1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * raid10.c : Multiple Devices driver for Linux
5 * Copyright (C) 2000-2004 Neil Brown
7 * RAID-10 support for md.
9 * Base on code in raid1.c. See raid1.c for further copyright information.
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
24 #include "md-bitmap.h"
27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
28 * The layout of data is defined by
31 * near_copies (stored in low byte of layout)
32 * far_copies (stored in second byte of layout)
33 * far_offset (stored in bit 16 of layout )
34 * use_far_sets (stored in bit 17 of layout )
35 * use_far_sets_bugfixed (stored in bit 18 of layout )
37 * The data to be stored is divided into chunks using chunksize. Each device
38 * is divided into far_copies sections. In each section, chunks are laid out
39 * in a style similar to raid0, but near_copies copies of each chunk is stored
40 * (each on a different drive). The starting device for each section is offset
41 * near_copies from the starting device of the previous section. Thus there
42 * are (near_copies * far_copies) of each chunk, and each is on a different
43 * drive. near_copies and far_copies must be at least one, and their product
44 * is at most raid_disks.
46 * If far_offset is true, then the far_copies are handled a bit differently.
47 * The copies are still in different stripes, but instead of being very far
48 * apart on disk, there are adjacent stripes.
50 * The far and offset algorithms are handled slightly differently if
51 * 'use_far_sets' is true. In this case, the array's devices are grouped into
52 * sets that are (near_copies * far_copies) in size. The far copied stripes
53 * are still shifted by 'near_copies' devices, but this shifting stays confined
54 * to the set rather than the entire array. This is done to improve the number
55 * of device combinations that can fail without causing the array to fail.
56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62 * [A B] [C D] [A B] [C D E]
63 * |...| |...| |...| | ... |
64 * [B A] [D C] [B A] [E C D]
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
77 #define raid10_log(md, fmt, args...) \
78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
83 * for resync bio, r10bio pointer can be retrieved from the per-bio
84 * 'struct resync_pages'.
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
88 return get_resync_pages(bio)->raid_bio;
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
93 struct r10conf *conf = data;
94 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
96 /* allocate a r10bio with room for raid_disks entries in the
98 return kzalloc(size, gfp_flags);
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
110 * When performing a resync, we need to read and compare, so
111 * we need as many pages are there are copies.
112 * When performing a recovery, we need 2 bios, one for read,
113 * one for write (we recover only one drive per r10buf)
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
118 struct r10conf *conf = data;
119 struct r10bio *r10_bio;
122 int nalloc, nalloc_rp;
123 struct resync_pages *rps;
125 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
129 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131 nalloc = conf->copies; /* resync */
133 nalloc = 2; /* recovery */
135 /* allocate once for all bios */
136 if (!conf->have_replacement)
139 nalloc_rp = nalloc * 2;
140 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
142 goto out_free_r10bio;
147 for (j = nalloc ; j-- ; ) {
148 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
151 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
152 r10_bio->devs[j].bio = bio;
153 if (!conf->have_replacement)
155 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
158 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
159 r10_bio->devs[j].repl_bio = bio;
162 * Allocate RESYNC_PAGES data pages and attach them
165 for (j = 0; j < nalloc; j++) {
166 struct bio *rbio = r10_bio->devs[j].repl_bio;
167 struct resync_pages *rp, *rp_repl;
171 rp_repl = &rps[nalloc + j];
173 bio = r10_bio->devs[j].bio;
175 if (!j || test_bit(MD_RECOVERY_SYNC,
176 &conf->mddev->recovery)) {
177 if (resync_alloc_pages(rp, gfp_flags))
180 memcpy(rp, &rps[0], sizeof(*rp));
181 resync_get_all_pages(rp);
184 rp->raid_bio = r10_bio;
185 bio->bi_private = rp;
187 memcpy(rp_repl, rp, sizeof(*rp));
188 rbio->bi_private = rp_repl;
196 resync_free_pages(&rps[j]);
200 for ( ; j < nalloc; j++) {
201 if (r10_bio->devs[j].bio)
202 bio_uninit(r10_bio->devs[j].bio);
203 kfree(r10_bio->devs[j].bio);
204 if (r10_bio->devs[j].repl_bio)
205 bio_uninit(r10_bio->devs[j].repl_bio);
206 kfree(r10_bio->devs[j].repl_bio);
210 rbio_pool_free(r10_bio, conf);
214 static void r10buf_pool_free(void *__r10_bio, void *data)
216 struct r10conf *conf = data;
217 struct r10bio *r10bio = __r10_bio;
219 struct resync_pages *rp = NULL;
221 for (j = conf->copies; j--; ) {
222 struct bio *bio = r10bio->devs[j].bio;
225 rp = get_resync_pages(bio);
226 resync_free_pages(rp);
231 bio = r10bio->devs[j].repl_bio;
238 /* resync pages array stored in the 1st bio's .bi_private */
241 rbio_pool_free(r10bio, conf);
244 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
248 for (i = 0; i < conf->geo.raid_disks; i++) {
249 struct bio **bio = & r10_bio->devs[i].bio;
250 if (!BIO_SPECIAL(*bio))
253 bio = &r10_bio->devs[i].repl_bio;
254 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
260 static void free_r10bio(struct r10bio *r10_bio)
262 struct r10conf *conf = r10_bio->mddev->private;
264 put_all_bios(conf, r10_bio);
265 mempool_free(r10_bio, &conf->r10bio_pool);
268 static void put_buf(struct r10bio *r10_bio)
270 struct r10conf *conf = r10_bio->mddev->private;
272 mempool_free(r10_bio, &conf->r10buf_pool);
277 static void reschedule_retry(struct r10bio *r10_bio)
280 struct mddev *mddev = r10_bio->mddev;
281 struct r10conf *conf = mddev->private;
283 spin_lock_irqsave(&conf->device_lock, flags);
284 list_add(&r10_bio->retry_list, &conf->retry_list);
286 spin_unlock_irqrestore(&conf->device_lock, flags);
288 /* wake up frozen array... */
289 wake_up(&conf->wait_barrier);
291 md_wakeup_thread(mddev->thread);
295 * raid_end_bio_io() is called when we have finished servicing a mirrored
296 * operation and are ready to return a success/failure code to the buffer
299 static void raid_end_bio_io(struct r10bio *r10_bio)
301 struct bio *bio = r10_bio->master_bio;
302 struct r10conf *conf = r10_bio->mddev->private;
304 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
305 bio->bi_status = BLK_STS_IOERR;
307 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
308 bio_end_io_acct(bio, r10_bio->start_time);
311 * Wake up any possible resync thread that waits for the device
316 free_r10bio(r10_bio);
320 * Update disk head position estimator based on IRQ completion info.
322 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
324 struct r10conf *conf = r10_bio->mddev->private;
326 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
327 r10_bio->devs[slot].addr + (r10_bio->sectors);
331 * Find the disk number which triggered given bio
333 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
334 struct bio *bio, int *slotp, int *replp)
339 for (slot = 0; slot < conf->geo.raid_disks; slot++) {
340 if (r10_bio->devs[slot].bio == bio)
342 if (r10_bio->devs[slot].repl_bio == bio) {
348 update_head_pos(slot, r10_bio);
354 return r10_bio->devs[slot].devnum;
357 static void raid10_end_read_request(struct bio *bio)
359 int uptodate = !bio->bi_status;
360 struct r10bio *r10_bio = bio->bi_private;
362 struct md_rdev *rdev;
363 struct r10conf *conf = r10_bio->mddev->private;
365 slot = r10_bio->read_slot;
366 rdev = r10_bio->devs[slot].rdev;
368 * this branch is our 'one mirror IO has finished' event handler:
370 update_head_pos(slot, r10_bio);
374 * Set R10BIO_Uptodate in our master bio, so that
375 * we will return a good error code to the higher
376 * levels even if IO on some other mirrored buffer fails.
378 * The 'master' represents the composite IO operation to
379 * user-side. So if something waits for IO, then it will
380 * wait for the 'master' bio.
382 set_bit(R10BIO_Uptodate, &r10_bio->state);
384 /* If all other devices that store this block have
385 * failed, we want to return the error upwards rather
386 * than fail the last device. Here we redefine
387 * "uptodate" to mean "Don't want to retry"
389 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
394 raid_end_bio_io(r10_bio);
395 rdev_dec_pending(rdev, conf->mddev);
398 * oops, read error - keep the refcount on the rdev
400 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
403 (unsigned long long)r10_bio->sector);
404 set_bit(R10BIO_ReadError, &r10_bio->state);
405 reschedule_retry(r10_bio);
409 static void close_write(struct r10bio *r10_bio)
411 /* clear the bitmap if all writes complete successfully */
412 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
414 !test_bit(R10BIO_Degraded, &r10_bio->state),
416 md_write_end(r10_bio->mddev);
419 static void one_write_done(struct r10bio *r10_bio)
421 if (atomic_dec_and_test(&r10_bio->remaining)) {
422 if (test_bit(R10BIO_WriteError, &r10_bio->state))
423 reschedule_retry(r10_bio);
425 close_write(r10_bio);
426 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
427 reschedule_retry(r10_bio);
429 raid_end_bio_io(r10_bio);
434 static void raid10_end_write_request(struct bio *bio)
436 struct r10bio *r10_bio = bio->bi_private;
439 struct r10conf *conf = r10_bio->mddev->private;
441 struct md_rdev *rdev = NULL;
442 struct bio *to_put = NULL;
445 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
447 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
450 rdev = conf->mirrors[dev].replacement;
454 rdev = conf->mirrors[dev].rdev;
457 * this branch is our 'one mirror IO has finished' event handler:
459 if (bio->bi_status && !discard_error) {
461 /* Never record new bad blocks to replacement,
464 md_error(rdev->mddev, rdev);
466 set_bit(WriteErrorSeen, &rdev->flags);
467 if (!test_and_set_bit(WantReplacement, &rdev->flags))
468 set_bit(MD_RECOVERY_NEEDED,
469 &rdev->mddev->recovery);
472 if (test_bit(FailFast, &rdev->flags) &&
473 (bio->bi_opf & MD_FAILFAST)) {
474 md_error(rdev->mddev, rdev);
478 * When the device is faulty, it is not necessary to
479 * handle write error.
481 if (!test_bit(Faulty, &rdev->flags))
482 set_bit(R10BIO_WriteError, &r10_bio->state);
484 /* Fail the request */
485 set_bit(R10BIO_Degraded, &r10_bio->state);
486 r10_bio->devs[slot].bio = NULL;
493 * Set R10BIO_Uptodate in our master bio, so that
494 * we will return a good error code for to the higher
495 * levels even if IO on some other mirrored buffer fails.
497 * The 'master' represents the composite IO operation to
498 * user-side. So if something waits for IO, then it will
499 * wait for the 'master' bio.
505 * Do not set R10BIO_Uptodate if the current device is
506 * rebuilding or Faulty. This is because we cannot use
507 * such device for properly reading the data back (we could
508 * potentially use it, if the current write would have felt
509 * before rdev->recovery_offset, but for simplicity we don't
512 if (test_bit(In_sync, &rdev->flags) &&
513 !test_bit(Faulty, &rdev->flags))
514 set_bit(R10BIO_Uptodate, &r10_bio->state);
516 /* Maybe we can clear some bad blocks. */
517 if (is_badblock(rdev,
518 r10_bio->devs[slot].addr,
520 &first_bad, &bad_sectors) && !discard_error) {
523 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
525 r10_bio->devs[slot].bio = IO_MADE_GOOD;
527 set_bit(R10BIO_MadeGood, &r10_bio->state);
533 * Let's see if all mirrored write operations have finished
536 one_write_done(r10_bio);
538 rdev_dec_pending(rdev, conf->mddev);
544 * RAID10 layout manager
545 * As well as the chunksize and raid_disks count, there are two
546 * parameters: near_copies and far_copies.
547 * near_copies * far_copies must be <= raid_disks.
548 * Normally one of these will be 1.
549 * If both are 1, we get raid0.
550 * If near_copies == raid_disks, we get raid1.
552 * Chunks are laid out in raid0 style with near_copies copies of the
553 * first chunk, followed by near_copies copies of the next chunk and
555 * If far_copies > 1, then after 1/far_copies of the array has been assigned
556 * as described above, we start again with a device offset of near_copies.
557 * So we effectively have another copy of the whole array further down all
558 * the drives, but with blocks on different drives.
559 * With this layout, and block is never stored twice on the one device.
561 * raid10_find_phys finds the sector offset of a given virtual sector
562 * on each device that it is on.
564 * raid10_find_virt does the reverse mapping, from a device and a
565 * sector offset to a virtual address
568 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
576 int last_far_set_start, last_far_set_size;
578 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
579 last_far_set_start *= geo->far_set_size;
581 last_far_set_size = geo->far_set_size;
582 last_far_set_size += (geo->raid_disks % geo->far_set_size);
584 /* now calculate first sector/dev */
585 chunk = r10bio->sector >> geo->chunk_shift;
586 sector = r10bio->sector & geo->chunk_mask;
588 chunk *= geo->near_copies;
590 dev = sector_div(stripe, geo->raid_disks);
592 stripe *= geo->far_copies;
594 sector += stripe << geo->chunk_shift;
596 /* and calculate all the others */
597 for (n = 0; n < geo->near_copies; n++) {
601 r10bio->devs[slot].devnum = d;
602 r10bio->devs[slot].addr = s;
605 for (f = 1; f < geo->far_copies; f++) {
606 set = d / geo->far_set_size;
607 d += geo->near_copies;
609 if ((geo->raid_disks % geo->far_set_size) &&
610 (d > last_far_set_start)) {
611 d -= last_far_set_start;
612 d %= last_far_set_size;
613 d += last_far_set_start;
615 d %= geo->far_set_size;
616 d += geo->far_set_size * set;
619 r10bio->devs[slot].devnum = d;
620 r10bio->devs[slot].addr = s;
624 if (dev >= geo->raid_disks) {
626 sector += (geo->chunk_mask + 1);
631 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
633 struct geom *geo = &conf->geo;
635 if (conf->reshape_progress != MaxSector &&
636 ((r10bio->sector >= conf->reshape_progress) !=
637 conf->mddev->reshape_backwards)) {
638 set_bit(R10BIO_Previous, &r10bio->state);
641 clear_bit(R10BIO_Previous, &r10bio->state);
643 __raid10_find_phys(geo, r10bio);
646 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
648 sector_t offset, chunk, vchunk;
649 /* Never use conf->prev as this is only called during resync
650 * or recovery, so reshape isn't happening
652 struct geom *geo = &conf->geo;
653 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
654 int far_set_size = geo->far_set_size;
655 int last_far_set_start;
657 if (geo->raid_disks % geo->far_set_size) {
658 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
659 last_far_set_start *= geo->far_set_size;
661 if (dev >= last_far_set_start) {
662 far_set_size = geo->far_set_size;
663 far_set_size += (geo->raid_disks % geo->far_set_size);
664 far_set_start = last_far_set_start;
668 offset = sector & geo->chunk_mask;
669 if (geo->far_offset) {
671 chunk = sector >> geo->chunk_shift;
672 fc = sector_div(chunk, geo->far_copies);
673 dev -= fc * geo->near_copies;
674 if (dev < far_set_start)
677 while (sector >= geo->stride) {
678 sector -= geo->stride;
679 if (dev < (geo->near_copies + far_set_start))
680 dev += far_set_size - geo->near_copies;
682 dev -= geo->near_copies;
684 chunk = sector >> geo->chunk_shift;
686 vchunk = chunk * geo->raid_disks + dev;
687 sector_div(vchunk, geo->near_copies);
688 return (vchunk << geo->chunk_shift) + offset;
692 * This routine returns the disk from which the requested read should
693 * be done. There is a per-array 'next expected sequential IO' sector
694 * number - if this matches on the next IO then we use the last disk.
695 * There is also a per-disk 'last know head position' sector that is
696 * maintained from IRQ contexts, both the normal and the resync IO
697 * completion handlers update this position correctly. If there is no
698 * perfect sequential match then we pick the disk whose head is closest.
700 * If there are 2 mirrors in the same 2 devices, performance degrades
701 * because position is mirror, not device based.
703 * The rdev for the device selected will have nr_pending incremented.
707 * FIXME: possibly should rethink readbalancing and do it differently
708 * depending on near_copies / far_copies geometry.
710 static struct md_rdev *read_balance(struct r10conf *conf,
711 struct r10bio *r10_bio,
714 const sector_t this_sector = r10_bio->sector;
716 int sectors = r10_bio->sectors;
717 int best_good_sectors;
718 sector_t new_distance, best_dist;
719 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
721 int best_dist_slot, best_pending_slot;
722 bool has_nonrot_disk = false;
723 unsigned int min_pending;
724 struct geom *geo = &conf->geo;
726 raid10_find_phys(conf, r10_bio);
729 min_pending = UINT_MAX;
730 best_dist_rdev = NULL;
731 best_pending_rdev = NULL;
732 best_dist = MaxSector;
733 best_good_sectors = 0;
735 clear_bit(R10BIO_FailFast, &r10_bio->state);
737 * Check if we can balance. We can balance on the whole
738 * device if no resync is going on (recovery is ok), or below
739 * the resync window. We take the first readable disk when
740 * above the resync window.
742 if ((conf->mddev->recovery_cp < MaxSector
743 && (this_sector + sectors >= conf->next_resync)) ||
744 (mddev_is_clustered(conf->mddev) &&
745 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
746 this_sector + sectors)))
749 for (slot = 0; slot < conf->copies ; slot++) {
753 unsigned int pending;
756 if (r10_bio->devs[slot].bio == IO_BLOCKED)
758 disk = r10_bio->devs[slot].devnum;
759 rdev = rcu_dereference(conf->mirrors[disk].replacement);
760 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
761 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
762 rdev = rcu_dereference(conf->mirrors[disk].rdev);
764 test_bit(Faulty, &rdev->flags))
766 if (!test_bit(In_sync, &rdev->flags) &&
767 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
770 dev_sector = r10_bio->devs[slot].addr;
771 if (is_badblock(rdev, dev_sector, sectors,
772 &first_bad, &bad_sectors)) {
773 if (best_dist < MaxSector)
774 /* Already have a better slot */
776 if (first_bad <= dev_sector) {
777 /* Cannot read here. If this is the
778 * 'primary' device, then we must not read
779 * beyond 'bad_sectors' from another device.
781 bad_sectors -= (dev_sector - first_bad);
782 if (!do_balance && sectors > bad_sectors)
783 sectors = bad_sectors;
784 if (best_good_sectors > sectors)
785 best_good_sectors = sectors;
787 sector_t good_sectors =
788 first_bad - dev_sector;
789 if (good_sectors > best_good_sectors) {
790 best_good_sectors = good_sectors;
791 best_dist_slot = slot;
792 best_dist_rdev = rdev;
795 /* Must read from here */
800 best_good_sectors = sectors;
805 nonrot = bdev_nonrot(rdev->bdev);
806 has_nonrot_disk |= nonrot;
807 pending = atomic_read(&rdev->nr_pending);
808 if (min_pending > pending && nonrot) {
809 min_pending = pending;
810 best_pending_slot = slot;
811 best_pending_rdev = rdev;
814 if (best_dist_slot >= 0)
815 /* At least 2 disks to choose from so failfast is OK */
816 set_bit(R10BIO_FailFast, &r10_bio->state);
817 /* This optimisation is debatable, and completely destroys
818 * sequential read speed for 'far copies' arrays. So only
819 * keep it for 'near' arrays, and review those later.
821 if (geo->near_copies > 1 && !pending)
824 /* for far > 1 always use the lowest address */
825 else if (geo->far_copies > 1)
826 new_distance = r10_bio->devs[slot].addr;
828 new_distance = abs(r10_bio->devs[slot].addr -
829 conf->mirrors[disk].head_position);
831 if (new_distance < best_dist) {
832 best_dist = new_distance;
833 best_dist_slot = slot;
834 best_dist_rdev = rdev;
837 if (slot >= conf->copies) {
838 if (has_nonrot_disk) {
839 slot = best_pending_slot;
840 rdev = best_pending_rdev;
842 slot = best_dist_slot;
843 rdev = best_dist_rdev;
848 atomic_inc(&rdev->nr_pending);
849 r10_bio->read_slot = slot;
853 *max_sectors = best_good_sectors;
858 static void flush_pending_writes(struct r10conf *conf)
860 /* Any writes that have been queued but are awaiting
861 * bitmap updates get flushed here.
863 spin_lock_irq(&conf->device_lock);
865 if (conf->pending_bio_list.head) {
866 struct blk_plug plug;
869 bio = bio_list_get(&conf->pending_bio_list);
870 spin_unlock_irq(&conf->device_lock);
873 * As this is called in a wait_event() loop (see freeze_array),
874 * current->state might be TASK_UNINTERRUPTIBLE which will
875 * cause a warning when we prepare to wait again. As it is
876 * rare that this path is taken, it is perfectly safe to force
877 * us to go around the wait_event() loop again, so the warning
878 * is a false-positive. Silence the warning by resetting
881 __set_current_state(TASK_RUNNING);
883 blk_start_plug(&plug);
884 /* flush any pending bitmap writes to disk
885 * before proceeding w/ I/O */
886 md_bitmap_unplug(conf->mddev->bitmap);
887 wake_up(&conf->wait_barrier);
889 while (bio) { /* submit pending writes */
890 struct bio *next = bio->bi_next;
891 struct md_rdev *rdev = (void*)bio->bi_bdev;
893 bio_set_dev(bio, rdev->bdev);
894 if (test_bit(Faulty, &rdev->flags)) {
896 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
897 !bdev_max_discard_sectors(bio->bi_bdev)))
901 submit_bio_noacct(bio);
904 blk_finish_plug(&plug);
906 spin_unlock_irq(&conf->device_lock);
910 * Sometimes we need to suspend IO while we do something else,
911 * either some resync/recovery, or reconfigure the array.
912 * To do this we raise a 'barrier'.
913 * The 'barrier' is a counter that can be raised multiple times
914 * to count how many activities are happening which preclude
916 * We can only raise the barrier if there is no pending IO.
917 * i.e. if nr_pending == 0.
918 * We choose only to raise the barrier if no-one is waiting for the
919 * barrier to go down. This means that as soon as an IO request
920 * is ready, no other operations which require a barrier will start
921 * until the IO request has had a chance.
923 * So: regular IO calls 'wait_barrier'. When that returns there
924 * is no backgroup IO happening, It must arrange to call
925 * allow_barrier when it has finished its IO.
926 * backgroup IO calls must call raise_barrier. Once that returns
927 * there is no normal IO happeing. It must arrange to call
928 * lower_barrier when the particular background IO completes.
931 static void raise_barrier(struct r10conf *conf, int force)
933 BUG_ON(force && !conf->barrier);
934 spin_lock_irq(&conf->resync_lock);
936 /* Wait until no block IO is waiting (unless 'force') */
937 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
940 /* block any new IO from starting */
943 /* Now wait for all pending IO to complete */
944 wait_event_lock_irq(conf->wait_barrier,
945 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
948 spin_unlock_irq(&conf->resync_lock);
951 static void lower_barrier(struct r10conf *conf)
954 spin_lock_irqsave(&conf->resync_lock, flags);
956 spin_unlock_irqrestore(&conf->resync_lock, flags);
957 wake_up(&conf->wait_barrier);
960 static bool wait_barrier(struct r10conf *conf, bool nowait)
964 spin_lock_irq(&conf->resync_lock);
966 struct bio_list *bio_list = current->bio_list;
968 /* Wait for the barrier to drop.
969 * However if there are already pending
970 * requests (preventing the barrier from
971 * rising completely), and the
972 * pre-process bio queue isn't empty,
973 * then don't wait, as we need to empty
974 * that queue to get the nr_pending
977 /* Return false when nowait flag is set */
981 raid10_log(conf->mddev, "wait barrier");
982 wait_event_lock_irq(conf->wait_barrier,
984 (atomic_read(&conf->nr_pending) &&
986 (!bio_list_empty(&bio_list[0]) ||
987 !bio_list_empty(&bio_list[1]))) ||
988 /* move on if recovery thread is
991 (conf->mddev->thread->tsk == current &&
992 test_bit(MD_RECOVERY_RUNNING,
993 &conf->mddev->recovery) &&
994 conf->nr_queued > 0),
998 if (!conf->nr_waiting)
999 wake_up(&conf->wait_barrier);
1001 /* Only increment nr_pending when we wait */
1003 atomic_inc(&conf->nr_pending);
1004 spin_unlock_irq(&conf->resync_lock);
1008 static void allow_barrier(struct r10conf *conf)
1010 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1011 (conf->array_freeze_pending))
1012 wake_up(&conf->wait_barrier);
1015 static void freeze_array(struct r10conf *conf, int extra)
1017 /* stop syncio and normal IO and wait for everything to
1019 * We increment barrier and nr_waiting, and then
1020 * wait until nr_pending match nr_queued+extra
1021 * This is called in the context of one normal IO request
1022 * that has failed. Thus any sync request that might be pending
1023 * will be blocked by nr_pending, and we need to wait for
1024 * pending IO requests to complete or be queued for re-try.
1025 * Thus the number queued (nr_queued) plus this request (extra)
1026 * must match the number of pending IOs (nr_pending) before
1029 spin_lock_irq(&conf->resync_lock);
1030 conf->array_freeze_pending++;
1033 wait_event_lock_irq_cmd(conf->wait_barrier,
1034 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1036 flush_pending_writes(conf));
1038 conf->array_freeze_pending--;
1039 spin_unlock_irq(&conf->resync_lock);
1042 static void unfreeze_array(struct r10conf *conf)
1044 /* reverse the effect of the freeze */
1045 spin_lock_irq(&conf->resync_lock);
1048 wake_up(&conf->wait_barrier);
1049 spin_unlock_irq(&conf->resync_lock);
1052 static sector_t choose_data_offset(struct r10bio *r10_bio,
1053 struct md_rdev *rdev)
1055 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1056 test_bit(R10BIO_Previous, &r10_bio->state))
1057 return rdev->data_offset;
1059 return rdev->new_data_offset;
1062 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1064 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1065 struct mddev *mddev = plug->cb.data;
1066 struct r10conf *conf = mddev->private;
1069 if (from_schedule || current->bio_list) {
1070 spin_lock_irq(&conf->device_lock);
1071 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1072 spin_unlock_irq(&conf->device_lock);
1073 wake_up(&conf->wait_barrier);
1074 md_wakeup_thread(mddev->thread);
1079 /* we aren't scheduling, so we can do the write-out directly. */
1080 bio = bio_list_get(&plug->pending);
1081 md_bitmap_unplug(mddev->bitmap);
1082 wake_up(&conf->wait_barrier);
1084 while (bio) { /* submit pending writes */
1085 struct bio *next = bio->bi_next;
1086 struct md_rdev *rdev = (void*)bio->bi_bdev;
1087 bio->bi_next = NULL;
1088 bio_set_dev(bio, rdev->bdev);
1089 if (test_bit(Faulty, &rdev->flags)) {
1091 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1092 !bdev_max_discard_sectors(bio->bi_bdev)))
1093 /* Just ignore it */
1096 submit_bio_noacct(bio);
1103 * 1. Register the new request and wait if the reconstruction thread has put
1104 * up a bar for new requests. Continue immediately if no resync is active
1106 * 2. If IO spans the reshape position. Need to wait for reshape to pass.
1108 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1109 struct bio *bio, sector_t sectors)
1111 /* Bail out if REQ_NOWAIT is set for the bio */
1112 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1113 bio_wouldblock_error(bio);
1116 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1117 bio->bi_iter.bi_sector < conf->reshape_progress &&
1118 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1119 allow_barrier(conf);
1120 if (bio->bi_opf & REQ_NOWAIT) {
1121 bio_wouldblock_error(bio);
1124 raid10_log(conf->mddev, "wait reshape");
1125 wait_event(conf->wait_barrier,
1126 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1127 conf->reshape_progress >= bio->bi_iter.bi_sector +
1129 wait_barrier(conf, false);
1134 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1135 struct r10bio *r10_bio)
1137 struct r10conf *conf = mddev->private;
1138 struct bio *read_bio;
1139 const int op = bio_op(bio);
1140 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1142 struct md_rdev *rdev;
1143 char b[BDEVNAME_SIZE];
1144 int slot = r10_bio->read_slot;
1145 struct md_rdev *err_rdev = NULL;
1146 gfp_t gfp = GFP_NOIO;
1148 if (slot >= 0 && r10_bio->devs[slot].rdev) {
1150 * This is an error retry, but we cannot
1151 * safely dereference the rdev in the r10_bio,
1152 * we must use the one in conf.
1153 * If it has already been disconnected (unlikely)
1154 * we lose the device name in error messages.
1158 * As we are blocking raid10, it is a little safer to
1161 gfp = GFP_NOIO | __GFP_HIGH;
1164 disk = r10_bio->devs[slot].devnum;
1165 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1167 bdevname(err_rdev->bdev, b);
1170 /* This never gets dereferenced */
1171 err_rdev = r10_bio->devs[slot].rdev;
1176 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1178 rdev = read_balance(conf, r10_bio, &max_sectors);
1181 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1183 (unsigned long long)r10_bio->sector);
1185 raid_end_bio_io(r10_bio);
1189 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1192 (unsigned long long)r10_bio->sector);
1193 if (max_sectors < bio_sectors(bio)) {
1194 struct bio *split = bio_split(bio, max_sectors,
1195 gfp, &conf->bio_split);
1196 bio_chain(split, bio);
1197 allow_barrier(conf);
1198 submit_bio_noacct(bio);
1199 wait_barrier(conf, false);
1201 r10_bio->master_bio = bio;
1202 r10_bio->sectors = max_sectors;
1204 slot = r10_bio->read_slot;
1206 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1207 r10_bio->start_time = bio_start_io_acct(bio);
1208 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1210 r10_bio->devs[slot].bio = read_bio;
1211 r10_bio->devs[slot].rdev = rdev;
1213 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1214 choose_data_offset(r10_bio, rdev);
1215 read_bio->bi_end_io = raid10_end_read_request;
1216 bio_set_op_attrs(read_bio, op, do_sync);
1217 if (test_bit(FailFast, &rdev->flags) &&
1218 test_bit(R10BIO_FailFast, &r10_bio->state))
1219 read_bio->bi_opf |= MD_FAILFAST;
1220 read_bio->bi_private = r10_bio;
1223 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1225 submit_bio_noacct(read_bio);
1229 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1230 struct bio *bio, bool replacement,
1233 const int op = bio_op(bio);
1234 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1235 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1236 unsigned long flags;
1237 struct blk_plug_cb *cb;
1238 struct raid1_plug_cb *plug = NULL;
1239 struct r10conf *conf = mddev->private;
1240 struct md_rdev *rdev;
1241 int devnum = r10_bio->devs[n_copy].devnum;
1245 rdev = conf->mirrors[devnum].replacement;
1247 /* Replacement just got moved to main 'rdev' */
1249 rdev = conf->mirrors[devnum].rdev;
1252 rdev = conf->mirrors[devnum].rdev;
1254 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1256 r10_bio->devs[n_copy].repl_bio = mbio;
1258 r10_bio->devs[n_copy].bio = mbio;
1260 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1261 choose_data_offset(r10_bio, rdev));
1262 mbio->bi_end_io = raid10_end_write_request;
1263 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1264 if (!replacement && test_bit(FailFast,
1265 &conf->mirrors[devnum].rdev->flags)
1266 && enough(conf, devnum))
1267 mbio->bi_opf |= MD_FAILFAST;
1268 mbio->bi_private = r10_bio;
1270 if (conf->mddev->gendisk)
1271 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1273 /* flush_pending_writes() needs access to the rdev so...*/
1274 mbio->bi_bdev = (void *)rdev;
1276 atomic_inc(&r10_bio->remaining);
1278 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1280 plug = container_of(cb, struct raid1_plug_cb, cb);
1284 bio_list_add(&plug->pending, mbio);
1286 spin_lock_irqsave(&conf->device_lock, flags);
1287 bio_list_add(&conf->pending_bio_list, mbio);
1288 spin_unlock_irqrestore(&conf->device_lock, flags);
1289 md_wakeup_thread(mddev->thread);
1293 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1296 struct r10conf *conf = mddev->private;
1297 struct md_rdev *blocked_rdev;
1300 blocked_rdev = NULL;
1302 for (i = 0; i < conf->copies; i++) {
1303 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1304 struct md_rdev *rrdev = rcu_dereference(
1305 conf->mirrors[i].replacement);
1308 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1309 atomic_inc(&rdev->nr_pending);
1310 blocked_rdev = rdev;
1313 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1314 atomic_inc(&rrdev->nr_pending);
1315 blocked_rdev = rrdev;
1319 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1321 sector_t dev_sector = r10_bio->devs[i].addr;
1326 * Discard request doesn't care the write result
1327 * so it doesn't need to wait blocked disk here.
1329 if (!r10_bio->sectors)
1332 is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1333 &first_bad, &bad_sectors);
1336 * Mustn't write here until the bad block
1339 atomic_inc(&rdev->nr_pending);
1340 set_bit(BlockedBadBlocks, &rdev->flags);
1341 blocked_rdev = rdev;
1348 if (unlikely(blocked_rdev)) {
1349 /* Have to wait for this device to get unblocked, then retry */
1350 allow_barrier(conf);
1351 raid10_log(conf->mddev, "%s wait rdev %d blocked",
1352 __func__, blocked_rdev->raid_disk);
1353 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1354 wait_barrier(conf, false);
1359 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1360 struct r10bio *r10_bio)
1362 struct r10conf *conf = mddev->private;
1367 if ((mddev_is_clustered(mddev) &&
1368 md_cluster_ops->area_resyncing(mddev, WRITE,
1369 bio->bi_iter.bi_sector,
1370 bio_end_sector(bio)))) {
1372 /* Bail out if REQ_NOWAIT is set for the bio */
1373 if (bio->bi_opf & REQ_NOWAIT) {
1374 bio_wouldblock_error(bio);
1378 prepare_to_wait(&conf->wait_barrier,
1380 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1381 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1385 finish_wait(&conf->wait_barrier, &w);
1388 sectors = r10_bio->sectors;
1389 if (!regular_request_wait(mddev, conf, bio, sectors))
1391 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1392 (mddev->reshape_backwards
1393 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1394 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1395 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1396 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1397 /* Need to update reshape_position in metadata */
1398 mddev->reshape_position = conf->reshape_progress;
1399 set_mask_bits(&mddev->sb_flags, 0,
1400 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1401 md_wakeup_thread(mddev->thread);
1402 if (bio->bi_opf & REQ_NOWAIT) {
1403 allow_barrier(conf);
1404 bio_wouldblock_error(bio);
1407 raid10_log(conf->mddev, "wait reshape metadata");
1408 wait_event(mddev->sb_wait,
1409 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1411 conf->reshape_safe = mddev->reshape_position;
1414 /* first select target devices under rcu_lock and
1415 * inc refcount on their rdev. Record them by setting
1417 * If there are known/acknowledged bad blocks on any device
1418 * on which we have seen a write error, we want to avoid
1419 * writing to those blocks. This potentially requires several
1420 * writes to write around the bad blocks. Each set of writes
1421 * gets its own r10_bio with a set of bios attached.
1424 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1425 raid10_find_phys(conf, r10_bio);
1427 wait_blocked_dev(mddev, r10_bio);
1430 max_sectors = r10_bio->sectors;
1432 for (i = 0; i < conf->copies; i++) {
1433 int d = r10_bio->devs[i].devnum;
1434 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1435 struct md_rdev *rrdev = rcu_dereference(
1436 conf->mirrors[d].replacement);
1439 if (rdev && (test_bit(Faulty, &rdev->flags)))
1441 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1444 r10_bio->devs[i].bio = NULL;
1445 r10_bio->devs[i].repl_bio = NULL;
1447 if (!rdev && !rrdev) {
1448 set_bit(R10BIO_Degraded, &r10_bio->state);
1451 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1453 sector_t dev_sector = r10_bio->devs[i].addr;
1457 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1458 &first_bad, &bad_sectors);
1459 if (is_bad && first_bad <= dev_sector) {
1460 /* Cannot write here at all */
1461 bad_sectors -= (dev_sector - first_bad);
1462 if (bad_sectors < max_sectors)
1463 /* Mustn't write more than bad_sectors
1464 * to other devices yet
1466 max_sectors = bad_sectors;
1467 /* We don't set R10BIO_Degraded as that
1468 * only applies if the disk is missing,
1469 * so it might be re-added, and we want to
1470 * know to recover this chunk.
1471 * In this case the device is here, and the
1472 * fact that this chunk is not in-sync is
1473 * recorded in the bad block log.
1478 int good_sectors = first_bad - dev_sector;
1479 if (good_sectors < max_sectors)
1480 max_sectors = good_sectors;
1484 r10_bio->devs[i].bio = bio;
1485 atomic_inc(&rdev->nr_pending);
1488 r10_bio->devs[i].repl_bio = bio;
1489 atomic_inc(&rrdev->nr_pending);
1494 if (max_sectors < r10_bio->sectors)
1495 r10_bio->sectors = max_sectors;
1497 if (r10_bio->sectors < bio_sectors(bio)) {
1498 struct bio *split = bio_split(bio, r10_bio->sectors,
1499 GFP_NOIO, &conf->bio_split);
1500 bio_chain(split, bio);
1501 allow_barrier(conf);
1502 submit_bio_noacct(bio);
1503 wait_barrier(conf, false);
1505 r10_bio->master_bio = bio;
1508 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1509 r10_bio->start_time = bio_start_io_acct(bio);
1510 atomic_set(&r10_bio->remaining, 1);
1511 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1513 for (i = 0; i < conf->copies; i++) {
1514 if (r10_bio->devs[i].bio)
1515 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1516 if (r10_bio->devs[i].repl_bio)
1517 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1519 one_write_done(r10_bio);
1522 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1524 struct r10conf *conf = mddev->private;
1525 struct r10bio *r10_bio;
1527 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1529 r10_bio->master_bio = bio;
1530 r10_bio->sectors = sectors;
1532 r10_bio->mddev = mddev;
1533 r10_bio->sector = bio->bi_iter.bi_sector;
1535 r10_bio->read_slot = -1;
1536 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1537 conf->geo.raid_disks);
1539 if (bio_data_dir(bio) == READ)
1540 raid10_read_request(mddev, bio, r10_bio);
1542 raid10_write_request(mddev, bio, r10_bio);
1545 static void raid_end_discard_bio(struct r10bio *r10bio)
1547 struct r10conf *conf = r10bio->mddev->private;
1548 struct r10bio *first_r10bio;
1550 while (atomic_dec_and_test(&r10bio->remaining)) {
1552 allow_barrier(conf);
1554 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1555 first_r10bio = (struct r10bio *)r10bio->master_bio;
1556 free_r10bio(r10bio);
1557 r10bio = first_r10bio;
1559 md_write_end(r10bio->mddev);
1560 bio_endio(r10bio->master_bio);
1561 free_r10bio(r10bio);
1567 static void raid10_end_discard_request(struct bio *bio)
1569 struct r10bio *r10_bio = bio->bi_private;
1570 struct r10conf *conf = r10_bio->mddev->private;
1571 struct md_rdev *rdev = NULL;
1576 * We don't care the return value of discard bio
1578 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1579 set_bit(R10BIO_Uptodate, &r10_bio->state);
1581 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1583 rdev = conf->mirrors[dev].replacement;
1586 * raid10_remove_disk uses smp_mb to make sure rdev is set to
1587 * replacement before setting replacement to NULL. It can read
1588 * rdev first without barrier protect even replacment is NULL
1591 rdev = conf->mirrors[dev].rdev;
1594 raid_end_discard_bio(r10_bio);
1595 rdev_dec_pending(rdev, conf->mddev);
1599 * There are some limitations to handle discard bio
1600 * 1st, the discard size is bigger than stripe_size*2.
1601 * 2st, if the discard bio spans reshape progress, we use the old way to
1602 * handle discard bio
1604 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1606 struct r10conf *conf = mddev->private;
1607 struct geom *geo = &conf->geo;
1608 int far_copies = geo->far_copies;
1609 bool first_copy = true;
1610 struct r10bio *r10_bio, *first_r10bio;
1614 unsigned int stripe_size;
1615 unsigned int stripe_data_disks;
1616 sector_t split_size;
1617 sector_t bio_start, bio_end;
1618 sector_t first_stripe_index, last_stripe_index;
1619 sector_t start_disk_offset;
1620 unsigned int start_disk_index;
1621 sector_t end_disk_offset;
1622 unsigned int end_disk_index;
1623 unsigned int remainder;
1625 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1628 if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1629 bio_wouldblock_error(bio);
1632 wait_barrier(conf, false);
1635 * Check reshape again to avoid reshape happens after checking
1636 * MD_RECOVERY_RESHAPE and before wait_barrier
1638 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1641 if (geo->near_copies)
1642 stripe_data_disks = geo->raid_disks / geo->near_copies +
1643 geo->raid_disks % geo->near_copies;
1645 stripe_data_disks = geo->raid_disks;
1647 stripe_size = stripe_data_disks << geo->chunk_shift;
1649 bio_start = bio->bi_iter.bi_sector;
1650 bio_end = bio_end_sector(bio);
1653 * Maybe one discard bio is smaller than strip size or across one
1654 * stripe and discard region is larger than one stripe size. For far
1655 * offset layout, if the discard region is not aligned with stripe
1656 * size, there is hole when we submit discard bio to member disk.
1657 * For simplicity, we only handle discard bio which discard region
1658 * is bigger than stripe_size * 2
1660 if (bio_sectors(bio) < stripe_size*2)
1664 * Keep bio aligned with strip size.
1666 div_u64_rem(bio_start, stripe_size, &remainder);
1668 split_size = stripe_size - remainder;
1669 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1670 bio_chain(split, bio);
1671 allow_barrier(conf);
1672 /* Resend the fist split part */
1673 submit_bio_noacct(split);
1674 wait_barrier(conf, false);
1676 div_u64_rem(bio_end, stripe_size, &remainder);
1678 split_size = bio_sectors(bio) - remainder;
1679 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1680 bio_chain(split, bio);
1681 allow_barrier(conf);
1682 /* Resend the second split part */
1683 submit_bio_noacct(bio);
1685 wait_barrier(conf, false);
1688 bio_start = bio->bi_iter.bi_sector;
1689 bio_end = bio_end_sector(bio);
1692 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1693 * One stripe contains the chunks from all member disk (one chunk from
1694 * one disk at the same HBA address). For layout detail, see 'man md 4'
1696 chunk = bio_start >> geo->chunk_shift;
1697 chunk *= geo->near_copies;
1698 first_stripe_index = chunk;
1699 start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1700 if (geo->far_offset)
1701 first_stripe_index *= geo->far_copies;
1702 start_disk_offset = (bio_start & geo->chunk_mask) +
1703 (first_stripe_index << geo->chunk_shift);
1705 chunk = bio_end >> geo->chunk_shift;
1706 chunk *= geo->near_copies;
1707 last_stripe_index = chunk;
1708 end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1709 if (geo->far_offset)
1710 last_stripe_index *= geo->far_copies;
1711 end_disk_offset = (bio_end & geo->chunk_mask) +
1712 (last_stripe_index << geo->chunk_shift);
1715 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1716 r10_bio->mddev = mddev;
1718 r10_bio->sectors = 0;
1719 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1720 wait_blocked_dev(mddev, r10_bio);
1723 * For far layout it needs more than one r10bio to cover all regions.
1724 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1725 * to record the discard bio. Other r10bio->master_bio record the first
1726 * r10bio. The first r10bio only release after all other r10bios finish.
1727 * The discard bio returns only first r10bio finishes
1730 r10_bio->master_bio = bio;
1731 set_bit(R10BIO_Discard, &r10_bio->state);
1733 first_r10bio = r10_bio;
1735 r10_bio->master_bio = (struct bio *)first_r10bio;
1738 * first select target devices under rcu_lock and
1739 * inc refcount on their rdev. Record them by setting
1743 for (disk = 0; disk < geo->raid_disks; disk++) {
1744 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1745 struct md_rdev *rrdev = rcu_dereference(
1746 conf->mirrors[disk].replacement);
1748 r10_bio->devs[disk].bio = NULL;
1749 r10_bio->devs[disk].repl_bio = NULL;
1751 if (rdev && (test_bit(Faulty, &rdev->flags)))
1753 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1755 if (!rdev && !rrdev)
1759 r10_bio->devs[disk].bio = bio;
1760 atomic_inc(&rdev->nr_pending);
1763 r10_bio->devs[disk].repl_bio = bio;
1764 atomic_inc(&rrdev->nr_pending);
1769 atomic_set(&r10_bio->remaining, 1);
1770 for (disk = 0; disk < geo->raid_disks; disk++) {
1771 sector_t dev_start, dev_end;
1772 struct bio *mbio, *rbio = NULL;
1775 * Now start to calculate the start and end address for each disk.
1776 * The space between dev_start and dev_end is the discard region.
1778 * For dev_start, it needs to consider three conditions:
1779 * 1st, the disk is before start_disk, you can imagine the disk in
1780 * the next stripe. So the dev_start is the start address of next
1782 * 2st, the disk is after start_disk, it means the disk is at the
1783 * same stripe of first disk
1784 * 3st, the first disk itself, we can use start_disk_offset directly
1786 if (disk < start_disk_index)
1787 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1788 else if (disk > start_disk_index)
1789 dev_start = first_stripe_index * mddev->chunk_sectors;
1791 dev_start = start_disk_offset;
1793 if (disk < end_disk_index)
1794 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1795 else if (disk > end_disk_index)
1796 dev_end = last_stripe_index * mddev->chunk_sectors;
1798 dev_end = end_disk_offset;
1801 * It only handles discard bio which size is >= stripe size, so
1802 * dev_end > dev_start all the time.
1803 * It doesn't need to use rcu lock to get rdev here. We already
1804 * add rdev->nr_pending in the first loop.
1806 if (r10_bio->devs[disk].bio) {
1807 struct md_rdev *rdev = conf->mirrors[disk].rdev;
1808 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1810 mbio->bi_end_io = raid10_end_discard_request;
1811 mbio->bi_private = r10_bio;
1812 r10_bio->devs[disk].bio = mbio;
1813 r10_bio->devs[disk].devnum = disk;
1814 atomic_inc(&r10_bio->remaining);
1815 md_submit_discard_bio(mddev, rdev, mbio,
1816 dev_start + choose_data_offset(r10_bio, rdev),
1817 dev_end - dev_start);
1820 if (r10_bio->devs[disk].repl_bio) {
1821 struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1822 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1824 rbio->bi_end_io = raid10_end_discard_request;
1825 rbio->bi_private = r10_bio;
1826 r10_bio->devs[disk].repl_bio = rbio;
1827 r10_bio->devs[disk].devnum = disk;
1828 atomic_inc(&r10_bio->remaining);
1829 md_submit_discard_bio(mddev, rrdev, rbio,
1830 dev_start + choose_data_offset(r10_bio, rrdev),
1831 dev_end - dev_start);
1836 if (!geo->far_offset && --far_copies) {
1837 first_stripe_index += geo->stride >> geo->chunk_shift;
1838 start_disk_offset += geo->stride;
1839 last_stripe_index += geo->stride >> geo->chunk_shift;
1840 end_disk_offset += geo->stride;
1841 atomic_inc(&first_r10bio->remaining);
1842 raid_end_discard_bio(r10_bio);
1843 wait_barrier(conf, false);
1847 raid_end_discard_bio(r10_bio);
1851 allow_barrier(conf);
1855 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1857 struct r10conf *conf = mddev->private;
1858 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1859 int chunk_sects = chunk_mask + 1;
1860 int sectors = bio_sectors(bio);
1862 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1863 && md_flush_request(mddev, bio))
1866 if (!md_write_start(mddev, bio))
1869 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1870 if (!raid10_handle_discard(mddev, bio))
1874 * If this request crosses a chunk boundary, we need to split
1877 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1878 sectors > chunk_sects
1879 && (conf->geo.near_copies < conf->geo.raid_disks
1880 || conf->prev.near_copies <
1881 conf->prev.raid_disks)))
1882 sectors = chunk_sects -
1883 (bio->bi_iter.bi_sector &
1885 __make_request(mddev, bio, sectors);
1887 /* In case raid10d snuck in to freeze_array */
1888 wake_up(&conf->wait_barrier);
1892 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1894 struct r10conf *conf = mddev->private;
1897 if (conf->geo.near_copies < conf->geo.raid_disks)
1898 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1899 if (conf->geo.near_copies > 1)
1900 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1901 if (conf->geo.far_copies > 1) {
1902 if (conf->geo.far_offset)
1903 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1905 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1906 if (conf->geo.far_set_size != conf->geo.raid_disks)
1907 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1909 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1910 conf->geo.raid_disks - mddev->degraded);
1912 for (i = 0; i < conf->geo.raid_disks; i++) {
1913 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1914 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1917 seq_printf(seq, "]");
1920 /* check if there are enough drives for
1921 * every block to appear on atleast one.
1922 * Don't consider the device numbered 'ignore'
1923 * as we might be about to remove it.
1925 static int _enough(struct r10conf *conf, int previous, int ignore)
1931 disks = conf->prev.raid_disks;
1932 ncopies = conf->prev.near_copies;
1934 disks = conf->geo.raid_disks;
1935 ncopies = conf->geo.near_copies;
1940 int n = conf->copies;
1944 struct md_rdev *rdev;
1945 if (this != ignore &&
1946 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1947 test_bit(In_sync, &rdev->flags))
1949 this = (this+1) % disks;
1953 first = (first + ncopies) % disks;
1954 } while (first != 0);
1961 static int enough(struct r10conf *conf, int ignore)
1963 /* when calling 'enough', both 'prev' and 'geo' must
1965 * This is ensured if ->reconfig_mutex or ->device_lock
1968 return _enough(conf, 0, ignore) &&
1969 _enough(conf, 1, ignore);
1973 * raid10_error() - RAID10 error handler.
1974 * @mddev: affected md device.
1975 * @rdev: member device to fail.
1977 * The routine acknowledges &rdev failure and determines new @mddev state.
1978 * If it failed, then:
1979 * - &MD_BROKEN flag is set in &mddev->flags.
1980 * Otherwise, it must be degraded:
1981 * - recovery is interrupted.
1982 * - &mddev->degraded is bumped.
1984 * @rdev is marked as &Faulty excluding case when array is failed and
1985 * &mddev->fail_last_dev is off.
1987 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1989 struct r10conf *conf = mddev->private;
1990 unsigned long flags;
1992 spin_lock_irqsave(&conf->device_lock, flags);
1994 if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
1995 set_bit(MD_BROKEN, &mddev->flags);
1997 if (!mddev->fail_last_dev) {
1998 spin_unlock_irqrestore(&conf->device_lock, flags);
2002 if (test_and_clear_bit(In_sync, &rdev->flags))
2005 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2006 set_bit(Blocked, &rdev->flags);
2007 set_bit(Faulty, &rdev->flags);
2008 set_mask_bits(&mddev->sb_flags, 0,
2009 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2010 spin_unlock_irqrestore(&conf->device_lock, flags);
2011 pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2012 "md/raid10:%s: Operation continuing on %d devices.\n",
2013 mdname(mddev), rdev->bdev,
2014 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2017 static void print_conf(struct r10conf *conf)
2020 struct md_rdev *rdev;
2022 pr_debug("RAID10 conf printout:\n");
2024 pr_debug("(!conf)\n");
2027 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2028 conf->geo.raid_disks);
2030 /* This is only called with ->reconfix_mutex held, so
2031 * rcu protection of rdev is not needed */
2032 for (i = 0; i < conf->geo.raid_disks; i++) {
2033 rdev = conf->mirrors[i].rdev;
2035 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2036 i, !test_bit(In_sync, &rdev->flags),
2037 !test_bit(Faulty, &rdev->flags),
2042 static void close_sync(struct r10conf *conf)
2044 wait_barrier(conf, false);
2045 allow_barrier(conf);
2047 mempool_exit(&conf->r10buf_pool);
2050 static int raid10_spare_active(struct mddev *mddev)
2053 struct r10conf *conf = mddev->private;
2054 struct raid10_info *tmp;
2056 unsigned long flags;
2059 * Find all non-in_sync disks within the RAID10 configuration
2060 * and mark them in_sync
2062 for (i = 0; i < conf->geo.raid_disks; i++) {
2063 tmp = conf->mirrors + i;
2064 if (tmp->replacement
2065 && tmp->replacement->recovery_offset == MaxSector
2066 && !test_bit(Faulty, &tmp->replacement->flags)
2067 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2068 /* Replacement has just become active */
2070 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2073 /* Replaced device not technically faulty,
2074 * but we need to be sure it gets removed
2075 * and never re-added.
2077 set_bit(Faulty, &tmp->rdev->flags);
2078 sysfs_notify_dirent_safe(
2079 tmp->rdev->sysfs_state);
2081 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2082 } else if (tmp->rdev
2083 && tmp->rdev->recovery_offset == MaxSector
2084 && !test_bit(Faulty, &tmp->rdev->flags)
2085 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2087 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2090 spin_lock_irqsave(&conf->device_lock, flags);
2091 mddev->degraded -= count;
2092 spin_unlock_irqrestore(&conf->device_lock, flags);
2098 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2100 struct r10conf *conf = mddev->private;
2104 int last = conf->geo.raid_disks - 1;
2106 if (mddev->recovery_cp < MaxSector)
2107 /* only hot-add to in-sync arrays, as recovery is
2108 * very different from resync
2111 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2114 if (md_integrity_add_rdev(rdev, mddev))
2117 if (rdev->raid_disk >= 0)
2118 first = last = rdev->raid_disk;
2120 if (rdev->saved_raid_disk >= first &&
2121 rdev->saved_raid_disk < conf->geo.raid_disks &&
2122 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2123 mirror = rdev->saved_raid_disk;
2126 for ( ; mirror <= last ; mirror++) {
2127 struct raid10_info *p = &conf->mirrors[mirror];
2128 if (p->recovery_disabled == mddev->recovery_disabled)
2131 if (!test_bit(WantReplacement, &p->rdev->flags) ||
2132 p->replacement != NULL)
2134 clear_bit(In_sync, &rdev->flags);
2135 set_bit(Replacement, &rdev->flags);
2136 rdev->raid_disk = mirror;
2139 disk_stack_limits(mddev->gendisk, rdev->bdev,
2140 rdev->data_offset << 9);
2142 rcu_assign_pointer(p->replacement, rdev);
2147 disk_stack_limits(mddev->gendisk, rdev->bdev,
2148 rdev->data_offset << 9);
2150 p->head_position = 0;
2151 p->recovery_disabled = mddev->recovery_disabled - 1;
2152 rdev->raid_disk = mirror;
2154 if (rdev->saved_raid_disk != mirror)
2156 rcu_assign_pointer(p->rdev, rdev);
2164 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2166 struct r10conf *conf = mddev->private;
2168 int number = rdev->raid_disk;
2169 struct md_rdev **rdevp;
2170 struct raid10_info *p = conf->mirrors + number;
2173 if (rdev == p->rdev)
2175 else if (rdev == p->replacement)
2176 rdevp = &p->replacement;
2180 if (test_bit(In_sync, &rdev->flags) ||
2181 atomic_read(&rdev->nr_pending)) {
2185 /* Only remove non-faulty devices if recovery
2188 if (!test_bit(Faulty, &rdev->flags) &&
2189 mddev->recovery_disabled != p->recovery_disabled &&
2190 (!p->replacement || p->replacement == rdev) &&
2191 number < conf->geo.raid_disks &&
2197 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2199 if (atomic_read(&rdev->nr_pending)) {
2200 /* lost the race, try later */
2206 if (p->replacement) {
2207 /* We must have just cleared 'rdev' */
2208 p->rdev = p->replacement;
2209 clear_bit(Replacement, &p->replacement->flags);
2210 smp_mb(); /* Make sure other CPUs may see both as identical
2211 * but will never see neither -- if they are careful.
2213 p->replacement = NULL;
2216 clear_bit(WantReplacement, &rdev->flags);
2217 err = md_integrity_register(mddev);
2225 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2227 struct r10conf *conf = r10_bio->mddev->private;
2229 if (!bio->bi_status)
2230 set_bit(R10BIO_Uptodate, &r10_bio->state);
2232 /* The write handler will notice the lack of
2233 * R10BIO_Uptodate and record any errors etc
2235 atomic_add(r10_bio->sectors,
2236 &conf->mirrors[d].rdev->corrected_errors);
2238 /* for reconstruct, we always reschedule after a read.
2239 * for resync, only after all reads
2241 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2242 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2243 atomic_dec_and_test(&r10_bio->remaining)) {
2244 /* we have read all the blocks,
2245 * do the comparison in process context in raid10d
2247 reschedule_retry(r10_bio);
2251 static void end_sync_read(struct bio *bio)
2253 struct r10bio *r10_bio = get_resync_r10bio(bio);
2254 struct r10conf *conf = r10_bio->mddev->private;
2255 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2257 __end_sync_read(r10_bio, bio, d);
2260 static void end_reshape_read(struct bio *bio)
2262 /* reshape read bio isn't allocated from r10buf_pool */
2263 struct r10bio *r10_bio = bio->bi_private;
2265 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2268 static void end_sync_request(struct r10bio *r10_bio)
2270 struct mddev *mddev = r10_bio->mddev;
2272 while (atomic_dec_and_test(&r10_bio->remaining)) {
2273 if (r10_bio->master_bio == NULL) {
2274 /* the primary of several recovery bios */
2275 sector_t s = r10_bio->sectors;
2276 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2277 test_bit(R10BIO_WriteError, &r10_bio->state))
2278 reschedule_retry(r10_bio);
2281 md_done_sync(mddev, s, 1);
2284 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2285 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2286 test_bit(R10BIO_WriteError, &r10_bio->state))
2287 reschedule_retry(r10_bio);
2295 static void end_sync_write(struct bio *bio)
2297 struct r10bio *r10_bio = get_resync_r10bio(bio);
2298 struct mddev *mddev = r10_bio->mddev;
2299 struct r10conf *conf = mddev->private;
2305 struct md_rdev *rdev = NULL;
2307 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2309 rdev = conf->mirrors[d].replacement;
2311 rdev = conf->mirrors[d].rdev;
2313 if (bio->bi_status) {
2315 md_error(mddev, rdev);
2317 set_bit(WriteErrorSeen, &rdev->flags);
2318 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2319 set_bit(MD_RECOVERY_NEEDED,
2320 &rdev->mddev->recovery);
2321 set_bit(R10BIO_WriteError, &r10_bio->state);
2323 } else if (is_badblock(rdev,
2324 r10_bio->devs[slot].addr,
2326 &first_bad, &bad_sectors))
2327 set_bit(R10BIO_MadeGood, &r10_bio->state);
2329 rdev_dec_pending(rdev, mddev);
2331 end_sync_request(r10_bio);
2335 * Note: sync and recover and handled very differently for raid10
2336 * This code is for resync.
2337 * For resync, we read through virtual addresses and read all blocks.
2338 * If there is any error, we schedule a write. The lowest numbered
2339 * drive is authoritative.
2340 * However requests come for physical address, so we need to map.
2341 * For every physical address there are raid_disks/copies virtual addresses,
2342 * which is always are least one, but is not necessarly an integer.
2343 * This means that a physical address can span multiple chunks, so we may
2344 * have to submit multiple io requests for a single sync request.
2347 * We check if all blocks are in-sync and only write to blocks that
2350 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2352 struct r10conf *conf = mddev->private;
2354 struct bio *tbio, *fbio;
2356 struct page **tpages, **fpages;
2358 atomic_set(&r10_bio->remaining, 1);
2360 /* find the first device with a block */
2361 for (i=0; i<conf->copies; i++)
2362 if (!r10_bio->devs[i].bio->bi_status)
2365 if (i == conf->copies)
2369 fbio = r10_bio->devs[i].bio;
2370 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2371 fbio->bi_iter.bi_idx = 0;
2372 fpages = get_resync_pages(fbio)->pages;
2374 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2375 /* now find blocks with errors */
2376 for (i=0 ; i < conf->copies ; i++) {
2378 struct md_rdev *rdev;
2379 struct resync_pages *rp;
2381 tbio = r10_bio->devs[i].bio;
2383 if (tbio->bi_end_io != end_sync_read)
2388 tpages = get_resync_pages(tbio)->pages;
2389 d = r10_bio->devs[i].devnum;
2390 rdev = conf->mirrors[d].rdev;
2391 if (!r10_bio->devs[i].bio->bi_status) {
2392 /* We know that the bi_io_vec layout is the same for
2393 * both 'first' and 'i', so we just compare them.
2394 * All vec entries are PAGE_SIZE;
2396 int sectors = r10_bio->sectors;
2397 for (j = 0; j < vcnt; j++) {
2398 int len = PAGE_SIZE;
2399 if (sectors < (len / 512))
2400 len = sectors * 512;
2401 if (memcmp(page_address(fpages[j]),
2402 page_address(tpages[j]),
2409 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2410 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2411 /* Don't fix anything. */
2413 } else if (test_bit(FailFast, &rdev->flags)) {
2414 /* Just give up on this device */
2415 md_error(rdev->mddev, rdev);
2418 /* Ok, we need to write this bio, either to correct an
2419 * inconsistency or to correct an unreadable block.
2420 * First we need to fixup bv_offset, bv_len and
2421 * bi_vecs, as the read request might have corrupted these
2423 rp = get_resync_pages(tbio);
2424 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2426 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2428 rp->raid_bio = r10_bio;
2429 tbio->bi_private = rp;
2430 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2431 tbio->bi_end_io = end_sync_write;
2433 bio_copy_data(tbio, fbio);
2435 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2436 atomic_inc(&r10_bio->remaining);
2437 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2439 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2440 tbio->bi_opf |= MD_FAILFAST;
2441 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2442 submit_bio_noacct(tbio);
2445 /* Now write out to any replacement devices
2448 for (i = 0; i < conf->copies; i++) {
2451 tbio = r10_bio->devs[i].repl_bio;
2452 if (!tbio || !tbio->bi_end_io)
2454 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2455 && r10_bio->devs[i].bio != fbio)
2456 bio_copy_data(tbio, fbio);
2457 d = r10_bio->devs[i].devnum;
2458 atomic_inc(&r10_bio->remaining);
2459 md_sync_acct(conf->mirrors[d].replacement->bdev,
2461 submit_bio_noacct(tbio);
2465 if (atomic_dec_and_test(&r10_bio->remaining)) {
2466 md_done_sync(mddev, r10_bio->sectors, 1);
2472 * Now for the recovery code.
2473 * Recovery happens across physical sectors.
2474 * We recover all non-is_sync drives by finding the virtual address of
2475 * each, and then choose a working drive that also has that virt address.
2476 * There is a separate r10_bio for each non-in_sync drive.
2477 * Only the first two slots are in use. The first for reading,
2478 * The second for writing.
2481 static void fix_recovery_read_error(struct r10bio *r10_bio)
2483 /* We got a read error during recovery.
2484 * We repeat the read in smaller page-sized sections.
2485 * If a read succeeds, write it to the new device or record
2486 * a bad block if we cannot.
2487 * If a read fails, record a bad block on both old and
2490 struct mddev *mddev = r10_bio->mddev;
2491 struct r10conf *conf = mddev->private;
2492 struct bio *bio = r10_bio->devs[0].bio;
2494 int sectors = r10_bio->sectors;
2496 int dr = r10_bio->devs[0].devnum;
2497 int dw = r10_bio->devs[1].devnum;
2498 struct page **pages = get_resync_pages(bio)->pages;
2502 struct md_rdev *rdev;
2506 if (s > (PAGE_SIZE>>9))
2509 rdev = conf->mirrors[dr].rdev;
2510 addr = r10_bio->devs[0].addr + sect,
2511 ok = sync_page_io(rdev,
2515 REQ_OP_READ, 0, false);
2517 rdev = conf->mirrors[dw].rdev;
2518 addr = r10_bio->devs[1].addr + sect;
2519 ok = sync_page_io(rdev,
2523 REQ_OP_WRITE, 0, false);
2525 set_bit(WriteErrorSeen, &rdev->flags);
2526 if (!test_and_set_bit(WantReplacement,
2528 set_bit(MD_RECOVERY_NEEDED,
2529 &rdev->mddev->recovery);
2533 /* We don't worry if we cannot set a bad block -
2534 * it really is bad so there is no loss in not
2537 rdev_set_badblocks(rdev, addr, s, 0);
2539 if (rdev != conf->mirrors[dw].rdev) {
2540 /* need bad block on destination too */
2541 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2542 addr = r10_bio->devs[1].addr + sect;
2543 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2545 /* just abort the recovery */
2546 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2549 conf->mirrors[dw].recovery_disabled
2550 = mddev->recovery_disabled;
2551 set_bit(MD_RECOVERY_INTR,
2564 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2566 struct r10conf *conf = mddev->private;
2568 struct bio *wbio, *wbio2;
2570 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2571 fix_recovery_read_error(r10_bio);
2572 end_sync_request(r10_bio);
2577 * share the pages with the first bio
2578 * and submit the write request
2580 d = r10_bio->devs[1].devnum;
2581 wbio = r10_bio->devs[1].bio;
2582 wbio2 = r10_bio->devs[1].repl_bio;
2583 /* Need to test wbio2->bi_end_io before we call
2584 * submit_bio_noacct as if the former is NULL,
2585 * the latter is free to free wbio2.
2587 if (wbio2 && !wbio2->bi_end_io)
2589 if (wbio->bi_end_io) {
2590 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2591 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2592 submit_bio_noacct(wbio);
2595 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2596 md_sync_acct(conf->mirrors[d].replacement->bdev,
2597 bio_sectors(wbio2));
2598 submit_bio_noacct(wbio2);
2603 * Used by fix_read_error() to decay the per rdev read_errors.
2604 * We halve the read error count for every hour that has elapsed
2605 * since the last recorded read error.
2608 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2611 unsigned long hours_since_last;
2612 unsigned int read_errors = atomic_read(&rdev->read_errors);
2614 cur_time_mon = ktime_get_seconds();
2616 if (rdev->last_read_error == 0) {
2617 /* first time we've seen a read error */
2618 rdev->last_read_error = cur_time_mon;
2622 hours_since_last = (long)(cur_time_mon -
2623 rdev->last_read_error) / 3600;
2625 rdev->last_read_error = cur_time_mon;
2628 * if hours_since_last is > the number of bits in read_errors
2629 * just set read errors to 0. We do this to avoid
2630 * overflowing the shift of read_errors by hours_since_last.
2632 if (hours_since_last >= 8 * sizeof(read_errors))
2633 atomic_set(&rdev->read_errors, 0);
2635 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2638 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2639 int sectors, struct page *page, int rw)
2644 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2645 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2647 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2651 set_bit(WriteErrorSeen, &rdev->flags);
2652 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2653 set_bit(MD_RECOVERY_NEEDED,
2654 &rdev->mddev->recovery);
2656 /* need to record an error - either for the block or the device */
2657 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2658 md_error(rdev->mddev, rdev);
2663 * This is a kernel thread which:
2665 * 1. Retries failed read operations on working mirrors.
2666 * 2. Updates the raid superblock when problems encounter.
2667 * 3. Performs writes following reads for array synchronising.
2670 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2672 int sect = 0; /* Offset from r10_bio->sector */
2673 int sectors = r10_bio->sectors;
2674 struct md_rdev *rdev;
2675 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2676 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2678 /* still own a reference to this rdev, so it cannot
2679 * have been cleared recently.
2681 rdev = conf->mirrors[d].rdev;
2683 if (test_bit(Faulty, &rdev->flags))
2684 /* drive has already been failed, just ignore any
2685 more fix_read_error() attempts */
2688 check_decay_read_errors(mddev, rdev);
2689 atomic_inc(&rdev->read_errors);
2690 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2691 pr_notice("md/raid10:%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2692 mdname(mddev), rdev->bdev,
2693 atomic_read(&rdev->read_errors), max_read_errors);
2694 pr_notice("md/raid10:%s: %pg: Failing raid device\n",
2695 mdname(mddev), rdev->bdev);
2696 md_error(mddev, rdev);
2697 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2703 int sl = r10_bio->read_slot;
2707 if (s > (PAGE_SIZE>>9))
2715 d = r10_bio->devs[sl].devnum;
2716 rdev = rcu_dereference(conf->mirrors[d].rdev);
2718 test_bit(In_sync, &rdev->flags) &&
2719 !test_bit(Faulty, &rdev->flags) &&
2720 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2721 &first_bad, &bad_sectors) == 0) {
2722 atomic_inc(&rdev->nr_pending);
2724 success = sync_page_io(rdev,
2725 r10_bio->devs[sl].addr +
2729 REQ_OP_READ, 0, false);
2730 rdev_dec_pending(rdev, mddev);
2736 if (sl == conf->copies)
2738 } while (!success && sl != r10_bio->read_slot);
2742 /* Cannot read from anywhere, just mark the block
2743 * as bad on the first device to discourage future
2746 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2747 rdev = conf->mirrors[dn].rdev;
2749 if (!rdev_set_badblocks(
2751 r10_bio->devs[r10_bio->read_slot].addr
2754 md_error(mddev, rdev);
2755 r10_bio->devs[r10_bio->read_slot].bio
2762 /* write it back and re-read */
2764 while (sl != r10_bio->read_slot) {
2768 d = r10_bio->devs[sl].devnum;
2769 rdev = rcu_dereference(conf->mirrors[d].rdev);
2771 test_bit(Faulty, &rdev->flags) ||
2772 !test_bit(In_sync, &rdev->flags))
2775 atomic_inc(&rdev->nr_pending);
2777 if (r10_sync_page_io(rdev,
2778 r10_bio->devs[sl].addr +
2780 s, conf->tmppage, WRITE)
2782 /* Well, this device is dead */
2783 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2785 (unsigned long long)(
2787 choose_data_offset(r10_bio,
2790 pr_notice("md/raid10:%s: %pg: failing drive\n",
2794 rdev_dec_pending(rdev, mddev);
2798 while (sl != r10_bio->read_slot) {
2802 d = r10_bio->devs[sl].devnum;
2803 rdev = rcu_dereference(conf->mirrors[d].rdev);
2805 test_bit(Faulty, &rdev->flags) ||
2806 !test_bit(In_sync, &rdev->flags))
2809 atomic_inc(&rdev->nr_pending);
2811 switch (r10_sync_page_io(rdev,
2812 r10_bio->devs[sl].addr +
2817 /* Well, this device is dead */
2818 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2820 (unsigned long long)(
2822 choose_data_offset(r10_bio, rdev)),
2824 pr_notice("md/raid10:%s: %pg: failing drive\n",
2829 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2831 (unsigned long long)(
2833 choose_data_offset(r10_bio, rdev)),
2835 atomic_add(s, &rdev->corrected_errors);
2838 rdev_dec_pending(rdev, mddev);
2848 static int narrow_write_error(struct r10bio *r10_bio, int i)
2850 struct bio *bio = r10_bio->master_bio;
2851 struct mddev *mddev = r10_bio->mddev;
2852 struct r10conf *conf = mddev->private;
2853 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2854 /* bio has the data to be written to slot 'i' where
2855 * we just recently had a write error.
2856 * We repeatedly clone the bio and trim down to one block,
2857 * then try the write. Where the write fails we record
2859 * It is conceivable that the bio doesn't exactly align with
2860 * blocks. We must handle this.
2862 * We currently own a reference to the rdev.
2868 int sect_to_write = r10_bio->sectors;
2871 if (rdev->badblocks.shift < 0)
2874 block_sectors = roundup(1 << rdev->badblocks.shift,
2875 bdev_logical_block_size(rdev->bdev) >> 9);
2876 sector = r10_bio->sector;
2877 sectors = ((r10_bio->sector + block_sectors)
2878 & ~(sector_t)(block_sectors - 1))
2881 while (sect_to_write) {
2884 if (sectors > sect_to_write)
2885 sectors = sect_to_write;
2886 /* Write at 'sector' for 'sectors' */
2887 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2889 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2890 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2891 wbio->bi_iter.bi_sector = wsector +
2892 choose_data_offset(r10_bio, rdev);
2893 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2895 if (submit_bio_wait(wbio) < 0)
2897 ok = rdev_set_badblocks(rdev, wsector,
2902 sect_to_write -= sectors;
2904 sectors = block_sectors;
2909 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2911 int slot = r10_bio->read_slot;
2913 struct r10conf *conf = mddev->private;
2914 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2916 /* we got a read error. Maybe the drive is bad. Maybe just
2917 * the block and we can fix it.
2918 * We freeze all other IO, and try reading the block from
2919 * other devices. When we find one, we re-write
2920 * and check it that fixes the read error.
2921 * This is all done synchronously while the array is
2924 bio = r10_bio->devs[slot].bio;
2926 r10_bio->devs[slot].bio = NULL;
2929 r10_bio->devs[slot].bio = IO_BLOCKED;
2930 else if (!test_bit(FailFast, &rdev->flags)) {
2931 freeze_array(conf, 1);
2932 fix_read_error(conf, mddev, r10_bio);
2933 unfreeze_array(conf);
2935 md_error(mddev, rdev);
2937 rdev_dec_pending(rdev, mddev);
2938 allow_barrier(conf);
2940 raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2943 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2945 /* Some sort of write request has finished and it
2946 * succeeded in writing where we thought there was a
2947 * bad block. So forget the bad block.
2948 * Or possibly if failed and we need to record
2952 struct md_rdev *rdev;
2954 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2955 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2956 for (m = 0; m < conf->copies; m++) {
2957 int dev = r10_bio->devs[m].devnum;
2958 rdev = conf->mirrors[dev].rdev;
2959 if (r10_bio->devs[m].bio == NULL ||
2960 r10_bio->devs[m].bio->bi_end_io == NULL)
2962 if (!r10_bio->devs[m].bio->bi_status) {
2963 rdev_clear_badblocks(
2965 r10_bio->devs[m].addr,
2966 r10_bio->sectors, 0);
2968 if (!rdev_set_badblocks(
2970 r10_bio->devs[m].addr,
2971 r10_bio->sectors, 0))
2972 md_error(conf->mddev, rdev);
2974 rdev = conf->mirrors[dev].replacement;
2975 if (r10_bio->devs[m].repl_bio == NULL ||
2976 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2979 if (!r10_bio->devs[m].repl_bio->bi_status) {
2980 rdev_clear_badblocks(
2982 r10_bio->devs[m].addr,
2983 r10_bio->sectors, 0);
2985 if (!rdev_set_badblocks(
2987 r10_bio->devs[m].addr,
2988 r10_bio->sectors, 0))
2989 md_error(conf->mddev, rdev);
2995 for (m = 0; m < conf->copies; m++) {
2996 int dev = r10_bio->devs[m].devnum;
2997 struct bio *bio = r10_bio->devs[m].bio;
2998 rdev = conf->mirrors[dev].rdev;
2999 if (bio == IO_MADE_GOOD) {
3000 rdev_clear_badblocks(
3002 r10_bio->devs[m].addr,
3003 r10_bio->sectors, 0);
3004 rdev_dec_pending(rdev, conf->mddev);
3005 } else if (bio != NULL && bio->bi_status) {
3007 if (!narrow_write_error(r10_bio, m)) {
3008 md_error(conf->mddev, rdev);
3009 set_bit(R10BIO_Degraded,
3012 rdev_dec_pending(rdev, conf->mddev);
3014 bio = r10_bio->devs[m].repl_bio;
3015 rdev = conf->mirrors[dev].replacement;
3016 if (rdev && bio == IO_MADE_GOOD) {
3017 rdev_clear_badblocks(
3019 r10_bio->devs[m].addr,
3020 r10_bio->sectors, 0);
3021 rdev_dec_pending(rdev, conf->mddev);
3025 spin_lock_irq(&conf->device_lock);
3026 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3028 spin_unlock_irq(&conf->device_lock);
3030 * In case freeze_array() is waiting for condition
3031 * nr_pending == nr_queued + extra to be true.
3033 wake_up(&conf->wait_barrier);
3034 md_wakeup_thread(conf->mddev->thread);
3036 if (test_bit(R10BIO_WriteError,
3038 close_write(r10_bio);
3039 raid_end_bio_io(r10_bio);
3044 static void raid10d(struct md_thread *thread)
3046 struct mddev *mddev = thread->mddev;
3047 struct r10bio *r10_bio;
3048 unsigned long flags;
3049 struct r10conf *conf = mddev->private;
3050 struct list_head *head = &conf->retry_list;
3051 struct blk_plug plug;
3053 md_check_recovery(mddev);
3055 if (!list_empty_careful(&conf->bio_end_io_list) &&
3056 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3058 spin_lock_irqsave(&conf->device_lock, flags);
3059 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3060 while (!list_empty(&conf->bio_end_io_list)) {
3061 list_move(conf->bio_end_io_list.prev, &tmp);
3065 spin_unlock_irqrestore(&conf->device_lock, flags);
3066 while (!list_empty(&tmp)) {
3067 r10_bio = list_first_entry(&tmp, struct r10bio,
3069 list_del(&r10_bio->retry_list);
3070 if (mddev->degraded)
3071 set_bit(R10BIO_Degraded, &r10_bio->state);
3073 if (test_bit(R10BIO_WriteError,
3075 close_write(r10_bio);
3076 raid_end_bio_io(r10_bio);
3080 blk_start_plug(&plug);
3083 flush_pending_writes(conf);
3085 spin_lock_irqsave(&conf->device_lock, flags);
3086 if (list_empty(head)) {
3087 spin_unlock_irqrestore(&conf->device_lock, flags);
3090 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3091 list_del(head->prev);
3093 spin_unlock_irqrestore(&conf->device_lock, flags);
3095 mddev = r10_bio->mddev;
3096 conf = mddev->private;
3097 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3098 test_bit(R10BIO_WriteError, &r10_bio->state))
3099 handle_write_completed(conf, r10_bio);
3100 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3101 reshape_request_write(mddev, r10_bio);
3102 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3103 sync_request_write(mddev, r10_bio);
3104 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3105 recovery_request_write(mddev, r10_bio);
3106 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3107 handle_read_error(mddev, r10_bio);
3112 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3113 md_check_recovery(mddev);
3115 blk_finish_plug(&plug);
3118 static int init_resync(struct r10conf *conf)
3122 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3123 BUG_ON(mempool_initialized(&conf->r10buf_pool));
3124 conf->have_replacement = 0;
3125 for (i = 0; i < conf->geo.raid_disks; i++)
3126 if (conf->mirrors[i].replacement)
3127 conf->have_replacement = 1;
3128 ret = mempool_init(&conf->r10buf_pool, buffs,
3129 r10buf_pool_alloc, r10buf_pool_free, conf);
3132 conf->next_resync = 0;
3136 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3138 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3139 struct rsync_pages *rp;
3144 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3145 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3146 nalloc = conf->copies; /* resync */
3148 nalloc = 2; /* recovery */
3150 for (i = 0; i < nalloc; i++) {
3151 bio = r10bio->devs[i].bio;
3152 rp = bio->bi_private;
3153 bio_reset(bio, NULL, 0);
3154 bio->bi_private = rp;
3155 bio = r10bio->devs[i].repl_bio;
3157 rp = bio->bi_private;
3158 bio_reset(bio, NULL, 0);
3159 bio->bi_private = rp;
3166 * Set cluster_sync_high since we need other nodes to add the
3167 * range [cluster_sync_low, cluster_sync_high] to suspend list.
3169 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3171 sector_t window_size;
3172 int extra_chunk, chunks;
3175 * First, here we define "stripe" as a unit which across
3176 * all member devices one time, so we get chunks by use
3177 * raid_disks / near_copies. Otherwise, if near_copies is
3178 * close to raid_disks, then resync window could increases
3179 * linearly with the increase of raid_disks, which means
3180 * we will suspend a really large IO window while it is not
3181 * necessary. If raid_disks is not divisible by near_copies,
3182 * an extra chunk is needed to ensure the whole "stripe" is
3186 chunks = conf->geo.raid_disks / conf->geo.near_copies;
3187 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3191 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3194 * At least use a 32M window to align with raid1's resync window
3196 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3197 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3199 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3203 * perform a "sync" on one "block"
3205 * We need to make sure that no normal I/O request - particularly write
3206 * requests - conflict with active sync requests.
3208 * This is achieved by tracking pending requests and a 'barrier' concept
3209 * that can be installed to exclude normal IO requests.
3211 * Resync and recovery are handled very differently.
3212 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3214 * For resync, we iterate over virtual addresses, read all copies,
3215 * and update if there are differences. If only one copy is live,
3217 * For recovery, we iterate over physical addresses, read a good
3218 * value for each non-in_sync drive, and over-write.
3220 * So, for recovery we may have several outstanding complex requests for a
3221 * given address, one for each out-of-sync device. We model this by allocating
3222 * a number of r10_bio structures, one for each out-of-sync device.
3223 * As we setup these structures, we collect all bio's together into a list
3224 * which we then process collectively to add pages, and then process again
3225 * to pass to submit_bio_noacct.
3227 * The r10_bio structures are linked using a borrowed master_bio pointer.
3228 * This link is counted in ->remaining. When the r10_bio that points to NULL
3229 * has its remaining count decremented to 0, the whole complex operation
3234 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3237 struct r10conf *conf = mddev->private;
3238 struct r10bio *r10_bio;
3239 struct bio *biolist = NULL, *bio;
3240 sector_t max_sector, nr_sectors;
3243 sector_t sync_blocks;
3244 sector_t sectors_skipped = 0;
3245 int chunks_skipped = 0;
3246 sector_t chunk_mask = conf->geo.chunk_mask;
3249 if (!mempool_initialized(&conf->r10buf_pool))
3250 if (init_resync(conf))
3254 * Allow skipping a full rebuild for incremental assembly
3255 * of a clean array, like RAID1 does.
3257 if (mddev->bitmap == NULL &&
3258 mddev->recovery_cp == MaxSector &&
3259 mddev->reshape_position == MaxSector &&
3260 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3261 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3262 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3263 conf->fullsync == 0) {
3265 return mddev->dev_sectors - sector_nr;
3269 max_sector = mddev->dev_sectors;
3270 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3271 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3272 max_sector = mddev->resync_max_sectors;
3273 if (sector_nr >= max_sector) {
3274 conf->cluster_sync_low = 0;
3275 conf->cluster_sync_high = 0;
3277 /* If we aborted, we need to abort the
3278 * sync on the 'current' bitmap chucks (there can
3279 * be several when recovering multiple devices).
3280 * as we may have started syncing it but not finished.
3281 * We can find the current address in
3282 * mddev->curr_resync, but for recovery,
3283 * we need to convert that to several
3284 * virtual addresses.
3286 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3292 if (mddev->curr_resync < max_sector) { /* aborted */
3293 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3294 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3296 else for (i = 0; i < conf->geo.raid_disks; i++) {
3298 raid10_find_virt(conf, mddev->curr_resync, i);
3299 md_bitmap_end_sync(mddev->bitmap, sect,
3303 /* completed sync */
3304 if ((!mddev->bitmap || conf->fullsync)
3305 && conf->have_replacement
3306 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3307 /* Completed a full sync so the replacements
3308 * are now fully recovered.
3311 for (i = 0; i < conf->geo.raid_disks; i++) {
3312 struct md_rdev *rdev =
3313 rcu_dereference(conf->mirrors[i].replacement);
3315 rdev->recovery_offset = MaxSector;
3321 md_bitmap_close_sync(mddev->bitmap);
3324 return sectors_skipped;
3327 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3328 return reshape_request(mddev, sector_nr, skipped);
3330 if (chunks_skipped >= conf->geo.raid_disks) {
3331 /* if there has been nothing to do on any drive,
3332 * then there is nothing to do at all..
3335 return (max_sector - sector_nr) + sectors_skipped;
3338 if (max_sector > mddev->resync_max)
3339 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3341 /* make sure whole request will fit in a chunk - if chunks
3344 if (conf->geo.near_copies < conf->geo.raid_disks &&
3345 max_sector > (sector_nr | chunk_mask))
3346 max_sector = (sector_nr | chunk_mask) + 1;
3349 * If there is non-resync activity waiting for a turn, then let it
3350 * though before starting on this new sync request.
3352 if (conf->nr_waiting)
3353 schedule_timeout_uninterruptible(1);
3355 /* Again, very different code for resync and recovery.
3356 * Both must result in an r10bio with a list of bios that
3357 * have bi_end_io, bi_sector, bi_bdev set,
3358 * and bi_private set to the r10bio.
3359 * For recovery, we may actually create several r10bios
3360 * with 2 bios in each, that correspond to the bios in the main one.
3361 * In this case, the subordinate r10bios link back through a
3362 * borrowed master_bio pointer, and the counter in the master
3363 * includes a ref from each subordinate.
3365 /* First, we decide what to do and set ->bi_end_io
3366 * To end_sync_read if we want to read, and
3367 * end_sync_write if we will want to write.
3370 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3371 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3372 /* recovery... the complicated one */
3376 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3382 int need_recover = 0;
3383 int need_replace = 0;
3384 struct raid10_info *mirror = &conf->mirrors[i];
3385 struct md_rdev *mrdev, *mreplace;
3388 mrdev = rcu_dereference(mirror->rdev);
3389 mreplace = rcu_dereference(mirror->replacement);
3391 if (mrdev != NULL &&
3392 !test_bit(Faulty, &mrdev->flags) &&
3393 !test_bit(In_sync, &mrdev->flags))
3395 if (mreplace != NULL &&
3396 !test_bit(Faulty, &mreplace->flags))
3399 if (!need_recover && !need_replace) {
3405 /* want to reconstruct this device */
3407 sect = raid10_find_virt(conf, sector_nr, i);
3408 if (sect >= mddev->resync_max_sectors) {
3409 /* last stripe is not complete - don't
3410 * try to recover this sector.
3415 if (mreplace && test_bit(Faulty, &mreplace->flags))
3417 /* Unless we are doing a full sync, or a replacement
3418 * we only need to recover the block if it is set in
3421 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3423 if (sync_blocks < max_sync)
3424 max_sync = sync_blocks;
3428 /* yep, skip the sync_blocks here, but don't assume
3429 * that there will never be anything to do here
3431 chunks_skipped = -1;
3435 atomic_inc(&mrdev->nr_pending);
3437 atomic_inc(&mreplace->nr_pending);
3440 r10_bio = raid10_alloc_init_r10buf(conf);
3442 raise_barrier(conf, rb2 != NULL);
3443 atomic_set(&r10_bio->remaining, 0);
3445 r10_bio->master_bio = (struct bio*)rb2;
3447 atomic_inc(&rb2->remaining);
3448 r10_bio->mddev = mddev;
3449 set_bit(R10BIO_IsRecover, &r10_bio->state);
3450 r10_bio->sector = sect;
3452 raid10_find_phys(conf, r10_bio);
3454 /* Need to check if the array will still be
3458 for (j = 0; j < conf->geo.raid_disks; j++) {
3459 struct md_rdev *rdev = rcu_dereference(
3460 conf->mirrors[j].rdev);
3461 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3467 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3468 &sync_blocks, still_degraded);
3471 for (j=0; j<conf->copies;j++) {
3473 int d = r10_bio->devs[j].devnum;
3474 sector_t from_addr, to_addr;
3475 struct md_rdev *rdev =
3476 rcu_dereference(conf->mirrors[d].rdev);
3477 sector_t sector, first_bad;
3480 !test_bit(In_sync, &rdev->flags))
3482 /* This is where we read from */
3484 sector = r10_bio->devs[j].addr;
3486 if (is_badblock(rdev, sector, max_sync,
3487 &first_bad, &bad_sectors)) {
3488 if (first_bad > sector)
3489 max_sync = first_bad - sector;
3491 bad_sectors -= (sector
3493 if (max_sync > bad_sectors)
3494 max_sync = bad_sectors;
3498 bio = r10_bio->devs[0].bio;
3499 bio->bi_next = biolist;
3501 bio->bi_end_io = end_sync_read;
3502 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3503 if (test_bit(FailFast, &rdev->flags))
3504 bio->bi_opf |= MD_FAILFAST;
3505 from_addr = r10_bio->devs[j].addr;
3506 bio->bi_iter.bi_sector = from_addr +
3508 bio_set_dev(bio, rdev->bdev);
3509 atomic_inc(&rdev->nr_pending);
3510 /* and we write to 'i' (if not in_sync) */
3512 for (k=0; k<conf->copies; k++)
3513 if (r10_bio->devs[k].devnum == i)
3515 BUG_ON(k == conf->copies);
3516 to_addr = r10_bio->devs[k].addr;
3517 r10_bio->devs[0].devnum = d;
3518 r10_bio->devs[0].addr = from_addr;
3519 r10_bio->devs[1].devnum = i;
3520 r10_bio->devs[1].addr = to_addr;
3523 bio = r10_bio->devs[1].bio;
3524 bio->bi_next = biolist;
3526 bio->bi_end_io = end_sync_write;
3527 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3528 bio->bi_iter.bi_sector = to_addr
3529 + mrdev->data_offset;
3530 bio_set_dev(bio, mrdev->bdev);
3531 atomic_inc(&r10_bio->remaining);
3533 r10_bio->devs[1].bio->bi_end_io = NULL;
3535 /* and maybe write to replacement */
3536 bio = r10_bio->devs[1].repl_bio;
3538 bio->bi_end_io = NULL;
3539 /* Note: if need_replace, then bio
3540 * cannot be NULL as r10buf_pool_alloc will
3541 * have allocated it.
3545 bio->bi_next = biolist;
3547 bio->bi_end_io = end_sync_write;
3548 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3549 bio->bi_iter.bi_sector = to_addr +
3550 mreplace->data_offset;
3551 bio_set_dev(bio, mreplace->bdev);
3552 atomic_inc(&r10_bio->remaining);
3556 if (j == conf->copies) {
3557 /* Cannot recover, so abort the recovery or
3558 * record a bad block */
3560 /* problem is that there are bad blocks
3561 * on other device(s)
3564 for (k = 0; k < conf->copies; k++)
3565 if (r10_bio->devs[k].devnum == i)
3567 if (!test_bit(In_sync,
3569 && !rdev_set_badblocks(
3571 r10_bio->devs[k].addr,
3575 !rdev_set_badblocks(
3577 r10_bio->devs[k].addr,
3582 if (!test_and_set_bit(MD_RECOVERY_INTR,
3584 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3586 mirror->recovery_disabled
3587 = mddev->recovery_disabled;
3591 atomic_dec(&rb2->remaining);
3593 rdev_dec_pending(mrdev, mddev);
3595 rdev_dec_pending(mreplace, mddev);
3598 rdev_dec_pending(mrdev, mddev);
3600 rdev_dec_pending(mreplace, mddev);
3601 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3602 /* Only want this if there is elsewhere to
3603 * read from. 'j' is currently the first
3607 for (; j < conf->copies; j++) {
3608 int d = r10_bio->devs[j].devnum;
3609 if (conf->mirrors[d].rdev &&
3611 &conf->mirrors[d].rdev->flags))
3615 r10_bio->devs[0].bio->bi_opf
3619 if (biolist == NULL) {
3621 struct r10bio *rb2 = r10_bio;
3622 r10_bio = (struct r10bio*) rb2->master_bio;
3623 rb2->master_bio = NULL;
3629 /* resync. Schedule a read for every block at this virt offset */
3633 * Since curr_resync_completed could probably not update in
3634 * time, and we will set cluster_sync_low based on it.
3635 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3636 * safety reason, which ensures curr_resync_completed is
3637 * updated in bitmap_cond_end_sync.
3639 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3640 mddev_is_clustered(mddev) &&
3641 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3643 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3644 &sync_blocks, mddev->degraded) &&
3645 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3646 &mddev->recovery)) {
3647 /* We can skip this block */
3649 return sync_blocks + sectors_skipped;
3651 if (sync_blocks < max_sync)
3652 max_sync = sync_blocks;
3653 r10_bio = raid10_alloc_init_r10buf(conf);
3656 r10_bio->mddev = mddev;
3657 atomic_set(&r10_bio->remaining, 0);
3658 raise_barrier(conf, 0);
3659 conf->next_resync = sector_nr;
3661 r10_bio->master_bio = NULL;
3662 r10_bio->sector = sector_nr;
3663 set_bit(R10BIO_IsSync, &r10_bio->state);
3664 raid10_find_phys(conf, r10_bio);
3665 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3667 for (i = 0; i < conf->copies; i++) {
3668 int d = r10_bio->devs[i].devnum;
3669 sector_t first_bad, sector;
3671 struct md_rdev *rdev;
3673 if (r10_bio->devs[i].repl_bio)
3674 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3676 bio = r10_bio->devs[i].bio;
3677 bio->bi_status = BLK_STS_IOERR;
3679 rdev = rcu_dereference(conf->mirrors[d].rdev);
3680 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3684 sector = r10_bio->devs[i].addr;
3685 if (is_badblock(rdev, sector, max_sync,
3686 &first_bad, &bad_sectors)) {
3687 if (first_bad > sector)
3688 max_sync = first_bad - sector;
3690 bad_sectors -= (sector - first_bad);
3691 if (max_sync > bad_sectors)
3692 max_sync = bad_sectors;
3697 atomic_inc(&rdev->nr_pending);
3698 atomic_inc(&r10_bio->remaining);
3699 bio->bi_next = biolist;
3701 bio->bi_end_io = end_sync_read;
3702 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3703 if (test_bit(FailFast, &rdev->flags))
3704 bio->bi_opf |= MD_FAILFAST;
3705 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3706 bio_set_dev(bio, rdev->bdev);
3709 rdev = rcu_dereference(conf->mirrors[d].replacement);
3710 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3714 atomic_inc(&rdev->nr_pending);
3716 /* Need to set up for writing to the replacement */
3717 bio = r10_bio->devs[i].repl_bio;
3718 bio->bi_status = BLK_STS_IOERR;
3720 sector = r10_bio->devs[i].addr;
3721 bio->bi_next = biolist;
3723 bio->bi_end_io = end_sync_write;
3724 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3725 if (test_bit(FailFast, &rdev->flags))
3726 bio->bi_opf |= MD_FAILFAST;
3727 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3728 bio_set_dev(bio, rdev->bdev);
3734 for (i=0; i<conf->copies; i++) {
3735 int d = r10_bio->devs[i].devnum;
3736 if (r10_bio->devs[i].bio->bi_end_io)
3737 rdev_dec_pending(conf->mirrors[d].rdev,
3739 if (r10_bio->devs[i].repl_bio &&
3740 r10_bio->devs[i].repl_bio->bi_end_io)
3742 conf->mirrors[d].replacement,
3752 if (sector_nr + max_sync < max_sector)
3753 max_sector = sector_nr + max_sync;
3756 int len = PAGE_SIZE;
3757 if (sector_nr + (len>>9) > max_sector)
3758 len = (max_sector - sector_nr) << 9;
3761 for (bio= biolist ; bio ; bio=bio->bi_next) {
3762 struct resync_pages *rp = get_resync_pages(bio);
3763 page = resync_fetch_page(rp, page_idx);
3765 * won't fail because the vec table is big enough
3766 * to hold all these pages
3768 bio_add_page(bio, page, len, 0);
3770 nr_sectors += len>>9;
3771 sector_nr += len>>9;
3772 } while (++page_idx < RESYNC_PAGES);
3773 r10_bio->sectors = nr_sectors;
3775 if (mddev_is_clustered(mddev) &&
3776 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3777 /* It is resync not recovery */
3778 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3779 conf->cluster_sync_low = mddev->curr_resync_completed;
3780 raid10_set_cluster_sync_high(conf);
3781 /* Send resync message */
3782 md_cluster_ops->resync_info_update(mddev,
3783 conf->cluster_sync_low,
3784 conf->cluster_sync_high);
3786 } else if (mddev_is_clustered(mddev)) {
3787 /* This is recovery not resync */
3788 sector_t sect_va1, sect_va2;
3789 bool broadcast_msg = false;
3791 for (i = 0; i < conf->geo.raid_disks; i++) {
3793 * sector_nr is a device address for recovery, so we
3794 * need translate it to array address before compare
3795 * with cluster_sync_high.
3797 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3799 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3800 broadcast_msg = true;
3802 * curr_resync_completed is similar as
3803 * sector_nr, so make the translation too.
3805 sect_va2 = raid10_find_virt(conf,
3806 mddev->curr_resync_completed, i);
3808 if (conf->cluster_sync_low == 0 ||
3809 conf->cluster_sync_low > sect_va2)
3810 conf->cluster_sync_low = sect_va2;
3813 if (broadcast_msg) {
3814 raid10_set_cluster_sync_high(conf);
3815 md_cluster_ops->resync_info_update(mddev,
3816 conf->cluster_sync_low,
3817 conf->cluster_sync_high);
3823 biolist = biolist->bi_next;
3825 bio->bi_next = NULL;
3826 r10_bio = get_resync_r10bio(bio);
3827 r10_bio->sectors = nr_sectors;
3829 if (bio->bi_end_io == end_sync_read) {
3830 md_sync_acct_bio(bio, nr_sectors);
3832 submit_bio_noacct(bio);
3836 if (sectors_skipped)
3837 /* pretend they weren't skipped, it makes
3838 * no important difference in this case
3840 md_done_sync(mddev, sectors_skipped, 1);
3842 return sectors_skipped + nr_sectors;
3844 /* There is nowhere to write, so all non-sync
3845 * drives must be failed or in resync, all drives
3846 * have a bad block, so try the next chunk...
3848 if (sector_nr + max_sync < max_sector)
3849 max_sector = sector_nr + max_sync;
3851 sectors_skipped += (max_sector - sector_nr);
3853 sector_nr = max_sector;
3858 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3861 struct r10conf *conf = mddev->private;
3864 raid_disks = min(conf->geo.raid_disks,
3865 conf->prev.raid_disks);
3867 sectors = conf->dev_sectors;
3869 size = sectors >> conf->geo.chunk_shift;
3870 sector_div(size, conf->geo.far_copies);
3871 size = size * raid_disks;
3872 sector_div(size, conf->geo.near_copies);
3874 return size << conf->geo.chunk_shift;
3877 static void calc_sectors(struct r10conf *conf, sector_t size)
3879 /* Calculate the number of sectors-per-device that will
3880 * actually be used, and set conf->dev_sectors and
3884 size = size >> conf->geo.chunk_shift;
3885 sector_div(size, conf->geo.far_copies);
3886 size = size * conf->geo.raid_disks;
3887 sector_div(size, conf->geo.near_copies);
3888 /* 'size' is now the number of chunks in the array */
3889 /* calculate "used chunks per device" */
3890 size = size * conf->copies;
3892 /* We need to round up when dividing by raid_disks to
3893 * get the stride size.
3895 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3897 conf->dev_sectors = size << conf->geo.chunk_shift;
3899 if (conf->geo.far_offset)
3900 conf->geo.stride = 1 << conf->geo.chunk_shift;
3902 sector_div(size, conf->geo.far_copies);
3903 conf->geo.stride = size << conf->geo.chunk_shift;
3907 enum geo_type {geo_new, geo_old, geo_start};
3908 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3911 int layout, chunk, disks;
3914 layout = mddev->layout;
3915 chunk = mddev->chunk_sectors;
3916 disks = mddev->raid_disks - mddev->delta_disks;
3919 layout = mddev->new_layout;
3920 chunk = mddev->new_chunk_sectors;
3921 disks = mddev->raid_disks;
3923 default: /* avoid 'may be unused' warnings */
3924 case geo_start: /* new when starting reshape - raid_disks not
3926 layout = mddev->new_layout;
3927 chunk = mddev->new_chunk_sectors;
3928 disks = mddev->raid_disks + mddev->delta_disks;
3933 if (chunk < (PAGE_SIZE >> 9) ||
3934 !is_power_of_2(chunk))
3937 fc = (layout >> 8) & 255;
3938 fo = layout & (1<<16);
3939 geo->raid_disks = disks;
3940 geo->near_copies = nc;
3941 geo->far_copies = fc;
3942 geo->far_offset = fo;
3943 switch (layout >> 17) {
3944 case 0: /* original layout. simple but not always optimal */
3945 geo->far_set_size = disks;
3947 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3948 * actually using this, but leave code here just in case.*/
3949 geo->far_set_size = disks/fc;
3950 WARN(geo->far_set_size < fc,
3951 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3953 case 2: /* "improved" layout fixed to match documentation */
3954 geo->far_set_size = fc * nc;
3956 default: /* Not a valid layout */
3959 geo->chunk_mask = chunk - 1;
3960 geo->chunk_shift = ffz(~chunk);
3964 static struct r10conf *setup_conf(struct mddev *mddev)
3966 struct r10conf *conf = NULL;
3971 copies = setup_geo(&geo, mddev, geo_new);
3974 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3975 mdname(mddev), PAGE_SIZE);
3979 if (copies < 2 || copies > mddev->raid_disks) {
3980 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3981 mdname(mddev), mddev->new_layout);
3986 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3990 /* FIXME calc properly */
3991 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3992 sizeof(struct raid10_info),
3997 conf->tmppage = alloc_page(GFP_KERNEL);
4002 conf->copies = copies;
4003 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
4004 rbio_pool_free, conf);
4008 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
4012 calc_sectors(conf, mddev->dev_sectors);
4013 if (mddev->reshape_position == MaxSector) {
4014 conf->prev = conf->geo;
4015 conf->reshape_progress = MaxSector;
4017 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
4021 conf->reshape_progress = mddev->reshape_position;
4022 if (conf->prev.far_offset)
4023 conf->prev.stride = 1 << conf->prev.chunk_shift;
4025 /* far_copies must be 1 */
4026 conf->prev.stride = conf->dev_sectors;
4028 conf->reshape_safe = conf->reshape_progress;
4029 spin_lock_init(&conf->device_lock);
4030 INIT_LIST_HEAD(&conf->retry_list);
4031 INIT_LIST_HEAD(&conf->bio_end_io_list);
4033 spin_lock_init(&conf->resync_lock);
4034 init_waitqueue_head(&conf->wait_barrier);
4035 atomic_set(&conf->nr_pending, 0);
4038 conf->thread = md_register_thread(raid10d, mddev, "raid10");
4042 conf->mddev = mddev;
4047 mempool_exit(&conf->r10bio_pool);
4048 kfree(conf->mirrors);
4049 safe_put_page(conf->tmppage);
4050 bioset_exit(&conf->bio_split);
4053 return ERR_PTR(err);
4056 static void raid10_set_io_opt(struct r10conf *conf)
4058 int raid_disks = conf->geo.raid_disks;
4060 if (!(conf->geo.raid_disks % conf->geo.near_copies))
4061 raid_disks /= conf->geo.near_copies;
4062 blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4066 static int raid10_run(struct mddev *mddev)
4068 struct r10conf *conf;
4070 struct raid10_info *disk;
4071 struct md_rdev *rdev;
4073 sector_t min_offset_diff = 0;
4076 if (mddev_init_writes_pending(mddev) < 0)
4079 if (mddev->private == NULL) {
4080 conf = setup_conf(mddev);
4082 return PTR_ERR(conf);
4083 mddev->private = conf;
4085 conf = mddev->private;
4089 if (mddev_is_clustered(conf->mddev)) {
4092 fc = (mddev->layout >> 8) & 255;
4093 fo = mddev->layout & (1<<16);
4094 if (fc > 1 || fo > 0) {
4095 pr_err("only near layout is supported by clustered"
4101 mddev->thread = conf->thread;
4102 conf->thread = NULL;
4105 blk_queue_max_discard_sectors(mddev->queue,
4107 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4108 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4109 raid10_set_io_opt(conf);
4112 rdev_for_each(rdev, mddev) {
4115 disk_idx = rdev->raid_disk;
4118 if (disk_idx >= conf->geo.raid_disks &&
4119 disk_idx >= conf->prev.raid_disks)
4121 disk = conf->mirrors + disk_idx;
4123 if (test_bit(Replacement, &rdev->flags)) {
4124 if (disk->replacement)
4126 disk->replacement = rdev;
4132 diff = (rdev->new_data_offset - rdev->data_offset);
4133 if (!mddev->reshape_backwards)
4137 if (first || diff < min_offset_diff)
4138 min_offset_diff = diff;
4141 disk_stack_limits(mddev->gendisk, rdev->bdev,
4142 rdev->data_offset << 9);
4144 disk->head_position = 0;
4148 /* need to check that every block has at least one working mirror */
4149 if (!enough(conf, -1)) {
4150 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4155 if (conf->reshape_progress != MaxSector) {
4156 /* must ensure that shape change is supported */
4157 if (conf->geo.far_copies != 1 &&
4158 conf->geo.far_offset == 0)
4160 if (conf->prev.far_copies != 1 &&
4161 conf->prev.far_offset == 0)
4165 mddev->degraded = 0;
4167 i < conf->geo.raid_disks
4168 || i < conf->prev.raid_disks;
4171 disk = conf->mirrors + i;
4173 if (!disk->rdev && disk->replacement) {
4174 /* The replacement is all we have - use it */
4175 disk->rdev = disk->replacement;
4176 disk->replacement = NULL;
4177 clear_bit(Replacement, &disk->rdev->flags);
4181 !test_bit(In_sync, &disk->rdev->flags)) {
4182 disk->head_position = 0;
4185 disk->rdev->saved_raid_disk < 0)
4189 if (disk->replacement &&
4190 !test_bit(In_sync, &disk->replacement->flags) &&
4191 disk->replacement->saved_raid_disk < 0) {
4195 disk->recovery_disabled = mddev->recovery_disabled - 1;
4198 if (mddev->recovery_cp != MaxSector)
4199 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4201 pr_info("md/raid10:%s: active with %d out of %d devices\n",
4202 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4203 conf->geo.raid_disks);
4205 * Ok, everything is just fine now
4207 mddev->dev_sectors = conf->dev_sectors;
4208 size = raid10_size(mddev, 0, 0);
4209 md_set_array_sectors(mddev, size);
4210 mddev->resync_max_sectors = size;
4211 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4213 if (md_integrity_register(mddev))
4216 if (conf->reshape_progress != MaxSector) {
4217 unsigned long before_length, after_length;
4219 before_length = ((1 << conf->prev.chunk_shift) *
4220 conf->prev.far_copies);
4221 after_length = ((1 << conf->geo.chunk_shift) *
4222 conf->geo.far_copies);
4224 if (max(before_length, after_length) > min_offset_diff) {
4225 /* This cannot work */
4226 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4229 conf->offset_diff = min_offset_diff;
4231 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4232 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4233 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4234 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4235 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4237 if (!mddev->sync_thread)
4244 md_unregister_thread(&mddev->thread);
4245 mempool_exit(&conf->r10bio_pool);
4246 safe_put_page(conf->tmppage);
4247 kfree(conf->mirrors);
4249 mddev->private = NULL;
4254 static void raid10_free(struct mddev *mddev, void *priv)
4256 struct r10conf *conf = priv;
4258 mempool_exit(&conf->r10bio_pool);
4259 safe_put_page(conf->tmppage);
4260 kfree(conf->mirrors);
4261 kfree(conf->mirrors_old);
4262 kfree(conf->mirrors_new);
4263 bioset_exit(&conf->bio_split);
4267 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4269 struct r10conf *conf = mddev->private;
4272 raise_barrier(conf, 0);
4274 lower_barrier(conf);
4277 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4279 /* Resize of 'far' arrays is not supported.
4280 * For 'near' and 'offset' arrays we can set the
4281 * number of sectors used to be an appropriate multiple
4282 * of the chunk size.
4283 * For 'offset', this is far_copies*chunksize.
4284 * For 'near' the multiplier is the LCM of
4285 * near_copies and raid_disks.
4286 * So if far_copies > 1 && !far_offset, fail.
4287 * Else find LCM(raid_disks, near_copy)*far_copies and
4288 * multiply by chunk_size. Then round to this number.
4289 * This is mostly done by raid10_size()
4291 struct r10conf *conf = mddev->private;
4292 sector_t oldsize, size;
4294 if (mddev->reshape_position != MaxSector)
4297 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4300 oldsize = raid10_size(mddev, 0, 0);
4301 size = raid10_size(mddev, sectors, 0);
4302 if (mddev->external_size &&
4303 mddev->array_sectors > size)
4305 if (mddev->bitmap) {
4306 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4310 md_set_array_sectors(mddev, size);
4311 if (sectors > mddev->dev_sectors &&
4312 mddev->recovery_cp > oldsize) {
4313 mddev->recovery_cp = oldsize;
4314 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4316 calc_sectors(conf, sectors);
4317 mddev->dev_sectors = conf->dev_sectors;
4318 mddev->resync_max_sectors = size;
4322 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4324 struct md_rdev *rdev;
4325 struct r10conf *conf;
4327 if (mddev->degraded > 0) {
4328 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4330 return ERR_PTR(-EINVAL);
4332 sector_div(size, devs);
4334 /* Set new parameters */
4335 mddev->new_level = 10;
4336 /* new layout: far_copies = 1, near_copies = 2 */
4337 mddev->new_layout = (1<<8) + 2;
4338 mddev->new_chunk_sectors = mddev->chunk_sectors;
4339 mddev->delta_disks = mddev->raid_disks;
4340 mddev->raid_disks *= 2;
4341 /* make sure it will be not marked as dirty */
4342 mddev->recovery_cp = MaxSector;
4343 mddev->dev_sectors = size;
4345 conf = setup_conf(mddev);
4346 if (!IS_ERR(conf)) {
4347 rdev_for_each(rdev, mddev)
4348 if (rdev->raid_disk >= 0) {
4349 rdev->new_raid_disk = rdev->raid_disk * 2;
4350 rdev->sectors = size;
4358 static void *raid10_takeover(struct mddev *mddev)
4360 struct r0conf *raid0_conf;
4362 /* raid10 can take over:
4363 * raid0 - providing it has only two drives
4365 if (mddev->level == 0) {
4366 /* for raid0 takeover only one zone is supported */
4367 raid0_conf = mddev->private;
4368 if (raid0_conf->nr_strip_zones > 1) {
4369 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4371 return ERR_PTR(-EINVAL);
4373 return raid10_takeover_raid0(mddev,
4374 raid0_conf->strip_zone->zone_end,
4375 raid0_conf->strip_zone->nb_dev);
4377 return ERR_PTR(-EINVAL);
4380 static int raid10_check_reshape(struct mddev *mddev)
4382 /* Called when there is a request to change
4383 * - layout (to ->new_layout)
4384 * - chunk size (to ->new_chunk_sectors)
4385 * - raid_disks (by delta_disks)
4386 * or when trying to restart a reshape that was ongoing.
4388 * We need to validate the request and possibly allocate
4389 * space if that might be an issue later.
4391 * Currently we reject any reshape of a 'far' mode array,
4392 * allow chunk size to change if new is generally acceptable,
4393 * allow raid_disks to increase, and allow
4394 * a switch between 'near' mode and 'offset' mode.
4396 struct r10conf *conf = mddev->private;
4399 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4402 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4403 /* mustn't change number of copies */
4405 if (geo.far_copies > 1 && !geo.far_offset)
4406 /* Cannot switch to 'far' mode */
4409 if (mddev->array_sectors & geo.chunk_mask)
4410 /* not factor of array size */
4413 if (!enough(conf, -1))
4416 kfree(conf->mirrors_new);
4417 conf->mirrors_new = NULL;
4418 if (mddev->delta_disks > 0) {
4419 /* allocate new 'mirrors' list */
4421 kcalloc(mddev->raid_disks + mddev->delta_disks,
4422 sizeof(struct raid10_info),
4424 if (!conf->mirrors_new)
4431 * Need to check if array has failed when deciding whether to:
4433 * - remove non-faulty devices
4436 * This determination is simple when no reshape is happening.
4437 * However if there is a reshape, we need to carefully check
4438 * both the before and after sections.
4439 * This is because some failed devices may only affect one
4440 * of the two sections, and some non-in_sync devices may
4441 * be insync in the section most affected by failed devices.
4443 static int calc_degraded(struct r10conf *conf)
4445 int degraded, degraded2;
4450 /* 'prev' section first */
4451 for (i = 0; i < conf->prev.raid_disks; i++) {
4452 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4453 if (!rdev || test_bit(Faulty, &rdev->flags))
4455 else if (!test_bit(In_sync, &rdev->flags))
4456 /* When we can reduce the number of devices in
4457 * an array, this might not contribute to
4458 * 'degraded'. It does now.
4463 if (conf->geo.raid_disks == conf->prev.raid_disks)
4467 for (i = 0; i < conf->geo.raid_disks; i++) {
4468 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4469 if (!rdev || test_bit(Faulty, &rdev->flags))
4471 else if (!test_bit(In_sync, &rdev->flags)) {
4472 /* If reshape is increasing the number of devices,
4473 * this section has already been recovered, so
4474 * it doesn't contribute to degraded.
4477 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4482 if (degraded2 > degraded)
4487 static int raid10_start_reshape(struct mddev *mddev)
4489 /* A 'reshape' has been requested. This commits
4490 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4491 * This also checks if there are enough spares and adds them
4493 * We currently require enough spares to make the final
4494 * array non-degraded. We also require that the difference
4495 * between old and new data_offset - on each device - is
4496 * enough that we never risk over-writing.
4499 unsigned long before_length, after_length;
4500 sector_t min_offset_diff = 0;
4503 struct r10conf *conf = mddev->private;
4504 struct md_rdev *rdev;
4508 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4511 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4514 before_length = ((1 << conf->prev.chunk_shift) *
4515 conf->prev.far_copies);
4516 after_length = ((1 << conf->geo.chunk_shift) *
4517 conf->geo.far_copies);
4519 rdev_for_each(rdev, mddev) {
4520 if (!test_bit(In_sync, &rdev->flags)
4521 && !test_bit(Faulty, &rdev->flags))
4523 if (rdev->raid_disk >= 0) {
4524 long long diff = (rdev->new_data_offset
4525 - rdev->data_offset);
4526 if (!mddev->reshape_backwards)
4530 if (first || diff < min_offset_diff)
4531 min_offset_diff = diff;
4536 if (max(before_length, after_length) > min_offset_diff)
4539 if (spares < mddev->delta_disks)
4542 conf->offset_diff = min_offset_diff;
4543 spin_lock_irq(&conf->device_lock);
4544 if (conf->mirrors_new) {
4545 memcpy(conf->mirrors_new, conf->mirrors,
4546 sizeof(struct raid10_info)*conf->prev.raid_disks);
4548 kfree(conf->mirrors_old);
4549 conf->mirrors_old = conf->mirrors;
4550 conf->mirrors = conf->mirrors_new;
4551 conf->mirrors_new = NULL;
4553 setup_geo(&conf->geo, mddev, geo_start);
4555 if (mddev->reshape_backwards) {
4556 sector_t size = raid10_size(mddev, 0, 0);
4557 if (size < mddev->array_sectors) {
4558 spin_unlock_irq(&conf->device_lock);
4559 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4563 mddev->resync_max_sectors = size;
4564 conf->reshape_progress = size;
4566 conf->reshape_progress = 0;
4567 conf->reshape_safe = conf->reshape_progress;
4568 spin_unlock_irq(&conf->device_lock);
4570 if (mddev->delta_disks && mddev->bitmap) {
4571 struct mdp_superblock_1 *sb = NULL;
4572 sector_t oldsize, newsize;
4574 oldsize = raid10_size(mddev, 0, 0);
4575 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4577 if (!mddev_is_clustered(mddev)) {
4578 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4585 rdev_for_each(rdev, mddev) {
4586 if (rdev->raid_disk > -1 &&
4587 !test_bit(Faulty, &rdev->flags))
4588 sb = page_address(rdev->sb_page);
4592 * some node is already performing reshape, and no need to
4593 * call md_bitmap_resize again since it should be called when
4594 * receiving BITMAP_RESIZE msg
4596 if ((sb && (le32_to_cpu(sb->feature_map) &
4597 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4600 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4604 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4606 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4611 if (mddev->delta_disks > 0) {
4612 rdev_for_each(rdev, mddev)
4613 if (rdev->raid_disk < 0 &&
4614 !test_bit(Faulty, &rdev->flags)) {
4615 if (raid10_add_disk(mddev, rdev) == 0) {
4616 if (rdev->raid_disk >=
4617 conf->prev.raid_disks)
4618 set_bit(In_sync, &rdev->flags);
4620 rdev->recovery_offset = 0;
4622 /* Failure here is OK */
4623 sysfs_link_rdev(mddev, rdev);
4625 } else if (rdev->raid_disk >= conf->prev.raid_disks
4626 && !test_bit(Faulty, &rdev->flags)) {
4627 /* This is a spare that was manually added */
4628 set_bit(In_sync, &rdev->flags);
4631 /* When a reshape changes the number of devices,
4632 * ->degraded is measured against the larger of the
4633 * pre and post numbers.
4635 spin_lock_irq(&conf->device_lock);
4636 mddev->degraded = calc_degraded(conf);
4637 spin_unlock_irq(&conf->device_lock);
4638 mddev->raid_disks = conf->geo.raid_disks;
4639 mddev->reshape_position = conf->reshape_progress;
4640 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4642 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4643 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4644 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4645 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4646 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4648 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4650 if (!mddev->sync_thread) {
4654 conf->reshape_checkpoint = jiffies;
4655 md_wakeup_thread(mddev->sync_thread);
4660 mddev->recovery = 0;
4661 spin_lock_irq(&conf->device_lock);
4662 conf->geo = conf->prev;
4663 mddev->raid_disks = conf->geo.raid_disks;
4664 rdev_for_each(rdev, mddev)
4665 rdev->new_data_offset = rdev->data_offset;
4667 conf->reshape_progress = MaxSector;
4668 conf->reshape_safe = MaxSector;
4669 mddev->reshape_position = MaxSector;
4670 spin_unlock_irq(&conf->device_lock);
4674 /* Calculate the last device-address that could contain
4675 * any block from the chunk that includes the array-address 's'
4676 * and report the next address.
4677 * i.e. the address returned will be chunk-aligned and after
4678 * any data that is in the chunk containing 's'.
4680 static sector_t last_dev_address(sector_t s, struct geom *geo)
4682 s = (s | geo->chunk_mask) + 1;
4683 s >>= geo->chunk_shift;
4684 s *= geo->near_copies;
4685 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4686 s *= geo->far_copies;
4687 s <<= geo->chunk_shift;
4691 /* Calculate the first device-address that could contain
4692 * any block from the chunk that includes the array-address 's'.
4693 * This too will be the start of a chunk
4695 static sector_t first_dev_address(sector_t s, struct geom *geo)
4697 s >>= geo->chunk_shift;
4698 s *= geo->near_copies;
4699 sector_div(s, geo->raid_disks);
4700 s *= geo->far_copies;
4701 s <<= geo->chunk_shift;
4705 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4708 /* We simply copy at most one chunk (smallest of old and new)
4709 * at a time, possibly less if that exceeds RESYNC_PAGES,
4710 * or we hit a bad block or something.
4711 * This might mean we pause for normal IO in the middle of
4712 * a chunk, but that is not a problem as mddev->reshape_position
4713 * can record any location.
4715 * If we will want to write to a location that isn't
4716 * yet recorded as 'safe' (i.e. in metadata on disk) then
4717 * we need to flush all reshape requests and update the metadata.
4719 * When reshaping forwards (e.g. to more devices), we interpret
4720 * 'safe' as the earliest block which might not have been copied
4721 * down yet. We divide this by previous stripe size and multiply
4722 * by previous stripe length to get lowest device offset that we
4723 * cannot write to yet.
4724 * We interpret 'sector_nr' as an address that we want to write to.
4725 * From this we use last_device_address() to find where we might
4726 * write to, and first_device_address on the 'safe' position.
4727 * If this 'next' write position is after the 'safe' position,
4728 * we must update the metadata to increase the 'safe' position.
4730 * When reshaping backwards, we round in the opposite direction
4731 * and perform the reverse test: next write position must not be
4732 * less than current safe position.
4734 * In all this the minimum difference in data offsets
4735 * (conf->offset_diff - always positive) allows a bit of slack,
4736 * so next can be after 'safe', but not by more than offset_diff
4738 * We need to prepare all the bios here before we start any IO
4739 * to ensure the size we choose is acceptable to all devices.
4740 * The means one for each copy for write-out and an extra one for
4742 * We store the read-in bio in ->master_bio and the others in
4743 * ->devs[x].bio and ->devs[x].repl_bio.
4745 struct r10conf *conf = mddev->private;
4746 struct r10bio *r10_bio;
4747 sector_t next, safe, last;
4751 struct md_rdev *rdev;
4754 struct bio *bio, *read_bio;
4755 int sectors_done = 0;
4756 struct page **pages;
4758 if (sector_nr == 0) {
4759 /* If restarting in the middle, skip the initial sectors */
4760 if (mddev->reshape_backwards &&
4761 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4762 sector_nr = (raid10_size(mddev, 0, 0)
4763 - conf->reshape_progress);
4764 } else if (!mddev->reshape_backwards &&
4765 conf->reshape_progress > 0)
4766 sector_nr = conf->reshape_progress;
4768 mddev->curr_resync_completed = sector_nr;
4769 sysfs_notify_dirent_safe(mddev->sysfs_completed);
4775 /* We don't use sector_nr to track where we are up to
4776 * as that doesn't work well for ->reshape_backwards.
4777 * So just use ->reshape_progress.
4779 if (mddev->reshape_backwards) {
4780 /* 'next' is the earliest device address that we might
4781 * write to for this chunk in the new layout
4783 next = first_dev_address(conf->reshape_progress - 1,
4786 /* 'safe' is the last device address that we might read from
4787 * in the old layout after a restart
4789 safe = last_dev_address(conf->reshape_safe - 1,
4792 if (next + conf->offset_diff < safe)
4795 last = conf->reshape_progress - 1;
4796 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4797 & conf->prev.chunk_mask);
4798 if (sector_nr + RESYNC_SECTORS < last)
4799 sector_nr = last + 1 - RESYNC_SECTORS;
4801 /* 'next' is after the last device address that we
4802 * might write to for this chunk in the new layout
4804 next = last_dev_address(conf->reshape_progress, &conf->geo);
4806 /* 'safe' is the earliest device address that we might
4807 * read from in the old layout after a restart
4809 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4811 /* Need to update metadata if 'next' might be beyond 'safe'
4812 * as that would possibly corrupt data
4814 if (next > safe + conf->offset_diff)
4817 sector_nr = conf->reshape_progress;
4818 last = sector_nr | (conf->geo.chunk_mask
4819 & conf->prev.chunk_mask);
4821 if (sector_nr + RESYNC_SECTORS <= last)
4822 last = sector_nr + RESYNC_SECTORS - 1;
4826 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4827 /* Need to update reshape_position in metadata */
4828 wait_barrier(conf, false);
4829 mddev->reshape_position = conf->reshape_progress;
4830 if (mddev->reshape_backwards)
4831 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4832 - conf->reshape_progress;
4834 mddev->curr_resync_completed = conf->reshape_progress;
4835 conf->reshape_checkpoint = jiffies;
4836 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4837 md_wakeup_thread(mddev->thread);
4838 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4839 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4840 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4841 allow_barrier(conf);
4842 return sectors_done;
4844 conf->reshape_safe = mddev->reshape_position;
4845 allow_barrier(conf);
4848 raise_barrier(conf, 0);
4850 /* Now schedule reads for blocks from sector_nr to last */
4851 r10_bio = raid10_alloc_init_r10buf(conf);
4853 raise_barrier(conf, 1);
4854 atomic_set(&r10_bio->remaining, 0);
4855 r10_bio->mddev = mddev;
4856 r10_bio->sector = sector_nr;
4857 set_bit(R10BIO_IsReshape, &r10_bio->state);
4858 r10_bio->sectors = last - sector_nr + 1;
4859 rdev = read_balance(conf, r10_bio, &max_sectors);
4860 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4863 /* Cannot read from here, so need to record bad blocks
4864 * on all the target devices.
4867 mempool_free(r10_bio, &conf->r10buf_pool);
4868 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4869 return sectors_done;
4872 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4873 GFP_KERNEL, &mddev->bio_set);
4874 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4875 + rdev->data_offset);
4876 read_bio->bi_private = r10_bio;
4877 read_bio->bi_end_io = end_reshape_read;
4878 r10_bio->master_bio = read_bio;
4879 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4882 * Broadcast RESYNC message to other nodes, so all nodes would not
4883 * write to the region to avoid conflict.
4885 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4886 struct mdp_superblock_1 *sb = NULL;
4887 int sb_reshape_pos = 0;
4889 conf->cluster_sync_low = sector_nr;
4890 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4891 sb = page_address(rdev->sb_page);
4893 sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4895 * Set cluster_sync_low again if next address for array
4896 * reshape is less than cluster_sync_low. Since we can't
4897 * update cluster_sync_low until it has finished reshape.
4899 if (sb_reshape_pos < conf->cluster_sync_low)
4900 conf->cluster_sync_low = sb_reshape_pos;
4903 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4904 conf->cluster_sync_high);
4907 /* Now find the locations in the new layout */
4908 __raid10_find_phys(&conf->geo, r10_bio);
4911 read_bio->bi_next = NULL;
4914 for (s = 0; s < conf->copies*2; s++) {
4916 int d = r10_bio->devs[s/2].devnum;
4917 struct md_rdev *rdev2;
4919 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4920 b = r10_bio->devs[s/2].repl_bio;
4922 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4923 b = r10_bio->devs[s/2].bio;
4925 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4928 bio_set_dev(b, rdev2->bdev);
4929 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4930 rdev2->new_data_offset;
4931 b->bi_end_io = end_reshape_write;
4932 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4937 /* Now add as many pages as possible to all of these bios. */
4940 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4941 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4942 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4943 int len = (max_sectors - s) << 9;
4944 if (len > PAGE_SIZE)
4946 for (bio = blist; bio ; bio = bio->bi_next) {
4948 * won't fail because the vec table is big enough
4949 * to hold all these pages
4951 bio_add_page(bio, page, len, 0);
4953 sector_nr += len >> 9;
4954 nr_sectors += len >> 9;
4957 r10_bio->sectors = nr_sectors;
4959 /* Now submit the read */
4960 md_sync_acct_bio(read_bio, r10_bio->sectors);
4961 atomic_inc(&r10_bio->remaining);
4962 read_bio->bi_next = NULL;
4963 submit_bio_noacct(read_bio);
4964 sectors_done += nr_sectors;
4965 if (sector_nr <= last)
4968 lower_barrier(conf);
4970 /* Now that we have done the whole section we can
4971 * update reshape_progress
4973 if (mddev->reshape_backwards)
4974 conf->reshape_progress -= sectors_done;
4976 conf->reshape_progress += sectors_done;
4978 return sectors_done;
4981 static void end_reshape_request(struct r10bio *r10_bio);
4982 static int handle_reshape_read_error(struct mddev *mddev,
4983 struct r10bio *r10_bio);
4984 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4986 /* Reshape read completed. Hopefully we have a block
4988 * If we got a read error then we do sync 1-page reads from
4989 * elsewhere until we find the data - or give up.
4991 struct r10conf *conf = mddev->private;
4994 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4995 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4996 /* Reshape has been aborted */
4997 md_done_sync(mddev, r10_bio->sectors, 0);
5001 /* We definitely have the data in the pages, schedule the
5004 atomic_set(&r10_bio->remaining, 1);
5005 for (s = 0; s < conf->copies*2; s++) {
5007 int d = r10_bio->devs[s/2].devnum;
5008 struct md_rdev *rdev;
5011 rdev = rcu_dereference(conf->mirrors[d].replacement);
5012 b = r10_bio->devs[s/2].repl_bio;
5014 rdev = rcu_dereference(conf->mirrors[d].rdev);
5015 b = r10_bio->devs[s/2].bio;
5017 if (!rdev || test_bit(Faulty, &rdev->flags)) {
5021 atomic_inc(&rdev->nr_pending);
5023 md_sync_acct_bio(b, r10_bio->sectors);
5024 atomic_inc(&r10_bio->remaining);
5026 submit_bio_noacct(b);
5028 end_reshape_request(r10_bio);
5031 static void end_reshape(struct r10conf *conf)
5033 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5036 spin_lock_irq(&conf->device_lock);
5037 conf->prev = conf->geo;
5038 md_finish_reshape(conf->mddev);
5040 conf->reshape_progress = MaxSector;
5041 conf->reshape_safe = MaxSector;
5042 spin_unlock_irq(&conf->device_lock);
5044 if (conf->mddev->queue)
5045 raid10_set_io_opt(conf);
5049 static void raid10_update_reshape_pos(struct mddev *mddev)
5051 struct r10conf *conf = mddev->private;
5054 md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5055 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5056 || mddev->reshape_position == MaxSector)
5057 conf->reshape_progress = mddev->reshape_position;
5062 static int handle_reshape_read_error(struct mddev *mddev,
5063 struct r10bio *r10_bio)
5065 /* Use sync reads to get the blocks from somewhere else */
5066 int sectors = r10_bio->sectors;
5067 struct r10conf *conf = mddev->private;
5068 struct r10bio *r10b;
5071 struct page **pages;
5073 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5075 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5079 /* reshape IOs share pages from .devs[0].bio */
5080 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5082 r10b->sector = r10_bio->sector;
5083 __raid10_find_phys(&conf->prev, r10b);
5088 int first_slot = slot;
5090 if (s > (PAGE_SIZE >> 9))
5095 int d = r10b->devs[slot].devnum;
5096 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5099 test_bit(Faulty, &rdev->flags) ||
5100 !test_bit(In_sync, &rdev->flags))
5103 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5104 atomic_inc(&rdev->nr_pending);
5106 success = sync_page_io(rdev,
5110 REQ_OP_READ, 0, false);
5111 rdev_dec_pending(rdev, mddev);
5117 if (slot >= conf->copies)
5119 if (slot == first_slot)
5124 /* couldn't read this block, must give up */
5125 set_bit(MD_RECOVERY_INTR,
5137 static void end_reshape_write(struct bio *bio)
5139 struct r10bio *r10_bio = get_resync_r10bio(bio);
5140 struct mddev *mddev = r10_bio->mddev;
5141 struct r10conf *conf = mddev->private;
5145 struct md_rdev *rdev = NULL;
5147 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5149 rdev = conf->mirrors[d].replacement;
5152 rdev = conf->mirrors[d].rdev;
5155 if (bio->bi_status) {
5156 /* FIXME should record badblock */
5157 md_error(mddev, rdev);
5160 rdev_dec_pending(rdev, mddev);
5161 end_reshape_request(r10_bio);
5164 static void end_reshape_request(struct r10bio *r10_bio)
5166 if (!atomic_dec_and_test(&r10_bio->remaining))
5168 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5169 bio_put(r10_bio->master_bio);
5173 static void raid10_finish_reshape(struct mddev *mddev)
5175 struct r10conf *conf = mddev->private;
5177 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5180 if (mddev->delta_disks > 0) {
5181 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5182 mddev->recovery_cp = mddev->resync_max_sectors;
5183 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5185 mddev->resync_max_sectors = mddev->array_sectors;
5189 for (d = conf->geo.raid_disks ;
5190 d < conf->geo.raid_disks - mddev->delta_disks;
5192 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5194 clear_bit(In_sync, &rdev->flags);
5195 rdev = rcu_dereference(conf->mirrors[d].replacement);
5197 clear_bit(In_sync, &rdev->flags);
5201 mddev->layout = mddev->new_layout;
5202 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5203 mddev->reshape_position = MaxSector;
5204 mddev->delta_disks = 0;
5205 mddev->reshape_backwards = 0;
5208 static struct md_personality raid10_personality =
5212 .owner = THIS_MODULE,
5213 .make_request = raid10_make_request,
5215 .free = raid10_free,
5216 .status = raid10_status,
5217 .error_handler = raid10_error,
5218 .hot_add_disk = raid10_add_disk,
5219 .hot_remove_disk= raid10_remove_disk,
5220 .spare_active = raid10_spare_active,
5221 .sync_request = raid10_sync_request,
5222 .quiesce = raid10_quiesce,
5223 .size = raid10_size,
5224 .resize = raid10_resize,
5225 .takeover = raid10_takeover,
5226 .check_reshape = raid10_check_reshape,
5227 .start_reshape = raid10_start_reshape,
5228 .finish_reshape = raid10_finish_reshape,
5229 .update_reshape_pos = raid10_update_reshape_pos,
5232 static int __init raid_init(void)
5234 return register_md_personality(&raid10_personality);
5237 static void raid_exit(void)
5239 unregister_md_personality(&raid10_personality);
5242 module_init(raid_init);
5243 module_exit(raid_exit);
5244 MODULE_LICENSE("GPL");
5245 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5246 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5247 MODULE_ALIAS("md-raid10");
5248 MODULE_ALIAS("md-level-10");