2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
43 * The data to be stored is divided into chunks using chunksize. Each device
44 * is divided into far_copies sections. In each section, chunks are laid out
45 * in a style similar to raid0, but near_copies copies of each chunk is stored
46 * (each on a different drive). The starting device for each section is offset
47 * near_copies from the starting device of the previous section. Thus there
48 * are (near_copies * far_copies) of each chunk, and each is on a different
49 * drive. near_copies and far_copies must be at least one, and their product
50 * is at most raid_disks.
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of being very far
54 * apart on disk, there are adjacent stripes.
56 * The far and offset algorithms are handled slightly differently if
57 * 'use_far_sets' is true. In this case, the array's devices are grouped into
58 * sets that are (near_copies * far_copies) in size. The far copied stripes
59 * are still shifted by 'near_copies' devices, but this shifting stays confined
60 * to the set rather than the entire array. This is done to improve the number
61 * of device combinations that can fail without causing the array to fail.
62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68 * [A B] [C D] [A B] [C D E]
69 * |...| |...| |...| | ... |
70 * [B A] [D C] [B A] [E C D]
74 * Number of guaranteed r10bios in case of extreme VM load:
76 #define NR_RAID10_BIOS 256
78 /* when we get a read error on a read-only array, we redirect to another
79 * device without failing the first device, or trying to over-write to
80 * correct the read error. To keep track of bad blocks on a per-bio
81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85 * bad-block marking which must be done from process context. So we record
86 * the success by setting devs[n].bio to IO_MADE_GOOD
88 #define IO_MADE_GOOD ((struct bio *)2)
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
92 /* When there are this many requests queued to be written by
93 * the raid10 thread, we become 'congested' to provide back-pressure
96 static int max_queued_requests = 1024;
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int enough(struct r10conf *conf, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
109 struct r10conf *conf = data;
110 int size = offsetof(struct r10bio, devs[conf->copies]);
112 /* allocate a r10bio with room for raid_disks entries in the
114 return kzalloc(size, gfp_flags);
117 static void r10bio_pool_free(void *r10_bio, void *data)
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
131 * When performing a resync, we need to read and compare, so
132 * we need as many pages are there are copies.
133 * When performing a recovery, we need 2 bios, one for read,
134 * one for write (we recover only one drive per r10buf)
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
139 struct r10conf *conf = data;
141 struct r10bio *r10_bio;
146 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 nalloc = conf->copies; /* resync */
154 nalloc = 2; /* recovery */
159 for (j = nalloc ; j-- ; ) {
160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
163 r10_bio->devs[j].bio = bio;
164 if (!conf->have_replacement)
166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
169 r10_bio->devs[j].repl_bio = bio;
172 * Allocate RESYNC_PAGES data pages and attach them
175 for (j = 0 ; j < nalloc; j++) {
176 struct bio *rbio = r10_bio->devs[j].repl_bio;
177 bio = r10_bio->devs[j].bio;
178 for (i = 0; i < RESYNC_PAGES; i++) {
179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 &conf->mddev->recovery)) {
181 /* we can share bv_page's during recovery
183 struct bio *rbio = r10_bio->devs[0].bio;
184 page = rbio->bi_io_vec[i].bv_page;
187 page = alloc_page(gfp_flags);
191 bio->bi_io_vec[i].bv_page = page;
193 rbio->bi_io_vec[i].bv_page = page;
201 safe_put_page(bio->bi_io_vec[i-1].bv_page);
203 for (i = 0; i < RESYNC_PAGES ; i++)
204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
207 for ( ; j < nalloc; j++) {
208 if (r10_bio->devs[j].bio)
209 bio_put(r10_bio->devs[j].bio);
210 if (r10_bio->devs[j].repl_bio)
211 bio_put(r10_bio->devs[j].repl_bio);
213 r10bio_pool_free(r10_bio, conf);
217 static void r10buf_pool_free(void *__r10_bio, void *data)
220 struct r10conf *conf = data;
221 struct r10bio *r10bio = __r10_bio;
224 for (j=0; j < conf->copies; j++) {
225 struct bio *bio = r10bio->devs[j].bio;
227 for (i = 0; i < RESYNC_PAGES; i++) {
228 safe_put_page(bio->bi_io_vec[i].bv_page);
229 bio->bi_io_vec[i].bv_page = NULL;
233 bio = r10bio->devs[j].repl_bio;
237 r10bio_pool_free(r10bio, conf);
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
244 for (i = 0; i < conf->copies; i++) {
245 struct bio **bio = & r10_bio->devs[i].bio;
246 if (!BIO_SPECIAL(*bio))
249 bio = &r10_bio->devs[i].repl_bio;
250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
256 static void free_r10bio(struct r10bio *r10_bio)
258 struct r10conf *conf = r10_bio->mddev->private;
260 put_all_bios(conf, r10_bio);
261 mempool_free(r10_bio, conf->r10bio_pool);
264 static void put_buf(struct r10bio *r10_bio)
266 struct r10conf *conf = r10_bio->mddev->private;
268 mempool_free(r10_bio, conf->r10buf_pool);
273 static void reschedule_retry(struct r10bio *r10_bio)
276 struct mddev *mddev = r10_bio->mddev;
277 struct r10conf *conf = mddev->private;
279 spin_lock_irqsave(&conf->device_lock, flags);
280 list_add(&r10_bio->retry_list, &conf->retry_list);
282 spin_unlock_irqrestore(&conf->device_lock, flags);
284 /* wake up frozen array... */
285 wake_up(&conf->wait_barrier);
287 md_wakeup_thread(mddev->thread);
291 * raid_end_bio_io() is called when we have finished servicing a mirrored
292 * operation and are ready to return a success/failure code to the buffer
295 static void raid_end_bio_io(struct r10bio *r10_bio)
297 struct bio *bio = r10_bio->master_bio;
299 struct r10conf *conf = r10_bio->mddev->private;
301 if (bio->bi_phys_segments) {
303 spin_lock_irqsave(&conf->device_lock, flags);
304 bio->bi_phys_segments--;
305 done = (bio->bi_phys_segments == 0);
306 spin_unlock_irqrestore(&conf->device_lock, flags);
309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 clear_bit(BIO_UPTODATE, &bio->bi_flags);
314 * Wake up any possible resync thread that waits for the device
319 free_r10bio(r10_bio);
323 * Update disk head position estimator based on IRQ completion info.
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
327 struct r10conf *conf = r10_bio->mddev->private;
329 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 r10_bio->devs[slot].addr + (r10_bio->sectors);
334 * Find the disk number which triggered given bio
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 struct bio *bio, int *slotp, int *replp)
342 for (slot = 0; slot < conf->copies; slot++) {
343 if (r10_bio->devs[slot].bio == bio)
345 if (r10_bio->devs[slot].repl_bio == bio) {
351 BUG_ON(slot == conf->copies);
352 update_head_pos(slot, r10_bio);
358 return r10_bio->devs[slot].devnum;
361 static void raid10_end_read_request(struct bio *bio, int error)
363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 struct r10bio *r10_bio = bio->bi_private;
366 struct md_rdev *rdev;
367 struct r10conf *conf = r10_bio->mddev->private;
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
372 rdev = r10_bio->devs[slot].rdev;
374 * this branch is our 'one mirror IO has finished' event handler:
376 update_head_pos(slot, r10_bio);
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
396 spin_lock_irqsave(&conf->device_lock, flags);
397 if (!enough(conf, rdev->raid_disk))
399 spin_unlock_irqrestore(&conf->device_lock, flags);
402 raid_end_bio_io(r10_bio);
403 rdev_dec_pending(rdev, conf->mddev);
406 * oops, read error - keep the refcount on the rdev
408 char b[BDEVNAME_SIZE];
409 printk_ratelimited(KERN_ERR
410 "md/raid10:%s: %s: rescheduling sector %llu\n",
412 bdevname(rdev->bdev, b),
413 (unsigned long long)r10_bio->sector);
414 set_bit(R10BIO_ReadError, &r10_bio->state);
415 reschedule_retry(r10_bio);
419 static void close_write(struct r10bio *r10_bio)
421 /* clear the bitmap if all writes complete successfully */
422 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
424 !test_bit(R10BIO_Degraded, &r10_bio->state),
426 md_write_end(r10_bio->mddev);
429 static void one_write_done(struct r10bio *r10_bio)
431 if (atomic_dec_and_test(&r10_bio->remaining)) {
432 if (test_bit(R10BIO_WriteError, &r10_bio->state))
433 reschedule_retry(r10_bio);
435 close_write(r10_bio);
436 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
437 reschedule_retry(r10_bio);
439 raid_end_bio_io(r10_bio);
444 static void raid10_end_write_request(struct bio *bio, int error)
446 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
447 struct r10bio *r10_bio = bio->bi_private;
450 struct r10conf *conf = r10_bio->mddev->private;
452 struct md_rdev *rdev = NULL;
454 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
457 rdev = conf->mirrors[dev].replacement;
461 rdev = conf->mirrors[dev].rdev;
464 * this branch is our 'one mirror IO has finished' event handler:
468 /* Never record new bad blocks to replacement,
471 md_error(rdev->mddev, rdev);
473 set_bit(WriteErrorSeen, &rdev->flags);
474 if (!test_and_set_bit(WantReplacement, &rdev->flags))
475 set_bit(MD_RECOVERY_NEEDED,
476 &rdev->mddev->recovery);
477 set_bit(R10BIO_WriteError, &r10_bio->state);
482 * Set R10BIO_Uptodate in our master bio, so that
483 * we will return a good error code for to the higher
484 * levels even if IO on some other mirrored buffer fails.
486 * The 'master' represents the composite IO operation to
487 * user-side. So if something waits for IO, then it will
488 * wait for the 'master' bio.
493 set_bit(R10BIO_Uptodate, &r10_bio->state);
495 /* Maybe we can clear some bad blocks. */
496 if (is_badblock(rdev,
497 r10_bio->devs[slot].addr,
499 &first_bad, &bad_sectors)) {
502 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
504 r10_bio->devs[slot].bio = IO_MADE_GOOD;
506 set_bit(R10BIO_MadeGood, &r10_bio->state);
512 * Let's see if all mirrored write operations have finished
515 one_write_done(r10_bio);
517 rdev_dec_pending(rdev, conf->mddev);
521 * RAID10 layout manager
522 * As well as the chunksize and raid_disks count, there are two
523 * parameters: near_copies and far_copies.
524 * near_copies * far_copies must be <= raid_disks.
525 * Normally one of these will be 1.
526 * If both are 1, we get raid0.
527 * If near_copies == raid_disks, we get raid1.
529 * Chunks are laid out in raid0 style with near_copies copies of the
530 * first chunk, followed by near_copies copies of the next chunk and
532 * If far_copies > 1, then after 1/far_copies of the array has been assigned
533 * as described above, we start again with a device offset of near_copies.
534 * So we effectively have another copy of the whole array further down all
535 * the drives, but with blocks on different drives.
536 * With this layout, and block is never stored twice on the one device.
538 * raid10_find_phys finds the sector offset of a given virtual sector
539 * on each device that it is on.
541 * raid10_find_virt does the reverse mapping, from a device and a
542 * sector offset to a virtual address
545 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
553 int last_far_set_start, last_far_set_size;
555 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
556 last_far_set_start *= geo->far_set_size;
558 last_far_set_size = geo->far_set_size;
559 last_far_set_size += (geo->raid_disks % geo->far_set_size);
561 /* now calculate first sector/dev */
562 chunk = r10bio->sector >> geo->chunk_shift;
563 sector = r10bio->sector & geo->chunk_mask;
565 chunk *= geo->near_copies;
567 dev = sector_div(stripe, geo->raid_disks);
569 stripe *= geo->far_copies;
571 sector += stripe << geo->chunk_shift;
573 /* and calculate all the others */
574 for (n = 0; n < geo->near_copies; n++) {
578 r10bio->devs[slot].devnum = d;
579 r10bio->devs[slot].addr = s;
582 for (f = 1; f < geo->far_copies; f++) {
583 set = d / geo->far_set_size;
584 d += geo->near_copies;
586 if ((geo->raid_disks % geo->far_set_size) &&
587 (d > last_far_set_start)) {
588 d -= last_far_set_start;
589 d %= last_far_set_size;
590 d += last_far_set_start;
592 d %= geo->far_set_size;
593 d += geo->far_set_size * set;
596 r10bio->devs[slot].devnum = d;
597 r10bio->devs[slot].addr = s;
601 if (dev >= geo->raid_disks) {
603 sector += (geo->chunk_mask + 1);
608 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
610 struct geom *geo = &conf->geo;
612 if (conf->reshape_progress != MaxSector &&
613 ((r10bio->sector >= conf->reshape_progress) !=
614 conf->mddev->reshape_backwards)) {
615 set_bit(R10BIO_Previous, &r10bio->state);
618 clear_bit(R10BIO_Previous, &r10bio->state);
620 __raid10_find_phys(geo, r10bio);
623 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
625 sector_t offset, chunk, vchunk;
626 /* Never use conf->prev as this is only called during resync
627 * or recovery, so reshape isn't happening
629 struct geom *geo = &conf->geo;
630 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
631 int far_set_size = geo->far_set_size;
632 int last_far_set_start;
634 if (geo->raid_disks % geo->far_set_size) {
635 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
636 last_far_set_start *= geo->far_set_size;
638 if (dev >= last_far_set_start) {
639 far_set_size = geo->far_set_size;
640 far_set_size += (geo->raid_disks % geo->far_set_size);
641 far_set_start = last_far_set_start;
645 offset = sector & geo->chunk_mask;
646 if (geo->far_offset) {
648 chunk = sector >> geo->chunk_shift;
649 fc = sector_div(chunk, geo->far_copies);
650 dev -= fc * geo->near_copies;
651 if (dev < far_set_start)
654 while (sector >= geo->stride) {
655 sector -= geo->stride;
656 if (dev < (geo->near_copies + far_set_start))
657 dev += far_set_size - geo->near_copies;
659 dev -= geo->near_copies;
661 chunk = sector >> geo->chunk_shift;
663 vchunk = chunk * geo->raid_disks + dev;
664 sector_div(vchunk, geo->near_copies);
665 return (vchunk << geo->chunk_shift) + offset;
669 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
671 * @bvm: properties of new bio
672 * @biovec: the request that could be merged to it.
674 * Return amount of bytes we can accept at this offset
675 * This requires checking for end-of-chunk if near_copies != raid_disks,
676 * and for subordinate merge_bvec_fns if merge_check_needed.
678 static int raid10_mergeable_bvec(struct request_queue *q,
679 struct bvec_merge_data *bvm,
680 struct bio_vec *biovec)
682 struct mddev *mddev = q->queuedata;
683 struct r10conf *conf = mddev->private;
684 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
686 unsigned int chunk_sectors;
687 unsigned int bio_sectors = bvm->bi_size >> 9;
688 struct geom *geo = &conf->geo;
690 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
691 if (conf->reshape_progress != MaxSector &&
692 ((sector >= conf->reshape_progress) !=
693 conf->mddev->reshape_backwards))
696 if (geo->near_copies < geo->raid_disks) {
697 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
698 + bio_sectors)) << 9;
700 /* bio_add cannot handle a negative return */
702 if (max <= biovec->bv_len && bio_sectors == 0)
703 return biovec->bv_len;
705 max = biovec->bv_len;
707 if (mddev->merge_check_needed) {
709 struct r10bio r10_bio;
710 struct r10dev devs[conf->copies];
712 struct r10bio *r10_bio = &on_stack.r10_bio;
714 if (conf->reshape_progress != MaxSector) {
715 /* Cannot give any guidance during reshape */
716 if (max <= biovec->bv_len && bio_sectors == 0)
717 return biovec->bv_len;
720 r10_bio->sector = sector;
721 raid10_find_phys(conf, r10_bio);
723 for (s = 0; s < conf->copies; s++) {
724 int disk = r10_bio->devs[s].devnum;
725 struct md_rdev *rdev = rcu_dereference(
726 conf->mirrors[disk].rdev);
727 if (rdev && !test_bit(Faulty, &rdev->flags)) {
728 struct request_queue *q =
729 bdev_get_queue(rdev->bdev);
730 if (q->merge_bvec_fn) {
731 bvm->bi_sector = r10_bio->devs[s].addr
733 bvm->bi_bdev = rdev->bdev;
734 max = min(max, q->merge_bvec_fn(
738 rdev = rcu_dereference(conf->mirrors[disk].replacement);
739 if (rdev && !test_bit(Faulty, &rdev->flags)) {
740 struct request_queue *q =
741 bdev_get_queue(rdev->bdev);
742 if (q->merge_bvec_fn) {
743 bvm->bi_sector = r10_bio->devs[s].addr
745 bvm->bi_bdev = rdev->bdev;
746 max = min(max, q->merge_bvec_fn(
757 * This routine returns the disk from which the requested read should
758 * be done. There is a per-array 'next expected sequential IO' sector
759 * number - if this matches on the next IO then we use the last disk.
760 * There is also a per-disk 'last know head position' sector that is
761 * maintained from IRQ contexts, both the normal and the resync IO
762 * completion handlers update this position correctly. If there is no
763 * perfect sequential match then we pick the disk whose head is closest.
765 * If there are 2 mirrors in the same 2 devices, performance degrades
766 * because position is mirror, not device based.
768 * The rdev for the device selected will have nr_pending incremented.
772 * FIXME: possibly should rethink readbalancing and do it differently
773 * depending on near_copies / far_copies geometry.
775 static struct md_rdev *read_balance(struct r10conf *conf,
776 struct r10bio *r10_bio,
779 const sector_t this_sector = r10_bio->sector;
781 int sectors = r10_bio->sectors;
782 int best_good_sectors;
783 sector_t new_distance, best_dist;
784 struct md_rdev *best_rdev, *rdev = NULL;
787 struct geom *geo = &conf->geo;
789 raid10_find_phys(conf, r10_bio);
792 sectors = r10_bio->sectors;
795 best_dist = MaxSector;
796 best_good_sectors = 0;
799 * Check if we can balance. We can balance on the whole
800 * device if no resync is going on (recovery is ok), or below
801 * the resync window. We take the first readable disk when
802 * above the resync window.
804 if (conf->mddev->recovery_cp < MaxSector
805 && (this_sector + sectors >= conf->next_resync))
808 for (slot = 0; slot < conf->copies ; slot++) {
813 if (r10_bio->devs[slot].bio == IO_BLOCKED)
815 disk = r10_bio->devs[slot].devnum;
816 rdev = rcu_dereference(conf->mirrors[disk].replacement);
817 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
818 test_bit(Unmerged, &rdev->flags) ||
819 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
820 rdev = rcu_dereference(conf->mirrors[disk].rdev);
822 test_bit(Faulty, &rdev->flags) ||
823 test_bit(Unmerged, &rdev->flags))
825 if (!test_bit(In_sync, &rdev->flags) &&
826 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
829 dev_sector = r10_bio->devs[slot].addr;
830 if (is_badblock(rdev, dev_sector, sectors,
831 &first_bad, &bad_sectors)) {
832 if (best_dist < MaxSector)
833 /* Already have a better slot */
835 if (first_bad <= dev_sector) {
836 /* Cannot read here. If this is the
837 * 'primary' device, then we must not read
838 * beyond 'bad_sectors' from another device.
840 bad_sectors -= (dev_sector - first_bad);
841 if (!do_balance && sectors > bad_sectors)
842 sectors = bad_sectors;
843 if (best_good_sectors > sectors)
844 best_good_sectors = sectors;
846 sector_t good_sectors =
847 first_bad - dev_sector;
848 if (good_sectors > best_good_sectors) {
849 best_good_sectors = good_sectors;
854 /* Must read from here */
859 best_good_sectors = sectors;
864 /* This optimisation is debatable, and completely destroys
865 * sequential read speed for 'far copies' arrays. So only
866 * keep it for 'near' arrays, and review those later.
868 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
871 /* for far > 1 always use the lowest address */
872 if (geo->far_copies > 1)
873 new_distance = r10_bio->devs[slot].addr;
875 new_distance = abs(r10_bio->devs[slot].addr -
876 conf->mirrors[disk].head_position);
877 if (new_distance < best_dist) {
878 best_dist = new_distance;
883 if (slot >= conf->copies) {
889 atomic_inc(&rdev->nr_pending);
890 if (test_bit(Faulty, &rdev->flags)) {
891 /* Cannot risk returning a device that failed
892 * before we inc'ed nr_pending
894 rdev_dec_pending(rdev, conf->mddev);
897 r10_bio->read_slot = slot;
901 *max_sectors = best_good_sectors;
906 int md_raid10_congested(struct mddev *mddev, int bits)
908 struct r10conf *conf = mddev->private;
911 if ((bits & (1 << BDI_async_congested)) &&
912 conf->pending_count >= max_queued_requests)
917 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
920 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
921 if (rdev && !test_bit(Faulty, &rdev->flags)) {
922 struct request_queue *q = bdev_get_queue(rdev->bdev);
924 ret |= bdi_congested(&q->backing_dev_info, bits);
930 EXPORT_SYMBOL_GPL(md_raid10_congested);
932 static int raid10_congested(void *data, int bits)
934 struct mddev *mddev = data;
936 return mddev_congested(mddev, bits) ||
937 md_raid10_congested(mddev, bits);
940 static void flush_pending_writes(struct r10conf *conf)
942 /* Any writes that have been queued but are awaiting
943 * bitmap updates get flushed here.
945 spin_lock_irq(&conf->device_lock);
947 if (conf->pending_bio_list.head) {
949 bio = bio_list_get(&conf->pending_bio_list);
950 conf->pending_count = 0;
951 spin_unlock_irq(&conf->device_lock);
952 /* flush any pending bitmap writes to disk
953 * before proceeding w/ I/O */
954 bitmap_unplug(conf->mddev->bitmap);
955 wake_up(&conf->wait_barrier);
957 while (bio) { /* submit pending writes */
958 struct bio *next = bio->bi_next;
960 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
961 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
965 generic_make_request(bio);
969 spin_unlock_irq(&conf->device_lock);
973 * Sometimes we need to suspend IO while we do something else,
974 * either some resync/recovery, or reconfigure the array.
975 * To do this we raise a 'barrier'.
976 * The 'barrier' is a counter that can be raised multiple times
977 * to count how many activities are happening which preclude
979 * We can only raise the barrier if there is no pending IO.
980 * i.e. if nr_pending == 0.
981 * We choose only to raise the barrier if no-one is waiting for the
982 * barrier to go down. This means that as soon as an IO request
983 * is ready, no other operations which require a barrier will start
984 * until the IO request has had a chance.
986 * So: regular IO calls 'wait_barrier'. When that returns there
987 * is no backgroup IO happening, It must arrange to call
988 * allow_barrier when it has finished its IO.
989 * backgroup IO calls must call raise_barrier. Once that returns
990 * there is no normal IO happeing. It must arrange to call
991 * lower_barrier when the particular background IO completes.
994 static void raise_barrier(struct r10conf *conf, int force)
996 BUG_ON(force && !conf->barrier);
997 spin_lock_irq(&conf->resync_lock);
999 /* Wait until no block IO is waiting (unless 'force') */
1000 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1003 /* block any new IO from starting */
1006 /* Now wait for all pending IO to complete */
1007 wait_event_lock_irq(conf->wait_barrier,
1008 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1011 spin_unlock_irq(&conf->resync_lock);
1014 static void lower_barrier(struct r10conf *conf)
1016 unsigned long flags;
1017 spin_lock_irqsave(&conf->resync_lock, flags);
1019 spin_unlock_irqrestore(&conf->resync_lock, flags);
1020 wake_up(&conf->wait_barrier);
1023 static void wait_barrier(struct r10conf *conf)
1025 spin_lock_irq(&conf->resync_lock);
1026 if (conf->barrier) {
1028 /* Wait for the barrier to drop.
1029 * However if there are already pending
1030 * requests (preventing the barrier from
1031 * rising completely), and the
1032 * pre-process bio queue isn't empty,
1033 * then don't wait, as we need to empty
1034 * that queue to get the nr_pending
1037 wait_event_lock_irq(conf->wait_barrier,
1039 (conf->nr_pending &&
1040 current->bio_list &&
1041 !bio_list_empty(current->bio_list)),
1046 spin_unlock_irq(&conf->resync_lock);
1049 static void allow_barrier(struct r10conf *conf)
1051 unsigned long flags;
1052 spin_lock_irqsave(&conf->resync_lock, flags);
1054 spin_unlock_irqrestore(&conf->resync_lock, flags);
1055 wake_up(&conf->wait_barrier);
1058 static void freeze_array(struct r10conf *conf)
1060 /* stop syncio and normal IO and wait for everything to
1062 * We increment barrier and nr_waiting, and then
1063 * wait until nr_pending match nr_queued+1
1064 * This is called in the context of one normal IO request
1065 * that has failed. Thus any sync request that might be pending
1066 * will be blocked by nr_pending, and we need to wait for
1067 * pending IO requests to complete or be queued for re-try.
1068 * Thus the number queued (nr_queued) plus this request (1)
1069 * must match the number of pending IOs (nr_pending) before
1072 spin_lock_irq(&conf->resync_lock);
1075 wait_event_lock_irq_cmd(conf->wait_barrier,
1076 conf->nr_pending == conf->nr_queued+1,
1078 flush_pending_writes(conf));
1080 spin_unlock_irq(&conf->resync_lock);
1083 static void unfreeze_array(struct r10conf *conf)
1085 /* reverse the effect of the freeze */
1086 spin_lock_irq(&conf->resync_lock);
1089 wake_up(&conf->wait_barrier);
1090 spin_unlock_irq(&conf->resync_lock);
1093 static sector_t choose_data_offset(struct r10bio *r10_bio,
1094 struct md_rdev *rdev)
1096 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1097 test_bit(R10BIO_Previous, &r10_bio->state))
1098 return rdev->data_offset;
1100 return rdev->new_data_offset;
1103 struct raid10_plug_cb {
1104 struct blk_plug_cb cb;
1105 struct bio_list pending;
1109 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1111 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1113 struct mddev *mddev = plug->cb.data;
1114 struct r10conf *conf = mddev->private;
1117 if (from_schedule || current->bio_list) {
1118 spin_lock_irq(&conf->device_lock);
1119 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1120 conf->pending_count += plug->pending_cnt;
1121 spin_unlock_irq(&conf->device_lock);
1122 wake_up(&conf->wait_barrier);
1123 md_wakeup_thread(mddev->thread);
1128 /* we aren't scheduling, so we can do the write-out directly. */
1129 bio = bio_list_get(&plug->pending);
1130 bitmap_unplug(mddev->bitmap);
1131 wake_up(&conf->wait_barrier);
1133 while (bio) { /* submit pending writes */
1134 struct bio *next = bio->bi_next;
1135 bio->bi_next = NULL;
1136 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1137 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1138 /* Just ignore it */
1141 generic_make_request(bio);
1147 static void make_request(struct mddev *mddev, struct bio * bio)
1149 struct r10conf *conf = mddev->private;
1150 struct r10bio *r10_bio;
1151 struct bio *read_bio;
1153 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1154 int chunk_sects = chunk_mask + 1;
1155 const int rw = bio_data_dir(bio);
1156 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1157 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1158 const unsigned long do_discard = (bio->bi_rw
1159 & (REQ_DISCARD | REQ_SECURE));
1160 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1161 unsigned long flags;
1162 struct md_rdev *blocked_rdev;
1163 struct blk_plug_cb *cb;
1164 struct raid10_plug_cb *plug = NULL;
1165 int sectors_handled;
1169 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1170 md_flush_request(mddev, bio);
1174 /* If this request crosses a chunk boundary, we need to
1175 * split it. This will only happen for 1 PAGE (or less) requests.
1177 if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1179 && (conf->geo.near_copies < conf->geo.raid_disks
1180 || conf->prev.near_copies < conf->prev.raid_disks))) {
1181 struct bio_pair *bp;
1182 /* Sanity check -- queue functions should prevent this happening */
1183 if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) ||
1186 /* This is a one page bio that upper layers
1187 * refuse to split for us, so we need to split it.
1190 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1192 /* Each of these 'make_request' calls will call 'wait_barrier'.
1193 * If the first succeeds but the second blocks due to the resync
1194 * thread raising the barrier, we will deadlock because the
1195 * IO to the underlying device will be queued in generic_make_request
1196 * and will never complete, so will never reduce nr_pending.
1197 * So increment nr_waiting here so no new raise_barriers will
1198 * succeed, and so the second wait_barrier cannot block.
1200 spin_lock_irq(&conf->resync_lock);
1202 spin_unlock_irq(&conf->resync_lock);
1204 make_request(mddev, &bp->bio1);
1205 make_request(mddev, &bp->bio2);
1207 spin_lock_irq(&conf->resync_lock);
1209 wake_up(&conf->wait_barrier);
1210 spin_unlock_irq(&conf->resync_lock);
1212 bio_pair_release(bp);
1215 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1216 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1217 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1223 md_write_start(mddev, bio);
1226 * Register the new request and wait if the reconstruction
1227 * thread has put up a bar for new requests.
1228 * Continue immediately if no resync is active currently.
1232 sectors = bio->bi_size >> 9;
1233 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1234 bio->bi_sector < conf->reshape_progress &&
1235 bio->bi_sector + sectors > conf->reshape_progress) {
1236 /* IO spans the reshape position. Need to wait for
1239 allow_barrier(conf);
1240 wait_event(conf->wait_barrier,
1241 conf->reshape_progress <= bio->bi_sector ||
1242 conf->reshape_progress >= bio->bi_sector + sectors);
1245 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1246 bio_data_dir(bio) == WRITE &&
1247 (mddev->reshape_backwards
1248 ? (bio->bi_sector < conf->reshape_safe &&
1249 bio->bi_sector + sectors > conf->reshape_progress)
1250 : (bio->bi_sector + sectors > conf->reshape_safe &&
1251 bio->bi_sector < conf->reshape_progress))) {
1252 /* Need to update reshape_position in metadata */
1253 mddev->reshape_position = conf->reshape_progress;
1254 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1255 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1256 md_wakeup_thread(mddev->thread);
1257 wait_event(mddev->sb_wait,
1258 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1260 conf->reshape_safe = mddev->reshape_position;
1263 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1265 r10_bio->master_bio = bio;
1266 r10_bio->sectors = sectors;
1268 r10_bio->mddev = mddev;
1269 r10_bio->sector = bio->bi_sector;
1272 /* We might need to issue multiple reads to different
1273 * devices if there are bad blocks around, so we keep
1274 * track of the number of reads in bio->bi_phys_segments.
1275 * If this is 0, there is only one r10_bio and no locking
1276 * will be needed when the request completes. If it is
1277 * non-zero, then it is the number of not-completed requests.
1279 bio->bi_phys_segments = 0;
1280 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1284 * read balancing logic:
1286 struct md_rdev *rdev;
1290 rdev = read_balance(conf, r10_bio, &max_sectors);
1292 raid_end_bio_io(r10_bio);
1295 slot = r10_bio->read_slot;
1297 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1298 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1301 r10_bio->devs[slot].bio = read_bio;
1302 r10_bio->devs[slot].rdev = rdev;
1304 read_bio->bi_sector = r10_bio->devs[slot].addr +
1305 choose_data_offset(r10_bio, rdev);
1306 read_bio->bi_bdev = rdev->bdev;
1307 read_bio->bi_end_io = raid10_end_read_request;
1308 read_bio->bi_rw = READ | do_sync;
1309 read_bio->bi_private = r10_bio;
1311 if (max_sectors < r10_bio->sectors) {
1312 /* Could not read all from this device, so we will
1313 * need another r10_bio.
1315 sectors_handled = (r10_bio->sectors + max_sectors
1317 r10_bio->sectors = max_sectors;
1318 spin_lock_irq(&conf->device_lock);
1319 if (bio->bi_phys_segments == 0)
1320 bio->bi_phys_segments = 2;
1322 bio->bi_phys_segments++;
1323 spin_unlock(&conf->device_lock);
1324 /* Cannot call generic_make_request directly
1325 * as that will be queued in __generic_make_request
1326 * and subsequent mempool_alloc might block
1327 * waiting for it. so hand bio over to raid10d.
1329 reschedule_retry(r10_bio);
1331 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1333 r10_bio->master_bio = bio;
1334 r10_bio->sectors = ((bio->bi_size >> 9)
1337 r10_bio->mddev = mddev;
1338 r10_bio->sector = bio->bi_sector + sectors_handled;
1341 generic_make_request(read_bio);
1348 if (conf->pending_count >= max_queued_requests) {
1349 md_wakeup_thread(mddev->thread);
1350 wait_event(conf->wait_barrier,
1351 conf->pending_count < max_queued_requests);
1353 /* first select target devices under rcu_lock and
1354 * inc refcount on their rdev. Record them by setting
1356 * If there are known/acknowledged bad blocks on any device
1357 * on which we have seen a write error, we want to avoid
1358 * writing to those blocks. This potentially requires several
1359 * writes to write around the bad blocks. Each set of writes
1360 * gets its own r10_bio with a set of bios attached. The number
1361 * of r10_bios is recored in bio->bi_phys_segments just as with
1365 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1366 raid10_find_phys(conf, r10_bio);
1368 blocked_rdev = NULL;
1370 max_sectors = r10_bio->sectors;
1372 for (i = 0; i < conf->copies; i++) {
1373 int d = r10_bio->devs[i].devnum;
1374 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1375 struct md_rdev *rrdev = rcu_dereference(
1376 conf->mirrors[d].replacement);
1379 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1380 atomic_inc(&rdev->nr_pending);
1381 blocked_rdev = rdev;
1384 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1385 atomic_inc(&rrdev->nr_pending);
1386 blocked_rdev = rrdev;
1389 if (rdev && (test_bit(Faulty, &rdev->flags)
1390 || test_bit(Unmerged, &rdev->flags)))
1392 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1393 || test_bit(Unmerged, &rrdev->flags)))
1396 r10_bio->devs[i].bio = NULL;
1397 r10_bio->devs[i].repl_bio = NULL;
1399 if (!rdev && !rrdev) {
1400 set_bit(R10BIO_Degraded, &r10_bio->state);
1403 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1405 sector_t dev_sector = r10_bio->devs[i].addr;
1409 is_bad = is_badblock(rdev, dev_sector,
1411 &first_bad, &bad_sectors);
1413 /* Mustn't write here until the bad block
1416 atomic_inc(&rdev->nr_pending);
1417 set_bit(BlockedBadBlocks, &rdev->flags);
1418 blocked_rdev = rdev;
1421 if (is_bad && first_bad <= dev_sector) {
1422 /* Cannot write here at all */
1423 bad_sectors -= (dev_sector - first_bad);
1424 if (bad_sectors < max_sectors)
1425 /* Mustn't write more than bad_sectors
1426 * to other devices yet
1428 max_sectors = bad_sectors;
1429 /* We don't set R10BIO_Degraded as that
1430 * only applies if the disk is missing,
1431 * so it might be re-added, and we want to
1432 * know to recover this chunk.
1433 * In this case the device is here, and the
1434 * fact that this chunk is not in-sync is
1435 * recorded in the bad block log.
1440 int good_sectors = first_bad - dev_sector;
1441 if (good_sectors < max_sectors)
1442 max_sectors = good_sectors;
1446 r10_bio->devs[i].bio = bio;
1447 atomic_inc(&rdev->nr_pending);
1450 r10_bio->devs[i].repl_bio = bio;
1451 atomic_inc(&rrdev->nr_pending);
1456 if (unlikely(blocked_rdev)) {
1457 /* Have to wait for this device to get unblocked, then retry */
1461 for (j = 0; j < i; j++) {
1462 if (r10_bio->devs[j].bio) {
1463 d = r10_bio->devs[j].devnum;
1464 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1466 if (r10_bio->devs[j].repl_bio) {
1467 struct md_rdev *rdev;
1468 d = r10_bio->devs[j].devnum;
1469 rdev = conf->mirrors[d].replacement;
1471 /* Race with remove_disk */
1473 rdev = conf->mirrors[d].rdev;
1475 rdev_dec_pending(rdev, mddev);
1478 allow_barrier(conf);
1479 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1484 if (max_sectors < r10_bio->sectors) {
1485 /* We are splitting this into multiple parts, so
1486 * we need to prepare for allocating another r10_bio.
1488 r10_bio->sectors = max_sectors;
1489 spin_lock_irq(&conf->device_lock);
1490 if (bio->bi_phys_segments == 0)
1491 bio->bi_phys_segments = 2;
1493 bio->bi_phys_segments++;
1494 spin_unlock_irq(&conf->device_lock);
1496 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1498 atomic_set(&r10_bio->remaining, 1);
1499 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1501 for (i = 0; i < conf->copies; i++) {
1503 int d = r10_bio->devs[i].devnum;
1504 if (r10_bio->devs[i].bio) {
1505 struct md_rdev *rdev = conf->mirrors[d].rdev;
1506 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1507 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1509 r10_bio->devs[i].bio = mbio;
1511 mbio->bi_sector = (r10_bio->devs[i].addr+
1512 choose_data_offset(r10_bio,
1514 mbio->bi_bdev = rdev->bdev;
1515 mbio->bi_end_io = raid10_end_write_request;
1517 WRITE | do_sync | do_fua | do_discard | do_same;
1518 mbio->bi_private = r10_bio;
1520 atomic_inc(&r10_bio->remaining);
1522 cb = blk_check_plugged(raid10_unplug, mddev,
1525 plug = container_of(cb, struct raid10_plug_cb,
1529 spin_lock_irqsave(&conf->device_lock, flags);
1531 bio_list_add(&plug->pending, mbio);
1532 plug->pending_cnt++;
1534 bio_list_add(&conf->pending_bio_list, mbio);
1535 conf->pending_count++;
1537 spin_unlock_irqrestore(&conf->device_lock, flags);
1539 md_wakeup_thread(mddev->thread);
1542 if (r10_bio->devs[i].repl_bio) {
1543 struct md_rdev *rdev = conf->mirrors[d].replacement;
1545 /* Replacement just got moved to main 'rdev' */
1547 rdev = conf->mirrors[d].rdev;
1549 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1550 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1552 r10_bio->devs[i].repl_bio = mbio;
1554 mbio->bi_sector = (r10_bio->devs[i].addr +
1557 mbio->bi_bdev = rdev->bdev;
1558 mbio->bi_end_io = raid10_end_write_request;
1560 WRITE | do_sync | do_fua | do_discard | do_same;
1561 mbio->bi_private = r10_bio;
1563 atomic_inc(&r10_bio->remaining);
1564 spin_lock_irqsave(&conf->device_lock, flags);
1565 bio_list_add(&conf->pending_bio_list, mbio);
1566 conf->pending_count++;
1567 spin_unlock_irqrestore(&conf->device_lock, flags);
1568 if (!mddev_check_plugged(mddev))
1569 md_wakeup_thread(mddev->thread);
1573 /* Don't remove the bias on 'remaining' (one_write_done) until
1574 * after checking if we need to go around again.
1577 if (sectors_handled < (bio->bi_size >> 9)) {
1578 one_write_done(r10_bio);
1579 /* We need another r10_bio. It has already been counted
1580 * in bio->bi_phys_segments.
1582 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1584 r10_bio->master_bio = bio;
1585 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1587 r10_bio->mddev = mddev;
1588 r10_bio->sector = bio->bi_sector + sectors_handled;
1592 one_write_done(r10_bio);
1594 /* In case raid10d snuck in to freeze_array */
1595 wake_up(&conf->wait_barrier);
1598 static void status(struct seq_file *seq, struct mddev *mddev)
1600 struct r10conf *conf = mddev->private;
1603 if (conf->geo.near_copies < conf->geo.raid_disks)
1604 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1605 if (conf->geo.near_copies > 1)
1606 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1607 if (conf->geo.far_copies > 1) {
1608 if (conf->geo.far_offset)
1609 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1611 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1613 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1614 conf->geo.raid_disks - mddev->degraded);
1615 for (i = 0; i < conf->geo.raid_disks; i++)
1616 seq_printf(seq, "%s",
1617 conf->mirrors[i].rdev &&
1618 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1619 seq_printf(seq, "]");
1622 /* check if there are enough drives for
1623 * every block to appear on atleast one.
1624 * Don't consider the device numbered 'ignore'
1625 * as we might be about to remove it.
1627 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1632 int n = conf->copies;
1636 if (conf->mirrors[this].rdev &&
1639 this = (this+1) % geo->raid_disks;
1643 first = (first + geo->near_copies) % geo->raid_disks;
1644 } while (first != 0);
1648 static int enough(struct r10conf *conf, int ignore)
1650 return _enough(conf, &conf->geo, ignore) &&
1651 _enough(conf, &conf->prev, ignore);
1654 static void error(struct mddev *mddev, struct md_rdev *rdev)
1656 char b[BDEVNAME_SIZE];
1657 struct r10conf *conf = mddev->private;
1660 * If it is not operational, then we have already marked it as dead
1661 * else if it is the last working disks, ignore the error, let the
1662 * next level up know.
1663 * else mark the drive as failed
1665 if (test_bit(In_sync, &rdev->flags)
1666 && !enough(conf, rdev->raid_disk))
1668 * Don't fail the drive, just return an IO error.
1671 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1672 unsigned long flags;
1673 spin_lock_irqsave(&conf->device_lock, flags);
1675 spin_unlock_irqrestore(&conf->device_lock, flags);
1677 * if recovery is running, make sure it aborts.
1679 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1681 set_bit(Blocked, &rdev->flags);
1682 set_bit(Faulty, &rdev->flags);
1683 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1685 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1686 "md/raid10:%s: Operation continuing on %d devices.\n",
1687 mdname(mddev), bdevname(rdev->bdev, b),
1688 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1691 static void print_conf(struct r10conf *conf)
1694 struct raid10_info *tmp;
1696 printk(KERN_DEBUG "RAID10 conf printout:\n");
1698 printk(KERN_DEBUG "(!conf)\n");
1701 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1702 conf->geo.raid_disks);
1704 for (i = 0; i < conf->geo.raid_disks; i++) {
1705 char b[BDEVNAME_SIZE];
1706 tmp = conf->mirrors + i;
1708 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1709 i, !test_bit(In_sync, &tmp->rdev->flags),
1710 !test_bit(Faulty, &tmp->rdev->flags),
1711 bdevname(tmp->rdev->bdev,b));
1715 static void close_sync(struct r10conf *conf)
1718 allow_barrier(conf);
1720 mempool_destroy(conf->r10buf_pool);
1721 conf->r10buf_pool = NULL;
1724 static int raid10_spare_active(struct mddev *mddev)
1727 struct r10conf *conf = mddev->private;
1728 struct raid10_info *tmp;
1730 unsigned long flags;
1733 * Find all non-in_sync disks within the RAID10 configuration
1734 * and mark them in_sync
1736 for (i = 0; i < conf->geo.raid_disks; i++) {
1737 tmp = conf->mirrors + i;
1738 if (tmp->replacement
1739 && tmp->replacement->recovery_offset == MaxSector
1740 && !test_bit(Faulty, &tmp->replacement->flags)
1741 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1742 /* Replacement has just become active */
1744 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1747 /* Replaced device not technically faulty,
1748 * but we need to be sure it gets removed
1749 * and never re-added.
1751 set_bit(Faulty, &tmp->rdev->flags);
1752 sysfs_notify_dirent_safe(
1753 tmp->rdev->sysfs_state);
1755 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1756 } else if (tmp->rdev
1757 && !test_bit(Faulty, &tmp->rdev->flags)
1758 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1760 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1763 spin_lock_irqsave(&conf->device_lock, flags);
1764 mddev->degraded -= count;
1765 spin_unlock_irqrestore(&conf->device_lock, flags);
1772 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1774 struct r10conf *conf = mddev->private;
1778 int last = conf->geo.raid_disks - 1;
1779 struct request_queue *q = bdev_get_queue(rdev->bdev);
1781 if (mddev->recovery_cp < MaxSector)
1782 /* only hot-add to in-sync arrays, as recovery is
1783 * very different from resync
1786 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1789 if (rdev->raid_disk >= 0)
1790 first = last = rdev->raid_disk;
1792 if (q->merge_bvec_fn) {
1793 set_bit(Unmerged, &rdev->flags);
1794 mddev->merge_check_needed = 1;
1797 if (rdev->saved_raid_disk >= first &&
1798 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1799 mirror = rdev->saved_raid_disk;
1802 for ( ; mirror <= last ; mirror++) {
1803 struct raid10_info *p = &conf->mirrors[mirror];
1804 if (p->recovery_disabled == mddev->recovery_disabled)
1807 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1808 p->replacement != NULL)
1810 clear_bit(In_sync, &rdev->flags);
1811 set_bit(Replacement, &rdev->flags);
1812 rdev->raid_disk = mirror;
1814 disk_stack_limits(mddev->gendisk, rdev->bdev,
1815 rdev->data_offset << 9);
1817 rcu_assign_pointer(p->replacement, rdev);
1821 disk_stack_limits(mddev->gendisk, rdev->bdev,
1822 rdev->data_offset << 9);
1824 p->head_position = 0;
1825 p->recovery_disabled = mddev->recovery_disabled - 1;
1826 rdev->raid_disk = mirror;
1828 if (rdev->saved_raid_disk != mirror)
1830 rcu_assign_pointer(p->rdev, rdev);
1833 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1834 /* Some requests might not have seen this new
1835 * merge_bvec_fn. We must wait for them to complete
1836 * before merging the device fully.
1837 * First we make sure any code which has tested
1838 * our function has submitted the request, then
1839 * we wait for all outstanding requests to complete.
1841 synchronize_sched();
1842 raise_barrier(conf, 0);
1843 lower_barrier(conf);
1844 clear_bit(Unmerged, &rdev->flags);
1846 md_integrity_add_rdev(rdev, mddev);
1847 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1848 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1854 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1856 struct r10conf *conf = mddev->private;
1858 int number = rdev->raid_disk;
1859 struct md_rdev **rdevp;
1860 struct raid10_info *p = conf->mirrors + number;
1863 if (rdev == p->rdev)
1865 else if (rdev == p->replacement)
1866 rdevp = &p->replacement;
1870 if (test_bit(In_sync, &rdev->flags) ||
1871 atomic_read(&rdev->nr_pending)) {
1875 /* Only remove faulty devices if recovery
1878 if (!test_bit(Faulty, &rdev->flags) &&
1879 mddev->recovery_disabled != p->recovery_disabled &&
1880 (!p->replacement || p->replacement == rdev) &&
1881 number < conf->geo.raid_disks &&
1888 if (atomic_read(&rdev->nr_pending)) {
1889 /* lost the race, try later */
1893 } else if (p->replacement) {
1894 /* We must have just cleared 'rdev' */
1895 p->rdev = p->replacement;
1896 clear_bit(Replacement, &p->replacement->flags);
1897 smp_mb(); /* Make sure other CPUs may see both as identical
1898 * but will never see neither -- if they are careful.
1900 p->replacement = NULL;
1901 clear_bit(WantReplacement, &rdev->flags);
1903 /* We might have just remove the Replacement as faulty
1904 * Clear the flag just in case
1906 clear_bit(WantReplacement, &rdev->flags);
1908 err = md_integrity_register(mddev);
1917 static void end_sync_read(struct bio *bio, int error)
1919 struct r10bio *r10_bio = bio->bi_private;
1920 struct r10conf *conf = r10_bio->mddev->private;
1923 if (bio == r10_bio->master_bio) {
1924 /* this is a reshape read */
1925 d = r10_bio->read_slot; /* really the read dev */
1927 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1929 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1930 set_bit(R10BIO_Uptodate, &r10_bio->state);
1932 /* The write handler will notice the lack of
1933 * R10BIO_Uptodate and record any errors etc
1935 atomic_add(r10_bio->sectors,
1936 &conf->mirrors[d].rdev->corrected_errors);
1938 /* for reconstruct, we always reschedule after a read.
1939 * for resync, only after all reads
1941 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1942 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1943 atomic_dec_and_test(&r10_bio->remaining)) {
1944 /* we have read all the blocks,
1945 * do the comparison in process context in raid10d
1947 reschedule_retry(r10_bio);
1951 static void end_sync_request(struct r10bio *r10_bio)
1953 struct mddev *mddev = r10_bio->mddev;
1955 while (atomic_dec_and_test(&r10_bio->remaining)) {
1956 if (r10_bio->master_bio == NULL) {
1957 /* the primary of several recovery bios */
1958 sector_t s = r10_bio->sectors;
1959 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1960 test_bit(R10BIO_WriteError, &r10_bio->state))
1961 reschedule_retry(r10_bio);
1964 md_done_sync(mddev, s, 1);
1967 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1968 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1969 test_bit(R10BIO_WriteError, &r10_bio->state))
1970 reschedule_retry(r10_bio);
1978 static void end_sync_write(struct bio *bio, int error)
1980 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1981 struct r10bio *r10_bio = bio->bi_private;
1982 struct mddev *mddev = r10_bio->mddev;
1983 struct r10conf *conf = mddev->private;
1989 struct md_rdev *rdev = NULL;
1991 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1993 rdev = conf->mirrors[d].replacement;
1995 rdev = conf->mirrors[d].rdev;
1999 md_error(mddev, rdev);
2001 set_bit(WriteErrorSeen, &rdev->flags);
2002 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2003 set_bit(MD_RECOVERY_NEEDED,
2004 &rdev->mddev->recovery);
2005 set_bit(R10BIO_WriteError, &r10_bio->state);
2007 } else if (is_badblock(rdev,
2008 r10_bio->devs[slot].addr,
2010 &first_bad, &bad_sectors))
2011 set_bit(R10BIO_MadeGood, &r10_bio->state);
2013 rdev_dec_pending(rdev, mddev);
2015 end_sync_request(r10_bio);
2019 * Note: sync and recover and handled very differently for raid10
2020 * This code is for resync.
2021 * For resync, we read through virtual addresses and read all blocks.
2022 * If there is any error, we schedule a write. The lowest numbered
2023 * drive is authoritative.
2024 * However requests come for physical address, so we need to map.
2025 * For every physical address there are raid_disks/copies virtual addresses,
2026 * which is always are least one, but is not necessarly an integer.
2027 * This means that a physical address can span multiple chunks, so we may
2028 * have to submit multiple io requests for a single sync request.
2031 * We check if all blocks are in-sync and only write to blocks that
2034 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2036 struct r10conf *conf = mddev->private;
2038 struct bio *tbio, *fbio;
2041 atomic_set(&r10_bio->remaining, 1);
2043 /* find the first device with a block */
2044 for (i=0; i<conf->copies; i++)
2045 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2048 if (i == conf->copies)
2052 fbio = r10_bio->devs[i].bio;
2054 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2055 /* now find blocks with errors */
2056 for (i=0 ; i < conf->copies ; i++) {
2059 tbio = r10_bio->devs[i].bio;
2061 if (tbio->bi_end_io != end_sync_read)
2065 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2066 /* We know that the bi_io_vec layout is the same for
2067 * both 'first' and 'i', so we just compare them.
2068 * All vec entries are PAGE_SIZE;
2070 for (j = 0; j < vcnt; j++)
2071 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2072 page_address(tbio->bi_io_vec[j].bv_page),
2073 fbio->bi_io_vec[j].bv_len))
2077 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2078 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2079 /* Don't fix anything. */
2082 /* Ok, we need to write this bio, either to correct an
2083 * inconsistency or to correct an unreadable block.
2084 * First we need to fixup bv_offset, bv_len and
2085 * bi_vecs, as the read request might have corrupted these
2087 tbio->bi_vcnt = vcnt;
2088 tbio->bi_size = r10_bio->sectors << 9;
2090 tbio->bi_phys_segments = 0;
2091 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
2092 tbio->bi_flags |= 1 << BIO_UPTODATE;
2093 tbio->bi_next = NULL;
2094 tbio->bi_rw = WRITE;
2095 tbio->bi_private = r10_bio;
2096 tbio->bi_sector = r10_bio->devs[i].addr;
2098 for (j=0; j < vcnt ; j++) {
2099 tbio->bi_io_vec[j].bv_offset = 0;
2100 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2102 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2103 page_address(fbio->bi_io_vec[j].bv_page),
2106 tbio->bi_end_io = end_sync_write;
2108 d = r10_bio->devs[i].devnum;
2109 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2110 atomic_inc(&r10_bio->remaining);
2111 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
2113 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2114 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2115 generic_make_request(tbio);
2118 /* Now write out to any replacement devices
2121 for (i = 0; i < conf->copies; i++) {
2124 tbio = r10_bio->devs[i].repl_bio;
2125 if (!tbio || !tbio->bi_end_io)
2127 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2128 && r10_bio->devs[i].bio != fbio)
2129 for (j = 0; j < vcnt; j++)
2130 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2131 page_address(fbio->bi_io_vec[j].bv_page),
2133 d = r10_bio->devs[i].devnum;
2134 atomic_inc(&r10_bio->remaining);
2135 md_sync_acct(conf->mirrors[d].replacement->bdev,
2136 tbio->bi_size >> 9);
2137 generic_make_request(tbio);
2141 if (atomic_dec_and_test(&r10_bio->remaining)) {
2142 md_done_sync(mddev, r10_bio->sectors, 1);
2148 * Now for the recovery code.
2149 * Recovery happens across physical sectors.
2150 * We recover all non-is_sync drives by finding the virtual address of
2151 * each, and then choose a working drive that also has that virt address.
2152 * There is a separate r10_bio for each non-in_sync drive.
2153 * Only the first two slots are in use. The first for reading,
2154 * The second for writing.
2157 static void fix_recovery_read_error(struct r10bio *r10_bio)
2159 /* We got a read error during recovery.
2160 * We repeat the read in smaller page-sized sections.
2161 * If a read succeeds, write it to the new device or record
2162 * a bad block if we cannot.
2163 * If a read fails, record a bad block on both old and
2166 struct mddev *mddev = r10_bio->mddev;
2167 struct r10conf *conf = mddev->private;
2168 struct bio *bio = r10_bio->devs[0].bio;
2170 int sectors = r10_bio->sectors;
2172 int dr = r10_bio->devs[0].devnum;
2173 int dw = r10_bio->devs[1].devnum;
2177 struct md_rdev *rdev;
2181 if (s > (PAGE_SIZE>>9))
2184 rdev = conf->mirrors[dr].rdev;
2185 addr = r10_bio->devs[0].addr + sect,
2186 ok = sync_page_io(rdev,
2189 bio->bi_io_vec[idx].bv_page,
2192 rdev = conf->mirrors[dw].rdev;
2193 addr = r10_bio->devs[1].addr + sect;
2194 ok = sync_page_io(rdev,
2197 bio->bi_io_vec[idx].bv_page,
2200 set_bit(WriteErrorSeen, &rdev->flags);
2201 if (!test_and_set_bit(WantReplacement,
2203 set_bit(MD_RECOVERY_NEEDED,
2204 &rdev->mddev->recovery);
2208 /* We don't worry if we cannot set a bad block -
2209 * it really is bad so there is no loss in not
2212 rdev_set_badblocks(rdev, addr, s, 0);
2214 if (rdev != conf->mirrors[dw].rdev) {
2215 /* need bad block on destination too */
2216 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2217 addr = r10_bio->devs[1].addr + sect;
2218 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2220 /* just abort the recovery */
2222 "md/raid10:%s: recovery aborted"
2223 " due to read error\n",
2226 conf->mirrors[dw].recovery_disabled
2227 = mddev->recovery_disabled;
2228 set_bit(MD_RECOVERY_INTR,
2241 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2243 struct r10conf *conf = mddev->private;
2245 struct bio *wbio, *wbio2;
2247 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2248 fix_recovery_read_error(r10_bio);
2249 end_sync_request(r10_bio);
2254 * share the pages with the first bio
2255 * and submit the write request
2257 d = r10_bio->devs[1].devnum;
2258 wbio = r10_bio->devs[1].bio;
2259 wbio2 = r10_bio->devs[1].repl_bio;
2260 if (wbio->bi_end_io) {
2261 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2262 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2263 generic_make_request(wbio);
2265 if (wbio2 && wbio2->bi_end_io) {
2266 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2267 md_sync_acct(conf->mirrors[d].replacement->bdev,
2268 wbio2->bi_size >> 9);
2269 generic_make_request(wbio2);
2275 * Used by fix_read_error() to decay the per rdev read_errors.
2276 * We halve the read error count for every hour that has elapsed
2277 * since the last recorded read error.
2280 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2282 struct timespec cur_time_mon;
2283 unsigned long hours_since_last;
2284 unsigned int read_errors = atomic_read(&rdev->read_errors);
2286 ktime_get_ts(&cur_time_mon);
2288 if (rdev->last_read_error.tv_sec == 0 &&
2289 rdev->last_read_error.tv_nsec == 0) {
2290 /* first time we've seen a read error */
2291 rdev->last_read_error = cur_time_mon;
2295 hours_since_last = (cur_time_mon.tv_sec -
2296 rdev->last_read_error.tv_sec) / 3600;
2298 rdev->last_read_error = cur_time_mon;
2301 * if hours_since_last is > the number of bits in read_errors
2302 * just set read errors to 0. We do this to avoid
2303 * overflowing the shift of read_errors by hours_since_last.
2305 if (hours_since_last >= 8 * sizeof(read_errors))
2306 atomic_set(&rdev->read_errors, 0);
2308 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2311 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2312 int sectors, struct page *page, int rw)
2317 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2318 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2320 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2324 set_bit(WriteErrorSeen, &rdev->flags);
2325 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2326 set_bit(MD_RECOVERY_NEEDED,
2327 &rdev->mddev->recovery);
2329 /* need to record an error - either for the block or the device */
2330 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2331 md_error(rdev->mddev, rdev);
2336 * This is a kernel thread which:
2338 * 1. Retries failed read operations on working mirrors.
2339 * 2. Updates the raid superblock when problems encounter.
2340 * 3. Performs writes following reads for array synchronising.
2343 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2345 int sect = 0; /* Offset from r10_bio->sector */
2346 int sectors = r10_bio->sectors;
2347 struct md_rdev*rdev;
2348 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2349 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2351 /* still own a reference to this rdev, so it cannot
2352 * have been cleared recently.
2354 rdev = conf->mirrors[d].rdev;
2356 if (test_bit(Faulty, &rdev->flags))
2357 /* drive has already been failed, just ignore any
2358 more fix_read_error() attempts */
2361 check_decay_read_errors(mddev, rdev);
2362 atomic_inc(&rdev->read_errors);
2363 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2364 char b[BDEVNAME_SIZE];
2365 bdevname(rdev->bdev, b);
2368 "md/raid10:%s: %s: Raid device exceeded "
2369 "read_error threshold [cur %d:max %d]\n",
2371 atomic_read(&rdev->read_errors), max_read_errors);
2373 "md/raid10:%s: %s: Failing raid device\n",
2375 md_error(mddev, conf->mirrors[d].rdev);
2376 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2382 int sl = r10_bio->read_slot;
2386 if (s > (PAGE_SIZE>>9))
2394 d = r10_bio->devs[sl].devnum;
2395 rdev = rcu_dereference(conf->mirrors[d].rdev);
2397 !test_bit(Unmerged, &rdev->flags) &&
2398 test_bit(In_sync, &rdev->flags) &&
2399 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2400 &first_bad, &bad_sectors) == 0) {
2401 atomic_inc(&rdev->nr_pending);
2403 success = sync_page_io(rdev,
2404 r10_bio->devs[sl].addr +
2407 conf->tmppage, READ, false);
2408 rdev_dec_pending(rdev, mddev);
2414 if (sl == conf->copies)
2416 } while (!success && sl != r10_bio->read_slot);
2420 /* Cannot read from anywhere, just mark the block
2421 * as bad on the first device to discourage future
2424 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2425 rdev = conf->mirrors[dn].rdev;
2427 if (!rdev_set_badblocks(
2429 r10_bio->devs[r10_bio->read_slot].addr
2432 md_error(mddev, rdev);
2433 r10_bio->devs[r10_bio->read_slot].bio
2440 /* write it back and re-read */
2442 while (sl != r10_bio->read_slot) {
2443 char b[BDEVNAME_SIZE];
2448 d = r10_bio->devs[sl].devnum;
2449 rdev = rcu_dereference(conf->mirrors[d].rdev);
2451 test_bit(Unmerged, &rdev->flags) ||
2452 !test_bit(In_sync, &rdev->flags))
2455 atomic_inc(&rdev->nr_pending);
2457 if (r10_sync_page_io(rdev,
2458 r10_bio->devs[sl].addr +
2460 s, conf->tmppage, WRITE)
2462 /* Well, this device is dead */
2464 "md/raid10:%s: read correction "
2466 " (%d sectors at %llu on %s)\n",
2468 (unsigned long long)(
2470 choose_data_offset(r10_bio,
2472 bdevname(rdev->bdev, b));
2473 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2476 bdevname(rdev->bdev, b));
2478 rdev_dec_pending(rdev, mddev);
2482 while (sl != r10_bio->read_slot) {
2483 char b[BDEVNAME_SIZE];
2488 d = r10_bio->devs[sl].devnum;
2489 rdev = rcu_dereference(conf->mirrors[d].rdev);
2491 !test_bit(In_sync, &rdev->flags))
2494 atomic_inc(&rdev->nr_pending);
2496 switch (r10_sync_page_io(rdev,
2497 r10_bio->devs[sl].addr +
2502 /* Well, this device is dead */
2504 "md/raid10:%s: unable to read back "
2506 " (%d sectors at %llu on %s)\n",
2508 (unsigned long long)(
2510 choose_data_offset(r10_bio, rdev)),
2511 bdevname(rdev->bdev, b));
2512 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2515 bdevname(rdev->bdev, b));
2519 "md/raid10:%s: read error corrected"
2520 " (%d sectors at %llu on %s)\n",
2522 (unsigned long long)(
2524 choose_data_offset(r10_bio, rdev)),
2525 bdevname(rdev->bdev, b));
2526 atomic_add(s, &rdev->corrected_errors);
2529 rdev_dec_pending(rdev, mddev);
2539 static void bi_complete(struct bio *bio, int error)
2541 complete((struct completion *)bio->bi_private);
2544 static int submit_bio_wait(int rw, struct bio *bio)
2546 struct completion event;
2549 init_completion(&event);
2550 bio->bi_private = &event;
2551 bio->bi_end_io = bi_complete;
2552 submit_bio(rw, bio);
2553 wait_for_completion(&event);
2555 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2558 static int narrow_write_error(struct r10bio *r10_bio, int i)
2560 struct bio *bio = r10_bio->master_bio;
2561 struct mddev *mddev = r10_bio->mddev;
2562 struct r10conf *conf = mddev->private;
2563 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2564 /* bio has the data to be written to slot 'i' where
2565 * we just recently had a write error.
2566 * We repeatedly clone the bio and trim down to one block,
2567 * then try the write. Where the write fails we record
2569 * It is conceivable that the bio doesn't exactly align with
2570 * blocks. We must handle this.
2572 * We currently own a reference to the rdev.
2578 int sect_to_write = r10_bio->sectors;
2581 if (rdev->badblocks.shift < 0)
2584 block_sectors = 1 << rdev->badblocks.shift;
2585 sector = r10_bio->sector;
2586 sectors = ((r10_bio->sector + block_sectors)
2587 & ~(sector_t)(block_sectors - 1))
2590 while (sect_to_write) {
2592 if (sectors > sect_to_write)
2593 sectors = sect_to_write;
2594 /* Write at 'sector' for 'sectors' */
2595 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2596 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2597 wbio->bi_sector = (r10_bio->devs[i].addr+
2598 choose_data_offset(r10_bio, rdev) +
2599 (sector - r10_bio->sector));
2600 wbio->bi_bdev = rdev->bdev;
2601 if (submit_bio_wait(WRITE, wbio) == 0)
2603 ok = rdev_set_badblocks(rdev, sector,
2608 sect_to_write -= sectors;
2610 sectors = block_sectors;
2615 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2617 int slot = r10_bio->read_slot;
2619 struct r10conf *conf = mddev->private;
2620 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2621 char b[BDEVNAME_SIZE];
2622 unsigned long do_sync;
2625 /* we got a read error. Maybe the drive is bad. Maybe just
2626 * the block and we can fix it.
2627 * We freeze all other IO, and try reading the block from
2628 * other devices. When we find one, we re-write
2629 * and check it that fixes the read error.
2630 * This is all done synchronously while the array is
2633 bio = r10_bio->devs[slot].bio;
2634 bdevname(bio->bi_bdev, b);
2636 r10_bio->devs[slot].bio = NULL;
2638 if (mddev->ro == 0) {
2640 fix_read_error(conf, mddev, r10_bio);
2641 unfreeze_array(conf);
2643 r10_bio->devs[slot].bio = IO_BLOCKED;
2645 rdev_dec_pending(rdev, mddev);
2648 rdev = read_balance(conf, r10_bio, &max_sectors);
2650 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2651 " read error for block %llu\n",
2653 (unsigned long long)r10_bio->sector);
2654 raid_end_bio_io(r10_bio);
2658 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2659 slot = r10_bio->read_slot;
2662 "md/raid10:%s: %s: redirecting "
2663 "sector %llu to another mirror\n",
2665 bdevname(rdev->bdev, b),
2666 (unsigned long long)r10_bio->sector);
2667 bio = bio_clone_mddev(r10_bio->master_bio,
2670 r10_bio->sector - bio->bi_sector,
2672 r10_bio->devs[slot].bio = bio;
2673 r10_bio->devs[slot].rdev = rdev;
2674 bio->bi_sector = r10_bio->devs[slot].addr
2675 + choose_data_offset(r10_bio, rdev);
2676 bio->bi_bdev = rdev->bdev;
2677 bio->bi_rw = READ | do_sync;
2678 bio->bi_private = r10_bio;
2679 bio->bi_end_io = raid10_end_read_request;
2680 if (max_sectors < r10_bio->sectors) {
2681 /* Drat - have to split this up more */
2682 struct bio *mbio = r10_bio->master_bio;
2683 int sectors_handled =
2684 r10_bio->sector + max_sectors
2686 r10_bio->sectors = max_sectors;
2687 spin_lock_irq(&conf->device_lock);
2688 if (mbio->bi_phys_segments == 0)
2689 mbio->bi_phys_segments = 2;
2691 mbio->bi_phys_segments++;
2692 spin_unlock_irq(&conf->device_lock);
2693 generic_make_request(bio);
2695 r10_bio = mempool_alloc(conf->r10bio_pool,
2697 r10_bio->master_bio = mbio;
2698 r10_bio->sectors = (mbio->bi_size >> 9)
2701 set_bit(R10BIO_ReadError,
2703 r10_bio->mddev = mddev;
2704 r10_bio->sector = mbio->bi_sector
2709 generic_make_request(bio);
2712 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2714 /* Some sort of write request has finished and it
2715 * succeeded in writing where we thought there was a
2716 * bad block. So forget the bad block.
2717 * Or possibly if failed and we need to record
2721 struct md_rdev *rdev;
2723 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2724 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2725 for (m = 0; m < conf->copies; m++) {
2726 int dev = r10_bio->devs[m].devnum;
2727 rdev = conf->mirrors[dev].rdev;
2728 if (r10_bio->devs[m].bio == NULL)
2730 if (test_bit(BIO_UPTODATE,
2731 &r10_bio->devs[m].bio->bi_flags)) {
2732 rdev_clear_badblocks(
2734 r10_bio->devs[m].addr,
2735 r10_bio->sectors, 0);
2737 if (!rdev_set_badblocks(
2739 r10_bio->devs[m].addr,
2740 r10_bio->sectors, 0))
2741 md_error(conf->mddev, rdev);
2743 rdev = conf->mirrors[dev].replacement;
2744 if (r10_bio->devs[m].repl_bio == NULL)
2746 if (test_bit(BIO_UPTODATE,
2747 &r10_bio->devs[m].repl_bio->bi_flags)) {
2748 rdev_clear_badblocks(
2750 r10_bio->devs[m].addr,
2751 r10_bio->sectors, 0);
2753 if (!rdev_set_badblocks(
2755 r10_bio->devs[m].addr,
2756 r10_bio->sectors, 0))
2757 md_error(conf->mddev, rdev);
2762 for (m = 0; m < conf->copies; m++) {
2763 int dev = r10_bio->devs[m].devnum;
2764 struct bio *bio = r10_bio->devs[m].bio;
2765 rdev = conf->mirrors[dev].rdev;
2766 if (bio == IO_MADE_GOOD) {
2767 rdev_clear_badblocks(
2769 r10_bio->devs[m].addr,
2770 r10_bio->sectors, 0);
2771 rdev_dec_pending(rdev, conf->mddev);
2772 } else if (bio != NULL &&
2773 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2774 if (!narrow_write_error(r10_bio, m)) {
2775 md_error(conf->mddev, rdev);
2776 set_bit(R10BIO_Degraded,
2779 rdev_dec_pending(rdev, conf->mddev);
2781 bio = r10_bio->devs[m].repl_bio;
2782 rdev = conf->mirrors[dev].replacement;
2783 if (rdev && bio == IO_MADE_GOOD) {
2784 rdev_clear_badblocks(
2786 r10_bio->devs[m].addr,
2787 r10_bio->sectors, 0);
2788 rdev_dec_pending(rdev, conf->mddev);
2791 if (test_bit(R10BIO_WriteError,
2793 close_write(r10_bio);
2794 raid_end_bio_io(r10_bio);
2798 static void raid10d(struct md_thread *thread)
2800 struct mddev *mddev = thread->mddev;
2801 struct r10bio *r10_bio;
2802 unsigned long flags;
2803 struct r10conf *conf = mddev->private;
2804 struct list_head *head = &conf->retry_list;
2805 struct blk_plug plug;
2807 md_check_recovery(mddev);
2809 blk_start_plug(&plug);
2812 flush_pending_writes(conf);
2814 spin_lock_irqsave(&conf->device_lock, flags);
2815 if (list_empty(head)) {
2816 spin_unlock_irqrestore(&conf->device_lock, flags);
2819 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2820 list_del(head->prev);
2822 spin_unlock_irqrestore(&conf->device_lock, flags);
2824 mddev = r10_bio->mddev;
2825 conf = mddev->private;
2826 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2827 test_bit(R10BIO_WriteError, &r10_bio->state))
2828 handle_write_completed(conf, r10_bio);
2829 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2830 reshape_request_write(mddev, r10_bio);
2831 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2832 sync_request_write(mddev, r10_bio);
2833 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2834 recovery_request_write(mddev, r10_bio);
2835 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2836 handle_read_error(mddev, r10_bio);
2838 /* just a partial read to be scheduled from a
2841 int slot = r10_bio->read_slot;
2842 generic_make_request(r10_bio->devs[slot].bio);
2846 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2847 md_check_recovery(mddev);
2849 blk_finish_plug(&plug);
2853 static int init_resync(struct r10conf *conf)
2858 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2859 BUG_ON(conf->r10buf_pool);
2860 conf->have_replacement = 0;
2861 for (i = 0; i < conf->geo.raid_disks; i++)
2862 if (conf->mirrors[i].replacement)
2863 conf->have_replacement = 1;
2864 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2865 if (!conf->r10buf_pool)
2867 conf->next_resync = 0;
2872 * perform a "sync" on one "block"
2874 * We need to make sure that no normal I/O request - particularly write
2875 * requests - conflict with active sync requests.
2877 * This is achieved by tracking pending requests and a 'barrier' concept
2878 * that can be installed to exclude normal IO requests.
2880 * Resync and recovery are handled very differently.
2881 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2883 * For resync, we iterate over virtual addresses, read all copies,
2884 * and update if there are differences. If only one copy is live,
2886 * For recovery, we iterate over physical addresses, read a good
2887 * value for each non-in_sync drive, and over-write.
2889 * So, for recovery we may have several outstanding complex requests for a
2890 * given address, one for each out-of-sync device. We model this by allocating
2891 * a number of r10_bio structures, one for each out-of-sync device.
2892 * As we setup these structures, we collect all bio's together into a list
2893 * which we then process collectively to add pages, and then process again
2894 * to pass to generic_make_request.
2896 * The r10_bio structures are linked using a borrowed master_bio pointer.
2897 * This link is counted in ->remaining. When the r10_bio that points to NULL
2898 * has its remaining count decremented to 0, the whole complex operation
2903 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2904 int *skipped, int go_faster)
2906 struct r10conf *conf = mddev->private;
2907 struct r10bio *r10_bio;
2908 struct bio *biolist = NULL, *bio;
2909 sector_t max_sector, nr_sectors;
2912 sector_t sync_blocks;
2913 sector_t sectors_skipped = 0;
2914 int chunks_skipped = 0;
2915 sector_t chunk_mask = conf->geo.chunk_mask;
2917 if (!conf->r10buf_pool)
2918 if (init_resync(conf))
2922 * Allow skipping a full rebuild for incremental assembly
2923 * of a clean array, like RAID1 does.
2925 if (mddev->bitmap == NULL &&
2926 mddev->recovery_cp == MaxSector &&
2927 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2928 conf->fullsync == 0) {
2930 max_sector = mddev->dev_sectors;
2931 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2932 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2933 max_sector = mddev->resync_max_sectors;
2934 return max_sector - sector_nr;
2938 max_sector = mddev->dev_sectors;
2939 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2940 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2941 max_sector = mddev->resync_max_sectors;
2942 if (sector_nr >= max_sector) {
2943 /* If we aborted, we need to abort the
2944 * sync on the 'current' bitmap chucks (there can
2945 * be several when recovering multiple devices).
2946 * as we may have started syncing it but not finished.
2947 * We can find the current address in
2948 * mddev->curr_resync, but for recovery,
2949 * we need to convert that to several
2950 * virtual addresses.
2952 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2957 if (mddev->curr_resync < max_sector) { /* aborted */
2958 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2959 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2961 else for (i = 0; i < conf->geo.raid_disks; i++) {
2963 raid10_find_virt(conf, mddev->curr_resync, i);
2964 bitmap_end_sync(mddev->bitmap, sect,
2968 /* completed sync */
2969 if ((!mddev->bitmap || conf->fullsync)
2970 && conf->have_replacement
2971 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2972 /* Completed a full sync so the replacements
2973 * are now fully recovered.
2975 for (i = 0; i < conf->geo.raid_disks; i++)
2976 if (conf->mirrors[i].replacement)
2977 conf->mirrors[i].replacement
2983 bitmap_close_sync(mddev->bitmap);
2986 return sectors_skipped;
2989 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2990 return reshape_request(mddev, sector_nr, skipped);
2992 if (chunks_skipped >= conf->geo.raid_disks) {
2993 /* if there has been nothing to do on any drive,
2994 * then there is nothing to do at all..
2997 return (max_sector - sector_nr) + sectors_skipped;
3000 if (max_sector > mddev->resync_max)
3001 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3003 /* make sure whole request will fit in a chunk - if chunks
3006 if (conf->geo.near_copies < conf->geo.raid_disks &&
3007 max_sector > (sector_nr | chunk_mask))
3008 max_sector = (sector_nr | chunk_mask) + 1;
3010 * If there is non-resync activity waiting for us then
3011 * put in a delay to throttle resync.
3013 if (!go_faster && conf->nr_waiting)
3014 msleep_interruptible(1000);
3016 /* Again, very different code for resync and recovery.
3017 * Both must result in an r10bio with a list of bios that
3018 * have bi_end_io, bi_sector, bi_bdev set,
3019 * and bi_private set to the r10bio.
3020 * For recovery, we may actually create several r10bios
3021 * with 2 bios in each, that correspond to the bios in the main one.
3022 * In this case, the subordinate r10bios link back through a
3023 * borrowed master_bio pointer, and the counter in the master
3024 * includes a ref from each subordinate.
3026 /* First, we decide what to do and set ->bi_end_io
3027 * To end_sync_read if we want to read, and
3028 * end_sync_write if we will want to write.
3031 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3032 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3033 /* recovery... the complicated one */
3037 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3043 struct raid10_info *mirror = &conf->mirrors[i];
3045 if ((mirror->rdev == NULL ||
3046 test_bit(In_sync, &mirror->rdev->flags))
3048 (mirror->replacement == NULL ||
3050 &mirror->replacement->flags)))
3054 /* want to reconstruct this device */
3056 sect = raid10_find_virt(conf, sector_nr, i);
3057 if (sect >= mddev->resync_max_sectors) {
3058 /* last stripe is not complete - don't
3059 * try to recover this sector.
3063 /* Unless we are doing a full sync, or a replacement
3064 * we only need to recover the block if it is set in
3067 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3069 if (sync_blocks < max_sync)
3070 max_sync = sync_blocks;
3072 mirror->replacement == NULL &&
3074 /* yep, skip the sync_blocks here, but don't assume
3075 * that there will never be anything to do here
3077 chunks_skipped = -1;
3081 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3082 raise_barrier(conf, rb2 != NULL);
3083 atomic_set(&r10_bio->remaining, 0);
3085 r10_bio->master_bio = (struct bio*)rb2;
3087 atomic_inc(&rb2->remaining);
3088 r10_bio->mddev = mddev;
3089 set_bit(R10BIO_IsRecover, &r10_bio->state);
3090 r10_bio->sector = sect;
3092 raid10_find_phys(conf, r10_bio);
3094 /* Need to check if the array will still be
3097 for (j = 0; j < conf->geo.raid_disks; j++)
3098 if (conf->mirrors[j].rdev == NULL ||
3099 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3104 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3105 &sync_blocks, still_degraded);
3108 for (j=0; j<conf->copies;j++) {
3110 int d = r10_bio->devs[j].devnum;
3111 sector_t from_addr, to_addr;
3112 struct md_rdev *rdev;
3113 sector_t sector, first_bad;
3115 if (!conf->mirrors[d].rdev ||
3116 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3118 /* This is where we read from */
3120 rdev = conf->mirrors[d].rdev;
3121 sector = r10_bio->devs[j].addr;
3123 if (is_badblock(rdev, sector, max_sync,
3124 &first_bad, &bad_sectors)) {
3125 if (first_bad > sector)
3126 max_sync = first_bad - sector;
3128 bad_sectors -= (sector
3130 if (max_sync > bad_sectors)
3131 max_sync = bad_sectors;
3135 bio = r10_bio->devs[0].bio;
3136 bio->bi_next = biolist;
3138 bio->bi_private = r10_bio;
3139 bio->bi_end_io = end_sync_read;
3141 from_addr = r10_bio->devs[j].addr;
3142 bio->bi_sector = from_addr + rdev->data_offset;
3143 bio->bi_bdev = rdev->bdev;
3144 atomic_inc(&rdev->nr_pending);
3145 /* and we write to 'i' (if not in_sync) */
3147 for (k=0; k<conf->copies; k++)
3148 if (r10_bio->devs[k].devnum == i)
3150 BUG_ON(k == conf->copies);
3151 to_addr = r10_bio->devs[k].addr;
3152 r10_bio->devs[0].devnum = d;
3153 r10_bio->devs[0].addr = from_addr;
3154 r10_bio->devs[1].devnum = i;
3155 r10_bio->devs[1].addr = to_addr;
3157 rdev = mirror->rdev;
3158 if (!test_bit(In_sync, &rdev->flags)) {
3159 bio = r10_bio->devs[1].bio;
3160 bio->bi_next = biolist;
3162 bio->bi_private = r10_bio;
3163 bio->bi_end_io = end_sync_write;
3165 bio->bi_sector = to_addr
3166 + rdev->data_offset;
3167 bio->bi_bdev = rdev->bdev;
3168 atomic_inc(&r10_bio->remaining);
3170 r10_bio->devs[1].bio->bi_end_io = NULL;
3172 /* and maybe write to replacement */
3173 bio = r10_bio->devs[1].repl_bio;
3175 bio->bi_end_io = NULL;
3176 rdev = mirror->replacement;
3177 /* Note: if rdev != NULL, then bio
3178 * cannot be NULL as r10buf_pool_alloc will
3179 * have allocated it.
3180 * So the second test here is pointless.
3181 * But it keeps semantic-checkers happy, and
3182 * this comment keeps human reviewers
3185 if (rdev == NULL || bio == NULL ||
3186 test_bit(Faulty, &rdev->flags))
3188 bio->bi_next = biolist;
3190 bio->bi_private = r10_bio;
3191 bio->bi_end_io = end_sync_write;
3193 bio->bi_sector = to_addr + rdev->data_offset;
3194 bio->bi_bdev = rdev->bdev;
3195 atomic_inc(&r10_bio->remaining);
3198 if (j == conf->copies) {
3199 /* Cannot recover, so abort the recovery or
3200 * record a bad block */
3203 atomic_dec(&rb2->remaining);
3206 /* problem is that there are bad blocks
3207 * on other device(s)
3210 for (k = 0; k < conf->copies; k++)
3211 if (r10_bio->devs[k].devnum == i)
3213 if (!test_bit(In_sync,
3214 &mirror->rdev->flags)
3215 && !rdev_set_badblocks(
3217 r10_bio->devs[k].addr,
3220 if (mirror->replacement &&
3221 !rdev_set_badblocks(
3222 mirror->replacement,
3223 r10_bio->devs[k].addr,
3228 if (!test_and_set_bit(MD_RECOVERY_INTR,
3230 printk(KERN_INFO "md/raid10:%s: insufficient "
3231 "working devices for recovery.\n",
3233 mirror->recovery_disabled
3234 = mddev->recovery_disabled;
3239 if (biolist == NULL) {
3241 struct r10bio *rb2 = r10_bio;
3242 r10_bio = (struct r10bio*) rb2->master_bio;
3243 rb2->master_bio = NULL;
3249 /* resync. Schedule a read for every block at this virt offset */
3252 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3254 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3255 &sync_blocks, mddev->degraded) &&
3256 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3257 &mddev->recovery)) {
3258 /* We can skip this block */
3260 return sync_blocks + sectors_skipped;
3262 if (sync_blocks < max_sync)
3263 max_sync = sync_blocks;
3264 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3266 r10_bio->mddev = mddev;
3267 atomic_set(&r10_bio->remaining, 0);
3268 raise_barrier(conf, 0);
3269 conf->next_resync = sector_nr;
3271 r10_bio->master_bio = NULL;
3272 r10_bio->sector = sector_nr;
3273 set_bit(R10BIO_IsSync, &r10_bio->state);
3274 raid10_find_phys(conf, r10_bio);
3275 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3277 for (i = 0; i < conf->copies; i++) {
3278 int d = r10_bio->devs[i].devnum;
3279 sector_t first_bad, sector;
3282 if (r10_bio->devs[i].repl_bio)
3283 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3285 bio = r10_bio->devs[i].bio;
3286 bio->bi_end_io = NULL;
3287 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3288 if (conf->mirrors[d].rdev == NULL ||
3289 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3291 sector = r10_bio->devs[i].addr;
3292 if (is_badblock(conf->mirrors[d].rdev,
3294 &first_bad, &bad_sectors)) {
3295 if (first_bad > sector)
3296 max_sync = first_bad - sector;
3298 bad_sectors -= (sector - first_bad);
3299 if (max_sync > bad_sectors)
3300 max_sync = bad_sectors;
3304 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3305 atomic_inc(&r10_bio->remaining);
3306 bio->bi_next = biolist;
3308 bio->bi_private = r10_bio;
3309 bio->bi_end_io = end_sync_read;
3311 bio->bi_sector = sector +
3312 conf->mirrors[d].rdev->data_offset;
3313 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3316 if (conf->mirrors[d].replacement == NULL ||
3318 &conf->mirrors[d].replacement->flags))
3321 /* Need to set up for writing to the replacement */
3322 bio = r10_bio->devs[i].repl_bio;
3323 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3325 sector = r10_bio->devs[i].addr;
3326 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3327 bio->bi_next = biolist;
3329 bio->bi_private = r10_bio;
3330 bio->bi_end_io = end_sync_write;
3332 bio->bi_sector = sector +
3333 conf->mirrors[d].replacement->data_offset;
3334 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3339 for (i=0; i<conf->copies; i++) {
3340 int d = r10_bio->devs[i].devnum;
3341 if (r10_bio->devs[i].bio->bi_end_io)
3342 rdev_dec_pending(conf->mirrors[d].rdev,
3344 if (r10_bio->devs[i].repl_bio &&
3345 r10_bio->devs[i].repl_bio->bi_end_io)
3347 conf->mirrors[d].replacement,
3356 for (bio = biolist; bio ; bio=bio->bi_next) {
3358 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3360 bio->bi_flags |= 1 << BIO_UPTODATE;
3363 bio->bi_phys_segments = 0;
3368 if (sector_nr + max_sync < max_sector)
3369 max_sector = sector_nr + max_sync;
3372 int len = PAGE_SIZE;
3373 if (sector_nr + (len>>9) > max_sector)
3374 len = (max_sector - sector_nr) << 9;
3377 for (bio= biolist ; bio ; bio=bio->bi_next) {
3379 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3380 if (bio_add_page(bio, page, len, 0))
3384 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3385 for (bio2 = biolist;
3386 bio2 && bio2 != bio;
3387 bio2 = bio2->bi_next) {
3388 /* remove last page from this bio */
3390 bio2->bi_size -= len;
3391 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3395 nr_sectors += len>>9;
3396 sector_nr += len>>9;
3397 } while (biolist->bi_vcnt < RESYNC_PAGES);
3399 r10_bio->sectors = nr_sectors;
3403 biolist = biolist->bi_next;
3405 bio->bi_next = NULL;
3406 r10_bio = bio->bi_private;
3407 r10_bio->sectors = nr_sectors;
3409 if (bio->bi_end_io == end_sync_read) {
3410 md_sync_acct(bio->bi_bdev, nr_sectors);
3411 generic_make_request(bio);
3415 if (sectors_skipped)
3416 /* pretend they weren't skipped, it makes
3417 * no important difference in this case
3419 md_done_sync(mddev, sectors_skipped, 1);
3421 return sectors_skipped + nr_sectors;
3423 /* There is nowhere to write, so all non-sync
3424 * drives must be failed or in resync, all drives
3425 * have a bad block, so try the next chunk...
3427 if (sector_nr + max_sync < max_sector)
3428 max_sector = sector_nr + max_sync;
3430 sectors_skipped += (max_sector - sector_nr);
3432 sector_nr = max_sector;
3437 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3440 struct r10conf *conf = mddev->private;
3443 raid_disks = min(conf->geo.raid_disks,
3444 conf->prev.raid_disks);
3446 sectors = conf->dev_sectors;
3448 size = sectors >> conf->geo.chunk_shift;
3449 sector_div(size, conf->geo.far_copies);
3450 size = size * raid_disks;
3451 sector_div(size, conf->geo.near_copies);
3453 return size << conf->geo.chunk_shift;
3456 static void calc_sectors(struct r10conf *conf, sector_t size)
3458 /* Calculate the number of sectors-per-device that will
3459 * actually be used, and set conf->dev_sectors and
3463 size = size >> conf->geo.chunk_shift;
3464 sector_div(size, conf->geo.far_copies);
3465 size = size * conf->geo.raid_disks;
3466 sector_div(size, conf->geo.near_copies);
3467 /* 'size' is now the number of chunks in the array */
3468 /* calculate "used chunks per device" */
3469 size = size * conf->copies;
3471 /* We need to round up when dividing by raid_disks to
3472 * get the stride size.
3474 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3476 conf->dev_sectors = size << conf->geo.chunk_shift;
3478 if (conf->geo.far_offset)
3479 conf->geo.stride = 1 << conf->geo.chunk_shift;
3481 sector_div(size, conf->geo.far_copies);
3482 conf->geo.stride = size << conf->geo.chunk_shift;
3486 enum geo_type {geo_new, geo_old, geo_start};
3487 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3490 int layout, chunk, disks;
3493 layout = mddev->layout;
3494 chunk = mddev->chunk_sectors;
3495 disks = mddev->raid_disks - mddev->delta_disks;
3498 layout = mddev->new_layout;
3499 chunk = mddev->new_chunk_sectors;
3500 disks = mddev->raid_disks;
3502 default: /* avoid 'may be unused' warnings */
3503 case geo_start: /* new when starting reshape - raid_disks not
3505 layout = mddev->new_layout;
3506 chunk = mddev->new_chunk_sectors;
3507 disks = mddev->raid_disks + mddev->delta_disks;
3512 if (chunk < (PAGE_SIZE >> 9) ||
3513 !is_power_of_2(chunk))
3516 fc = (layout >> 8) & 255;
3517 fo = layout & (1<<16);
3518 geo->raid_disks = disks;
3519 geo->near_copies = nc;
3520 geo->far_copies = fc;
3521 geo->far_offset = fo;
3522 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3523 geo->chunk_mask = chunk - 1;
3524 geo->chunk_shift = ffz(~chunk);
3528 static struct r10conf *setup_conf(struct mddev *mddev)
3530 struct r10conf *conf = NULL;
3535 copies = setup_geo(&geo, mddev, geo_new);
3538 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3539 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3540 mdname(mddev), PAGE_SIZE);
3544 if (copies < 2 || copies > mddev->raid_disks) {
3545 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3546 mdname(mddev), mddev->new_layout);
3551 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3555 /* FIXME calc properly */
3556 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3557 max(0,mddev->delta_disks)),
3562 conf->tmppage = alloc_page(GFP_KERNEL);
3567 conf->copies = copies;
3568 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3569 r10bio_pool_free, conf);
3570 if (!conf->r10bio_pool)
3573 calc_sectors(conf, mddev->dev_sectors);
3574 if (mddev->reshape_position == MaxSector) {
3575 conf->prev = conf->geo;
3576 conf->reshape_progress = MaxSector;
3578 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3582 conf->reshape_progress = mddev->reshape_position;
3583 if (conf->prev.far_offset)
3584 conf->prev.stride = 1 << conf->prev.chunk_shift;
3586 /* far_copies must be 1 */
3587 conf->prev.stride = conf->dev_sectors;
3589 spin_lock_init(&conf->device_lock);
3590 INIT_LIST_HEAD(&conf->retry_list);
3592 spin_lock_init(&conf->resync_lock);
3593 init_waitqueue_head(&conf->wait_barrier);
3595 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3599 conf->mddev = mddev;
3604 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3607 if (conf->r10bio_pool)
3608 mempool_destroy(conf->r10bio_pool);
3609 kfree(conf->mirrors);
3610 safe_put_page(conf->tmppage);
3613 return ERR_PTR(err);
3616 static int run(struct mddev *mddev)
3618 struct r10conf *conf;
3619 int i, disk_idx, chunk_size;
3620 struct raid10_info *disk;
3621 struct md_rdev *rdev;
3623 sector_t min_offset_diff = 0;
3625 bool discard_supported = false;
3627 if (mddev->private == NULL) {
3628 conf = setup_conf(mddev);
3630 return PTR_ERR(conf);
3631 mddev->private = conf;
3633 conf = mddev->private;
3637 mddev->thread = conf->thread;
3638 conf->thread = NULL;
3640 chunk_size = mddev->chunk_sectors << 9;
3642 blk_queue_max_discard_sectors(mddev->queue,
3643 mddev->chunk_sectors);
3644 blk_queue_max_write_same_sectors(mddev->queue,
3645 mddev->chunk_sectors);
3646 blk_queue_io_min(mddev->queue, chunk_size);
3647 if (conf->geo.raid_disks % conf->geo.near_copies)
3648 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3650 blk_queue_io_opt(mddev->queue, chunk_size *
3651 (conf->geo.raid_disks / conf->geo.near_copies));
3654 rdev_for_each(rdev, mddev) {
3656 struct request_queue *q;
3658 disk_idx = rdev->raid_disk;
3661 if (disk_idx >= conf->geo.raid_disks &&
3662 disk_idx >= conf->prev.raid_disks)
3664 disk = conf->mirrors + disk_idx;
3666 if (test_bit(Replacement, &rdev->flags)) {
3667 if (disk->replacement)
3669 disk->replacement = rdev;
3675 q = bdev_get_queue(rdev->bdev);
3676 if (q->merge_bvec_fn)
3677 mddev->merge_check_needed = 1;
3678 diff = (rdev->new_data_offset - rdev->data_offset);
3679 if (!mddev->reshape_backwards)
3683 if (first || diff < min_offset_diff)
3684 min_offset_diff = diff;
3687 disk_stack_limits(mddev->gendisk, rdev->bdev,
3688 rdev->data_offset << 9);
3690 disk->head_position = 0;
3692 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3693 discard_supported = true;
3697 if (discard_supported)
3698 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3701 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3704 /* need to check that every block has at least one working mirror */
3705 if (!enough(conf, -1)) {
3706 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3711 if (conf->reshape_progress != MaxSector) {
3712 /* must ensure that shape change is supported */
3713 if (conf->geo.far_copies != 1 &&
3714 conf->geo.far_offset == 0)
3716 if (conf->prev.far_copies != 1 &&
3717 conf->geo.far_offset == 0)
3721 mddev->degraded = 0;
3723 i < conf->geo.raid_disks
3724 || i < conf->prev.raid_disks;
3727 disk = conf->mirrors + i;
3729 if (!disk->rdev && disk->replacement) {
3730 /* The replacement is all we have - use it */
3731 disk->rdev = disk->replacement;
3732 disk->replacement = NULL;
3733 clear_bit(Replacement, &disk->rdev->flags);
3737 !test_bit(In_sync, &disk->rdev->flags)) {
3738 disk->head_position = 0;
3743 disk->recovery_disabled = mddev->recovery_disabled - 1;
3746 if (mddev->recovery_cp != MaxSector)
3747 printk(KERN_NOTICE "md/raid10:%s: not clean"
3748 " -- starting background reconstruction\n",
3751 "md/raid10:%s: active with %d out of %d devices\n",
3752 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3753 conf->geo.raid_disks);
3755 * Ok, everything is just fine now
3757 mddev->dev_sectors = conf->dev_sectors;
3758 size = raid10_size(mddev, 0, 0);
3759 md_set_array_sectors(mddev, size);
3760 mddev->resync_max_sectors = size;
3763 int stripe = conf->geo.raid_disks *
3764 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3765 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3766 mddev->queue->backing_dev_info.congested_data = mddev;
3768 /* Calculate max read-ahead size.
3769 * We need to readahead at least twice a whole stripe....
3772 stripe /= conf->geo.near_copies;
3773 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3774 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3775 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3779 if (md_integrity_register(mddev))
3782 if (conf->reshape_progress != MaxSector) {
3783 unsigned long before_length, after_length;
3785 before_length = ((1 << conf->prev.chunk_shift) *
3786 conf->prev.far_copies);
3787 after_length = ((1 << conf->geo.chunk_shift) *
3788 conf->geo.far_copies);
3790 if (max(before_length, after_length) > min_offset_diff) {
3791 /* This cannot work */
3792 printk("md/raid10: offset difference not enough to continue reshape\n");
3795 conf->offset_diff = min_offset_diff;
3797 conf->reshape_safe = conf->reshape_progress;
3798 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3799 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3800 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3801 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3802 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3809 md_unregister_thread(&mddev->thread);
3810 if (conf->r10bio_pool)
3811 mempool_destroy(conf->r10bio_pool);
3812 safe_put_page(conf->tmppage);
3813 kfree(conf->mirrors);
3815 mddev->private = NULL;
3820 static int stop(struct mddev *mddev)
3822 struct r10conf *conf = mddev->private;
3824 raise_barrier(conf, 0);
3825 lower_barrier(conf);
3827 md_unregister_thread(&mddev->thread);
3829 /* the unplug fn references 'conf'*/
3830 blk_sync_queue(mddev->queue);
3832 if (conf->r10bio_pool)
3833 mempool_destroy(conf->r10bio_pool);
3834 safe_put_page(conf->tmppage);
3835 kfree(conf->mirrors);
3837 mddev->private = NULL;
3841 static void raid10_quiesce(struct mddev *mddev, int state)
3843 struct r10conf *conf = mddev->private;
3847 raise_barrier(conf, 0);
3850 lower_barrier(conf);
3855 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3857 /* Resize of 'far' arrays is not supported.
3858 * For 'near' and 'offset' arrays we can set the
3859 * number of sectors used to be an appropriate multiple
3860 * of the chunk size.
3861 * For 'offset', this is far_copies*chunksize.
3862 * For 'near' the multiplier is the LCM of
3863 * near_copies and raid_disks.
3864 * So if far_copies > 1 && !far_offset, fail.
3865 * Else find LCM(raid_disks, near_copy)*far_copies and
3866 * multiply by chunk_size. Then round to this number.
3867 * This is mostly done by raid10_size()
3869 struct r10conf *conf = mddev->private;
3870 sector_t oldsize, size;
3872 if (mddev->reshape_position != MaxSector)
3875 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3878 oldsize = raid10_size(mddev, 0, 0);
3879 size = raid10_size(mddev, sectors, 0);
3880 if (mddev->external_size &&
3881 mddev->array_sectors > size)
3883 if (mddev->bitmap) {
3884 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3888 md_set_array_sectors(mddev, size);
3889 set_capacity(mddev->gendisk, mddev->array_sectors);
3890 revalidate_disk(mddev->gendisk);
3891 if (sectors > mddev->dev_sectors &&
3892 mddev->recovery_cp > oldsize) {
3893 mddev->recovery_cp = oldsize;
3894 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3896 calc_sectors(conf, sectors);
3897 mddev->dev_sectors = conf->dev_sectors;
3898 mddev->resync_max_sectors = size;
3902 static void *raid10_takeover_raid0(struct mddev *mddev)
3904 struct md_rdev *rdev;
3905 struct r10conf *conf;
3907 if (mddev->degraded > 0) {
3908 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3910 return ERR_PTR(-EINVAL);
3913 /* Set new parameters */
3914 mddev->new_level = 10;
3915 /* new layout: far_copies = 1, near_copies = 2 */
3916 mddev->new_layout = (1<<8) + 2;
3917 mddev->new_chunk_sectors = mddev->chunk_sectors;
3918 mddev->delta_disks = mddev->raid_disks;
3919 mddev->raid_disks *= 2;
3920 /* make sure it will be not marked as dirty */
3921 mddev->recovery_cp = MaxSector;
3923 conf = setup_conf(mddev);
3924 if (!IS_ERR(conf)) {
3925 rdev_for_each(rdev, mddev)
3926 if (rdev->raid_disk >= 0)
3927 rdev->new_raid_disk = rdev->raid_disk * 2;
3934 static void *raid10_takeover(struct mddev *mddev)
3936 struct r0conf *raid0_conf;
3938 /* raid10 can take over:
3939 * raid0 - providing it has only two drives
3941 if (mddev->level == 0) {
3942 /* for raid0 takeover only one zone is supported */
3943 raid0_conf = mddev->private;
3944 if (raid0_conf->nr_strip_zones > 1) {
3945 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3946 " with more than one zone.\n",
3948 return ERR_PTR(-EINVAL);
3950 return raid10_takeover_raid0(mddev);
3952 return ERR_PTR(-EINVAL);
3955 static int raid10_check_reshape(struct mddev *mddev)
3957 /* Called when there is a request to change
3958 * - layout (to ->new_layout)
3959 * - chunk size (to ->new_chunk_sectors)
3960 * - raid_disks (by delta_disks)
3961 * or when trying to restart a reshape that was ongoing.
3963 * We need to validate the request and possibly allocate
3964 * space if that might be an issue later.
3966 * Currently we reject any reshape of a 'far' mode array,
3967 * allow chunk size to change if new is generally acceptable,
3968 * allow raid_disks to increase, and allow
3969 * a switch between 'near' mode and 'offset' mode.
3971 struct r10conf *conf = mddev->private;
3974 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3977 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3978 /* mustn't change number of copies */
3980 if (geo.far_copies > 1 && !geo.far_offset)
3981 /* Cannot switch to 'far' mode */
3984 if (mddev->array_sectors & geo.chunk_mask)
3985 /* not factor of array size */
3988 if (!enough(conf, -1))
3991 kfree(conf->mirrors_new);
3992 conf->mirrors_new = NULL;
3993 if (mddev->delta_disks > 0) {
3994 /* allocate new 'mirrors' list */
3995 conf->mirrors_new = kzalloc(
3996 sizeof(struct raid10_info)
3997 *(mddev->raid_disks +
3998 mddev->delta_disks),
4000 if (!conf->mirrors_new)
4007 * Need to check if array has failed when deciding whether to:
4009 * - remove non-faulty devices
4012 * This determination is simple when no reshape is happening.
4013 * However if there is a reshape, we need to carefully check
4014 * both the before and after sections.
4015 * This is because some failed devices may only affect one
4016 * of the two sections, and some non-in_sync devices may
4017 * be insync in the section most affected by failed devices.
4019 static int calc_degraded(struct r10conf *conf)
4021 int degraded, degraded2;
4026 /* 'prev' section first */
4027 for (i = 0; i < conf->prev.raid_disks; i++) {
4028 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4029 if (!rdev || test_bit(Faulty, &rdev->flags))
4031 else if (!test_bit(In_sync, &rdev->flags))
4032 /* When we can reduce the number of devices in
4033 * an array, this might not contribute to
4034 * 'degraded'. It does now.
4039 if (conf->geo.raid_disks == conf->prev.raid_disks)
4043 for (i = 0; i < conf->geo.raid_disks; i++) {
4044 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4045 if (!rdev || test_bit(Faulty, &rdev->flags))
4047 else if (!test_bit(In_sync, &rdev->flags)) {
4048 /* If reshape is increasing the number of devices,
4049 * this section has already been recovered, so
4050 * it doesn't contribute to degraded.
4053 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4058 if (degraded2 > degraded)
4063 static int raid10_start_reshape(struct mddev *mddev)
4065 /* A 'reshape' has been requested. This commits
4066 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4067 * This also checks if there are enough spares and adds them
4069 * We currently require enough spares to make the final
4070 * array non-degraded. We also require that the difference
4071 * between old and new data_offset - on each device - is
4072 * enough that we never risk over-writing.
4075 unsigned long before_length, after_length;
4076 sector_t min_offset_diff = 0;
4079 struct r10conf *conf = mddev->private;
4080 struct md_rdev *rdev;
4084 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4087 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4090 before_length = ((1 << conf->prev.chunk_shift) *
4091 conf->prev.far_copies);
4092 after_length = ((1 << conf->geo.chunk_shift) *
4093 conf->geo.far_copies);
4095 rdev_for_each(rdev, mddev) {
4096 if (!test_bit(In_sync, &rdev->flags)
4097 && !test_bit(Faulty, &rdev->flags))
4099 if (rdev->raid_disk >= 0) {
4100 long long diff = (rdev->new_data_offset
4101 - rdev->data_offset);
4102 if (!mddev->reshape_backwards)
4106 if (first || diff < min_offset_diff)
4107 min_offset_diff = diff;
4111 if (max(before_length, after_length) > min_offset_diff)
4114 if (spares < mddev->delta_disks)
4117 conf->offset_diff = min_offset_diff;
4118 spin_lock_irq(&conf->device_lock);
4119 if (conf->mirrors_new) {
4120 memcpy(conf->mirrors_new, conf->mirrors,
4121 sizeof(struct raid10_info)*conf->prev.raid_disks);
4123 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4124 conf->mirrors_old = conf->mirrors;
4125 conf->mirrors = conf->mirrors_new;
4126 conf->mirrors_new = NULL;
4128 setup_geo(&conf->geo, mddev, geo_start);
4130 if (mddev->reshape_backwards) {
4131 sector_t size = raid10_size(mddev, 0, 0);
4132 if (size < mddev->array_sectors) {
4133 spin_unlock_irq(&conf->device_lock);
4134 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4138 mddev->resync_max_sectors = size;
4139 conf->reshape_progress = size;
4141 conf->reshape_progress = 0;
4142 spin_unlock_irq(&conf->device_lock);
4144 if (mddev->delta_disks && mddev->bitmap) {
4145 ret = bitmap_resize(mddev->bitmap,
4146 raid10_size(mddev, 0,
4147 conf->geo.raid_disks),
4152 if (mddev->delta_disks > 0) {
4153 rdev_for_each(rdev, mddev)
4154 if (rdev->raid_disk < 0 &&
4155 !test_bit(Faulty, &rdev->flags)) {
4156 if (raid10_add_disk(mddev, rdev) == 0) {
4157 if (rdev->raid_disk >=
4158 conf->prev.raid_disks)
4159 set_bit(In_sync, &rdev->flags);
4161 rdev->recovery_offset = 0;
4163 if (sysfs_link_rdev(mddev, rdev))
4164 /* Failure here is OK */;
4166 } else if (rdev->raid_disk >= conf->prev.raid_disks
4167 && !test_bit(Faulty, &rdev->flags)) {
4168 /* This is a spare that was manually added */
4169 set_bit(In_sync, &rdev->flags);
4172 /* When a reshape changes the number of devices,
4173 * ->degraded is measured against the larger of the
4174 * pre and post numbers.
4176 spin_lock_irq(&conf->device_lock);
4177 mddev->degraded = calc_degraded(conf);
4178 spin_unlock_irq(&conf->device_lock);
4179 mddev->raid_disks = conf->geo.raid_disks;
4180 mddev->reshape_position = conf->reshape_progress;
4181 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4183 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4184 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4185 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4186 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4188 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4190 if (!mddev->sync_thread) {
4194 conf->reshape_checkpoint = jiffies;
4195 md_wakeup_thread(mddev->sync_thread);
4196 md_new_event(mddev);
4200 mddev->recovery = 0;
4201 spin_lock_irq(&conf->device_lock);
4202 conf->geo = conf->prev;
4203 mddev->raid_disks = conf->geo.raid_disks;
4204 rdev_for_each(rdev, mddev)
4205 rdev->new_data_offset = rdev->data_offset;
4207 conf->reshape_progress = MaxSector;
4208 mddev->reshape_position = MaxSector;
4209 spin_unlock_irq(&conf->device_lock);
4213 /* Calculate the last device-address that could contain
4214 * any block from the chunk that includes the array-address 's'
4215 * and report the next address.
4216 * i.e. the address returned will be chunk-aligned and after
4217 * any data that is in the chunk containing 's'.
4219 static sector_t last_dev_address(sector_t s, struct geom *geo)
4221 s = (s | geo->chunk_mask) + 1;
4222 s >>= geo->chunk_shift;
4223 s *= geo->near_copies;
4224 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4225 s *= geo->far_copies;
4226 s <<= geo->chunk_shift;
4230 /* Calculate the first device-address that could contain
4231 * any block from the chunk that includes the array-address 's'.
4232 * This too will be the start of a chunk
4234 static sector_t first_dev_address(sector_t s, struct geom *geo)
4236 s >>= geo->chunk_shift;
4237 s *= geo->near_copies;
4238 sector_div(s, geo->raid_disks);
4239 s *= geo->far_copies;
4240 s <<= geo->chunk_shift;
4244 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4247 /* We simply copy at most one chunk (smallest of old and new)
4248 * at a time, possibly less if that exceeds RESYNC_PAGES,
4249 * or we hit a bad block or something.
4250 * This might mean we pause for normal IO in the middle of
4251 * a chunk, but that is not a problem was mddev->reshape_position
4252 * can record any location.
4254 * If we will want to write to a location that isn't
4255 * yet recorded as 'safe' (i.e. in metadata on disk) then
4256 * we need to flush all reshape requests and update the metadata.
4258 * When reshaping forwards (e.g. to more devices), we interpret
4259 * 'safe' as the earliest block which might not have been copied
4260 * down yet. We divide this by previous stripe size and multiply
4261 * by previous stripe length to get lowest device offset that we
4262 * cannot write to yet.
4263 * We interpret 'sector_nr' as an address that we want to write to.
4264 * From this we use last_device_address() to find where we might
4265 * write to, and first_device_address on the 'safe' position.
4266 * If this 'next' write position is after the 'safe' position,
4267 * we must update the metadata to increase the 'safe' position.
4269 * When reshaping backwards, we round in the opposite direction
4270 * and perform the reverse test: next write position must not be
4271 * less than current safe position.
4273 * In all this the minimum difference in data offsets
4274 * (conf->offset_diff - always positive) allows a bit of slack,
4275 * so next can be after 'safe', but not by more than offset_disk
4277 * We need to prepare all the bios here before we start any IO
4278 * to ensure the size we choose is acceptable to all devices.
4279 * The means one for each copy for write-out and an extra one for
4281 * We store the read-in bio in ->master_bio and the others in
4282 * ->devs[x].bio and ->devs[x].repl_bio.
4284 struct r10conf *conf = mddev->private;
4285 struct r10bio *r10_bio;
4286 sector_t next, safe, last;
4290 struct md_rdev *rdev;
4293 struct bio *bio, *read_bio;
4294 int sectors_done = 0;
4296 if (sector_nr == 0) {
4297 /* If restarting in the middle, skip the initial sectors */
4298 if (mddev->reshape_backwards &&
4299 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4300 sector_nr = (raid10_size(mddev, 0, 0)
4301 - conf->reshape_progress);
4302 } else if (!mddev->reshape_backwards &&
4303 conf->reshape_progress > 0)
4304 sector_nr = conf->reshape_progress;
4306 mddev->curr_resync_completed = sector_nr;
4307 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4313 /* We don't use sector_nr to track where we are up to
4314 * as that doesn't work well for ->reshape_backwards.
4315 * So just use ->reshape_progress.
4317 if (mddev->reshape_backwards) {
4318 /* 'next' is the earliest device address that we might
4319 * write to for this chunk in the new layout
4321 next = first_dev_address(conf->reshape_progress - 1,
4324 /* 'safe' is the last device address that we might read from
4325 * in the old layout after a restart
4327 safe = last_dev_address(conf->reshape_safe - 1,
4330 if (next + conf->offset_diff < safe)
4333 last = conf->reshape_progress - 1;
4334 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4335 & conf->prev.chunk_mask);
4336 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4337 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4339 /* 'next' is after the last device address that we
4340 * might write to for this chunk in the new layout
4342 next = last_dev_address(conf->reshape_progress, &conf->geo);
4344 /* 'safe' is the earliest device address that we might
4345 * read from in the old layout after a restart
4347 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4349 /* Need to update metadata if 'next' might be beyond 'safe'
4350 * as that would possibly corrupt data
4352 if (next > safe + conf->offset_diff)
4355 sector_nr = conf->reshape_progress;
4356 last = sector_nr | (conf->geo.chunk_mask
4357 & conf->prev.chunk_mask);
4359 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4360 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4364 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4365 /* Need to update reshape_position in metadata */
4367 mddev->reshape_position = conf->reshape_progress;
4368 if (mddev->reshape_backwards)
4369 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4370 - conf->reshape_progress;
4372 mddev->curr_resync_completed = conf->reshape_progress;
4373 conf->reshape_checkpoint = jiffies;
4374 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4375 md_wakeup_thread(mddev->thread);
4376 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4377 kthread_should_stop());
4378 conf->reshape_safe = mddev->reshape_position;
4379 allow_barrier(conf);
4383 /* Now schedule reads for blocks from sector_nr to last */
4384 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4385 raise_barrier(conf, sectors_done != 0);
4386 atomic_set(&r10_bio->remaining, 0);
4387 r10_bio->mddev = mddev;
4388 r10_bio->sector = sector_nr;
4389 set_bit(R10BIO_IsReshape, &r10_bio->state);
4390 r10_bio->sectors = last - sector_nr + 1;
4391 rdev = read_balance(conf, r10_bio, &max_sectors);
4392 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4395 /* Cannot read from here, so need to record bad blocks
4396 * on all the target devices.
4399 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4400 return sectors_done;
4403 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4405 read_bio->bi_bdev = rdev->bdev;
4406 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4407 + rdev->data_offset);
4408 read_bio->bi_private = r10_bio;
4409 read_bio->bi_end_io = end_sync_read;
4410 read_bio->bi_rw = READ;
4411 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4412 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4413 read_bio->bi_vcnt = 0;
4414 read_bio->bi_idx = 0;
4415 read_bio->bi_size = 0;
4416 r10_bio->master_bio = read_bio;
4417 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4419 /* Now find the locations in the new layout */
4420 __raid10_find_phys(&conf->geo, r10_bio);
4423 read_bio->bi_next = NULL;
4425 for (s = 0; s < conf->copies*2; s++) {
4427 int d = r10_bio->devs[s/2].devnum;
4428 struct md_rdev *rdev2;
4430 rdev2 = conf->mirrors[d].replacement;
4431 b = r10_bio->devs[s/2].repl_bio;
4433 rdev2 = conf->mirrors[d].rdev;
4434 b = r10_bio->devs[s/2].bio;
4436 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4438 b->bi_bdev = rdev2->bdev;
4439 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4440 b->bi_private = r10_bio;
4441 b->bi_end_io = end_reshape_write;
4443 b->bi_flags &= ~(BIO_POOL_MASK - 1);
4444 b->bi_flags |= 1 << BIO_UPTODATE;
4452 /* Now add as many pages as possible to all of these bios. */
4455 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4456 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4457 int len = (max_sectors - s) << 9;
4458 if (len > PAGE_SIZE)
4460 for (bio = blist; bio ; bio = bio->bi_next) {
4462 if (bio_add_page(bio, page, len, 0))
4465 /* Didn't fit, must stop */
4467 bio2 && bio2 != bio;
4468 bio2 = bio2->bi_next) {
4469 /* Remove last page from this bio */
4471 bio2->bi_size -= len;
4472 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4476 sector_nr += len >> 9;
4477 nr_sectors += len >> 9;
4480 r10_bio->sectors = nr_sectors;
4482 /* Now submit the read */
4483 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4484 atomic_inc(&r10_bio->remaining);
4485 read_bio->bi_next = NULL;
4486 generic_make_request(read_bio);
4487 sector_nr += nr_sectors;
4488 sectors_done += nr_sectors;
4489 if (sector_nr <= last)
4492 /* Now that we have done the whole section we can
4493 * update reshape_progress
4495 if (mddev->reshape_backwards)
4496 conf->reshape_progress -= sectors_done;
4498 conf->reshape_progress += sectors_done;
4500 return sectors_done;
4503 static void end_reshape_request(struct r10bio *r10_bio);
4504 static int handle_reshape_read_error(struct mddev *mddev,
4505 struct r10bio *r10_bio);
4506 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4508 /* Reshape read completed. Hopefully we have a block
4510 * If we got a read error then we do sync 1-page reads from
4511 * elsewhere until we find the data - or give up.
4513 struct r10conf *conf = mddev->private;
4516 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4517 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4518 /* Reshape has been aborted */
4519 md_done_sync(mddev, r10_bio->sectors, 0);
4523 /* We definitely have the data in the pages, schedule the
4526 atomic_set(&r10_bio->remaining, 1);
4527 for (s = 0; s < conf->copies*2; s++) {
4529 int d = r10_bio->devs[s/2].devnum;
4530 struct md_rdev *rdev;
4532 rdev = conf->mirrors[d].replacement;
4533 b = r10_bio->devs[s/2].repl_bio;
4535 rdev = conf->mirrors[d].rdev;
4536 b = r10_bio->devs[s/2].bio;
4538 if (!rdev || test_bit(Faulty, &rdev->flags))
4540 atomic_inc(&rdev->nr_pending);
4541 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4542 atomic_inc(&r10_bio->remaining);
4544 generic_make_request(b);
4546 end_reshape_request(r10_bio);
4549 static void end_reshape(struct r10conf *conf)
4551 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4554 spin_lock_irq(&conf->device_lock);
4555 conf->prev = conf->geo;
4556 md_finish_reshape(conf->mddev);
4558 conf->reshape_progress = MaxSector;
4559 spin_unlock_irq(&conf->device_lock);
4561 /* read-ahead size must cover two whole stripes, which is
4562 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4564 if (conf->mddev->queue) {
4565 int stripe = conf->geo.raid_disks *
4566 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4567 stripe /= conf->geo.near_copies;
4568 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4569 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4575 static int handle_reshape_read_error(struct mddev *mddev,
4576 struct r10bio *r10_bio)
4578 /* Use sync reads to get the blocks from somewhere else */
4579 int sectors = r10_bio->sectors;
4580 struct r10conf *conf = mddev->private;
4582 struct r10bio r10_bio;
4583 struct r10dev devs[conf->copies];
4585 struct r10bio *r10b = &on_stack.r10_bio;
4588 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4590 r10b->sector = r10_bio->sector;
4591 __raid10_find_phys(&conf->prev, r10b);
4596 int first_slot = slot;
4598 if (s > (PAGE_SIZE >> 9))
4602 int d = r10b->devs[slot].devnum;
4603 struct md_rdev *rdev = conf->mirrors[d].rdev;
4606 test_bit(Faulty, &rdev->flags) ||
4607 !test_bit(In_sync, &rdev->flags))
4610 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4611 success = sync_page_io(rdev,
4620 if (slot >= conf->copies)
4622 if (slot == first_slot)
4626 /* couldn't read this block, must give up */
4627 set_bit(MD_RECOVERY_INTR,
4637 static void end_reshape_write(struct bio *bio, int error)
4639 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4640 struct r10bio *r10_bio = bio->bi_private;
4641 struct mddev *mddev = r10_bio->mddev;
4642 struct r10conf *conf = mddev->private;
4646 struct md_rdev *rdev = NULL;
4648 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4650 rdev = conf->mirrors[d].replacement;
4653 rdev = conf->mirrors[d].rdev;
4657 /* FIXME should record badblock */
4658 md_error(mddev, rdev);
4661 rdev_dec_pending(rdev, mddev);
4662 end_reshape_request(r10_bio);
4665 static void end_reshape_request(struct r10bio *r10_bio)
4667 if (!atomic_dec_and_test(&r10_bio->remaining))
4669 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4670 bio_put(r10_bio->master_bio);
4674 static void raid10_finish_reshape(struct mddev *mddev)
4676 struct r10conf *conf = mddev->private;
4678 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4681 if (mddev->delta_disks > 0) {
4682 sector_t size = raid10_size(mddev, 0, 0);
4683 md_set_array_sectors(mddev, size);
4684 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4685 mddev->recovery_cp = mddev->resync_max_sectors;
4686 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4688 mddev->resync_max_sectors = size;
4689 set_capacity(mddev->gendisk, mddev->array_sectors);
4690 revalidate_disk(mddev->gendisk);
4693 for (d = conf->geo.raid_disks ;
4694 d < conf->geo.raid_disks - mddev->delta_disks;
4696 struct md_rdev *rdev = conf->mirrors[d].rdev;
4698 clear_bit(In_sync, &rdev->flags);
4699 rdev = conf->mirrors[d].replacement;
4701 clear_bit(In_sync, &rdev->flags);
4704 mddev->layout = mddev->new_layout;
4705 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4706 mddev->reshape_position = MaxSector;
4707 mddev->delta_disks = 0;
4708 mddev->reshape_backwards = 0;
4711 static struct md_personality raid10_personality =
4715 .owner = THIS_MODULE,
4716 .make_request = make_request,
4720 .error_handler = error,
4721 .hot_add_disk = raid10_add_disk,
4722 .hot_remove_disk= raid10_remove_disk,
4723 .spare_active = raid10_spare_active,
4724 .sync_request = sync_request,
4725 .quiesce = raid10_quiesce,
4726 .size = raid10_size,
4727 .resize = raid10_resize,
4728 .takeover = raid10_takeover,
4729 .check_reshape = raid10_check_reshape,
4730 .start_reshape = raid10_start_reshape,
4731 .finish_reshape = raid10_finish_reshape,
4734 static int __init raid_init(void)
4736 return register_md_personality(&raid10_personality);
4739 static void raid_exit(void)
4741 unregister_md_personality(&raid10_personality);
4744 module_init(raid_init);
4745 module_exit(raid_exit);
4746 MODULE_LICENSE("GPL");
4747 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4748 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4749 MODULE_ALIAS("md-raid10");
4750 MODULE_ALIAS("md-level-10");
4752 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);