dm clone metadata: Use a two phase commit
[platform/kernel/linux-rpi.git] / drivers / md / raid10.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72                                 int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76
77 #define raid10_log(md, fmt, args...)                            \
78         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80 #include "raid1-10.c"
81
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88         return get_resync_pages(bio)->raid_bio;
89 }
90
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93         struct r10conf *conf = data;
94         int size = offsetof(struct r10bio, devs[conf->copies]);
95
96         /* allocate a r10bio with room for raid_disks entries in the
97          * bios array */
98         return kzalloc(size, gfp_flags);
99 }
100
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118         struct r10conf *conf = data;
119         struct r10bio *r10_bio;
120         struct bio *bio;
121         int j;
122         int nalloc, nalloc_rp;
123         struct resync_pages *rps;
124
125         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126         if (!r10_bio)
127                 return NULL;
128
129         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131                 nalloc = conf->copies; /* resync */
132         else
133                 nalloc = 2; /* recovery */
134
135         /* allocate once for all bios */
136         if (!conf->have_replacement)
137                 nalloc_rp = nalloc;
138         else
139                 nalloc_rp = nalloc * 2;
140         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141         if (!rps)
142                 goto out_free_r10bio;
143
144         /*
145          * Allocate bios.
146          */
147         for (j = nalloc ; j-- ; ) {
148                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149                 if (!bio)
150                         goto out_free_bio;
151                 r10_bio->devs[j].bio = bio;
152                 if (!conf->have_replacement)
153                         continue;
154                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155                 if (!bio)
156                         goto out_free_bio;
157                 r10_bio->devs[j].repl_bio = bio;
158         }
159         /*
160          * Allocate RESYNC_PAGES data pages and attach them
161          * where needed.
162          */
163         for (j = 0; j < nalloc; j++) {
164                 struct bio *rbio = r10_bio->devs[j].repl_bio;
165                 struct resync_pages *rp, *rp_repl;
166
167                 rp = &rps[j];
168                 if (rbio)
169                         rp_repl = &rps[nalloc + j];
170
171                 bio = r10_bio->devs[j].bio;
172
173                 if (!j || test_bit(MD_RECOVERY_SYNC,
174                                    &conf->mddev->recovery)) {
175                         if (resync_alloc_pages(rp, gfp_flags))
176                                 goto out_free_pages;
177                 } else {
178                         memcpy(rp, &rps[0], sizeof(*rp));
179                         resync_get_all_pages(rp);
180                 }
181
182                 rp->raid_bio = r10_bio;
183                 bio->bi_private = rp;
184                 if (rbio) {
185                         memcpy(rp_repl, rp, sizeof(*rp));
186                         rbio->bi_private = rp_repl;
187                 }
188         }
189
190         return r10_bio;
191
192 out_free_pages:
193         while (--j >= 0)
194                 resync_free_pages(&rps[j]);
195
196         j = 0;
197 out_free_bio:
198         for ( ; j < nalloc; j++) {
199                 if (r10_bio->devs[j].bio)
200                         bio_put(r10_bio->devs[j].bio);
201                 if (r10_bio->devs[j].repl_bio)
202                         bio_put(r10_bio->devs[j].repl_bio);
203         }
204         kfree(rps);
205 out_free_r10bio:
206         rbio_pool_free(r10_bio, conf);
207         return NULL;
208 }
209
210 static void r10buf_pool_free(void *__r10_bio, void *data)
211 {
212         struct r10conf *conf = data;
213         struct r10bio *r10bio = __r10_bio;
214         int j;
215         struct resync_pages *rp = NULL;
216
217         for (j = conf->copies; j--; ) {
218                 struct bio *bio = r10bio->devs[j].bio;
219
220                 if (bio) {
221                         rp = get_resync_pages(bio);
222                         resync_free_pages(rp);
223                         bio_put(bio);
224                 }
225
226                 bio = r10bio->devs[j].repl_bio;
227                 if (bio)
228                         bio_put(bio);
229         }
230
231         /* resync pages array stored in the 1st bio's .bi_private */
232         kfree(rp);
233
234         rbio_pool_free(r10bio, conf);
235 }
236
237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238 {
239         int i;
240
241         for (i = 0; i < conf->copies; i++) {
242                 struct bio **bio = & r10_bio->devs[i].bio;
243                 if (!BIO_SPECIAL(*bio))
244                         bio_put(*bio);
245                 *bio = NULL;
246                 bio = &r10_bio->devs[i].repl_bio;
247                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248                         bio_put(*bio);
249                 *bio = NULL;
250         }
251 }
252
253 static void free_r10bio(struct r10bio *r10_bio)
254 {
255         struct r10conf *conf = r10_bio->mddev->private;
256
257         put_all_bios(conf, r10_bio);
258         mempool_free(r10_bio, &conf->r10bio_pool);
259 }
260
261 static void put_buf(struct r10bio *r10_bio)
262 {
263         struct r10conf *conf = r10_bio->mddev->private;
264
265         mempool_free(r10_bio, &conf->r10buf_pool);
266
267         lower_barrier(conf);
268 }
269
270 static void reschedule_retry(struct r10bio *r10_bio)
271 {
272         unsigned long flags;
273         struct mddev *mddev = r10_bio->mddev;
274         struct r10conf *conf = mddev->private;
275
276         spin_lock_irqsave(&conf->device_lock, flags);
277         list_add(&r10_bio->retry_list, &conf->retry_list);
278         conf->nr_queued ++;
279         spin_unlock_irqrestore(&conf->device_lock, flags);
280
281         /* wake up frozen array... */
282         wake_up(&conf->wait_barrier);
283
284         md_wakeup_thread(mddev->thread);
285 }
286
287 /*
288  * raid_end_bio_io() is called when we have finished servicing a mirrored
289  * operation and are ready to return a success/failure code to the buffer
290  * cache layer.
291  */
292 static void raid_end_bio_io(struct r10bio *r10_bio)
293 {
294         struct bio *bio = r10_bio->master_bio;
295         struct r10conf *conf = r10_bio->mddev->private;
296
297         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298                 bio->bi_status = BLK_STS_IOERR;
299
300         bio_endio(bio);
301         /*
302          * Wake up any possible resync thread that waits for the device
303          * to go idle.
304          */
305         allow_barrier(conf);
306
307         free_r10bio(r10_bio);
308 }
309
310 /*
311  * Update disk head position estimator based on IRQ completion info.
312  */
313 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
314 {
315         struct r10conf *conf = r10_bio->mddev->private;
316
317         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
318                 r10_bio->devs[slot].addr + (r10_bio->sectors);
319 }
320
321 /*
322  * Find the disk number which triggered given bio
323  */
324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
325                          struct bio *bio, int *slotp, int *replp)
326 {
327         int slot;
328         int repl = 0;
329
330         for (slot = 0; slot < conf->copies; slot++) {
331                 if (r10_bio->devs[slot].bio == bio)
332                         break;
333                 if (r10_bio->devs[slot].repl_bio == bio) {
334                         repl = 1;
335                         break;
336                 }
337         }
338
339         BUG_ON(slot == conf->copies);
340         update_head_pos(slot, r10_bio);
341
342         if (slotp)
343                 *slotp = slot;
344         if (replp)
345                 *replp = repl;
346         return r10_bio->devs[slot].devnum;
347 }
348
349 static void raid10_end_read_request(struct bio *bio)
350 {
351         int uptodate = !bio->bi_status;
352         struct r10bio *r10_bio = bio->bi_private;
353         int slot;
354         struct md_rdev *rdev;
355         struct r10conf *conf = r10_bio->mddev->private;
356
357         slot = r10_bio->read_slot;
358         rdev = r10_bio->devs[slot].rdev;
359         /*
360          * this branch is our 'one mirror IO has finished' event handler:
361          */
362         update_head_pos(slot, r10_bio);
363
364         if (uptodate) {
365                 /*
366                  * Set R10BIO_Uptodate in our master bio, so that
367                  * we will return a good error code to the higher
368                  * levels even if IO on some other mirrored buffer fails.
369                  *
370                  * The 'master' represents the composite IO operation to
371                  * user-side. So if something waits for IO, then it will
372                  * wait for the 'master' bio.
373                  */
374                 set_bit(R10BIO_Uptodate, &r10_bio->state);
375         } else {
376                 /* If all other devices that store this block have
377                  * failed, we want to return the error upwards rather
378                  * than fail the last device.  Here we redefine
379                  * "uptodate" to mean "Don't want to retry"
380                  */
381                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
382                              rdev->raid_disk))
383                         uptodate = 1;
384         }
385         if (uptodate) {
386                 raid_end_bio_io(r10_bio);
387                 rdev_dec_pending(rdev, conf->mddev);
388         } else {
389                 /*
390                  * oops, read error - keep the refcount on the rdev
391                  */
392                 char b[BDEVNAME_SIZE];
393                 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
394                                    mdname(conf->mddev),
395                                    bdevname(rdev->bdev, b),
396                                    (unsigned long long)r10_bio->sector);
397                 set_bit(R10BIO_ReadError, &r10_bio->state);
398                 reschedule_retry(r10_bio);
399         }
400 }
401
402 static void close_write(struct r10bio *r10_bio)
403 {
404         /* clear the bitmap if all writes complete successfully */
405         md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
406                            r10_bio->sectors,
407                            !test_bit(R10BIO_Degraded, &r10_bio->state),
408                            0);
409         md_write_end(r10_bio->mddev);
410 }
411
412 static void one_write_done(struct r10bio *r10_bio)
413 {
414         if (atomic_dec_and_test(&r10_bio->remaining)) {
415                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
416                         reschedule_retry(r10_bio);
417                 else {
418                         close_write(r10_bio);
419                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
420                                 reschedule_retry(r10_bio);
421                         else
422                                 raid_end_bio_io(r10_bio);
423                 }
424         }
425 }
426
427 static void raid10_end_write_request(struct bio *bio)
428 {
429         struct r10bio *r10_bio = bio->bi_private;
430         int dev;
431         int dec_rdev = 1;
432         struct r10conf *conf = r10_bio->mddev->private;
433         int slot, repl;
434         struct md_rdev *rdev = NULL;
435         struct bio *to_put = NULL;
436         bool discard_error;
437
438         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
439
440         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
441
442         if (repl)
443                 rdev = conf->mirrors[dev].replacement;
444         if (!rdev) {
445                 smp_rmb();
446                 repl = 0;
447                 rdev = conf->mirrors[dev].rdev;
448         }
449         /*
450          * this branch is our 'one mirror IO has finished' event handler:
451          */
452         if (bio->bi_status && !discard_error) {
453                 if (repl)
454                         /* Never record new bad blocks to replacement,
455                          * just fail it.
456                          */
457                         md_error(rdev->mddev, rdev);
458                 else {
459                         set_bit(WriteErrorSeen, &rdev->flags);
460                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
461                                 set_bit(MD_RECOVERY_NEEDED,
462                                         &rdev->mddev->recovery);
463
464                         dec_rdev = 0;
465                         if (test_bit(FailFast, &rdev->flags) &&
466                             (bio->bi_opf & MD_FAILFAST)) {
467                                 md_error(rdev->mddev, rdev);
468                         }
469
470                         /*
471                          * When the device is faulty, it is not necessary to
472                          * handle write error.
473                          * For failfast, this is the only remaining device,
474                          * We need to retry the write without FailFast.
475                          */
476                         if (!test_bit(Faulty, &rdev->flags))
477                                 set_bit(R10BIO_WriteError, &r10_bio->state);
478                         else {
479                                 r10_bio->devs[slot].bio = NULL;
480                                 to_put = bio;
481                                 dec_rdev = 1;
482                         }
483                 }
484         } else {
485                 /*
486                  * Set R10BIO_Uptodate in our master bio, so that
487                  * we will return a good error code for to the higher
488                  * levels even if IO on some other mirrored buffer fails.
489                  *
490                  * The 'master' represents the composite IO operation to
491                  * user-side. So if something waits for IO, then it will
492                  * wait for the 'master' bio.
493                  */
494                 sector_t first_bad;
495                 int bad_sectors;
496
497                 /*
498                  * Do not set R10BIO_Uptodate if the current device is
499                  * rebuilding or Faulty. This is because we cannot use
500                  * such device for properly reading the data back (we could
501                  * potentially use it, if the current write would have felt
502                  * before rdev->recovery_offset, but for simplicity we don't
503                  * check this here.
504                  */
505                 if (test_bit(In_sync, &rdev->flags) &&
506                     !test_bit(Faulty, &rdev->flags))
507                         set_bit(R10BIO_Uptodate, &r10_bio->state);
508
509                 /* Maybe we can clear some bad blocks. */
510                 if (is_badblock(rdev,
511                                 r10_bio->devs[slot].addr,
512                                 r10_bio->sectors,
513                                 &first_bad, &bad_sectors) && !discard_error) {
514                         bio_put(bio);
515                         if (repl)
516                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
517                         else
518                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
519                         dec_rdev = 0;
520                         set_bit(R10BIO_MadeGood, &r10_bio->state);
521                 }
522         }
523
524         /*
525          *
526          * Let's see if all mirrored write operations have finished
527          * already.
528          */
529         one_write_done(r10_bio);
530         if (dec_rdev)
531                 rdev_dec_pending(rdev, conf->mddev);
532         if (to_put)
533                 bio_put(to_put);
534 }
535
536 /*
537  * RAID10 layout manager
538  * As well as the chunksize and raid_disks count, there are two
539  * parameters: near_copies and far_copies.
540  * near_copies * far_copies must be <= raid_disks.
541  * Normally one of these will be 1.
542  * If both are 1, we get raid0.
543  * If near_copies == raid_disks, we get raid1.
544  *
545  * Chunks are laid out in raid0 style with near_copies copies of the
546  * first chunk, followed by near_copies copies of the next chunk and
547  * so on.
548  * If far_copies > 1, then after 1/far_copies of the array has been assigned
549  * as described above, we start again with a device offset of near_copies.
550  * So we effectively have another copy of the whole array further down all
551  * the drives, but with blocks on different drives.
552  * With this layout, and block is never stored twice on the one device.
553  *
554  * raid10_find_phys finds the sector offset of a given virtual sector
555  * on each device that it is on.
556  *
557  * raid10_find_virt does the reverse mapping, from a device and a
558  * sector offset to a virtual address
559  */
560
561 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
562 {
563         int n,f;
564         sector_t sector;
565         sector_t chunk;
566         sector_t stripe;
567         int dev;
568         int slot = 0;
569         int last_far_set_start, last_far_set_size;
570
571         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
572         last_far_set_start *= geo->far_set_size;
573
574         last_far_set_size = geo->far_set_size;
575         last_far_set_size += (geo->raid_disks % geo->far_set_size);
576
577         /* now calculate first sector/dev */
578         chunk = r10bio->sector >> geo->chunk_shift;
579         sector = r10bio->sector & geo->chunk_mask;
580
581         chunk *= geo->near_copies;
582         stripe = chunk;
583         dev = sector_div(stripe, geo->raid_disks);
584         if (geo->far_offset)
585                 stripe *= geo->far_copies;
586
587         sector += stripe << geo->chunk_shift;
588
589         /* and calculate all the others */
590         for (n = 0; n < geo->near_copies; n++) {
591                 int d = dev;
592                 int set;
593                 sector_t s = sector;
594                 r10bio->devs[slot].devnum = d;
595                 r10bio->devs[slot].addr = s;
596                 slot++;
597
598                 for (f = 1; f < geo->far_copies; f++) {
599                         set = d / geo->far_set_size;
600                         d += geo->near_copies;
601
602                         if ((geo->raid_disks % geo->far_set_size) &&
603                             (d > last_far_set_start)) {
604                                 d -= last_far_set_start;
605                                 d %= last_far_set_size;
606                                 d += last_far_set_start;
607                         } else {
608                                 d %= geo->far_set_size;
609                                 d += geo->far_set_size * set;
610                         }
611                         s += geo->stride;
612                         r10bio->devs[slot].devnum = d;
613                         r10bio->devs[slot].addr = s;
614                         slot++;
615                 }
616                 dev++;
617                 if (dev >= geo->raid_disks) {
618                         dev = 0;
619                         sector += (geo->chunk_mask + 1);
620                 }
621         }
622 }
623
624 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
625 {
626         struct geom *geo = &conf->geo;
627
628         if (conf->reshape_progress != MaxSector &&
629             ((r10bio->sector >= conf->reshape_progress) !=
630              conf->mddev->reshape_backwards)) {
631                 set_bit(R10BIO_Previous, &r10bio->state);
632                 geo = &conf->prev;
633         } else
634                 clear_bit(R10BIO_Previous, &r10bio->state);
635
636         __raid10_find_phys(geo, r10bio);
637 }
638
639 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
640 {
641         sector_t offset, chunk, vchunk;
642         /* Never use conf->prev as this is only called during resync
643          * or recovery, so reshape isn't happening
644          */
645         struct geom *geo = &conf->geo;
646         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
647         int far_set_size = geo->far_set_size;
648         int last_far_set_start;
649
650         if (geo->raid_disks % geo->far_set_size) {
651                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
652                 last_far_set_start *= geo->far_set_size;
653
654                 if (dev >= last_far_set_start) {
655                         far_set_size = geo->far_set_size;
656                         far_set_size += (geo->raid_disks % geo->far_set_size);
657                         far_set_start = last_far_set_start;
658                 }
659         }
660
661         offset = sector & geo->chunk_mask;
662         if (geo->far_offset) {
663                 int fc;
664                 chunk = sector >> geo->chunk_shift;
665                 fc = sector_div(chunk, geo->far_copies);
666                 dev -= fc * geo->near_copies;
667                 if (dev < far_set_start)
668                         dev += far_set_size;
669         } else {
670                 while (sector >= geo->stride) {
671                         sector -= geo->stride;
672                         if (dev < (geo->near_copies + far_set_start))
673                                 dev += far_set_size - geo->near_copies;
674                         else
675                                 dev -= geo->near_copies;
676                 }
677                 chunk = sector >> geo->chunk_shift;
678         }
679         vchunk = chunk * geo->raid_disks + dev;
680         sector_div(vchunk, geo->near_copies);
681         return (vchunk << geo->chunk_shift) + offset;
682 }
683
684 /*
685  * This routine returns the disk from which the requested read should
686  * be done. There is a per-array 'next expected sequential IO' sector
687  * number - if this matches on the next IO then we use the last disk.
688  * There is also a per-disk 'last know head position' sector that is
689  * maintained from IRQ contexts, both the normal and the resync IO
690  * completion handlers update this position correctly. If there is no
691  * perfect sequential match then we pick the disk whose head is closest.
692  *
693  * If there are 2 mirrors in the same 2 devices, performance degrades
694  * because position is mirror, not device based.
695  *
696  * The rdev for the device selected will have nr_pending incremented.
697  */
698
699 /*
700  * FIXME: possibly should rethink readbalancing and do it differently
701  * depending on near_copies / far_copies geometry.
702  */
703 static struct md_rdev *read_balance(struct r10conf *conf,
704                                     struct r10bio *r10_bio,
705                                     int *max_sectors)
706 {
707         const sector_t this_sector = r10_bio->sector;
708         int disk, slot;
709         int sectors = r10_bio->sectors;
710         int best_good_sectors;
711         sector_t new_distance, best_dist;
712         struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
713         int do_balance;
714         int best_dist_slot, best_pending_slot;
715         bool has_nonrot_disk = false;
716         unsigned int min_pending;
717         struct geom *geo = &conf->geo;
718
719         raid10_find_phys(conf, r10_bio);
720         rcu_read_lock();
721         best_dist_slot = -1;
722         min_pending = UINT_MAX;
723         best_dist_rdev = NULL;
724         best_pending_rdev = NULL;
725         best_dist = MaxSector;
726         best_good_sectors = 0;
727         do_balance = 1;
728         clear_bit(R10BIO_FailFast, &r10_bio->state);
729         /*
730          * Check if we can balance. We can balance on the whole
731          * device if no resync is going on (recovery is ok), or below
732          * the resync window. We take the first readable disk when
733          * above the resync window.
734          */
735         if ((conf->mddev->recovery_cp < MaxSector
736              && (this_sector + sectors >= conf->next_resync)) ||
737             (mddev_is_clustered(conf->mddev) &&
738              md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
739                                             this_sector + sectors)))
740                 do_balance = 0;
741
742         for (slot = 0; slot < conf->copies ; slot++) {
743                 sector_t first_bad;
744                 int bad_sectors;
745                 sector_t dev_sector;
746                 unsigned int pending;
747                 bool nonrot;
748
749                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
750                         continue;
751                 disk = r10_bio->devs[slot].devnum;
752                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
753                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
754                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
755                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
756                 if (rdev == NULL ||
757                     test_bit(Faulty, &rdev->flags))
758                         continue;
759                 if (!test_bit(In_sync, &rdev->flags) &&
760                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
761                         continue;
762
763                 dev_sector = r10_bio->devs[slot].addr;
764                 if (is_badblock(rdev, dev_sector, sectors,
765                                 &first_bad, &bad_sectors)) {
766                         if (best_dist < MaxSector)
767                                 /* Already have a better slot */
768                                 continue;
769                         if (first_bad <= dev_sector) {
770                                 /* Cannot read here.  If this is the
771                                  * 'primary' device, then we must not read
772                                  * beyond 'bad_sectors' from another device.
773                                  */
774                                 bad_sectors -= (dev_sector - first_bad);
775                                 if (!do_balance && sectors > bad_sectors)
776                                         sectors = bad_sectors;
777                                 if (best_good_sectors > sectors)
778                                         best_good_sectors = sectors;
779                         } else {
780                                 sector_t good_sectors =
781                                         first_bad - dev_sector;
782                                 if (good_sectors > best_good_sectors) {
783                                         best_good_sectors = good_sectors;
784                                         best_dist_slot = slot;
785                                         best_dist_rdev = rdev;
786                                 }
787                                 if (!do_balance)
788                                         /* Must read from here */
789                                         break;
790                         }
791                         continue;
792                 } else
793                         best_good_sectors = sectors;
794
795                 if (!do_balance)
796                         break;
797
798                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
799                 has_nonrot_disk |= nonrot;
800                 pending = atomic_read(&rdev->nr_pending);
801                 if (min_pending > pending && nonrot) {
802                         min_pending = pending;
803                         best_pending_slot = slot;
804                         best_pending_rdev = rdev;
805                 }
806
807                 if (best_dist_slot >= 0)
808                         /* At least 2 disks to choose from so failfast is OK */
809                         set_bit(R10BIO_FailFast, &r10_bio->state);
810                 /* This optimisation is debatable, and completely destroys
811                  * sequential read speed for 'far copies' arrays.  So only
812                  * keep it for 'near' arrays, and review those later.
813                  */
814                 if (geo->near_copies > 1 && !pending)
815                         new_distance = 0;
816
817                 /* for far > 1 always use the lowest address */
818                 else if (geo->far_copies > 1)
819                         new_distance = r10_bio->devs[slot].addr;
820                 else
821                         new_distance = abs(r10_bio->devs[slot].addr -
822                                            conf->mirrors[disk].head_position);
823
824                 if (new_distance < best_dist) {
825                         best_dist = new_distance;
826                         best_dist_slot = slot;
827                         best_dist_rdev = rdev;
828                 }
829         }
830         if (slot >= conf->copies) {
831                 if (has_nonrot_disk) {
832                         slot = best_pending_slot;
833                         rdev = best_pending_rdev;
834                 } else {
835                         slot = best_dist_slot;
836                         rdev = best_dist_rdev;
837                 }
838         }
839
840         if (slot >= 0) {
841                 atomic_inc(&rdev->nr_pending);
842                 r10_bio->read_slot = slot;
843         } else
844                 rdev = NULL;
845         rcu_read_unlock();
846         *max_sectors = best_good_sectors;
847
848         return rdev;
849 }
850
851 static int raid10_congested(struct mddev *mddev, int bits)
852 {
853         struct r10conf *conf = mddev->private;
854         int i, ret = 0;
855
856         if ((bits & (1 << WB_async_congested)) &&
857             conf->pending_count >= max_queued_requests)
858                 return 1;
859
860         rcu_read_lock();
861         for (i = 0;
862              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
863                      && ret == 0;
864              i++) {
865                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
866                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
867                         struct request_queue *q = bdev_get_queue(rdev->bdev);
868
869                         ret |= bdi_congested(q->backing_dev_info, bits);
870                 }
871         }
872         rcu_read_unlock();
873         return ret;
874 }
875
876 static void flush_pending_writes(struct r10conf *conf)
877 {
878         /* Any writes that have been queued but are awaiting
879          * bitmap updates get flushed here.
880          */
881         spin_lock_irq(&conf->device_lock);
882
883         if (conf->pending_bio_list.head) {
884                 struct blk_plug plug;
885                 struct bio *bio;
886
887                 bio = bio_list_get(&conf->pending_bio_list);
888                 conf->pending_count = 0;
889                 spin_unlock_irq(&conf->device_lock);
890
891                 /*
892                  * As this is called in a wait_event() loop (see freeze_array),
893                  * current->state might be TASK_UNINTERRUPTIBLE which will
894                  * cause a warning when we prepare to wait again.  As it is
895                  * rare that this path is taken, it is perfectly safe to force
896                  * us to go around the wait_event() loop again, so the warning
897                  * is a false-positive. Silence the warning by resetting
898                  * thread state
899                  */
900                 __set_current_state(TASK_RUNNING);
901
902                 blk_start_plug(&plug);
903                 /* flush any pending bitmap writes to disk
904                  * before proceeding w/ I/O */
905                 md_bitmap_unplug(conf->mddev->bitmap);
906                 wake_up(&conf->wait_barrier);
907
908                 while (bio) { /* submit pending writes */
909                         struct bio *next = bio->bi_next;
910                         struct md_rdev *rdev = (void*)bio->bi_disk;
911                         bio->bi_next = NULL;
912                         bio_set_dev(bio, rdev->bdev);
913                         if (test_bit(Faulty, &rdev->flags)) {
914                                 bio_io_error(bio);
915                         } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
916                                             !blk_queue_discard(bio->bi_disk->queue)))
917                                 /* Just ignore it */
918                                 bio_endio(bio);
919                         else
920                                 generic_make_request(bio);
921                         bio = next;
922                 }
923                 blk_finish_plug(&plug);
924         } else
925                 spin_unlock_irq(&conf->device_lock);
926 }
927
928 /* Barriers....
929  * Sometimes we need to suspend IO while we do something else,
930  * either some resync/recovery, or reconfigure the array.
931  * To do this we raise a 'barrier'.
932  * The 'barrier' is a counter that can be raised multiple times
933  * to count how many activities are happening which preclude
934  * normal IO.
935  * We can only raise the barrier if there is no pending IO.
936  * i.e. if nr_pending == 0.
937  * We choose only to raise the barrier if no-one is waiting for the
938  * barrier to go down.  This means that as soon as an IO request
939  * is ready, no other operations which require a barrier will start
940  * until the IO request has had a chance.
941  *
942  * So: regular IO calls 'wait_barrier'.  When that returns there
943  *    is no backgroup IO happening,  It must arrange to call
944  *    allow_barrier when it has finished its IO.
945  * backgroup IO calls must call raise_barrier.  Once that returns
946  *    there is no normal IO happeing.  It must arrange to call
947  *    lower_barrier when the particular background IO completes.
948  */
949
950 static void raise_barrier(struct r10conf *conf, int force)
951 {
952         BUG_ON(force && !conf->barrier);
953         spin_lock_irq(&conf->resync_lock);
954
955         /* Wait until no block IO is waiting (unless 'force') */
956         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
957                             conf->resync_lock);
958
959         /* block any new IO from starting */
960         conf->barrier++;
961
962         /* Now wait for all pending IO to complete */
963         wait_event_lock_irq(conf->wait_barrier,
964                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
965                             conf->resync_lock);
966
967         spin_unlock_irq(&conf->resync_lock);
968 }
969
970 static void lower_barrier(struct r10conf *conf)
971 {
972         unsigned long flags;
973         spin_lock_irqsave(&conf->resync_lock, flags);
974         conf->barrier--;
975         spin_unlock_irqrestore(&conf->resync_lock, flags);
976         wake_up(&conf->wait_barrier);
977 }
978
979 static void wait_barrier(struct r10conf *conf)
980 {
981         spin_lock_irq(&conf->resync_lock);
982         if (conf->barrier) {
983                 conf->nr_waiting++;
984                 /* Wait for the barrier to drop.
985                  * However if there are already pending
986                  * requests (preventing the barrier from
987                  * rising completely), and the
988                  * pre-process bio queue isn't empty,
989                  * then don't wait, as we need to empty
990                  * that queue to get the nr_pending
991                  * count down.
992                  */
993                 raid10_log(conf->mddev, "wait barrier");
994                 wait_event_lock_irq(conf->wait_barrier,
995                                     !conf->barrier ||
996                                     (atomic_read(&conf->nr_pending) &&
997                                      current->bio_list &&
998                                      (!bio_list_empty(&current->bio_list[0]) ||
999                                       !bio_list_empty(&current->bio_list[1]))),
1000                                     conf->resync_lock);
1001                 conf->nr_waiting--;
1002                 if (!conf->nr_waiting)
1003                         wake_up(&conf->wait_barrier);
1004         }
1005         atomic_inc(&conf->nr_pending);
1006         spin_unlock_irq(&conf->resync_lock);
1007 }
1008
1009 static void allow_barrier(struct r10conf *conf)
1010 {
1011         if ((atomic_dec_and_test(&conf->nr_pending)) ||
1012                         (conf->array_freeze_pending))
1013                 wake_up(&conf->wait_barrier);
1014 }
1015
1016 static void freeze_array(struct r10conf *conf, int extra)
1017 {
1018         /* stop syncio and normal IO and wait for everything to
1019          * go quiet.
1020          * We increment barrier and nr_waiting, and then
1021          * wait until nr_pending match nr_queued+extra
1022          * This is called in the context of one normal IO request
1023          * that has failed. Thus any sync request that might be pending
1024          * will be blocked by nr_pending, and we need to wait for
1025          * pending IO requests to complete or be queued for re-try.
1026          * Thus the number queued (nr_queued) plus this request (extra)
1027          * must match the number of pending IOs (nr_pending) before
1028          * we continue.
1029          */
1030         spin_lock_irq(&conf->resync_lock);
1031         conf->array_freeze_pending++;
1032         conf->barrier++;
1033         conf->nr_waiting++;
1034         wait_event_lock_irq_cmd(conf->wait_barrier,
1035                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1036                                 conf->resync_lock,
1037                                 flush_pending_writes(conf));
1038
1039         conf->array_freeze_pending--;
1040         spin_unlock_irq(&conf->resync_lock);
1041 }
1042
1043 static void unfreeze_array(struct r10conf *conf)
1044 {
1045         /* reverse the effect of the freeze */
1046         spin_lock_irq(&conf->resync_lock);
1047         conf->barrier--;
1048         conf->nr_waiting--;
1049         wake_up(&conf->wait_barrier);
1050         spin_unlock_irq(&conf->resync_lock);
1051 }
1052
1053 static sector_t choose_data_offset(struct r10bio *r10_bio,
1054                                    struct md_rdev *rdev)
1055 {
1056         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1057             test_bit(R10BIO_Previous, &r10_bio->state))
1058                 return rdev->data_offset;
1059         else
1060                 return rdev->new_data_offset;
1061 }
1062
1063 struct raid10_plug_cb {
1064         struct blk_plug_cb      cb;
1065         struct bio_list         pending;
1066         int                     pending_cnt;
1067 };
1068
1069 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1070 {
1071         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1072                                                    cb);
1073         struct mddev *mddev = plug->cb.data;
1074         struct r10conf *conf = mddev->private;
1075         struct bio *bio;
1076
1077         if (from_schedule || current->bio_list) {
1078                 spin_lock_irq(&conf->device_lock);
1079                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1080                 conf->pending_count += plug->pending_cnt;
1081                 spin_unlock_irq(&conf->device_lock);
1082                 wake_up(&conf->wait_barrier);
1083                 md_wakeup_thread(mddev->thread);
1084                 kfree(plug);
1085                 return;
1086         }
1087
1088         /* we aren't scheduling, so we can do the write-out directly. */
1089         bio = bio_list_get(&plug->pending);
1090         md_bitmap_unplug(mddev->bitmap);
1091         wake_up(&conf->wait_barrier);
1092
1093         while (bio) { /* submit pending writes */
1094                 struct bio *next = bio->bi_next;
1095                 struct md_rdev *rdev = (void*)bio->bi_disk;
1096                 bio->bi_next = NULL;
1097                 bio_set_dev(bio, rdev->bdev);
1098                 if (test_bit(Faulty, &rdev->flags)) {
1099                         bio_io_error(bio);
1100                 } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1101                                     !blk_queue_discard(bio->bi_disk->queue)))
1102                         /* Just ignore it */
1103                         bio_endio(bio);
1104                 else
1105                         generic_make_request(bio);
1106                 bio = next;
1107         }
1108         kfree(plug);
1109 }
1110
1111 /*
1112  * 1. Register the new request and wait if the reconstruction thread has put
1113  * up a bar for new requests. Continue immediately if no resync is active
1114  * currently.
1115  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1116  */
1117 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1118                                  struct bio *bio, sector_t sectors)
1119 {
1120         wait_barrier(conf);
1121         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1122             bio->bi_iter.bi_sector < conf->reshape_progress &&
1123             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1124                 raid10_log(conf->mddev, "wait reshape");
1125                 allow_barrier(conf);
1126                 wait_event(conf->wait_barrier,
1127                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1128                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1129                            sectors);
1130                 wait_barrier(conf);
1131         }
1132 }
1133
1134 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1135                                 struct r10bio *r10_bio)
1136 {
1137         struct r10conf *conf = mddev->private;
1138         struct bio *read_bio;
1139         const int op = bio_op(bio);
1140         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1141         int max_sectors;
1142         struct md_rdev *rdev;
1143         char b[BDEVNAME_SIZE];
1144         int slot = r10_bio->read_slot;
1145         struct md_rdev *err_rdev = NULL;
1146         gfp_t gfp = GFP_NOIO;
1147
1148         if (r10_bio->devs[slot].rdev) {
1149                 /*
1150                  * This is an error retry, but we cannot
1151                  * safely dereference the rdev in the r10_bio,
1152                  * we must use the one in conf.
1153                  * If it has already been disconnected (unlikely)
1154                  * we lose the device name in error messages.
1155                  */
1156                 int disk;
1157                 /*
1158                  * As we are blocking raid10, it is a little safer to
1159                  * use __GFP_HIGH.
1160                  */
1161                 gfp = GFP_NOIO | __GFP_HIGH;
1162
1163                 rcu_read_lock();
1164                 disk = r10_bio->devs[slot].devnum;
1165                 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1166                 if (err_rdev)
1167                         bdevname(err_rdev->bdev, b);
1168                 else {
1169                         strcpy(b, "???");
1170                         /* This never gets dereferenced */
1171                         err_rdev = r10_bio->devs[slot].rdev;
1172                 }
1173                 rcu_read_unlock();
1174         }
1175
1176         regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1177         rdev = read_balance(conf, r10_bio, &max_sectors);
1178         if (!rdev) {
1179                 if (err_rdev) {
1180                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1181                                             mdname(mddev), b,
1182                                             (unsigned long long)r10_bio->sector);
1183                 }
1184                 raid_end_bio_io(r10_bio);
1185                 return;
1186         }
1187         if (err_rdev)
1188                 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1189                                    mdname(mddev),
1190                                    bdevname(rdev->bdev, b),
1191                                    (unsigned long long)r10_bio->sector);
1192         if (max_sectors < bio_sectors(bio)) {
1193                 struct bio *split = bio_split(bio, max_sectors,
1194                                               gfp, &conf->bio_split);
1195                 bio_chain(split, bio);
1196                 allow_barrier(conf);
1197                 generic_make_request(bio);
1198                 wait_barrier(conf);
1199                 bio = split;
1200                 r10_bio->master_bio = bio;
1201                 r10_bio->sectors = max_sectors;
1202         }
1203         slot = r10_bio->read_slot;
1204
1205         read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1206
1207         r10_bio->devs[slot].bio = read_bio;
1208         r10_bio->devs[slot].rdev = rdev;
1209
1210         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1211                 choose_data_offset(r10_bio, rdev);
1212         bio_set_dev(read_bio, rdev->bdev);
1213         read_bio->bi_end_io = raid10_end_read_request;
1214         bio_set_op_attrs(read_bio, op, do_sync);
1215         if (test_bit(FailFast, &rdev->flags) &&
1216             test_bit(R10BIO_FailFast, &r10_bio->state))
1217                 read_bio->bi_opf |= MD_FAILFAST;
1218         read_bio->bi_private = r10_bio;
1219
1220         if (mddev->gendisk)
1221                 trace_block_bio_remap(read_bio->bi_disk->queue,
1222                                       read_bio, disk_devt(mddev->gendisk),
1223                                       r10_bio->sector);
1224         generic_make_request(read_bio);
1225         return;
1226 }
1227
1228 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1229                                   struct bio *bio, bool replacement,
1230                                   int n_copy)
1231 {
1232         const int op = bio_op(bio);
1233         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1234         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1235         unsigned long flags;
1236         struct blk_plug_cb *cb;
1237         struct raid10_plug_cb *plug = NULL;
1238         struct r10conf *conf = mddev->private;
1239         struct md_rdev *rdev;
1240         int devnum = r10_bio->devs[n_copy].devnum;
1241         struct bio *mbio;
1242
1243         if (replacement) {
1244                 rdev = conf->mirrors[devnum].replacement;
1245                 if (rdev == NULL) {
1246                         /* Replacement just got moved to main 'rdev' */
1247                         smp_mb();
1248                         rdev = conf->mirrors[devnum].rdev;
1249                 }
1250         } else
1251                 rdev = conf->mirrors[devnum].rdev;
1252
1253         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1254         if (replacement)
1255                 r10_bio->devs[n_copy].repl_bio = mbio;
1256         else
1257                 r10_bio->devs[n_copy].bio = mbio;
1258
1259         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1260                                    choose_data_offset(r10_bio, rdev));
1261         bio_set_dev(mbio, rdev->bdev);
1262         mbio->bi_end_io = raid10_end_write_request;
1263         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1264         if (!replacement && test_bit(FailFast,
1265                                      &conf->mirrors[devnum].rdev->flags)
1266                          && enough(conf, devnum))
1267                 mbio->bi_opf |= MD_FAILFAST;
1268         mbio->bi_private = r10_bio;
1269
1270         if (conf->mddev->gendisk)
1271                 trace_block_bio_remap(mbio->bi_disk->queue,
1272                                       mbio, disk_devt(conf->mddev->gendisk),
1273                                       r10_bio->sector);
1274         /* flush_pending_writes() needs access to the rdev so...*/
1275         mbio->bi_disk = (void *)rdev;
1276
1277         atomic_inc(&r10_bio->remaining);
1278
1279         cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1280         if (cb)
1281                 plug = container_of(cb, struct raid10_plug_cb, cb);
1282         else
1283                 plug = NULL;
1284         if (plug) {
1285                 bio_list_add(&plug->pending, mbio);
1286                 plug->pending_cnt++;
1287         } else {
1288                 spin_lock_irqsave(&conf->device_lock, flags);
1289                 bio_list_add(&conf->pending_bio_list, mbio);
1290                 conf->pending_count++;
1291                 spin_unlock_irqrestore(&conf->device_lock, flags);
1292                 md_wakeup_thread(mddev->thread);
1293         }
1294 }
1295
1296 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1297                                  struct r10bio *r10_bio)
1298 {
1299         struct r10conf *conf = mddev->private;
1300         int i;
1301         struct md_rdev *blocked_rdev;
1302         sector_t sectors;
1303         int max_sectors;
1304
1305         if ((mddev_is_clustered(mddev) &&
1306              md_cluster_ops->area_resyncing(mddev, WRITE,
1307                                             bio->bi_iter.bi_sector,
1308                                             bio_end_sector(bio)))) {
1309                 DEFINE_WAIT(w);
1310                 for (;;) {
1311                         prepare_to_wait(&conf->wait_barrier,
1312                                         &w, TASK_IDLE);
1313                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1314                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1315                                 break;
1316                         schedule();
1317                 }
1318                 finish_wait(&conf->wait_barrier, &w);
1319         }
1320
1321         sectors = r10_bio->sectors;
1322         regular_request_wait(mddev, conf, bio, sectors);
1323         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1324             (mddev->reshape_backwards
1325              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1326                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1327              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1328                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1329                 /* Need to update reshape_position in metadata */
1330                 mddev->reshape_position = conf->reshape_progress;
1331                 set_mask_bits(&mddev->sb_flags, 0,
1332                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1333                 md_wakeup_thread(mddev->thread);
1334                 raid10_log(conf->mddev, "wait reshape metadata");
1335                 wait_event(mddev->sb_wait,
1336                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1337
1338                 conf->reshape_safe = mddev->reshape_position;
1339         }
1340
1341         if (conf->pending_count >= max_queued_requests) {
1342                 md_wakeup_thread(mddev->thread);
1343                 raid10_log(mddev, "wait queued");
1344                 wait_event(conf->wait_barrier,
1345                            conf->pending_count < max_queued_requests);
1346         }
1347         /* first select target devices under rcu_lock and
1348          * inc refcount on their rdev.  Record them by setting
1349          * bios[x] to bio
1350          * If there are known/acknowledged bad blocks on any device
1351          * on which we have seen a write error, we want to avoid
1352          * writing to those blocks.  This potentially requires several
1353          * writes to write around the bad blocks.  Each set of writes
1354          * gets its own r10_bio with a set of bios attached.
1355          */
1356
1357         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1358         raid10_find_phys(conf, r10_bio);
1359 retry_write:
1360         blocked_rdev = NULL;
1361         rcu_read_lock();
1362         max_sectors = r10_bio->sectors;
1363
1364         for (i = 0;  i < conf->copies; i++) {
1365                 int d = r10_bio->devs[i].devnum;
1366                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1367                 struct md_rdev *rrdev = rcu_dereference(
1368                         conf->mirrors[d].replacement);
1369                 if (rdev == rrdev)
1370                         rrdev = NULL;
1371                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1372                         atomic_inc(&rdev->nr_pending);
1373                         blocked_rdev = rdev;
1374                         break;
1375                 }
1376                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1377                         atomic_inc(&rrdev->nr_pending);
1378                         blocked_rdev = rrdev;
1379                         break;
1380                 }
1381                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1382                         rdev = NULL;
1383                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1384                         rrdev = NULL;
1385
1386                 r10_bio->devs[i].bio = NULL;
1387                 r10_bio->devs[i].repl_bio = NULL;
1388
1389                 if (!rdev && !rrdev) {
1390                         set_bit(R10BIO_Degraded, &r10_bio->state);
1391                         continue;
1392                 }
1393                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1394                         sector_t first_bad;
1395                         sector_t dev_sector = r10_bio->devs[i].addr;
1396                         int bad_sectors;
1397                         int is_bad;
1398
1399                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1400                                              &first_bad, &bad_sectors);
1401                         if (is_bad < 0) {
1402                                 /* Mustn't write here until the bad block
1403                                  * is acknowledged
1404                                  */
1405                                 atomic_inc(&rdev->nr_pending);
1406                                 set_bit(BlockedBadBlocks, &rdev->flags);
1407                                 blocked_rdev = rdev;
1408                                 break;
1409                         }
1410                         if (is_bad && first_bad <= dev_sector) {
1411                                 /* Cannot write here at all */
1412                                 bad_sectors -= (dev_sector - first_bad);
1413                                 if (bad_sectors < max_sectors)
1414                                         /* Mustn't write more than bad_sectors
1415                                          * to other devices yet
1416                                          */
1417                                         max_sectors = bad_sectors;
1418                                 /* We don't set R10BIO_Degraded as that
1419                                  * only applies if the disk is missing,
1420                                  * so it might be re-added, and we want to
1421                                  * know to recover this chunk.
1422                                  * In this case the device is here, and the
1423                                  * fact that this chunk is not in-sync is
1424                                  * recorded in the bad block log.
1425                                  */
1426                                 continue;
1427                         }
1428                         if (is_bad) {
1429                                 int good_sectors = first_bad - dev_sector;
1430                                 if (good_sectors < max_sectors)
1431                                         max_sectors = good_sectors;
1432                         }
1433                 }
1434                 if (rdev) {
1435                         r10_bio->devs[i].bio = bio;
1436                         atomic_inc(&rdev->nr_pending);
1437                 }
1438                 if (rrdev) {
1439                         r10_bio->devs[i].repl_bio = bio;
1440                         atomic_inc(&rrdev->nr_pending);
1441                 }
1442         }
1443         rcu_read_unlock();
1444
1445         if (unlikely(blocked_rdev)) {
1446                 /* Have to wait for this device to get unblocked, then retry */
1447                 int j;
1448                 int d;
1449
1450                 for (j = 0; j < i; j++) {
1451                         if (r10_bio->devs[j].bio) {
1452                                 d = r10_bio->devs[j].devnum;
1453                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1454                         }
1455                         if (r10_bio->devs[j].repl_bio) {
1456                                 struct md_rdev *rdev;
1457                                 d = r10_bio->devs[j].devnum;
1458                                 rdev = conf->mirrors[d].replacement;
1459                                 if (!rdev) {
1460                                         /* Race with remove_disk */
1461                                         smp_mb();
1462                                         rdev = conf->mirrors[d].rdev;
1463                                 }
1464                                 rdev_dec_pending(rdev, mddev);
1465                         }
1466                 }
1467                 allow_barrier(conf);
1468                 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1469                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1470                 wait_barrier(conf);
1471                 goto retry_write;
1472         }
1473
1474         if (max_sectors < r10_bio->sectors)
1475                 r10_bio->sectors = max_sectors;
1476
1477         if (r10_bio->sectors < bio_sectors(bio)) {
1478                 struct bio *split = bio_split(bio, r10_bio->sectors,
1479                                               GFP_NOIO, &conf->bio_split);
1480                 bio_chain(split, bio);
1481                 allow_barrier(conf);
1482                 generic_make_request(bio);
1483                 wait_barrier(conf);
1484                 bio = split;
1485                 r10_bio->master_bio = bio;
1486         }
1487
1488         atomic_set(&r10_bio->remaining, 1);
1489         md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1490
1491         for (i = 0; i < conf->copies; i++) {
1492                 if (r10_bio->devs[i].bio)
1493                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1494                 if (r10_bio->devs[i].repl_bio)
1495                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1496         }
1497         one_write_done(r10_bio);
1498 }
1499
1500 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1501 {
1502         struct r10conf *conf = mddev->private;
1503         struct r10bio *r10_bio;
1504
1505         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1506
1507         r10_bio->master_bio = bio;
1508         r10_bio->sectors = sectors;
1509
1510         r10_bio->mddev = mddev;
1511         r10_bio->sector = bio->bi_iter.bi_sector;
1512         r10_bio->state = 0;
1513         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1514
1515         if (bio_data_dir(bio) == READ)
1516                 raid10_read_request(mddev, bio, r10_bio);
1517         else
1518                 raid10_write_request(mddev, bio, r10_bio);
1519 }
1520
1521 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1522 {
1523         struct r10conf *conf = mddev->private;
1524         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1525         int chunk_sects = chunk_mask + 1;
1526         int sectors = bio_sectors(bio);
1527
1528         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1529             && md_flush_request(mddev, bio))
1530                 return true;
1531
1532         if (!md_write_start(mddev, bio))
1533                 return false;
1534
1535         /*
1536          * If this request crosses a chunk boundary, we need to split
1537          * it.
1538          */
1539         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1540                      sectors > chunk_sects
1541                      && (conf->geo.near_copies < conf->geo.raid_disks
1542                          || conf->prev.near_copies <
1543                          conf->prev.raid_disks)))
1544                 sectors = chunk_sects -
1545                         (bio->bi_iter.bi_sector &
1546                          (chunk_sects - 1));
1547         __make_request(mddev, bio, sectors);
1548
1549         /* In case raid10d snuck in to freeze_array */
1550         wake_up(&conf->wait_barrier);
1551         return true;
1552 }
1553
1554 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1555 {
1556         struct r10conf *conf = mddev->private;
1557         int i;
1558
1559         if (conf->geo.near_copies < conf->geo.raid_disks)
1560                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1561         if (conf->geo.near_copies > 1)
1562                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1563         if (conf->geo.far_copies > 1) {
1564                 if (conf->geo.far_offset)
1565                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1566                 else
1567                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1568                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1569                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1570         }
1571         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1572                                         conf->geo.raid_disks - mddev->degraded);
1573         rcu_read_lock();
1574         for (i = 0; i < conf->geo.raid_disks; i++) {
1575                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1576                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1577         }
1578         rcu_read_unlock();
1579         seq_printf(seq, "]");
1580 }
1581
1582 /* check if there are enough drives for
1583  * every block to appear on atleast one.
1584  * Don't consider the device numbered 'ignore'
1585  * as we might be about to remove it.
1586  */
1587 static int _enough(struct r10conf *conf, int previous, int ignore)
1588 {
1589         int first = 0;
1590         int has_enough = 0;
1591         int disks, ncopies;
1592         if (previous) {
1593                 disks = conf->prev.raid_disks;
1594                 ncopies = conf->prev.near_copies;
1595         } else {
1596                 disks = conf->geo.raid_disks;
1597                 ncopies = conf->geo.near_copies;
1598         }
1599
1600         rcu_read_lock();
1601         do {
1602                 int n = conf->copies;
1603                 int cnt = 0;
1604                 int this = first;
1605                 while (n--) {
1606                         struct md_rdev *rdev;
1607                         if (this != ignore &&
1608                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1609                             test_bit(In_sync, &rdev->flags))
1610                                 cnt++;
1611                         this = (this+1) % disks;
1612                 }
1613                 if (cnt == 0)
1614                         goto out;
1615                 first = (first + ncopies) % disks;
1616         } while (first != 0);
1617         has_enough = 1;
1618 out:
1619         rcu_read_unlock();
1620         return has_enough;
1621 }
1622
1623 static int enough(struct r10conf *conf, int ignore)
1624 {
1625         /* when calling 'enough', both 'prev' and 'geo' must
1626          * be stable.
1627          * This is ensured if ->reconfig_mutex or ->device_lock
1628          * is held.
1629          */
1630         return _enough(conf, 0, ignore) &&
1631                 _enough(conf, 1, ignore);
1632 }
1633
1634 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1635 {
1636         char b[BDEVNAME_SIZE];
1637         struct r10conf *conf = mddev->private;
1638         unsigned long flags;
1639
1640         /*
1641          * If it is not operational, then we have already marked it as dead
1642          * else if it is the last working disks with "fail_last_dev == false",
1643          * ignore the error, let the next level up know.
1644          * else mark the drive as failed
1645          */
1646         spin_lock_irqsave(&conf->device_lock, flags);
1647         if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1648             && !enough(conf, rdev->raid_disk)) {
1649                 /*
1650                  * Don't fail the drive, just return an IO error.
1651                  */
1652                 spin_unlock_irqrestore(&conf->device_lock, flags);
1653                 return;
1654         }
1655         if (test_and_clear_bit(In_sync, &rdev->flags))
1656                 mddev->degraded++;
1657         /*
1658          * If recovery is running, make sure it aborts.
1659          */
1660         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1661         set_bit(Blocked, &rdev->flags);
1662         set_bit(Faulty, &rdev->flags);
1663         set_mask_bits(&mddev->sb_flags, 0,
1664                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1665         spin_unlock_irqrestore(&conf->device_lock, flags);
1666         pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1667                 "md/raid10:%s: Operation continuing on %d devices.\n",
1668                 mdname(mddev), bdevname(rdev->bdev, b),
1669                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1670 }
1671
1672 static void print_conf(struct r10conf *conf)
1673 {
1674         int i;
1675         struct md_rdev *rdev;
1676
1677         pr_debug("RAID10 conf printout:\n");
1678         if (!conf) {
1679                 pr_debug("(!conf)\n");
1680                 return;
1681         }
1682         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1683                  conf->geo.raid_disks);
1684
1685         /* This is only called with ->reconfix_mutex held, so
1686          * rcu protection of rdev is not needed */
1687         for (i = 0; i < conf->geo.raid_disks; i++) {
1688                 char b[BDEVNAME_SIZE];
1689                 rdev = conf->mirrors[i].rdev;
1690                 if (rdev)
1691                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1692                                  i, !test_bit(In_sync, &rdev->flags),
1693                                  !test_bit(Faulty, &rdev->flags),
1694                                  bdevname(rdev->bdev,b));
1695         }
1696 }
1697
1698 static void close_sync(struct r10conf *conf)
1699 {
1700         wait_barrier(conf);
1701         allow_barrier(conf);
1702
1703         mempool_exit(&conf->r10buf_pool);
1704 }
1705
1706 static int raid10_spare_active(struct mddev *mddev)
1707 {
1708         int i;
1709         struct r10conf *conf = mddev->private;
1710         struct raid10_info *tmp;
1711         int count = 0;
1712         unsigned long flags;
1713
1714         /*
1715          * Find all non-in_sync disks within the RAID10 configuration
1716          * and mark them in_sync
1717          */
1718         for (i = 0; i < conf->geo.raid_disks; i++) {
1719                 tmp = conf->mirrors + i;
1720                 if (tmp->replacement
1721                     && tmp->replacement->recovery_offset == MaxSector
1722                     && !test_bit(Faulty, &tmp->replacement->flags)
1723                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1724                         /* Replacement has just become active */
1725                         if (!tmp->rdev
1726                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1727                                 count++;
1728                         if (tmp->rdev) {
1729                                 /* Replaced device not technically faulty,
1730                                  * but we need to be sure it gets removed
1731                                  * and never re-added.
1732                                  */
1733                                 set_bit(Faulty, &tmp->rdev->flags);
1734                                 sysfs_notify_dirent_safe(
1735                                         tmp->rdev->sysfs_state);
1736                         }
1737                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1738                 } else if (tmp->rdev
1739                            && tmp->rdev->recovery_offset == MaxSector
1740                            && !test_bit(Faulty, &tmp->rdev->flags)
1741                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1742                         count++;
1743                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1744                 }
1745         }
1746         spin_lock_irqsave(&conf->device_lock, flags);
1747         mddev->degraded -= count;
1748         spin_unlock_irqrestore(&conf->device_lock, flags);
1749
1750         print_conf(conf);
1751         return count;
1752 }
1753
1754 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1755 {
1756         struct r10conf *conf = mddev->private;
1757         int err = -EEXIST;
1758         int mirror;
1759         int first = 0;
1760         int last = conf->geo.raid_disks - 1;
1761
1762         if (mddev->recovery_cp < MaxSector)
1763                 /* only hot-add to in-sync arrays, as recovery is
1764                  * very different from resync
1765                  */
1766                 return -EBUSY;
1767         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1768                 return -EINVAL;
1769
1770         if (md_integrity_add_rdev(rdev, mddev))
1771                 return -ENXIO;
1772
1773         if (rdev->raid_disk >= 0)
1774                 first = last = rdev->raid_disk;
1775
1776         if (rdev->saved_raid_disk >= first &&
1777             rdev->saved_raid_disk < conf->geo.raid_disks &&
1778             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1779                 mirror = rdev->saved_raid_disk;
1780         else
1781                 mirror = first;
1782         for ( ; mirror <= last ; mirror++) {
1783                 struct raid10_info *p = &conf->mirrors[mirror];
1784                 if (p->recovery_disabled == mddev->recovery_disabled)
1785                         continue;
1786                 if (p->rdev) {
1787                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1788                             p->replacement != NULL)
1789                                 continue;
1790                         clear_bit(In_sync, &rdev->flags);
1791                         set_bit(Replacement, &rdev->flags);
1792                         rdev->raid_disk = mirror;
1793                         err = 0;
1794                         if (mddev->gendisk)
1795                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1796                                                   rdev->data_offset << 9);
1797                         conf->fullsync = 1;
1798                         rcu_assign_pointer(p->replacement, rdev);
1799                         break;
1800                 }
1801
1802                 if (mddev->gendisk)
1803                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1804                                           rdev->data_offset << 9);
1805
1806                 p->head_position = 0;
1807                 p->recovery_disabled = mddev->recovery_disabled - 1;
1808                 rdev->raid_disk = mirror;
1809                 err = 0;
1810                 if (rdev->saved_raid_disk != mirror)
1811                         conf->fullsync = 1;
1812                 rcu_assign_pointer(p->rdev, rdev);
1813                 break;
1814         }
1815         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1816                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1817
1818         print_conf(conf);
1819         return err;
1820 }
1821
1822 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1823 {
1824         struct r10conf *conf = mddev->private;
1825         int err = 0;
1826         int number = rdev->raid_disk;
1827         struct md_rdev **rdevp;
1828         struct raid10_info *p = conf->mirrors + number;
1829
1830         print_conf(conf);
1831         if (rdev == p->rdev)
1832                 rdevp = &p->rdev;
1833         else if (rdev == p->replacement)
1834                 rdevp = &p->replacement;
1835         else
1836                 return 0;
1837
1838         if (test_bit(In_sync, &rdev->flags) ||
1839             atomic_read(&rdev->nr_pending)) {
1840                 err = -EBUSY;
1841                 goto abort;
1842         }
1843         /* Only remove non-faulty devices if recovery
1844          * is not possible.
1845          */
1846         if (!test_bit(Faulty, &rdev->flags) &&
1847             mddev->recovery_disabled != p->recovery_disabled &&
1848             (!p->replacement || p->replacement == rdev) &&
1849             number < conf->geo.raid_disks &&
1850             enough(conf, -1)) {
1851                 err = -EBUSY;
1852                 goto abort;
1853         }
1854         *rdevp = NULL;
1855         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1856                 synchronize_rcu();
1857                 if (atomic_read(&rdev->nr_pending)) {
1858                         /* lost the race, try later */
1859                         err = -EBUSY;
1860                         *rdevp = rdev;
1861                         goto abort;
1862                 }
1863         }
1864         if (p->replacement) {
1865                 /* We must have just cleared 'rdev' */
1866                 p->rdev = p->replacement;
1867                 clear_bit(Replacement, &p->replacement->flags);
1868                 smp_mb(); /* Make sure other CPUs may see both as identical
1869                            * but will never see neither -- if they are careful.
1870                            */
1871                 p->replacement = NULL;
1872         }
1873
1874         clear_bit(WantReplacement, &rdev->flags);
1875         err = md_integrity_register(mddev);
1876
1877 abort:
1878
1879         print_conf(conf);
1880         return err;
1881 }
1882
1883 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1884 {
1885         struct r10conf *conf = r10_bio->mddev->private;
1886
1887         if (!bio->bi_status)
1888                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1889         else
1890                 /* The write handler will notice the lack of
1891                  * R10BIO_Uptodate and record any errors etc
1892                  */
1893                 atomic_add(r10_bio->sectors,
1894                            &conf->mirrors[d].rdev->corrected_errors);
1895
1896         /* for reconstruct, we always reschedule after a read.
1897          * for resync, only after all reads
1898          */
1899         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1900         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1901             atomic_dec_and_test(&r10_bio->remaining)) {
1902                 /* we have read all the blocks,
1903                  * do the comparison in process context in raid10d
1904                  */
1905                 reschedule_retry(r10_bio);
1906         }
1907 }
1908
1909 static void end_sync_read(struct bio *bio)
1910 {
1911         struct r10bio *r10_bio = get_resync_r10bio(bio);
1912         struct r10conf *conf = r10_bio->mddev->private;
1913         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1914
1915         __end_sync_read(r10_bio, bio, d);
1916 }
1917
1918 static void end_reshape_read(struct bio *bio)
1919 {
1920         /* reshape read bio isn't allocated from r10buf_pool */
1921         struct r10bio *r10_bio = bio->bi_private;
1922
1923         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1924 }
1925
1926 static void end_sync_request(struct r10bio *r10_bio)
1927 {
1928         struct mddev *mddev = r10_bio->mddev;
1929
1930         while (atomic_dec_and_test(&r10_bio->remaining)) {
1931                 if (r10_bio->master_bio == NULL) {
1932                         /* the primary of several recovery bios */
1933                         sector_t s = r10_bio->sectors;
1934                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1935                             test_bit(R10BIO_WriteError, &r10_bio->state))
1936                                 reschedule_retry(r10_bio);
1937                         else
1938                                 put_buf(r10_bio);
1939                         md_done_sync(mddev, s, 1);
1940                         break;
1941                 } else {
1942                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1943                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1944                             test_bit(R10BIO_WriteError, &r10_bio->state))
1945                                 reschedule_retry(r10_bio);
1946                         else
1947                                 put_buf(r10_bio);
1948                         r10_bio = r10_bio2;
1949                 }
1950         }
1951 }
1952
1953 static void end_sync_write(struct bio *bio)
1954 {
1955         struct r10bio *r10_bio = get_resync_r10bio(bio);
1956         struct mddev *mddev = r10_bio->mddev;
1957         struct r10conf *conf = mddev->private;
1958         int d;
1959         sector_t first_bad;
1960         int bad_sectors;
1961         int slot;
1962         int repl;
1963         struct md_rdev *rdev = NULL;
1964
1965         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1966         if (repl)
1967                 rdev = conf->mirrors[d].replacement;
1968         else
1969                 rdev = conf->mirrors[d].rdev;
1970
1971         if (bio->bi_status) {
1972                 if (repl)
1973                         md_error(mddev, rdev);
1974                 else {
1975                         set_bit(WriteErrorSeen, &rdev->flags);
1976                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1977                                 set_bit(MD_RECOVERY_NEEDED,
1978                                         &rdev->mddev->recovery);
1979                         set_bit(R10BIO_WriteError, &r10_bio->state);
1980                 }
1981         } else if (is_badblock(rdev,
1982                              r10_bio->devs[slot].addr,
1983                              r10_bio->sectors,
1984                              &first_bad, &bad_sectors))
1985                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1986
1987         rdev_dec_pending(rdev, mddev);
1988
1989         end_sync_request(r10_bio);
1990 }
1991
1992 /*
1993  * Note: sync and recover and handled very differently for raid10
1994  * This code is for resync.
1995  * For resync, we read through virtual addresses and read all blocks.
1996  * If there is any error, we schedule a write.  The lowest numbered
1997  * drive is authoritative.
1998  * However requests come for physical address, so we need to map.
1999  * For every physical address there are raid_disks/copies virtual addresses,
2000  * which is always are least one, but is not necessarly an integer.
2001  * This means that a physical address can span multiple chunks, so we may
2002  * have to submit multiple io requests for a single sync request.
2003  */
2004 /*
2005  * We check if all blocks are in-sync and only write to blocks that
2006  * aren't in sync
2007  */
2008 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2009 {
2010         struct r10conf *conf = mddev->private;
2011         int i, first;
2012         struct bio *tbio, *fbio;
2013         int vcnt;
2014         struct page **tpages, **fpages;
2015
2016         atomic_set(&r10_bio->remaining, 1);
2017
2018         /* find the first device with a block */
2019         for (i=0; i<conf->copies; i++)
2020                 if (!r10_bio->devs[i].bio->bi_status)
2021                         break;
2022
2023         if (i == conf->copies)
2024                 goto done;
2025
2026         first = i;
2027         fbio = r10_bio->devs[i].bio;
2028         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2029         fbio->bi_iter.bi_idx = 0;
2030         fpages = get_resync_pages(fbio)->pages;
2031
2032         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2033         /* now find blocks with errors */
2034         for (i=0 ; i < conf->copies ; i++) {
2035                 int  j, d;
2036                 struct md_rdev *rdev;
2037                 struct resync_pages *rp;
2038
2039                 tbio = r10_bio->devs[i].bio;
2040
2041                 if (tbio->bi_end_io != end_sync_read)
2042                         continue;
2043                 if (i == first)
2044                         continue;
2045
2046                 tpages = get_resync_pages(tbio)->pages;
2047                 d = r10_bio->devs[i].devnum;
2048                 rdev = conf->mirrors[d].rdev;
2049                 if (!r10_bio->devs[i].bio->bi_status) {
2050                         /* We know that the bi_io_vec layout is the same for
2051                          * both 'first' and 'i', so we just compare them.
2052                          * All vec entries are PAGE_SIZE;
2053                          */
2054                         int sectors = r10_bio->sectors;
2055                         for (j = 0; j < vcnt; j++) {
2056                                 int len = PAGE_SIZE;
2057                                 if (sectors < (len / 512))
2058                                         len = sectors * 512;
2059                                 if (memcmp(page_address(fpages[j]),
2060                                            page_address(tpages[j]),
2061                                            len))
2062                                         break;
2063                                 sectors -= len/512;
2064                         }
2065                         if (j == vcnt)
2066                                 continue;
2067                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2068                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2069                                 /* Don't fix anything. */
2070                                 continue;
2071                 } else if (test_bit(FailFast, &rdev->flags)) {
2072                         /* Just give up on this device */
2073                         md_error(rdev->mddev, rdev);
2074                         continue;
2075                 }
2076                 /* Ok, we need to write this bio, either to correct an
2077                  * inconsistency or to correct an unreadable block.
2078                  * First we need to fixup bv_offset, bv_len and
2079                  * bi_vecs, as the read request might have corrupted these
2080                  */
2081                 rp = get_resync_pages(tbio);
2082                 bio_reset(tbio);
2083
2084                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2085
2086                 rp->raid_bio = r10_bio;
2087                 tbio->bi_private = rp;
2088                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2089                 tbio->bi_end_io = end_sync_write;
2090                 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2091
2092                 bio_copy_data(tbio, fbio);
2093
2094                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2095                 atomic_inc(&r10_bio->remaining);
2096                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2097
2098                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2099                         tbio->bi_opf |= MD_FAILFAST;
2100                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2101                 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2102                 generic_make_request(tbio);
2103         }
2104
2105         /* Now write out to any replacement devices
2106          * that are active
2107          */
2108         for (i = 0; i < conf->copies; i++) {
2109                 int d;
2110
2111                 tbio = r10_bio->devs[i].repl_bio;
2112                 if (!tbio || !tbio->bi_end_io)
2113                         continue;
2114                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2115                     && r10_bio->devs[i].bio != fbio)
2116                         bio_copy_data(tbio, fbio);
2117                 d = r10_bio->devs[i].devnum;
2118                 atomic_inc(&r10_bio->remaining);
2119                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2120                              bio_sectors(tbio));
2121                 generic_make_request(tbio);
2122         }
2123
2124 done:
2125         if (atomic_dec_and_test(&r10_bio->remaining)) {
2126                 md_done_sync(mddev, r10_bio->sectors, 1);
2127                 put_buf(r10_bio);
2128         }
2129 }
2130
2131 /*
2132  * Now for the recovery code.
2133  * Recovery happens across physical sectors.
2134  * We recover all non-is_sync drives by finding the virtual address of
2135  * each, and then choose a working drive that also has that virt address.
2136  * There is a separate r10_bio for each non-in_sync drive.
2137  * Only the first two slots are in use. The first for reading,
2138  * The second for writing.
2139  *
2140  */
2141 static void fix_recovery_read_error(struct r10bio *r10_bio)
2142 {
2143         /* We got a read error during recovery.
2144          * We repeat the read in smaller page-sized sections.
2145          * If a read succeeds, write it to the new device or record
2146          * a bad block if we cannot.
2147          * If a read fails, record a bad block on both old and
2148          * new devices.
2149          */
2150         struct mddev *mddev = r10_bio->mddev;
2151         struct r10conf *conf = mddev->private;
2152         struct bio *bio = r10_bio->devs[0].bio;
2153         sector_t sect = 0;
2154         int sectors = r10_bio->sectors;
2155         int idx = 0;
2156         int dr = r10_bio->devs[0].devnum;
2157         int dw = r10_bio->devs[1].devnum;
2158         struct page **pages = get_resync_pages(bio)->pages;
2159
2160         while (sectors) {
2161                 int s = sectors;
2162                 struct md_rdev *rdev;
2163                 sector_t addr;
2164                 int ok;
2165
2166                 if (s > (PAGE_SIZE>>9))
2167                         s = PAGE_SIZE >> 9;
2168
2169                 rdev = conf->mirrors[dr].rdev;
2170                 addr = r10_bio->devs[0].addr + sect,
2171                 ok = sync_page_io(rdev,
2172                                   addr,
2173                                   s << 9,
2174                                   pages[idx],
2175                                   REQ_OP_READ, 0, false);
2176                 if (ok) {
2177                         rdev = conf->mirrors[dw].rdev;
2178                         addr = r10_bio->devs[1].addr + sect;
2179                         ok = sync_page_io(rdev,
2180                                           addr,
2181                                           s << 9,
2182                                           pages[idx],
2183                                           REQ_OP_WRITE, 0, false);
2184                         if (!ok) {
2185                                 set_bit(WriteErrorSeen, &rdev->flags);
2186                                 if (!test_and_set_bit(WantReplacement,
2187                                                       &rdev->flags))
2188                                         set_bit(MD_RECOVERY_NEEDED,
2189                                                 &rdev->mddev->recovery);
2190                         }
2191                 }
2192                 if (!ok) {
2193                         /* We don't worry if we cannot set a bad block -
2194                          * it really is bad so there is no loss in not
2195                          * recording it yet
2196                          */
2197                         rdev_set_badblocks(rdev, addr, s, 0);
2198
2199                         if (rdev != conf->mirrors[dw].rdev) {
2200                                 /* need bad block on destination too */
2201                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2202                                 addr = r10_bio->devs[1].addr + sect;
2203                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2204                                 if (!ok) {
2205                                         /* just abort the recovery */
2206                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2207                                                   mdname(mddev));
2208
2209                                         conf->mirrors[dw].recovery_disabled
2210                                                 = mddev->recovery_disabled;
2211                                         set_bit(MD_RECOVERY_INTR,
2212                                                 &mddev->recovery);
2213                                         break;
2214                                 }
2215                         }
2216                 }
2217
2218                 sectors -= s;
2219                 sect += s;
2220                 idx++;
2221         }
2222 }
2223
2224 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2225 {
2226         struct r10conf *conf = mddev->private;
2227         int d;
2228         struct bio *wbio, *wbio2;
2229
2230         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2231                 fix_recovery_read_error(r10_bio);
2232                 end_sync_request(r10_bio);
2233                 return;
2234         }
2235
2236         /*
2237          * share the pages with the first bio
2238          * and submit the write request
2239          */
2240         d = r10_bio->devs[1].devnum;
2241         wbio = r10_bio->devs[1].bio;
2242         wbio2 = r10_bio->devs[1].repl_bio;
2243         /* Need to test wbio2->bi_end_io before we call
2244          * generic_make_request as if the former is NULL,
2245          * the latter is free to free wbio2.
2246          */
2247         if (wbio2 && !wbio2->bi_end_io)
2248                 wbio2 = NULL;
2249         if (wbio->bi_end_io) {
2250                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2251                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2252                 generic_make_request(wbio);
2253         }
2254         if (wbio2) {
2255                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2256                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2257                              bio_sectors(wbio2));
2258                 generic_make_request(wbio2);
2259         }
2260 }
2261
2262 /*
2263  * Used by fix_read_error() to decay the per rdev read_errors.
2264  * We halve the read error count for every hour that has elapsed
2265  * since the last recorded read error.
2266  *
2267  */
2268 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2269 {
2270         long cur_time_mon;
2271         unsigned long hours_since_last;
2272         unsigned int read_errors = atomic_read(&rdev->read_errors);
2273
2274         cur_time_mon = ktime_get_seconds();
2275
2276         if (rdev->last_read_error == 0) {
2277                 /* first time we've seen a read error */
2278                 rdev->last_read_error = cur_time_mon;
2279                 return;
2280         }
2281
2282         hours_since_last = (long)(cur_time_mon -
2283                             rdev->last_read_error) / 3600;
2284
2285         rdev->last_read_error = cur_time_mon;
2286
2287         /*
2288          * if hours_since_last is > the number of bits in read_errors
2289          * just set read errors to 0. We do this to avoid
2290          * overflowing the shift of read_errors by hours_since_last.
2291          */
2292         if (hours_since_last >= 8 * sizeof(read_errors))
2293                 atomic_set(&rdev->read_errors, 0);
2294         else
2295                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2296 }
2297
2298 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2299                             int sectors, struct page *page, int rw)
2300 {
2301         sector_t first_bad;
2302         int bad_sectors;
2303
2304         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2305             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2306                 return -1;
2307         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2308                 /* success */
2309                 return 1;
2310         if (rw == WRITE) {
2311                 set_bit(WriteErrorSeen, &rdev->flags);
2312                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2313                         set_bit(MD_RECOVERY_NEEDED,
2314                                 &rdev->mddev->recovery);
2315         }
2316         /* need to record an error - either for the block or the device */
2317         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2318                 md_error(rdev->mddev, rdev);
2319         return 0;
2320 }
2321
2322 /*
2323  * This is a kernel thread which:
2324  *
2325  *      1.      Retries failed read operations on working mirrors.
2326  *      2.      Updates the raid superblock when problems encounter.
2327  *      3.      Performs writes following reads for array synchronising.
2328  */
2329
2330 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2331 {
2332         int sect = 0; /* Offset from r10_bio->sector */
2333         int sectors = r10_bio->sectors;
2334         struct md_rdev *rdev;
2335         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2336         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2337
2338         /* still own a reference to this rdev, so it cannot
2339          * have been cleared recently.
2340          */
2341         rdev = conf->mirrors[d].rdev;
2342
2343         if (test_bit(Faulty, &rdev->flags))
2344                 /* drive has already been failed, just ignore any
2345                    more fix_read_error() attempts */
2346                 return;
2347
2348         check_decay_read_errors(mddev, rdev);
2349         atomic_inc(&rdev->read_errors);
2350         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2351                 char b[BDEVNAME_SIZE];
2352                 bdevname(rdev->bdev, b);
2353
2354                 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2355                           mdname(mddev), b,
2356                           atomic_read(&rdev->read_errors), max_read_errors);
2357                 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2358                           mdname(mddev), b);
2359                 md_error(mddev, rdev);
2360                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2361                 return;
2362         }
2363
2364         while(sectors) {
2365                 int s = sectors;
2366                 int sl = r10_bio->read_slot;
2367                 int success = 0;
2368                 int start;
2369
2370                 if (s > (PAGE_SIZE>>9))
2371                         s = PAGE_SIZE >> 9;
2372
2373                 rcu_read_lock();
2374                 do {
2375                         sector_t first_bad;
2376                         int bad_sectors;
2377
2378                         d = r10_bio->devs[sl].devnum;
2379                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2380                         if (rdev &&
2381                             test_bit(In_sync, &rdev->flags) &&
2382                             !test_bit(Faulty, &rdev->flags) &&
2383                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2384                                         &first_bad, &bad_sectors) == 0) {
2385                                 atomic_inc(&rdev->nr_pending);
2386                                 rcu_read_unlock();
2387                                 success = sync_page_io(rdev,
2388                                                        r10_bio->devs[sl].addr +
2389                                                        sect,
2390                                                        s<<9,
2391                                                        conf->tmppage,
2392                                                        REQ_OP_READ, 0, false);
2393                                 rdev_dec_pending(rdev, mddev);
2394                                 rcu_read_lock();
2395                                 if (success)
2396                                         break;
2397                         }
2398                         sl++;
2399                         if (sl == conf->copies)
2400                                 sl = 0;
2401                 } while (!success && sl != r10_bio->read_slot);
2402                 rcu_read_unlock();
2403
2404                 if (!success) {
2405                         /* Cannot read from anywhere, just mark the block
2406                          * as bad on the first device to discourage future
2407                          * reads.
2408                          */
2409                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2410                         rdev = conf->mirrors[dn].rdev;
2411
2412                         if (!rdev_set_badblocks(
2413                                     rdev,
2414                                     r10_bio->devs[r10_bio->read_slot].addr
2415                                     + sect,
2416                                     s, 0)) {
2417                                 md_error(mddev, rdev);
2418                                 r10_bio->devs[r10_bio->read_slot].bio
2419                                         = IO_BLOCKED;
2420                         }
2421                         break;
2422                 }
2423
2424                 start = sl;
2425                 /* write it back and re-read */
2426                 rcu_read_lock();
2427                 while (sl != r10_bio->read_slot) {
2428                         char b[BDEVNAME_SIZE];
2429
2430                         if (sl==0)
2431                                 sl = conf->copies;
2432                         sl--;
2433                         d = r10_bio->devs[sl].devnum;
2434                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2435                         if (!rdev ||
2436                             test_bit(Faulty, &rdev->flags) ||
2437                             !test_bit(In_sync, &rdev->flags))
2438                                 continue;
2439
2440                         atomic_inc(&rdev->nr_pending);
2441                         rcu_read_unlock();
2442                         if (r10_sync_page_io(rdev,
2443                                              r10_bio->devs[sl].addr +
2444                                              sect,
2445                                              s, conf->tmppage, WRITE)
2446                             == 0) {
2447                                 /* Well, this device is dead */
2448                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2449                                           mdname(mddev), s,
2450                                           (unsigned long long)(
2451                                                   sect +
2452                                                   choose_data_offset(r10_bio,
2453                                                                      rdev)),
2454                                           bdevname(rdev->bdev, b));
2455                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2456                                           mdname(mddev),
2457                                           bdevname(rdev->bdev, b));
2458                         }
2459                         rdev_dec_pending(rdev, mddev);
2460                         rcu_read_lock();
2461                 }
2462                 sl = start;
2463                 while (sl != r10_bio->read_slot) {
2464                         char b[BDEVNAME_SIZE];
2465
2466                         if (sl==0)
2467                                 sl = conf->copies;
2468                         sl--;
2469                         d = r10_bio->devs[sl].devnum;
2470                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2471                         if (!rdev ||
2472                             test_bit(Faulty, &rdev->flags) ||
2473                             !test_bit(In_sync, &rdev->flags))
2474                                 continue;
2475
2476                         atomic_inc(&rdev->nr_pending);
2477                         rcu_read_unlock();
2478                         switch (r10_sync_page_io(rdev,
2479                                              r10_bio->devs[sl].addr +
2480                                              sect,
2481                                              s, conf->tmppage,
2482                                                  READ)) {
2483                         case 0:
2484                                 /* Well, this device is dead */
2485                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2486                                        mdname(mddev), s,
2487                                        (unsigned long long)(
2488                                                sect +
2489                                                choose_data_offset(r10_bio, rdev)),
2490                                        bdevname(rdev->bdev, b));
2491                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2492                                        mdname(mddev),
2493                                        bdevname(rdev->bdev, b));
2494                                 break;
2495                         case 1:
2496                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2497                                        mdname(mddev), s,
2498                                        (unsigned long long)(
2499                                                sect +
2500                                                choose_data_offset(r10_bio, rdev)),
2501                                        bdevname(rdev->bdev, b));
2502                                 atomic_add(s, &rdev->corrected_errors);
2503                         }
2504
2505                         rdev_dec_pending(rdev, mddev);
2506                         rcu_read_lock();
2507                 }
2508                 rcu_read_unlock();
2509
2510                 sectors -= s;
2511                 sect += s;
2512         }
2513 }
2514
2515 static int narrow_write_error(struct r10bio *r10_bio, int i)
2516 {
2517         struct bio *bio = r10_bio->master_bio;
2518         struct mddev *mddev = r10_bio->mddev;
2519         struct r10conf *conf = mddev->private;
2520         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2521         /* bio has the data to be written to slot 'i' where
2522          * we just recently had a write error.
2523          * We repeatedly clone the bio and trim down to one block,
2524          * then try the write.  Where the write fails we record
2525          * a bad block.
2526          * It is conceivable that the bio doesn't exactly align with
2527          * blocks.  We must handle this.
2528          *
2529          * We currently own a reference to the rdev.
2530          */
2531
2532         int block_sectors;
2533         sector_t sector;
2534         int sectors;
2535         int sect_to_write = r10_bio->sectors;
2536         int ok = 1;
2537
2538         if (rdev->badblocks.shift < 0)
2539                 return 0;
2540
2541         block_sectors = roundup(1 << rdev->badblocks.shift,
2542                                 bdev_logical_block_size(rdev->bdev) >> 9);
2543         sector = r10_bio->sector;
2544         sectors = ((r10_bio->sector + block_sectors)
2545                    & ~(sector_t)(block_sectors - 1))
2546                 - sector;
2547
2548         while (sect_to_write) {
2549                 struct bio *wbio;
2550                 sector_t wsector;
2551                 if (sectors > sect_to_write)
2552                         sectors = sect_to_write;
2553                 /* Write at 'sector' for 'sectors' */
2554                 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2555                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2556                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2557                 wbio->bi_iter.bi_sector = wsector +
2558                                    choose_data_offset(r10_bio, rdev);
2559                 bio_set_dev(wbio, rdev->bdev);
2560                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2561
2562                 if (submit_bio_wait(wbio) < 0)
2563                         /* Failure! */
2564                         ok = rdev_set_badblocks(rdev, wsector,
2565                                                 sectors, 0)
2566                                 && ok;
2567
2568                 bio_put(wbio);
2569                 sect_to_write -= sectors;
2570                 sector += sectors;
2571                 sectors = block_sectors;
2572         }
2573         return ok;
2574 }
2575
2576 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2577 {
2578         int slot = r10_bio->read_slot;
2579         struct bio *bio;
2580         struct r10conf *conf = mddev->private;
2581         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2582
2583         /* we got a read error. Maybe the drive is bad.  Maybe just
2584          * the block and we can fix it.
2585          * We freeze all other IO, and try reading the block from
2586          * other devices.  When we find one, we re-write
2587          * and check it that fixes the read error.
2588          * This is all done synchronously while the array is
2589          * frozen.
2590          */
2591         bio = r10_bio->devs[slot].bio;
2592         bio_put(bio);
2593         r10_bio->devs[slot].bio = NULL;
2594
2595         if (mddev->ro)
2596                 r10_bio->devs[slot].bio = IO_BLOCKED;
2597         else if (!test_bit(FailFast, &rdev->flags)) {
2598                 freeze_array(conf, 1);
2599                 fix_read_error(conf, mddev, r10_bio);
2600                 unfreeze_array(conf);
2601         } else
2602                 md_error(mddev, rdev);
2603
2604         rdev_dec_pending(rdev, mddev);
2605         allow_barrier(conf);
2606         r10_bio->state = 0;
2607         raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2608 }
2609
2610 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2611 {
2612         /* Some sort of write request has finished and it
2613          * succeeded in writing where we thought there was a
2614          * bad block.  So forget the bad block.
2615          * Or possibly if failed and we need to record
2616          * a bad block.
2617          */
2618         int m;
2619         struct md_rdev *rdev;
2620
2621         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2622             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2623                 for (m = 0; m < conf->copies; m++) {
2624                         int dev = r10_bio->devs[m].devnum;
2625                         rdev = conf->mirrors[dev].rdev;
2626                         if (r10_bio->devs[m].bio == NULL ||
2627                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2628                                 continue;
2629                         if (!r10_bio->devs[m].bio->bi_status) {
2630                                 rdev_clear_badblocks(
2631                                         rdev,
2632                                         r10_bio->devs[m].addr,
2633                                         r10_bio->sectors, 0);
2634                         } else {
2635                                 if (!rdev_set_badblocks(
2636                                             rdev,
2637                                             r10_bio->devs[m].addr,
2638                                             r10_bio->sectors, 0))
2639                                         md_error(conf->mddev, rdev);
2640                         }
2641                         rdev = conf->mirrors[dev].replacement;
2642                         if (r10_bio->devs[m].repl_bio == NULL ||
2643                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2644                                 continue;
2645
2646                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2647                                 rdev_clear_badblocks(
2648                                         rdev,
2649                                         r10_bio->devs[m].addr,
2650                                         r10_bio->sectors, 0);
2651                         } else {
2652                                 if (!rdev_set_badblocks(
2653                                             rdev,
2654                                             r10_bio->devs[m].addr,
2655                                             r10_bio->sectors, 0))
2656                                         md_error(conf->mddev, rdev);
2657                         }
2658                 }
2659                 put_buf(r10_bio);
2660         } else {
2661                 bool fail = false;
2662                 for (m = 0; m < conf->copies; m++) {
2663                         int dev = r10_bio->devs[m].devnum;
2664                         struct bio *bio = r10_bio->devs[m].bio;
2665                         rdev = conf->mirrors[dev].rdev;
2666                         if (bio == IO_MADE_GOOD) {
2667                                 rdev_clear_badblocks(
2668                                         rdev,
2669                                         r10_bio->devs[m].addr,
2670                                         r10_bio->sectors, 0);
2671                                 rdev_dec_pending(rdev, conf->mddev);
2672                         } else if (bio != NULL && bio->bi_status) {
2673                                 fail = true;
2674                                 if (!narrow_write_error(r10_bio, m)) {
2675                                         md_error(conf->mddev, rdev);
2676                                         set_bit(R10BIO_Degraded,
2677                                                 &r10_bio->state);
2678                                 }
2679                                 rdev_dec_pending(rdev, conf->mddev);
2680                         }
2681                         bio = r10_bio->devs[m].repl_bio;
2682                         rdev = conf->mirrors[dev].replacement;
2683                         if (rdev && bio == IO_MADE_GOOD) {
2684                                 rdev_clear_badblocks(
2685                                         rdev,
2686                                         r10_bio->devs[m].addr,
2687                                         r10_bio->sectors, 0);
2688                                 rdev_dec_pending(rdev, conf->mddev);
2689                         }
2690                 }
2691                 if (fail) {
2692                         spin_lock_irq(&conf->device_lock);
2693                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2694                         conf->nr_queued++;
2695                         spin_unlock_irq(&conf->device_lock);
2696                         /*
2697                          * In case freeze_array() is waiting for condition
2698                          * nr_pending == nr_queued + extra to be true.
2699                          */
2700                         wake_up(&conf->wait_barrier);
2701                         md_wakeup_thread(conf->mddev->thread);
2702                 } else {
2703                         if (test_bit(R10BIO_WriteError,
2704                                      &r10_bio->state))
2705                                 close_write(r10_bio);
2706                         raid_end_bio_io(r10_bio);
2707                 }
2708         }
2709 }
2710
2711 static void raid10d(struct md_thread *thread)
2712 {
2713         struct mddev *mddev = thread->mddev;
2714         struct r10bio *r10_bio;
2715         unsigned long flags;
2716         struct r10conf *conf = mddev->private;
2717         struct list_head *head = &conf->retry_list;
2718         struct blk_plug plug;
2719
2720         md_check_recovery(mddev);
2721
2722         if (!list_empty_careful(&conf->bio_end_io_list) &&
2723             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2724                 LIST_HEAD(tmp);
2725                 spin_lock_irqsave(&conf->device_lock, flags);
2726                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2727                         while (!list_empty(&conf->bio_end_io_list)) {
2728                                 list_move(conf->bio_end_io_list.prev, &tmp);
2729                                 conf->nr_queued--;
2730                         }
2731                 }
2732                 spin_unlock_irqrestore(&conf->device_lock, flags);
2733                 while (!list_empty(&tmp)) {
2734                         r10_bio = list_first_entry(&tmp, struct r10bio,
2735                                                    retry_list);
2736                         list_del(&r10_bio->retry_list);
2737                         if (mddev->degraded)
2738                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2739
2740                         if (test_bit(R10BIO_WriteError,
2741                                      &r10_bio->state))
2742                                 close_write(r10_bio);
2743                         raid_end_bio_io(r10_bio);
2744                 }
2745         }
2746
2747         blk_start_plug(&plug);
2748         for (;;) {
2749
2750                 flush_pending_writes(conf);
2751
2752                 spin_lock_irqsave(&conf->device_lock, flags);
2753                 if (list_empty(head)) {
2754                         spin_unlock_irqrestore(&conf->device_lock, flags);
2755                         break;
2756                 }
2757                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2758                 list_del(head->prev);
2759                 conf->nr_queued--;
2760                 spin_unlock_irqrestore(&conf->device_lock, flags);
2761
2762                 mddev = r10_bio->mddev;
2763                 conf = mddev->private;
2764                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2765                     test_bit(R10BIO_WriteError, &r10_bio->state))
2766                         handle_write_completed(conf, r10_bio);
2767                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2768                         reshape_request_write(mddev, r10_bio);
2769                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2770                         sync_request_write(mddev, r10_bio);
2771                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2772                         recovery_request_write(mddev, r10_bio);
2773                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2774                         handle_read_error(mddev, r10_bio);
2775                 else
2776                         WARN_ON_ONCE(1);
2777
2778                 cond_resched();
2779                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2780                         md_check_recovery(mddev);
2781         }
2782         blk_finish_plug(&plug);
2783 }
2784
2785 static int init_resync(struct r10conf *conf)
2786 {
2787         int ret, buffs, i;
2788
2789         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2790         BUG_ON(mempool_initialized(&conf->r10buf_pool));
2791         conf->have_replacement = 0;
2792         for (i = 0; i < conf->geo.raid_disks; i++)
2793                 if (conf->mirrors[i].replacement)
2794                         conf->have_replacement = 1;
2795         ret = mempool_init(&conf->r10buf_pool, buffs,
2796                            r10buf_pool_alloc, r10buf_pool_free, conf);
2797         if (ret)
2798                 return ret;
2799         conf->next_resync = 0;
2800         return 0;
2801 }
2802
2803 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2804 {
2805         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2806         struct rsync_pages *rp;
2807         struct bio *bio;
2808         int nalloc;
2809         int i;
2810
2811         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2812             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2813                 nalloc = conf->copies; /* resync */
2814         else
2815                 nalloc = 2; /* recovery */
2816
2817         for (i = 0; i < nalloc; i++) {
2818                 bio = r10bio->devs[i].bio;
2819                 rp = bio->bi_private;
2820                 bio_reset(bio);
2821                 bio->bi_private = rp;
2822                 bio = r10bio->devs[i].repl_bio;
2823                 if (bio) {
2824                         rp = bio->bi_private;
2825                         bio_reset(bio);
2826                         bio->bi_private = rp;
2827                 }
2828         }
2829         return r10bio;
2830 }
2831
2832 /*
2833  * Set cluster_sync_high since we need other nodes to add the
2834  * range [cluster_sync_low, cluster_sync_high] to suspend list.
2835  */
2836 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2837 {
2838         sector_t window_size;
2839         int extra_chunk, chunks;
2840
2841         /*
2842          * First, here we define "stripe" as a unit which across
2843          * all member devices one time, so we get chunks by use
2844          * raid_disks / near_copies. Otherwise, if near_copies is
2845          * close to raid_disks, then resync window could increases
2846          * linearly with the increase of raid_disks, which means
2847          * we will suspend a really large IO window while it is not
2848          * necessary. If raid_disks is not divisible by near_copies,
2849          * an extra chunk is needed to ensure the whole "stripe" is
2850          * covered.
2851          */
2852
2853         chunks = conf->geo.raid_disks / conf->geo.near_copies;
2854         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2855                 extra_chunk = 0;
2856         else
2857                 extra_chunk = 1;
2858         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2859
2860         /*
2861          * At least use a 32M window to align with raid1's resync window
2862          */
2863         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2864                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2865
2866         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2867 }
2868
2869 /*
2870  * perform a "sync" on one "block"
2871  *
2872  * We need to make sure that no normal I/O request - particularly write
2873  * requests - conflict with active sync requests.
2874  *
2875  * This is achieved by tracking pending requests and a 'barrier' concept
2876  * that can be installed to exclude normal IO requests.
2877  *
2878  * Resync and recovery are handled very differently.
2879  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2880  *
2881  * For resync, we iterate over virtual addresses, read all copies,
2882  * and update if there are differences.  If only one copy is live,
2883  * skip it.
2884  * For recovery, we iterate over physical addresses, read a good
2885  * value for each non-in_sync drive, and over-write.
2886  *
2887  * So, for recovery we may have several outstanding complex requests for a
2888  * given address, one for each out-of-sync device.  We model this by allocating
2889  * a number of r10_bio structures, one for each out-of-sync device.
2890  * As we setup these structures, we collect all bio's together into a list
2891  * which we then process collectively to add pages, and then process again
2892  * to pass to generic_make_request.
2893  *
2894  * The r10_bio structures are linked using a borrowed master_bio pointer.
2895  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2896  * has its remaining count decremented to 0, the whole complex operation
2897  * is complete.
2898  *
2899  */
2900
2901 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2902                              int *skipped)
2903 {
2904         struct r10conf *conf = mddev->private;
2905         struct r10bio *r10_bio;
2906         struct bio *biolist = NULL, *bio;
2907         sector_t max_sector, nr_sectors;
2908         int i;
2909         int max_sync;
2910         sector_t sync_blocks;
2911         sector_t sectors_skipped = 0;
2912         int chunks_skipped = 0;
2913         sector_t chunk_mask = conf->geo.chunk_mask;
2914         int page_idx = 0;
2915
2916         if (!mempool_initialized(&conf->r10buf_pool))
2917                 if (init_resync(conf))
2918                         return 0;
2919
2920         /*
2921          * Allow skipping a full rebuild for incremental assembly
2922          * of a clean array, like RAID1 does.
2923          */
2924         if (mddev->bitmap == NULL &&
2925             mddev->recovery_cp == MaxSector &&
2926             mddev->reshape_position == MaxSector &&
2927             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2928             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2929             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2930             conf->fullsync == 0) {
2931                 *skipped = 1;
2932                 return mddev->dev_sectors - sector_nr;
2933         }
2934
2935  skipped:
2936         max_sector = mddev->dev_sectors;
2937         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2938             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2939                 max_sector = mddev->resync_max_sectors;
2940         if (sector_nr >= max_sector) {
2941                 conf->cluster_sync_low = 0;
2942                 conf->cluster_sync_high = 0;
2943
2944                 /* If we aborted, we need to abort the
2945                  * sync on the 'current' bitmap chucks (there can
2946                  * be several when recovering multiple devices).
2947                  * as we may have started syncing it but not finished.
2948                  * We can find the current address in
2949                  * mddev->curr_resync, but for recovery,
2950                  * we need to convert that to several
2951                  * virtual addresses.
2952                  */
2953                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2954                         end_reshape(conf);
2955                         close_sync(conf);
2956                         return 0;
2957                 }
2958
2959                 if (mddev->curr_resync < max_sector) { /* aborted */
2960                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2961                                 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2962                                                    &sync_blocks, 1);
2963                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2964                                 sector_t sect =
2965                                         raid10_find_virt(conf, mddev->curr_resync, i);
2966                                 md_bitmap_end_sync(mddev->bitmap, sect,
2967                                                    &sync_blocks, 1);
2968                         }
2969                 } else {
2970                         /* completed sync */
2971                         if ((!mddev->bitmap || conf->fullsync)
2972                             && conf->have_replacement
2973                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2974                                 /* Completed a full sync so the replacements
2975                                  * are now fully recovered.
2976                                  */
2977                                 rcu_read_lock();
2978                                 for (i = 0; i < conf->geo.raid_disks; i++) {
2979                                         struct md_rdev *rdev =
2980                                                 rcu_dereference(conf->mirrors[i].replacement);
2981                                         if (rdev)
2982                                                 rdev->recovery_offset = MaxSector;
2983                                 }
2984                                 rcu_read_unlock();
2985                         }
2986                         conf->fullsync = 0;
2987                 }
2988                 md_bitmap_close_sync(mddev->bitmap);
2989                 close_sync(conf);
2990                 *skipped = 1;
2991                 return sectors_skipped;
2992         }
2993
2994         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2995                 return reshape_request(mddev, sector_nr, skipped);
2996
2997         if (chunks_skipped >= conf->geo.raid_disks) {
2998                 /* if there has been nothing to do on any drive,
2999                  * then there is nothing to do at all..
3000                  */
3001                 *skipped = 1;
3002                 return (max_sector - sector_nr) + sectors_skipped;
3003         }
3004
3005         if (max_sector > mddev->resync_max)
3006                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3007
3008         /* make sure whole request will fit in a chunk - if chunks
3009          * are meaningful
3010          */
3011         if (conf->geo.near_copies < conf->geo.raid_disks &&
3012             max_sector > (sector_nr | chunk_mask))
3013                 max_sector = (sector_nr | chunk_mask) + 1;
3014
3015         /*
3016          * If there is non-resync activity waiting for a turn, then let it
3017          * though before starting on this new sync request.
3018          */
3019         if (conf->nr_waiting)
3020                 schedule_timeout_uninterruptible(1);
3021
3022         /* Again, very different code for resync and recovery.
3023          * Both must result in an r10bio with a list of bios that
3024          * have bi_end_io, bi_sector, bi_disk set,
3025          * and bi_private set to the r10bio.
3026          * For recovery, we may actually create several r10bios
3027          * with 2 bios in each, that correspond to the bios in the main one.
3028          * In this case, the subordinate r10bios link back through a
3029          * borrowed master_bio pointer, and the counter in the master
3030          * includes a ref from each subordinate.
3031          */
3032         /* First, we decide what to do and set ->bi_end_io
3033          * To end_sync_read if we want to read, and
3034          * end_sync_write if we will want to write.
3035          */
3036
3037         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3038         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3039                 /* recovery... the complicated one */
3040                 int j;
3041                 r10_bio = NULL;
3042
3043                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3044                         int still_degraded;
3045                         struct r10bio *rb2;
3046                         sector_t sect;
3047                         int must_sync;
3048                         int any_working;
3049                         int need_recover = 0;
3050                         int need_replace = 0;
3051                         struct raid10_info *mirror = &conf->mirrors[i];
3052                         struct md_rdev *mrdev, *mreplace;
3053
3054                         rcu_read_lock();
3055                         mrdev = rcu_dereference(mirror->rdev);
3056                         mreplace = rcu_dereference(mirror->replacement);
3057
3058                         if (mrdev != NULL &&
3059                             !test_bit(Faulty, &mrdev->flags) &&
3060                             !test_bit(In_sync, &mrdev->flags))
3061                                 need_recover = 1;
3062                         if (mreplace != NULL &&
3063                             !test_bit(Faulty, &mreplace->flags))
3064                                 need_replace = 1;
3065
3066                         if (!need_recover && !need_replace) {
3067                                 rcu_read_unlock();
3068                                 continue;
3069                         }
3070
3071                         still_degraded = 0;
3072                         /* want to reconstruct this device */
3073                         rb2 = r10_bio;
3074                         sect = raid10_find_virt(conf, sector_nr, i);
3075                         if (sect >= mddev->resync_max_sectors) {
3076                                 /* last stripe is not complete - don't
3077                                  * try to recover this sector.
3078                                  */
3079                                 rcu_read_unlock();
3080                                 continue;
3081                         }
3082                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3083                                 mreplace = NULL;
3084                         /* Unless we are doing a full sync, or a replacement
3085                          * we only need to recover the block if it is set in
3086                          * the bitmap
3087                          */
3088                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3089                                                          &sync_blocks, 1);
3090                         if (sync_blocks < max_sync)
3091                                 max_sync = sync_blocks;
3092                         if (!must_sync &&
3093                             mreplace == NULL &&
3094                             !conf->fullsync) {
3095                                 /* yep, skip the sync_blocks here, but don't assume
3096                                  * that there will never be anything to do here
3097                                  */
3098                                 chunks_skipped = -1;
3099                                 rcu_read_unlock();
3100                                 continue;
3101                         }
3102                         atomic_inc(&mrdev->nr_pending);
3103                         if (mreplace)
3104                                 atomic_inc(&mreplace->nr_pending);
3105                         rcu_read_unlock();
3106
3107                         r10_bio = raid10_alloc_init_r10buf(conf);
3108                         r10_bio->state = 0;
3109                         raise_barrier(conf, rb2 != NULL);
3110                         atomic_set(&r10_bio->remaining, 0);
3111
3112                         r10_bio->master_bio = (struct bio*)rb2;
3113                         if (rb2)
3114                                 atomic_inc(&rb2->remaining);
3115                         r10_bio->mddev = mddev;
3116                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3117                         r10_bio->sector = sect;
3118
3119                         raid10_find_phys(conf, r10_bio);
3120
3121                         /* Need to check if the array will still be
3122                          * degraded
3123                          */
3124                         rcu_read_lock();
3125                         for (j = 0; j < conf->geo.raid_disks; j++) {
3126                                 struct md_rdev *rdev = rcu_dereference(
3127                                         conf->mirrors[j].rdev);
3128                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3129                                         still_degraded = 1;
3130                                         break;
3131                                 }
3132                         }
3133
3134                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3135                                                          &sync_blocks, still_degraded);
3136
3137                         any_working = 0;
3138                         for (j=0; j<conf->copies;j++) {
3139                                 int k;
3140                                 int d = r10_bio->devs[j].devnum;
3141                                 sector_t from_addr, to_addr;
3142                                 struct md_rdev *rdev =
3143                                         rcu_dereference(conf->mirrors[d].rdev);
3144                                 sector_t sector, first_bad;
3145                                 int bad_sectors;
3146                                 if (!rdev ||
3147                                     !test_bit(In_sync, &rdev->flags))
3148                                         continue;
3149                                 /* This is where we read from */
3150                                 any_working = 1;
3151                                 sector = r10_bio->devs[j].addr;
3152
3153                                 if (is_badblock(rdev, sector, max_sync,
3154                                                 &first_bad, &bad_sectors)) {
3155                                         if (first_bad > sector)
3156                                                 max_sync = first_bad - sector;
3157                                         else {
3158                                                 bad_sectors -= (sector
3159                                                                 - first_bad);
3160                                                 if (max_sync > bad_sectors)
3161                                                         max_sync = bad_sectors;
3162                                                 continue;
3163                                         }
3164                                 }
3165                                 bio = r10_bio->devs[0].bio;
3166                                 bio->bi_next = biolist;
3167                                 biolist = bio;
3168                                 bio->bi_end_io = end_sync_read;
3169                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3170                                 if (test_bit(FailFast, &rdev->flags))
3171                                         bio->bi_opf |= MD_FAILFAST;
3172                                 from_addr = r10_bio->devs[j].addr;
3173                                 bio->bi_iter.bi_sector = from_addr +
3174                                         rdev->data_offset;
3175                                 bio_set_dev(bio, rdev->bdev);
3176                                 atomic_inc(&rdev->nr_pending);
3177                                 /* and we write to 'i' (if not in_sync) */
3178
3179                                 for (k=0; k<conf->copies; k++)
3180                                         if (r10_bio->devs[k].devnum == i)
3181                                                 break;
3182                                 BUG_ON(k == conf->copies);
3183                                 to_addr = r10_bio->devs[k].addr;
3184                                 r10_bio->devs[0].devnum = d;
3185                                 r10_bio->devs[0].addr = from_addr;
3186                                 r10_bio->devs[1].devnum = i;
3187                                 r10_bio->devs[1].addr = to_addr;
3188
3189                                 if (need_recover) {
3190                                         bio = r10_bio->devs[1].bio;
3191                                         bio->bi_next = biolist;
3192                                         biolist = bio;
3193                                         bio->bi_end_io = end_sync_write;
3194                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3195                                         bio->bi_iter.bi_sector = to_addr
3196                                                 + mrdev->data_offset;
3197                                         bio_set_dev(bio, mrdev->bdev);
3198                                         atomic_inc(&r10_bio->remaining);
3199                                 } else
3200                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3201
3202                                 /* and maybe write to replacement */
3203                                 bio = r10_bio->devs[1].repl_bio;
3204                                 if (bio)
3205                                         bio->bi_end_io = NULL;
3206                                 /* Note: if need_replace, then bio
3207                                  * cannot be NULL as r10buf_pool_alloc will
3208                                  * have allocated it.
3209                                  */
3210                                 if (!need_replace)
3211                                         break;
3212                                 bio->bi_next = biolist;
3213                                 biolist = bio;
3214                                 bio->bi_end_io = end_sync_write;
3215                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3216                                 bio->bi_iter.bi_sector = to_addr +
3217                                         mreplace->data_offset;
3218                                 bio_set_dev(bio, mreplace->bdev);
3219                                 atomic_inc(&r10_bio->remaining);
3220                                 break;
3221                         }
3222                         rcu_read_unlock();
3223                         if (j == conf->copies) {
3224                                 /* Cannot recover, so abort the recovery or
3225                                  * record a bad block */
3226                                 if (any_working) {
3227                                         /* problem is that there are bad blocks
3228                                          * on other device(s)
3229                                          */
3230                                         int k;
3231                                         for (k = 0; k < conf->copies; k++)
3232                                                 if (r10_bio->devs[k].devnum == i)
3233                                                         break;
3234                                         if (!test_bit(In_sync,
3235                                                       &mrdev->flags)
3236                                             && !rdev_set_badblocks(
3237                                                     mrdev,
3238                                                     r10_bio->devs[k].addr,
3239                                                     max_sync, 0))
3240                                                 any_working = 0;
3241                                         if (mreplace &&
3242                                             !rdev_set_badblocks(
3243                                                     mreplace,
3244                                                     r10_bio->devs[k].addr,
3245                                                     max_sync, 0))
3246                                                 any_working = 0;
3247                                 }
3248                                 if (!any_working)  {
3249                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3250                                                               &mddev->recovery))
3251                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3252                                                        mdname(mddev));
3253                                         mirror->recovery_disabled
3254                                                 = mddev->recovery_disabled;
3255                                 }
3256                                 put_buf(r10_bio);
3257                                 if (rb2)
3258                                         atomic_dec(&rb2->remaining);
3259                                 r10_bio = rb2;
3260                                 rdev_dec_pending(mrdev, mddev);
3261                                 if (mreplace)
3262                                         rdev_dec_pending(mreplace, mddev);
3263                                 break;
3264                         }
3265                         rdev_dec_pending(mrdev, mddev);
3266                         if (mreplace)
3267                                 rdev_dec_pending(mreplace, mddev);
3268                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3269                                 /* Only want this if there is elsewhere to
3270                                  * read from. 'j' is currently the first
3271                                  * readable copy.
3272                                  */
3273                                 int targets = 1;
3274                                 for (; j < conf->copies; j++) {
3275                                         int d = r10_bio->devs[j].devnum;
3276                                         if (conf->mirrors[d].rdev &&
3277                                             test_bit(In_sync,
3278                                                       &conf->mirrors[d].rdev->flags))
3279                                                 targets++;
3280                                 }
3281                                 if (targets == 1)
3282                                         r10_bio->devs[0].bio->bi_opf
3283                                                 &= ~MD_FAILFAST;
3284                         }
3285                 }
3286                 if (biolist == NULL) {
3287                         while (r10_bio) {
3288                                 struct r10bio *rb2 = r10_bio;
3289                                 r10_bio = (struct r10bio*) rb2->master_bio;
3290                                 rb2->master_bio = NULL;
3291                                 put_buf(rb2);
3292                         }
3293                         goto giveup;
3294                 }
3295         } else {
3296                 /* resync. Schedule a read for every block at this virt offset */
3297                 int count = 0;
3298
3299                 /*
3300                  * Since curr_resync_completed could probably not update in
3301                  * time, and we will set cluster_sync_low based on it.
3302                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3303                  * safety reason, which ensures curr_resync_completed is
3304                  * updated in bitmap_cond_end_sync.
3305                  */
3306                 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3307                                         mddev_is_clustered(mddev) &&
3308                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3309
3310                 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3311                                           &sync_blocks, mddev->degraded) &&
3312                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3313                                                  &mddev->recovery)) {
3314                         /* We can skip this block */
3315                         *skipped = 1;
3316                         return sync_blocks + sectors_skipped;
3317                 }
3318                 if (sync_blocks < max_sync)
3319                         max_sync = sync_blocks;
3320                 r10_bio = raid10_alloc_init_r10buf(conf);
3321                 r10_bio->state = 0;
3322
3323                 r10_bio->mddev = mddev;
3324                 atomic_set(&r10_bio->remaining, 0);
3325                 raise_barrier(conf, 0);
3326                 conf->next_resync = sector_nr;
3327
3328                 r10_bio->master_bio = NULL;
3329                 r10_bio->sector = sector_nr;
3330                 set_bit(R10BIO_IsSync, &r10_bio->state);
3331                 raid10_find_phys(conf, r10_bio);
3332                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3333
3334                 for (i = 0; i < conf->copies; i++) {
3335                         int d = r10_bio->devs[i].devnum;
3336                         sector_t first_bad, sector;
3337                         int bad_sectors;
3338                         struct md_rdev *rdev;
3339
3340                         if (r10_bio->devs[i].repl_bio)
3341                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3342
3343                         bio = r10_bio->devs[i].bio;
3344                         bio->bi_status = BLK_STS_IOERR;
3345                         rcu_read_lock();
3346                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3347                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3348                                 rcu_read_unlock();
3349                                 continue;
3350                         }
3351                         sector = r10_bio->devs[i].addr;
3352                         if (is_badblock(rdev, sector, max_sync,
3353                                         &first_bad, &bad_sectors)) {
3354                                 if (first_bad > sector)
3355                                         max_sync = first_bad - sector;
3356                                 else {
3357                                         bad_sectors -= (sector - first_bad);
3358                                         if (max_sync > bad_sectors)
3359                                                 max_sync = bad_sectors;
3360                                         rcu_read_unlock();
3361                                         continue;
3362                                 }
3363                         }
3364                         atomic_inc(&rdev->nr_pending);
3365                         atomic_inc(&r10_bio->remaining);
3366                         bio->bi_next = biolist;
3367                         biolist = bio;
3368                         bio->bi_end_io = end_sync_read;
3369                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3370                         if (test_bit(FailFast, &rdev->flags))
3371                                 bio->bi_opf |= MD_FAILFAST;
3372                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3373                         bio_set_dev(bio, rdev->bdev);
3374                         count++;
3375
3376                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3377                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3378                                 rcu_read_unlock();
3379                                 continue;
3380                         }
3381                         atomic_inc(&rdev->nr_pending);
3382
3383                         /* Need to set up for writing to the replacement */
3384                         bio = r10_bio->devs[i].repl_bio;
3385                         bio->bi_status = BLK_STS_IOERR;
3386
3387                         sector = r10_bio->devs[i].addr;
3388                         bio->bi_next = biolist;
3389                         biolist = bio;
3390                         bio->bi_end_io = end_sync_write;
3391                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3392                         if (test_bit(FailFast, &rdev->flags))
3393                                 bio->bi_opf |= MD_FAILFAST;
3394                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3395                         bio_set_dev(bio, rdev->bdev);
3396                         count++;
3397                         rcu_read_unlock();
3398                 }
3399
3400                 if (count < 2) {
3401                         for (i=0; i<conf->copies; i++) {
3402                                 int d = r10_bio->devs[i].devnum;
3403                                 if (r10_bio->devs[i].bio->bi_end_io)
3404                                         rdev_dec_pending(conf->mirrors[d].rdev,
3405                                                          mddev);
3406                                 if (r10_bio->devs[i].repl_bio &&
3407                                     r10_bio->devs[i].repl_bio->bi_end_io)
3408                                         rdev_dec_pending(
3409                                                 conf->mirrors[d].replacement,
3410                                                 mddev);
3411                         }
3412                         put_buf(r10_bio);
3413                         biolist = NULL;
3414                         goto giveup;
3415                 }
3416         }
3417
3418         nr_sectors = 0;
3419         if (sector_nr + max_sync < max_sector)
3420                 max_sector = sector_nr + max_sync;
3421         do {
3422                 struct page *page;
3423                 int len = PAGE_SIZE;
3424                 if (sector_nr + (len>>9) > max_sector)
3425                         len = (max_sector - sector_nr) << 9;
3426                 if (len == 0)
3427                         break;
3428                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3429                         struct resync_pages *rp = get_resync_pages(bio);
3430                         page = resync_fetch_page(rp, page_idx);
3431                         /*
3432                          * won't fail because the vec table is big enough
3433                          * to hold all these pages
3434                          */
3435                         bio_add_page(bio, page, len, 0);
3436                 }
3437                 nr_sectors += len>>9;
3438                 sector_nr += len>>9;
3439         } while (++page_idx < RESYNC_PAGES);
3440         r10_bio->sectors = nr_sectors;
3441
3442         if (mddev_is_clustered(mddev) &&
3443             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3444                 /* It is resync not recovery */
3445                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3446                         conf->cluster_sync_low = mddev->curr_resync_completed;
3447                         raid10_set_cluster_sync_high(conf);
3448                         /* Send resync message */
3449                         md_cluster_ops->resync_info_update(mddev,
3450                                                 conf->cluster_sync_low,
3451                                                 conf->cluster_sync_high);
3452                 }
3453         } else if (mddev_is_clustered(mddev)) {
3454                 /* This is recovery not resync */
3455                 sector_t sect_va1, sect_va2;
3456                 bool broadcast_msg = false;
3457
3458                 for (i = 0; i < conf->geo.raid_disks; i++) {
3459                         /*
3460                          * sector_nr is a device address for recovery, so we
3461                          * need translate it to array address before compare
3462                          * with cluster_sync_high.
3463                          */
3464                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3465
3466                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3467                                 broadcast_msg = true;
3468                                 /*
3469                                  * curr_resync_completed is similar as
3470                                  * sector_nr, so make the translation too.
3471                                  */
3472                                 sect_va2 = raid10_find_virt(conf,
3473                                         mddev->curr_resync_completed, i);
3474
3475                                 if (conf->cluster_sync_low == 0 ||
3476                                     conf->cluster_sync_low > sect_va2)
3477                                         conf->cluster_sync_low = sect_va2;
3478                         }
3479                 }
3480                 if (broadcast_msg) {
3481                         raid10_set_cluster_sync_high(conf);
3482                         md_cluster_ops->resync_info_update(mddev,
3483                                                 conf->cluster_sync_low,
3484                                                 conf->cluster_sync_high);
3485                 }
3486         }
3487
3488         while (biolist) {
3489                 bio = biolist;
3490                 biolist = biolist->bi_next;
3491
3492                 bio->bi_next = NULL;
3493                 r10_bio = get_resync_r10bio(bio);
3494                 r10_bio->sectors = nr_sectors;
3495
3496                 if (bio->bi_end_io == end_sync_read) {
3497                         md_sync_acct_bio(bio, nr_sectors);
3498                         bio->bi_status = 0;
3499                         generic_make_request(bio);
3500                 }
3501         }
3502
3503         if (sectors_skipped)
3504                 /* pretend they weren't skipped, it makes
3505                  * no important difference in this case
3506                  */
3507                 md_done_sync(mddev, sectors_skipped, 1);
3508
3509         return sectors_skipped + nr_sectors;
3510  giveup:
3511         /* There is nowhere to write, so all non-sync
3512          * drives must be failed or in resync, all drives
3513          * have a bad block, so try the next chunk...
3514          */
3515         if (sector_nr + max_sync < max_sector)
3516                 max_sector = sector_nr + max_sync;
3517
3518         sectors_skipped += (max_sector - sector_nr);
3519         chunks_skipped ++;
3520         sector_nr = max_sector;
3521         goto skipped;
3522 }
3523
3524 static sector_t
3525 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3526 {
3527         sector_t size;
3528         struct r10conf *conf = mddev->private;
3529
3530         if (!raid_disks)
3531                 raid_disks = min(conf->geo.raid_disks,
3532                                  conf->prev.raid_disks);
3533         if (!sectors)
3534                 sectors = conf->dev_sectors;
3535
3536         size = sectors >> conf->geo.chunk_shift;
3537         sector_div(size, conf->geo.far_copies);
3538         size = size * raid_disks;
3539         sector_div(size, conf->geo.near_copies);
3540
3541         return size << conf->geo.chunk_shift;
3542 }
3543
3544 static void calc_sectors(struct r10conf *conf, sector_t size)
3545 {
3546         /* Calculate the number of sectors-per-device that will
3547          * actually be used, and set conf->dev_sectors and
3548          * conf->stride
3549          */
3550
3551         size = size >> conf->geo.chunk_shift;
3552         sector_div(size, conf->geo.far_copies);
3553         size = size * conf->geo.raid_disks;
3554         sector_div(size, conf->geo.near_copies);
3555         /* 'size' is now the number of chunks in the array */
3556         /* calculate "used chunks per device" */
3557         size = size * conf->copies;
3558
3559         /* We need to round up when dividing by raid_disks to
3560          * get the stride size.
3561          */
3562         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3563
3564         conf->dev_sectors = size << conf->geo.chunk_shift;
3565
3566         if (conf->geo.far_offset)
3567                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3568         else {
3569                 sector_div(size, conf->geo.far_copies);
3570                 conf->geo.stride = size << conf->geo.chunk_shift;
3571         }
3572 }
3573
3574 enum geo_type {geo_new, geo_old, geo_start};
3575 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3576 {
3577         int nc, fc, fo;
3578         int layout, chunk, disks;
3579         switch (new) {
3580         case geo_old:
3581                 layout = mddev->layout;
3582                 chunk = mddev->chunk_sectors;
3583                 disks = mddev->raid_disks - mddev->delta_disks;
3584                 break;
3585         case geo_new:
3586                 layout = mddev->new_layout;
3587                 chunk = mddev->new_chunk_sectors;
3588                 disks = mddev->raid_disks;
3589                 break;
3590         default: /* avoid 'may be unused' warnings */
3591         case geo_start: /* new when starting reshape - raid_disks not
3592                          * updated yet. */
3593                 layout = mddev->new_layout;
3594                 chunk = mddev->new_chunk_sectors;
3595                 disks = mddev->raid_disks + mddev->delta_disks;
3596                 break;
3597         }
3598         if (layout >> 19)
3599                 return -1;
3600         if (chunk < (PAGE_SIZE >> 9) ||
3601             !is_power_of_2(chunk))
3602                 return -2;
3603         nc = layout & 255;
3604         fc = (layout >> 8) & 255;
3605         fo = layout & (1<<16);
3606         geo->raid_disks = disks;
3607         geo->near_copies = nc;
3608         geo->far_copies = fc;
3609         geo->far_offset = fo;
3610         switch (layout >> 17) {
3611         case 0: /* original layout.  simple but not always optimal */
3612                 geo->far_set_size = disks;
3613                 break;
3614         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3615                  * actually using this, but leave code here just in case.*/
3616                 geo->far_set_size = disks/fc;
3617                 WARN(geo->far_set_size < fc,
3618                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3619                 break;
3620         case 2: /* "improved" layout fixed to match documentation */
3621                 geo->far_set_size = fc * nc;
3622                 break;
3623         default: /* Not a valid layout */
3624                 return -1;
3625         }
3626         geo->chunk_mask = chunk - 1;
3627         geo->chunk_shift = ffz(~chunk);
3628         return nc*fc;
3629 }
3630
3631 static struct r10conf *setup_conf(struct mddev *mddev)
3632 {
3633         struct r10conf *conf = NULL;
3634         int err = -EINVAL;
3635         struct geom geo;
3636         int copies;
3637
3638         copies = setup_geo(&geo, mddev, geo_new);
3639
3640         if (copies == -2) {
3641                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3642                         mdname(mddev), PAGE_SIZE);
3643                 goto out;
3644         }
3645
3646         if (copies < 2 || copies > mddev->raid_disks) {
3647                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3648                         mdname(mddev), mddev->new_layout);
3649                 goto out;
3650         }
3651
3652         err = -ENOMEM;
3653         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3654         if (!conf)
3655                 goto out;
3656
3657         /* FIXME calc properly */
3658         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3659                                 sizeof(struct raid10_info),
3660                                 GFP_KERNEL);
3661         if (!conf->mirrors)
3662                 goto out;
3663
3664         conf->tmppage = alloc_page(GFP_KERNEL);
3665         if (!conf->tmppage)
3666                 goto out;
3667
3668         conf->geo = geo;
3669         conf->copies = copies;
3670         err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3671                            rbio_pool_free, conf);
3672         if (err)
3673                 goto out;
3674
3675         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3676         if (err)
3677                 goto out;
3678
3679         calc_sectors(conf, mddev->dev_sectors);
3680         if (mddev->reshape_position == MaxSector) {
3681                 conf->prev = conf->geo;
3682                 conf->reshape_progress = MaxSector;
3683         } else {
3684                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3685                         err = -EINVAL;
3686                         goto out;
3687                 }
3688                 conf->reshape_progress = mddev->reshape_position;
3689                 if (conf->prev.far_offset)
3690                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3691                 else
3692                         /* far_copies must be 1 */
3693                         conf->prev.stride = conf->dev_sectors;
3694         }
3695         conf->reshape_safe = conf->reshape_progress;
3696         spin_lock_init(&conf->device_lock);
3697         INIT_LIST_HEAD(&conf->retry_list);
3698         INIT_LIST_HEAD(&conf->bio_end_io_list);
3699
3700         spin_lock_init(&conf->resync_lock);
3701         init_waitqueue_head(&conf->wait_barrier);
3702         atomic_set(&conf->nr_pending, 0);
3703
3704         err = -ENOMEM;
3705         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3706         if (!conf->thread)
3707                 goto out;
3708
3709         conf->mddev = mddev;
3710         return conf;
3711
3712  out:
3713         if (conf) {
3714                 mempool_exit(&conf->r10bio_pool);
3715                 kfree(conf->mirrors);
3716                 safe_put_page(conf->tmppage);
3717                 bioset_exit(&conf->bio_split);
3718                 kfree(conf);
3719         }
3720         return ERR_PTR(err);
3721 }
3722
3723 static int raid10_run(struct mddev *mddev)
3724 {
3725         struct r10conf *conf;
3726         int i, disk_idx, chunk_size;
3727         struct raid10_info *disk;
3728         struct md_rdev *rdev;
3729         sector_t size;
3730         sector_t min_offset_diff = 0;
3731         int first = 1;
3732         bool discard_supported = false;
3733
3734         if (mddev_init_writes_pending(mddev) < 0)
3735                 return -ENOMEM;
3736
3737         if (mddev->private == NULL) {
3738                 conf = setup_conf(mddev);
3739                 if (IS_ERR(conf))
3740                         return PTR_ERR(conf);
3741                 mddev->private = conf;
3742         }
3743         conf = mddev->private;
3744         if (!conf)
3745                 goto out;
3746
3747         if (mddev_is_clustered(conf->mddev)) {
3748                 int fc, fo;
3749
3750                 fc = (mddev->layout >> 8) & 255;
3751                 fo = mddev->layout & (1<<16);
3752                 if (fc > 1 || fo > 0) {
3753                         pr_err("only near layout is supported by clustered"
3754                                 " raid10\n");
3755                         goto out_free_conf;
3756                 }
3757         }
3758
3759         mddev->thread = conf->thread;
3760         conf->thread = NULL;
3761
3762         chunk_size = mddev->chunk_sectors << 9;
3763         if (mddev->queue) {
3764                 blk_queue_max_discard_sectors(mddev->queue,
3765                                               mddev->chunk_sectors);
3766                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3767                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3768                 blk_queue_io_min(mddev->queue, chunk_size);
3769                 if (conf->geo.raid_disks % conf->geo.near_copies)
3770                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3771                 else
3772                         blk_queue_io_opt(mddev->queue, chunk_size *
3773                                          (conf->geo.raid_disks / conf->geo.near_copies));
3774         }
3775
3776         rdev_for_each(rdev, mddev) {
3777                 long long diff;
3778
3779                 disk_idx = rdev->raid_disk;
3780                 if (disk_idx < 0)
3781                         continue;
3782                 if (disk_idx >= conf->geo.raid_disks &&
3783                     disk_idx >= conf->prev.raid_disks)
3784                         continue;
3785                 disk = conf->mirrors + disk_idx;
3786
3787                 if (test_bit(Replacement, &rdev->flags)) {
3788                         if (disk->replacement)
3789                                 goto out_free_conf;
3790                         disk->replacement = rdev;
3791                 } else {
3792                         if (disk->rdev)
3793                                 goto out_free_conf;
3794                         disk->rdev = rdev;
3795                 }
3796                 diff = (rdev->new_data_offset - rdev->data_offset);
3797                 if (!mddev->reshape_backwards)
3798                         diff = -diff;
3799                 if (diff < 0)
3800                         diff = 0;
3801                 if (first || diff < min_offset_diff)
3802                         min_offset_diff = diff;
3803
3804                 if (mddev->gendisk)
3805                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3806                                           rdev->data_offset << 9);
3807
3808                 disk->head_position = 0;
3809
3810                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3811                         discard_supported = true;
3812                 first = 0;
3813         }
3814
3815         if (mddev->queue) {
3816                 if (discard_supported)
3817                         blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3818                                                 mddev->queue);
3819                 else
3820                         blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3821                                                   mddev->queue);
3822         }
3823         /* need to check that every block has at least one working mirror */
3824         if (!enough(conf, -1)) {
3825                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3826                        mdname(mddev));
3827                 goto out_free_conf;
3828         }
3829
3830         if (conf->reshape_progress != MaxSector) {
3831                 /* must ensure that shape change is supported */
3832                 if (conf->geo.far_copies != 1 &&
3833                     conf->geo.far_offset == 0)
3834                         goto out_free_conf;
3835                 if (conf->prev.far_copies != 1 &&
3836                     conf->prev.far_offset == 0)
3837                         goto out_free_conf;
3838         }
3839
3840         mddev->degraded = 0;
3841         for (i = 0;
3842              i < conf->geo.raid_disks
3843                      || i < conf->prev.raid_disks;
3844              i++) {
3845
3846                 disk = conf->mirrors + i;
3847
3848                 if (!disk->rdev && disk->replacement) {
3849                         /* The replacement is all we have - use it */
3850                         disk->rdev = disk->replacement;
3851                         disk->replacement = NULL;
3852                         clear_bit(Replacement, &disk->rdev->flags);
3853                 }
3854
3855                 if (!disk->rdev ||
3856                     !test_bit(In_sync, &disk->rdev->flags)) {
3857                         disk->head_position = 0;
3858                         mddev->degraded++;
3859                         if (disk->rdev &&
3860                             disk->rdev->saved_raid_disk < 0)
3861                                 conf->fullsync = 1;
3862                 }
3863
3864                 if (disk->replacement &&
3865                     !test_bit(In_sync, &disk->replacement->flags) &&
3866                     disk->replacement->saved_raid_disk < 0) {
3867                         conf->fullsync = 1;
3868                 }
3869
3870                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3871         }
3872
3873         if (mddev->recovery_cp != MaxSector)
3874                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3875                           mdname(mddev));
3876         pr_info("md/raid10:%s: active with %d out of %d devices\n",
3877                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3878                 conf->geo.raid_disks);
3879         /*
3880          * Ok, everything is just fine now
3881          */
3882         mddev->dev_sectors = conf->dev_sectors;
3883         size = raid10_size(mddev, 0, 0);
3884         md_set_array_sectors(mddev, size);
3885         mddev->resync_max_sectors = size;
3886         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3887
3888         if (mddev->queue) {
3889                 int stripe = conf->geo.raid_disks *
3890                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3891
3892                 /* Calculate max read-ahead size.
3893                  * We need to readahead at least twice a whole stripe....
3894                  * maybe...
3895                  */
3896                 stripe /= conf->geo.near_copies;
3897                 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3898                         mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3899         }
3900
3901         if (md_integrity_register(mddev))
3902                 goto out_free_conf;
3903
3904         if (conf->reshape_progress != MaxSector) {
3905                 unsigned long before_length, after_length;
3906
3907                 before_length = ((1 << conf->prev.chunk_shift) *
3908                                  conf->prev.far_copies);
3909                 after_length = ((1 << conf->geo.chunk_shift) *
3910                                 conf->geo.far_copies);
3911
3912                 if (max(before_length, after_length) > min_offset_diff) {
3913                         /* This cannot work */
3914                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3915                         goto out_free_conf;
3916                 }
3917                 conf->offset_diff = min_offset_diff;
3918
3919                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3920                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3921                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3922                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3923                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3924                                                         "reshape");
3925                 if (!mddev->sync_thread)
3926                         goto out_free_conf;
3927         }
3928
3929         return 0;
3930
3931 out_free_conf:
3932         md_unregister_thread(&mddev->thread);
3933         mempool_exit(&conf->r10bio_pool);
3934         safe_put_page(conf->tmppage);
3935         kfree(conf->mirrors);
3936         kfree(conf);
3937         mddev->private = NULL;
3938 out:
3939         return -EIO;
3940 }
3941
3942 static void raid10_free(struct mddev *mddev, void *priv)
3943 {
3944         struct r10conf *conf = priv;
3945
3946         mempool_exit(&conf->r10bio_pool);
3947         safe_put_page(conf->tmppage);
3948         kfree(conf->mirrors);
3949         kfree(conf->mirrors_old);
3950         kfree(conf->mirrors_new);
3951         bioset_exit(&conf->bio_split);
3952         kfree(conf);
3953 }
3954
3955 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3956 {
3957         struct r10conf *conf = mddev->private;
3958
3959         if (quiesce)
3960                 raise_barrier(conf, 0);
3961         else
3962                 lower_barrier(conf);
3963 }
3964
3965 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3966 {
3967         /* Resize of 'far' arrays is not supported.
3968          * For 'near' and 'offset' arrays we can set the
3969          * number of sectors used to be an appropriate multiple
3970          * of the chunk size.
3971          * For 'offset', this is far_copies*chunksize.
3972          * For 'near' the multiplier is the LCM of
3973          * near_copies and raid_disks.
3974          * So if far_copies > 1 && !far_offset, fail.
3975          * Else find LCM(raid_disks, near_copy)*far_copies and
3976          * multiply by chunk_size.  Then round to this number.
3977          * This is mostly done by raid10_size()
3978          */
3979         struct r10conf *conf = mddev->private;
3980         sector_t oldsize, size;
3981
3982         if (mddev->reshape_position != MaxSector)
3983                 return -EBUSY;
3984
3985         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3986                 return -EINVAL;
3987
3988         oldsize = raid10_size(mddev, 0, 0);
3989         size = raid10_size(mddev, sectors, 0);
3990         if (mddev->external_size &&
3991             mddev->array_sectors > size)
3992                 return -EINVAL;
3993         if (mddev->bitmap) {
3994                 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3995                 if (ret)
3996                         return ret;
3997         }
3998         md_set_array_sectors(mddev, size);
3999         if (sectors > mddev->dev_sectors &&
4000             mddev->recovery_cp > oldsize) {
4001                 mddev->recovery_cp = oldsize;
4002                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4003         }
4004         calc_sectors(conf, sectors);
4005         mddev->dev_sectors = conf->dev_sectors;
4006         mddev->resync_max_sectors = size;
4007         return 0;
4008 }
4009
4010 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4011 {
4012         struct md_rdev *rdev;
4013         struct r10conf *conf;
4014
4015         if (mddev->degraded > 0) {
4016                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4017                         mdname(mddev));
4018                 return ERR_PTR(-EINVAL);
4019         }
4020         sector_div(size, devs);
4021
4022         /* Set new parameters */
4023         mddev->new_level = 10;
4024         /* new layout: far_copies = 1, near_copies = 2 */
4025         mddev->new_layout = (1<<8) + 2;
4026         mddev->new_chunk_sectors = mddev->chunk_sectors;
4027         mddev->delta_disks = mddev->raid_disks;
4028         mddev->raid_disks *= 2;
4029         /* make sure it will be not marked as dirty */
4030         mddev->recovery_cp = MaxSector;
4031         mddev->dev_sectors = size;
4032
4033         conf = setup_conf(mddev);
4034         if (!IS_ERR(conf)) {
4035                 rdev_for_each(rdev, mddev)
4036                         if (rdev->raid_disk >= 0) {
4037                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4038                                 rdev->sectors = size;
4039                         }
4040                 conf->barrier = 1;
4041         }
4042
4043         return conf;
4044 }
4045
4046 static void *raid10_takeover(struct mddev *mddev)
4047 {
4048         struct r0conf *raid0_conf;
4049
4050         /* raid10 can take over:
4051          *  raid0 - providing it has only two drives
4052          */
4053         if (mddev->level == 0) {
4054                 /* for raid0 takeover only one zone is supported */
4055                 raid0_conf = mddev->private;
4056                 if (raid0_conf->nr_strip_zones > 1) {
4057                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4058                                 mdname(mddev));
4059                         return ERR_PTR(-EINVAL);
4060                 }
4061                 return raid10_takeover_raid0(mddev,
4062                         raid0_conf->strip_zone->zone_end,
4063                         raid0_conf->strip_zone->nb_dev);
4064         }
4065         return ERR_PTR(-EINVAL);
4066 }
4067
4068 static int raid10_check_reshape(struct mddev *mddev)
4069 {
4070         /* Called when there is a request to change
4071          * - layout (to ->new_layout)
4072          * - chunk size (to ->new_chunk_sectors)
4073          * - raid_disks (by delta_disks)
4074          * or when trying to restart a reshape that was ongoing.
4075          *
4076          * We need to validate the request and possibly allocate
4077          * space if that might be an issue later.
4078          *
4079          * Currently we reject any reshape of a 'far' mode array,
4080          * allow chunk size to change if new is generally acceptable,
4081          * allow raid_disks to increase, and allow
4082          * a switch between 'near' mode and 'offset' mode.
4083          */
4084         struct r10conf *conf = mddev->private;
4085         struct geom geo;
4086
4087         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4088                 return -EINVAL;
4089
4090         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4091                 /* mustn't change number of copies */
4092                 return -EINVAL;
4093         if (geo.far_copies > 1 && !geo.far_offset)
4094                 /* Cannot switch to 'far' mode */
4095                 return -EINVAL;
4096
4097         if (mddev->array_sectors & geo.chunk_mask)
4098                         /* not factor of array size */
4099                         return -EINVAL;
4100
4101         if (!enough(conf, -1))
4102                 return -EINVAL;
4103
4104         kfree(conf->mirrors_new);
4105         conf->mirrors_new = NULL;
4106         if (mddev->delta_disks > 0) {
4107                 /* allocate new 'mirrors' list */
4108                 conf->mirrors_new =
4109                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4110                                 sizeof(struct raid10_info),
4111                                 GFP_KERNEL);
4112                 if (!conf->mirrors_new)
4113                         return -ENOMEM;
4114         }
4115         return 0;
4116 }
4117
4118 /*
4119  * Need to check if array has failed when deciding whether to:
4120  *  - start an array
4121  *  - remove non-faulty devices
4122  *  - add a spare
4123  *  - allow a reshape
4124  * This determination is simple when no reshape is happening.
4125  * However if there is a reshape, we need to carefully check
4126  * both the before and after sections.
4127  * This is because some failed devices may only affect one
4128  * of the two sections, and some non-in_sync devices may
4129  * be insync in the section most affected by failed devices.
4130  */
4131 static int calc_degraded(struct r10conf *conf)
4132 {
4133         int degraded, degraded2;
4134         int i;
4135
4136         rcu_read_lock();
4137         degraded = 0;
4138         /* 'prev' section first */
4139         for (i = 0; i < conf->prev.raid_disks; i++) {
4140                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4141                 if (!rdev || test_bit(Faulty, &rdev->flags))
4142                         degraded++;
4143                 else if (!test_bit(In_sync, &rdev->flags))
4144                         /* When we can reduce the number of devices in
4145                          * an array, this might not contribute to
4146                          * 'degraded'.  It does now.
4147                          */
4148                         degraded++;
4149         }
4150         rcu_read_unlock();
4151         if (conf->geo.raid_disks == conf->prev.raid_disks)
4152                 return degraded;
4153         rcu_read_lock();
4154         degraded2 = 0;
4155         for (i = 0; i < conf->geo.raid_disks; i++) {
4156                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4157                 if (!rdev || test_bit(Faulty, &rdev->flags))
4158                         degraded2++;
4159                 else if (!test_bit(In_sync, &rdev->flags)) {
4160                         /* If reshape is increasing the number of devices,
4161                          * this section has already been recovered, so
4162                          * it doesn't contribute to degraded.
4163                          * else it does.
4164                          */
4165                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4166                                 degraded2++;
4167                 }
4168         }
4169         rcu_read_unlock();
4170         if (degraded2 > degraded)
4171                 return degraded2;
4172         return degraded;
4173 }
4174
4175 static int raid10_start_reshape(struct mddev *mddev)
4176 {
4177         /* A 'reshape' has been requested. This commits
4178          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4179          * This also checks if there are enough spares and adds them
4180          * to the array.
4181          * We currently require enough spares to make the final
4182          * array non-degraded.  We also require that the difference
4183          * between old and new data_offset - on each device - is
4184          * enough that we never risk over-writing.
4185          */
4186
4187         unsigned long before_length, after_length;
4188         sector_t min_offset_diff = 0;
4189         int first = 1;
4190         struct geom new;
4191         struct r10conf *conf = mddev->private;
4192         struct md_rdev *rdev;
4193         int spares = 0;
4194         int ret;
4195
4196         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4197                 return -EBUSY;
4198
4199         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4200                 return -EINVAL;
4201
4202         before_length = ((1 << conf->prev.chunk_shift) *
4203                          conf->prev.far_copies);
4204         after_length = ((1 << conf->geo.chunk_shift) *
4205                         conf->geo.far_copies);
4206
4207         rdev_for_each(rdev, mddev) {
4208                 if (!test_bit(In_sync, &rdev->flags)
4209                     && !test_bit(Faulty, &rdev->flags))
4210                         spares++;
4211                 if (rdev->raid_disk >= 0) {
4212                         long long diff = (rdev->new_data_offset
4213                                           - rdev->data_offset);
4214                         if (!mddev->reshape_backwards)
4215                                 diff = -diff;
4216                         if (diff < 0)
4217                                 diff = 0;
4218                         if (first || diff < min_offset_diff)
4219                                 min_offset_diff = diff;
4220                         first = 0;
4221                 }
4222         }
4223
4224         if (max(before_length, after_length) > min_offset_diff)
4225                 return -EINVAL;
4226
4227         if (spares < mddev->delta_disks)
4228                 return -EINVAL;
4229
4230         conf->offset_diff = min_offset_diff;
4231         spin_lock_irq(&conf->device_lock);
4232         if (conf->mirrors_new) {
4233                 memcpy(conf->mirrors_new, conf->mirrors,
4234                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4235                 smp_mb();
4236                 kfree(conf->mirrors_old);
4237                 conf->mirrors_old = conf->mirrors;
4238                 conf->mirrors = conf->mirrors_new;
4239                 conf->mirrors_new = NULL;
4240         }
4241         setup_geo(&conf->geo, mddev, geo_start);
4242         smp_mb();
4243         if (mddev->reshape_backwards) {
4244                 sector_t size = raid10_size(mddev, 0, 0);
4245                 if (size < mddev->array_sectors) {
4246                         spin_unlock_irq(&conf->device_lock);
4247                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4248                                 mdname(mddev));
4249                         return -EINVAL;
4250                 }
4251                 mddev->resync_max_sectors = size;
4252                 conf->reshape_progress = size;
4253         } else
4254                 conf->reshape_progress = 0;
4255         conf->reshape_safe = conf->reshape_progress;
4256         spin_unlock_irq(&conf->device_lock);
4257
4258         if (mddev->delta_disks && mddev->bitmap) {
4259                 struct mdp_superblock_1 *sb = NULL;
4260                 sector_t oldsize, newsize;
4261
4262                 oldsize = raid10_size(mddev, 0, 0);
4263                 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4264
4265                 if (!mddev_is_clustered(mddev)) {
4266                         ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4267                         if (ret)
4268                                 goto abort;
4269                         else
4270                                 goto out;
4271                 }
4272
4273                 rdev_for_each(rdev, mddev) {
4274                         if (rdev->raid_disk > -1 &&
4275                             !test_bit(Faulty, &rdev->flags))
4276                                 sb = page_address(rdev->sb_page);
4277                 }
4278
4279                 /*
4280                  * some node is already performing reshape, and no need to
4281                  * call md_bitmap_resize again since it should be called when
4282                  * receiving BITMAP_RESIZE msg
4283                  */
4284                 if ((sb && (le32_to_cpu(sb->feature_map) &
4285                             MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4286                         goto out;
4287
4288                 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4289                 if (ret)
4290                         goto abort;
4291
4292                 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4293                 if (ret) {
4294                         md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4295                         goto abort;
4296                 }
4297         }
4298 out:
4299         if (mddev->delta_disks > 0) {
4300                 rdev_for_each(rdev, mddev)
4301                         if (rdev->raid_disk < 0 &&
4302                             !test_bit(Faulty, &rdev->flags)) {
4303                                 if (raid10_add_disk(mddev, rdev) == 0) {
4304                                         if (rdev->raid_disk >=
4305                                             conf->prev.raid_disks)
4306                                                 set_bit(In_sync, &rdev->flags);
4307                                         else
4308                                                 rdev->recovery_offset = 0;
4309
4310                                         if (sysfs_link_rdev(mddev, rdev))
4311                                                 /* Failure here  is OK */;
4312                                 }
4313                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4314                                    && !test_bit(Faulty, &rdev->flags)) {
4315                                 /* This is a spare that was manually added */
4316                                 set_bit(In_sync, &rdev->flags);
4317                         }
4318         }
4319         /* When a reshape changes the number of devices,
4320          * ->degraded is measured against the larger of the
4321          * pre and  post numbers.
4322          */
4323         spin_lock_irq(&conf->device_lock);
4324         mddev->degraded = calc_degraded(conf);
4325         spin_unlock_irq(&conf->device_lock);
4326         mddev->raid_disks = conf->geo.raid_disks;
4327         mddev->reshape_position = conf->reshape_progress;
4328         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4329
4330         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4331         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4332         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4333         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4334         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4335
4336         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4337                                                 "reshape");
4338         if (!mddev->sync_thread) {
4339                 ret = -EAGAIN;
4340                 goto abort;
4341         }
4342         conf->reshape_checkpoint = jiffies;
4343         md_wakeup_thread(mddev->sync_thread);
4344         md_new_event(mddev);
4345         return 0;
4346
4347 abort:
4348         mddev->recovery = 0;
4349         spin_lock_irq(&conf->device_lock);
4350         conf->geo = conf->prev;
4351         mddev->raid_disks = conf->geo.raid_disks;
4352         rdev_for_each(rdev, mddev)
4353                 rdev->new_data_offset = rdev->data_offset;
4354         smp_wmb();
4355         conf->reshape_progress = MaxSector;
4356         conf->reshape_safe = MaxSector;
4357         mddev->reshape_position = MaxSector;
4358         spin_unlock_irq(&conf->device_lock);
4359         return ret;
4360 }
4361
4362 /* Calculate the last device-address that could contain
4363  * any block from the chunk that includes the array-address 's'
4364  * and report the next address.
4365  * i.e. the address returned will be chunk-aligned and after
4366  * any data that is in the chunk containing 's'.
4367  */
4368 static sector_t last_dev_address(sector_t s, struct geom *geo)
4369 {
4370         s = (s | geo->chunk_mask) + 1;
4371         s >>= geo->chunk_shift;
4372         s *= geo->near_copies;
4373         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4374         s *= geo->far_copies;
4375         s <<= geo->chunk_shift;
4376         return s;
4377 }
4378
4379 /* Calculate the first device-address that could contain
4380  * any block from the chunk that includes the array-address 's'.
4381  * This too will be the start of a chunk
4382  */
4383 static sector_t first_dev_address(sector_t s, struct geom *geo)
4384 {
4385         s >>= geo->chunk_shift;
4386         s *= geo->near_copies;
4387         sector_div(s, geo->raid_disks);
4388         s *= geo->far_copies;
4389         s <<= geo->chunk_shift;
4390         return s;
4391 }
4392
4393 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4394                                 int *skipped)
4395 {
4396         /* We simply copy at most one chunk (smallest of old and new)
4397          * at a time, possibly less if that exceeds RESYNC_PAGES,
4398          * or we hit a bad block or something.
4399          * This might mean we pause for normal IO in the middle of
4400          * a chunk, but that is not a problem as mddev->reshape_position
4401          * can record any location.
4402          *
4403          * If we will want to write to a location that isn't
4404          * yet recorded as 'safe' (i.e. in metadata on disk) then
4405          * we need to flush all reshape requests and update the metadata.
4406          *
4407          * When reshaping forwards (e.g. to more devices), we interpret
4408          * 'safe' as the earliest block which might not have been copied
4409          * down yet.  We divide this by previous stripe size and multiply
4410          * by previous stripe length to get lowest device offset that we
4411          * cannot write to yet.
4412          * We interpret 'sector_nr' as an address that we want to write to.
4413          * From this we use last_device_address() to find where we might
4414          * write to, and first_device_address on the  'safe' position.
4415          * If this 'next' write position is after the 'safe' position,
4416          * we must update the metadata to increase the 'safe' position.
4417          *
4418          * When reshaping backwards, we round in the opposite direction
4419          * and perform the reverse test:  next write position must not be
4420          * less than current safe position.
4421          *
4422          * In all this the minimum difference in data offsets
4423          * (conf->offset_diff - always positive) allows a bit of slack,
4424          * so next can be after 'safe', but not by more than offset_diff
4425          *
4426          * We need to prepare all the bios here before we start any IO
4427          * to ensure the size we choose is acceptable to all devices.
4428          * The means one for each copy for write-out and an extra one for
4429          * read-in.
4430          * We store the read-in bio in ->master_bio and the others in
4431          * ->devs[x].bio and ->devs[x].repl_bio.
4432          */
4433         struct r10conf *conf = mddev->private;
4434         struct r10bio *r10_bio;
4435         sector_t next, safe, last;
4436         int max_sectors;
4437         int nr_sectors;
4438         int s;
4439         struct md_rdev *rdev;
4440         int need_flush = 0;
4441         struct bio *blist;
4442         struct bio *bio, *read_bio;
4443         int sectors_done = 0;
4444         struct page **pages;
4445
4446         if (sector_nr == 0) {
4447                 /* If restarting in the middle, skip the initial sectors */
4448                 if (mddev->reshape_backwards &&
4449                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4450                         sector_nr = (raid10_size(mddev, 0, 0)
4451                                      - conf->reshape_progress);
4452                 } else if (!mddev->reshape_backwards &&
4453                            conf->reshape_progress > 0)
4454                         sector_nr = conf->reshape_progress;
4455                 if (sector_nr) {
4456                         mddev->curr_resync_completed = sector_nr;
4457                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4458                         *skipped = 1;
4459                         return sector_nr;
4460                 }
4461         }
4462
4463         /* We don't use sector_nr to track where we are up to
4464          * as that doesn't work well for ->reshape_backwards.
4465          * So just use ->reshape_progress.
4466          */
4467         if (mddev->reshape_backwards) {
4468                 /* 'next' is the earliest device address that we might
4469                  * write to for this chunk in the new layout
4470                  */
4471                 next = first_dev_address(conf->reshape_progress - 1,
4472                                          &conf->geo);
4473
4474                 /* 'safe' is the last device address that we might read from
4475                  * in the old layout after a restart
4476                  */
4477                 safe = last_dev_address(conf->reshape_safe - 1,
4478                                         &conf->prev);
4479
4480                 if (next + conf->offset_diff < safe)
4481                         need_flush = 1;
4482
4483                 last = conf->reshape_progress - 1;
4484                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4485                                                & conf->prev.chunk_mask);
4486                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4487                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4488         } else {
4489                 /* 'next' is after the last device address that we
4490                  * might write to for this chunk in the new layout
4491                  */
4492                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4493
4494                 /* 'safe' is the earliest device address that we might
4495                  * read from in the old layout after a restart
4496                  */
4497                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4498
4499                 /* Need to update metadata if 'next' might be beyond 'safe'
4500                  * as that would possibly corrupt data
4501                  */
4502                 if (next > safe + conf->offset_diff)
4503                         need_flush = 1;
4504
4505                 sector_nr = conf->reshape_progress;
4506                 last  = sector_nr | (conf->geo.chunk_mask
4507                                      & conf->prev.chunk_mask);
4508
4509                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4510                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4511         }
4512
4513         if (need_flush ||
4514             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4515                 /* Need to update reshape_position in metadata */
4516                 wait_barrier(conf);
4517                 mddev->reshape_position = conf->reshape_progress;
4518                 if (mddev->reshape_backwards)
4519                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4520                                 - conf->reshape_progress;
4521                 else
4522                         mddev->curr_resync_completed = conf->reshape_progress;
4523                 conf->reshape_checkpoint = jiffies;
4524                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4525                 md_wakeup_thread(mddev->thread);
4526                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4527                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4528                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4529                         allow_barrier(conf);
4530                         return sectors_done;
4531                 }
4532                 conf->reshape_safe = mddev->reshape_position;
4533                 allow_barrier(conf);
4534         }
4535
4536         raise_barrier(conf, 0);
4537 read_more:
4538         /* Now schedule reads for blocks from sector_nr to last */
4539         r10_bio = raid10_alloc_init_r10buf(conf);
4540         r10_bio->state = 0;
4541         raise_barrier(conf, 1);
4542         atomic_set(&r10_bio->remaining, 0);
4543         r10_bio->mddev = mddev;
4544         r10_bio->sector = sector_nr;
4545         set_bit(R10BIO_IsReshape, &r10_bio->state);
4546         r10_bio->sectors = last - sector_nr + 1;
4547         rdev = read_balance(conf, r10_bio, &max_sectors);
4548         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4549
4550         if (!rdev) {
4551                 /* Cannot read from here, so need to record bad blocks
4552                  * on all the target devices.
4553                  */
4554                 // FIXME
4555                 mempool_free(r10_bio, &conf->r10buf_pool);
4556                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4557                 return sectors_done;
4558         }
4559
4560         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4561
4562         bio_set_dev(read_bio, rdev->bdev);
4563         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4564                                + rdev->data_offset);
4565         read_bio->bi_private = r10_bio;
4566         read_bio->bi_end_io = end_reshape_read;
4567         bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4568         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4569         read_bio->bi_status = 0;
4570         read_bio->bi_vcnt = 0;
4571         read_bio->bi_iter.bi_size = 0;
4572         r10_bio->master_bio = read_bio;
4573         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4574
4575         /*
4576          * Broadcast RESYNC message to other nodes, so all nodes would not
4577          * write to the region to avoid conflict.
4578         */
4579         if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4580                 struct mdp_superblock_1 *sb = NULL;
4581                 int sb_reshape_pos = 0;
4582
4583                 conf->cluster_sync_low = sector_nr;
4584                 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4585                 sb = page_address(rdev->sb_page);
4586                 if (sb) {
4587                         sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4588                         /*
4589                          * Set cluster_sync_low again if next address for array
4590                          * reshape is less than cluster_sync_low. Since we can't
4591                          * update cluster_sync_low until it has finished reshape.
4592                          */
4593                         if (sb_reshape_pos < conf->cluster_sync_low)
4594                                 conf->cluster_sync_low = sb_reshape_pos;
4595                 }
4596
4597                 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4598                                                           conf->cluster_sync_high);
4599         }
4600
4601         /* Now find the locations in the new layout */
4602         __raid10_find_phys(&conf->geo, r10_bio);
4603
4604         blist = read_bio;
4605         read_bio->bi_next = NULL;
4606
4607         rcu_read_lock();
4608         for (s = 0; s < conf->copies*2; s++) {
4609                 struct bio *b;
4610                 int d = r10_bio->devs[s/2].devnum;
4611                 struct md_rdev *rdev2;
4612                 if (s&1) {
4613                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4614                         b = r10_bio->devs[s/2].repl_bio;
4615                 } else {
4616                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4617                         b = r10_bio->devs[s/2].bio;
4618                 }
4619                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4620                         continue;
4621
4622                 bio_set_dev(b, rdev2->bdev);
4623                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4624                         rdev2->new_data_offset;
4625                 b->bi_end_io = end_reshape_write;
4626                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4627                 b->bi_next = blist;
4628                 blist = b;
4629         }
4630
4631         /* Now add as many pages as possible to all of these bios. */
4632
4633         nr_sectors = 0;
4634         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4635         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4636                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4637                 int len = (max_sectors - s) << 9;
4638                 if (len > PAGE_SIZE)
4639                         len = PAGE_SIZE;
4640                 for (bio = blist; bio ; bio = bio->bi_next) {
4641                         /*
4642                          * won't fail because the vec table is big enough
4643                          * to hold all these pages
4644                          */
4645                         bio_add_page(bio, page, len, 0);
4646                 }
4647                 sector_nr += len >> 9;
4648                 nr_sectors += len >> 9;
4649         }
4650         rcu_read_unlock();
4651         r10_bio->sectors = nr_sectors;
4652
4653         /* Now submit the read */
4654         md_sync_acct_bio(read_bio, r10_bio->sectors);
4655         atomic_inc(&r10_bio->remaining);
4656         read_bio->bi_next = NULL;
4657         generic_make_request(read_bio);
4658         sectors_done += nr_sectors;
4659         if (sector_nr <= last)
4660                 goto read_more;
4661
4662         lower_barrier(conf);
4663
4664         /* Now that we have done the whole section we can
4665          * update reshape_progress
4666          */
4667         if (mddev->reshape_backwards)
4668                 conf->reshape_progress -= sectors_done;
4669         else
4670                 conf->reshape_progress += sectors_done;
4671
4672         return sectors_done;
4673 }
4674
4675 static void end_reshape_request(struct r10bio *r10_bio);
4676 static int handle_reshape_read_error(struct mddev *mddev,
4677                                      struct r10bio *r10_bio);
4678 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4679 {
4680         /* Reshape read completed.  Hopefully we have a block
4681          * to write out.
4682          * If we got a read error then we do sync 1-page reads from
4683          * elsewhere until we find the data - or give up.
4684          */
4685         struct r10conf *conf = mddev->private;
4686         int s;
4687
4688         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4689                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4690                         /* Reshape has been aborted */
4691                         md_done_sync(mddev, r10_bio->sectors, 0);
4692                         return;
4693                 }
4694
4695         /* We definitely have the data in the pages, schedule the
4696          * writes.
4697          */
4698         atomic_set(&r10_bio->remaining, 1);
4699         for (s = 0; s < conf->copies*2; s++) {
4700                 struct bio *b;
4701                 int d = r10_bio->devs[s/2].devnum;
4702                 struct md_rdev *rdev;
4703                 rcu_read_lock();
4704                 if (s&1) {
4705                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4706                         b = r10_bio->devs[s/2].repl_bio;
4707                 } else {
4708                         rdev = rcu_dereference(conf->mirrors[d].rdev);
4709                         b = r10_bio->devs[s/2].bio;
4710                 }
4711                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4712                         rcu_read_unlock();
4713                         continue;
4714                 }
4715                 atomic_inc(&rdev->nr_pending);
4716                 rcu_read_unlock();
4717                 md_sync_acct_bio(b, r10_bio->sectors);
4718                 atomic_inc(&r10_bio->remaining);
4719                 b->bi_next = NULL;
4720                 generic_make_request(b);
4721         }
4722         end_reshape_request(r10_bio);
4723 }
4724
4725 static void end_reshape(struct r10conf *conf)
4726 {
4727         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4728                 return;
4729
4730         spin_lock_irq(&conf->device_lock);
4731         conf->prev = conf->geo;
4732         md_finish_reshape(conf->mddev);
4733         smp_wmb();
4734         conf->reshape_progress = MaxSector;
4735         conf->reshape_safe = MaxSector;
4736         spin_unlock_irq(&conf->device_lock);
4737
4738         /* read-ahead size must cover two whole stripes, which is
4739          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4740          */
4741         if (conf->mddev->queue) {
4742                 int stripe = conf->geo.raid_disks *
4743                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4744                 stripe /= conf->geo.near_copies;
4745                 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4746                         conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4747         }
4748         conf->fullsync = 0;
4749 }
4750
4751 static void raid10_update_reshape_pos(struct mddev *mddev)
4752 {
4753         struct r10conf *conf = mddev->private;
4754         sector_t lo, hi;
4755
4756         md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4757         if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4758             || mddev->reshape_position == MaxSector)
4759                 conf->reshape_progress = mddev->reshape_position;
4760         else
4761                 WARN_ON_ONCE(1);
4762 }
4763
4764 static int handle_reshape_read_error(struct mddev *mddev,
4765                                      struct r10bio *r10_bio)
4766 {
4767         /* Use sync reads to get the blocks from somewhere else */
4768         int sectors = r10_bio->sectors;
4769         struct r10conf *conf = mddev->private;
4770         struct r10bio *r10b;
4771         int slot = 0;
4772         int idx = 0;
4773         struct page **pages;
4774
4775         r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4776         if (!r10b) {
4777                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4778                 return -ENOMEM;
4779         }
4780
4781         /* reshape IOs share pages from .devs[0].bio */
4782         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4783
4784         r10b->sector = r10_bio->sector;
4785         __raid10_find_phys(&conf->prev, r10b);
4786
4787         while (sectors) {
4788                 int s = sectors;
4789                 int success = 0;
4790                 int first_slot = slot;
4791
4792                 if (s > (PAGE_SIZE >> 9))
4793                         s = PAGE_SIZE >> 9;
4794
4795                 rcu_read_lock();
4796                 while (!success) {
4797                         int d = r10b->devs[slot].devnum;
4798                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4799                         sector_t addr;
4800                         if (rdev == NULL ||
4801                             test_bit(Faulty, &rdev->flags) ||
4802                             !test_bit(In_sync, &rdev->flags))
4803                                 goto failed;
4804
4805                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4806                         atomic_inc(&rdev->nr_pending);
4807                         rcu_read_unlock();
4808                         success = sync_page_io(rdev,
4809                                                addr,
4810                                                s << 9,
4811                                                pages[idx],
4812                                                REQ_OP_READ, 0, false);
4813                         rdev_dec_pending(rdev, mddev);
4814                         rcu_read_lock();
4815                         if (success)
4816                                 break;
4817                 failed:
4818                         slot++;
4819                         if (slot >= conf->copies)
4820                                 slot = 0;
4821                         if (slot == first_slot)
4822                                 break;
4823                 }
4824                 rcu_read_unlock();
4825                 if (!success) {
4826                         /* couldn't read this block, must give up */
4827                         set_bit(MD_RECOVERY_INTR,
4828                                 &mddev->recovery);
4829                         kfree(r10b);
4830                         return -EIO;
4831                 }
4832                 sectors -= s;
4833                 idx++;
4834         }
4835         kfree(r10b);
4836         return 0;
4837 }
4838
4839 static void end_reshape_write(struct bio *bio)
4840 {
4841         struct r10bio *r10_bio = get_resync_r10bio(bio);
4842         struct mddev *mddev = r10_bio->mddev;
4843         struct r10conf *conf = mddev->private;
4844         int d;
4845         int slot;
4846         int repl;
4847         struct md_rdev *rdev = NULL;
4848
4849         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4850         if (repl)
4851                 rdev = conf->mirrors[d].replacement;
4852         if (!rdev) {
4853                 smp_mb();
4854                 rdev = conf->mirrors[d].rdev;
4855         }
4856
4857         if (bio->bi_status) {
4858                 /* FIXME should record badblock */
4859                 md_error(mddev, rdev);
4860         }
4861
4862         rdev_dec_pending(rdev, mddev);
4863         end_reshape_request(r10_bio);
4864 }
4865
4866 static void end_reshape_request(struct r10bio *r10_bio)
4867 {
4868         if (!atomic_dec_and_test(&r10_bio->remaining))
4869                 return;
4870         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4871         bio_put(r10_bio->master_bio);
4872         put_buf(r10_bio);
4873 }
4874
4875 static void raid10_finish_reshape(struct mddev *mddev)
4876 {
4877         struct r10conf *conf = mddev->private;
4878
4879         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4880                 return;
4881
4882         if (mddev->delta_disks > 0) {
4883                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4884                         mddev->recovery_cp = mddev->resync_max_sectors;
4885                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4886                 }
4887                 mddev->resync_max_sectors = mddev->array_sectors;
4888         } else {
4889                 int d;
4890                 rcu_read_lock();
4891                 for (d = conf->geo.raid_disks ;
4892                      d < conf->geo.raid_disks - mddev->delta_disks;
4893                      d++) {
4894                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4895                         if (rdev)
4896                                 clear_bit(In_sync, &rdev->flags);
4897                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4898                         if (rdev)
4899                                 clear_bit(In_sync, &rdev->flags);
4900                 }
4901                 rcu_read_unlock();
4902         }
4903         mddev->layout = mddev->new_layout;
4904         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4905         mddev->reshape_position = MaxSector;
4906         mddev->delta_disks = 0;
4907         mddev->reshape_backwards = 0;
4908 }
4909
4910 static struct md_personality raid10_personality =
4911 {
4912         .name           = "raid10",
4913         .level          = 10,
4914         .owner          = THIS_MODULE,
4915         .make_request   = raid10_make_request,
4916         .run            = raid10_run,
4917         .free           = raid10_free,
4918         .status         = raid10_status,
4919         .error_handler  = raid10_error,
4920         .hot_add_disk   = raid10_add_disk,
4921         .hot_remove_disk= raid10_remove_disk,
4922         .spare_active   = raid10_spare_active,
4923         .sync_request   = raid10_sync_request,
4924         .quiesce        = raid10_quiesce,
4925         .size           = raid10_size,
4926         .resize         = raid10_resize,
4927         .takeover       = raid10_takeover,
4928         .check_reshape  = raid10_check_reshape,
4929         .start_reshape  = raid10_start_reshape,
4930         .finish_reshape = raid10_finish_reshape,
4931         .update_reshape_pos = raid10_update_reshape_pos,
4932         .congested      = raid10_congested,
4933 };
4934
4935 static int __init raid_init(void)
4936 {
4937         return register_md_personality(&raid10_personality);
4938 }
4939
4940 static void raid_exit(void)
4941 {
4942         unregister_md_personality(&raid10_personality);
4943 }
4944
4945 module_init(raid_init);
4946 module_exit(raid_exit);
4947 MODULE_LICENSE("GPL");
4948 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4949 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4950 MODULE_ALIAS("md-raid10");
4951 MODULE_ALIAS("md-level-10");
4952
4953 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);