Merge tag 'pull-work.fd-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[platform/kernel/linux-starfive.git] / drivers / md / raid10.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72                                 int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76
77 #define raid10_log(md, fmt, args...)                            \
78         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80 #include "raid1-10.c"
81
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88         return get_resync_pages(bio)->raid_bio;
89 }
90
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93         struct r10conf *conf = data;
94         int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
95
96         /* allocate a r10bio with room for raid_disks entries in the
97          * bios array */
98         return kzalloc(size, gfp_flags);
99 }
100
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118         struct r10conf *conf = data;
119         struct r10bio *r10_bio;
120         struct bio *bio;
121         int j;
122         int nalloc, nalloc_rp;
123         struct resync_pages *rps;
124
125         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126         if (!r10_bio)
127                 return NULL;
128
129         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131                 nalloc = conf->copies; /* resync */
132         else
133                 nalloc = 2; /* recovery */
134
135         /* allocate once for all bios */
136         if (!conf->have_replacement)
137                 nalloc_rp = nalloc;
138         else
139                 nalloc_rp = nalloc * 2;
140         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141         if (!rps)
142                 goto out_free_r10bio;
143
144         /*
145          * Allocate bios.
146          */
147         for (j = nalloc ; j-- ; ) {
148                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
149                 if (!bio)
150                         goto out_free_bio;
151                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
152                 r10_bio->devs[j].bio = bio;
153                 if (!conf->have_replacement)
154                         continue;
155                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
156                 if (!bio)
157                         goto out_free_bio;
158                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
159                 r10_bio->devs[j].repl_bio = bio;
160         }
161         /*
162          * Allocate RESYNC_PAGES data pages and attach them
163          * where needed.
164          */
165         for (j = 0; j < nalloc; j++) {
166                 struct bio *rbio = r10_bio->devs[j].repl_bio;
167                 struct resync_pages *rp, *rp_repl;
168
169                 rp = &rps[j];
170                 if (rbio)
171                         rp_repl = &rps[nalloc + j];
172
173                 bio = r10_bio->devs[j].bio;
174
175                 if (!j || test_bit(MD_RECOVERY_SYNC,
176                                    &conf->mddev->recovery)) {
177                         if (resync_alloc_pages(rp, gfp_flags))
178                                 goto out_free_pages;
179                 } else {
180                         memcpy(rp, &rps[0], sizeof(*rp));
181                         resync_get_all_pages(rp);
182                 }
183
184                 rp->raid_bio = r10_bio;
185                 bio->bi_private = rp;
186                 if (rbio) {
187                         memcpy(rp_repl, rp, sizeof(*rp));
188                         rbio->bi_private = rp_repl;
189                 }
190         }
191
192         return r10_bio;
193
194 out_free_pages:
195         while (--j >= 0)
196                 resync_free_pages(&rps[j]);
197
198         j = 0;
199 out_free_bio:
200         for ( ; j < nalloc; j++) {
201                 if (r10_bio->devs[j].bio)
202                         bio_uninit(r10_bio->devs[j].bio);
203                 kfree(r10_bio->devs[j].bio);
204                 if (r10_bio->devs[j].repl_bio)
205                         bio_uninit(r10_bio->devs[j].repl_bio);
206                 kfree(r10_bio->devs[j].repl_bio);
207         }
208         kfree(rps);
209 out_free_r10bio:
210         rbio_pool_free(r10_bio, conf);
211         return NULL;
212 }
213
214 static void r10buf_pool_free(void *__r10_bio, void *data)
215 {
216         struct r10conf *conf = data;
217         struct r10bio *r10bio = __r10_bio;
218         int j;
219         struct resync_pages *rp = NULL;
220
221         for (j = conf->copies; j--; ) {
222                 struct bio *bio = r10bio->devs[j].bio;
223
224                 if (bio) {
225                         rp = get_resync_pages(bio);
226                         resync_free_pages(rp);
227                         bio_uninit(bio);
228                         kfree(bio);
229                 }
230
231                 bio = r10bio->devs[j].repl_bio;
232                 if (bio) {
233                         bio_uninit(bio);
234                         kfree(bio);
235                 }
236         }
237
238         /* resync pages array stored in the 1st bio's .bi_private */
239         kfree(rp);
240
241         rbio_pool_free(r10bio, conf);
242 }
243
244 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
245 {
246         int i;
247
248         for (i = 0; i < conf->geo.raid_disks; i++) {
249                 struct bio **bio = & r10_bio->devs[i].bio;
250                 if (!BIO_SPECIAL(*bio))
251                         bio_put(*bio);
252                 *bio = NULL;
253                 bio = &r10_bio->devs[i].repl_bio;
254                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
255                         bio_put(*bio);
256                 *bio = NULL;
257         }
258 }
259
260 static void free_r10bio(struct r10bio *r10_bio)
261 {
262         struct r10conf *conf = r10_bio->mddev->private;
263
264         put_all_bios(conf, r10_bio);
265         mempool_free(r10_bio, &conf->r10bio_pool);
266 }
267
268 static void put_buf(struct r10bio *r10_bio)
269 {
270         struct r10conf *conf = r10_bio->mddev->private;
271
272         mempool_free(r10_bio, &conf->r10buf_pool);
273
274         lower_barrier(conf);
275 }
276
277 static void reschedule_retry(struct r10bio *r10_bio)
278 {
279         unsigned long flags;
280         struct mddev *mddev = r10_bio->mddev;
281         struct r10conf *conf = mddev->private;
282
283         spin_lock_irqsave(&conf->device_lock, flags);
284         list_add(&r10_bio->retry_list, &conf->retry_list);
285         conf->nr_queued ++;
286         spin_unlock_irqrestore(&conf->device_lock, flags);
287
288         /* wake up frozen array... */
289         wake_up(&conf->wait_barrier);
290
291         md_wakeup_thread(mddev->thread);
292 }
293
294 /*
295  * raid_end_bio_io() is called when we have finished servicing a mirrored
296  * operation and are ready to return a success/failure code to the buffer
297  * cache layer.
298  */
299 static void raid_end_bio_io(struct r10bio *r10_bio)
300 {
301         struct bio *bio = r10_bio->master_bio;
302         struct r10conf *conf = r10_bio->mddev->private;
303
304         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
305                 bio->bi_status = BLK_STS_IOERR;
306
307         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
308                 bio_end_io_acct(bio, r10_bio->start_time);
309         bio_endio(bio);
310         /*
311          * Wake up any possible resync thread that waits for the device
312          * to go idle.
313          */
314         allow_barrier(conf);
315
316         free_r10bio(r10_bio);
317 }
318
319 /*
320  * Update disk head position estimator based on IRQ completion info.
321  */
322 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
323 {
324         struct r10conf *conf = r10_bio->mddev->private;
325
326         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
327                 r10_bio->devs[slot].addr + (r10_bio->sectors);
328 }
329
330 /*
331  * Find the disk number which triggered given bio
332  */
333 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
334                          struct bio *bio, int *slotp, int *replp)
335 {
336         int slot;
337         int repl = 0;
338
339         for (slot = 0; slot < conf->geo.raid_disks; slot++) {
340                 if (r10_bio->devs[slot].bio == bio)
341                         break;
342                 if (r10_bio->devs[slot].repl_bio == bio) {
343                         repl = 1;
344                         break;
345                 }
346         }
347
348         update_head_pos(slot, r10_bio);
349
350         if (slotp)
351                 *slotp = slot;
352         if (replp)
353                 *replp = repl;
354         return r10_bio->devs[slot].devnum;
355 }
356
357 static void raid10_end_read_request(struct bio *bio)
358 {
359         int uptodate = !bio->bi_status;
360         struct r10bio *r10_bio = bio->bi_private;
361         int slot;
362         struct md_rdev *rdev;
363         struct r10conf *conf = r10_bio->mddev->private;
364
365         slot = r10_bio->read_slot;
366         rdev = r10_bio->devs[slot].rdev;
367         /*
368          * this branch is our 'one mirror IO has finished' event handler:
369          */
370         update_head_pos(slot, r10_bio);
371
372         if (uptodate) {
373                 /*
374                  * Set R10BIO_Uptodate in our master bio, so that
375                  * we will return a good error code to the higher
376                  * levels even if IO on some other mirrored buffer fails.
377                  *
378                  * The 'master' represents the composite IO operation to
379                  * user-side. So if something waits for IO, then it will
380                  * wait for the 'master' bio.
381                  */
382                 set_bit(R10BIO_Uptodate, &r10_bio->state);
383         } else {
384                 /* If all other devices that store this block have
385                  * failed, we want to return the error upwards rather
386                  * than fail the last device.  Here we redefine
387                  * "uptodate" to mean "Don't want to retry"
388                  */
389                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
390                              rdev->raid_disk))
391                         uptodate = 1;
392         }
393         if (uptodate) {
394                 raid_end_bio_io(r10_bio);
395                 rdev_dec_pending(rdev, conf->mddev);
396         } else {
397                 /*
398                  * oops, read error - keep the refcount on the rdev
399                  */
400                 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
401                                    mdname(conf->mddev),
402                                    rdev->bdev,
403                                    (unsigned long long)r10_bio->sector);
404                 set_bit(R10BIO_ReadError, &r10_bio->state);
405                 reschedule_retry(r10_bio);
406         }
407 }
408
409 static void close_write(struct r10bio *r10_bio)
410 {
411         /* clear the bitmap if all writes complete successfully */
412         md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
413                            r10_bio->sectors,
414                            !test_bit(R10BIO_Degraded, &r10_bio->state),
415                            0);
416         md_write_end(r10_bio->mddev);
417 }
418
419 static void one_write_done(struct r10bio *r10_bio)
420 {
421         if (atomic_dec_and_test(&r10_bio->remaining)) {
422                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
423                         reschedule_retry(r10_bio);
424                 else {
425                         close_write(r10_bio);
426                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
427                                 reschedule_retry(r10_bio);
428                         else
429                                 raid_end_bio_io(r10_bio);
430                 }
431         }
432 }
433
434 static void raid10_end_write_request(struct bio *bio)
435 {
436         struct r10bio *r10_bio = bio->bi_private;
437         int dev;
438         int dec_rdev = 1;
439         struct r10conf *conf = r10_bio->mddev->private;
440         int slot, repl;
441         struct md_rdev *rdev = NULL;
442         struct bio *to_put = NULL;
443         bool discard_error;
444
445         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
446
447         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
448
449         if (repl)
450                 rdev = conf->mirrors[dev].replacement;
451         if (!rdev) {
452                 smp_rmb();
453                 repl = 0;
454                 rdev = conf->mirrors[dev].rdev;
455         }
456         /*
457          * this branch is our 'one mirror IO has finished' event handler:
458          */
459         if (bio->bi_status && !discard_error) {
460                 if (repl)
461                         /* Never record new bad blocks to replacement,
462                          * just fail it.
463                          */
464                         md_error(rdev->mddev, rdev);
465                 else {
466                         set_bit(WriteErrorSeen, &rdev->flags);
467                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
468                                 set_bit(MD_RECOVERY_NEEDED,
469                                         &rdev->mddev->recovery);
470
471                         dec_rdev = 0;
472                         if (test_bit(FailFast, &rdev->flags) &&
473                             (bio->bi_opf & MD_FAILFAST)) {
474                                 md_error(rdev->mddev, rdev);
475                         }
476
477                         /*
478                          * When the device is faulty, it is not necessary to
479                          * handle write error.
480                          */
481                         if (!test_bit(Faulty, &rdev->flags))
482                                 set_bit(R10BIO_WriteError, &r10_bio->state);
483                         else {
484                                 /* Fail the request */
485                                 set_bit(R10BIO_Degraded, &r10_bio->state);
486                                 r10_bio->devs[slot].bio = NULL;
487                                 to_put = bio;
488                                 dec_rdev = 1;
489                         }
490                 }
491         } else {
492                 /*
493                  * Set R10BIO_Uptodate in our master bio, so that
494                  * we will return a good error code for to the higher
495                  * levels even if IO on some other mirrored buffer fails.
496                  *
497                  * The 'master' represents the composite IO operation to
498                  * user-side. So if something waits for IO, then it will
499                  * wait for the 'master' bio.
500                  */
501                 sector_t first_bad;
502                 int bad_sectors;
503
504                 /*
505                  * Do not set R10BIO_Uptodate if the current device is
506                  * rebuilding or Faulty. This is because we cannot use
507                  * such device for properly reading the data back (we could
508                  * potentially use it, if the current write would have felt
509                  * before rdev->recovery_offset, but for simplicity we don't
510                  * check this here.
511                  */
512                 if (test_bit(In_sync, &rdev->flags) &&
513                     !test_bit(Faulty, &rdev->flags))
514                         set_bit(R10BIO_Uptodate, &r10_bio->state);
515
516                 /* Maybe we can clear some bad blocks. */
517                 if (is_badblock(rdev,
518                                 r10_bio->devs[slot].addr,
519                                 r10_bio->sectors,
520                                 &first_bad, &bad_sectors) && !discard_error) {
521                         bio_put(bio);
522                         if (repl)
523                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
524                         else
525                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
526                         dec_rdev = 0;
527                         set_bit(R10BIO_MadeGood, &r10_bio->state);
528                 }
529         }
530
531         /*
532          *
533          * Let's see if all mirrored write operations have finished
534          * already.
535          */
536         one_write_done(r10_bio);
537         if (dec_rdev)
538                 rdev_dec_pending(rdev, conf->mddev);
539         if (to_put)
540                 bio_put(to_put);
541 }
542
543 /*
544  * RAID10 layout manager
545  * As well as the chunksize and raid_disks count, there are two
546  * parameters: near_copies and far_copies.
547  * near_copies * far_copies must be <= raid_disks.
548  * Normally one of these will be 1.
549  * If both are 1, we get raid0.
550  * If near_copies == raid_disks, we get raid1.
551  *
552  * Chunks are laid out in raid0 style with near_copies copies of the
553  * first chunk, followed by near_copies copies of the next chunk and
554  * so on.
555  * If far_copies > 1, then after 1/far_copies of the array has been assigned
556  * as described above, we start again with a device offset of near_copies.
557  * So we effectively have another copy of the whole array further down all
558  * the drives, but with blocks on different drives.
559  * With this layout, and block is never stored twice on the one device.
560  *
561  * raid10_find_phys finds the sector offset of a given virtual sector
562  * on each device that it is on.
563  *
564  * raid10_find_virt does the reverse mapping, from a device and a
565  * sector offset to a virtual address
566  */
567
568 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
569 {
570         int n,f;
571         sector_t sector;
572         sector_t chunk;
573         sector_t stripe;
574         int dev;
575         int slot = 0;
576         int last_far_set_start, last_far_set_size;
577
578         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
579         last_far_set_start *= geo->far_set_size;
580
581         last_far_set_size = geo->far_set_size;
582         last_far_set_size += (geo->raid_disks % geo->far_set_size);
583
584         /* now calculate first sector/dev */
585         chunk = r10bio->sector >> geo->chunk_shift;
586         sector = r10bio->sector & geo->chunk_mask;
587
588         chunk *= geo->near_copies;
589         stripe = chunk;
590         dev = sector_div(stripe, geo->raid_disks);
591         if (geo->far_offset)
592                 stripe *= geo->far_copies;
593
594         sector += stripe << geo->chunk_shift;
595
596         /* and calculate all the others */
597         for (n = 0; n < geo->near_copies; n++) {
598                 int d = dev;
599                 int set;
600                 sector_t s = sector;
601                 r10bio->devs[slot].devnum = d;
602                 r10bio->devs[slot].addr = s;
603                 slot++;
604
605                 for (f = 1; f < geo->far_copies; f++) {
606                         set = d / geo->far_set_size;
607                         d += geo->near_copies;
608
609                         if ((geo->raid_disks % geo->far_set_size) &&
610                             (d > last_far_set_start)) {
611                                 d -= last_far_set_start;
612                                 d %= last_far_set_size;
613                                 d += last_far_set_start;
614                         } else {
615                                 d %= geo->far_set_size;
616                                 d += geo->far_set_size * set;
617                         }
618                         s += geo->stride;
619                         r10bio->devs[slot].devnum = d;
620                         r10bio->devs[slot].addr = s;
621                         slot++;
622                 }
623                 dev++;
624                 if (dev >= geo->raid_disks) {
625                         dev = 0;
626                         sector += (geo->chunk_mask + 1);
627                 }
628         }
629 }
630
631 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
632 {
633         struct geom *geo = &conf->geo;
634
635         if (conf->reshape_progress != MaxSector &&
636             ((r10bio->sector >= conf->reshape_progress) !=
637              conf->mddev->reshape_backwards)) {
638                 set_bit(R10BIO_Previous, &r10bio->state);
639                 geo = &conf->prev;
640         } else
641                 clear_bit(R10BIO_Previous, &r10bio->state);
642
643         __raid10_find_phys(geo, r10bio);
644 }
645
646 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
647 {
648         sector_t offset, chunk, vchunk;
649         /* Never use conf->prev as this is only called during resync
650          * or recovery, so reshape isn't happening
651          */
652         struct geom *geo = &conf->geo;
653         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
654         int far_set_size = geo->far_set_size;
655         int last_far_set_start;
656
657         if (geo->raid_disks % geo->far_set_size) {
658                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
659                 last_far_set_start *= geo->far_set_size;
660
661                 if (dev >= last_far_set_start) {
662                         far_set_size = geo->far_set_size;
663                         far_set_size += (geo->raid_disks % geo->far_set_size);
664                         far_set_start = last_far_set_start;
665                 }
666         }
667
668         offset = sector & geo->chunk_mask;
669         if (geo->far_offset) {
670                 int fc;
671                 chunk = sector >> geo->chunk_shift;
672                 fc = sector_div(chunk, geo->far_copies);
673                 dev -= fc * geo->near_copies;
674                 if (dev < far_set_start)
675                         dev += far_set_size;
676         } else {
677                 while (sector >= geo->stride) {
678                         sector -= geo->stride;
679                         if (dev < (geo->near_copies + far_set_start))
680                                 dev += far_set_size - geo->near_copies;
681                         else
682                                 dev -= geo->near_copies;
683                 }
684                 chunk = sector >> geo->chunk_shift;
685         }
686         vchunk = chunk * geo->raid_disks + dev;
687         sector_div(vchunk, geo->near_copies);
688         return (vchunk << geo->chunk_shift) + offset;
689 }
690
691 /*
692  * This routine returns the disk from which the requested read should
693  * be done. There is a per-array 'next expected sequential IO' sector
694  * number - if this matches on the next IO then we use the last disk.
695  * There is also a per-disk 'last know head position' sector that is
696  * maintained from IRQ contexts, both the normal and the resync IO
697  * completion handlers update this position correctly. If there is no
698  * perfect sequential match then we pick the disk whose head is closest.
699  *
700  * If there are 2 mirrors in the same 2 devices, performance degrades
701  * because position is mirror, not device based.
702  *
703  * The rdev for the device selected will have nr_pending incremented.
704  */
705
706 /*
707  * FIXME: possibly should rethink readbalancing and do it differently
708  * depending on near_copies / far_copies geometry.
709  */
710 static struct md_rdev *read_balance(struct r10conf *conf,
711                                     struct r10bio *r10_bio,
712                                     int *max_sectors)
713 {
714         const sector_t this_sector = r10_bio->sector;
715         int disk, slot;
716         int sectors = r10_bio->sectors;
717         int best_good_sectors;
718         sector_t new_distance, best_dist;
719         struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
720         int do_balance;
721         int best_dist_slot, best_pending_slot;
722         bool has_nonrot_disk = false;
723         unsigned int min_pending;
724         struct geom *geo = &conf->geo;
725
726         raid10_find_phys(conf, r10_bio);
727         rcu_read_lock();
728         best_dist_slot = -1;
729         min_pending = UINT_MAX;
730         best_dist_rdev = NULL;
731         best_pending_rdev = NULL;
732         best_dist = MaxSector;
733         best_good_sectors = 0;
734         do_balance = 1;
735         clear_bit(R10BIO_FailFast, &r10_bio->state);
736         /*
737          * Check if we can balance. We can balance on the whole
738          * device if no resync is going on (recovery is ok), or below
739          * the resync window. We take the first readable disk when
740          * above the resync window.
741          */
742         if ((conf->mddev->recovery_cp < MaxSector
743              && (this_sector + sectors >= conf->next_resync)) ||
744             (mddev_is_clustered(conf->mddev) &&
745              md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
746                                             this_sector + sectors)))
747                 do_balance = 0;
748
749         for (slot = 0; slot < conf->copies ; slot++) {
750                 sector_t first_bad;
751                 int bad_sectors;
752                 sector_t dev_sector;
753                 unsigned int pending;
754                 bool nonrot;
755
756                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
757                         continue;
758                 disk = r10_bio->devs[slot].devnum;
759                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
760                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
761                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
762                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
763                 if (rdev == NULL ||
764                     test_bit(Faulty, &rdev->flags))
765                         continue;
766                 if (!test_bit(In_sync, &rdev->flags) &&
767                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
768                         continue;
769
770                 dev_sector = r10_bio->devs[slot].addr;
771                 if (is_badblock(rdev, dev_sector, sectors,
772                                 &first_bad, &bad_sectors)) {
773                         if (best_dist < MaxSector)
774                                 /* Already have a better slot */
775                                 continue;
776                         if (first_bad <= dev_sector) {
777                                 /* Cannot read here.  If this is the
778                                  * 'primary' device, then we must not read
779                                  * beyond 'bad_sectors' from another device.
780                                  */
781                                 bad_sectors -= (dev_sector - first_bad);
782                                 if (!do_balance && sectors > bad_sectors)
783                                         sectors = bad_sectors;
784                                 if (best_good_sectors > sectors)
785                                         best_good_sectors = sectors;
786                         } else {
787                                 sector_t good_sectors =
788                                         first_bad - dev_sector;
789                                 if (good_sectors > best_good_sectors) {
790                                         best_good_sectors = good_sectors;
791                                         best_dist_slot = slot;
792                                         best_dist_rdev = rdev;
793                                 }
794                                 if (!do_balance)
795                                         /* Must read from here */
796                                         break;
797                         }
798                         continue;
799                 } else
800                         best_good_sectors = sectors;
801
802                 if (!do_balance)
803                         break;
804
805                 nonrot = bdev_nonrot(rdev->bdev);
806                 has_nonrot_disk |= nonrot;
807                 pending = atomic_read(&rdev->nr_pending);
808                 if (min_pending > pending && nonrot) {
809                         min_pending = pending;
810                         best_pending_slot = slot;
811                         best_pending_rdev = rdev;
812                 }
813
814                 if (best_dist_slot >= 0)
815                         /* At least 2 disks to choose from so failfast is OK */
816                         set_bit(R10BIO_FailFast, &r10_bio->state);
817                 /* This optimisation is debatable, and completely destroys
818                  * sequential read speed for 'far copies' arrays.  So only
819                  * keep it for 'near' arrays, and review those later.
820                  */
821                 if (geo->near_copies > 1 && !pending)
822                         new_distance = 0;
823
824                 /* for far > 1 always use the lowest address */
825                 else if (geo->far_copies > 1)
826                         new_distance = r10_bio->devs[slot].addr;
827                 else
828                         new_distance = abs(r10_bio->devs[slot].addr -
829                                            conf->mirrors[disk].head_position);
830
831                 if (new_distance < best_dist) {
832                         best_dist = new_distance;
833                         best_dist_slot = slot;
834                         best_dist_rdev = rdev;
835                 }
836         }
837         if (slot >= conf->copies) {
838                 if (has_nonrot_disk) {
839                         slot = best_pending_slot;
840                         rdev = best_pending_rdev;
841                 } else {
842                         slot = best_dist_slot;
843                         rdev = best_dist_rdev;
844                 }
845         }
846
847         if (slot >= 0) {
848                 atomic_inc(&rdev->nr_pending);
849                 r10_bio->read_slot = slot;
850         } else
851                 rdev = NULL;
852         rcu_read_unlock();
853         *max_sectors = best_good_sectors;
854
855         return rdev;
856 }
857
858 static void flush_pending_writes(struct r10conf *conf)
859 {
860         /* Any writes that have been queued but are awaiting
861          * bitmap updates get flushed here.
862          */
863         spin_lock_irq(&conf->device_lock);
864
865         if (conf->pending_bio_list.head) {
866                 struct blk_plug plug;
867                 struct bio *bio;
868
869                 bio = bio_list_get(&conf->pending_bio_list);
870                 spin_unlock_irq(&conf->device_lock);
871
872                 /*
873                  * As this is called in a wait_event() loop (see freeze_array),
874                  * current->state might be TASK_UNINTERRUPTIBLE which will
875                  * cause a warning when we prepare to wait again.  As it is
876                  * rare that this path is taken, it is perfectly safe to force
877                  * us to go around the wait_event() loop again, so the warning
878                  * is a false-positive. Silence the warning by resetting
879                  * thread state
880                  */
881                 __set_current_state(TASK_RUNNING);
882
883                 blk_start_plug(&plug);
884                 /* flush any pending bitmap writes to disk
885                  * before proceeding w/ I/O */
886                 md_bitmap_unplug(conf->mddev->bitmap);
887                 wake_up(&conf->wait_barrier);
888
889                 while (bio) { /* submit pending writes */
890                         struct bio *next = bio->bi_next;
891                         struct md_rdev *rdev = (void*)bio->bi_bdev;
892                         bio->bi_next = NULL;
893                         bio_set_dev(bio, rdev->bdev);
894                         if (test_bit(Faulty, &rdev->flags)) {
895                                 bio_io_error(bio);
896                         } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
897                                             !bdev_max_discard_sectors(bio->bi_bdev)))
898                                 /* Just ignore it */
899                                 bio_endio(bio);
900                         else
901                                 submit_bio_noacct(bio);
902                         bio = next;
903                 }
904                 blk_finish_plug(&plug);
905         } else
906                 spin_unlock_irq(&conf->device_lock);
907 }
908
909 /* Barriers....
910  * Sometimes we need to suspend IO while we do something else,
911  * either some resync/recovery, or reconfigure the array.
912  * To do this we raise a 'barrier'.
913  * The 'barrier' is a counter that can be raised multiple times
914  * to count how many activities are happening which preclude
915  * normal IO.
916  * We can only raise the barrier if there is no pending IO.
917  * i.e. if nr_pending == 0.
918  * We choose only to raise the barrier if no-one is waiting for the
919  * barrier to go down.  This means that as soon as an IO request
920  * is ready, no other operations which require a barrier will start
921  * until the IO request has had a chance.
922  *
923  * So: regular IO calls 'wait_barrier'.  When that returns there
924  *    is no backgroup IO happening,  It must arrange to call
925  *    allow_barrier when it has finished its IO.
926  * backgroup IO calls must call raise_barrier.  Once that returns
927  *    there is no normal IO happeing.  It must arrange to call
928  *    lower_barrier when the particular background IO completes.
929  */
930
931 static void raise_barrier(struct r10conf *conf, int force)
932 {
933         BUG_ON(force && !conf->barrier);
934         spin_lock_irq(&conf->resync_lock);
935
936         /* Wait until no block IO is waiting (unless 'force') */
937         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
938                             conf->resync_lock);
939
940         /* block any new IO from starting */
941         conf->barrier++;
942
943         /* Now wait for all pending IO to complete */
944         wait_event_lock_irq(conf->wait_barrier,
945                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
946                             conf->resync_lock);
947
948         spin_unlock_irq(&conf->resync_lock);
949 }
950
951 static void lower_barrier(struct r10conf *conf)
952 {
953         unsigned long flags;
954         spin_lock_irqsave(&conf->resync_lock, flags);
955         conf->barrier--;
956         spin_unlock_irqrestore(&conf->resync_lock, flags);
957         wake_up(&conf->wait_barrier);
958 }
959
960 static bool wait_barrier(struct r10conf *conf, bool nowait)
961 {
962         bool ret = true;
963
964         spin_lock_irq(&conf->resync_lock);
965         if (conf->barrier) {
966                 struct bio_list *bio_list = current->bio_list;
967                 conf->nr_waiting++;
968                 /* Wait for the barrier to drop.
969                  * However if there are already pending
970                  * requests (preventing the barrier from
971                  * rising completely), and the
972                  * pre-process bio queue isn't empty,
973                  * then don't wait, as we need to empty
974                  * that queue to get the nr_pending
975                  * count down.
976                  */
977                 /* Return false when nowait flag is set */
978                 if (nowait) {
979                         ret = false;
980                 } else {
981                         raid10_log(conf->mddev, "wait barrier");
982                         wait_event_lock_irq(conf->wait_barrier,
983                                             !conf->barrier ||
984                                             (atomic_read(&conf->nr_pending) &&
985                                              bio_list &&
986                                              (!bio_list_empty(&bio_list[0]) ||
987                                               !bio_list_empty(&bio_list[1]))) ||
988                                              /* move on if recovery thread is
989                                               * blocked by us
990                                               */
991                                              (conf->mddev->thread->tsk == current &&
992                                               test_bit(MD_RECOVERY_RUNNING,
993                                                        &conf->mddev->recovery) &&
994                                               conf->nr_queued > 0),
995                                             conf->resync_lock);
996                 }
997                 conf->nr_waiting--;
998                 if (!conf->nr_waiting)
999                         wake_up(&conf->wait_barrier);
1000         }
1001         /* Only increment nr_pending when we wait */
1002         if (ret)
1003                 atomic_inc(&conf->nr_pending);
1004         spin_unlock_irq(&conf->resync_lock);
1005         return ret;
1006 }
1007
1008 static void allow_barrier(struct r10conf *conf)
1009 {
1010         if ((atomic_dec_and_test(&conf->nr_pending)) ||
1011                         (conf->array_freeze_pending))
1012                 wake_up(&conf->wait_barrier);
1013 }
1014
1015 static void freeze_array(struct r10conf *conf, int extra)
1016 {
1017         /* stop syncio and normal IO and wait for everything to
1018          * go quiet.
1019          * We increment barrier and nr_waiting, and then
1020          * wait until nr_pending match nr_queued+extra
1021          * This is called in the context of one normal IO request
1022          * that has failed. Thus any sync request that might be pending
1023          * will be blocked by nr_pending, and we need to wait for
1024          * pending IO requests to complete or be queued for re-try.
1025          * Thus the number queued (nr_queued) plus this request (extra)
1026          * must match the number of pending IOs (nr_pending) before
1027          * we continue.
1028          */
1029         spin_lock_irq(&conf->resync_lock);
1030         conf->array_freeze_pending++;
1031         conf->barrier++;
1032         conf->nr_waiting++;
1033         wait_event_lock_irq_cmd(conf->wait_barrier,
1034                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1035                                 conf->resync_lock,
1036                                 flush_pending_writes(conf));
1037
1038         conf->array_freeze_pending--;
1039         spin_unlock_irq(&conf->resync_lock);
1040 }
1041
1042 static void unfreeze_array(struct r10conf *conf)
1043 {
1044         /* reverse the effect of the freeze */
1045         spin_lock_irq(&conf->resync_lock);
1046         conf->barrier--;
1047         conf->nr_waiting--;
1048         wake_up(&conf->wait_barrier);
1049         spin_unlock_irq(&conf->resync_lock);
1050 }
1051
1052 static sector_t choose_data_offset(struct r10bio *r10_bio,
1053                                    struct md_rdev *rdev)
1054 {
1055         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1056             test_bit(R10BIO_Previous, &r10_bio->state))
1057                 return rdev->data_offset;
1058         else
1059                 return rdev->new_data_offset;
1060 }
1061
1062 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1063 {
1064         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1065         struct mddev *mddev = plug->cb.data;
1066         struct r10conf *conf = mddev->private;
1067         struct bio *bio;
1068
1069         if (from_schedule || current->bio_list) {
1070                 spin_lock_irq(&conf->device_lock);
1071                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1072                 spin_unlock_irq(&conf->device_lock);
1073                 wake_up(&conf->wait_barrier);
1074                 md_wakeup_thread(mddev->thread);
1075                 kfree(plug);
1076                 return;
1077         }
1078
1079         /* we aren't scheduling, so we can do the write-out directly. */
1080         bio = bio_list_get(&plug->pending);
1081         md_bitmap_unplug(mddev->bitmap);
1082         wake_up(&conf->wait_barrier);
1083
1084         while (bio) { /* submit pending writes */
1085                 struct bio *next = bio->bi_next;
1086                 struct md_rdev *rdev = (void*)bio->bi_bdev;
1087                 bio->bi_next = NULL;
1088                 bio_set_dev(bio, rdev->bdev);
1089                 if (test_bit(Faulty, &rdev->flags)) {
1090                         bio_io_error(bio);
1091                 } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1092                                     !bdev_max_discard_sectors(bio->bi_bdev)))
1093                         /* Just ignore it */
1094                         bio_endio(bio);
1095                 else
1096                         submit_bio_noacct(bio);
1097                 bio = next;
1098         }
1099         kfree(plug);
1100 }
1101
1102 /*
1103  * 1. Register the new request and wait if the reconstruction thread has put
1104  * up a bar for new requests. Continue immediately if no resync is active
1105  * currently.
1106  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1107  */
1108 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1109                                  struct bio *bio, sector_t sectors)
1110 {
1111         /* Bail out if REQ_NOWAIT is set for the bio */
1112         if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1113                 bio_wouldblock_error(bio);
1114                 return false;
1115         }
1116         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1117             bio->bi_iter.bi_sector < conf->reshape_progress &&
1118             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1119                 allow_barrier(conf);
1120                 if (bio->bi_opf & REQ_NOWAIT) {
1121                         bio_wouldblock_error(bio);
1122                         return false;
1123                 }
1124                 raid10_log(conf->mddev, "wait reshape");
1125                 wait_event(conf->wait_barrier,
1126                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1127                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1128                            sectors);
1129                 wait_barrier(conf, false);
1130         }
1131         return true;
1132 }
1133
1134 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1135                                 struct r10bio *r10_bio)
1136 {
1137         struct r10conf *conf = mddev->private;
1138         struct bio *read_bio;
1139         const int op = bio_op(bio);
1140         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1141         int max_sectors;
1142         struct md_rdev *rdev;
1143         char b[BDEVNAME_SIZE];
1144         int slot = r10_bio->read_slot;
1145         struct md_rdev *err_rdev = NULL;
1146         gfp_t gfp = GFP_NOIO;
1147
1148         if (slot >= 0 && r10_bio->devs[slot].rdev) {
1149                 /*
1150                  * This is an error retry, but we cannot
1151                  * safely dereference the rdev in the r10_bio,
1152                  * we must use the one in conf.
1153                  * If it has already been disconnected (unlikely)
1154                  * we lose the device name in error messages.
1155                  */
1156                 int disk;
1157                 /*
1158                  * As we are blocking raid10, it is a little safer to
1159                  * use __GFP_HIGH.
1160                  */
1161                 gfp = GFP_NOIO | __GFP_HIGH;
1162
1163                 rcu_read_lock();
1164                 disk = r10_bio->devs[slot].devnum;
1165                 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1166                 if (err_rdev)
1167                         bdevname(err_rdev->bdev, b);
1168                 else {
1169                         strcpy(b, "???");
1170                         /* This never gets dereferenced */
1171                         err_rdev = r10_bio->devs[slot].rdev;
1172                 }
1173                 rcu_read_unlock();
1174         }
1175
1176         if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1177                 return;
1178         rdev = read_balance(conf, r10_bio, &max_sectors);
1179         if (!rdev) {
1180                 if (err_rdev) {
1181                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1182                                             mdname(mddev), b,
1183                                             (unsigned long long)r10_bio->sector);
1184                 }
1185                 raid_end_bio_io(r10_bio);
1186                 return;
1187         }
1188         if (err_rdev)
1189                 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1190                                    mdname(mddev),
1191                                    rdev->bdev,
1192                                    (unsigned long long)r10_bio->sector);
1193         if (max_sectors < bio_sectors(bio)) {
1194                 struct bio *split = bio_split(bio, max_sectors,
1195                                               gfp, &conf->bio_split);
1196                 bio_chain(split, bio);
1197                 allow_barrier(conf);
1198                 submit_bio_noacct(bio);
1199                 wait_barrier(conf, false);
1200                 bio = split;
1201                 r10_bio->master_bio = bio;
1202                 r10_bio->sectors = max_sectors;
1203         }
1204         slot = r10_bio->read_slot;
1205
1206         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1207                 r10_bio->start_time = bio_start_io_acct(bio);
1208         read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1209
1210         r10_bio->devs[slot].bio = read_bio;
1211         r10_bio->devs[slot].rdev = rdev;
1212
1213         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1214                 choose_data_offset(r10_bio, rdev);
1215         read_bio->bi_end_io = raid10_end_read_request;
1216         bio_set_op_attrs(read_bio, op, do_sync);
1217         if (test_bit(FailFast, &rdev->flags) &&
1218             test_bit(R10BIO_FailFast, &r10_bio->state))
1219                 read_bio->bi_opf |= MD_FAILFAST;
1220         read_bio->bi_private = r10_bio;
1221
1222         if (mddev->gendisk)
1223                 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1224                                       r10_bio->sector);
1225         submit_bio_noacct(read_bio);
1226         return;
1227 }
1228
1229 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1230                                   struct bio *bio, bool replacement,
1231                                   int n_copy)
1232 {
1233         const int op = bio_op(bio);
1234         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1235         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1236         unsigned long flags;
1237         struct blk_plug_cb *cb;
1238         struct raid1_plug_cb *plug = NULL;
1239         struct r10conf *conf = mddev->private;
1240         struct md_rdev *rdev;
1241         int devnum = r10_bio->devs[n_copy].devnum;
1242         struct bio *mbio;
1243
1244         if (replacement) {
1245                 rdev = conf->mirrors[devnum].replacement;
1246                 if (rdev == NULL) {
1247                         /* Replacement just got moved to main 'rdev' */
1248                         smp_mb();
1249                         rdev = conf->mirrors[devnum].rdev;
1250                 }
1251         } else
1252                 rdev = conf->mirrors[devnum].rdev;
1253
1254         mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1255         if (replacement)
1256                 r10_bio->devs[n_copy].repl_bio = mbio;
1257         else
1258                 r10_bio->devs[n_copy].bio = mbio;
1259
1260         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1261                                    choose_data_offset(r10_bio, rdev));
1262         mbio->bi_end_io = raid10_end_write_request;
1263         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1264         if (!replacement && test_bit(FailFast,
1265                                      &conf->mirrors[devnum].rdev->flags)
1266                          && enough(conf, devnum))
1267                 mbio->bi_opf |= MD_FAILFAST;
1268         mbio->bi_private = r10_bio;
1269
1270         if (conf->mddev->gendisk)
1271                 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1272                                       r10_bio->sector);
1273         /* flush_pending_writes() needs access to the rdev so...*/
1274         mbio->bi_bdev = (void *)rdev;
1275
1276         atomic_inc(&r10_bio->remaining);
1277
1278         cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1279         if (cb)
1280                 plug = container_of(cb, struct raid1_plug_cb, cb);
1281         else
1282                 plug = NULL;
1283         if (plug) {
1284                 bio_list_add(&plug->pending, mbio);
1285         } else {
1286                 spin_lock_irqsave(&conf->device_lock, flags);
1287                 bio_list_add(&conf->pending_bio_list, mbio);
1288                 spin_unlock_irqrestore(&conf->device_lock, flags);
1289                 md_wakeup_thread(mddev->thread);
1290         }
1291 }
1292
1293 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1294 {
1295         int i;
1296         struct r10conf *conf = mddev->private;
1297         struct md_rdev *blocked_rdev;
1298
1299 retry_wait:
1300         blocked_rdev = NULL;
1301         rcu_read_lock();
1302         for (i = 0; i < conf->copies; i++) {
1303                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1304                 struct md_rdev *rrdev = rcu_dereference(
1305                         conf->mirrors[i].replacement);
1306                 if (rdev == rrdev)
1307                         rrdev = NULL;
1308                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1309                         atomic_inc(&rdev->nr_pending);
1310                         blocked_rdev = rdev;
1311                         break;
1312                 }
1313                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1314                         atomic_inc(&rrdev->nr_pending);
1315                         blocked_rdev = rrdev;
1316                         break;
1317                 }
1318
1319                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1320                         sector_t first_bad;
1321                         sector_t dev_sector = r10_bio->devs[i].addr;
1322                         int bad_sectors;
1323                         int is_bad;
1324
1325                         /*
1326                          * Discard request doesn't care the write result
1327                          * so it doesn't need to wait blocked disk here.
1328                          */
1329                         if (!r10_bio->sectors)
1330                                 continue;
1331
1332                         is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1333                                              &first_bad, &bad_sectors);
1334                         if (is_bad < 0) {
1335                                 /*
1336                                  * Mustn't write here until the bad block
1337                                  * is acknowledged
1338                                  */
1339                                 atomic_inc(&rdev->nr_pending);
1340                                 set_bit(BlockedBadBlocks, &rdev->flags);
1341                                 blocked_rdev = rdev;
1342                                 break;
1343                         }
1344                 }
1345         }
1346         rcu_read_unlock();
1347
1348         if (unlikely(blocked_rdev)) {
1349                 /* Have to wait for this device to get unblocked, then retry */
1350                 allow_barrier(conf);
1351                 raid10_log(conf->mddev, "%s wait rdev %d blocked",
1352                                 __func__, blocked_rdev->raid_disk);
1353                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1354                 wait_barrier(conf, false);
1355                 goto retry_wait;
1356         }
1357 }
1358
1359 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1360                                  struct r10bio *r10_bio)
1361 {
1362         struct r10conf *conf = mddev->private;
1363         int i;
1364         sector_t sectors;
1365         int max_sectors;
1366
1367         if ((mddev_is_clustered(mddev) &&
1368              md_cluster_ops->area_resyncing(mddev, WRITE,
1369                                             bio->bi_iter.bi_sector,
1370                                             bio_end_sector(bio)))) {
1371                 DEFINE_WAIT(w);
1372                 /* Bail out if REQ_NOWAIT is set for the bio */
1373                 if (bio->bi_opf & REQ_NOWAIT) {
1374                         bio_wouldblock_error(bio);
1375                         return;
1376                 }
1377                 for (;;) {
1378                         prepare_to_wait(&conf->wait_barrier,
1379                                         &w, TASK_IDLE);
1380                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1381                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1382                                 break;
1383                         schedule();
1384                 }
1385                 finish_wait(&conf->wait_barrier, &w);
1386         }
1387
1388         sectors = r10_bio->sectors;
1389         if (!regular_request_wait(mddev, conf, bio, sectors))
1390                 return;
1391         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1392             (mddev->reshape_backwards
1393              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1394                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1395              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1396                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1397                 /* Need to update reshape_position in metadata */
1398                 mddev->reshape_position = conf->reshape_progress;
1399                 set_mask_bits(&mddev->sb_flags, 0,
1400                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1401                 md_wakeup_thread(mddev->thread);
1402                 if (bio->bi_opf & REQ_NOWAIT) {
1403                         allow_barrier(conf);
1404                         bio_wouldblock_error(bio);
1405                         return;
1406                 }
1407                 raid10_log(conf->mddev, "wait reshape metadata");
1408                 wait_event(mddev->sb_wait,
1409                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1410
1411                 conf->reshape_safe = mddev->reshape_position;
1412         }
1413
1414         /* first select target devices under rcu_lock and
1415          * inc refcount on their rdev.  Record them by setting
1416          * bios[x] to bio
1417          * If there are known/acknowledged bad blocks on any device
1418          * on which we have seen a write error, we want to avoid
1419          * writing to those blocks.  This potentially requires several
1420          * writes to write around the bad blocks.  Each set of writes
1421          * gets its own r10_bio with a set of bios attached.
1422          */
1423
1424         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1425         raid10_find_phys(conf, r10_bio);
1426
1427         wait_blocked_dev(mddev, r10_bio);
1428
1429         rcu_read_lock();
1430         max_sectors = r10_bio->sectors;
1431
1432         for (i = 0;  i < conf->copies; i++) {
1433                 int d = r10_bio->devs[i].devnum;
1434                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1435                 struct md_rdev *rrdev = rcu_dereference(
1436                         conf->mirrors[d].replacement);
1437                 if (rdev == rrdev)
1438                         rrdev = NULL;
1439                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1440                         rdev = NULL;
1441                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1442                         rrdev = NULL;
1443
1444                 r10_bio->devs[i].bio = NULL;
1445                 r10_bio->devs[i].repl_bio = NULL;
1446
1447                 if (!rdev && !rrdev) {
1448                         set_bit(R10BIO_Degraded, &r10_bio->state);
1449                         continue;
1450                 }
1451                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1452                         sector_t first_bad;
1453                         sector_t dev_sector = r10_bio->devs[i].addr;
1454                         int bad_sectors;
1455                         int is_bad;
1456
1457                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1458                                              &first_bad, &bad_sectors);
1459                         if (is_bad && first_bad <= dev_sector) {
1460                                 /* Cannot write here at all */
1461                                 bad_sectors -= (dev_sector - first_bad);
1462                                 if (bad_sectors < max_sectors)
1463                                         /* Mustn't write more than bad_sectors
1464                                          * to other devices yet
1465                                          */
1466                                         max_sectors = bad_sectors;
1467                                 /* We don't set R10BIO_Degraded as that
1468                                  * only applies if the disk is missing,
1469                                  * so it might be re-added, and we want to
1470                                  * know to recover this chunk.
1471                                  * In this case the device is here, and the
1472                                  * fact that this chunk is not in-sync is
1473                                  * recorded in the bad block log.
1474                                  */
1475                                 continue;
1476                         }
1477                         if (is_bad) {
1478                                 int good_sectors = first_bad - dev_sector;
1479                                 if (good_sectors < max_sectors)
1480                                         max_sectors = good_sectors;
1481                         }
1482                 }
1483                 if (rdev) {
1484                         r10_bio->devs[i].bio = bio;
1485                         atomic_inc(&rdev->nr_pending);
1486                 }
1487                 if (rrdev) {
1488                         r10_bio->devs[i].repl_bio = bio;
1489                         atomic_inc(&rrdev->nr_pending);
1490                 }
1491         }
1492         rcu_read_unlock();
1493
1494         if (max_sectors < r10_bio->sectors)
1495                 r10_bio->sectors = max_sectors;
1496
1497         if (r10_bio->sectors < bio_sectors(bio)) {
1498                 struct bio *split = bio_split(bio, r10_bio->sectors,
1499                                               GFP_NOIO, &conf->bio_split);
1500                 bio_chain(split, bio);
1501                 allow_barrier(conf);
1502                 submit_bio_noacct(bio);
1503                 wait_barrier(conf, false);
1504                 bio = split;
1505                 r10_bio->master_bio = bio;
1506         }
1507
1508         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1509                 r10_bio->start_time = bio_start_io_acct(bio);
1510         atomic_set(&r10_bio->remaining, 1);
1511         md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1512
1513         for (i = 0; i < conf->copies; i++) {
1514                 if (r10_bio->devs[i].bio)
1515                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1516                 if (r10_bio->devs[i].repl_bio)
1517                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1518         }
1519         one_write_done(r10_bio);
1520 }
1521
1522 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1523 {
1524         struct r10conf *conf = mddev->private;
1525         struct r10bio *r10_bio;
1526
1527         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1528
1529         r10_bio->master_bio = bio;
1530         r10_bio->sectors = sectors;
1531
1532         r10_bio->mddev = mddev;
1533         r10_bio->sector = bio->bi_iter.bi_sector;
1534         r10_bio->state = 0;
1535         r10_bio->read_slot = -1;
1536         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1537                         conf->geo.raid_disks);
1538
1539         if (bio_data_dir(bio) == READ)
1540                 raid10_read_request(mddev, bio, r10_bio);
1541         else
1542                 raid10_write_request(mddev, bio, r10_bio);
1543 }
1544
1545 static void raid_end_discard_bio(struct r10bio *r10bio)
1546 {
1547         struct r10conf *conf = r10bio->mddev->private;
1548         struct r10bio *first_r10bio;
1549
1550         while (atomic_dec_and_test(&r10bio->remaining)) {
1551
1552                 allow_barrier(conf);
1553
1554                 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1555                         first_r10bio = (struct r10bio *)r10bio->master_bio;
1556                         free_r10bio(r10bio);
1557                         r10bio = first_r10bio;
1558                 } else {
1559                         md_write_end(r10bio->mddev);
1560                         bio_endio(r10bio->master_bio);
1561                         free_r10bio(r10bio);
1562                         break;
1563                 }
1564         }
1565 }
1566
1567 static void raid10_end_discard_request(struct bio *bio)
1568 {
1569         struct r10bio *r10_bio = bio->bi_private;
1570         struct r10conf *conf = r10_bio->mddev->private;
1571         struct md_rdev *rdev = NULL;
1572         int dev;
1573         int slot, repl;
1574
1575         /*
1576          * We don't care the return value of discard bio
1577          */
1578         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1579                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1580
1581         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1582         if (repl)
1583                 rdev = conf->mirrors[dev].replacement;
1584         if (!rdev) {
1585                 /*
1586                  * raid10_remove_disk uses smp_mb to make sure rdev is set to
1587                  * replacement before setting replacement to NULL. It can read
1588                  * rdev first without barrier protect even replacment is NULL
1589                  */
1590                 smp_rmb();
1591                 rdev = conf->mirrors[dev].rdev;
1592         }
1593
1594         raid_end_discard_bio(r10_bio);
1595         rdev_dec_pending(rdev, conf->mddev);
1596 }
1597
1598 /*
1599  * There are some limitations to handle discard bio
1600  * 1st, the discard size is bigger than stripe_size*2.
1601  * 2st, if the discard bio spans reshape progress, we use the old way to
1602  * handle discard bio
1603  */
1604 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1605 {
1606         struct r10conf *conf = mddev->private;
1607         struct geom *geo = &conf->geo;
1608         int far_copies = geo->far_copies;
1609         bool first_copy = true;
1610         struct r10bio *r10_bio, *first_r10bio;
1611         struct bio *split;
1612         int disk;
1613         sector_t chunk;
1614         unsigned int stripe_size;
1615         unsigned int stripe_data_disks;
1616         sector_t split_size;
1617         sector_t bio_start, bio_end;
1618         sector_t first_stripe_index, last_stripe_index;
1619         sector_t start_disk_offset;
1620         unsigned int start_disk_index;
1621         sector_t end_disk_offset;
1622         unsigned int end_disk_index;
1623         unsigned int remainder;
1624
1625         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1626                 return -EAGAIN;
1627
1628         if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1629                 bio_wouldblock_error(bio);
1630                 return 0;
1631         }
1632         wait_barrier(conf, false);
1633
1634         /*
1635          * Check reshape again to avoid reshape happens after checking
1636          * MD_RECOVERY_RESHAPE and before wait_barrier
1637          */
1638         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1639                 goto out;
1640
1641         if (geo->near_copies)
1642                 stripe_data_disks = geo->raid_disks / geo->near_copies +
1643                                         geo->raid_disks % geo->near_copies;
1644         else
1645                 stripe_data_disks = geo->raid_disks;
1646
1647         stripe_size = stripe_data_disks << geo->chunk_shift;
1648
1649         bio_start = bio->bi_iter.bi_sector;
1650         bio_end = bio_end_sector(bio);
1651
1652         /*
1653          * Maybe one discard bio is smaller than strip size or across one
1654          * stripe and discard region is larger than one stripe size. For far
1655          * offset layout, if the discard region is not aligned with stripe
1656          * size, there is hole when we submit discard bio to member disk.
1657          * For simplicity, we only handle discard bio which discard region
1658          * is bigger than stripe_size * 2
1659          */
1660         if (bio_sectors(bio) < stripe_size*2)
1661                 goto out;
1662
1663         /*
1664          * Keep bio aligned with strip size.
1665          */
1666         div_u64_rem(bio_start, stripe_size, &remainder);
1667         if (remainder) {
1668                 split_size = stripe_size - remainder;
1669                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1670                 bio_chain(split, bio);
1671                 allow_barrier(conf);
1672                 /* Resend the fist split part */
1673                 submit_bio_noacct(split);
1674                 wait_barrier(conf, false);
1675         }
1676         div_u64_rem(bio_end, stripe_size, &remainder);
1677         if (remainder) {
1678                 split_size = bio_sectors(bio) - remainder;
1679                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1680                 bio_chain(split, bio);
1681                 allow_barrier(conf);
1682                 /* Resend the second split part */
1683                 submit_bio_noacct(bio);
1684                 bio = split;
1685                 wait_barrier(conf, false);
1686         }
1687
1688         bio_start = bio->bi_iter.bi_sector;
1689         bio_end = bio_end_sector(bio);
1690
1691         /*
1692          * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1693          * One stripe contains the chunks from all member disk (one chunk from
1694          * one disk at the same HBA address). For layout detail, see 'man md 4'
1695          */
1696         chunk = bio_start >> geo->chunk_shift;
1697         chunk *= geo->near_copies;
1698         first_stripe_index = chunk;
1699         start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1700         if (geo->far_offset)
1701                 first_stripe_index *= geo->far_copies;
1702         start_disk_offset = (bio_start & geo->chunk_mask) +
1703                                 (first_stripe_index << geo->chunk_shift);
1704
1705         chunk = bio_end >> geo->chunk_shift;
1706         chunk *= geo->near_copies;
1707         last_stripe_index = chunk;
1708         end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1709         if (geo->far_offset)
1710                 last_stripe_index *= geo->far_copies;
1711         end_disk_offset = (bio_end & geo->chunk_mask) +
1712                                 (last_stripe_index << geo->chunk_shift);
1713
1714 retry_discard:
1715         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1716         r10_bio->mddev = mddev;
1717         r10_bio->state = 0;
1718         r10_bio->sectors = 0;
1719         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1720         wait_blocked_dev(mddev, r10_bio);
1721
1722         /*
1723          * For far layout it needs more than one r10bio to cover all regions.
1724          * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1725          * to record the discard bio. Other r10bio->master_bio record the first
1726          * r10bio. The first r10bio only release after all other r10bios finish.
1727          * The discard bio returns only first r10bio finishes
1728          */
1729         if (first_copy) {
1730                 r10_bio->master_bio = bio;
1731                 set_bit(R10BIO_Discard, &r10_bio->state);
1732                 first_copy = false;
1733                 first_r10bio = r10_bio;
1734         } else
1735                 r10_bio->master_bio = (struct bio *)first_r10bio;
1736
1737         /*
1738          * first select target devices under rcu_lock and
1739          * inc refcount on their rdev.  Record them by setting
1740          * bios[x] to bio
1741          */
1742         rcu_read_lock();
1743         for (disk = 0; disk < geo->raid_disks; disk++) {
1744                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1745                 struct md_rdev *rrdev = rcu_dereference(
1746                         conf->mirrors[disk].replacement);
1747
1748                 r10_bio->devs[disk].bio = NULL;
1749                 r10_bio->devs[disk].repl_bio = NULL;
1750
1751                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1752                         rdev = NULL;
1753                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1754                         rrdev = NULL;
1755                 if (!rdev && !rrdev)
1756                         continue;
1757
1758                 if (rdev) {
1759                         r10_bio->devs[disk].bio = bio;
1760                         atomic_inc(&rdev->nr_pending);
1761                 }
1762                 if (rrdev) {
1763                         r10_bio->devs[disk].repl_bio = bio;
1764                         atomic_inc(&rrdev->nr_pending);
1765                 }
1766         }
1767         rcu_read_unlock();
1768
1769         atomic_set(&r10_bio->remaining, 1);
1770         for (disk = 0; disk < geo->raid_disks; disk++) {
1771                 sector_t dev_start, dev_end;
1772                 struct bio *mbio, *rbio = NULL;
1773
1774                 /*
1775                  * Now start to calculate the start and end address for each disk.
1776                  * The space between dev_start and dev_end is the discard region.
1777                  *
1778                  * For dev_start, it needs to consider three conditions:
1779                  * 1st, the disk is before start_disk, you can imagine the disk in
1780                  * the next stripe. So the dev_start is the start address of next
1781                  * stripe.
1782                  * 2st, the disk is after start_disk, it means the disk is at the
1783                  * same stripe of first disk
1784                  * 3st, the first disk itself, we can use start_disk_offset directly
1785                  */
1786                 if (disk < start_disk_index)
1787                         dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1788                 else if (disk > start_disk_index)
1789                         dev_start = first_stripe_index * mddev->chunk_sectors;
1790                 else
1791                         dev_start = start_disk_offset;
1792
1793                 if (disk < end_disk_index)
1794                         dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1795                 else if (disk > end_disk_index)
1796                         dev_end = last_stripe_index * mddev->chunk_sectors;
1797                 else
1798                         dev_end = end_disk_offset;
1799
1800                 /*
1801                  * It only handles discard bio which size is >= stripe size, so
1802                  * dev_end > dev_start all the time.
1803                  * It doesn't need to use rcu lock to get rdev here. We already
1804                  * add rdev->nr_pending in the first loop.
1805                  */
1806                 if (r10_bio->devs[disk].bio) {
1807                         struct md_rdev *rdev = conf->mirrors[disk].rdev;
1808                         mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1809                                                &mddev->bio_set);
1810                         mbio->bi_end_io = raid10_end_discard_request;
1811                         mbio->bi_private = r10_bio;
1812                         r10_bio->devs[disk].bio = mbio;
1813                         r10_bio->devs[disk].devnum = disk;
1814                         atomic_inc(&r10_bio->remaining);
1815                         md_submit_discard_bio(mddev, rdev, mbio,
1816                                         dev_start + choose_data_offset(r10_bio, rdev),
1817                                         dev_end - dev_start);
1818                         bio_endio(mbio);
1819                 }
1820                 if (r10_bio->devs[disk].repl_bio) {
1821                         struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1822                         rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1823                                                &mddev->bio_set);
1824                         rbio->bi_end_io = raid10_end_discard_request;
1825                         rbio->bi_private = r10_bio;
1826                         r10_bio->devs[disk].repl_bio = rbio;
1827                         r10_bio->devs[disk].devnum = disk;
1828                         atomic_inc(&r10_bio->remaining);
1829                         md_submit_discard_bio(mddev, rrdev, rbio,
1830                                         dev_start + choose_data_offset(r10_bio, rrdev),
1831                                         dev_end - dev_start);
1832                         bio_endio(rbio);
1833                 }
1834         }
1835
1836         if (!geo->far_offset && --far_copies) {
1837                 first_stripe_index += geo->stride >> geo->chunk_shift;
1838                 start_disk_offset += geo->stride;
1839                 last_stripe_index += geo->stride >> geo->chunk_shift;
1840                 end_disk_offset += geo->stride;
1841                 atomic_inc(&first_r10bio->remaining);
1842                 raid_end_discard_bio(r10_bio);
1843                 wait_barrier(conf, false);
1844                 goto retry_discard;
1845         }
1846
1847         raid_end_discard_bio(r10_bio);
1848
1849         return 0;
1850 out:
1851         allow_barrier(conf);
1852         return -EAGAIN;
1853 }
1854
1855 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1856 {
1857         struct r10conf *conf = mddev->private;
1858         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1859         int chunk_sects = chunk_mask + 1;
1860         int sectors = bio_sectors(bio);
1861
1862         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1863             && md_flush_request(mddev, bio))
1864                 return true;
1865
1866         if (!md_write_start(mddev, bio))
1867                 return false;
1868
1869         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1870                 if (!raid10_handle_discard(mddev, bio))
1871                         return true;
1872
1873         /*
1874          * If this request crosses a chunk boundary, we need to split
1875          * it.
1876          */
1877         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1878                      sectors > chunk_sects
1879                      && (conf->geo.near_copies < conf->geo.raid_disks
1880                          || conf->prev.near_copies <
1881                          conf->prev.raid_disks)))
1882                 sectors = chunk_sects -
1883                         (bio->bi_iter.bi_sector &
1884                          (chunk_sects - 1));
1885         __make_request(mddev, bio, sectors);
1886
1887         /* In case raid10d snuck in to freeze_array */
1888         wake_up(&conf->wait_barrier);
1889         return true;
1890 }
1891
1892 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1893 {
1894         struct r10conf *conf = mddev->private;
1895         int i;
1896
1897         if (conf->geo.near_copies < conf->geo.raid_disks)
1898                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1899         if (conf->geo.near_copies > 1)
1900                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1901         if (conf->geo.far_copies > 1) {
1902                 if (conf->geo.far_offset)
1903                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1904                 else
1905                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1906                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1907                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1908         }
1909         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1910                                         conf->geo.raid_disks - mddev->degraded);
1911         rcu_read_lock();
1912         for (i = 0; i < conf->geo.raid_disks; i++) {
1913                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1914                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1915         }
1916         rcu_read_unlock();
1917         seq_printf(seq, "]");
1918 }
1919
1920 /* check if there are enough drives for
1921  * every block to appear on atleast one.
1922  * Don't consider the device numbered 'ignore'
1923  * as we might be about to remove it.
1924  */
1925 static int _enough(struct r10conf *conf, int previous, int ignore)
1926 {
1927         int first = 0;
1928         int has_enough = 0;
1929         int disks, ncopies;
1930         if (previous) {
1931                 disks = conf->prev.raid_disks;
1932                 ncopies = conf->prev.near_copies;
1933         } else {
1934                 disks = conf->geo.raid_disks;
1935                 ncopies = conf->geo.near_copies;
1936         }
1937
1938         rcu_read_lock();
1939         do {
1940                 int n = conf->copies;
1941                 int cnt = 0;
1942                 int this = first;
1943                 while (n--) {
1944                         struct md_rdev *rdev;
1945                         if (this != ignore &&
1946                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1947                             test_bit(In_sync, &rdev->flags))
1948                                 cnt++;
1949                         this = (this+1) % disks;
1950                 }
1951                 if (cnt == 0)
1952                         goto out;
1953                 first = (first + ncopies) % disks;
1954         } while (first != 0);
1955         has_enough = 1;
1956 out:
1957         rcu_read_unlock();
1958         return has_enough;
1959 }
1960
1961 static int enough(struct r10conf *conf, int ignore)
1962 {
1963         /* when calling 'enough', both 'prev' and 'geo' must
1964          * be stable.
1965          * This is ensured if ->reconfig_mutex or ->device_lock
1966          * is held.
1967          */
1968         return _enough(conf, 0, ignore) &&
1969                 _enough(conf, 1, ignore);
1970 }
1971
1972 /**
1973  * raid10_error() - RAID10 error handler.
1974  * @mddev: affected md device.
1975  * @rdev: member device to fail.
1976  *
1977  * The routine acknowledges &rdev failure and determines new @mddev state.
1978  * If it failed, then:
1979  *      - &MD_BROKEN flag is set in &mddev->flags.
1980  * Otherwise, it must be degraded:
1981  *      - recovery is interrupted.
1982  *      - &mddev->degraded is bumped.
1983
1984  * @rdev is marked as &Faulty excluding case when array is failed and
1985  * &mddev->fail_last_dev is off.
1986  */
1987 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1988 {
1989         struct r10conf *conf = mddev->private;
1990         unsigned long flags;
1991
1992         spin_lock_irqsave(&conf->device_lock, flags);
1993
1994         if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
1995                 set_bit(MD_BROKEN, &mddev->flags);
1996
1997                 if (!mddev->fail_last_dev) {
1998                         spin_unlock_irqrestore(&conf->device_lock, flags);
1999                         return;
2000                 }
2001         }
2002         if (test_and_clear_bit(In_sync, &rdev->flags))
2003                 mddev->degraded++;
2004
2005         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2006         set_bit(Blocked, &rdev->flags);
2007         set_bit(Faulty, &rdev->flags);
2008         set_mask_bits(&mddev->sb_flags, 0,
2009                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2010         spin_unlock_irqrestore(&conf->device_lock, flags);
2011         pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2012                 "md/raid10:%s: Operation continuing on %d devices.\n",
2013                 mdname(mddev), rdev->bdev,
2014                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2015 }
2016
2017 static void print_conf(struct r10conf *conf)
2018 {
2019         int i;
2020         struct md_rdev *rdev;
2021
2022         pr_debug("RAID10 conf printout:\n");
2023         if (!conf) {
2024                 pr_debug("(!conf)\n");
2025                 return;
2026         }
2027         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2028                  conf->geo.raid_disks);
2029
2030         /* This is only called with ->reconfix_mutex held, so
2031          * rcu protection of rdev is not needed */
2032         for (i = 0; i < conf->geo.raid_disks; i++) {
2033                 rdev = conf->mirrors[i].rdev;
2034                 if (rdev)
2035                         pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2036                                  i, !test_bit(In_sync, &rdev->flags),
2037                                  !test_bit(Faulty, &rdev->flags),
2038                                  rdev->bdev);
2039         }
2040 }
2041
2042 static void close_sync(struct r10conf *conf)
2043 {
2044         wait_barrier(conf, false);
2045         allow_barrier(conf);
2046
2047         mempool_exit(&conf->r10buf_pool);
2048 }
2049
2050 static int raid10_spare_active(struct mddev *mddev)
2051 {
2052         int i;
2053         struct r10conf *conf = mddev->private;
2054         struct raid10_info *tmp;
2055         int count = 0;
2056         unsigned long flags;
2057
2058         /*
2059          * Find all non-in_sync disks within the RAID10 configuration
2060          * and mark them in_sync
2061          */
2062         for (i = 0; i < conf->geo.raid_disks; i++) {
2063                 tmp = conf->mirrors + i;
2064                 if (tmp->replacement
2065                     && tmp->replacement->recovery_offset == MaxSector
2066                     && !test_bit(Faulty, &tmp->replacement->flags)
2067                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2068                         /* Replacement has just become active */
2069                         if (!tmp->rdev
2070                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2071                                 count++;
2072                         if (tmp->rdev) {
2073                                 /* Replaced device not technically faulty,
2074                                  * but we need to be sure it gets removed
2075                                  * and never re-added.
2076                                  */
2077                                 set_bit(Faulty, &tmp->rdev->flags);
2078                                 sysfs_notify_dirent_safe(
2079                                         tmp->rdev->sysfs_state);
2080                         }
2081                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2082                 } else if (tmp->rdev
2083                            && tmp->rdev->recovery_offset == MaxSector
2084                            && !test_bit(Faulty, &tmp->rdev->flags)
2085                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2086                         count++;
2087                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2088                 }
2089         }
2090         spin_lock_irqsave(&conf->device_lock, flags);
2091         mddev->degraded -= count;
2092         spin_unlock_irqrestore(&conf->device_lock, flags);
2093
2094         print_conf(conf);
2095         return count;
2096 }
2097
2098 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2099 {
2100         struct r10conf *conf = mddev->private;
2101         int err = -EEXIST;
2102         int mirror;
2103         int first = 0;
2104         int last = conf->geo.raid_disks - 1;
2105
2106         if (mddev->recovery_cp < MaxSector)
2107                 /* only hot-add to in-sync arrays, as recovery is
2108                  * very different from resync
2109                  */
2110                 return -EBUSY;
2111         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2112                 return -EINVAL;
2113
2114         if (md_integrity_add_rdev(rdev, mddev))
2115                 return -ENXIO;
2116
2117         if (rdev->raid_disk >= 0)
2118                 first = last = rdev->raid_disk;
2119
2120         if (rdev->saved_raid_disk >= first &&
2121             rdev->saved_raid_disk < conf->geo.raid_disks &&
2122             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2123                 mirror = rdev->saved_raid_disk;
2124         else
2125                 mirror = first;
2126         for ( ; mirror <= last ; mirror++) {
2127                 struct raid10_info *p = &conf->mirrors[mirror];
2128                 if (p->recovery_disabled == mddev->recovery_disabled)
2129                         continue;
2130                 if (p->rdev) {
2131                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
2132                             p->replacement != NULL)
2133                                 continue;
2134                         clear_bit(In_sync, &rdev->flags);
2135                         set_bit(Replacement, &rdev->flags);
2136                         rdev->raid_disk = mirror;
2137                         err = 0;
2138                         if (mddev->gendisk)
2139                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2140                                                   rdev->data_offset << 9);
2141                         conf->fullsync = 1;
2142                         rcu_assign_pointer(p->replacement, rdev);
2143                         break;
2144                 }
2145
2146                 if (mddev->gendisk)
2147                         disk_stack_limits(mddev->gendisk, rdev->bdev,
2148                                           rdev->data_offset << 9);
2149
2150                 p->head_position = 0;
2151                 p->recovery_disabled = mddev->recovery_disabled - 1;
2152                 rdev->raid_disk = mirror;
2153                 err = 0;
2154                 if (rdev->saved_raid_disk != mirror)
2155                         conf->fullsync = 1;
2156                 rcu_assign_pointer(p->rdev, rdev);
2157                 break;
2158         }
2159
2160         print_conf(conf);
2161         return err;
2162 }
2163
2164 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2165 {
2166         struct r10conf *conf = mddev->private;
2167         int err = 0;
2168         int number = rdev->raid_disk;
2169         struct md_rdev **rdevp;
2170         struct raid10_info *p = conf->mirrors + number;
2171
2172         print_conf(conf);
2173         if (rdev == p->rdev)
2174                 rdevp = &p->rdev;
2175         else if (rdev == p->replacement)
2176                 rdevp = &p->replacement;
2177         else
2178                 return 0;
2179
2180         if (test_bit(In_sync, &rdev->flags) ||
2181             atomic_read(&rdev->nr_pending)) {
2182                 err = -EBUSY;
2183                 goto abort;
2184         }
2185         /* Only remove non-faulty devices if recovery
2186          * is not possible.
2187          */
2188         if (!test_bit(Faulty, &rdev->flags) &&
2189             mddev->recovery_disabled != p->recovery_disabled &&
2190             (!p->replacement || p->replacement == rdev) &&
2191             number < conf->geo.raid_disks &&
2192             enough(conf, -1)) {
2193                 err = -EBUSY;
2194                 goto abort;
2195         }
2196         *rdevp = NULL;
2197         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2198                 synchronize_rcu();
2199                 if (atomic_read(&rdev->nr_pending)) {
2200                         /* lost the race, try later */
2201                         err = -EBUSY;
2202                         *rdevp = rdev;
2203                         goto abort;
2204                 }
2205         }
2206         if (p->replacement) {
2207                 /* We must have just cleared 'rdev' */
2208                 p->rdev = p->replacement;
2209                 clear_bit(Replacement, &p->replacement->flags);
2210                 smp_mb(); /* Make sure other CPUs may see both as identical
2211                            * but will never see neither -- if they are careful.
2212                            */
2213                 p->replacement = NULL;
2214         }
2215
2216         clear_bit(WantReplacement, &rdev->flags);
2217         err = md_integrity_register(mddev);
2218
2219 abort:
2220
2221         print_conf(conf);
2222         return err;
2223 }
2224
2225 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2226 {
2227         struct r10conf *conf = r10_bio->mddev->private;
2228
2229         if (!bio->bi_status)
2230                 set_bit(R10BIO_Uptodate, &r10_bio->state);
2231         else
2232                 /* The write handler will notice the lack of
2233                  * R10BIO_Uptodate and record any errors etc
2234                  */
2235                 atomic_add(r10_bio->sectors,
2236                            &conf->mirrors[d].rdev->corrected_errors);
2237
2238         /* for reconstruct, we always reschedule after a read.
2239          * for resync, only after all reads
2240          */
2241         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2242         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2243             atomic_dec_and_test(&r10_bio->remaining)) {
2244                 /* we have read all the blocks,
2245                  * do the comparison in process context in raid10d
2246                  */
2247                 reschedule_retry(r10_bio);
2248         }
2249 }
2250
2251 static void end_sync_read(struct bio *bio)
2252 {
2253         struct r10bio *r10_bio = get_resync_r10bio(bio);
2254         struct r10conf *conf = r10_bio->mddev->private;
2255         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2256
2257         __end_sync_read(r10_bio, bio, d);
2258 }
2259
2260 static void end_reshape_read(struct bio *bio)
2261 {
2262         /* reshape read bio isn't allocated from r10buf_pool */
2263         struct r10bio *r10_bio = bio->bi_private;
2264
2265         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2266 }
2267
2268 static void end_sync_request(struct r10bio *r10_bio)
2269 {
2270         struct mddev *mddev = r10_bio->mddev;
2271
2272         while (atomic_dec_and_test(&r10_bio->remaining)) {
2273                 if (r10_bio->master_bio == NULL) {
2274                         /* the primary of several recovery bios */
2275                         sector_t s = r10_bio->sectors;
2276                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2277                             test_bit(R10BIO_WriteError, &r10_bio->state))
2278                                 reschedule_retry(r10_bio);
2279                         else
2280                                 put_buf(r10_bio);
2281                         md_done_sync(mddev, s, 1);
2282                         break;
2283                 } else {
2284                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2285                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2286                             test_bit(R10BIO_WriteError, &r10_bio->state))
2287                                 reschedule_retry(r10_bio);
2288                         else
2289                                 put_buf(r10_bio);
2290                         r10_bio = r10_bio2;
2291                 }
2292         }
2293 }
2294
2295 static void end_sync_write(struct bio *bio)
2296 {
2297         struct r10bio *r10_bio = get_resync_r10bio(bio);
2298         struct mddev *mddev = r10_bio->mddev;
2299         struct r10conf *conf = mddev->private;
2300         int d;
2301         sector_t first_bad;
2302         int bad_sectors;
2303         int slot;
2304         int repl;
2305         struct md_rdev *rdev = NULL;
2306
2307         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2308         if (repl)
2309                 rdev = conf->mirrors[d].replacement;
2310         else
2311                 rdev = conf->mirrors[d].rdev;
2312
2313         if (bio->bi_status) {
2314                 if (repl)
2315                         md_error(mddev, rdev);
2316                 else {
2317                         set_bit(WriteErrorSeen, &rdev->flags);
2318                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2319                                 set_bit(MD_RECOVERY_NEEDED,
2320                                         &rdev->mddev->recovery);
2321                         set_bit(R10BIO_WriteError, &r10_bio->state);
2322                 }
2323         } else if (is_badblock(rdev,
2324                              r10_bio->devs[slot].addr,
2325                              r10_bio->sectors,
2326                              &first_bad, &bad_sectors))
2327                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2328
2329         rdev_dec_pending(rdev, mddev);
2330
2331         end_sync_request(r10_bio);
2332 }
2333
2334 /*
2335  * Note: sync and recover and handled very differently for raid10
2336  * This code is for resync.
2337  * For resync, we read through virtual addresses and read all blocks.
2338  * If there is any error, we schedule a write.  The lowest numbered
2339  * drive is authoritative.
2340  * However requests come for physical address, so we need to map.
2341  * For every physical address there are raid_disks/copies virtual addresses,
2342  * which is always are least one, but is not necessarly an integer.
2343  * This means that a physical address can span multiple chunks, so we may
2344  * have to submit multiple io requests for a single sync request.
2345  */
2346 /*
2347  * We check if all blocks are in-sync and only write to blocks that
2348  * aren't in sync
2349  */
2350 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2351 {
2352         struct r10conf *conf = mddev->private;
2353         int i, first;
2354         struct bio *tbio, *fbio;
2355         int vcnt;
2356         struct page **tpages, **fpages;
2357
2358         atomic_set(&r10_bio->remaining, 1);
2359
2360         /* find the first device with a block */
2361         for (i=0; i<conf->copies; i++)
2362                 if (!r10_bio->devs[i].bio->bi_status)
2363                         break;
2364
2365         if (i == conf->copies)
2366                 goto done;
2367
2368         first = i;
2369         fbio = r10_bio->devs[i].bio;
2370         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2371         fbio->bi_iter.bi_idx = 0;
2372         fpages = get_resync_pages(fbio)->pages;
2373
2374         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2375         /* now find blocks with errors */
2376         for (i=0 ; i < conf->copies ; i++) {
2377                 int  j, d;
2378                 struct md_rdev *rdev;
2379                 struct resync_pages *rp;
2380
2381                 tbio = r10_bio->devs[i].bio;
2382
2383                 if (tbio->bi_end_io != end_sync_read)
2384                         continue;
2385                 if (i == first)
2386                         continue;
2387
2388                 tpages = get_resync_pages(tbio)->pages;
2389                 d = r10_bio->devs[i].devnum;
2390                 rdev = conf->mirrors[d].rdev;
2391                 if (!r10_bio->devs[i].bio->bi_status) {
2392                         /* We know that the bi_io_vec layout is the same for
2393                          * both 'first' and 'i', so we just compare them.
2394                          * All vec entries are PAGE_SIZE;
2395                          */
2396                         int sectors = r10_bio->sectors;
2397                         for (j = 0; j < vcnt; j++) {
2398                                 int len = PAGE_SIZE;
2399                                 if (sectors < (len / 512))
2400                                         len = sectors * 512;
2401                                 if (memcmp(page_address(fpages[j]),
2402                                            page_address(tpages[j]),
2403                                            len))
2404                                         break;
2405                                 sectors -= len/512;
2406                         }
2407                         if (j == vcnt)
2408                                 continue;
2409                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2410                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2411                                 /* Don't fix anything. */
2412                                 continue;
2413                 } else if (test_bit(FailFast, &rdev->flags)) {
2414                         /* Just give up on this device */
2415                         md_error(rdev->mddev, rdev);
2416                         continue;
2417                 }
2418                 /* Ok, we need to write this bio, either to correct an
2419                  * inconsistency or to correct an unreadable block.
2420                  * First we need to fixup bv_offset, bv_len and
2421                  * bi_vecs, as the read request might have corrupted these
2422                  */
2423                 rp = get_resync_pages(tbio);
2424                 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2425
2426                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2427
2428                 rp->raid_bio = r10_bio;
2429                 tbio->bi_private = rp;
2430                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2431                 tbio->bi_end_io = end_sync_write;
2432
2433                 bio_copy_data(tbio, fbio);
2434
2435                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2436                 atomic_inc(&r10_bio->remaining);
2437                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2438
2439                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2440                         tbio->bi_opf |= MD_FAILFAST;
2441                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2442                 submit_bio_noacct(tbio);
2443         }
2444
2445         /* Now write out to any replacement devices
2446          * that are active
2447          */
2448         for (i = 0; i < conf->copies; i++) {
2449                 int d;
2450
2451                 tbio = r10_bio->devs[i].repl_bio;
2452                 if (!tbio || !tbio->bi_end_io)
2453                         continue;
2454                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2455                     && r10_bio->devs[i].bio != fbio)
2456                         bio_copy_data(tbio, fbio);
2457                 d = r10_bio->devs[i].devnum;
2458                 atomic_inc(&r10_bio->remaining);
2459                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2460                              bio_sectors(tbio));
2461                 submit_bio_noacct(tbio);
2462         }
2463
2464 done:
2465         if (atomic_dec_and_test(&r10_bio->remaining)) {
2466                 md_done_sync(mddev, r10_bio->sectors, 1);
2467                 put_buf(r10_bio);
2468         }
2469 }
2470
2471 /*
2472  * Now for the recovery code.
2473  * Recovery happens across physical sectors.
2474  * We recover all non-is_sync drives by finding the virtual address of
2475  * each, and then choose a working drive that also has that virt address.
2476  * There is a separate r10_bio for each non-in_sync drive.
2477  * Only the first two slots are in use. The first for reading,
2478  * The second for writing.
2479  *
2480  */
2481 static void fix_recovery_read_error(struct r10bio *r10_bio)
2482 {
2483         /* We got a read error during recovery.
2484          * We repeat the read in smaller page-sized sections.
2485          * If a read succeeds, write it to the new device or record
2486          * a bad block if we cannot.
2487          * If a read fails, record a bad block on both old and
2488          * new devices.
2489          */
2490         struct mddev *mddev = r10_bio->mddev;
2491         struct r10conf *conf = mddev->private;
2492         struct bio *bio = r10_bio->devs[0].bio;
2493         sector_t sect = 0;
2494         int sectors = r10_bio->sectors;
2495         int idx = 0;
2496         int dr = r10_bio->devs[0].devnum;
2497         int dw = r10_bio->devs[1].devnum;
2498         struct page **pages = get_resync_pages(bio)->pages;
2499
2500         while (sectors) {
2501                 int s = sectors;
2502                 struct md_rdev *rdev;
2503                 sector_t addr;
2504                 int ok;
2505
2506                 if (s > (PAGE_SIZE>>9))
2507                         s = PAGE_SIZE >> 9;
2508
2509                 rdev = conf->mirrors[dr].rdev;
2510                 addr = r10_bio->devs[0].addr + sect,
2511                 ok = sync_page_io(rdev,
2512                                   addr,
2513                                   s << 9,
2514                                   pages[idx],
2515                                   REQ_OP_READ, 0, false);
2516                 if (ok) {
2517                         rdev = conf->mirrors[dw].rdev;
2518                         addr = r10_bio->devs[1].addr + sect;
2519                         ok = sync_page_io(rdev,
2520                                           addr,
2521                                           s << 9,
2522                                           pages[idx],
2523                                           REQ_OP_WRITE, 0, false);
2524                         if (!ok) {
2525                                 set_bit(WriteErrorSeen, &rdev->flags);
2526                                 if (!test_and_set_bit(WantReplacement,
2527                                                       &rdev->flags))
2528                                         set_bit(MD_RECOVERY_NEEDED,
2529                                                 &rdev->mddev->recovery);
2530                         }
2531                 }
2532                 if (!ok) {
2533                         /* We don't worry if we cannot set a bad block -
2534                          * it really is bad so there is no loss in not
2535                          * recording it yet
2536                          */
2537                         rdev_set_badblocks(rdev, addr, s, 0);
2538
2539                         if (rdev != conf->mirrors[dw].rdev) {
2540                                 /* need bad block on destination too */
2541                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2542                                 addr = r10_bio->devs[1].addr + sect;
2543                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2544                                 if (!ok) {
2545                                         /* just abort the recovery */
2546                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2547                                                   mdname(mddev));
2548
2549                                         conf->mirrors[dw].recovery_disabled
2550                                                 = mddev->recovery_disabled;
2551                                         set_bit(MD_RECOVERY_INTR,
2552                                                 &mddev->recovery);
2553                                         break;
2554                                 }
2555                         }
2556                 }
2557
2558                 sectors -= s;
2559                 sect += s;
2560                 idx++;
2561         }
2562 }
2563
2564 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2565 {
2566         struct r10conf *conf = mddev->private;
2567         int d;
2568         struct bio *wbio, *wbio2;
2569
2570         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2571                 fix_recovery_read_error(r10_bio);
2572                 end_sync_request(r10_bio);
2573                 return;
2574         }
2575
2576         /*
2577          * share the pages with the first bio
2578          * and submit the write request
2579          */
2580         d = r10_bio->devs[1].devnum;
2581         wbio = r10_bio->devs[1].bio;
2582         wbio2 = r10_bio->devs[1].repl_bio;
2583         /* Need to test wbio2->bi_end_io before we call
2584          * submit_bio_noacct as if the former is NULL,
2585          * the latter is free to free wbio2.
2586          */
2587         if (wbio2 && !wbio2->bi_end_io)
2588                 wbio2 = NULL;
2589         if (wbio->bi_end_io) {
2590                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2591                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2592                 submit_bio_noacct(wbio);
2593         }
2594         if (wbio2) {
2595                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2596                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2597                              bio_sectors(wbio2));
2598                 submit_bio_noacct(wbio2);
2599         }
2600 }
2601
2602 /*
2603  * Used by fix_read_error() to decay the per rdev read_errors.
2604  * We halve the read error count for every hour that has elapsed
2605  * since the last recorded read error.
2606  *
2607  */
2608 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2609 {
2610         long cur_time_mon;
2611         unsigned long hours_since_last;
2612         unsigned int read_errors = atomic_read(&rdev->read_errors);
2613
2614         cur_time_mon = ktime_get_seconds();
2615
2616         if (rdev->last_read_error == 0) {
2617                 /* first time we've seen a read error */
2618                 rdev->last_read_error = cur_time_mon;
2619                 return;
2620         }
2621
2622         hours_since_last = (long)(cur_time_mon -
2623                             rdev->last_read_error) / 3600;
2624
2625         rdev->last_read_error = cur_time_mon;
2626
2627         /*
2628          * if hours_since_last is > the number of bits in read_errors
2629          * just set read errors to 0. We do this to avoid
2630          * overflowing the shift of read_errors by hours_since_last.
2631          */
2632         if (hours_since_last >= 8 * sizeof(read_errors))
2633                 atomic_set(&rdev->read_errors, 0);
2634         else
2635                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2636 }
2637
2638 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2639                             int sectors, struct page *page, int rw)
2640 {
2641         sector_t first_bad;
2642         int bad_sectors;
2643
2644         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2645             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2646                 return -1;
2647         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2648                 /* success */
2649                 return 1;
2650         if (rw == WRITE) {
2651                 set_bit(WriteErrorSeen, &rdev->flags);
2652                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2653                         set_bit(MD_RECOVERY_NEEDED,
2654                                 &rdev->mddev->recovery);
2655         }
2656         /* need to record an error - either for the block or the device */
2657         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2658                 md_error(rdev->mddev, rdev);
2659         return 0;
2660 }
2661
2662 /*
2663  * This is a kernel thread which:
2664  *
2665  *      1.      Retries failed read operations on working mirrors.
2666  *      2.      Updates the raid superblock when problems encounter.
2667  *      3.      Performs writes following reads for array synchronising.
2668  */
2669
2670 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2671 {
2672         int sect = 0; /* Offset from r10_bio->sector */
2673         int sectors = r10_bio->sectors;
2674         struct md_rdev *rdev;
2675         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2676         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2677
2678         /* still own a reference to this rdev, so it cannot
2679          * have been cleared recently.
2680          */
2681         rdev = conf->mirrors[d].rdev;
2682
2683         if (test_bit(Faulty, &rdev->flags))
2684                 /* drive has already been failed, just ignore any
2685                    more fix_read_error() attempts */
2686                 return;
2687
2688         check_decay_read_errors(mddev, rdev);
2689         atomic_inc(&rdev->read_errors);
2690         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2691                 pr_notice("md/raid10:%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2692                           mdname(mddev), rdev->bdev,
2693                           atomic_read(&rdev->read_errors), max_read_errors);
2694                 pr_notice("md/raid10:%s: %pg: Failing raid device\n",
2695                           mdname(mddev), rdev->bdev);
2696                 md_error(mddev, rdev);
2697                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2698                 return;
2699         }
2700
2701         while(sectors) {
2702                 int s = sectors;
2703                 int sl = r10_bio->read_slot;
2704                 int success = 0;
2705                 int start;
2706
2707                 if (s > (PAGE_SIZE>>9))
2708                         s = PAGE_SIZE >> 9;
2709
2710                 rcu_read_lock();
2711                 do {
2712                         sector_t first_bad;
2713                         int bad_sectors;
2714
2715                         d = r10_bio->devs[sl].devnum;
2716                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2717                         if (rdev &&
2718                             test_bit(In_sync, &rdev->flags) &&
2719                             !test_bit(Faulty, &rdev->flags) &&
2720                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2721                                         &first_bad, &bad_sectors) == 0) {
2722                                 atomic_inc(&rdev->nr_pending);
2723                                 rcu_read_unlock();
2724                                 success = sync_page_io(rdev,
2725                                                        r10_bio->devs[sl].addr +
2726                                                        sect,
2727                                                        s<<9,
2728                                                        conf->tmppage,
2729                                                        REQ_OP_READ, 0, false);
2730                                 rdev_dec_pending(rdev, mddev);
2731                                 rcu_read_lock();
2732                                 if (success)
2733                                         break;
2734                         }
2735                         sl++;
2736                         if (sl == conf->copies)
2737                                 sl = 0;
2738                 } while (!success && sl != r10_bio->read_slot);
2739                 rcu_read_unlock();
2740
2741                 if (!success) {
2742                         /* Cannot read from anywhere, just mark the block
2743                          * as bad on the first device to discourage future
2744                          * reads.
2745                          */
2746                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2747                         rdev = conf->mirrors[dn].rdev;
2748
2749                         if (!rdev_set_badblocks(
2750                                     rdev,
2751                                     r10_bio->devs[r10_bio->read_slot].addr
2752                                     + sect,
2753                                     s, 0)) {
2754                                 md_error(mddev, rdev);
2755                                 r10_bio->devs[r10_bio->read_slot].bio
2756                                         = IO_BLOCKED;
2757                         }
2758                         break;
2759                 }
2760
2761                 start = sl;
2762                 /* write it back and re-read */
2763                 rcu_read_lock();
2764                 while (sl != r10_bio->read_slot) {
2765                         if (sl==0)
2766                                 sl = conf->copies;
2767                         sl--;
2768                         d = r10_bio->devs[sl].devnum;
2769                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2770                         if (!rdev ||
2771                             test_bit(Faulty, &rdev->flags) ||
2772                             !test_bit(In_sync, &rdev->flags))
2773                                 continue;
2774
2775                         atomic_inc(&rdev->nr_pending);
2776                         rcu_read_unlock();
2777                         if (r10_sync_page_io(rdev,
2778                                              r10_bio->devs[sl].addr +
2779                                              sect,
2780                                              s, conf->tmppage, WRITE)
2781                             == 0) {
2782                                 /* Well, this device is dead */
2783                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2784                                           mdname(mddev), s,
2785                                           (unsigned long long)(
2786                                                   sect +
2787                                                   choose_data_offset(r10_bio,
2788                                                                      rdev)),
2789                                           rdev->bdev);
2790                                 pr_notice("md/raid10:%s: %pg: failing drive\n",
2791                                           mdname(mddev),
2792                                           rdev->bdev);
2793                         }
2794                         rdev_dec_pending(rdev, mddev);
2795                         rcu_read_lock();
2796                 }
2797                 sl = start;
2798                 while (sl != r10_bio->read_slot) {
2799                         if (sl==0)
2800                                 sl = conf->copies;
2801                         sl--;
2802                         d = r10_bio->devs[sl].devnum;
2803                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2804                         if (!rdev ||
2805                             test_bit(Faulty, &rdev->flags) ||
2806                             !test_bit(In_sync, &rdev->flags))
2807                                 continue;
2808
2809                         atomic_inc(&rdev->nr_pending);
2810                         rcu_read_unlock();
2811                         switch (r10_sync_page_io(rdev,
2812                                              r10_bio->devs[sl].addr +
2813                                              sect,
2814                                              s, conf->tmppage,
2815                                                  READ)) {
2816                         case 0:
2817                                 /* Well, this device is dead */
2818                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2819                                        mdname(mddev), s,
2820                                        (unsigned long long)(
2821                                                sect +
2822                                                choose_data_offset(r10_bio, rdev)),
2823                                        rdev->bdev);
2824                                 pr_notice("md/raid10:%s: %pg: failing drive\n",
2825                                        mdname(mddev),
2826                                        rdev->bdev);
2827                                 break;
2828                         case 1:
2829                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2830                                        mdname(mddev), s,
2831                                        (unsigned long long)(
2832                                                sect +
2833                                                choose_data_offset(r10_bio, rdev)),
2834                                        rdev->bdev);
2835                                 atomic_add(s, &rdev->corrected_errors);
2836                         }
2837
2838                         rdev_dec_pending(rdev, mddev);
2839                         rcu_read_lock();
2840                 }
2841                 rcu_read_unlock();
2842
2843                 sectors -= s;
2844                 sect += s;
2845         }
2846 }
2847
2848 static int narrow_write_error(struct r10bio *r10_bio, int i)
2849 {
2850         struct bio *bio = r10_bio->master_bio;
2851         struct mddev *mddev = r10_bio->mddev;
2852         struct r10conf *conf = mddev->private;
2853         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2854         /* bio has the data to be written to slot 'i' where
2855          * we just recently had a write error.
2856          * We repeatedly clone the bio and trim down to one block,
2857          * then try the write.  Where the write fails we record
2858          * a bad block.
2859          * It is conceivable that the bio doesn't exactly align with
2860          * blocks.  We must handle this.
2861          *
2862          * We currently own a reference to the rdev.
2863          */
2864
2865         int block_sectors;
2866         sector_t sector;
2867         int sectors;
2868         int sect_to_write = r10_bio->sectors;
2869         int ok = 1;
2870
2871         if (rdev->badblocks.shift < 0)
2872                 return 0;
2873
2874         block_sectors = roundup(1 << rdev->badblocks.shift,
2875                                 bdev_logical_block_size(rdev->bdev) >> 9);
2876         sector = r10_bio->sector;
2877         sectors = ((r10_bio->sector + block_sectors)
2878                    & ~(sector_t)(block_sectors - 1))
2879                 - sector;
2880
2881         while (sect_to_write) {
2882                 struct bio *wbio;
2883                 sector_t wsector;
2884                 if (sectors > sect_to_write)
2885                         sectors = sect_to_write;
2886                 /* Write at 'sector' for 'sectors' */
2887                 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2888                                        &mddev->bio_set);
2889                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2890                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2891                 wbio->bi_iter.bi_sector = wsector +
2892                                    choose_data_offset(r10_bio, rdev);
2893                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2894
2895                 if (submit_bio_wait(wbio) < 0)
2896                         /* Failure! */
2897                         ok = rdev_set_badblocks(rdev, wsector,
2898                                                 sectors, 0)
2899                                 && ok;
2900
2901                 bio_put(wbio);
2902                 sect_to_write -= sectors;
2903                 sector += sectors;
2904                 sectors = block_sectors;
2905         }
2906         return ok;
2907 }
2908
2909 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2910 {
2911         int slot = r10_bio->read_slot;
2912         struct bio *bio;
2913         struct r10conf *conf = mddev->private;
2914         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2915
2916         /* we got a read error. Maybe the drive is bad.  Maybe just
2917          * the block and we can fix it.
2918          * We freeze all other IO, and try reading the block from
2919          * other devices.  When we find one, we re-write
2920          * and check it that fixes the read error.
2921          * This is all done synchronously while the array is
2922          * frozen.
2923          */
2924         bio = r10_bio->devs[slot].bio;
2925         bio_put(bio);
2926         r10_bio->devs[slot].bio = NULL;
2927
2928         if (mddev->ro)
2929                 r10_bio->devs[slot].bio = IO_BLOCKED;
2930         else if (!test_bit(FailFast, &rdev->flags)) {
2931                 freeze_array(conf, 1);
2932                 fix_read_error(conf, mddev, r10_bio);
2933                 unfreeze_array(conf);
2934         } else
2935                 md_error(mddev, rdev);
2936
2937         rdev_dec_pending(rdev, mddev);
2938         allow_barrier(conf);
2939         r10_bio->state = 0;
2940         raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2941 }
2942
2943 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2944 {
2945         /* Some sort of write request has finished and it
2946          * succeeded in writing where we thought there was a
2947          * bad block.  So forget the bad block.
2948          * Or possibly if failed and we need to record
2949          * a bad block.
2950          */
2951         int m;
2952         struct md_rdev *rdev;
2953
2954         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2955             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2956                 for (m = 0; m < conf->copies; m++) {
2957                         int dev = r10_bio->devs[m].devnum;
2958                         rdev = conf->mirrors[dev].rdev;
2959                         if (r10_bio->devs[m].bio == NULL ||
2960                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2961                                 continue;
2962                         if (!r10_bio->devs[m].bio->bi_status) {
2963                                 rdev_clear_badblocks(
2964                                         rdev,
2965                                         r10_bio->devs[m].addr,
2966                                         r10_bio->sectors, 0);
2967                         } else {
2968                                 if (!rdev_set_badblocks(
2969                                             rdev,
2970                                             r10_bio->devs[m].addr,
2971                                             r10_bio->sectors, 0))
2972                                         md_error(conf->mddev, rdev);
2973                         }
2974                         rdev = conf->mirrors[dev].replacement;
2975                         if (r10_bio->devs[m].repl_bio == NULL ||
2976                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2977                                 continue;
2978
2979                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2980                                 rdev_clear_badblocks(
2981                                         rdev,
2982                                         r10_bio->devs[m].addr,
2983                                         r10_bio->sectors, 0);
2984                         } else {
2985                                 if (!rdev_set_badblocks(
2986                                             rdev,
2987                                             r10_bio->devs[m].addr,
2988                                             r10_bio->sectors, 0))
2989                                         md_error(conf->mddev, rdev);
2990                         }
2991                 }
2992                 put_buf(r10_bio);
2993         } else {
2994                 bool fail = false;
2995                 for (m = 0; m < conf->copies; m++) {
2996                         int dev = r10_bio->devs[m].devnum;
2997                         struct bio *bio = r10_bio->devs[m].bio;
2998                         rdev = conf->mirrors[dev].rdev;
2999                         if (bio == IO_MADE_GOOD) {
3000                                 rdev_clear_badblocks(
3001                                         rdev,
3002                                         r10_bio->devs[m].addr,
3003                                         r10_bio->sectors, 0);
3004                                 rdev_dec_pending(rdev, conf->mddev);
3005                         } else if (bio != NULL && bio->bi_status) {
3006                                 fail = true;
3007                                 if (!narrow_write_error(r10_bio, m)) {
3008                                         md_error(conf->mddev, rdev);
3009                                         set_bit(R10BIO_Degraded,
3010                                                 &r10_bio->state);
3011                                 }
3012                                 rdev_dec_pending(rdev, conf->mddev);
3013                         }
3014                         bio = r10_bio->devs[m].repl_bio;
3015                         rdev = conf->mirrors[dev].replacement;
3016                         if (rdev && bio == IO_MADE_GOOD) {
3017                                 rdev_clear_badblocks(
3018                                         rdev,
3019                                         r10_bio->devs[m].addr,
3020                                         r10_bio->sectors, 0);
3021                                 rdev_dec_pending(rdev, conf->mddev);
3022                         }
3023                 }
3024                 if (fail) {
3025                         spin_lock_irq(&conf->device_lock);
3026                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3027                         conf->nr_queued++;
3028                         spin_unlock_irq(&conf->device_lock);
3029                         /*
3030                          * In case freeze_array() is waiting for condition
3031                          * nr_pending == nr_queued + extra to be true.
3032                          */
3033                         wake_up(&conf->wait_barrier);
3034                         md_wakeup_thread(conf->mddev->thread);
3035                 } else {
3036                         if (test_bit(R10BIO_WriteError,
3037                                      &r10_bio->state))
3038                                 close_write(r10_bio);
3039                         raid_end_bio_io(r10_bio);
3040                 }
3041         }
3042 }
3043
3044 static void raid10d(struct md_thread *thread)
3045 {
3046         struct mddev *mddev = thread->mddev;
3047         struct r10bio *r10_bio;
3048         unsigned long flags;
3049         struct r10conf *conf = mddev->private;
3050         struct list_head *head = &conf->retry_list;
3051         struct blk_plug plug;
3052
3053         md_check_recovery(mddev);
3054
3055         if (!list_empty_careful(&conf->bio_end_io_list) &&
3056             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3057                 LIST_HEAD(tmp);
3058                 spin_lock_irqsave(&conf->device_lock, flags);
3059                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3060                         while (!list_empty(&conf->bio_end_io_list)) {
3061                                 list_move(conf->bio_end_io_list.prev, &tmp);
3062                                 conf->nr_queued--;
3063                         }
3064                 }
3065                 spin_unlock_irqrestore(&conf->device_lock, flags);
3066                 while (!list_empty(&tmp)) {
3067                         r10_bio = list_first_entry(&tmp, struct r10bio,
3068                                                    retry_list);
3069                         list_del(&r10_bio->retry_list);
3070                         if (mddev->degraded)
3071                                 set_bit(R10BIO_Degraded, &r10_bio->state);
3072
3073                         if (test_bit(R10BIO_WriteError,
3074                                      &r10_bio->state))
3075                                 close_write(r10_bio);
3076                         raid_end_bio_io(r10_bio);
3077                 }
3078         }
3079
3080         blk_start_plug(&plug);
3081         for (;;) {
3082
3083                 flush_pending_writes(conf);
3084
3085                 spin_lock_irqsave(&conf->device_lock, flags);
3086                 if (list_empty(head)) {
3087                         spin_unlock_irqrestore(&conf->device_lock, flags);
3088                         break;
3089                 }
3090                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3091                 list_del(head->prev);
3092                 conf->nr_queued--;
3093                 spin_unlock_irqrestore(&conf->device_lock, flags);
3094
3095                 mddev = r10_bio->mddev;
3096                 conf = mddev->private;
3097                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3098                     test_bit(R10BIO_WriteError, &r10_bio->state))
3099                         handle_write_completed(conf, r10_bio);
3100                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3101                         reshape_request_write(mddev, r10_bio);
3102                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3103                         sync_request_write(mddev, r10_bio);
3104                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3105                         recovery_request_write(mddev, r10_bio);
3106                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3107                         handle_read_error(mddev, r10_bio);
3108                 else
3109                         WARN_ON_ONCE(1);
3110
3111                 cond_resched();
3112                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3113                         md_check_recovery(mddev);
3114         }
3115         blk_finish_plug(&plug);
3116 }
3117
3118 static int init_resync(struct r10conf *conf)
3119 {
3120         int ret, buffs, i;
3121
3122         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3123         BUG_ON(mempool_initialized(&conf->r10buf_pool));
3124         conf->have_replacement = 0;
3125         for (i = 0; i < conf->geo.raid_disks; i++)
3126                 if (conf->mirrors[i].replacement)
3127                         conf->have_replacement = 1;
3128         ret = mempool_init(&conf->r10buf_pool, buffs,
3129                            r10buf_pool_alloc, r10buf_pool_free, conf);
3130         if (ret)
3131                 return ret;
3132         conf->next_resync = 0;
3133         return 0;
3134 }
3135
3136 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3137 {
3138         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3139         struct rsync_pages *rp;
3140         struct bio *bio;
3141         int nalloc;
3142         int i;
3143
3144         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3145             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3146                 nalloc = conf->copies; /* resync */
3147         else
3148                 nalloc = 2; /* recovery */
3149
3150         for (i = 0; i < nalloc; i++) {
3151                 bio = r10bio->devs[i].bio;
3152                 rp = bio->bi_private;
3153                 bio_reset(bio, NULL, 0);
3154                 bio->bi_private = rp;
3155                 bio = r10bio->devs[i].repl_bio;
3156                 if (bio) {
3157                         rp = bio->bi_private;
3158                         bio_reset(bio, NULL, 0);
3159                         bio->bi_private = rp;
3160                 }
3161         }
3162         return r10bio;
3163 }
3164
3165 /*
3166  * Set cluster_sync_high since we need other nodes to add the
3167  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3168  */
3169 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3170 {
3171         sector_t window_size;
3172         int extra_chunk, chunks;
3173
3174         /*
3175          * First, here we define "stripe" as a unit which across
3176          * all member devices one time, so we get chunks by use
3177          * raid_disks / near_copies. Otherwise, if near_copies is
3178          * close to raid_disks, then resync window could increases
3179          * linearly with the increase of raid_disks, which means
3180          * we will suspend a really large IO window while it is not
3181          * necessary. If raid_disks is not divisible by near_copies,
3182          * an extra chunk is needed to ensure the whole "stripe" is
3183          * covered.
3184          */
3185
3186         chunks = conf->geo.raid_disks / conf->geo.near_copies;
3187         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3188                 extra_chunk = 0;
3189         else
3190                 extra_chunk = 1;
3191         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3192
3193         /*
3194          * At least use a 32M window to align with raid1's resync window
3195          */
3196         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3197                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3198
3199         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3200 }
3201
3202 /*
3203  * perform a "sync" on one "block"
3204  *
3205  * We need to make sure that no normal I/O request - particularly write
3206  * requests - conflict with active sync requests.
3207  *
3208  * This is achieved by tracking pending requests and a 'barrier' concept
3209  * that can be installed to exclude normal IO requests.
3210  *
3211  * Resync and recovery are handled very differently.
3212  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3213  *
3214  * For resync, we iterate over virtual addresses, read all copies,
3215  * and update if there are differences.  If only one copy is live,
3216  * skip it.
3217  * For recovery, we iterate over physical addresses, read a good
3218  * value for each non-in_sync drive, and over-write.
3219  *
3220  * So, for recovery we may have several outstanding complex requests for a
3221  * given address, one for each out-of-sync device.  We model this by allocating
3222  * a number of r10_bio structures, one for each out-of-sync device.
3223  * As we setup these structures, we collect all bio's together into a list
3224  * which we then process collectively to add pages, and then process again
3225  * to pass to submit_bio_noacct.
3226  *
3227  * The r10_bio structures are linked using a borrowed master_bio pointer.
3228  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3229  * has its remaining count decremented to 0, the whole complex operation
3230  * is complete.
3231  *
3232  */
3233
3234 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3235                              int *skipped)
3236 {
3237         struct r10conf *conf = mddev->private;
3238         struct r10bio *r10_bio;
3239         struct bio *biolist = NULL, *bio;
3240         sector_t max_sector, nr_sectors;
3241         int i;
3242         int max_sync;
3243         sector_t sync_blocks;
3244         sector_t sectors_skipped = 0;
3245         int chunks_skipped = 0;
3246         sector_t chunk_mask = conf->geo.chunk_mask;
3247         int page_idx = 0;
3248
3249         if (!mempool_initialized(&conf->r10buf_pool))
3250                 if (init_resync(conf))
3251                         return 0;
3252
3253         /*
3254          * Allow skipping a full rebuild for incremental assembly
3255          * of a clean array, like RAID1 does.
3256          */
3257         if (mddev->bitmap == NULL &&
3258             mddev->recovery_cp == MaxSector &&
3259             mddev->reshape_position == MaxSector &&
3260             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3261             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3262             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3263             conf->fullsync == 0) {
3264                 *skipped = 1;
3265                 return mddev->dev_sectors - sector_nr;
3266         }
3267
3268  skipped:
3269         max_sector = mddev->dev_sectors;
3270         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3271             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3272                 max_sector = mddev->resync_max_sectors;
3273         if (sector_nr >= max_sector) {
3274                 conf->cluster_sync_low = 0;
3275                 conf->cluster_sync_high = 0;
3276
3277                 /* If we aborted, we need to abort the
3278                  * sync on the 'current' bitmap chucks (there can
3279                  * be several when recovering multiple devices).
3280                  * as we may have started syncing it but not finished.
3281                  * We can find the current address in
3282                  * mddev->curr_resync, but for recovery,
3283                  * we need to convert that to several
3284                  * virtual addresses.
3285                  */
3286                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3287                         end_reshape(conf);
3288                         close_sync(conf);
3289                         return 0;
3290                 }
3291
3292                 if (mddev->curr_resync < max_sector) { /* aborted */
3293                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3294                                 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3295                                                    &sync_blocks, 1);
3296                         else for (i = 0; i < conf->geo.raid_disks; i++) {
3297                                 sector_t sect =
3298                                         raid10_find_virt(conf, mddev->curr_resync, i);
3299                                 md_bitmap_end_sync(mddev->bitmap, sect,
3300                                                    &sync_blocks, 1);
3301                         }
3302                 } else {
3303                         /* completed sync */
3304                         if ((!mddev->bitmap || conf->fullsync)
3305                             && conf->have_replacement
3306                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3307                                 /* Completed a full sync so the replacements
3308                                  * are now fully recovered.
3309                                  */
3310                                 rcu_read_lock();
3311                                 for (i = 0; i < conf->geo.raid_disks; i++) {
3312                                         struct md_rdev *rdev =
3313                                                 rcu_dereference(conf->mirrors[i].replacement);
3314                                         if (rdev)
3315                                                 rdev->recovery_offset = MaxSector;
3316                                 }
3317                                 rcu_read_unlock();
3318                         }
3319                         conf->fullsync = 0;
3320                 }
3321                 md_bitmap_close_sync(mddev->bitmap);
3322                 close_sync(conf);
3323                 *skipped = 1;
3324                 return sectors_skipped;
3325         }
3326
3327         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3328                 return reshape_request(mddev, sector_nr, skipped);
3329
3330         if (chunks_skipped >= conf->geo.raid_disks) {
3331                 /* if there has been nothing to do on any drive,
3332                  * then there is nothing to do at all..
3333                  */
3334                 *skipped = 1;
3335                 return (max_sector - sector_nr) + sectors_skipped;
3336         }
3337
3338         if (max_sector > mddev->resync_max)
3339                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3340
3341         /* make sure whole request will fit in a chunk - if chunks
3342          * are meaningful
3343          */
3344         if (conf->geo.near_copies < conf->geo.raid_disks &&
3345             max_sector > (sector_nr | chunk_mask))
3346                 max_sector = (sector_nr | chunk_mask) + 1;
3347
3348         /*
3349          * If there is non-resync activity waiting for a turn, then let it
3350          * though before starting on this new sync request.
3351          */
3352         if (conf->nr_waiting)
3353                 schedule_timeout_uninterruptible(1);
3354
3355         /* Again, very different code for resync and recovery.
3356          * Both must result in an r10bio with a list of bios that
3357          * have bi_end_io, bi_sector, bi_bdev set,
3358          * and bi_private set to the r10bio.
3359          * For recovery, we may actually create several r10bios
3360          * with 2 bios in each, that correspond to the bios in the main one.
3361          * In this case, the subordinate r10bios link back through a
3362          * borrowed master_bio pointer, and the counter in the master
3363          * includes a ref from each subordinate.
3364          */
3365         /* First, we decide what to do and set ->bi_end_io
3366          * To end_sync_read if we want to read, and
3367          * end_sync_write if we will want to write.
3368          */
3369
3370         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3371         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3372                 /* recovery... the complicated one */
3373                 int j;
3374                 r10_bio = NULL;
3375
3376                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3377                         int still_degraded;
3378                         struct r10bio *rb2;
3379                         sector_t sect;
3380                         int must_sync;
3381                         int any_working;
3382                         int need_recover = 0;
3383                         int need_replace = 0;
3384                         struct raid10_info *mirror = &conf->mirrors[i];
3385                         struct md_rdev *mrdev, *mreplace;
3386
3387                         rcu_read_lock();
3388                         mrdev = rcu_dereference(mirror->rdev);
3389                         mreplace = rcu_dereference(mirror->replacement);
3390
3391                         if (mrdev != NULL &&
3392                             !test_bit(Faulty, &mrdev->flags) &&
3393                             !test_bit(In_sync, &mrdev->flags))
3394                                 need_recover = 1;
3395                         if (mreplace != NULL &&
3396                             !test_bit(Faulty, &mreplace->flags))
3397                                 need_replace = 1;
3398
3399                         if (!need_recover && !need_replace) {
3400                                 rcu_read_unlock();
3401                                 continue;
3402                         }
3403
3404                         still_degraded = 0;
3405                         /* want to reconstruct this device */
3406                         rb2 = r10_bio;
3407                         sect = raid10_find_virt(conf, sector_nr, i);
3408                         if (sect >= mddev->resync_max_sectors) {
3409                                 /* last stripe is not complete - don't
3410                                  * try to recover this sector.
3411                                  */
3412                                 rcu_read_unlock();
3413                                 continue;
3414                         }
3415                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3416                                 mreplace = NULL;
3417                         /* Unless we are doing a full sync, or a replacement
3418                          * we only need to recover the block if it is set in
3419                          * the bitmap
3420                          */
3421                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3422                                                          &sync_blocks, 1);
3423                         if (sync_blocks < max_sync)
3424                                 max_sync = sync_blocks;
3425                         if (!must_sync &&
3426                             mreplace == NULL &&
3427                             !conf->fullsync) {
3428                                 /* yep, skip the sync_blocks here, but don't assume
3429                                  * that there will never be anything to do here
3430                                  */
3431                                 chunks_skipped = -1;
3432                                 rcu_read_unlock();
3433                                 continue;
3434                         }
3435                         atomic_inc(&mrdev->nr_pending);
3436                         if (mreplace)
3437                                 atomic_inc(&mreplace->nr_pending);
3438                         rcu_read_unlock();
3439
3440                         r10_bio = raid10_alloc_init_r10buf(conf);
3441                         r10_bio->state = 0;
3442                         raise_barrier(conf, rb2 != NULL);
3443                         atomic_set(&r10_bio->remaining, 0);
3444
3445                         r10_bio->master_bio = (struct bio*)rb2;
3446                         if (rb2)
3447                                 atomic_inc(&rb2->remaining);
3448                         r10_bio->mddev = mddev;
3449                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3450                         r10_bio->sector = sect;
3451
3452                         raid10_find_phys(conf, r10_bio);
3453
3454                         /* Need to check if the array will still be
3455                          * degraded
3456                          */
3457                         rcu_read_lock();
3458                         for (j = 0; j < conf->geo.raid_disks; j++) {
3459                                 struct md_rdev *rdev = rcu_dereference(
3460                                         conf->mirrors[j].rdev);
3461                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3462                                         still_degraded = 1;
3463                                         break;
3464                                 }
3465                         }
3466
3467                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3468                                                          &sync_blocks, still_degraded);
3469
3470                         any_working = 0;
3471                         for (j=0; j<conf->copies;j++) {
3472                                 int k;
3473                                 int d = r10_bio->devs[j].devnum;
3474                                 sector_t from_addr, to_addr;
3475                                 struct md_rdev *rdev =
3476                                         rcu_dereference(conf->mirrors[d].rdev);
3477                                 sector_t sector, first_bad;
3478                                 int bad_sectors;
3479                                 if (!rdev ||
3480                                     !test_bit(In_sync, &rdev->flags))
3481                                         continue;
3482                                 /* This is where we read from */
3483                                 any_working = 1;
3484                                 sector = r10_bio->devs[j].addr;
3485
3486                                 if (is_badblock(rdev, sector, max_sync,
3487                                                 &first_bad, &bad_sectors)) {
3488                                         if (first_bad > sector)
3489                                                 max_sync = first_bad - sector;
3490                                         else {
3491                                                 bad_sectors -= (sector
3492                                                                 - first_bad);
3493                                                 if (max_sync > bad_sectors)
3494                                                         max_sync = bad_sectors;
3495                                                 continue;
3496                                         }
3497                                 }
3498                                 bio = r10_bio->devs[0].bio;
3499                                 bio->bi_next = biolist;
3500                                 biolist = bio;
3501                                 bio->bi_end_io = end_sync_read;
3502                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3503                                 if (test_bit(FailFast, &rdev->flags))
3504                                         bio->bi_opf |= MD_FAILFAST;
3505                                 from_addr = r10_bio->devs[j].addr;
3506                                 bio->bi_iter.bi_sector = from_addr +
3507                                         rdev->data_offset;
3508                                 bio_set_dev(bio, rdev->bdev);
3509                                 atomic_inc(&rdev->nr_pending);
3510                                 /* and we write to 'i' (if not in_sync) */
3511
3512                                 for (k=0; k<conf->copies; k++)
3513                                         if (r10_bio->devs[k].devnum == i)
3514                                                 break;
3515                                 BUG_ON(k == conf->copies);
3516                                 to_addr = r10_bio->devs[k].addr;
3517                                 r10_bio->devs[0].devnum = d;
3518                                 r10_bio->devs[0].addr = from_addr;
3519                                 r10_bio->devs[1].devnum = i;
3520                                 r10_bio->devs[1].addr = to_addr;
3521
3522                                 if (need_recover) {
3523                                         bio = r10_bio->devs[1].bio;
3524                                         bio->bi_next = biolist;
3525                                         biolist = bio;
3526                                         bio->bi_end_io = end_sync_write;
3527                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3528                                         bio->bi_iter.bi_sector = to_addr
3529                                                 + mrdev->data_offset;
3530                                         bio_set_dev(bio, mrdev->bdev);
3531                                         atomic_inc(&r10_bio->remaining);
3532                                 } else
3533                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3534
3535                                 /* and maybe write to replacement */
3536                                 bio = r10_bio->devs[1].repl_bio;
3537                                 if (bio)
3538                                         bio->bi_end_io = NULL;
3539                                 /* Note: if need_replace, then bio
3540                                  * cannot be NULL as r10buf_pool_alloc will
3541                                  * have allocated it.
3542                                  */
3543                                 if (!need_replace)
3544                                         break;
3545                                 bio->bi_next = biolist;
3546                                 biolist = bio;
3547                                 bio->bi_end_io = end_sync_write;
3548                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3549                                 bio->bi_iter.bi_sector = to_addr +
3550                                         mreplace->data_offset;
3551                                 bio_set_dev(bio, mreplace->bdev);
3552                                 atomic_inc(&r10_bio->remaining);
3553                                 break;
3554                         }
3555                         rcu_read_unlock();
3556                         if (j == conf->copies) {
3557                                 /* Cannot recover, so abort the recovery or
3558                                  * record a bad block */
3559                                 if (any_working) {
3560                                         /* problem is that there are bad blocks
3561                                          * on other device(s)
3562                                          */
3563                                         int k;
3564                                         for (k = 0; k < conf->copies; k++)
3565                                                 if (r10_bio->devs[k].devnum == i)
3566                                                         break;
3567                                         if (!test_bit(In_sync,
3568                                                       &mrdev->flags)
3569                                             && !rdev_set_badblocks(
3570                                                     mrdev,
3571                                                     r10_bio->devs[k].addr,
3572                                                     max_sync, 0))
3573                                                 any_working = 0;
3574                                         if (mreplace &&
3575                                             !rdev_set_badblocks(
3576                                                     mreplace,
3577                                                     r10_bio->devs[k].addr,
3578                                                     max_sync, 0))
3579                                                 any_working = 0;
3580                                 }
3581                                 if (!any_working)  {
3582                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3583                                                               &mddev->recovery))
3584                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3585                                                        mdname(mddev));
3586                                         mirror->recovery_disabled
3587                                                 = mddev->recovery_disabled;
3588                                 }
3589                                 put_buf(r10_bio);
3590                                 if (rb2)
3591                                         atomic_dec(&rb2->remaining);
3592                                 r10_bio = rb2;
3593                                 rdev_dec_pending(mrdev, mddev);
3594                                 if (mreplace)
3595                                         rdev_dec_pending(mreplace, mddev);
3596                                 break;
3597                         }
3598                         rdev_dec_pending(mrdev, mddev);
3599                         if (mreplace)
3600                                 rdev_dec_pending(mreplace, mddev);
3601                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3602                                 /* Only want this if there is elsewhere to
3603                                  * read from. 'j' is currently the first
3604                                  * readable copy.
3605                                  */
3606                                 int targets = 1;
3607                                 for (; j < conf->copies; j++) {
3608                                         int d = r10_bio->devs[j].devnum;
3609                                         if (conf->mirrors[d].rdev &&
3610                                             test_bit(In_sync,
3611                                                       &conf->mirrors[d].rdev->flags))
3612                                                 targets++;
3613                                 }
3614                                 if (targets == 1)
3615                                         r10_bio->devs[0].bio->bi_opf
3616                                                 &= ~MD_FAILFAST;
3617                         }
3618                 }
3619                 if (biolist == NULL) {
3620                         while (r10_bio) {
3621                                 struct r10bio *rb2 = r10_bio;
3622                                 r10_bio = (struct r10bio*) rb2->master_bio;
3623                                 rb2->master_bio = NULL;
3624                                 put_buf(rb2);
3625                         }
3626                         goto giveup;
3627                 }
3628         } else {
3629                 /* resync. Schedule a read for every block at this virt offset */
3630                 int count = 0;
3631
3632                 /*
3633                  * Since curr_resync_completed could probably not update in
3634                  * time, and we will set cluster_sync_low based on it.
3635                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3636                  * safety reason, which ensures curr_resync_completed is
3637                  * updated in bitmap_cond_end_sync.
3638                  */
3639                 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3640                                         mddev_is_clustered(mddev) &&
3641                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3642
3643                 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3644                                           &sync_blocks, mddev->degraded) &&
3645                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3646                                                  &mddev->recovery)) {
3647                         /* We can skip this block */
3648                         *skipped = 1;
3649                         return sync_blocks + sectors_skipped;
3650                 }
3651                 if (sync_blocks < max_sync)
3652                         max_sync = sync_blocks;
3653                 r10_bio = raid10_alloc_init_r10buf(conf);
3654                 r10_bio->state = 0;
3655
3656                 r10_bio->mddev = mddev;
3657                 atomic_set(&r10_bio->remaining, 0);
3658                 raise_barrier(conf, 0);
3659                 conf->next_resync = sector_nr;
3660
3661                 r10_bio->master_bio = NULL;
3662                 r10_bio->sector = sector_nr;
3663                 set_bit(R10BIO_IsSync, &r10_bio->state);
3664                 raid10_find_phys(conf, r10_bio);
3665                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3666
3667                 for (i = 0; i < conf->copies; i++) {
3668                         int d = r10_bio->devs[i].devnum;
3669                         sector_t first_bad, sector;
3670                         int bad_sectors;
3671                         struct md_rdev *rdev;
3672
3673                         if (r10_bio->devs[i].repl_bio)
3674                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3675
3676                         bio = r10_bio->devs[i].bio;
3677                         bio->bi_status = BLK_STS_IOERR;
3678                         rcu_read_lock();
3679                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3680                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3681                                 rcu_read_unlock();
3682                                 continue;
3683                         }
3684                         sector = r10_bio->devs[i].addr;
3685                         if (is_badblock(rdev, sector, max_sync,
3686                                         &first_bad, &bad_sectors)) {
3687                                 if (first_bad > sector)
3688                                         max_sync = first_bad - sector;
3689                                 else {
3690                                         bad_sectors -= (sector - first_bad);
3691                                         if (max_sync > bad_sectors)
3692                                                 max_sync = bad_sectors;
3693                                         rcu_read_unlock();
3694                                         continue;
3695                                 }
3696                         }
3697                         atomic_inc(&rdev->nr_pending);
3698                         atomic_inc(&r10_bio->remaining);
3699                         bio->bi_next = biolist;
3700                         biolist = bio;
3701                         bio->bi_end_io = end_sync_read;
3702                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3703                         if (test_bit(FailFast, &rdev->flags))
3704                                 bio->bi_opf |= MD_FAILFAST;
3705                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3706                         bio_set_dev(bio, rdev->bdev);
3707                         count++;
3708
3709                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3710                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3711                                 rcu_read_unlock();
3712                                 continue;
3713                         }
3714                         atomic_inc(&rdev->nr_pending);
3715
3716                         /* Need to set up for writing to the replacement */
3717                         bio = r10_bio->devs[i].repl_bio;
3718                         bio->bi_status = BLK_STS_IOERR;
3719
3720                         sector = r10_bio->devs[i].addr;
3721                         bio->bi_next = biolist;
3722                         biolist = bio;
3723                         bio->bi_end_io = end_sync_write;
3724                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3725                         if (test_bit(FailFast, &rdev->flags))
3726                                 bio->bi_opf |= MD_FAILFAST;
3727                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3728                         bio_set_dev(bio, rdev->bdev);
3729                         count++;
3730                         rcu_read_unlock();
3731                 }
3732
3733                 if (count < 2) {
3734                         for (i=0; i<conf->copies; i++) {
3735                                 int d = r10_bio->devs[i].devnum;
3736                                 if (r10_bio->devs[i].bio->bi_end_io)
3737                                         rdev_dec_pending(conf->mirrors[d].rdev,
3738                                                          mddev);
3739                                 if (r10_bio->devs[i].repl_bio &&
3740                                     r10_bio->devs[i].repl_bio->bi_end_io)
3741                                         rdev_dec_pending(
3742                                                 conf->mirrors[d].replacement,
3743                                                 mddev);
3744                         }
3745                         put_buf(r10_bio);
3746                         biolist = NULL;
3747                         goto giveup;
3748                 }
3749         }
3750
3751         nr_sectors = 0;
3752         if (sector_nr + max_sync < max_sector)
3753                 max_sector = sector_nr + max_sync;
3754         do {
3755                 struct page *page;
3756                 int len = PAGE_SIZE;
3757                 if (sector_nr + (len>>9) > max_sector)
3758                         len = (max_sector - sector_nr) << 9;
3759                 if (len == 0)
3760                         break;
3761                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3762                         struct resync_pages *rp = get_resync_pages(bio);
3763                         page = resync_fetch_page(rp, page_idx);
3764                         /*
3765                          * won't fail because the vec table is big enough
3766                          * to hold all these pages
3767                          */
3768                         bio_add_page(bio, page, len, 0);
3769                 }
3770                 nr_sectors += len>>9;
3771                 sector_nr += len>>9;
3772         } while (++page_idx < RESYNC_PAGES);
3773         r10_bio->sectors = nr_sectors;
3774
3775         if (mddev_is_clustered(mddev) &&
3776             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3777                 /* It is resync not recovery */
3778                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3779                         conf->cluster_sync_low = mddev->curr_resync_completed;
3780                         raid10_set_cluster_sync_high(conf);
3781                         /* Send resync message */
3782                         md_cluster_ops->resync_info_update(mddev,
3783                                                 conf->cluster_sync_low,
3784                                                 conf->cluster_sync_high);
3785                 }
3786         } else if (mddev_is_clustered(mddev)) {
3787                 /* This is recovery not resync */
3788                 sector_t sect_va1, sect_va2;
3789                 bool broadcast_msg = false;
3790
3791                 for (i = 0; i < conf->geo.raid_disks; i++) {
3792                         /*
3793                          * sector_nr is a device address for recovery, so we
3794                          * need translate it to array address before compare
3795                          * with cluster_sync_high.
3796                          */
3797                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3798
3799                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3800                                 broadcast_msg = true;
3801                                 /*
3802                                  * curr_resync_completed is similar as
3803                                  * sector_nr, so make the translation too.
3804                                  */
3805                                 sect_va2 = raid10_find_virt(conf,
3806                                         mddev->curr_resync_completed, i);
3807
3808                                 if (conf->cluster_sync_low == 0 ||
3809                                     conf->cluster_sync_low > sect_va2)
3810                                         conf->cluster_sync_low = sect_va2;
3811                         }
3812                 }
3813                 if (broadcast_msg) {
3814                         raid10_set_cluster_sync_high(conf);
3815                         md_cluster_ops->resync_info_update(mddev,
3816                                                 conf->cluster_sync_low,
3817                                                 conf->cluster_sync_high);
3818                 }
3819         }
3820
3821         while (biolist) {
3822                 bio = biolist;
3823                 biolist = biolist->bi_next;
3824
3825                 bio->bi_next = NULL;
3826                 r10_bio = get_resync_r10bio(bio);
3827                 r10_bio->sectors = nr_sectors;
3828
3829                 if (bio->bi_end_io == end_sync_read) {
3830                         md_sync_acct_bio(bio, nr_sectors);
3831                         bio->bi_status = 0;
3832                         submit_bio_noacct(bio);
3833                 }
3834         }
3835
3836         if (sectors_skipped)
3837                 /* pretend they weren't skipped, it makes
3838                  * no important difference in this case
3839                  */
3840                 md_done_sync(mddev, sectors_skipped, 1);
3841
3842         return sectors_skipped + nr_sectors;
3843  giveup:
3844         /* There is nowhere to write, so all non-sync
3845          * drives must be failed or in resync, all drives
3846          * have a bad block, so try the next chunk...
3847          */
3848         if (sector_nr + max_sync < max_sector)
3849                 max_sector = sector_nr + max_sync;
3850
3851         sectors_skipped += (max_sector - sector_nr);
3852         chunks_skipped ++;
3853         sector_nr = max_sector;
3854         goto skipped;
3855 }
3856
3857 static sector_t
3858 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3859 {
3860         sector_t size;
3861         struct r10conf *conf = mddev->private;
3862
3863         if (!raid_disks)
3864                 raid_disks = min(conf->geo.raid_disks,
3865                                  conf->prev.raid_disks);
3866         if (!sectors)
3867                 sectors = conf->dev_sectors;
3868
3869         size = sectors >> conf->geo.chunk_shift;
3870         sector_div(size, conf->geo.far_copies);
3871         size = size * raid_disks;
3872         sector_div(size, conf->geo.near_copies);
3873
3874         return size << conf->geo.chunk_shift;
3875 }
3876
3877 static void calc_sectors(struct r10conf *conf, sector_t size)
3878 {
3879         /* Calculate the number of sectors-per-device that will
3880          * actually be used, and set conf->dev_sectors and
3881          * conf->stride
3882          */
3883
3884         size = size >> conf->geo.chunk_shift;
3885         sector_div(size, conf->geo.far_copies);
3886         size = size * conf->geo.raid_disks;
3887         sector_div(size, conf->geo.near_copies);
3888         /* 'size' is now the number of chunks in the array */
3889         /* calculate "used chunks per device" */
3890         size = size * conf->copies;
3891
3892         /* We need to round up when dividing by raid_disks to
3893          * get the stride size.
3894          */
3895         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3896
3897         conf->dev_sectors = size << conf->geo.chunk_shift;
3898
3899         if (conf->geo.far_offset)
3900                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3901         else {
3902                 sector_div(size, conf->geo.far_copies);
3903                 conf->geo.stride = size << conf->geo.chunk_shift;
3904         }
3905 }
3906
3907 enum geo_type {geo_new, geo_old, geo_start};
3908 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3909 {
3910         int nc, fc, fo;
3911         int layout, chunk, disks;
3912         switch (new) {
3913         case geo_old:
3914                 layout = mddev->layout;
3915                 chunk = mddev->chunk_sectors;
3916                 disks = mddev->raid_disks - mddev->delta_disks;
3917                 break;
3918         case geo_new:
3919                 layout = mddev->new_layout;
3920                 chunk = mddev->new_chunk_sectors;
3921                 disks = mddev->raid_disks;
3922                 break;
3923         default: /* avoid 'may be unused' warnings */
3924         case geo_start: /* new when starting reshape - raid_disks not
3925                          * updated yet. */
3926                 layout = mddev->new_layout;
3927                 chunk = mddev->new_chunk_sectors;
3928                 disks = mddev->raid_disks + mddev->delta_disks;
3929                 break;
3930         }
3931         if (layout >> 19)
3932                 return -1;
3933         if (chunk < (PAGE_SIZE >> 9) ||
3934             !is_power_of_2(chunk))
3935                 return -2;
3936         nc = layout & 255;
3937         fc = (layout >> 8) & 255;
3938         fo = layout & (1<<16);
3939         geo->raid_disks = disks;
3940         geo->near_copies = nc;
3941         geo->far_copies = fc;
3942         geo->far_offset = fo;
3943         switch (layout >> 17) {
3944         case 0: /* original layout.  simple but not always optimal */
3945                 geo->far_set_size = disks;
3946                 break;
3947         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3948                  * actually using this, but leave code here just in case.*/
3949                 geo->far_set_size = disks/fc;
3950                 WARN(geo->far_set_size < fc,
3951                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3952                 break;
3953         case 2: /* "improved" layout fixed to match documentation */
3954                 geo->far_set_size = fc * nc;
3955                 break;
3956         default: /* Not a valid layout */
3957                 return -1;
3958         }
3959         geo->chunk_mask = chunk - 1;
3960         geo->chunk_shift = ffz(~chunk);
3961         return nc*fc;
3962 }
3963
3964 static struct r10conf *setup_conf(struct mddev *mddev)
3965 {
3966         struct r10conf *conf = NULL;
3967         int err = -EINVAL;
3968         struct geom geo;
3969         int copies;
3970
3971         copies = setup_geo(&geo, mddev, geo_new);
3972
3973         if (copies == -2) {
3974                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3975                         mdname(mddev), PAGE_SIZE);
3976                 goto out;
3977         }
3978
3979         if (copies < 2 || copies > mddev->raid_disks) {
3980                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3981                         mdname(mddev), mddev->new_layout);
3982                 goto out;
3983         }
3984
3985         err = -ENOMEM;
3986         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3987         if (!conf)
3988                 goto out;
3989
3990         /* FIXME calc properly */
3991         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3992                                 sizeof(struct raid10_info),
3993                                 GFP_KERNEL);
3994         if (!conf->mirrors)
3995                 goto out;
3996
3997         conf->tmppage = alloc_page(GFP_KERNEL);
3998         if (!conf->tmppage)
3999                 goto out;
4000
4001         conf->geo = geo;
4002         conf->copies = copies;
4003         err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
4004                            rbio_pool_free, conf);
4005         if (err)
4006                 goto out;
4007
4008         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
4009         if (err)
4010                 goto out;
4011
4012         calc_sectors(conf, mddev->dev_sectors);
4013         if (mddev->reshape_position == MaxSector) {
4014                 conf->prev = conf->geo;
4015                 conf->reshape_progress = MaxSector;
4016         } else {
4017                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
4018                         err = -EINVAL;
4019                         goto out;
4020                 }
4021                 conf->reshape_progress = mddev->reshape_position;
4022                 if (conf->prev.far_offset)
4023                         conf->prev.stride = 1 << conf->prev.chunk_shift;
4024                 else
4025                         /* far_copies must be 1 */
4026                         conf->prev.stride = conf->dev_sectors;
4027         }
4028         conf->reshape_safe = conf->reshape_progress;
4029         spin_lock_init(&conf->device_lock);
4030         INIT_LIST_HEAD(&conf->retry_list);
4031         INIT_LIST_HEAD(&conf->bio_end_io_list);
4032
4033         spin_lock_init(&conf->resync_lock);
4034         init_waitqueue_head(&conf->wait_barrier);
4035         atomic_set(&conf->nr_pending, 0);
4036
4037         err = -ENOMEM;
4038         conf->thread = md_register_thread(raid10d, mddev, "raid10");
4039         if (!conf->thread)
4040                 goto out;
4041
4042         conf->mddev = mddev;
4043         return conf;
4044
4045  out:
4046         if (conf) {
4047                 mempool_exit(&conf->r10bio_pool);
4048                 kfree(conf->mirrors);
4049                 safe_put_page(conf->tmppage);
4050                 bioset_exit(&conf->bio_split);
4051                 kfree(conf);
4052         }
4053         return ERR_PTR(err);
4054 }
4055
4056 static void raid10_set_io_opt(struct r10conf *conf)
4057 {
4058         int raid_disks = conf->geo.raid_disks;
4059
4060         if (!(conf->geo.raid_disks % conf->geo.near_copies))
4061                 raid_disks /= conf->geo.near_copies;
4062         blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4063                          raid_disks);
4064 }
4065
4066 static int raid10_run(struct mddev *mddev)
4067 {
4068         struct r10conf *conf;
4069         int i, disk_idx;
4070         struct raid10_info *disk;
4071         struct md_rdev *rdev;
4072         sector_t size;
4073         sector_t min_offset_diff = 0;
4074         int first = 1;
4075
4076         if (mddev_init_writes_pending(mddev) < 0)
4077                 return -ENOMEM;
4078
4079         if (mddev->private == NULL) {
4080                 conf = setup_conf(mddev);
4081                 if (IS_ERR(conf))
4082                         return PTR_ERR(conf);
4083                 mddev->private = conf;
4084         }
4085         conf = mddev->private;
4086         if (!conf)
4087                 goto out;
4088
4089         if (mddev_is_clustered(conf->mddev)) {
4090                 int fc, fo;
4091
4092                 fc = (mddev->layout >> 8) & 255;
4093                 fo = mddev->layout & (1<<16);
4094                 if (fc > 1 || fo > 0) {
4095                         pr_err("only near layout is supported by clustered"
4096                                 " raid10\n");
4097                         goto out_free_conf;
4098                 }
4099         }
4100
4101         mddev->thread = conf->thread;
4102         conf->thread = NULL;
4103
4104         if (mddev->queue) {
4105                 blk_queue_max_discard_sectors(mddev->queue,
4106                                               UINT_MAX);
4107                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4108                 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4109                 raid10_set_io_opt(conf);
4110         }
4111
4112         rdev_for_each(rdev, mddev) {
4113                 long long diff;
4114
4115                 disk_idx = rdev->raid_disk;
4116                 if (disk_idx < 0)
4117                         continue;
4118                 if (disk_idx >= conf->geo.raid_disks &&
4119                     disk_idx >= conf->prev.raid_disks)
4120                         continue;
4121                 disk = conf->mirrors + disk_idx;
4122
4123                 if (test_bit(Replacement, &rdev->flags)) {
4124                         if (disk->replacement)
4125                                 goto out_free_conf;
4126                         disk->replacement = rdev;
4127                 } else {
4128                         if (disk->rdev)
4129                                 goto out_free_conf;
4130                         disk->rdev = rdev;
4131                 }
4132                 diff = (rdev->new_data_offset - rdev->data_offset);
4133                 if (!mddev->reshape_backwards)
4134                         diff = -diff;
4135                 if (diff < 0)
4136                         diff = 0;
4137                 if (first || diff < min_offset_diff)
4138                         min_offset_diff = diff;
4139
4140                 if (mddev->gendisk)
4141                         disk_stack_limits(mddev->gendisk, rdev->bdev,
4142                                           rdev->data_offset << 9);
4143
4144                 disk->head_position = 0;
4145                 first = 0;
4146         }
4147
4148         /* need to check that every block has at least one working mirror */
4149         if (!enough(conf, -1)) {
4150                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4151                        mdname(mddev));
4152                 goto out_free_conf;
4153         }
4154
4155         if (conf->reshape_progress != MaxSector) {
4156                 /* must ensure that shape change is supported */
4157                 if (conf->geo.far_copies != 1 &&
4158                     conf->geo.far_offset == 0)
4159                         goto out_free_conf;
4160                 if (conf->prev.far_copies != 1 &&
4161                     conf->prev.far_offset == 0)
4162                         goto out_free_conf;
4163         }
4164
4165         mddev->degraded = 0;
4166         for (i = 0;
4167              i < conf->geo.raid_disks
4168                      || i < conf->prev.raid_disks;
4169              i++) {
4170
4171                 disk = conf->mirrors + i;
4172
4173                 if (!disk->rdev && disk->replacement) {
4174                         /* The replacement is all we have - use it */
4175                         disk->rdev = disk->replacement;
4176                         disk->replacement = NULL;
4177                         clear_bit(Replacement, &disk->rdev->flags);
4178                 }
4179
4180                 if (!disk->rdev ||
4181                     !test_bit(In_sync, &disk->rdev->flags)) {
4182                         disk->head_position = 0;
4183                         mddev->degraded++;
4184                         if (disk->rdev &&
4185                             disk->rdev->saved_raid_disk < 0)
4186                                 conf->fullsync = 1;
4187                 }
4188
4189                 if (disk->replacement &&
4190                     !test_bit(In_sync, &disk->replacement->flags) &&
4191                     disk->replacement->saved_raid_disk < 0) {
4192                         conf->fullsync = 1;
4193                 }
4194
4195                 disk->recovery_disabled = mddev->recovery_disabled - 1;
4196         }
4197
4198         if (mddev->recovery_cp != MaxSector)
4199                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4200                           mdname(mddev));
4201         pr_info("md/raid10:%s: active with %d out of %d devices\n",
4202                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4203                 conf->geo.raid_disks);
4204         /*
4205          * Ok, everything is just fine now
4206          */
4207         mddev->dev_sectors = conf->dev_sectors;
4208         size = raid10_size(mddev, 0, 0);
4209         md_set_array_sectors(mddev, size);
4210         mddev->resync_max_sectors = size;
4211         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4212
4213         if (md_integrity_register(mddev))
4214                 goto out_free_conf;
4215
4216         if (conf->reshape_progress != MaxSector) {
4217                 unsigned long before_length, after_length;
4218
4219                 before_length = ((1 << conf->prev.chunk_shift) *
4220                                  conf->prev.far_copies);
4221                 after_length = ((1 << conf->geo.chunk_shift) *
4222                                 conf->geo.far_copies);
4223
4224                 if (max(before_length, after_length) > min_offset_diff) {
4225                         /* This cannot work */
4226                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4227                         goto out_free_conf;
4228                 }
4229                 conf->offset_diff = min_offset_diff;
4230
4231                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4232                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4233                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4234                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4235                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4236                                                         "reshape");
4237                 if (!mddev->sync_thread)
4238                         goto out_free_conf;
4239         }
4240
4241         return 0;
4242
4243 out_free_conf:
4244         md_unregister_thread(&mddev->thread);
4245         mempool_exit(&conf->r10bio_pool);
4246         safe_put_page(conf->tmppage);
4247         kfree(conf->mirrors);
4248         kfree(conf);
4249         mddev->private = NULL;
4250 out:
4251         return -EIO;
4252 }
4253
4254 static void raid10_free(struct mddev *mddev, void *priv)
4255 {
4256         struct r10conf *conf = priv;
4257
4258         mempool_exit(&conf->r10bio_pool);
4259         safe_put_page(conf->tmppage);
4260         kfree(conf->mirrors);
4261         kfree(conf->mirrors_old);
4262         kfree(conf->mirrors_new);
4263         bioset_exit(&conf->bio_split);
4264         kfree(conf);
4265 }
4266
4267 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4268 {
4269         struct r10conf *conf = mddev->private;
4270
4271         if (quiesce)
4272                 raise_barrier(conf, 0);
4273         else
4274                 lower_barrier(conf);
4275 }
4276
4277 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4278 {
4279         /* Resize of 'far' arrays is not supported.
4280          * For 'near' and 'offset' arrays we can set the
4281          * number of sectors used to be an appropriate multiple
4282          * of the chunk size.
4283          * For 'offset', this is far_copies*chunksize.
4284          * For 'near' the multiplier is the LCM of
4285          * near_copies and raid_disks.
4286          * So if far_copies > 1 && !far_offset, fail.
4287          * Else find LCM(raid_disks, near_copy)*far_copies and
4288          * multiply by chunk_size.  Then round to this number.
4289          * This is mostly done by raid10_size()
4290          */
4291         struct r10conf *conf = mddev->private;
4292         sector_t oldsize, size;
4293
4294         if (mddev->reshape_position != MaxSector)
4295                 return -EBUSY;
4296
4297         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4298                 return -EINVAL;
4299
4300         oldsize = raid10_size(mddev, 0, 0);
4301         size = raid10_size(mddev, sectors, 0);
4302         if (mddev->external_size &&
4303             mddev->array_sectors > size)
4304                 return -EINVAL;
4305         if (mddev->bitmap) {
4306                 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4307                 if (ret)
4308                         return ret;
4309         }
4310         md_set_array_sectors(mddev, size);
4311         if (sectors > mddev->dev_sectors &&
4312             mddev->recovery_cp > oldsize) {
4313                 mddev->recovery_cp = oldsize;
4314                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4315         }
4316         calc_sectors(conf, sectors);
4317         mddev->dev_sectors = conf->dev_sectors;
4318         mddev->resync_max_sectors = size;
4319         return 0;
4320 }
4321
4322 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4323 {
4324         struct md_rdev *rdev;
4325         struct r10conf *conf;
4326
4327         if (mddev->degraded > 0) {
4328                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4329                         mdname(mddev));
4330                 return ERR_PTR(-EINVAL);
4331         }
4332         sector_div(size, devs);
4333
4334         /* Set new parameters */
4335         mddev->new_level = 10;
4336         /* new layout: far_copies = 1, near_copies = 2 */
4337         mddev->new_layout = (1<<8) + 2;
4338         mddev->new_chunk_sectors = mddev->chunk_sectors;
4339         mddev->delta_disks = mddev->raid_disks;
4340         mddev->raid_disks *= 2;
4341         /* make sure it will be not marked as dirty */
4342         mddev->recovery_cp = MaxSector;
4343         mddev->dev_sectors = size;
4344
4345         conf = setup_conf(mddev);
4346         if (!IS_ERR(conf)) {
4347                 rdev_for_each(rdev, mddev)
4348                         if (rdev->raid_disk >= 0) {
4349                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4350                                 rdev->sectors = size;
4351                         }
4352                 conf->barrier = 1;
4353         }
4354
4355         return conf;
4356 }
4357
4358 static void *raid10_takeover(struct mddev *mddev)
4359 {
4360         struct r0conf *raid0_conf;
4361
4362         /* raid10 can take over:
4363          *  raid0 - providing it has only two drives
4364          */
4365         if (mddev->level == 0) {
4366                 /* for raid0 takeover only one zone is supported */
4367                 raid0_conf = mddev->private;
4368                 if (raid0_conf->nr_strip_zones > 1) {
4369                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4370                                 mdname(mddev));
4371                         return ERR_PTR(-EINVAL);
4372                 }
4373                 return raid10_takeover_raid0(mddev,
4374                         raid0_conf->strip_zone->zone_end,
4375                         raid0_conf->strip_zone->nb_dev);
4376         }
4377         return ERR_PTR(-EINVAL);
4378 }
4379
4380 static int raid10_check_reshape(struct mddev *mddev)
4381 {
4382         /* Called when there is a request to change
4383          * - layout (to ->new_layout)
4384          * - chunk size (to ->new_chunk_sectors)
4385          * - raid_disks (by delta_disks)
4386          * or when trying to restart a reshape that was ongoing.
4387          *
4388          * We need to validate the request and possibly allocate
4389          * space if that might be an issue later.
4390          *
4391          * Currently we reject any reshape of a 'far' mode array,
4392          * allow chunk size to change if new is generally acceptable,
4393          * allow raid_disks to increase, and allow
4394          * a switch between 'near' mode and 'offset' mode.
4395          */
4396         struct r10conf *conf = mddev->private;
4397         struct geom geo;
4398
4399         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4400                 return -EINVAL;
4401
4402         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4403                 /* mustn't change number of copies */
4404                 return -EINVAL;
4405         if (geo.far_copies > 1 && !geo.far_offset)
4406                 /* Cannot switch to 'far' mode */
4407                 return -EINVAL;
4408
4409         if (mddev->array_sectors & geo.chunk_mask)
4410                         /* not factor of array size */
4411                         return -EINVAL;
4412
4413         if (!enough(conf, -1))
4414                 return -EINVAL;
4415
4416         kfree(conf->mirrors_new);
4417         conf->mirrors_new = NULL;
4418         if (mddev->delta_disks > 0) {
4419                 /* allocate new 'mirrors' list */
4420                 conf->mirrors_new =
4421                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4422                                 sizeof(struct raid10_info),
4423                                 GFP_KERNEL);
4424                 if (!conf->mirrors_new)
4425                         return -ENOMEM;
4426         }
4427         return 0;
4428 }
4429
4430 /*
4431  * Need to check if array has failed when deciding whether to:
4432  *  - start an array
4433  *  - remove non-faulty devices
4434  *  - add a spare
4435  *  - allow a reshape
4436  * This determination is simple when no reshape is happening.
4437  * However if there is a reshape, we need to carefully check
4438  * both the before and after sections.
4439  * This is because some failed devices may only affect one
4440  * of the two sections, and some non-in_sync devices may
4441  * be insync in the section most affected by failed devices.
4442  */
4443 static int calc_degraded(struct r10conf *conf)
4444 {
4445         int degraded, degraded2;
4446         int i;
4447
4448         rcu_read_lock();
4449         degraded = 0;
4450         /* 'prev' section first */
4451         for (i = 0; i < conf->prev.raid_disks; i++) {
4452                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4453                 if (!rdev || test_bit(Faulty, &rdev->flags))
4454                         degraded++;
4455                 else if (!test_bit(In_sync, &rdev->flags))
4456                         /* When we can reduce the number of devices in
4457                          * an array, this might not contribute to
4458                          * 'degraded'.  It does now.
4459                          */
4460                         degraded++;
4461         }
4462         rcu_read_unlock();
4463         if (conf->geo.raid_disks == conf->prev.raid_disks)
4464                 return degraded;
4465         rcu_read_lock();
4466         degraded2 = 0;
4467         for (i = 0; i < conf->geo.raid_disks; i++) {
4468                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4469                 if (!rdev || test_bit(Faulty, &rdev->flags))
4470                         degraded2++;
4471                 else if (!test_bit(In_sync, &rdev->flags)) {
4472                         /* If reshape is increasing the number of devices,
4473                          * this section has already been recovered, so
4474                          * it doesn't contribute to degraded.
4475                          * else it does.
4476                          */
4477                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4478                                 degraded2++;
4479                 }
4480         }
4481         rcu_read_unlock();
4482         if (degraded2 > degraded)
4483                 return degraded2;
4484         return degraded;
4485 }
4486
4487 static int raid10_start_reshape(struct mddev *mddev)
4488 {
4489         /* A 'reshape' has been requested. This commits
4490          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4491          * This also checks if there are enough spares and adds them
4492          * to the array.
4493          * We currently require enough spares to make the final
4494          * array non-degraded.  We also require that the difference
4495          * between old and new data_offset - on each device - is
4496          * enough that we never risk over-writing.
4497          */
4498
4499         unsigned long before_length, after_length;
4500         sector_t min_offset_diff = 0;
4501         int first = 1;
4502         struct geom new;
4503         struct r10conf *conf = mddev->private;
4504         struct md_rdev *rdev;
4505         int spares = 0;
4506         int ret;
4507
4508         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4509                 return -EBUSY;
4510
4511         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4512                 return -EINVAL;
4513
4514         before_length = ((1 << conf->prev.chunk_shift) *
4515                          conf->prev.far_copies);
4516         after_length = ((1 << conf->geo.chunk_shift) *
4517                         conf->geo.far_copies);
4518
4519         rdev_for_each(rdev, mddev) {
4520                 if (!test_bit(In_sync, &rdev->flags)
4521                     && !test_bit(Faulty, &rdev->flags))
4522                         spares++;
4523                 if (rdev->raid_disk >= 0) {
4524                         long long diff = (rdev->new_data_offset
4525                                           - rdev->data_offset);
4526                         if (!mddev->reshape_backwards)
4527                                 diff = -diff;
4528                         if (diff < 0)
4529                                 diff = 0;
4530                         if (first || diff < min_offset_diff)
4531                                 min_offset_diff = diff;
4532                         first = 0;
4533                 }
4534         }
4535
4536         if (max(before_length, after_length) > min_offset_diff)
4537                 return -EINVAL;
4538
4539         if (spares < mddev->delta_disks)
4540                 return -EINVAL;
4541
4542         conf->offset_diff = min_offset_diff;
4543         spin_lock_irq(&conf->device_lock);
4544         if (conf->mirrors_new) {
4545                 memcpy(conf->mirrors_new, conf->mirrors,
4546                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4547                 smp_mb();
4548                 kfree(conf->mirrors_old);
4549                 conf->mirrors_old = conf->mirrors;
4550                 conf->mirrors = conf->mirrors_new;
4551                 conf->mirrors_new = NULL;
4552         }
4553         setup_geo(&conf->geo, mddev, geo_start);
4554         smp_mb();
4555         if (mddev->reshape_backwards) {
4556                 sector_t size = raid10_size(mddev, 0, 0);
4557                 if (size < mddev->array_sectors) {
4558                         spin_unlock_irq(&conf->device_lock);
4559                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4560                                 mdname(mddev));
4561                         return -EINVAL;
4562                 }
4563                 mddev->resync_max_sectors = size;
4564                 conf->reshape_progress = size;
4565         } else
4566                 conf->reshape_progress = 0;
4567         conf->reshape_safe = conf->reshape_progress;
4568         spin_unlock_irq(&conf->device_lock);
4569
4570         if (mddev->delta_disks && mddev->bitmap) {
4571                 struct mdp_superblock_1 *sb = NULL;
4572                 sector_t oldsize, newsize;
4573
4574                 oldsize = raid10_size(mddev, 0, 0);
4575                 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4576
4577                 if (!mddev_is_clustered(mddev)) {
4578                         ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4579                         if (ret)
4580                                 goto abort;
4581                         else
4582                                 goto out;
4583                 }
4584
4585                 rdev_for_each(rdev, mddev) {
4586                         if (rdev->raid_disk > -1 &&
4587                             !test_bit(Faulty, &rdev->flags))
4588                                 sb = page_address(rdev->sb_page);
4589                 }
4590
4591                 /*
4592                  * some node is already performing reshape, and no need to
4593                  * call md_bitmap_resize again since it should be called when
4594                  * receiving BITMAP_RESIZE msg
4595                  */
4596                 if ((sb && (le32_to_cpu(sb->feature_map) &
4597                             MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4598                         goto out;
4599
4600                 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4601                 if (ret)
4602                         goto abort;
4603
4604                 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4605                 if (ret) {
4606                         md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4607                         goto abort;
4608                 }
4609         }
4610 out:
4611         if (mddev->delta_disks > 0) {
4612                 rdev_for_each(rdev, mddev)
4613                         if (rdev->raid_disk < 0 &&
4614                             !test_bit(Faulty, &rdev->flags)) {
4615                                 if (raid10_add_disk(mddev, rdev) == 0) {
4616                                         if (rdev->raid_disk >=
4617                                             conf->prev.raid_disks)
4618                                                 set_bit(In_sync, &rdev->flags);
4619                                         else
4620                                                 rdev->recovery_offset = 0;
4621
4622                                         /* Failure here is OK */
4623                                         sysfs_link_rdev(mddev, rdev);
4624                                 }
4625                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4626                                    && !test_bit(Faulty, &rdev->flags)) {
4627                                 /* This is a spare that was manually added */
4628                                 set_bit(In_sync, &rdev->flags);
4629                         }
4630         }
4631         /* When a reshape changes the number of devices,
4632          * ->degraded is measured against the larger of the
4633          * pre and  post numbers.
4634          */
4635         spin_lock_irq(&conf->device_lock);
4636         mddev->degraded = calc_degraded(conf);
4637         spin_unlock_irq(&conf->device_lock);
4638         mddev->raid_disks = conf->geo.raid_disks;
4639         mddev->reshape_position = conf->reshape_progress;
4640         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4641
4642         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4643         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4644         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4645         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4646         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4647
4648         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4649                                                 "reshape");
4650         if (!mddev->sync_thread) {
4651                 ret = -EAGAIN;
4652                 goto abort;
4653         }
4654         conf->reshape_checkpoint = jiffies;
4655         md_wakeup_thread(mddev->sync_thread);
4656         md_new_event();
4657         return 0;
4658
4659 abort:
4660         mddev->recovery = 0;
4661         spin_lock_irq(&conf->device_lock);
4662         conf->geo = conf->prev;
4663         mddev->raid_disks = conf->geo.raid_disks;
4664         rdev_for_each(rdev, mddev)
4665                 rdev->new_data_offset = rdev->data_offset;
4666         smp_wmb();
4667         conf->reshape_progress = MaxSector;
4668         conf->reshape_safe = MaxSector;
4669         mddev->reshape_position = MaxSector;
4670         spin_unlock_irq(&conf->device_lock);
4671         return ret;
4672 }
4673
4674 /* Calculate the last device-address that could contain
4675  * any block from the chunk that includes the array-address 's'
4676  * and report the next address.
4677  * i.e. the address returned will be chunk-aligned and after
4678  * any data that is in the chunk containing 's'.
4679  */
4680 static sector_t last_dev_address(sector_t s, struct geom *geo)
4681 {
4682         s = (s | geo->chunk_mask) + 1;
4683         s >>= geo->chunk_shift;
4684         s *= geo->near_copies;
4685         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4686         s *= geo->far_copies;
4687         s <<= geo->chunk_shift;
4688         return s;
4689 }
4690
4691 /* Calculate the first device-address that could contain
4692  * any block from the chunk that includes the array-address 's'.
4693  * This too will be the start of a chunk
4694  */
4695 static sector_t first_dev_address(sector_t s, struct geom *geo)
4696 {
4697         s >>= geo->chunk_shift;
4698         s *= geo->near_copies;
4699         sector_div(s, geo->raid_disks);
4700         s *= geo->far_copies;
4701         s <<= geo->chunk_shift;
4702         return s;
4703 }
4704
4705 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4706                                 int *skipped)
4707 {
4708         /* We simply copy at most one chunk (smallest of old and new)
4709          * at a time, possibly less if that exceeds RESYNC_PAGES,
4710          * or we hit a bad block or something.
4711          * This might mean we pause for normal IO in the middle of
4712          * a chunk, but that is not a problem as mddev->reshape_position
4713          * can record any location.
4714          *
4715          * If we will want to write to a location that isn't
4716          * yet recorded as 'safe' (i.e. in metadata on disk) then
4717          * we need to flush all reshape requests and update the metadata.
4718          *
4719          * When reshaping forwards (e.g. to more devices), we interpret
4720          * 'safe' as the earliest block which might not have been copied
4721          * down yet.  We divide this by previous stripe size and multiply
4722          * by previous stripe length to get lowest device offset that we
4723          * cannot write to yet.
4724          * We interpret 'sector_nr' as an address that we want to write to.
4725          * From this we use last_device_address() to find where we might
4726          * write to, and first_device_address on the  'safe' position.
4727          * If this 'next' write position is after the 'safe' position,
4728          * we must update the metadata to increase the 'safe' position.
4729          *
4730          * When reshaping backwards, we round in the opposite direction
4731          * and perform the reverse test:  next write position must not be
4732          * less than current safe position.
4733          *
4734          * In all this the minimum difference in data offsets
4735          * (conf->offset_diff - always positive) allows a bit of slack,
4736          * so next can be after 'safe', but not by more than offset_diff
4737          *
4738          * We need to prepare all the bios here before we start any IO
4739          * to ensure the size we choose is acceptable to all devices.
4740          * The means one for each copy for write-out and an extra one for
4741          * read-in.
4742          * We store the read-in bio in ->master_bio and the others in
4743          * ->devs[x].bio and ->devs[x].repl_bio.
4744          */
4745         struct r10conf *conf = mddev->private;
4746         struct r10bio *r10_bio;
4747         sector_t next, safe, last;
4748         int max_sectors;
4749         int nr_sectors;
4750         int s;
4751         struct md_rdev *rdev;
4752         int need_flush = 0;
4753         struct bio *blist;
4754         struct bio *bio, *read_bio;
4755         int sectors_done = 0;
4756         struct page **pages;
4757
4758         if (sector_nr == 0) {
4759                 /* If restarting in the middle, skip the initial sectors */
4760                 if (mddev->reshape_backwards &&
4761                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4762                         sector_nr = (raid10_size(mddev, 0, 0)
4763                                      - conf->reshape_progress);
4764                 } else if (!mddev->reshape_backwards &&
4765                            conf->reshape_progress > 0)
4766                         sector_nr = conf->reshape_progress;
4767                 if (sector_nr) {
4768                         mddev->curr_resync_completed = sector_nr;
4769                         sysfs_notify_dirent_safe(mddev->sysfs_completed);
4770                         *skipped = 1;
4771                         return sector_nr;
4772                 }
4773         }
4774
4775         /* We don't use sector_nr to track where we are up to
4776          * as that doesn't work well for ->reshape_backwards.
4777          * So just use ->reshape_progress.
4778          */
4779         if (mddev->reshape_backwards) {
4780                 /* 'next' is the earliest device address that we might
4781                  * write to for this chunk in the new layout
4782                  */
4783                 next = first_dev_address(conf->reshape_progress - 1,
4784                                          &conf->geo);
4785
4786                 /* 'safe' is the last device address that we might read from
4787                  * in the old layout after a restart
4788                  */
4789                 safe = last_dev_address(conf->reshape_safe - 1,
4790                                         &conf->prev);
4791
4792                 if (next + conf->offset_diff < safe)
4793                         need_flush = 1;
4794
4795                 last = conf->reshape_progress - 1;
4796                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4797                                                & conf->prev.chunk_mask);
4798                 if (sector_nr + RESYNC_SECTORS < last)
4799                         sector_nr = last + 1 - RESYNC_SECTORS;
4800         } else {
4801                 /* 'next' is after the last device address that we
4802                  * might write to for this chunk in the new layout
4803                  */
4804                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4805
4806                 /* 'safe' is the earliest device address that we might
4807                  * read from in the old layout after a restart
4808                  */
4809                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4810
4811                 /* Need to update metadata if 'next' might be beyond 'safe'
4812                  * as that would possibly corrupt data
4813                  */
4814                 if (next > safe + conf->offset_diff)
4815                         need_flush = 1;
4816
4817                 sector_nr = conf->reshape_progress;
4818                 last  = sector_nr | (conf->geo.chunk_mask
4819                                      & conf->prev.chunk_mask);
4820
4821                 if (sector_nr + RESYNC_SECTORS <= last)
4822                         last = sector_nr + RESYNC_SECTORS - 1;
4823         }
4824
4825         if (need_flush ||
4826             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4827                 /* Need to update reshape_position in metadata */
4828                 wait_barrier(conf, false);
4829                 mddev->reshape_position = conf->reshape_progress;
4830                 if (mddev->reshape_backwards)
4831                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4832                                 - conf->reshape_progress;
4833                 else
4834                         mddev->curr_resync_completed = conf->reshape_progress;
4835                 conf->reshape_checkpoint = jiffies;
4836                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4837                 md_wakeup_thread(mddev->thread);
4838                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4839                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4840                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4841                         allow_barrier(conf);
4842                         return sectors_done;
4843                 }
4844                 conf->reshape_safe = mddev->reshape_position;
4845                 allow_barrier(conf);
4846         }
4847
4848         raise_barrier(conf, 0);
4849 read_more:
4850         /* Now schedule reads for blocks from sector_nr to last */
4851         r10_bio = raid10_alloc_init_r10buf(conf);
4852         r10_bio->state = 0;
4853         raise_barrier(conf, 1);
4854         atomic_set(&r10_bio->remaining, 0);
4855         r10_bio->mddev = mddev;
4856         r10_bio->sector = sector_nr;
4857         set_bit(R10BIO_IsReshape, &r10_bio->state);
4858         r10_bio->sectors = last - sector_nr + 1;
4859         rdev = read_balance(conf, r10_bio, &max_sectors);
4860         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4861
4862         if (!rdev) {
4863                 /* Cannot read from here, so need to record bad blocks
4864                  * on all the target devices.
4865                  */
4866                 // FIXME
4867                 mempool_free(r10_bio, &conf->r10buf_pool);
4868                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4869                 return sectors_done;
4870         }
4871
4872         read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4873                                     GFP_KERNEL, &mddev->bio_set);
4874         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4875                                + rdev->data_offset);
4876         read_bio->bi_private = r10_bio;
4877         read_bio->bi_end_io = end_reshape_read;
4878         r10_bio->master_bio = read_bio;
4879         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4880
4881         /*
4882          * Broadcast RESYNC message to other nodes, so all nodes would not
4883          * write to the region to avoid conflict.
4884         */
4885         if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4886                 struct mdp_superblock_1 *sb = NULL;
4887                 int sb_reshape_pos = 0;
4888
4889                 conf->cluster_sync_low = sector_nr;
4890                 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4891                 sb = page_address(rdev->sb_page);
4892                 if (sb) {
4893                         sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4894                         /*
4895                          * Set cluster_sync_low again if next address for array
4896                          * reshape is less than cluster_sync_low. Since we can't
4897                          * update cluster_sync_low until it has finished reshape.
4898                          */
4899                         if (sb_reshape_pos < conf->cluster_sync_low)
4900                                 conf->cluster_sync_low = sb_reshape_pos;
4901                 }
4902
4903                 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4904                                                           conf->cluster_sync_high);
4905         }
4906
4907         /* Now find the locations in the new layout */
4908         __raid10_find_phys(&conf->geo, r10_bio);
4909
4910         blist = read_bio;
4911         read_bio->bi_next = NULL;
4912
4913         rcu_read_lock();
4914         for (s = 0; s < conf->copies*2; s++) {
4915                 struct bio *b;
4916                 int d = r10_bio->devs[s/2].devnum;
4917                 struct md_rdev *rdev2;
4918                 if (s&1) {
4919                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4920                         b = r10_bio->devs[s/2].repl_bio;
4921                 } else {
4922                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4923                         b = r10_bio->devs[s/2].bio;
4924                 }
4925                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4926                         continue;
4927
4928                 bio_set_dev(b, rdev2->bdev);
4929                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4930                         rdev2->new_data_offset;
4931                 b->bi_end_io = end_reshape_write;
4932                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4933                 b->bi_next = blist;
4934                 blist = b;
4935         }
4936
4937         /* Now add as many pages as possible to all of these bios. */
4938
4939         nr_sectors = 0;
4940         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4941         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4942                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4943                 int len = (max_sectors - s) << 9;
4944                 if (len > PAGE_SIZE)
4945                         len = PAGE_SIZE;
4946                 for (bio = blist; bio ; bio = bio->bi_next) {
4947                         /*
4948                          * won't fail because the vec table is big enough
4949                          * to hold all these pages
4950                          */
4951                         bio_add_page(bio, page, len, 0);
4952                 }
4953                 sector_nr += len >> 9;
4954                 nr_sectors += len >> 9;
4955         }
4956         rcu_read_unlock();
4957         r10_bio->sectors = nr_sectors;
4958
4959         /* Now submit the read */
4960         md_sync_acct_bio(read_bio, r10_bio->sectors);
4961         atomic_inc(&r10_bio->remaining);
4962         read_bio->bi_next = NULL;
4963         submit_bio_noacct(read_bio);
4964         sectors_done += nr_sectors;
4965         if (sector_nr <= last)
4966                 goto read_more;
4967
4968         lower_barrier(conf);
4969
4970         /* Now that we have done the whole section we can
4971          * update reshape_progress
4972          */
4973         if (mddev->reshape_backwards)
4974                 conf->reshape_progress -= sectors_done;
4975         else
4976                 conf->reshape_progress += sectors_done;
4977
4978         return sectors_done;
4979 }
4980
4981 static void end_reshape_request(struct r10bio *r10_bio);
4982 static int handle_reshape_read_error(struct mddev *mddev,
4983                                      struct r10bio *r10_bio);
4984 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4985 {
4986         /* Reshape read completed.  Hopefully we have a block
4987          * to write out.
4988          * If we got a read error then we do sync 1-page reads from
4989          * elsewhere until we find the data - or give up.
4990          */
4991         struct r10conf *conf = mddev->private;
4992         int s;
4993
4994         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4995                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4996                         /* Reshape has been aborted */
4997                         md_done_sync(mddev, r10_bio->sectors, 0);
4998                         return;
4999                 }
5000
5001         /* We definitely have the data in the pages, schedule the
5002          * writes.
5003          */
5004         atomic_set(&r10_bio->remaining, 1);
5005         for (s = 0; s < conf->copies*2; s++) {
5006                 struct bio *b;
5007                 int d = r10_bio->devs[s/2].devnum;
5008                 struct md_rdev *rdev;
5009                 rcu_read_lock();
5010                 if (s&1) {
5011                         rdev = rcu_dereference(conf->mirrors[d].replacement);
5012                         b = r10_bio->devs[s/2].repl_bio;
5013                 } else {
5014                         rdev = rcu_dereference(conf->mirrors[d].rdev);
5015                         b = r10_bio->devs[s/2].bio;
5016                 }
5017                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
5018                         rcu_read_unlock();
5019                         continue;
5020                 }
5021                 atomic_inc(&rdev->nr_pending);
5022                 rcu_read_unlock();
5023                 md_sync_acct_bio(b, r10_bio->sectors);
5024                 atomic_inc(&r10_bio->remaining);
5025                 b->bi_next = NULL;
5026                 submit_bio_noacct(b);
5027         }
5028         end_reshape_request(r10_bio);
5029 }
5030
5031 static void end_reshape(struct r10conf *conf)
5032 {
5033         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5034                 return;
5035
5036         spin_lock_irq(&conf->device_lock);
5037         conf->prev = conf->geo;
5038         md_finish_reshape(conf->mddev);
5039         smp_wmb();
5040         conf->reshape_progress = MaxSector;
5041         conf->reshape_safe = MaxSector;
5042         spin_unlock_irq(&conf->device_lock);
5043
5044         if (conf->mddev->queue)
5045                 raid10_set_io_opt(conf);
5046         conf->fullsync = 0;
5047 }
5048
5049 static void raid10_update_reshape_pos(struct mddev *mddev)
5050 {
5051         struct r10conf *conf = mddev->private;
5052         sector_t lo, hi;
5053
5054         md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5055         if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5056             || mddev->reshape_position == MaxSector)
5057                 conf->reshape_progress = mddev->reshape_position;
5058         else
5059                 WARN_ON_ONCE(1);
5060 }
5061
5062 static int handle_reshape_read_error(struct mddev *mddev,
5063                                      struct r10bio *r10_bio)
5064 {
5065         /* Use sync reads to get the blocks from somewhere else */
5066         int sectors = r10_bio->sectors;
5067         struct r10conf *conf = mddev->private;
5068         struct r10bio *r10b;
5069         int slot = 0;
5070         int idx = 0;
5071         struct page **pages;
5072
5073         r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5074         if (!r10b) {
5075                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5076                 return -ENOMEM;
5077         }
5078
5079         /* reshape IOs share pages from .devs[0].bio */
5080         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5081
5082         r10b->sector = r10_bio->sector;
5083         __raid10_find_phys(&conf->prev, r10b);
5084
5085         while (sectors) {
5086                 int s = sectors;
5087                 int success = 0;
5088                 int first_slot = slot;
5089
5090                 if (s > (PAGE_SIZE >> 9))
5091                         s = PAGE_SIZE >> 9;
5092
5093                 rcu_read_lock();
5094                 while (!success) {
5095                         int d = r10b->devs[slot].devnum;
5096                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5097                         sector_t addr;
5098                         if (rdev == NULL ||
5099                             test_bit(Faulty, &rdev->flags) ||
5100                             !test_bit(In_sync, &rdev->flags))
5101                                 goto failed;
5102
5103                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5104                         atomic_inc(&rdev->nr_pending);
5105                         rcu_read_unlock();
5106                         success = sync_page_io(rdev,
5107                                                addr,
5108                                                s << 9,
5109                                                pages[idx],
5110                                                REQ_OP_READ, 0, false);
5111                         rdev_dec_pending(rdev, mddev);
5112                         rcu_read_lock();
5113                         if (success)
5114                                 break;
5115                 failed:
5116                         slot++;
5117                         if (slot >= conf->copies)
5118                                 slot = 0;
5119                         if (slot == first_slot)
5120                                 break;
5121                 }
5122                 rcu_read_unlock();
5123                 if (!success) {
5124                         /* couldn't read this block, must give up */
5125                         set_bit(MD_RECOVERY_INTR,
5126                                 &mddev->recovery);
5127                         kfree(r10b);
5128                         return -EIO;
5129                 }
5130                 sectors -= s;
5131                 idx++;
5132         }
5133         kfree(r10b);
5134         return 0;
5135 }
5136
5137 static void end_reshape_write(struct bio *bio)
5138 {
5139         struct r10bio *r10_bio = get_resync_r10bio(bio);
5140         struct mddev *mddev = r10_bio->mddev;
5141         struct r10conf *conf = mddev->private;
5142         int d;
5143         int slot;
5144         int repl;
5145         struct md_rdev *rdev = NULL;
5146
5147         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5148         if (repl)
5149                 rdev = conf->mirrors[d].replacement;
5150         if (!rdev) {
5151                 smp_mb();
5152                 rdev = conf->mirrors[d].rdev;
5153         }
5154
5155         if (bio->bi_status) {
5156                 /* FIXME should record badblock */
5157                 md_error(mddev, rdev);
5158         }
5159
5160         rdev_dec_pending(rdev, mddev);
5161         end_reshape_request(r10_bio);
5162 }
5163
5164 static void end_reshape_request(struct r10bio *r10_bio)
5165 {
5166         if (!atomic_dec_and_test(&r10_bio->remaining))
5167                 return;
5168         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5169         bio_put(r10_bio->master_bio);
5170         put_buf(r10_bio);
5171 }
5172
5173 static void raid10_finish_reshape(struct mddev *mddev)
5174 {
5175         struct r10conf *conf = mddev->private;
5176
5177         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5178                 return;
5179
5180         if (mddev->delta_disks > 0) {
5181                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5182                         mddev->recovery_cp = mddev->resync_max_sectors;
5183                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5184                 }
5185                 mddev->resync_max_sectors = mddev->array_sectors;
5186         } else {
5187                 int d;
5188                 rcu_read_lock();
5189                 for (d = conf->geo.raid_disks ;
5190                      d < conf->geo.raid_disks - mddev->delta_disks;
5191                      d++) {
5192                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5193                         if (rdev)
5194                                 clear_bit(In_sync, &rdev->flags);
5195                         rdev = rcu_dereference(conf->mirrors[d].replacement);
5196                         if (rdev)
5197                                 clear_bit(In_sync, &rdev->flags);
5198                 }
5199                 rcu_read_unlock();
5200         }
5201         mddev->layout = mddev->new_layout;
5202         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5203         mddev->reshape_position = MaxSector;
5204         mddev->delta_disks = 0;
5205         mddev->reshape_backwards = 0;
5206 }
5207
5208 static struct md_personality raid10_personality =
5209 {
5210         .name           = "raid10",
5211         .level          = 10,
5212         .owner          = THIS_MODULE,
5213         .make_request   = raid10_make_request,
5214         .run            = raid10_run,
5215         .free           = raid10_free,
5216         .status         = raid10_status,
5217         .error_handler  = raid10_error,
5218         .hot_add_disk   = raid10_add_disk,
5219         .hot_remove_disk= raid10_remove_disk,
5220         .spare_active   = raid10_spare_active,
5221         .sync_request   = raid10_sync_request,
5222         .quiesce        = raid10_quiesce,
5223         .size           = raid10_size,
5224         .resize         = raid10_resize,
5225         .takeover       = raid10_takeover,
5226         .check_reshape  = raid10_check_reshape,
5227         .start_reshape  = raid10_start_reshape,
5228         .finish_reshape = raid10_finish_reshape,
5229         .update_reshape_pos = raid10_update_reshape_pos,
5230 };
5231
5232 static int __init raid_init(void)
5233 {
5234         return register_md_personality(&raid10_personality);
5235 }
5236
5237 static void raid_exit(void)
5238 {
5239         unregister_md_personality(&raid10_personality);
5240 }
5241
5242 module_init(raid_init);
5243 module_exit(raid_exit);
5244 MODULE_LICENSE("GPL");
5245 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5246 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5247 MODULE_ALIAS("md-raid10");
5248 MODULE_ALIAS("md-level-10");