one for
4809 * We store the read-in bio in ->master_bio and the others in
4810 * ->devs[x].bio and ->devs[x].repl_bio.
4812 struct r10conf *conf = mddev->private;
4813 struct r10bio *r10_bio;
4814 sector_t next, safe, last;
4818 struct md_rdev *rdev;
4821 struct bio *bio, *read_bio;
4822 int sectors_done = 0;
4823 struct page **pages;
4825 if (sector_nr == 0) {
4826 /* If restarting in the middle, skip the initial sectors */
4827 if (mddev->reshape_backwards &&
4828 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4829 sector_nr = (raid10_size(mddev, 0, 0)
4830 - conf->reshape_progress);
4831 } else if (!mddev->reshape_backwards &&
4832 conf->reshape_progress > 0)
4833 sector_nr = conf->reshape_progress;
4835 mddev->curr_resync_completed = sector_nr;
4836 sysfs_notify_dirent_safe(mddev->sysfs_completed);
4842 /* We don't use sector_nr to track where we are up to
4843 * as that doesn't work well for ->reshape_backwards.
4844 * So just use ->reshape_progress.
4846 if (mddev->reshape_backwards) {
4847 /* 'next' is the earliest device address that we might
4848 * write to for this chunk in the new layout
4850 next = first_dev_address(conf->reshape_progress - 1,
4853 /* 'safe' is the last device address that we might read from
4854 * in the old layout after a restart
4856 safe = last_dev_address(conf->reshape_safe - 1,
4859 if (next + conf->offset_diff < safe)
4862 last = conf->reshape_progress - 1;
4863 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4864 & conf->prev.chunk_mask);
4865 if (sector_nr + RESYNC_SECTORS < last)
4866 sector_nr = last + 1 - RESYNC_SECTORS;
4868 /* 'next' is after the last device address that we
4869 * might write to for this chunk in the new layout
4871 next = last_dev_address(conf->reshape_progress, &conf->geo);
4873 /* 'safe' is the earliest device address that we might
4874 * read from in the old layout after a restart
4876 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4878 /* Need to update metadata if 'next' might be beyond 'safe'
4879 * as that would possibly corrupt data
4881 if (next > safe + conf->offset_diff)
4884 sector_nr = conf->reshape_progress;
4885 last = sector_nr | (conf->geo.chunk_mask
4886 & conf->prev.chunk_mask);
4888 if (sector_nr + RESYNC_SECTORS <= last)
4889 last = sector_nr + RESYNC_SECTORS - 1;
4893 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4894 /* Need to update reshape_position in metadata */
4895 wait_barrier(conf, false);
4896 mddev->reshape_position = conf->reshape_progress;
4897 if (mddev->reshape_backwards)
4898 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4899 - conf->reshape_progress;
4901 mddev->curr_resync_completed = conf->reshape_progress;
4902 conf->reshape_checkpoint = jiffies;
4903 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4904 md_wakeup_thread(mddev->thread);
4905 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4906 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4907 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4908 allow_barrier(conf);
4909 return sectors_done;
4911 conf->reshape_safe = mddev->reshape_position;
4912 allow_barrier(conf);
4915 raise_barrier(conf, 0);
4917 /* Now schedule reads for blocks from sector_nr to last */
4918 r10_bio = raid10_alloc_init_r10buf(conf);
4920 raise_barrier(conf, 1);
4921 atomic_set(&r10_bio->remaining, 0);
4922 r10_bio->mddev = mddev;
4923 r10_bio->sector = sector_nr;
4924 set_bit(R10BIO_IsReshape, &r10_bio->state);
4925 r10_bio->sectors = last - sector_nr + 1;
4926 rdev = read_balance(conf, r10_bio, &max_sectors);
4927 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4930 /* Cannot read from here, so need to record bad blocks
4931 * on all the target devices.
4934 mempool_free(r10_bio, &conf->r10buf_pool);
4935 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4936 return sectors_done;
4939 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4940 GFP_KERNEL, &mddev->bio_set);
4941 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4942 + rdev->data_offset);
4943 read_bio->bi_private = r10_bio;
4944 read_bio->bi_end_io = end_reshape_read;
4945 r10_bio->master_bio = read_bio;
4946 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4949 * Broadcast RESYNC message to other nodes, so all nodes would not
4950 * write to the region to avoid conflict.
4952 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4953 struct mdp_superblock_1 *sb = NULL;
4954 int sb_reshape_pos = 0;
4956 conf->cluster_sync_low = sector_nr;
4957 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4958 sb = page_address(rdev->sb_page);
4960 sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4962 * Set cluster_sync_low again if next address for array
4963 * reshape is less than cluster_sync_low. Since we can't
4964 * update cluster_sync_low until it has finished reshape.
4966 if (sb_reshape_pos < conf->cluster_sync_low)
4967 conf->cluster_sync_low = sb_reshape_pos;
4970 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4971 conf->cluster_sync_high);
4974 /* Now find the locations in the new layout */
4975 __raid10_find_phys(&conf->geo, r10_bio);
4978 read_bio->bi_next = NULL;
4981 for (s = 0; s < conf->copies*2; s++) {
4983 int d = r10_bio->devs[s/2].devnum;
4984 struct md_rdev *rdev2;
4986 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4987 b = r10_bio->devs[s/2].repl_bio;
4989 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4990 b = r10_bio->devs[s/2].bio;
4992 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4995 bio_set_dev(b, rdev2->bdev);
4996 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4997 rdev2->new_data_offset;
4998 b->bi_end_io = end_reshape_write;
4999 b->bi_opf = REQ_OP_WRITE;
5004 /* Now add as many pages as possible to all of these bios. */
5007 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5008 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
5009 struct page *page = pages[s / (PAGE_SIZE >> 9)];
5010 int len = (max_sectors - s) << 9;
5011 if (len > PAGE_SIZE)
5013 for (bio = blist; bio ; bio = bio->bi_next) {
5014 if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
5015 bio->bi_status = BLK_STS_RESOURCE;
5017 return sectors_done;
5020 sector_nr += len >> 9;
5021 nr_sectors += len >> 9;
5024 r10_bio->sectors = nr_sectors;
5026 /* Now submit the read */
5027 md_sync_acct_bio(read_bio, r10_bio->sectors);
5028 atomic_inc(&r10_bio->remaining);
5029 read_bio->bi_next = NULL;
5030 submit_bio_noacct(read_bio);
5031 sectors_done += nr_sectors;
5032 if (sector_nr <= last)
5035 lower_barrier(conf);
5037 /* Now that we have done the whole section we can
5038 * update reshape_progress
5040 if (mddev->reshape_backwards)
5041 conf->reshape_progress -= sectors_done;
5043 conf->reshape_progress += sectors_done;
5045 return sectors_done;
5048 static void end_reshape_request(struct r10bio *r10_bio);
5049 static int handle_reshape_read_error(struct mddev *mddev,
5050 struct r10bio *r10_bio);
5051 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
5053 /* Reshape read completed. Hopefully we have a block
5055 * If we got a read error then we do sync 1-page reads from
5056 * elsewhere until we find the data - or give up.
5058 struct r10conf *conf = mddev->private;
5061 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
5062 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
5063 /* Reshape has been aborted */
5064 md_done_sync(mddev, r10_bio->sectors, 0);
5068 /* We definitely have the data in the pages, schedule the
5071 atomic_set(&r10_bio->remaining, 1);
5072 for (s = 0; s < conf->copies*2; s++) {
5074 int d = r10_bio->devs[s/2].devnum;
5075 struct md_rdev *rdev;
5078 rdev = rcu_dereference(conf->mirrors[d].replacement);
5079 b = r10_bio->devs[s/2].repl_bio;
5081 rdev = rcu_dereference(conf->mirrors[d].rdev);
5082 b = r10_bio->devs[s/2].bio;
5084 if (!rdev || test_bit(Faulty, &rdev->flags)) {
5088 atomic_inc(&rdev->nr_pending);
5090 md_sync_acct_bio(b, r10_bio->sectors);
5091 atomic_inc(&r10_bio->remaining);
5093 submit_bio_noacct(b);
5095 end_reshape_request(r10_bio);
5098 static void end_reshape(struct r10conf *conf)
5100 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5103 spin_lock_irq(&conf->device_lock);
5104 conf->prev = conf->geo;
5105 md_finish_reshape(conf->mddev);
5107 conf->reshape_progress = MaxSector;
5108 conf->reshape_safe = MaxSector;
5109 spin_unlock_irq(&conf->device_lock);
5111 if (conf->mddev->queue)
5112 raid10_set_io_opt(conf);
5116 static void raid10_update_reshape_pos(struct mddev *mddev)
5118 struct r10conf *conf = mddev->private;
5121 md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5122 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5123 || mddev->reshape_position == MaxSector)
5124 conf->reshape_progress = mddev->reshape_position;
5129 static int handle_reshape_read_error(struct mddev *mddev,
5130 struct r10bio *r10_bio)
5132 /* Use sync reads to get the blocks from somewhere else */
5133 int sectors = r10_bio->sectors;
5134 struct r10conf *conf = mddev->private;
5135 struct r10bio *r10b;
5138 struct page **pages;
5140 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5142 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5146 /* reshape IOs share pages from .devs[0].bio */
5147 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5149 r10b->sector = r10_bio->sector;
5150 __raid10_find_phys(&conf->prev, r10b);
5155 int first_slot = slot;
5157 if (s > (PAGE_SIZE >> 9))
5162 int d = r10b->devs[slot].devnum;
5163 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5166 test_bit(Faulty, &rdev->flags) ||
5167 !test_bit(In_sync, &rdev->flags))
5170 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5171 atomic_inc(&rdev->nr_pending);
5173 success = sync_page_io(rdev,
5177 REQ_OP_READ, false);
5178 rdev_dec_pending(rdev, mddev);
5184 if (slot >= conf->copies)
5186 if (slot == first_slot)
5191 /* couldn't read this block, must give up */
5192 set_bit(MD_RECOVERY_INTR,
5204 static void end_reshape_write(struct bio *bio)
5206 struct r10bio *r10_bio = get_resync_r10bio(bio);
5207 struct mddev *mddev = r10_bio->mddev;
5208 struct r10conf *conf = mddev->private;
5212 struct md_rdev *rdev = NULL;
5214 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5216 rdev = conf->mirrors[d].replacement;
5219 rdev = conf->mirrors[d].rdev;
5222 if (bio->bi_status) {
5223 /* FIXME should record badblock */
5224 md_error(mddev, rdev);
5227 rdev_dec_pending(rdev, mddev);
5228 end_reshape_request(r10_bio);
5231 static void end_reshape_request(struct r10bio *r10_bio)
5233 if (!atomic_dec_and_test(&r10_bio->remaining))
5235 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5236 bio_put(r10_bio->master_bio);
5240 static void raid10_finish_reshape(struct mddev *mddev)
5242 struct r10conf *conf = mddev->private;
5244 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5247 if (mddev->delta_disks > 0) {
5248 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5249 mddev->recovery_cp = mddev->resync_max_sectors;
5250 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5252 mddev->resync_max_sectors = mddev->array_sectors;
5256 for (d = conf->geo.raid_disks ;
5257 d < conf->geo.raid_disks - mddev->delta_disks;
5259 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5261 clear_bit(In_sync, &rdev->flags);
5262 rdev = rcu_dereference(conf->mirrors[d].replacement);
5264 clear_bit(In_sync, &rdev->flags);
5268 mddev->layout = mddev->new_layout;
5269 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5270 mddev->reshape_position = MaxSector;
5271 mddev->delta_disks = 0;
5272 mddev->reshape_backwards = 0;
5275 static struct md_personality raid10_personality =
5279 .owner = THIS_MODULE,
5280 .make_request = raid10_make_request,
5282 .free = raid10_free,
5283 .status = raid10_status,
5284 .error_handler = raid10_error,
5285 .hot_add_disk = raid10_add_disk,
5286 .hot_remove_disk= raid10_remove_disk,
5287 .spare_active = raid10_spare_active,
5288 .sync_request = raid10_sync_request,
5289 .quiesce = raid10_quiesce,
5290 .size = raid10_size,
5291 .resize = raid10_resize,
5292 .takeover = raid10_takeover,
5293 .check_reshape = raid10_check_reshape,
5294 .start_reshape = raid10_start_reshape,
5295 .finish_reshape = raid10_finish_reshape,
5296 .update_reshape_pos = raid10_update_reshape_pos,
5299 static int __init raid_init(void)
5301 return register_md_personality(&raid10_personality);
5304 static void raid_exit(void)
5306 unregister_md_personality(&raid10_personality);
5309 module_init(raid_init);
5310 module_exit(raid_exit);
5311 MODULE_LICENSE("GPL");
5312 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5313 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5314 MODULE_ALIAS("md-raid10");
5315 MODULE_ALIAS("md-level-10");