Revert "block: remove __blkdev_driver_ioctl"
[platform/kernel/linux-rpi.git] / drivers / md / raid10.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72                                 int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76
77 #define raid10_log(md, fmt, args...)                            \
78         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80 #include "raid1-10.c"
81
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88         return get_resync_pages(bio)->raid_bio;
89 }
90
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93         struct r10conf *conf = data;
94         int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
95
96         /* allocate a r10bio with room for raid_disks entries in the
97          * bios array */
98         return kzalloc(size, gfp_flags);
99 }
100
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118         struct r10conf *conf = data;
119         struct r10bio *r10_bio;
120         struct bio *bio;
121         int j;
122         int nalloc, nalloc_rp;
123         struct resync_pages *rps;
124
125         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126         if (!r10_bio)
127                 return NULL;
128
129         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131                 nalloc = conf->copies; /* resync */
132         else
133                 nalloc = 2; /* recovery */
134
135         /* allocate once for all bios */
136         if (!conf->have_replacement)
137                 nalloc_rp = nalloc;
138         else
139                 nalloc_rp = nalloc * 2;
140         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141         if (!rps)
142                 goto out_free_r10bio;
143
144         /*
145          * Allocate bios.
146          */
147         for (j = nalloc ; j-- ; ) {
148                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149                 if (!bio)
150                         goto out_free_bio;
151                 r10_bio->devs[j].bio = bio;
152                 if (!conf->have_replacement)
153                         continue;
154                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155                 if (!bio)
156                         goto out_free_bio;
157                 r10_bio->devs[j].repl_bio = bio;
158         }
159         /*
160          * Allocate RESYNC_PAGES data pages and attach them
161          * where needed.
162          */
163         for (j = 0; j < nalloc; j++) {
164                 struct bio *rbio = r10_bio->devs[j].repl_bio;
165                 struct resync_pages *rp, *rp_repl;
166
167                 rp = &rps[j];
168                 if (rbio)
169                         rp_repl = &rps[nalloc + j];
170
171                 bio = r10_bio->devs[j].bio;
172
173                 if (!j || test_bit(MD_RECOVERY_SYNC,
174                                    &conf->mddev->recovery)) {
175                         if (resync_alloc_pages(rp, gfp_flags))
176                                 goto out_free_pages;
177                 } else {
178                         memcpy(rp, &rps[0], sizeof(*rp));
179                         resync_get_all_pages(rp);
180                 }
181
182                 rp->raid_bio = r10_bio;
183                 bio->bi_private = rp;
184                 if (rbio) {
185                         memcpy(rp_repl, rp, sizeof(*rp));
186                         rbio->bi_private = rp_repl;
187                 }
188         }
189
190         return r10_bio;
191
192 out_free_pages:
193         while (--j >= 0)
194                 resync_free_pages(&rps[j]);
195
196         j = 0;
197 out_free_bio:
198         for ( ; j < nalloc; j++) {
199                 if (r10_bio->devs[j].bio)
200                         bio_put(r10_bio->devs[j].bio);
201                 if (r10_bio->devs[j].repl_bio)
202                         bio_put(r10_bio->devs[j].repl_bio);
203         }
204         kfree(rps);
205 out_free_r10bio:
206         rbio_pool_free(r10_bio, conf);
207         return NULL;
208 }
209
210 static void r10buf_pool_free(void *__r10_bio, void *data)
211 {
212         struct r10conf *conf = data;
213         struct r10bio *r10bio = __r10_bio;
214         int j;
215         struct resync_pages *rp = NULL;
216
217         for (j = conf->copies; j--; ) {
218                 struct bio *bio = r10bio->devs[j].bio;
219
220                 if (bio) {
221                         rp = get_resync_pages(bio);
222                         resync_free_pages(rp);
223                         bio_put(bio);
224                 }
225
226                 bio = r10bio->devs[j].repl_bio;
227                 if (bio)
228                         bio_put(bio);
229         }
230
231         /* resync pages array stored in the 1st bio's .bi_private */
232         kfree(rp);
233
234         rbio_pool_free(r10bio, conf);
235 }
236
237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238 {
239         int i;
240
241         for (i = 0; i < conf->geo.raid_disks; i++) {
242                 struct bio **bio = & r10_bio->devs[i].bio;
243                 if (!BIO_SPECIAL(*bio))
244                         bio_put(*bio);
245                 *bio = NULL;
246                 bio = &r10_bio->devs[i].repl_bio;
247                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248                         bio_put(*bio);
249                 *bio = NULL;
250         }
251 }
252
253 static void free_r10bio(struct r10bio *r10_bio)
254 {
255         struct r10conf *conf = r10_bio->mddev->private;
256
257         put_all_bios(conf, r10_bio);
258         mempool_free(r10_bio, &conf->r10bio_pool);
259 }
260
261 static void put_buf(struct r10bio *r10_bio)
262 {
263         struct r10conf *conf = r10_bio->mddev->private;
264
265         mempool_free(r10_bio, &conf->r10buf_pool);
266
267         lower_barrier(conf);
268 }
269
270 static void reschedule_retry(struct r10bio *r10_bio)
271 {
272         unsigned long flags;
273         struct mddev *mddev = r10_bio->mddev;
274         struct r10conf *conf = mddev->private;
275
276         spin_lock_irqsave(&conf->device_lock, flags);
277         list_add(&r10_bio->retry_list, &conf->retry_list);
278         conf->nr_queued ++;
279         spin_unlock_irqrestore(&conf->device_lock, flags);
280
281         /* wake up frozen array... */
282         wake_up(&conf->wait_barrier);
283
284         md_wakeup_thread(mddev->thread);
285 }
286
287 /*
288  * raid_end_bio_io() is called when we have finished servicing a mirrored
289  * operation and are ready to return a success/failure code to the buffer
290  * cache layer.
291  */
292 static void raid_end_bio_io(struct r10bio *r10_bio)
293 {
294         struct bio *bio = r10_bio->master_bio;
295         struct r10conf *conf = r10_bio->mddev->private;
296
297         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298                 bio->bi_status = BLK_STS_IOERR;
299
300         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
301                 bio_end_io_acct(bio, r10_bio->start_time);
302         bio_endio(bio);
303         /*
304          * Wake up any possible resync thread that waits for the device
305          * to go idle.
306          */
307         allow_barrier(conf);
308
309         free_r10bio(r10_bio);
310 }
311
312 /*
313  * Update disk head position estimator based on IRQ completion info.
314  */
315 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
316 {
317         struct r10conf *conf = r10_bio->mddev->private;
318
319         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
320                 r10_bio->devs[slot].addr + (r10_bio->sectors);
321 }
322
323 /*
324  * Find the disk number which triggered given bio
325  */
326 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
327                          struct bio *bio, int *slotp, int *replp)
328 {
329         int slot;
330         int repl = 0;
331
332         for (slot = 0; slot < conf->geo.raid_disks; slot++) {
333                 if (r10_bio->devs[slot].bio == bio)
334                         break;
335                 if (r10_bio->devs[slot].repl_bio == bio) {
336                         repl = 1;
337                         break;
338                 }
339         }
340
341         update_head_pos(slot, r10_bio);
342
343         if (slotp)
344                 *slotp = slot;
345         if (replp)
346                 *replp = repl;
347         return r10_bio->devs[slot].devnum;
348 }
349
350 static void raid10_end_read_request(struct bio *bio)
351 {
352         int uptodate = !bio->bi_status;
353         struct r10bio *r10_bio = bio->bi_private;
354         int slot;
355         struct md_rdev *rdev;
356         struct r10conf *conf = r10_bio->mddev->private;
357
358         slot = r10_bio->read_slot;
359         rdev = r10_bio->devs[slot].rdev;
360         /*
361          * this branch is our 'one mirror IO has finished' event handler:
362          */
363         update_head_pos(slot, r10_bio);
364
365         if (uptodate) {
366                 /*
367                  * Set R10BIO_Uptodate in our master bio, so that
368                  * we will return a good error code to the higher
369                  * levels even if IO on some other mirrored buffer fails.
370                  *
371                  * The 'master' represents the composite IO operation to
372                  * user-side. So if something waits for IO, then it will
373                  * wait for the 'master' bio.
374                  */
375                 set_bit(R10BIO_Uptodate, &r10_bio->state);
376         } else {
377                 /* If all other devices that store this block have
378                  * failed, we want to return the error upwards rather
379                  * than fail the last device.  Here we redefine
380                  * "uptodate" to mean "Don't want to retry"
381                  */
382                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
383                              rdev->raid_disk))
384                         uptodate = 1;
385         }
386         if (uptodate) {
387                 raid_end_bio_io(r10_bio);
388                 rdev_dec_pending(rdev, conf->mddev);
389         } else {
390                 /*
391                  * oops, read error - keep the refcount on the rdev
392                  */
393                 char b[BDEVNAME_SIZE];
394                 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
395                                    mdname(conf->mddev),
396                                    bdevname(rdev->bdev, b),
397                                    (unsigned long long)r10_bio->sector);
398                 set_bit(R10BIO_ReadError, &r10_bio->state);
399                 reschedule_retry(r10_bio);
400         }
401 }
402
403 static void close_write(struct r10bio *r10_bio)
404 {
405         /* clear the bitmap if all writes complete successfully */
406         md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
407                            r10_bio->sectors,
408                            !test_bit(R10BIO_Degraded, &r10_bio->state),
409                            0);
410         md_write_end(r10_bio->mddev);
411 }
412
413 static void one_write_done(struct r10bio *r10_bio)
414 {
415         if (atomic_dec_and_test(&r10_bio->remaining)) {
416                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
417                         reschedule_retry(r10_bio);
418                 else {
419                         close_write(r10_bio);
420                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
421                                 reschedule_retry(r10_bio);
422                         else
423                                 raid_end_bio_io(r10_bio);
424                 }
425         }
426 }
427
428 static void raid10_end_write_request(struct bio *bio)
429 {
430         struct r10bio *r10_bio = bio->bi_private;
431         int dev;
432         int dec_rdev = 1;
433         struct r10conf *conf = r10_bio->mddev->private;
434         int slot, repl;
435         struct md_rdev *rdev = NULL;
436         struct bio *to_put = NULL;
437         bool discard_error;
438
439         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
440
441         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
442
443         if (repl)
444                 rdev = conf->mirrors[dev].replacement;
445         if (!rdev) {
446                 smp_rmb();
447                 repl = 0;
448                 rdev = conf->mirrors[dev].rdev;
449         }
450         /*
451          * this branch is our 'one mirror IO has finished' event handler:
452          */
453         if (bio->bi_status && !discard_error) {
454                 if (repl)
455                         /* Never record new bad blocks to replacement,
456                          * just fail it.
457                          */
458                         md_error(rdev->mddev, rdev);
459                 else {
460                         set_bit(WriteErrorSeen, &rdev->flags);
461                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
462                                 set_bit(MD_RECOVERY_NEEDED,
463                                         &rdev->mddev->recovery);
464
465                         dec_rdev = 0;
466                         if (test_bit(FailFast, &rdev->flags) &&
467                             (bio->bi_opf & MD_FAILFAST)) {
468                                 md_error(rdev->mddev, rdev);
469                         }
470
471                         /*
472                          * When the device is faulty, it is not necessary to
473                          * handle write error.
474                          */
475                         if (!test_bit(Faulty, &rdev->flags))
476                                 set_bit(R10BIO_WriteError, &r10_bio->state);
477                         else {
478                                 /* Fail the request */
479                                 set_bit(R10BIO_Degraded, &r10_bio->state);
480                                 r10_bio->devs[slot].bio = NULL;
481                                 to_put = bio;
482                                 dec_rdev = 1;
483                         }
484                 }
485         } else {
486                 /*
487                  * Set R10BIO_Uptodate in our master bio, so that
488                  * we will return a good error code for to the higher
489                  * levels even if IO on some other mirrored buffer fails.
490                  *
491                  * The 'master' represents the composite IO operation to
492                  * user-side. So if something waits for IO, then it will
493                  * wait for the 'master' bio.
494                  */
495                 sector_t first_bad;
496                 int bad_sectors;
497
498                 /*
499                  * Do not set R10BIO_Uptodate if the current device is
500                  * rebuilding or Faulty. This is because we cannot use
501                  * such device for properly reading the data back (we could
502                  * potentially use it, if the current write would have felt
503                  * before rdev->recovery_offset, but for simplicity we don't
504                  * check this here.
505                  */
506                 if (test_bit(In_sync, &rdev->flags) &&
507                     !test_bit(Faulty, &rdev->flags))
508                         set_bit(R10BIO_Uptodate, &r10_bio->state);
509
510                 /* Maybe we can clear some bad blocks. */
511                 if (is_badblock(rdev,
512                                 r10_bio->devs[slot].addr,
513                                 r10_bio->sectors,
514                                 &first_bad, &bad_sectors) && !discard_error) {
515                         bio_put(bio);
516                         if (repl)
517                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
518                         else
519                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
520                         dec_rdev = 0;
521                         set_bit(R10BIO_MadeGood, &r10_bio->state);
522                 }
523         }
524
525         /*
526          *
527          * Let's see if all mirrored write operations have finished
528          * already.
529          */
530         one_write_done(r10_bio);
531         if (dec_rdev)
532                 rdev_dec_pending(rdev, conf->mddev);
533         if (to_put)
534                 bio_put(to_put);
535 }
536
537 /*
538  * RAID10 layout manager
539  * As well as the chunksize and raid_disks count, there are two
540  * parameters: near_copies and far_copies.
541  * near_copies * far_copies must be <= raid_disks.
542  * Normally one of these will be 1.
543  * If both are 1, we get raid0.
544  * If near_copies == raid_disks, we get raid1.
545  *
546  * Chunks are laid out in raid0 style with near_copies copies of the
547  * first chunk, followed by near_copies copies of the next chunk and
548  * so on.
549  * If far_copies > 1, then after 1/far_copies of the array has been assigned
550  * as described above, we start again with a device offset of near_copies.
551  * So we effectively have another copy of the whole array further down all
552  * the drives, but with blocks on different drives.
553  * With this layout, and block is never stored twice on the one device.
554  *
555  * raid10_find_phys finds the sector offset of a given virtual sector
556  * on each device that it is on.
557  *
558  * raid10_find_virt does the reverse mapping, from a device and a
559  * sector offset to a virtual address
560  */
561
562 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
563 {
564         int n,f;
565         sector_t sector;
566         sector_t chunk;
567         sector_t stripe;
568         int dev;
569         int slot = 0;
570         int last_far_set_start, last_far_set_size;
571
572         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
573         last_far_set_start *= geo->far_set_size;
574
575         last_far_set_size = geo->far_set_size;
576         last_far_set_size += (geo->raid_disks % geo->far_set_size);
577
578         /* now calculate first sector/dev */
579         chunk = r10bio->sector >> geo->chunk_shift;
580         sector = r10bio->sector & geo->chunk_mask;
581
582         chunk *= geo->near_copies;
583         stripe = chunk;
584         dev = sector_div(stripe, geo->raid_disks);
585         if (geo->far_offset)
586                 stripe *= geo->far_copies;
587
588         sector += stripe << geo->chunk_shift;
589
590         /* and calculate all the others */
591         for (n = 0; n < geo->near_copies; n++) {
592                 int d = dev;
593                 int set;
594                 sector_t s = sector;
595                 r10bio->devs[slot].devnum = d;
596                 r10bio->devs[slot].addr = s;
597                 slot++;
598
599                 for (f = 1; f < geo->far_copies; f++) {
600                         set = d / geo->far_set_size;
601                         d += geo->near_copies;
602
603                         if ((geo->raid_disks % geo->far_set_size) &&
604                             (d > last_far_set_start)) {
605                                 d -= last_far_set_start;
606                                 d %= last_far_set_size;
607                                 d += last_far_set_start;
608                         } else {
609                                 d %= geo->far_set_size;
610                                 d += geo->far_set_size * set;
611                         }
612                         s += geo->stride;
613                         r10bio->devs[slot].devnum = d;
614                         r10bio->devs[slot].addr = s;
615                         slot++;
616                 }
617                 dev++;
618                 if (dev >= geo->raid_disks) {
619                         dev = 0;
620                         sector += (geo->chunk_mask + 1);
621                 }
622         }
623 }
624
625 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
626 {
627         struct geom *geo = &conf->geo;
628
629         if (conf->reshape_progress != MaxSector &&
630             ((r10bio->sector >= conf->reshape_progress) !=
631              conf->mddev->reshape_backwards)) {
632                 set_bit(R10BIO_Previous, &r10bio->state);
633                 geo = &conf->prev;
634         } else
635                 clear_bit(R10BIO_Previous, &r10bio->state);
636
637         __raid10_find_phys(geo, r10bio);
638 }
639
640 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
641 {
642         sector_t offset, chunk, vchunk;
643         /* Never use conf->prev as this is only called during resync
644          * or recovery, so reshape isn't happening
645          */
646         struct geom *geo = &conf->geo;
647         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
648         int far_set_size = geo->far_set_size;
649         int last_far_set_start;
650
651         if (geo->raid_disks % geo->far_set_size) {
652                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
653                 last_far_set_start *= geo->far_set_size;
654
655                 if (dev >= last_far_set_start) {
656                         far_set_size = geo->far_set_size;
657                         far_set_size += (geo->raid_disks % geo->far_set_size);
658                         far_set_start = last_far_set_start;
659                 }
660         }
661
662         offset = sector & geo->chunk_mask;
663         if (geo->far_offset) {
664                 int fc;
665                 chunk = sector >> geo->chunk_shift;
666                 fc = sector_div(chunk, geo->far_copies);
667                 dev -= fc * geo->near_copies;
668                 if (dev < far_set_start)
669                         dev += far_set_size;
670         } else {
671                 while (sector >= geo->stride) {
672                         sector -= geo->stride;
673                         if (dev < (geo->near_copies + far_set_start))
674                                 dev += far_set_size - geo->near_copies;
675                         else
676                                 dev -= geo->near_copies;
677                 }
678                 chunk = sector >> geo->chunk_shift;
679         }
680         vchunk = chunk * geo->raid_disks + dev;
681         sector_div(vchunk, geo->near_copies);
682         return (vchunk << geo->chunk_shift) + offset;
683 }
684
685 /*
686  * This routine returns the disk from which the requested read should
687  * be done. There is a per-array 'next expected sequential IO' sector
688  * number - if this matches on the next IO then we use the last disk.
689  * There is also a per-disk 'last know head position' sector that is
690  * maintained from IRQ contexts, both the normal and the resync IO
691  * completion handlers update this position correctly. If there is no
692  * perfect sequential match then we pick the disk whose head is closest.
693  *
694  * If there are 2 mirrors in the same 2 devices, performance degrades
695  * because position is mirror, not device based.
696  *
697  * The rdev for the device selected will have nr_pending incremented.
698  */
699
700 /*
701  * FIXME: possibly should rethink readbalancing and do it differently
702  * depending on near_copies / far_copies geometry.
703  */
704 static struct md_rdev *read_balance(struct r10conf *conf,
705                                     struct r10bio *r10_bio,
706                                     int *max_sectors)
707 {
708         const sector_t this_sector = r10_bio->sector;
709         int disk, slot;
710         int sectors = r10_bio->sectors;
711         int best_good_sectors;
712         sector_t new_distance, best_dist;
713         struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
714         int do_balance;
715         int best_dist_slot, best_pending_slot;
716         bool has_nonrot_disk = false;
717         unsigned int min_pending;
718         struct geom *geo = &conf->geo;
719
720         raid10_find_phys(conf, r10_bio);
721         rcu_read_lock();
722         best_dist_slot = -1;
723         min_pending = UINT_MAX;
724         best_dist_rdev = NULL;
725         best_pending_rdev = NULL;
726         best_dist = MaxSector;
727         best_good_sectors = 0;
728         do_balance = 1;
729         clear_bit(R10BIO_FailFast, &r10_bio->state);
730         /*
731          * Check if we can balance. We can balance on the whole
732          * device if no resync is going on (recovery is ok), or below
733          * the resync window. We take the first readable disk when
734          * above the resync window.
735          */
736         if ((conf->mddev->recovery_cp < MaxSector
737              && (this_sector + sectors >= conf->next_resync)) ||
738             (mddev_is_clustered(conf->mddev) &&
739              md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
740                                             this_sector + sectors)))
741                 do_balance = 0;
742
743         for (slot = 0; slot < conf->copies ; slot++) {
744                 sector_t first_bad;
745                 int bad_sectors;
746                 sector_t dev_sector;
747                 unsigned int pending;
748                 bool nonrot;
749
750                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
751                         continue;
752                 disk = r10_bio->devs[slot].devnum;
753                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
754                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
755                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
756                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
757                 if (rdev == NULL ||
758                     test_bit(Faulty, &rdev->flags))
759                         continue;
760                 if (!test_bit(In_sync, &rdev->flags) &&
761                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
762                         continue;
763
764                 dev_sector = r10_bio->devs[slot].addr;
765                 if (is_badblock(rdev, dev_sector, sectors,
766                                 &first_bad, &bad_sectors)) {
767                         if (best_dist < MaxSector)
768                                 /* Already have a better slot */
769                                 continue;
770                         if (first_bad <= dev_sector) {
771                                 /* Cannot read here.  If this is the
772                                  * 'primary' device, then we must not read
773                                  * beyond 'bad_sectors' from another device.
774                                  */
775                                 bad_sectors -= (dev_sector - first_bad);
776                                 if (!do_balance && sectors > bad_sectors)
777                                         sectors = bad_sectors;
778                                 if (best_good_sectors > sectors)
779                                         best_good_sectors = sectors;
780                         } else {
781                                 sector_t good_sectors =
782                                         first_bad - dev_sector;
783                                 if (good_sectors > best_good_sectors) {
784                                         best_good_sectors = good_sectors;
785                                         best_dist_slot = slot;
786                                         best_dist_rdev = rdev;
787                                 }
788                                 if (!do_balance)
789                                         /* Must read from here */
790                                         break;
791                         }
792                         continue;
793                 } else
794                         best_good_sectors = sectors;
795
796                 if (!do_balance)
797                         break;
798
799                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
800                 has_nonrot_disk |= nonrot;
801                 pending = atomic_read(&rdev->nr_pending);
802                 if (min_pending > pending && nonrot) {
803                         min_pending = pending;
804                         best_pending_slot = slot;
805                         best_pending_rdev = rdev;
806                 }
807
808                 if (best_dist_slot >= 0)
809                         /* At least 2 disks to choose from so failfast is OK */
810                         set_bit(R10BIO_FailFast, &r10_bio->state);
811                 /* This optimisation is debatable, and completely destroys
812                  * sequential read speed for 'far copies' arrays.  So only
813                  * keep it for 'near' arrays, and review those later.
814                  */
815                 if (geo->near_copies > 1 && !pending)
816                         new_distance = 0;
817
818                 /* for far > 1 always use the lowest address */
819                 else if (geo->far_copies > 1)
820                         new_distance = r10_bio->devs[slot].addr;
821                 else
822                         new_distance = abs(r10_bio->devs[slot].addr -
823                                            conf->mirrors[disk].head_position);
824
825                 if (new_distance < best_dist) {
826                         best_dist = new_distance;
827                         best_dist_slot = slot;
828                         best_dist_rdev = rdev;
829                 }
830         }
831         if (slot >= conf->copies) {
832                 if (has_nonrot_disk) {
833                         slot = best_pending_slot;
834                         rdev = best_pending_rdev;
835                 } else {
836                         slot = best_dist_slot;
837                         rdev = best_dist_rdev;
838                 }
839         }
840
841         if (slot >= 0) {
842                 atomic_inc(&rdev->nr_pending);
843                 r10_bio->read_slot = slot;
844         } else
845                 rdev = NULL;
846         rcu_read_unlock();
847         *max_sectors = best_good_sectors;
848
849         return rdev;
850 }
851
852 static void flush_pending_writes(struct r10conf *conf)
853 {
854         /* Any writes that have been queued but are awaiting
855          * bitmap updates get flushed here.
856          */
857         spin_lock_irq(&conf->device_lock);
858
859         if (conf->pending_bio_list.head) {
860                 struct blk_plug plug;
861                 struct bio *bio;
862
863                 bio = bio_list_get(&conf->pending_bio_list);
864                 conf->pending_count = 0;
865                 spin_unlock_irq(&conf->device_lock);
866
867                 /*
868                  * As this is called in a wait_event() loop (see freeze_array),
869                  * current->state might be TASK_UNINTERRUPTIBLE which will
870                  * cause a warning when we prepare to wait again.  As it is
871                  * rare that this path is taken, it is perfectly safe to force
872                  * us to go around the wait_event() loop again, so the warning
873                  * is a false-positive. Silence the warning by resetting
874                  * thread state
875                  */
876                 __set_current_state(TASK_RUNNING);
877
878                 blk_start_plug(&plug);
879                 /* flush any pending bitmap writes to disk
880                  * before proceeding w/ I/O */
881                 md_bitmap_unplug(conf->mddev->bitmap);
882                 wake_up(&conf->wait_barrier);
883
884                 while (bio) { /* submit pending writes */
885                         struct bio *next = bio->bi_next;
886                         struct md_rdev *rdev = (void*)bio->bi_bdev;
887                         bio->bi_next = NULL;
888                         bio_set_dev(bio, rdev->bdev);
889                         if (test_bit(Faulty, &rdev->flags)) {
890                                 bio_io_error(bio);
891                         } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
892                                             !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
893                                 /* Just ignore it */
894                                 bio_endio(bio);
895                         else
896                                 submit_bio_noacct(bio);
897                         bio = next;
898                 }
899                 blk_finish_plug(&plug);
900         } else
901                 spin_unlock_irq(&conf->device_lock);
902 }
903
904 /* Barriers....
905  * Sometimes we need to suspend IO while we do something else,
906  * either some resync/recovery, or reconfigure the array.
907  * To do this we raise a 'barrier'.
908  * The 'barrier' is a counter that can be raised multiple times
909  * to count how many activities are happening which preclude
910  * normal IO.
911  * We can only raise the barrier if there is no pending IO.
912  * i.e. if nr_pending == 0.
913  * We choose only to raise the barrier if no-one is waiting for the
914  * barrier to go down.  This means that as soon as an IO request
915  * is ready, no other operations which require a barrier will start
916  * until the IO request has had a chance.
917  *
918  * So: regular IO calls 'wait_barrier'.  When that returns there
919  *    is no backgroup IO happening,  It must arrange to call
920  *    allow_barrier when it has finished its IO.
921  * backgroup IO calls must call raise_barrier.  Once that returns
922  *    there is no normal IO happeing.  It must arrange to call
923  *    lower_barrier when the particular background IO completes.
924  */
925
926 static void raise_barrier(struct r10conf *conf, int force)
927 {
928         BUG_ON(force && !conf->barrier);
929         spin_lock_irq(&conf->resync_lock);
930
931         /* Wait until no block IO is waiting (unless 'force') */
932         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
933                             conf->resync_lock);
934
935         /* block any new IO from starting */
936         conf->barrier++;
937
938         /* Now wait for all pending IO to complete */
939         wait_event_lock_irq(conf->wait_barrier,
940                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
941                             conf->resync_lock);
942
943         spin_unlock_irq(&conf->resync_lock);
944 }
945
946 static void lower_barrier(struct r10conf *conf)
947 {
948         unsigned long flags;
949         spin_lock_irqsave(&conf->resync_lock, flags);
950         conf->barrier--;
951         spin_unlock_irqrestore(&conf->resync_lock, flags);
952         wake_up(&conf->wait_barrier);
953 }
954
955 static void wait_barrier(struct r10conf *conf)
956 {
957         spin_lock_irq(&conf->resync_lock);
958         if (conf->barrier) {
959                 struct bio_list *bio_list = current->bio_list;
960                 conf->nr_waiting++;
961                 /* Wait for the barrier to drop.
962                  * However if there are already pending
963                  * requests (preventing the barrier from
964                  * rising completely), and the
965                  * pre-process bio queue isn't empty,
966                  * then don't wait, as we need to empty
967                  * that queue to get the nr_pending
968                  * count down.
969                  */
970                 raid10_log(conf->mddev, "wait barrier");
971                 wait_event_lock_irq(conf->wait_barrier,
972                                     !conf->barrier ||
973                                     (atomic_read(&conf->nr_pending) &&
974                                      bio_list &&
975                                      (!bio_list_empty(&bio_list[0]) ||
976                                       !bio_list_empty(&bio_list[1]))) ||
977                                      /* move on if recovery thread is
978                                       * blocked by us
979                                       */
980                                      (conf->mddev->thread->tsk == current &&
981                                       test_bit(MD_RECOVERY_RUNNING,
982                                                &conf->mddev->recovery) &&
983                                       conf->nr_queued > 0),
984                                     conf->resync_lock);
985                 conf->nr_waiting--;
986                 if (!conf->nr_waiting)
987                         wake_up(&conf->wait_barrier);
988         }
989         atomic_inc(&conf->nr_pending);
990         spin_unlock_irq(&conf->resync_lock);
991 }
992
993 static void allow_barrier(struct r10conf *conf)
994 {
995         if ((atomic_dec_and_test(&conf->nr_pending)) ||
996                         (conf->array_freeze_pending))
997                 wake_up(&conf->wait_barrier);
998 }
999
1000 static void freeze_array(struct r10conf *conf, int extra)
1001 {
1002         /* stop syncio and normal IO and wait for everything to
1003          * go quiet.
1004          * We increment barrier and nr_waiting, and then
1005          * wait until nr_pending match nr_queued+extra
1006          * This is called in the context of one normal IO request
1007          * that has failed. Thus any sync request that might be pending
1008          * will be blocked by nr_pending, and we need to wait for
1009          * pending IO requests to complete or be queued for re-try.
1010          * Thus the number queued (nr_queued) plus this request (extra)
1011          * must match the number of pending IOs (nr_pending) before
1012          * we continue.
1013          */
1014         spin_lock_irq(&conf->resync_lock);
1015         conf->array_freeze_pending++;
1016         conf->barrier++;
1017         conf->nr_waiting++;
1018         wait_event_lock_irq_cmd(conf->wait_barrier,
1019                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1020                                 conf->resync_lock,
1021                                 flush_pending_writes(conf));
1022
1023         conf->array_freeze_pending--;
1024         spin_unlock_irq(&conf->resync_lock);
1025 }
1026
1027 static void unfreeze_array(struct r10conf *conf)
1028 {
1029         /* reverse the effect of the freeze */
1030         spin_lock_irq(&conf->resync_lock);
1031         conf->barrier--;
1032         conf->nr_waiting--;
1033         wake_up(&conf->wait_barrier);
1034         spin_unlock_irq(&conf->resync_lock);
1035 }
1036
1037 static sector_t choose_data_offset(struct r10bio *r10_bio,
1038                                    struct md_rdev *rdev)
1039 {
1040         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1041             test_bit(R10BIO_Previous, &r10_bio->state))
1042                 return rdev->data_offset;
1043         else
1044                 return rdev->new_data_offset;
1045 }
1046
1047 struct raid10_plug_cb {
1048         struct blk_plug_cb      cb;
1049         struct bio_list         pending;
1050         int                     pending_cnt;
1051 };
1052
1053 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1054 {
1055         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1056                                                    cb);
1057         struct mddev *mddev = plug->cb.data;
1058         struct r10conf *conf = mddev->private;
1059         struct bio *bio;
1060
1061         if (from_schedule || current->bio_list) {
1062                 spin_lock_irq(&conf->device_lock);
1063                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1064                 conf->pending_count += plug->pending_cnt;
1065                 spin_unlock_irq(&conf->device_lock);
1066                 wake_up(&conf->wait_barrier);
1067                 md_wakeup_thread(mddev->thread);
1068                 kfree(plug);
1069                 return;
1070         }
1071
1072         /* we aren't scheduling, so we can do the write-out directly. */
1073         bio = bio_list_get(&plug->pending);
1074         md_bitmap_unplug(mddev->bitmap);
1075         wake_up(&conf->wait_barrier);
1076
1077         while (bio) { /* submit pending writes */
1078                 struct bio *next = bio->bi_next;
1079                 struct md_rdev *rdev = (void*)bio->bi_bdev;
1080                 bio->bi_next = NULL;
1081                 bio_set_dev(bio, rdev->bdev);
1082                 if (test_bit(Faulty, &rdev->flags)) {
1083                         bio_io_error(bio);
1084                 } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1085                                     !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
1086                         /* Just ignore it */
1087                         bio_endio(bio);
1088                 else
1089                         submit_bio_noacct(bio);
1090                 bio = next;
1091         }
1092         kfree(plug);
1093 }
1094
1095 /*
1096  * 1. Register the new request and wait if the reconstruction thread has put
1097  * up a bar for new requests. Continue immediately if no resync is active
1098  * currently.
1099  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1100  */
1101 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1102                                  struct bio *bio, sector_t sectors)
1103 {
1104         wait_barrier(conf);
1105         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1106             bio->bi_iter.bi_sector < conf->reshape_progress &&
1107             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1108                 raid10_log(conf->mddev, "wait reshape");
1109                 allow_barrier(conf);
1110                 wait_event(conf->wait_barrier,
1111                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1112                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1113                            sectors);
1114                 wait_barrier(conf);
1115         }
1116 }
1117
1118 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1119                                 struct r10bio *r10_bio)
1120 {
1121         struct r10conf *conf = mddev->private;
1122         struct bio *read_bio;
1123         const int op = bio_op(bio);
1124         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1125         int max_sectors;
1126         struct md_rdev *rdev;
1127         char b[BDEVNAME_SIZE];
1128         int slot = r10_bio->read_slot;
1129         struct md_rdev *err_rdev = NULL;
1130         gfp_t gfp = GFP_NOIO;
1131
1132         if (slot >= 0 && r10_bio->devs[slot].rdev) {
1133                 /*
1134                  * This is an error retry, but we cannot
1135                  * safely dereference the rdev in the r10_bio,
1136                  * we must use the one in conf.
1137                  * If it has already been disconnected (unlikely)
1138                  * we lose the device name in error messages.
1139                  */
1140                 int disk;
1141                 /*
1142                  * As we are blocking raid10, it is a little safer to
1143                  * use __GFP_HIGH.
1144                  */
1145                 gfp = GFP_NOIO | __GFP_HIGH;
1146
1147                 rcu_read_lock();
1148                 disk = r10_bio->devs[slot].devnum;
1149                 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1150                 if (err_rdev)
1151                         bdevname(err_rdev->bdev, b);
1152                 else {
1153                         strcpy(b, "???");
1154                         /* This never gets dereferenced */
1155                         err_rdev = r10_bio->devs[slot].rdev;
1156                 }
1157                 rcu_read_unlock();
1158         }
1159
1160         regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1161         rdev = read_balance(conf, r10_bio, &max_sectors);
1162         if (!rdev) {
1163                 if (err_rdev) {
1164                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1165                                             mdname(mddev), b,
1166                                             (unsigned long long)r10_bio->sector);
1167                 }
1168                 raid_end_bio_io(r10_bio);
1169                 return;
1170         }
1171         if (err_rdev)
1172                 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1173                                    mdname(mddev),
1174                                    bdevname(rdev->bdev, b),
1175                                    (unsigned long long)r10_bio->sector);
1176         if (max_sectors < bio_sectors(bio)) {
1177                 struct bio *split = bio_split(bio, max_sectors,
1178                                               gfp, &conf->bio_split);
1179                 bio_chain(split, bio);
1180                 allow_barrier(conf);
1181                 submit_bio_noacct(bio);
1182                 wait_barrier(conf);
1183                 bio = split;
1184                 r10_bio->master_bio = bio;
1185                 r10_bio->sectors = max_sectors;
1186         }
1187         slot = r10_bio->read_slot;
1188
1189         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1190                 r10_bio->start_time = bio_start_io_acct(bio);
1191         read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1192
1193         r10_bio->devs[slot].bio = read_bio;
1194         r10_bio->devs[slot].rdev = rdev;
1195
1196         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1197                 choose_data_offset(r10_bio, rdev);
1198         bio_set_dev(read_bio, rdev->bdev);
1199         read_bio->bi_end_io = raid10_end_read_request;
1200         bio_set_op_attrs(read_bio, op, do_sync);
1201         if (test_bit(FailFast, &rdev->flags) &&
1202             test_bit(R10BIO_FailFast, &r10_bio->state))
1203                 read_bio->bi_opf |= MD_FAILFAST;
1204         read_bio->bi_private = r10_bio;
1205
1206         if (mddev->gendisk)
1207                 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1208                                       r10_bio->sector);
1209         submit_bio_noacct(read_bio);
1210         return;
1211 }
1212
1213 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1214                                   struct bio *bio, bool replacement,
1215                                   int n_copy)
1216 {
1217         const int op = bio_op(bio);
1218         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1219         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1220         unsigned long flags;
1221         struct blk_plug_cb *cb;
1222         struct raid10_plug_cb *plug = NULL;
1223         struct r10conf *conf = mddev->private;
1224         struct md_rdev *rdev;
1225         int devnum = r10_bio->devs[n_copy].devnum;
1226         struct bio *mbio;
1227
1228         if (replacement) {
1229                 rdev = conf->mirrors[devnum].replacement;
1230                 if (rdev == NULL) {
1231                         /* Replacement just got moved to main 'rdev' */
1232                         smp_mb();
1233                         rdev = conf->mirrors[devnum].rdev;
1234                 }
1235         } else
1236                 rdev = conf->mirrors[devnum].rdev;
1237
1238         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1239         if (replacement)
1240                 r10_bio->devs[n_copy].repl_bio = mbio;
1241         else
1242                 r10_bio->devs[n_copy].bio = mbio;
1243
1244         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1245                                    choose_data_offset(r10_bio, rdev));
1246         bio_set_dev(mbio, rdev->bdev);
1247         mbio->bi_end_io = raid10_end_write_request;
1248         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1249         if (!replacement && test_bit(FailFast,
1250                                      &conf->mirrors[devnum].rdev->flags)
1251                          && enough(conf, devnum))
1252                 mbio->bi_opf |= MD_FAILFAST;
1253         mbio->bi_private = r10_bio;
1254
1255         if (conf->mddev->gendisk)
1256                 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1257                                       r10_bio->sector);
1258         /* flush_pending_writes() needs access to the rdev so...*/
1259         mbio->bi_bdev = (void *)rdev;
1260
1261         atomic_inc(&r10_bio->remaining);
1262
1263         cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1264         if (cb)
1265                 plug = container_of(cb, struct raid10_plug_cb, cb);
1266         else
1267                 plug = NULL;
1268         if (plug) {
1269                 bio_list_add(&plug->pending, mbio);
1270                 plug->pending_cnt++;
1271         } else {
1272                 spin_lock_irqsave(&conf->device_lock, flags);
1273                 bio_list_add(&conf->pending_bio_list, mbio);
1274                 conf->pending_count++;
1275                 spin_unlock_irqrestore(&conf->device_lock, flags);
1276                 md_wakeup_thread(mddev->thread);
1277         }
1278 }
1279
1280 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1281 {
1282         int i;
1283         struct r10conf *conf = mddev->private;
1284         struct md_rdev *blocked_rdev;
1285
1286 retry_wait:
1287         blocked_rdev = NULL;
1288         rcu_read_lock();
1289         for (i = 0; i < conf->copies; i++) {
1290                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1291                 struct md_rdev *rrdev = rcu_dereference(
1292                         conf->mirrors[i].replacement);
1293                 if (rdev == rrdev)
1294                         rrdev = NULL;
1295                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1296                         atomic_inc(&rdev->nr_pending);
1297                         blocked_rdev = rdev;
1298                         break;
1299                 }
1300                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1301                         atomic_inc(&rrdev->nr_pending);
1302                         blocked_rdev = rrdev;
1303                         break;
1304                 }
1305
1306                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1307                         sector_t first_bad;
1308                         sector_t dev_sector = r10_bio->devs[i].addr;
1309                         int bad_sectors;
1310                         int is_bad;
1311
1312                         /*
1313                          * Discard request doesn't care the write result
1314                          * so it doesn't need to wait blocked disk here.
1315                          */
1316                         if (!r10_bio->sectors)
1317                                 continue;
1318
1319                         is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1320                                              &first_bad, &bad_sectors);
1321                         if (is_bad < 0) {
1322                                 /*
1323                                  * Mustn't write here until the bad block
1324                                  * is acknowledged
1325                                  */
1326                                 atomic_inc(&rdev->nr_pending);
1327                                 set_bit(BlockedBadBlocks, &rdev->flags);
1328                                 blocked_rdev = rdev;
1329                                 break;
1330                         }
1331                 }
1332         }
1333         rcu_read_unlock();
1334
1335         if (unlikely(blocked_rdev)) {
1336                 /* Have to wait for this device to get unblocked, then retry */
1337                 allow_barrier(conf);
1338                 raid10_log(conf->mddev, "%s wait rdev %d blocked",
1339                                 __func__, blocked_rdev->raid_disk);
1340                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1341                 wait_barrier(conf);
1342                 goto retry_wait;
1343         }
1344 }
1345
1346 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1347                                  struct r10bio *r10_bio)
1348 {
1349         struct r10conf *conf = mddev->private;
1350         int i;
1351         sector_t sectors;
1352         int max_sectors;
1353
1354         if ((mddev_is_clustered(mddev) &&
1355              md_cluster_ops->area_resyncing(mddev, WRITE,
1356                                             bio->bi_iter.bi_sector,
1357                                             bio_end_sector(bio)))) {
1358                 DEFINE_WAIT(w);
1359                 for (;;) {
1360                         prepare_to_wait(&conf->wait_barrier,
1361                                         &w, TASK_IDLE);
1362                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1363                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1364                                 break;
1365                         schedule();
1366                 }
1367                 finish_wait(&conf->wait_barrier, &w);
1368         }
1369
1370         sectors = r10_bio->sectors;
1371         regular_request_wait(mddev, conf, bio, sectors);
1372         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1373             (mddev->reshape_backwards
1374              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1375                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1376              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1377                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1378                 /* Need to update reshape_position in metadata */
1379                 mddev->reshape_position = conf->reshape_progress;
1380                 set_mask_bits(&mddev->sb_flags, 0,
1381                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1382                 md_wakeup_thread(mddev->thread);
1383                 raid10_log(conf->mddev, "wait reshape metadata");
1384                 wait_event(mddev->sb_wait,
1385                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1386
1387                 conf->reshape_safe = mddev->reshape_position;
1388         }
1389
1390         if (conf->pending_count >= max_queued_requests) {
1391                 md_wakeup_thread(mddev->thread);
1392                 raid10_log(mddev, "wait queued");
1393                 wait_event(conf->wait_barrier,
1394                            conf->pending_count < max_queued_requests);
1395         }
1396         /* first select target devices under rcu_lock and
1397          * inc refcount on their rdev.  Record them by setting
1398          * bios[x] to bio
1399          * If there are known/acknowledged bad blocks on any device
1400          * on which we have seen a write error, we want to avoid
1401          * writing to those blocks.  This potentially requires several
1402          * writes to write around the bad blocks.  Each set of writes
1403          * gets its own r10_bio with a set of bios attached.
1404          */
1405
1406         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1407         raid10_find_phys(conf, r10_bio);
1408
1409         wait_blocked_dev(mddev, r10_bio);
1410
1411         rcu_read_lock();
1412         max_sectors = r10_bio->sectors;
1413
1414         for (i = 0;  i < conf->copies; i++) {
1415                 int d = r10_bio->devs[i].devnum;
1416                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1417                 struct md_rdev *rrdev = rcu_dereference(
1418                         conf->mirrors[d].replacement);
1419                 if (rdev == rrdev)
1420                         rrdev = NULL;
1421                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1422                         rdev = NULL;
1423                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1424                         rrdev = NULL;
1425
1426                 r10_bio->devs[i].bio = NULL;
1427                 r10_bio->devs[i].repl_bio = NULL;
1428
1429                 if (!rdev && !rrdev) {
1430                         set_bit(R10BIO_Degraded, &r10_bio->state);
1431                         continue;
1432                 }
1433                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1434                         sector_t first_bad;
1435                         sector_t dev_sector = r10_bio->devs[i].addr;
1436                         int bad_sectors;
1437                         int is_bad;
1438
1439                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1440                                              &first_bad, &bad_sectors);
1441                         if (is_bad && first_bad <= dev_sector) {
1442                                 /* Cannot write here at all */
1443                                 bad_sectors -= (dev_sector - first_bad);
1444                                 if (bad_sectors < max_sectors)
1445                                         /* Mustn't write more than bad_sectors
1446                                          * to other devices yet
1447                                          */
1448                                         max_sectors = bad_sectors;
1449                                 /* We don't set R10BIO_Degraded as that
1450                                  * only applies if the disk is missing,
1451                                  * so it might be re-added, and we want to
1452                                  * know to recover this chunk.
1453                                  * In this case the device is here, and the
1454                                  * fact that this chunk is not in-sync is
1455                                  * recorded in the bad block log.
1456                                  */
1457                                 continue;
1458                         }
1459                         if (is_bad) {
1460                                 int good_sectors = first_bad - dev_sector;
1461                                 if (good_sectors < max_sectors)
1462                                         max_sectors = good_sectors;
1463                         }
1464                 }
1465                 if (rdev) {
1466                         r10_bio->devs[i].bio = bio;
1467                         atomic_inc(&rdev->nr_pending);
1468                 }
1469                 if (rrdev) {
1470                         r10_bio->devs[i].repl_bio = bio;
1471                         atomic_inc(&rrdev->nr_pending);
1472                 }
1473         }
1474         rcu_read_unlock();
1475
1476         if (max_sectors < r10_bio->sectors)
1477                 r10_bio->sectors = max_sectors;
1478
1479         if (r10_bio->sectors < bio_sectors(bio)) {
1480                 struct bio *split = bio_split(bio, r10_bio->sectors,
1481                                               GFP_NOIO, &conf->bio_split);
1482                 bio_chain(split, bio);
1483                 allow_barrier(conf);
1484                 submit_bio_noacct(bio);
1485                 wait_barrier(conf);
1486                 bio = split;
1487                 r10_bio->master_bio = bio;
1488         }
1489
1490         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1491                 r10_bio->start_time = bio_start_io_acct(bio);
1492         atomic_set(&r10_bio->remaining, 1);
1493         md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1494
1495         for (i = 0; i < conf->copies; i++) {
1496                 if (r10_bio->devs[i].bio)
1497                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1498                 if (r10_bio->devs[i].repl_bio)
1499                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1500         }
1501         one_write_done(r10_bio);
1502 }
1503
1504 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1505 {
1506         struct r10conf *conf = mddev->private;
1507         struct r10bio *r10_bio;
1508
1509         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1510
1511         r10_bio->master_bio = bio;
1512         r10_bio->sectors = sectors;
1513
1514         r10_bio->mddev = mddev;
1515         r10_bio->sector = bio->bi_iter.bi_sector;
1516         r10_bio->state = 0;
1517         r10_bio->read_slot = -1;
1518         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1519                         conf->geo.raid_disks);
1520
1521         if (bio_data_dir(bio) == READ)
1522                 raid10_read_request(mddev, bio, r10_bio);
1523         else
1524                 raid10_write_request(mddev, bio, r10_bio);
1525 }
1526
1527 static void raid_end_discard_bio(struct r10bio *r10bio)
1528 {
1529         struct r10conf *conf = r10bio->mddev->private;
1530         struct r10bio *first_r10bio;
1531
1532         while (atomic_dec_and_test(&r10bio->remaining)) {
1533
1534                 allow_barrier(conf);
1535
1536                 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1537                         first_r10bio = (struct r10bio *)r10bio->master_bio;
1538                         free_r10bio(r10bio);
1539                         r10bio = first_r10bio;
1540                 } else {
1541                         md_write_end(r10bio->mddev);
1542                         bio_endio(r10bio->master_bio);
1543                         free_r10bio(r10bio);
1544                         break;
1545                 }
1546         }
1547 }
1548
1549 static void raid10_end_discard_request(struct bio *bio)
1550 {
1551         struct r10bio *r10_bio = bio->bi_private;
1552         struct r10conf *conf = r10_bio->mddev->private;
1553         struct md_rdev *rdev = NULL;
1554         int dev;
1555         int slot, repl;
1556
1557         /*
1558          * We don't care the return value of discard bio
1559          */
1560         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1561                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1562
1563         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1564         if (repl)
1565                 rdev = conf->mirrors[dev].replacement;
1566         if (!rdev) {
1567                 /*
1568                  * raid10_remove_disk uses smp_mb to make sure rdev is set to
1569                  * replacement before setting replacement to NULL. It can read
1570                  * rdev first without barrier protect even replacment is NULL
1571                  */
1572                 smp_rmb();
1573                 rdev = conf->mirrors[dev].rdev;
1574         }
1575
1576         raid_end_discard_bio(r10_bio);
1577         rdev_dec_pending(rdev, conf->mddev);
1578 }
1579
1580 /*
1581  * There are some limitations to handle discard bio
1582  * 1st, the discard size is bigger than stripe_size*2.
1583  * 2st, if the discard bio spans reshape progress, we use the old way to
1584  * handle discard bio
1585  */
1586 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1587 {
1588         struct r10conf *conf = mddev->private;
1589         struct geom *geo = &conf->geo;
1590         int far_copies = geo->far_copies;
1591         bool first_copy = true;
1592         struct r10bio *r10_bio, *first_r10bio;
1593         struct bio *split;
1594         int disk;
1595         sector_t chunk;
1596         unsigned int stripe_size;
1597         unsigned int stripe_data_disks;
1598         sector_t split_size;
1599         sector_t bio_start, bio_end;
1600         sector_t first_stripe_index, last_stripe_index;
1601         sector_t start_disk_offset;
1602         unsigned int start_disk_index;
1603         sector_t end_disk_offset;
1604         unsigned int end_disk_index;
1605         unsigned int remainder;
1606
1607         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1608                 return -EAGAIN;
1609
1610         wait_barrier(conf);
1611
1612         /*
1613          * Check reshape again to avoid reshape happens after checking
1614          * MD_RECOVERY_RESHAPE and before wait_barrier
1615          */
1616         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1617                 goto out;
1618
1619         if (geo->near_copies)
1620                 stripe_data_disks = geo->raid_disks / geo->near_copies +
1621                                         geo->raid_disks % geo->near_copies;
1622         else
1623                 stripe_data_disks = geo->raid_disks;
1624
1625         stripe_size = stripe_data_disks << geo->chunk_shift;
1626
1627         bio_start = bio->bi_iter.bi_sector;
1628         bio_end = bio_end_sector(bio);
1629
1630         /*
1631          * Maybe one discard bio is smaller than strip size or across one
1632          * stripe and discard region is larger than one stripe size. For far
1633          * offset layout, if the discard region is not aligned with stripe
1634          * size, there is hole when we submit discard bio to member disk.
1635          * For simplicity, we only handle discard bio which discard region
1636          * is bigger than stripe_size * 2
1637          */
1638         if (bio_sectors(bio) < stripe_size*2)
1639                 goto out;
1640
1641         /*
1642          * Keep bio aligned with strip size.
1643          */
1644         div_u64_rem(bio_start, stripe_size, &remainder);
1645         if (remainder) {
1646                 split_size = stripe_size - remainder;
1647                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1648                 bio_chain(split, bio);
1649                 allow_barrier(conf);
1650                 /* Resend the fist split part */
1651                 submit_bio_noacct(split);
1652                 wait_barrier(conf);
1653         }
1654         div_u64_rem(bio_end, stripe_size, &remainder);
1655         if (remainder) {
1656                 split_size = bio_sectors(bio) - remainder;
1657                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1658                 bio_chain(split, bio);
1659                 allow_barrier(conf);
1660                 /* Resend the second split part */
1661                 submit_bio_noacct(bio);
1662                 bio = split;
1663                 wait_barrier(conf);
1664         }
1665
1666         bio_start = bio->bi_iter.bi_sector;
1667         bio_end = bio_end_sector(bio);
1668
1669         /*
1670          * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1671          * One stripe contains the chunks from all member disk (one chunk from
1672          * one disk at the same HBA address). For layout detail, see 'man md 4'
1673          */
1674         chunk = bio_start >> geo->chunk_shift;
1675         chunk *= geo->near_copies;
1676         first_stripe_index = chunk;
1677         start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1678         if (geo->far_offset)
1679                 first_stripe_index *= geo->far_copies;
1680         start_disk_offset = (bio_start & geo->chunk_mask) +
1681                                 (first_stripe_index << geo->chunk_shift);
1682
1683         chunk = bio_end >> geo->chunk_shift;
1684         chunk *= geo->near_copies;
1685         last_stripe_index = chunk;
1686         end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1687         if (geo->far_offset)
1688                 last_stripe_index *= geo->far_copies;
1689         end_disk_offset = (bio_end & geo->chunk_mask) +
1690                                 (last_stripe_index << geo->chunk_shift);
1691
1692 retry_discard:
1693         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1694         r10_bio->mddev = mddev;
1695         r10_bio->state = 0;
1696         r10_bio->sectors = 0;
1697         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1698         wait_blocked_dev(mddev, r10_bio);
1699
1700         /*
1701          * For far layout it needs more than one r10bio to cover all regions.
1702          * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1703          * to record the discard bio. Other r10bio->master_bio record the first
1704          * r10bio. The first r10bio only release after all other r10bios finish.
1705          * The discard bio returns only first r10bio finishes
1706          */
1707         if (first_copy) {
1708                 r10_bio->master_bio = bio;
1709                 set_bit(R10BIO_Discard, &r10_bio->state);
1710                 first_copy = false;
1711                 first_r10bio = r10_bio;
1712         } else
1713                 r10_bio->master_bio = (struct bio *)first_r10bio;
1714
1715         /*
1716          * first select target devices under rcu_lock and
1717          * inc refcount on their rdev.  Record them by setting
1718          * bios[x] to bio
1719          */
1720         rcu_read_lock();
1721         for (disk = 0; disk < geo->raid_disks; disk++) {
1722                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1723                 struct md_rdev *rrdev = rcu_dereference(
1724                         conf->mirrors[disk].replacement);
1725
1726                 r10_bio->devs[disk].bio = NULL;
1727                 r10_bio->devs[disk].repl_bio = NULL;
1728
1729                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1730                         rdev = NULL;
1731                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1732                         rrdev = NULL;
1733                 if (!rdev && !rrdev)
1734                         continue;
1735
1736                 if (rdev) {
1737                         r10_bio->devs[disk].bio = bio;
1738                         atomic_inc(&rdev->nr_pending);
1739                 }
1740                 if (rrdev) {
1741                         r10_bio->devs[disk].repl_bio = bio;
1742                         atomic_inc(&rrdev->nr_pending);
1743                 }
1744         }
1745         rcu_read_unlock();
1746
1747         atomic_set(&r10_bio->remaining, 1);
1748         for (disk = 0; disk < geo->raid_disks; disk++) {
1749                 sector_t dev_start, dev_end;
1750                 struct bio *mbio, *rbio = NULL;
1751
1752                 /*
1753                  * Now start to calculate the start and end address for each disk.
1754                  * The space between dev_start and dev_end is the discard region.
1755                  *
1756                  * For dev_start, it needs to consider three conditions:
1757                  * 1st, the disk is before start_disk, you can imagine the disk in
1758                  * the next stripe. So the dev_start is the start address of next
1759                  * stripe.
1760                  * 2st, the disk is after start_disk, it means the disk is at the
1761                  * same stripe of first disk
1762                  * 3st, the first disk itself, we can use start_disk_offset directly
1763                  */
1764                 if (disk < start_disk_index)
1765                         dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1766                 else if (disk > start_disk_index)
1767                         dev_start = first_stripe_index * mddev->chunk_sectors;
1768                 else
1769                         dev_start = start_disk_offset;
1770
1771                 if (disk < end_disk_index)
1772                         dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1773                 else if (disk > end_disk_index)
1774                         dev_end = last_stripe_index * mddev->chunk_sectors;
1775                 else
1776                         dev_end = end_disk_offset;
1777
1778                 /*
1779                  * It only handles discard bio which size is >= stripe size, so
1780                  * dev_end > dev_start all the time.
1781                  * It doesn't need to use rcu lock to get rdev here. We already
1782                  * add rdev->nr_pending in the first loop.
1783                  */
1784                 if (r10_bio->devs[disk].bio) {
1785                         struct md_rdev *rdev = conf->mirrors[disk].rdev;
1786                         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1787                         mbio->bi_end_io = raid10_end_discard_request;
1788                         mbio->bi_private = r10_bio;
1789                         r10_bio->devs[disk].bio = mbio;
1790                         r10_bio->devs[disk].devnum = disk;
1791                         atomic_inc(&r10_bio->remaining);
1792                         md_submit_discard_bio(mddev, rdev, mbio,
1793                                         dev_start + choose_data_offset(r10_bio, rdev),
1794                                         dev_end - dev_start);
1795                         bio_endio(mbio);
1796                 }
1797                 if (r10_bio->devs[disk].repl_bio) {
1798                         struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1799                         rbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1800                         rbio->bi_end_io = raid10_end_discard_request;
1801                         rbio->bi_private = r10_bio;
1802                         r10_bio->devs[disk].repl_bio = rbio;
1803                         r10_bio->devs[disk].devnum = disk;
1804                         atomic_inc(&r10_bio->remaining);
1805                         md_submit_discard_bio(mddev, rrdev, rbio,
1806                                         dev_start + choose_data_offset(r10_bio, rrdev),
1807                                         dev_end - dev_start);
1808                         bio_endio(rbio);
1809                 }
1810         }
1811
1812         if (!geo->far_offset && --far_copies) {
1813                 first_stripe_index += geo->stride >> geo->chunk_shift;
1814                 start_disk_offset += geo->stride;
1815                 last_stripe_index += geo->stride >> geo->chunk_shift;
1816                 end_disk_offset += geo->stride;
1817                 atomic_inc(&first_r10bio->remaining);
1818                 raid_end_discard_bio(r10_bio);
1819                 wait_barrier(conf);
1820                 goto retry_discard;
1821         }
1822
1823         raid_end_discard_bio(r10_bio);
1824
1825         return 0;
1826 out:
1827         allow_barrier(conf);
1828         return -EAGAIN;
1829 }
1830
1831 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1832 {
1833         struct r10conf *conf = mddev->private;
1834         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1835         int chunk_sects = chunk_mask + 1;
1836         int sectors = bio_sectors(bio);
1837
1838         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1839             && md_flush_request(mddev, bio))
1840                 return true;
1841
1842         if (!md_write_start(mddev, bio))
1843                 return false;
1844
1845         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1846                 if (!raid10_handle_discard(mddev, bio))
1847                         return true;
1848
1849         /*
1850          * If this request crosses a chunk boundary, we need to split
1851          * it.
1852          */
1853         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1854                      sectors > chunk_sects
1855                      && (conf->geo.near_copies < conf->geo.raid_disks
1856                          || conf->prev.near_copies <
1857                          conf->prev.raid_disks)))
1858                 sectors = chunk_sects -
1859                         (bio->bi_iter.bi_sector &
1860                          (chunk_sects - 1));
1861         __make_request(mddev, bio, sectors);
1862
1863         /* In case raid10d snuck in to freeze_array */
1864         wake_up(&conf->wait_barrier);
1865         return true;
1866 }
1867
1868 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1869 {
1870         struct r10conf *conf = mddev->private;
1871         int i;
1872
1873         if (conf->geo.near_copies < conf->geo.raid_disks)
1874                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1875         if (conf->geo.near_copies > 1)
1876                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1877         if (conf->geo.far_copies > 1) {
1878                 if (conf->geo.far_offset)
1879                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1880                 else
1881                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1882                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1883                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1884         }
1885         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1886                                         conf->geo.raid_disks - mddev->degraded);
1887         rcu_read_lock();
1888         for (i = 0; i < conf->geo.raid_disks; i++) {
1889                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1890                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1891         }
1892         rcu_read_unlock();
1893         seq_printf(seq, "]");
1894 }
1895
1896 /* check if there are enough drives for
1897  * every block to appear on atleast one.
1898  * Don't consider the device numbered 'ignore'
1899  * as we might be about to remove it.
1900  */
1901 static int _enough(struct r10conf *conf, int previous, int ignore)
1902 {
1903         int first = 0;
1904         int has_enough = 0;
1905         int disks, ncopies;
1906         if (previous) {
1907                 disks = conf->prev.raid_disks;
1908                 ncopies = conf->prev.near_copies;
1909         } else {
1910                 disks = conf->geo.raid_disks;
1911                 ncopies = conf->geo.near_copies;
1912         }
1913
1914         rcu_read_lock();
1915         do {
1916                 int n = conf->copies;
1917                 int cnt = 0;
1918                 int this = first;
1919                 while (n--) {
1920                         struct md_rdev *rdev;
1921                         if (this != ignore &&
1922                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1923                             test_bit(In_sync, &rdev->flags))
1924                                 cnt++;
1925                         this = (this+1) % disks;
1926                 }
1927                 if (cnt == 0)
1928                         goto out;
1929                 first = (first + ncopies) % disks;
1930         } while (first != 0);
1931         has_enough = 1;
1932 out:
1933         rcu_read_unlock();
1934         return has_enough;
1935 }
1936
1937 static int enough(struct r10conf *conf, int ignore)
1938 {
1939         /* when calling 'enough', both 'prev' and 'geo' must
1940          * be stable.
1941          * This is ensured if ->reconfig_mutex or ->device_lock
1942          * is held.
1943          */
1944         return _enough(conf, 0, ignore) &&
1945                 _enough(conf, 1, ignore);
1946 }
1947
1948 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1949 {
1950         char b[BDEVNAME_SIZE];
1951         struct r10conf *conf = mddev->private;
1952         unsigned long flags;
1953
1954         /*
1955          * If it is not operational, then we have already marked it as dead
1956          * else if it is the last working disks with "fail_last_dev == false",
1957          * ignore the error, let the next level up know.
1958          * else mark the drive as failed
1959          */
1960         spin_lock_irqsave(&conf->device_lock, flags);
1961         if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1962             && !enough(conf, rdev->raid_disk)) {
1963                 /*
1964                  * Don't fail the drive, just return an IO error.
1965                  */
1966                 spin_unlock_irqrestore(&conf->device_lock, flags);
1967                 return;
1968         }
1969         if (test_and_clear_bit(In_sync, &rdev->flags))
1970                 mddev->degraded++;
1971         /*
1972          * If recovery is running, make sure it aborts.
1973          */
1974         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1975         set_bit(Blocked, &rdev->flags);
1976         set_bit(Faulty, &rdev->flags);
1977         set_mask_bits(&mddev->sb_flags, 0,
1978                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1979         spin_unlock_irqrestore(&conf->device_lock, flags);
1980         pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1981                 "md/raid10:%s: Operation continuing on %d devices.\n",
1982                 mdname(mddev), bdevname(rdev->bdev, b),
1983                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1984 }
1985
1986 static void print_conf(struct r10conf *conf)
1987 {
1988         int i;
1989         struct md_rdev *rdev;
1990
1991         pr_debug("RAID10 conf printout:\n");
1992         if (!conf) {
1993                 pr_debug("(!conf)\n");
1994                 return;
1995         }
1996         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1997                  conf->geo.raid_disks);
1998
1999         /* This is only called with ->reconfix_mutex held, so
2000          * rcu protection of rdev is not needed */
2001         for (i = 0; i < conf->geo.raid_disks; i++) {
2002                 char b[BDEVNAME_SIZE];
2003                 rdev = conf->mirrors[i].rdev;
2004                 if (rdev)
2005                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
2006                                  i, !test_bit(In_sync, &rdev->flags),
2007                                  !test_bit(Faulty, &rdev->flags),
2008                                  bdevname(rdev->bdev,b));
2009         }
2010 }
2011
2012 static void close_sync(struct r10conf *conf)
2013 {
2014         wait_barrier(conf);
2015         allow_barrier(conf);
2016
2017         mempool_exit(&conf->r10buf_pool);
2018 }
2019
2020 static int raid10_spare_active(struct mddev *mddev)
2021 {
2022         int i;
2023         struct r10conf *conf = mddev->private;
2024         struct raid10_info *tmp;
2025         int count = 0;
2026         unsigned long flags;
2027
2028         /*
2029          * Find all non-in_sync disks within the RAID10 configuration
2030          * and mark them in_sync
2031          */
2032         for (i = 0; i < conf->geo.raid_disks; i++) {
2033                 tmp = conf->mirrors + i;
2034                 if (tmp->replacement
2035                     && tmp->replacement->recovery_offset == MaxSector
2036                     && !test_bit(Faulty, &tmp->replacement->flags)
2037                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2038                         /* Replacement has just become active */
2039                         if (!tmp->rdev
2040                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2041                                 count++;
2042                         if (tmp->rdev) {
2043                                 /* Replaced device not technically faulty,
2044                                  * but we need to be sure it gets removed
2045                                  * and never re-added.
2046                                  */
2047                                 set_bit(Faulty, &tmp->rdev->flags);
2048                                 sysfs_notify_dirent_safe(
2049                                         tmp->rdev->sysfs_state);
2050                         }
2051                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2052                 } else if (tmp->rdev
2053                            && tmp->rdev->recovery_offset == MaxSector
2054                            && !test_bit(Faulty, &tmp->rdev->flags)
2055                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2056                         count++;
2057                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2058                 }
2059         }
2060         spin_lock_irqsave(&conf->device_lock, flags);
2061         mddev->degraded -= count;
2062         spin_unlock_irqrestore(&conf->device_lock, flags);
2063
2064         print_conf(conf);
2065         return count;
2066 }
2067
2068 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2069 {
2070         struct r10conf *conf = mddev->private;
2071         int err = -EEXIST;
2072         int mirror;
2073         int first = 0;
2074         int last = conf->geo.raid_disks - 1;
2075
2076         if (mddev->recovery_cp < MaxSector)
2077                 /* only hot-add to in-sync arrays, as recovery is
2078                  * very different from resync
2079                  */
2080                 return -EBUSY;
2081         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2082                 return -EINVAL;
2083
2084         if (md_integrity_add_rdev(rdev, mddev))
2085                 return -ENXIO;
2086
2087         if (rdev->raid_disk >= 0)
2088                 first = last = rdev->raid_disk;
2089
2090         if (rdev->saved_raid_disk >= first &&
2091             rdev->saved_raid_disk < conf->geo.raid_disks &&
2092             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2093                 mirror = rdev->saved_raid_disk;
2094         else
2095                 mirror = first;
2096         for ( ; mirror <= last ; mirror++) {
2097                 struct raid10_info *p = &conf->mirrors[mirror];
2098                 if (p->recovery_disabled == mddev->recovery_disabled)
2099                         continue;
2100                 if (p->rdev) {
2101                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
2102                             p->replacement != NULL)
2103                                 continue;
2104                         clear_bit(In_sync, &rdev->flags);
2105                         set_bit(Replacement, &rdev->flags);
2106                         rdev->raid_disk = mirror;
2107                         err = 0;
2108                         if (mddev->gendisk)
2109                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2110                                                   rdev->data_offset << 9);
2111                         conf->fullsync = 1;
2112                         rcu_assign_pointer(p->replacement, rdev);
2113                         break;
2114                 }
2115
2116                 if (mddev->gendisk)
2117                         disk_stack_limits(mddev->gendisk, rdev->bdev,
2118                                           rdev->data_offset << 9);
2119
2120                 p->head_position = 0;
2121                 p->recovery_disabled = mddev->recovery_disabled - 1;
2122                 rdev->raid_disk = mirror;
2123                 err = 0;
2124                 if (rdev->saved_raid_disk != mirror)
2125                         conf->fullsync = 1;
2126                 rcu_assign_pointer(p->rdev, rdev);
2127                 break;
2128         }
2129         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2130                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
2131
2132         print_conf(conf);
2133         return err;
2134 }
2135
2136 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2137 {
2138         struct r10conf *conf = mddev->private;
2139         int err = 0;
2140         int number = rdev->raid_disk;
2141         struct md_rdev **rdevp;
2142         struct raid10_info *p;
2143
2144         print_conf(conf);
2145         if (unlikely(number >= mddev->raid_disks))
2146                 return 0;
2147         p = conf->mirrors + number;
2148         if (rdev == p->rdev)
2149                 rdevp = &p->rdev;
2150         else if (rdev == p->replacement)
2151                 rdevp = &p->replacement;
2152         else
2153                 return 0;
2154
2155         if (test_bit(In_sync, &rdev->flags) ||
2156             atomic_read(&rdev->nr_pending)) {
2157                 err = -EBUSY;
2158                 goto abort;
2159         }
2160         /* Only remove non-faulty devices if recovery
2161          * is not possible.
2162          */
2163         if (!test_bit(Faulty, &rdev->flags) &&
2164             mddev->recovery_disabled != p->recovery_disabled &&
2165             (!p->replacement || p->replacement == rdev) &&
2166             number < conf->geo.raid_disks &&
2167             enough(conf, -1)) {
2168                 err = -EBUSY;
2169                 goto abort;
2170         }
2171         *rdevp = NULL;
2172         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2173                 synchronize_rcu();
2174                 if (atomic_read(&rdev->nr_pending)) {
2175                         /* lost the race, try later */
2176                         err = -EBUSY;
2177                         *rdevp = rdev;
2178                         goto abort;
2179                 }
2180         }
2181         if (p->replacement) {
2182                 /* We must have just cleared 'rdev' */
2183                 p->rdev = p->replacement;
2184                 clear_bit(Replacement, &p->replacement->flags);
2185                 smp_mb(); /* Make sure other CPUs may see both as identical
2186                            * but will never see neither -- if they are careful.
2187                            */
2188                 p->replacement = NULL;
2189         }
2190
2191         clear_bit(WantReplacement, &rdev->flags);
2192         err = md_integrity_register(mddev);
2193
2194 abort:
2195
2196         print_conf(conf);
2197         return err;
2198 }
2199
2200 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2201 {
2202         struct r10conf *conf = r10_bio->mddev->private;
2203
2204         if (!bio->bi_status)
2205                 set_bit(R10BIO_Uptodate, &r10_bio->state);
2206         else
2207                 /* The write handler will notice the lack of
2208                  * R10BIO_Uptodate and record any errors etc
2209                  */
2210                 atomic_add(r10_bio->sectors,
2211                            &conf->mirrors[d].rdev->corrected_errors);
2212
2213         /* for reconstruct, we always reschedule after a read.
2214          * for resync, only after all reads
2215          */
2216         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2217         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2218             atomic_dec_and_test(&r10_bio->remaining)) {
2219                 /* we have read all the blocks,
2220                  * do the comparison in process context in raid10d
2221                  */
2222                 reschedule_retry(r10_bio);
2223         }
2224 }
2225
2226 static void end_sync_read(struct bio *bio)
2227 {
2228         struct r10bio *r10_bio = get_resync_r10bio(bio);
2229         struct r10conf *conf = r10_bio->mddev->private;
2230         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2231
2232         __end_sync_read(r10_bio, bio, d);
2233 }
2234
2235 static void end_reshape_read(struct bio *bio)
2236 {
2237         /* reshape read bio isn't allocated from r10buf_pool */
2238         struct r10bio *r10_bio = bio->bi_private;
2239
2240         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2241 }
2242
2243 static void end_sync_request(struct r10bio *r10_bio)
2244 {
2245         struct mddev *mddev = r10_bio->mddev;
2246
2247         while (atomic_dec_and_test(&r10_bio->remaining)) {
2248                 if (r10_bio->master_bio == NULL) {
2249                         /* the primary of several recovery bios */
2250                         sector_t s = r10_bio->sectors;
2251                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2252                             test_bit(R10BIO_WriteError, &r10_bio->state))
2253                                 reschedule_retry(r10_bio);
2254                         else
2255                                 put_buf(r10_bio);
2256                         md_done_sync(mddev, s, 1);
2257                         break;
2258                 } else {
2259                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2260                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2261                             test_bit(R10BIO_WriteError, &r10_bio->state))
2262                                 reschedule_retry(r10_bio);
2263                         else
2264                                 put_buf(r10_bio);
2265                         r10_bio = r10_bio2;
2266                 }
2267         }
2268 }
2269
2270 static void end_sync_write(struct bio *bio)
2271 {
2272         struct r10bio *r10_bio = get_resync_r10bio(bio);
2273         struct mddev *mddev = r10_bio->mddev;
2274         struct r10conf *conf = mddev->private;
2275         int d;
2276         sector_t first_bad;
2277         int bad_sectors;
2278         int slot;
2279         int repl;
2280         struct md_rdev *rdev = NULL;
2281
2282         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2283         if (repl)
2284                 rdev = conf->mirrors[d].replacement;
2285         else
2286                 rdev = conf->mirrors[d].rdev;
2287
2288         if (bio->bi_status) {
2289                 if (repl)
2290                         md_error(mddev, rdev);
2291                 else {
2292                         set_bit(WriteErrorSeen, &rdev->flags);
2293                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2294                                 set_bit(MD_RECOVERY_NEEDED,
2295                                         &rdev->mddev->recovery);
2296                         set_bit(R10BIO_WriteError, &r10_bio->state);
2297                 }
2298         } else if (is_badblock(rdev,
2299                              r10_bio->devs[slot].addr,
2300                              r10_bio->sectors,
2301                              &first_bad, &bad_sectors))
2302                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2303
2304         rdev_dec_pending(rdev, mddev);
2305
2306         end_sync_request(r10_bio);
2307 }
2308
2309 /*
2310  * Note: sync and recover and handled very differently for raid10
2311  * This code is for resync.
2312  * For resync, we read through virtual addresses and read all blocks.
2313  * If there is any error, we schedule a write.  The lowest numbered
2314  * drive is authoritative.
2315  * However requests come for physical address, so we need to map.
2316  * For every physical address there are raid_disks/copies virtual addresses,
2317  * which is always are least one, but is not necessarly an integer.
2318  * This means that a physical address can span multiple chunks, so we may
2319  * have to submit multiple io requests for a single sync request.
2320  */
2321 /*
2322  * We check if all blocks are in-sync and only write to blocks that
2323  * aren't in sync
2324  */
2325 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2326 {
2327         struct r10conf *conf = mddev->private;
2328         int i, first;
2329         struct bio *tbio, *fbio;
2330         int vcnt;
2331         struct page **tpages, **fpages;
2332
2333         atomic_set(&r10_bio->remaining, 1);
2334
2335         /* find the first device with a block */
2336         for (i=0; i<conf->copies; i++)
2337                 if (!r10_bio->devs[i].bio->bi_status)
2338                         break;
2339
2340         if (i == conf->copies)
2341                 goto done;
2342
2343         first = i;
2344         fbio = r10_bio->devs[i].bio;
2345         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2346         fbio->bi_iter.bi_idx = 0;
2347         fpages = get_resync_pages(fbio)->pages;
2348
2349         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2350         /* now find blocks with errors */
2351         for (i=0 ; i < conf->copies ; i++) {
2352                 int  j, d;
2353                 struct md_rdev *rdev;
2354                 struct resync_pages *rp;
2355
2356                 tbio = r10_bio->devs[i].bio;
2357
2358                 if (tbio->bi_end_io != end_sync_read)
2359                         continue;
2360                 if (i == first)
2361                         continue;
2362
2363                 tpages = get_resync_pages(tbio)->pages;
2364                 d = r10_bio->devs[i].devnum;
2365                 rdev = conf->mirrors[d].rdev;
2366                 if (!r10_bio->devs[i].bio->bi_status) {
2367                         /* We know that the bi_io_vec layout is the same for
2368                          * both 'first' and 'i', so we just compare them.
2369                          * All vec entries are PAGE_SIZE;
2370                          */
2371                         int sectors = r10_bio->sectors;
2372                         for (j = 0; j < vcnt; j++) {
2373                                 int len = PAGE_SIZE;
2374                                 if (sectors < (len / 512))
2375                                         len = sectors * 512;
2376                                 if (memcmp(page_address(fpages[j]),
2377                                            page_address(tpages[j]),
2378                                            len))
2379                                         break;
2380                                 sectors -= len/512;
2381                         }
2382                         if (j == vcnt)
2383                                 continue;
2384                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2385                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2386                                 /* Don't fix anything. */
2387                                 continue;
2388                 } else if (test_bit(FailFast, &rdev->flags)) {
2389                         /* Just give up on this device */
2390                         md_error(rdev->mddev, rdev);
2391                         continue;
2392                 }
2393                 /* Ok, we need to write this bio, either to correct an
2394                  * inconsistency or to correct an unreadable block.
2395                  * First we need to fixup bv_offset, bv_len and
2396                  * bi_vecs, as the read request might have corrupted these
2397                  */
2398                 rp = get_resync_pages(tbio);
2399                 bio_reset(tbio);
2400
2401                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2402
2403                 rp->raid_bio = r10_bio;
2404                 tbio->bi_private = rp;
2405                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2406                 tbio->bi_end_io = end_sync_write;
2407                 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2408
2409                 bio_copy_data(tbio, fbio);
2410
2411                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2412                 atomic_inc(&r10_bio->remaining);
2413                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2414
2415                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2416                         tbio->bi_opf |= MD_FAILFAST;
2417                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2418                 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2419                 submit_bio_noacct(tbio);
2420         }
2421
2422         /* Now write out to any replacement devices
2423          * that are active
2424          */
2425         for (i = 0; i < conf->copies; i++) {
2426                 int d;
2427
2428                 tbio = r10_bio->devs[i].repl_bio;
2429                 if (!tbio || !tbio->bi_end_io)
2430                         continue;
2431                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2432                     && r10_bio->devs[i].bio != fbio)
2433                         bio_copy_data(tbio, fbio);
2434                 d = r10_bio->devs[i].devnum;
2435                 atomic_inc(&r10_bio->remaining);
2436                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2437                              bio_sectors(tbio));
2438                 submit_bio_noacct(tbio);
2439         }
2440
2441 done:
2442         if (atomic_dec_and_test(&r10_bio->remaining)) {
2443                 md_done_sync(mddev, r10_bio->sectors, 1);
2444                 put_buf(r10_bio);
2445         }
2446 }
2447
2448 /*
2449  * Now for the recovery code.
2450  * Recovery happens across physical sectors.
2451  * We recover all non-is_sync drives by finding the virtual address of
2452  * each, and then choose a working drive that also has that virt address.
2453  * There is a separate r10_bio for each non-in_sync drive.
2454  * Only the first two slots are in use. The first for reading,
2455  * The second for writing.
2456  *
2457  */
2458 static void fix_recovery_read_error(struct r10bio *r10_bio)
2459 {
2460         /* We got a read error during recovery.
2461          * We repeat the read in smaller page-sized sections.
2462          * If a read succeeds, write it to the new device or record
2463          * a bad block if we cannot.
2464          * If a read fails, record a bad block on both old and
2465          * new devices.
2466          */
2467         struct mddev *mddev = r10_bio->mddev;
2468         struct r10conf *conf = mddev->private;
2469         struct bio *bio = r10_bio->devs[0].bio;
2470         sector_t sect = 0;
2471         int sectors = r10_bio->sectors;
2472         int idx = 0;
2473         int dr = r10_bio->devs[0].devnum;
2474         int dw = r10_bio->devs[1].devnum;
2475         struct page **pages = get_resync_pages(bio)->pages;
2476
2477         while (sectors) {
2478                 int s = sectors;
2479                 struct md_rdev *rdev;
2480                 sector_t addr;
2481                 int ok;
2482
2483                 if (s > (PAGE_SIZE>>9))
2484                         s = PAGE_SIZE >> 9;
2485
2486                 rdev = conf->mirrors[dr].rdev;
2487                 addr = r10_bio->devs[0].addr + sect,
2488                 ok = sync_page_io(rdev,
2489                                   addr,
2490                                   s << 9,
2491                                   pages[idx],
2492                                   REQ_OP_READ, 0, false);
2493                 if (ok) {
2494                         rdev = conf->mirrors[dw].rdev;
2495                         addr = r10_bio->devs[1].addr + sect;
2496                         ok = sync_page_io(rdev,
2497                                           addr,
2498                                           s << 9,
2499                                           pages[idx],
2500                                           REQ_OP_WRITE, 0, false);
2501                         if (!ok) {
2502                                 set_bit(WriteErrorSeen, &rdev->flags);
2503                                 if (!test_and_set_bit(WantReplacement,
2504                                                       &rdev->flags))
2505                                         set_bit(MD_RECOVERY_NEEDED,
2506                                                 &rdev->mddev->recovery);
2507                         }
2508                 }
2509                 if (!ok) {
2510                         /* We don't worry if we cannot set a bad block -
2511                          * it really is bad so there is no loss in not
2512                          * recording it yet
2513                          */
2514                         rdev_set_badblocks(rdev, addr, s, 0);
2515
2516                         if (rdev != conf->mirrors[dw].rdev) {
2517                                 /* need bad block on destination too */
2518                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2519                                 addr = r10_bio->devs[1].addr + sect;
2520                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2521                                 if (!ok) {
2522                                         /* just abort the recovery */
2523                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2524                                                   mdname(mddev));
2525
2526                                         conf->mirrors[dw].recovery_disabled
2527                                                 = mddev->recovery_disabled;
2528                                         set_bit(MD_RECOVERY_INTR,
2529                                                 &mddev->recovery);
2530                                         break;
2531                                 }
2532                         }
2533                 }
2534
2535                 sectors -= s;
2536                 sect += s;
2537                 idx++;
2538         }
2539 }
2540
2541 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2542 {
2543         struct r10conf *conf = mddev->private;
2544         int d;
2545         struct bio *wbio, *wbio2;
2546
2547         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2548                 fix_recovery_read_error(r10_bio);
2549                 end_sync_request(r10_bio);
2550                 return;
2551         }
2552
2553         /*
2554          * share the pages with the first bio
2555          * and submit the write request
2556          */
2557         d = r10_bio->devs[1].devnum;
2558         wbio = r10_bio->devs[1].bio;
2559         wbio2 = r10_bio->devs[1].repl_bio;
2560         /* Need to test wbio2->bi_end_io before we call
2561          * submit_bio_noacct as if the former is NULL,
2562          * the latter is free to free wbio2.
2563          */
2564         if (wbio2 && !wbio2->bi_end_io)
2565                 wbio2 = NULL;
2566         if (wbio->bi_end_io) {
2567                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2568                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2569                 submit_bio_noacct(wbio);
2570         }
2571         if (wbio2) {
2572                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2573                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2574                              bio_sectors(wbio2));
2575                 submit_bio_noacct(wbio2);
2576         }
2577 }
2578
2579 /*
2580  * Used by fix_read_error() to decay the per rdev read_errors.
2581  * We halve the read error count for every hour that has elapsed
2582  * since the last recorded read error.
2583  *
2584  */
2585 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2586 {
2587         long cur_time_mon;
2588         unsigned long hours_since_last;
2589         unsigned int read_errors = atomic_read(&rdev->read_errors);
2590
2591         cur_time_mon = ktime_get_seconds();
2592
2593         if (rdev->last_read_error == 0) {
2594                 /* first time we've seen a read error */
2595                 rdev->last_read_error = cur_time_mon;
2596                 return;
2597         }
2598
2599         hours_since_last = (long)(cur_time_mon -
2600                             rdev->last_read_error) / 3600;
2601
2602         rdev->last_read_error = cur_time_mon;
2603
2604         /*
2605          * if hours_since_last is > the number of bits in read_errors
2606          * just set read errors to 0. We do this to avoid
2607          * overflowing the shift of read_errors by hours_since_last.
2608          */
2609         if (hours_since_last >= 8 * sizeof(read_errors))
2610                 atomic_set(&rdev->read_errors, 0);
2611         else
2612                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2613 }
2614
2615 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2616                             int sectors, struct page *page, int rw)
2617 {
2618         sector_t first_bad;
2619         int bad_sectors;
2620
2621         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2622             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2623                 return -1;
2624         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2625                 /* success */
2626                 return 1;
2627         if (rw == WRITE) {
2628                 set_bit(WriteErrorSeen, &rdev->flags);
2629                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2630                         set_bit(MD_RECOVERY_NEEDED,
2631                                 &rdev->mddev->recovery);
2632         }
2633         /* need to record an error - either for the block or the device */
2634         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2635                 md_error(rdev->mddev, rdev);
2636         return 0;
2637 }
2638
2639 /*
2640  * This is a kernel thread which:
2641  *
2642  *      1.      Retries failed read operations on working mirrors.
2643  *      2.      Updates the raid superblock when problems encounter.
2644  *      3.      Performs writes following reads for array synchronising.
2645  */
2646
2647 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2648 {
2649         int sect = 0; /* Offset from r10_bio->sector */
2650         int sectors = r10_bio->sectors;
2651         struct md_rdev *rdev;
2652         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2653         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2654
2655         /* still own a reference to this rdev, so it cannot
2656          * have been cleared recently.
2657          */
2658         rdev = conf->mirrors[d].rdev;
2659
2660         if (test_bit(Faulty, &rdev->flags))
2661                 /* drive has already been failed, just ignore any
2662                    more fix_read_error() attempts */
2663                 return;
2664
2665         check_decay_read_errors(mddev, rdev);
2666         atomic_inc(&rdev->read_errors);
2667         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2668                 char b[BDEVNAME_SIZE];
2669                 bdevname(rdev->bdev, b);
2670
2671                 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2672                           mdname(mddev), b,
2673                           atomic_read(&rdev->read_errors), max_read_errors);
2674                 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2675                           mdname(mddev), b);
2676                 md_error(mddev, rdev);
2677                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2678                 return;
2679         }
2680
2681         while(sectors) {
2682                 int s = sectors;
2683                 int sl = r10_bio->read_slot;
2684                 int success = 0;
2685                 int start;
2686
2687                 if (s > (PAGE_SIZE>>9))
2688                         s = PAGE_SIZE >> 9;
2689
2690                 rcu_read_lock();
2691                 do {
2692                         sector_t first_bad;
2693                         int bad_sectors;
2694
2695                         d = r10_bio->devs[sl].devnum;
2696                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2697                         if (rdev &&
2698                             test_bit(In_sync, &rdev->flags) &&
2699                             !test_bit(Faulty, &rdev->flags) &&
2700                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2701                                         &first_bad, &bad_sectors) == 0) {
2702                                 atomic_inc(&rdev->nr_pending);
2703                                 rcu_read_unlock();
2704                                 success = sync_page_io(rdev,
2705                                                        r10_bio->devs[sl].addr +
2706                                                        sect,
2707                                                        s<<9,
2708                                                        conf->tmppage,
2709                                                        REQ_OP_READ, 0, false);
2710                                 rdev_dec_pending(rdev, mddev);
2711                                 rcu_read_lock();
2712                                 if (success)
2713                                         break;
2714                         }
2715                         sl++;
2716                         if (sl == conf->copies)
2717                                 sl = 0;
2718                 } while (!success && sl != r10_bio->read_slot);
2719                 rcu_read_unlock();
2720
2721                 if (!success) {
2722                         /* Cannot read from anywhere, just mark the block
2723                          * as bad on the first device to discourage future
2724                          * reads.
2725                          */
2726                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2727                         rdev = conf->mirrors[dn].rdev;
2728
2729                         if (!rdev_set_badblocks(
2730                                     rdev,
2731                                     r10_bio->devs[r10_bio->read_slot].addr
2732                                     + sect,
2733                                     s, 0)) {
2734                                 md_error(mddev, rdev);
2735                                 r10_bio->devs[r10_bio->read_slot].bio
2736                                         = IO_BLOCKED;
2737                         }
2738                         break;
2739                 }
2740
2741                 start = sl;
2742                 /* write it back and re-read */
2743                 rcu_read_lock();
2744                 while (sl != r10_bio->read_slot) {
2745                         char b[BDEVNAME_SIZE];
2746
2747                         if (sl==0)
2748                                 sl = conf->copies;
2749                         sl--;
2750                         d = r10_bio->devs[sl].devnum;
2751                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2752                         if (!rdev ||
2753                             test_bit(Faulty, &rdev->flags) ||
2754                             !test_bit(In_sync, &rdev->flags))
2755                                 continue;
2756
2757                         atomic_inc(&rdev->nr_pending);
2758                         rcu_read_unlock();
2759                         if (r10_sync_page_io(rdev,
2760                                              r10_bio->devs[sl].addr +
2761                                              sect,
2762                                              s, conf->tmppage, WRITE)
2763                             == 0) {
2764                                 /* Well, this device is dead */
2765                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2766                                           mdname(mddev), s,
2767                                           (unsigned long long)(
2768                                                   sect +
2769                                                   choose_data_offset(r10_bio,
2770                                                                      rdev)),
2771                                           bdevname(rdev->bdev, b));
2772                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2773                                           mdname(mddev),
2774                                           bdevname(rdev->bdev, b));
2775                         }
2776                         rdev_dec_pending(rdev, mddev);
2777                         rcu_read_lock();
2778                 }
2779                 sl = start;
2780                 while (sl != r10_bio->read_slot) {
2781                         char b[BDEVNAME_SIZE];
2782
2783                         if (sl==0)
2784                                 sl = conf->copies;
2785                         sl--;
2786                         d = r10_bio->devs[sl].devnum;
2787                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2788                         if (!rdev ||
2789                             test_bit(Faulty, &rdev->flags) ||
2790                             !test_bit(In_sync, &rdev->flags))
2791                                 continue;
2792
2793                         atomic_inc(&rdev->nr_pending);
2794                         rcu_read_unlock();
2795                         switch (r10_sync_page_io(rdev,
2796                                              r10_bio->devs[sl].addr +
2797                                              sect,
2798                                              s, conf->tmppage,
2799                                                  READ)) {
2800                         case 0:
2801                                 /* Well, this device is dead */
2802                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2803                                        mdname(mddev), s,
2804                                        (unsigned long long)(
2805                                                sect +
2806                                                choose_data_offset(r10_bio, rdev)),
2807                                        bdevname(rdev->bdev, b));
2808                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2809                                        mdname(mddev),
2810                                        bdevname(rdev->bdev, b));
2811                                 break;
2812                         case 1:
2813                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2814                                        mdname(mddev), s,
2815                                        (unsigned long long)(
2816                                                sect +
2817                                                choose_data_offset(r10_bio, rdev)),
2818                                        bdevname(rdev->bdev, b));
2819                                 atomic_add(s, &rdev->corrected_errors);
2820                         }
2821
2822                         rdev_dec_pending(rdev, mddev);
2823                         rcu_read_lock();
2824                 }
2825                 rcu_read_unlock();
2826
2827                 sectors -= s;
2828                 sect += s;
2829         }
2830 }
2831
2832 static int narrow_write_error(struct r10bio *r10_bio, int i)
2833 {
2834         struct bio *bio = r10_bio->master_bio;
2835         struct mddev *mddev = r10_bio->mddev;
2836         struct r10conf *conf = mddev->private;
2837         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2838         /* bio has the data to be written to slot 'i' where
2839          * we just recently had a write error.
2840          * We repeatedly clone the bio and trim down to one block,
2841          * then try the write.  Where the write fails we record
2842          * a bad block.
2843          * It is conceivable that the bio doesn't exactly align with
2844          * blocks.  We must handle this.
2845          *
2846          * We currently own a reference to the rdev.
2847          */
2848
2849         int block_sectors;
2850         sector_t sector;
2851         int sectors;
2852         int sect_to_write = r10_bio->sectors;
2853         int ok = 1;
2854
2855         if (rdev->badblocks.shift < 0)
2856                 return 0;
2857
2858         block_sectors = roundup(1 << rdev->badblocks.shift,
2859                                 bdev_logical_block_size(rdev->bdev) >> 9);
2860         sector = r10_bio->sector;
2861         sectors = ((r10_bio->sector + block_sectors)
2862                    & ~(sector_t)(block_sectors - 1))
2863                 - sector;
2864
2865         while (sect_to_write) {
2866                 struct bio *wbio;
2867                 sector_t wsector;
2868                 if (sectors > sect_to_write)
2869                         sectors = sect_to_write;
2870                 /* Write at 'sector' for 'sectors' */
2871                 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2872                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2873                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2874                 wbio->bi_iter.bi_sector = wsector +
2875                                    choose_data_offset(r10_bio, rdev);
2876                 bio_set_dev(wbio, rdev->bdev);
2877                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2878
2879                 if (submit_bio_wait(wbio) < 0)
2880                         /* Failure! */
2881                         ok = rdev_set_badblocks(rdev, wsector,
2882                                                 sectors, 0)
2883                                 && ok;
2884
2885                 bio_put(wbio);
2886                 sect_to_write -= sectors;
2887                 sector += sectors;
2888                 sectors = block_sectors;
2889         }
2890         return ok;
2891 }
2892
2893 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2894 {
2895         int slot = r10_bio->read_slot;
2896         struct bio *bio;
2897         struct r10conf *conf = mddev->private;
2898         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2899
2900         /* we got a read error. Maybe the drive is bad.  Maybe just
2901          * the block and we can fix it.
2902          * We freeze all other IO, and try reading the block from
2903          * other devices.  When we find one, we re-write
2904          * and check it that fixes the read error.
2905          * This is all done synchronously while the array is
2906          * frozen.
2907          */
2908         bio = r10_bio->devs[slot].bio;
2909         bio_put(bio);
2910         r10_bio->devs[slot].bio = NULL;
2911
2912         if (mddev->ro)
2913                 r10_bio->devs[slot].bio = IO_BLOCKED;
2914         else if (!test_bit(FailFast, &rdev->flags)) {
2915                 freeze_array(conf, 1);
2916                 fix_read_error(conf, mddev, r10_bio);
2917                 unfreeze_array(conf);
2918         } else
2919                 md_error(mddev, rdev);
2920
2921         rdev_dec_pending(rdev, mddev);
2922         allow_barrier(conf);
2923         r10_bio->state = 0;
2924         raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2925 }
2926
2927 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2928 {
2929         /* Some sort of write request has finished and it
2930          * succeeded in writing where we thought there was a
2931          * bad block.  So forget the bad block.
2932          * Or possibly if failed and we need to record
2933          * a bad block.
2934          */
2935         int m;
2936         struct md_rdev *rdev;
2937
2938         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2939             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2940                 for (m = 0; m < conf->copies; m++) {
2941                         int dev = r10_bio->devs[m].devnum;
2942                         rdev = conf->mirrors[dev].rdev;
2943                         if (r10_bio->devs[m].bio == NULL ||
2944                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2945                                 continue;
2946                         if (!r10_bio->devs[m].bio->bi_status) {
2947                                 rdev_clear_badblocks(
2948                                         rdev,
2949                                         r10_bio->devs[m].addr,
2950                                         r10_bio->sectors, 0);
2951                         } else {
2952                                 if (!rdev_set_badblocks(
2953                                             rdev,
2954                                             r10_bio->devs[m].addr,
2955                                             r10_bio->sectors, 0))
2956                                         md_error(conf->mddev, rdev);
2957                         }
2958                         rdev = conf->mirrors[dev].replacement;
2959                         if (r10_bio->devs[m].repl_bio == NULL ||
2960                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2961                                 continue;
2962
2963                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2964                                 rdev_clear_badblocks(
2965                                         rdev,
2966                                         r10_bio->devs[m].addr,
2967                                         r10_bio->sectors, 0);
2968                         } else {
2969                                 if (!rdev_set_badblocks(
2970                                             rdev,
2971                                             r10_bio->devs[m].addr,
2972                                             r10_bio->sectors, 0))
2973                                         md_error(conf->mddev, rdev);
2974                         }
2975                 }
2976                 put_buf(r10_bio);
2977         } else {
2978                 bool fail = false;
2979                 for (m = 0; m < conf->copies; m++) {
2980                         int dev = r10_bio->devs[m].devnum;
2981                         struct bio *bio = r10_bio->devs[m].bio;
2982                         rdev = conf->mirrors[dev].rdev;
2983                         if (bio == IO_MADE_GOOD) {
2984                                 rdev_clear_badblocks(
2985                                         rdev,
2986                                         r10_bio->devs[m].addr,
2987                                         r10_bio->sectors, 0);
2988                                 rdev_dec_pending(rdev, conf->mddev);
2989                         } else if (bio != NULL && bio->bi_status) {
2990                                 fail = true;
2991                                 if (!narrow_write_error(r10_bio, m)) {
2992                                         md_error(conf->mddev, rdev);
2993                                         set_bit(R10BIO_Degraded,
2994                                                 &r10_bio->state);
2995                                 }
2996                                 rdev_dec_pending(rdev, conf->mddev);
2997                         }
2998                         bio = r10_bio->devs[m].repl_bio;
2999                         rdev = conf->mirrors[dev].replacement;
3000                         if (rdev && bio == IO_MADE_GOOD) {
3001                                 rdev_clear_badblocks(
3002                                         rdev,
3003                                         r10_bio->devs[m].addr,
3004                                         r10_bio->sectors, 0);
3005                                 rdev_dec_pending(rdev, conf->mddev);
3006                         }
3007                 }
3008                 if (fail) {
3009                         spin_lock_irq(&conf->device_lock);
3010                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3011                         conf->nr_queued++;
3012                         spin_unlock_irq(&conf->device_lock);
3013                         /*
3014                          * In case freeze_array() is waiting for condition
3015                          * nr_pending == nr_queued + extra to be true.
3016                          */
3017                         wake_up(&conf->wait_barrier);
3018                         md_wakeup_thread(conf->mddev->thread);
3019                 } else {
3020                         if (test_bit(R10BIO_WriteError,
3021                                      &r10_bio->state))
3022                                 close_write(r10_bio);
3023                         raid_end_bio_io(r10_bio);
3024                 }
3025         }
3026 }
3027
3028 static void raid10d(struct md_thread *thread)
3029 {
3030         struct mddev *mddev = thread->mddev;
3031         struct r10bio *r10_bio;
3032         unsigned long flags;
3033         struct r10conf *conf = mddev->private;
3034         struct list_head *head = &conf->retry_list;
3035         struct blk_plug plug;
3036
3037         md_check_recovery(mddev);
3038
3039         if (!list_empty_careful(&conf->bio_end_io_list) &&
3040             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3041                 LIST_HEAD(tmp);
3042                 spin_lock_irqsave(&conf->device_lock, flags);
3043                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3044                         while (!list_empty(&conf->bio_end_io_list)) {
3045                                 list_move(conf->bio_end_io_list.prev, &tmp);
3046                                 conf->nr_queued--;
3047                         }
3048                 }
3049                 spin_unlock_irqrestore(&conf->device_lock, flags);
3050                 while (!list_empty(&tmp)) {
3051                         r10_bio = list_first_entry(&tmp, struct r10bio,
3052                                                    retry_list);
3053                         list_del(&r10_bio->retry_list);
3054                         if (mddev->degraded)
3055                                 set_bit(R10BIO_Degraded, &r10_bio->state);
3056
3057                         if (test_bit(R10BIO_WriteError,
3058                                      &r10_bio->state))
3059                                 close_write(r10_bio);
3060                         raid_end_bio_io(r10_bio);
3061                 }
3062         }
3063
3064         blk_start_plug(&plug);
3065         for (;;) {
3066
3067                 flush_pending_writes(conf);
3068
3069                 spin_lock_irqsave(&conf->device_lock, flags);
3070                 if (list_empty(head)) {
3071                         spin_unlock_irqrestore(&conf->device_lock, flags);
3072                         break;
3073                 }
3074                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3075                 list_del(head->prev);
3076                 conf->nr_queued--;
3077                 spin_unlock_irqrestore(&conf->device_lock, flags);
3078
3079                 mddev = r10_bio->mddev;
3080                 conf = mddev->private;
3081                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3082                     test_bit(R10BIO_WriteError, &r10_bio->state))
3083                         handle_write_completed(conf, r10_bio);
3084                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3085                         reshape_request_write(mddev, r10_bio);
3086                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3087                         sync_request_write(mddev, r10_bio);
3088                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3089                         recovery_request_write(mddev, r10_bio);
3090                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3091                         handle_read_error(mddev, r10_bio);
3092                 else
3093                         WARN_ON_ONCE(1);
3094
3095                 cond_resched();
3096                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3097                         md_check_recovery(mddev);
3098         }
3099         blk_finish_plug(&plug);
3100 }
3101
3102 static int init_resync(struct r10conf *conf)
3103 {
3104         int ret, buffs, i;
3105
3106         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3107         BUG_ON(mempool_initialized(&conf->r10buf_pool));
3108         conf->have_replacement = 0;
3109         for (i = 0; i < conf->geo.raid_disks; i++)
3110                 if (conf->mirrors[i].replacement)
3111                         conf->have_replacement = 1;
3112         ret = mempool_init(&conf->r10buf_pool, buffs,
3113                            r10buf_pool_alloc, r10buf_pool_free, conf);
3114         if (ret)
3115                 return ret;
3116         conf->next_resync = 0;
3117         return 0;
3118 }
3119
3120 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3121 {
3122         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3123         struct rsync_pages *rp;
3124         struct bio *bio;
3125         int nalloc;
3126         int i;
3127
3128         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3129             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3130                 nalloc = conf->copies; /* resync */
3131         else
3132                 nalloc = 2; /* recovery */
3133
3134         for (i = 0; i < nalloc; i++) {
3135                 bio = r10bio->devs[i].bio;
3136                 rp = bio->bi_private;
3137                 bio_reset(bio);
3138                 bio->bi_private = rp;
3139                 bio = r10bio->devs[i].repl_bio;
3140                 if (bio) {
3141                         rp = bio->bi_private;
3142                         bio_reset(bio);
3143                         bio->bi_private = rp;
3144                 }
3145         }
3146         return r10bio;
3147 }
3148
3149 /*
3150  * Set cluster_sync_high since we need other nodes to add the
3151  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3152  */
3153 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3154 {
3155         sector_t window_size;
3156         int extra_chunk, chunks;
3157
3158         /*
3159          * First, here we define "stripe" as a unit which across
3160          * all member devices one time, so we get chunks by use
3161          * raid_disks / near_copies. Otherwise, if near_copies is
3162          * close to raid_disks, then resync window could increases
3163          * linearly with the increase of raid_disks, which means
3164          * we will suspend a really large IO window while it is not
3165          * necessary. If raid_disks is not divisible by near_copies,
3166          * an extra chunk is needed to ensure the whole "stripe" is
3167          * covered.
3168          */
3169
3170         chunks = conf->geo.raid_disks / conf->geo.near_copies;
3171         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3172                 extra_chunk = 0;
3173         else
3174                 extra_chunk = 1;
3175         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3176
3177         /*
3178          * At least use a 32M window to align with raid1's resync window
3179          */
3180         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3181                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3182
3183         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3184 }
3185
3186 /*
3187  * perform a "sync" on one "block"
3188  *
3189  * We need to make sure that no normal I/O request - particularly write
3190  * requests - conflict with active sync requests.
3191  *
3192  * This is achieved by tracking pending requests and a 'barrier' concept
3193  * that can be installed to exclude normal IO requests.
3194  *
3195  * Resync and recovery are handled very differently.
3196  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3197  *
3198  * For resync, we iterate over virtual addresses, read all copies,
3199  * and update if there are differences.  If only one copy is live,
3200  * skip it.
3201  * For recovery, we iterate over physical addresses, read a good
3202  * value for each non-in_sync drive, and over-write.
3203  *
3204  * So, for recovery we may have several outstanding complex requests for a
3205  * given address, one for each out-of-sync device.  We model this by allocating
3206  * a number of r10_bio structures, one for each out-of-sync device.
3207  * As we setup these structures, we collect all bio's together into a list
3208  * which we then process collectively to add pages, and then process again
3209  * to pass to submit_bio_noacct.
3210  *
3211  * The r10_bio structures are linked using a borrowed master_bio pointer.
3212  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3213  * has its remaining count decremented to 0, the whole complex operation
3214  * is complete.
3215  *
3216  */
3217
3218 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3219                              int *skipped)
3220 {
3221         struct r10conf *conf = mddev->private;
3222         struct r10bio *r10_bio;
3223         struct bio *biolist = NULL, *bio;
3224         sector_t max_sector, nr_sectors;
3225         int i;
3226         int max_sync;
3227         sector_t sync_blocks;
3228         sector_t sectors_skipped = 0;
3229         int chunks_skipped = 0;
3230         sector_t chunk_mask = conf->geo.chunk_mask;
3231         int page_idx = 0;
3232
3233         if (!mempool_initialized(&conf->r10buf_pool))
3234                 if (init_resync(conf))
3235                         return 0;
3236
3237         /*
3238          * Allow skipping a full rebuild for incremental assembly
3239          * of a clean array, like RAID1 does.
3240          */
3241         if (mddev->bitmap == NULL &&
3242             mddev->recovery_cp == MaxSector &&
3243             mddev->reshape_position == MaxSector &&
3244             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3245             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3246             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3247             conf->fullsync == 0) {
3248                 *skipped = 1;
3249                 return mddev->dev_sectors - sector_nr;
3250         }
3251
3252  skipped:
3253         max_sector = mddev->dev_sectors;
3254         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3255             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3256                 max_sector = mddev->resync_max_sectors;
3257         if (sector_nr >= max_sector) {
3258                 conf->cluster_sync_low = 0;
3259                 conf->cluster_sync_high = 0;
3260
3261                 /* If we aborted, we need to abort the
3262                  * sync on the 'current' bitmap chucks (there can
3263                  * be several when recovering multiple devices).
3264                  * as we may have started syncing it but not finished.
3265                  * We can find the current address in
3266                  * mddev->curr_resync, but for recovery,
3267                  * we need to convert that to several
3268                  * virtual addresses.
3269                  */
3270                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3271                         end_reshape(conf);
3272                         close_sync(conf);
3273                         return 0;
3274                 }
3275
3276                 if (mddev->curr_resync < max_sector) { /* aborted */
3277                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3278                                 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3279                                                    &sync_blocks, 1);
3280                         else for (i = 0; i < conf->geo.raid_disks; i++) {
3281                                 sector_t sect =
3282                                         raid10_find_virt(conf, mddev->curr_resync, i);
3283                                 md_bitmap_end_sync(mddev->bitmap, sect,
3284                                                    &sync_blocks, 1);
3285                         }
3286                 } else {
3287                         /* completed sync */
3288                         if ((!mddev->bitmap || conf->fullsync)
3289                             && conf->have_replacement
3290                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3291                                 /* Completed a full sync so the replacements
3292                                  * are now fully recovered.
3293                                  */
3294                                 rcu_read_lock();
3295                                 for (i = 0; i < conf->geo.raid_disks; i++) {
3296                                         struct md_rdev *rdev =
3297                                                 rcu_dereference(conf->mirrors[i].replacement);
3298                                         if (rdev)
3299                                                 rdev->recovery_offset = MaxSector;
3300                                 }
3301                                 rcu_read_unlock();
3302                         }
3303                         conf->fullsync = 0;
3304                 }
3305                 md_bitmap_close_sync(mddev->bitmap);
3306                 close_sync(conf);
3307                 *skipped = 1;
3308                 return sectors_skipped;
3309         }
3310
3311         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3312                 return reshape_request(mddev, sector_nr, skipped);
3313
3314         if (chunks_skipped >= conf->geo.raid_disks) {
3315                 /* if there has been nothing to do on any drive,
3316                  * then there is nothing to do at all..
3317                  */
3318                 *skipped = 1;
3319                 return (max_sector - sector_nr) + sectors_skipped;
3320         }
3321
3322         if (max_sector > mddev->resync_max)
3323                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3324
3325         /* make sure whole request will fit in a chunk - if chunks
3326          * are meaningful
3327          */
3328         if (conf->geo.near_copies < conf->geo.raid_disks &&
3329             max_sector > (sector_nr | chunk_mask))
3330                 max_sector = (sector_nr | chunk_mask) + 1;
3331
3332         /*
3333          * If there is non-resync activity waiting for a turn, then let it
3334          * though before starting on this new sync request.
3335          */
3336         if (conf->nr_waiting)
3337                 schedule_timeout_uninterruptible(1);
3338
3339         /* Again, very different code for resync and recovery.
3340          * Both must result in an r10bio with a list of bios that
3341          * have bi_end_io, bi_sector, bi_bdev set,
3342          * and bi_private set to the r10bio.
3343          * For recovery, we may actually create several r10bios
3344          * with 2 bios in each, that correspond to the bios in the main one.
3345          * In this case, the subordinate r10bios link back through a
3346          * borrowed master_bio pointer, and the counter in the master
3347          * includes a ref from each subordinate.
3348          */
3349         /* First, we decide what to do and set ->bi_end_io
3350          * To end_sync_read if we want to read, and
3351          * end_sync_write if we will want to write.
3352          */
3353
3354         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3355         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3356                 /* recovery... the complicated one */
3357                 int j;
3358                 r10_bio = NULL;
3359
3360                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3361                         int still_degraded;
3362                         struct r10bio *rb2;
3363                         sector_t sect;
3364                         int must_sync;
3365                         int any_working;
3366                         int need_recover = 0;
3367                         int need_replace = 0;
3368                         struct raid10_info *mirror = &conf->mirrors[i];
3369                         struct md_rdev *mrdev, *mreplace;
3370
3371                         rcu_read_lock();
3372                         mrdev = rcu_dereference(mirror->rdev);
3373                         mreplace = rcu_dereference(mirror->replacement);
3374
3375                         if (mrdev != NULL &&
3376                             !test_bit(Faulty, &mrdev->flags) &&
3377                             !test_bit(In_sync, &mrdev->flags))
3378                                 need_recover = 1;
3379                         if (mreplace != NULL &&
3380                             !test_bit(Faulty, &mreplace->flags))
3381                                 need_replace = 1;
3382
3383                         if (!need_recover && !need_replace) {
3384                                 rcu_read_unlock();
3385                                 continue;
3386                         }
3387
3388                         still_degraded = 0;
3389                         /* want to reconstruct this device */
3390                         rb2 = r10_bio;
3391                         sect = raid10_find_virt(conf, sector_nr, i);
3392                         if (sect >= mddev->resync_max_sectors) {
3393                                 /* last stripe is not complete - don't
3394                                  * try to recover this sector.
3395                                  */
3396                                 rcu_read_unlock();
3397                                 continue;
3398                         }
3399                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3400                                 mreplace = NULL;
3401                         /* Unless we are doing a full sync, or a replacement
3402                          * we only need to recover the block if it is set in
3403                          * the bitmap
3404                          */
3405                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3406                                                          &sync_blocks, 1);
3407                         if (sync_blocks < max_sync)
3408                                 max_sync = sync_blocks;
3409                         if (!must_sync &&
3410                             mreplace == NULL &&
3411                             !conf->fullsync) {
3412                                 /* yep, skip the sync_blocks here, but don't assume
3413                                  * that there will never be anything to do here
3414                                  */
3415                                 chunks_skipped = -1;
3416                                 rcu_read_unlock();
3417                                 continue;
3418                         }
3419                         atomic_inc(&mrdev->nr_pending);
3420                         if (mreplace)
3421                                 atomic_inc(&mreplace->nr_pending);
3422                         rcu_read_unlock();
3423
3424                         r10_bio = raid10_alloc_init_r10buf(conf);
3425                         r10_bio->state = 0;
3426                         raise_barrier(conf, rb2 != NULL);
3427                         atomic_set(&r10_bio->remaining, 0);
3428
3429                         r10_bio->master_bio = (struct bio*)rb2;
3430                         if (rb2)
3431                                 atomic_inc(&rb2->remaining);
3432                         r10_bio->mddev = mddev;
3433                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3434                         r10_bio->sector = sect;
3435
3436                         raid10_find_phys(conf, r10_bio);
3437
3438                         /* Need to check if the array will still be
3439                          * degraded
3440                          */
3441                         rcu_read_lock();
3442                         for (j = 0; j < conf->geo.raid_disks; j++) {
3443                                 struct md_rdev *rdev = rcu_dereference(
3444                                         conf->mirrors[j].rdev);
3445                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3446                                         still_degraded = 1;
3447                                         break;
3448                                 }
3449                         }
3450
3451                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3452                                                          &sync_blocks, still_degraded);
3453
3454                         any_working = 0;
3455                         for (j=0; j<conf->copies;j++) {
3456                                 int k;
3457                                 int d = r10_bio->devs[j].devnum;
3458                                 sector_t from_addr, to_addr;
3459                                 struct md_rdev *rdev =
3460                                         rcu_dereference(conf->mirrors[d].rdev);
3461                                 sector_t sector, first_bad;
3462                                 int bad_sectors;
3463                                 if (!rdev ||
3464                                     !test_bit(In_sync, &rdev->flags))
3465                                         continue;
3466                                 /* This is where we read from */
3467                                 any_working = 1;
3468                                 sector = r10_bio->devs[j].addr;
3469
3470                                 if (is_badblock(rdev, sector, max_sync,
3471                                                 &first_bad, &bad_sectors)) {
3472                                         if (first_bad > sector)
3473                                                 max_sync = first_bad - sector;
3474                                         else {
3475                                                 bad_sectors -= (sector
3476                                                                 - first_bad);
3477                                                 if (max_sync > bad_sectors)
3478                                                         max_sync = bad_sectors;
3479                                                 continue;
3480                                         }
3481                                 }
3482                                 bio = r10_bio->devs[0].bio;
3483                                 bio->bi_next = biolist;
3484                                 biolist = bio;
3485                                 bio->bi_end_io = end_sync_read;
3486                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3487                                 if (test_bit(FailFast, &rdev->flags))
3488                                         bio->bi_opf |= MD_FAILFAST;
3489                                 from_addr = r10_bio->devs[j].addr;
3490                                 bio->bi_iter.bi_sector = from_addr +
3491                                         rdev->data_offset;
3492                                 bio_set_dev(bio, rdev->bdev);
3493                                 atomic_inc(&rdev->nr_pending);
3494                                 /* and we write to 'i' (if not in_sync) */
3495
3496                                 for (k=0; k<conf->copies; k++)
3497                                         if (r10_bio->devs[k].devnum == i)
3498                                                 break;
3499                                 BUG_ON(k == conf->copies);
3500                                 to_addr = r10_bio->devs[k].addr;
3501                                 r10_bio->devs[0].devnum = d;
3502                                 r10_bio->devs[0].addr = from_addr;
3503                                 r10_bio->devs[1].devnum = i;
3504                                 r10_bio->devs[1].addr = to_addr;
3505
3506                                 if (need_recover) {
3507                                         bio = r10_bio->devs[1].bio;
3508                                         bio->bi_next = biolist;
3509                                         biolist = bio;
3510                                         bio->bi_end_io = end_sync_write;
3511                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3512                                         bio->bi_iter.bi_sector = to_addr
3513                                                 + mrdev->data_offset;
3514                                         bio_set_dev(bio, mrdev->bdev);
3515                                         atomic_inc(&r10_bio->remaining);
3516                                 } else
3517                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3518
3519                                 /* and maybe write to replacement */
3520                                 bio = r10_bio->devs[1].repl_bio;
3521                                 if (bio)
3522                                         bio->bi_end_io = NULL;
3523                                 /* Note: if need_replace, then bio
3524                                  * cannot be NULL as r10buf_pool_alloc will
3525                                  * have allocated it.
3526                                  */
3527                                 if (!need_replace)
3528                                         break;
3529                                 bio->bi_next = biolist;
3530                                 biolist = bio;
3531                                 bio->bi_end_io = end_sync_write;
3532                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3533                                 bio->bi_iter.bi_sector = to_addr +
3534                                         mreplace->data_offset;
3535                                 bio_set_dev(bio, mreplace->bdev);
3536                                 atomic_inc(&r10_bio->remaining);
3537                                 break;
3538                         }
3539                         rcu_read_unlock();
3540                         if (j == conf->copies) {
3541                                 /* Cannot recover, so abort the recovery or
3542                                  * record a bad block */
3543                                 if (any_working) {
3544                                         /* problem is that there are bad blocks
3545                                          * on other device(s)
3546                                          */
3547                                         int k;
3548                                         for (k = 0; k < conf->copies; k++)
3549                                                 if (r10_bio->devs[k].devnum == i)
3550                                                         break;
3551                                         if (!test_bit(In_sync,
3552                                                       &mrdev->flags)
3553                                             && !rdev_set_badblocks(
3554                                                     mrdev,
3555                                                     r10_bio->devs[k].addr,
3556                                                     max_sync, 0))
3557                                                 any_working = 0;
3558                                         if (mreplace &&
3559                                             !rdev_set_badblocks(
3560                                                     mreplace,
3561                                                     r10_bio->devs[k].addr,
3562                                                     max_sync, 0))
3563                                                 any_working = 0;
3564                                 }
3565                                 if (!any_working)  {
3566                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3567                                                               &mddev->recovery))
3568                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3569                                                        mdname(mddev));
3570                                         mirror->recovery_disabled
3571                                                 = mddev->recovery_disabled;
3572                                 }
3573                                 put_buf(r10_bio);
3574                                 if (rb2)
3575                                         atomic_dec(&rb2->remaining);
3576                                 r10_bio = rb2;
3577                                 rdev_dec_pending(mrdev, mddev);
3578                                 if (mreplace)
3579                                         rdev_dec_pending(mreplace, mddev);
3580                                 break;
3581                         }
3582                         rdev_dec_pending(mrdev, mddev);
3583                         if (mreplace)
3584                                 rdev_dec_pending(mreplace, mddev);
3585                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3586                                 /* Only want this if there is elsewhere to
3587                                  * read from. 'j' is currently the first
3588                                  * readable copy.
3589                                  */
3590                                 int targets = 1;
3591                                 for (; j < conf->copies; j++) {
3592                                         int d = r10_bio->devs[j].devnum;
3593                                         if (conf->mirrors[d].rdev &&
3594                                             test_bit(In_sync,
3595                                                       &conf->mirrors[d].rdev->flags))
3596                                                 targets++;
3597                                 }
3598                                 if (targets == 1)
3599                                         r10_bio->devs[0].bio->bi_opf
3600                                                 &= ~MD_FAILFAST;
3601                         }
3602                 }
3603                 if (biolist == NULL) {
3604                         while (r10_bio) {
3605                                 struct r10bio *rb2 = r10_bio;
3606                                 r10_bio = (struct r10bio*) rb2->master_bio;
3607                                 rb2->master_bio = NULL;
3608                                 put_buf(rb2);
3609                         }
3610                         goto giveup;
3611                 }
3612         } else {
3613                 /* resync. Schedule a read for every block at this virt offset */
3614                 int count = 0;
3615
3616                 /*
3617                  * Since curr_resync_completed could probably not update in
3618                  * time, and we will set cluster_sync_low based on it.
3619                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3620                  * safety reason, which ensures curr_resync_completed is
3621                  * updated in bitmap_cond_end_sync.
3622                  */
3623                 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3624                                         mddev_is_clustered(mddev) &&
3625                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3626
3627                 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3628                                           &sync_blocks, mddev->degraded) &&
3629                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3630                                                  &mddev->recovery)) {
3631                         /* We can skip this block */
3632                         *skipped = 1;
3633                         return sync_blocks + sectors_skipped;
3634                 }
3635                 if (sync_blocks < max_sync)
3636                         max_sync = sync_blocks;
3637                 r10_bio = raid10_alloc_init_r10buf(conf);
3638                 r10_bio->state = 0;
3639
3640                 r10_bio->mddev = mddev;
3641                 atomic_set(&r10_bio->remaining, 0);
3642                 raise_barrier(conf, 0);
3643                 conf->next_resync = sector_nr;
3644
3645                 r10_bio->master_bio = NULL;
3646                 r10_bio->sector = sector_nr;
3647                 set_bit(R10BIO_IsSync, &r10_bio->state);
3648                 raid10_find_phys(conf, r10_bio);
3649                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3650
3651                 for (i = 0; i < conf->copies; i++) {
3652                         int d = r10_bio->devs[i].devnum;
3653                         sector_t first_bad, sector;
3654                         int bad_sectors;
3655                         struct md_rdev *rdev;
3656
3657                         if (r10_bio->devs[i].repl_bio)
3658                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3659
3660                         bio = r10_bio->devs[i].bio;
3661                         bio->bi_status = BLK_STS_IOERR;
3662                         rcu_read_lock();
3663                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3664                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3665                                 rcu_read_unlock();
3666                                 continue;
3667                         }
3668                         sector = r10_bio->devs[i].addr;
3669                         if (is_badblock(rdev, sector, max_sync,
3670                                         &first_bad, &bad_sectors)) {
3671                                 if (first_bad > sector)
3672                                         max_sync = first_bad - sector;
3673                                 else {
3674                                         bad_sectors -= (sector - first_bad);
3675                                         if (max_sync > bad_sectors)
3676                                                 max_sync = bad_sectors;
3677                                         rcu_read_unlock();
3678                                         continue;
3679                                 }
3680                         }
3681                         atomic_inc(&rdev->nr_pending);
3682                         atomic_inc(&r10_bio->remaining);
3683                         bio->bi_next = biolist;
3684                         biolist = bio;
3685                         bio->bi_end_io = end_sync_read;
3686                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3687                         if (test_bit(FailFast, &rdev->flags))
3688                                 bio->bi_opf |= MD_FAILFAST;
3689                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3690                         bio_set_dev(bio, rdev->bdev);
3691                         count++;
3692
3693                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3694                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3695                                 rcu_read_unlock();
3696                                 continue;
3697                         }
3698                         atomic_inc(&rdev->nr_pending);
3699
3700                         /* Need to set up for writing to the replacement */
3701                         bio = r10_bio->devs[i].repl_bio;
3702                         bio->bi_status = BLK_STS_IOERR;
3703
3704                         sector = r10_bio->devs[i].addr;
3705                         bio->bi_next = biolist;
3706                         biolist = bio;
3707                         bio->bi_end_io = end_sync_write;
3708                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3709                         if (test_bit(FailFast, &rdev->flags))
3710                                 bio->bi_opf |= MD_FAILFAST;
3711                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3712                         bio_set_dev(bio, rdev->bdev);
3713                         count++;
3714                         rcu_read_unlock();
3715                 }
3716
3717                 if (count < 2) {
3718                         for (i=0; i<conf->copies; i++) {
3719                                 int d = r10_bio->devs[i].devnum;
3720                                 if (r10_bio->devs[i].bio->bi_end_io)
3721                                         rdev_dec_pending(conf->mirrors[d].rdev,
3722                                                          mddev);
3723                                 if (r10_bio->devs[i].repl_bio &&
3724                                     r10_bio->devs[i].repl_bio->bi_end_io)
3725                                         rdev_dec_pending(
3726                                                 conf->mirrors[d].replacement,
3727                                                 mddev);
3728                         }
3729                         put_buf(r10_bio);
3730                         biolist = NULL;
3731                         goto giveup;
3732                 }
3733         }
3734
3735         nr_sectors = 0;
3736         if (sector_nr + max_sync < max_sector)
3737                 max_sector = sector_nr + max_sync;
3738         do {
3739                 struct page *page;
3740                 int len = PAGE_SIZE;
3741                 if (sector_nr + (len>>9) > max_sector)
3742                         len = (max_sector - sector_nr) << 9;
3743                 if (len == 0)
3744                         break;
3745                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3746                         struct resync_pages *rp = get_resync_pages(bio);
3747                         page = resync_fetch_page(rp, page_idx);
3748                         /*
3749                          * won't fail because the vec table is big enough
3750                          * to hold all these pages
3751                          */
3752                         bio_add_page(bio, page, len, 0);
3753                 }
3754                 nr_sectors += len>>9;
3755                 sector_nr += len>>9;
3756         } while (++page_idx < RESYNC_PAGES);
3757         r10_bio->sectors = nr_sectors;
3758
3759         if (mddev_is_clustered(mddev) &&
3760             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3761                 /* It is resync not recovery */
3762                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3763                         conf->cluster_sync_low = mddev->curr_resync_completed;
3764                         raid10_set_cluster_sync_high(conf);
3765                         /* Send resync message */
3766                         md_cluster_ops->resync_info_update(mddev,
3767                                                 conf->cluster_sync_low,
3768                                                 conf->cluster_sync_high);
3769                 }
3770         } else if (mddev_is_clustered(mddev)) {
3771                 /* This is recovery not resync */
3772                 sector_t sect_va1, sect_va2;
3773                 bool broadcast_msg = false;
3774
3775                 for (i = 0; i < conf->geo.raid_disks; i++) {
3776                         /*
3777                          * sector_nr is a device address for recovery, so we
3778                          * need translate it to array address before compare
3779                          * with cluster_sync_high.
3780                          */
3781                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3782
3783                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3784                                 broadcast_msg = true;
3785                                 /*
3786                                  * curr_resync_completed is similar as
3787                                  * sector_nr, so make the translation too.
3788                                  */
3789                                 sect_va2 = raid10_find_virt(conf,
3790                                         mddev->curr_resync_completed, i);
3791
3792                                 if (conf->cluster_sync_low == 0 ||
3793                                     conf->cluster_sync_low > sect_va2)
3794                                         conf->cluster_sync_low = sect_va2;
3795                         }
3796                 }
3797                 if (broadcast_msg) {
3798                         raid10_set_cluster_sync_high(conf);
3799                         md_cluster_ops->resync_info_update(mddev,
3800                                                 conf->cluster_sync_low,
3801                                                 conf->cluster_sync_high);
3802                 }
3803         }
3804
3805         while (biolist) {
3806                 bio = biolist;
3807                 biolist = biolist->bi_next;
3808
3809                 bio->bi_next = NULL;
3810                 r10_bio = get_resync_r10bio(bio);
3811                 r10_bio->sectors = nr_sectors;
3812
3813                 if (bio->bi_end_io == end_sync_read) {
3814                         md_sync_acct_bio(bio, nr_sectors);
3815                         bio->bi_status = 0;
3816                         submit_bio_noacct(bio);
3817                 }
3818         }
3819
3820         if (sectors_skipped)
3821                 /* pretend they weren't skipped, it makes
3822                  * no important difference in this case
3823                  */
3824                 md_done_sync(mddev, sectors_skipped, 1);
3825
3826         return sectors_skipped + nr_sectors;
3827  giveup:
3828         /* There is nowhere to write, so all non-sync
3829          * drives must be failed or in resync, all drives
3830          * have a bad block, so try the next chunk...
3831          */
3832         if (sector_nr + max_sync < max_sector)
3833                 max_sector = sector_nr + max_sync;
3834
3835         sectors_skipped += (max_sector - sector_nr);
3836         chunks_skipped ++;
3837         sector_nr = max_sector;
3838         goto skipped;
3839 }
3840
3841 static sector_t
3842 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3843 {
3844         sector_t size;
3845         struct r10conf *conf = mddev->private;
3846
3847         if (!raid_disks)
3848                 raid_disks = min(conf->geo.raid_disks,
3849                                  conf->prev.raid_disks);
3850         if (!sectors)
3851                 sectors = conf->dev_sectors;
3852
3853         size = sectors >> conf->geo.chunk_shift;
3854         sector_div(size, conf->geo.far_copies);
3855         size = size * raid_disks;
3856         sector_div(size, conf->geo.near_copies);
3857
3858         return size << conf->geo.chunk_shift;
3859 }
3860
3861 static void calc_sectors(struct r10conf *conf, sector_t size)
3862 {
3863         /* Calculate the number of sectors-per-device that will
3864          * actually be used, and set conf->dev_sectors and
3865          * conf->stride
3866          */
3867
3868         size = size >> conf->geo.chunk_shift;
3869         sector_div(size, conf->geo.far_copies);
3870         size = size * conf->geo.raid_disks;
3871         sector_div(size, conf->geo.near_copies);
3872         /* 'size' is now the number of chunks in the array */
3873         /* calculate "used chunks per device" */
3874         size = size * conf->copies;
3875
3876         /* We need to round up when dividing by raid_disks to
3877          * get the stride size.
3878          */
3879         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3880
3881         conf->dev_sectors = size << conf->geo.chunk_shift;
3882
3883         if (conf->geo.far_offset)
3884                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3885         else {
3886                 sector_div(size, conf->geo.far_copies);
3887                 conf->geo.stride = size << conf->geo.chunk_shift;
3888         }
3889 }
3890
3891 enum geo_type {geo_new, geo_old, geo_start};
3892 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3893 {
3894         int nc, fc, fo;
3895         int layout, chunk, disks;
3896         switch (new) {
3897         case geo_old:
3898                 layout = mddev->layout;
3899                 chunk = mddev->chunk_sectors;
3900                 disks = mddev->raid_disks - mddev->delta_disks;
3901                 break;
3902         case geo_new:
3903                 layout = mddev->new_layout;
3904                 chunk = mddev->new_chunk_sectors;
3905                 disks = mddev->raid_disks;
3906                 break;
3907         default: /* avoid 'may be unused' warnings */
3908         case geo_start: /* new when starting reshape - raid_disks not
3909                          * updated yet. */
3910                 layout = mddev->new_layout;
3911                 chunk = mddev->new_chunk_sectors;
3912                 disks = mddev->raid_disks + mddev->delta_disks;
3913                 break;
3914         }
3915         if (layout >> 19)
3916                 return -1;
3917         if (chunk < (PAGE_SIZE >> 9) ||
3918             !is_power_of_2(chunk))
3919                 return -2;
3920         nc = layout & 255;
3921         fc = (layout >> 8) & 255;
3922         fo = layout & (1<<16);
3923         geo->raid_disks = disks;
3924         geo->near_copies = nc;
3925         geo->far_copies = fc;
3926         geo->far_offset = fo;
3927         switch (layout >> 17) {
3928         case 0: /* original layout.  simple but not always optimal */
3929                 geo->far_set_size = disks;
3930                 break;
3931         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3932                  * actually using this, but leave code here just in case.*/
3933                 geo->far_set_size = disks/fc;
3934                 WARN(geo->far_set_size < fc,
3935                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3936                 break;
3937         case 2: /* "improved" layout fixed to match documentation */
3938                 geo->far_set_size = fc * nc;
3939                 break;
3940         default: /* Not a valid layout */
3941                 return -1;
3942         }
3943         geo->chunk_mask = chunk - 1;
3944         geo->chunk_shift = ffz(~chunk);
3945         return nc*fc;
3946 }
3947
3948 static struct r10conf *setup_conf(struct mddev *mddev)
3949 {
3950         struct r10conf *conf = NULL;
3951         int err = -EINVAL;
3952         struct geom geo;
3953         int copies;
3954
3955         copies = setup_geo(&geo, mddev, geo_new);
3956
3957         if (copies == -2) {
3958                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3959                         mdname(mddev), PAGE_SIZE);
3960                 goto out;
3961         }
3962
3963         if (copies < 2 || copies > mddev->raid_disks) {
3964                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3965                         mdname(mddev), mddev->new_layout);
3966                 goto out;
3967         }
3968
3969         err = -ENOMEM;
3970         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3971         if (!conf)
3972                 goto out;
3973
3974         /* FIXME calc properly */
3975         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3976                                 sizeof(struct raid10_info),
3977                                 GFP_KERNEL);
3978         if (!conf->mirrors)
3979                 goto out;
3980
3981         conf->tmppage = alloc_page(GFP_KERNEL);
3982         if (!conf->tmppage)
3983                 goto out;
3984
3985         conf->geo = geo;
3986         conf->copies = copies;
3987         err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3988                            rbio_pool_free, conf);
3989         if (err)
3990                 goto out;
3991
3992         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3993         if (err)
3994                 goto out;
3995
3996         calc_sectors(conf, mddev->dev_sectors);
3997         if (mddev->reshape_position == MaxSector) {
3998                 conf->prev = conf->geo;
3999                 conf->reshape_progress = MaxSector;
4000         } else {
4001                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
4002                         err = -EINVAL;
4003                         goto out;
4004                 }
4005                 conf->reshape_progress = mddev->reshape_position;
4006                 if (conf->prev.far_offset)
4007                         conf->prev.stride = 1 << conf->prev.chunk_shift;
4008                 else
4009                         /* far_copies must be 1 */
4010                         conf->prev.stride = conf->dev_sectors;
4011         }
4012         conf->reshape_safe = conf->reshape_progress;
4013         spin_lock_init(&conf->device_lock);
4014         INIT_LIST_HEAD(&conf->retry_list);
4015         INIT_LIST_HEAD(&conf->bio_end_io_list);
4016
4017         spin_lock_init(&conf->resync_lock);
4018         init_waitqueue_head(&conf->wait_barrier);
4019         atomic_set(&conf->nr_pending, 0);
4020
4021         err = -ENOMEM;
4022         conf->thread = md_register_thread(raid10d, mddev, "raid10");
4023         if (!conf->thread)
4024                 goto out;
4025
4026         conf->mddev = mddev;
4027         return conf;
4028
4029  out:
4030         if (conf) {
4031                 mempool_exit(&conf->r10bio_pool);
4032                 kfree(conf->mirrors);
4033                 safe_put_page(conf->tmppage);
4034                 bioset_exit(&conf->bio_split);
4035                 kfree(conf);
4036         }
4037         return ERR_PTR(err);
4038 }
4039
4040 static void raid10_set_io_opt(struct r10conf *conf)
4041 {
4042         int raid_disks = conf->geo.raid_disks;
4043
4044         if (!(conf->geo.raid_disks % conf->geo.near_copies))
4045                 raid_disks /= conf->geo.near_copies;
4046         blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4047                          raid_disks);
4048 }
4049
4050 static int raid10_run(struct mddev *mddev)
4051 {
4052         struct r10conf *conf;
4053         int i, disk_idx;
4054         struct raid10_info *disk;
4055         struct md_rdev *rdev;
4056         sector_t size;
4057         sector_t min_offset_diff = 0;
4058         int first = 1;
4059         bool discard_supported = false;
4060
4061         if (mddev_init_writes_pending(mddev) < 0)
4062                 return -ENOMEM;
4063
4064         if (mddev->private == NULL) {
4065                 conf = setup_conf(mddev);
4066                 if (IS_ERR(conf))
4067                         return PTR_ERR(conf);
4068                 mddev->private = conf;
4069         }
4070         conf = mddev->private;
4071         if (!conf)
4072                 goto out;
4073
4074         if (mddev_is_clustered(conf->mddev)) {
4075                 int fc, fo;
4076
4077                 fc = (mddev->layout >> 8) & 255;
4078                 fo = mddev->layout & (1<<16);
4079                 if (fc > 1 || fo > 0) {
4080                         pr_err("only near layout is supported by clustered"
4081                                 " raid10\n");
4082                         goto out_free_conf;
4083                 }
4084         }
4085
4086         mddev->thread = conf->thread;
4087         conf->thread = NULL;
4088
4089         if (mddev->queue) {
4090                 blk_queue_max_discard_sectors(mddev->queue,
4091                                               UINT_MAX);
4092                 blk_queue_max_write_same_sectors(mddev->queue, 0);
4093                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4094                 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4095                 raid10_set_io_opt(conf);
4096         }
4097
4098         rdev_for_each(rdev, mddev) {
4099                 long long diff;
4100
4101                 disk_idx = rdev->raid_disk;
4102                 if (disk_idx < 0)
4103                         continue;
4104                 if (disk_idx >= conf->geo.raid_disks &&
4105                     disk_idx >= conf->prev.raid_disks)
4106                         continue;
4107                 disk = conf->mirrors + disk_idx;
4108
4109                 if (test_bit(Replacement, &rdev->flags)) {
4110                         if (disk->replacement)
4111                                 goto out_free_conf;
4112                         disk->replacement = rdev;
4113                 } else {
4114                         if (disk->rdev)
4115                                 goto out_free_conf;
4116                         disk->rdev = rdev;
4117                 }
4118                 diff = (rdev->new_data_offset - rdev->data_offset);
4119                 if (!mddev->reshape_backwards)
4120                         diff = -diff;
4121                 if (diff < 0)
4122                         diff = 0;
4123                 if (first || diff < min_offset_diff)
4124                         min_offset_diff = diff;
4125
4126                 if (mddev->gendisk)
4127                         disk_stack_limits(mddev->gendisk, rdev->bdev,
4128                                           rdev->data_offset << 9);
4129
4130                 disk->head_position = 0;
4131
4132                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
4133                         discard_supported = true;
4134                 first = 0;
4135         }
4136
4137         if (mddev->queue) {
4138                 if (discard_supported)
4139                         blk_queue_flag_set(QUEUE_FLAG_DISCARD,
4140                                                 mddev->queue);
4141                 else
4142                         blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
4143                                                   mddev->queue);
4144         }
4145         /* need to check that every block has at least one working mirror */
4146         if (!enough(conf, -1)) {
4147                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4148                        mdname(mddev));
4149                 goto out_free_conf;
4150         }
4151
4152         if (conf->reshape_progress != MaxSector) {
4153                 /* must ensure that shape change is supported */
4154                 if (conf->geo.far_copies != 1 &&
4155                     conf->geo.far_offset == 0)
4156                         goto out_free_conf;
4157                 if (conf->prev.far_copies != 1 &&
4158                     conf->prev.far_offset == 0)
4159                         goto out_free_conf;
4160         }
4161
4162         mddev->degraded = 0;
4163         for (i = 0;
4164              i < conf->geo.raid_disks
4165                      || i < conf->prev.raid_disks;
4166              i++) {
4167
4168                 disk = conf->mirrors + i;
4169
4170                 if (!disk->rdev && disk->replacement) {
4171                         /* The replacement is all we have - use it */
4172                         disk->rdev = disk->replacement;
4173                         disk->replacement = NULL;
4174                         clear_bit(Replacement, &disk->rdev->flags);
4175                 }
4176
4177                 if (!disk->rdev ||
4178                     !test_bit(In_sync, &disk->rdev->flags)) {
4179                         disk->head_position = 0;
4180                         mddev->degraded++;
4181                         if (disk->rdev &&
4182                             disk->rdev->saved_raid_disk < 0)
4183                                 conf->fullsync = 1;
4184                 }
4185
4186                 if (disk->replacement &&
4187                     !test_bit(In_sync, &disk->replacement->flags) &&
4188                     disk->replacement->saved_raid_disk < 0) {
4189                         conf->fullsync = 1;
4190                 }
4191
4192                 disk->recovery_disabled = mddev->recovery_disabled - 1;
4193         }
4194
4195         if (mddev->recovery_cp != MaxSector)
4196                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4197                           mdname(mddev));
4198         pr_info("md/raid10:%s: active with %d out of %d devices\n",
4199                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4200                 conf->geo.raid_disks);
4201         /*
4202          * Ok, everything is just fine now
4203          */
4204         mddev->dev_sectors = conf->dev_sectors;
4205         size = raid10_size(mddev, 0, 0);
4206         md_set_array_sectors(mddev, size);
4207         mddev->resync_max_sectors = size;
4208         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4209
4210         if (md_integrity_register(mddev))
4211                 goto out_free_conf;
4212
4213         if (conf->reshape_progress != MaxSector) {
4214                 unsigned long before_length, after_length;
4215
4216                 before_length = ((1 << conf->prev.chunk_shift) *
4217                                  conf->prev.far_copies);
4218                 after_length = ((1 << conf->geo.chunk_shift) *
4219                                 conf->geo.far_copies);
4220
4221                 if (max(before_length, after_length) > min_offset_diff) {
4222                         /* This cannot work */
4223                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4224                         goto out_free_conf;
4225                 }
4226                 conf->offset_diff = min_offset_diff;
4227
4228                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4229                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4230                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4231                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4232                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4233                                                         "reshape");
4234                 if (!mddev->sync_thread)
4235                         goto out_free_conf;
4236         }
4237
4238         return 0;
4239
4240 out_free_conf:
4241         md_unregister_thread(&mddev->thread);
4242         mempool_exit(&conf->r10bio_pool);
4243         safe_put_page(conf->tmppage);
4244         kfree(conf->mirrors);
4245         kfree(conf);
4246         mddev->private = NULL;
4247 out:
4248         return -EIO;
4249 }
4250
4251 static void raid10_free(struct mddev *mddev, void *priv)
4252 {
4253         struct r10conf *conf = priv;
4254
4255         mempool_exit(&conf->r10bio_pool);
4256         safe_put_page(conf->tmppage);
4257         kfree(conf->mirrors);
4258         kfree(conf->mirrors_old);
4259         kfree(conf->mirrors_new);
4260         bioset_exit(&conf->bio_split);
4261         kfree(conf);
4262 }
4263
4264 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4265 {
4266         struct r10conf *conf = mddev->private;
4267
4268         if (quiesce)
4269                 raise_barrier(conf, 0);
4270         else
4271                 lower_barrier(conf);
4272 }
4273
4274 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4275 {
4276         /* Resize of 'far' arrays is not supported.
4277          * For 'near' and 'offset' arrays we can set the
4278          * number of sectors used to be an appropriate multiple
4279          * of the chunk size.
4280          * For 'offset', this is far_copies*chunksize.
4281          * For 'near' the multiplier is the LCM of
4282          * near_copies and raid_disks.
4283          * So if far_copies > 1 && !far_offset, fail.
4284          * Else find LCM(raid_disks, near_copy)*far_copies and
4285          * multiply by chunk_size.  Then round to this number.
4286          * This is mostly done by raid10_size()
4287          */
4288         struct r10conf *conf = mddev->private;
4289         sector_t oldsize, size;
4290
4291         if (mddev->reshape_position != MaxSector)
4292                 return -EBUSY;
4293
4294         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4295                 return -EINVAL;
4296
4297         oldsize = raid10_size(mddev, 0, 0);
4298         size = raid10_size(mddev, sectors, 0);
4299         if (mddev->external_size &&
4300             mddev->array_sectors > size)
4301                 return -EINVAL;
4302         if (mddev->bitmap) {
4303                 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4304                 if (ret)
4305                         return ret;
4306         }
4307         md_set_array_sectors(mddev, size);
4308         if (sectors > mddev->dev_sectors &&
4309             mddev->recovery_cp > oldsize) {
4310                 mddev->recovery_cp = oldsize;
4311                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4312         }
4313         calc_sectors(conf, sectors);
4314         mddev->dev_sectors = conf->dev_sectors;
4315         mddev->resync_max_sectors = size;
4316         return 0;
4317 }
4318
4319 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4320 {
4321         struct md_rdev *rdev;
4322         struct r10conf *conf;
4323
4324         if (mddev->degraded > 0) {
4325                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4326                         mdname(mddev));
4327                 return ERR_PTR(-EINVAL);
4328         }
4329         sector_div(size, devs);
4330
4331         /* Set new parameters */
4332         mddev->new_level = 10;
4333         /* new layout: far_copies = 1, near_copies = 2 */
4334         mddev->new_layout = (1<<8) + 2;
4335         mddev->new_chunk_sectors = mddev->chunk_sectors;
4336         mddev->delta_disks = mddev->raid_disks;
4337         mddev->raid_disks *= 2;
4338         /* make sure it will be not marked as dirty */
4339         mddev->recovery_cp = MaxSector;
4340         mddev->dev_sectors = size;
4341
4342         conf = setup_conf(mddev);
4343         if (!IS_ERR(conf)) {
4344                 rdev_for_each(rdev, mddev)
4345                         if (rdev->raid_disk >= 0) {
4346                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4347                                 rdev->sectors = size;
4348                         }
4349                 conf->barrier = 1;
4350         }
4351
4352         return conf;
4353 }
4354
4355 static void *raid10_takeover(struct mddev *mddev)
4356 {
4357         struct r0conf *raid0_conf;
4358
4359         /* raid10 can take over:
4360          *  raid0 - providing it has only two drives
4361          */
4362         if (mddev->level == 0) {
4363                 /* for raid0 takeover only one zone is supported */
4364                 raid0_conf = mddev->private;
4365                 if (raid0_conf->nr_strip_zones > 1) {
4366                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4367                                 mdname(mddev));
4368                         return ERR_PTR(-EINVAL);
4369                 }
4370                 return raid10_takeover_raid0(mddev,
4371                         raid0_conf->strip_zone->zone_end,
4372                         raid0_conf->strip_zone->nb_dev);
4373         }
4374         return ERR_PTR(-EINVAL);
4375 }
4376
4377 static int raid10_check_reshape(struct mddev *mddev)
4378 {
4379         /* Called when there is a request to change
4380          * - layout (to ->new_layout)
4381          * - chunk size (to ->new_chunk_sectors)
4382          * - raid_disks (by delta_disks)
4383          * or when trying to restart a reshape that was ongoing.
4384          *
4385          * We need to validate the request and possibly allocate
4386          * space if that might be an issue later.
4387          *
4388          * Currently we reject any reshape of a 'far' mode array,
4389          * allow chunk size to change if new is generally acceptable,
4390          * allow raid_disks to increase, and allow
4391          * a switch between 'near' mode and 'offset' mode.
4392          */
4393         struct r10conf *conf = mddev->private;
4394         struct geom geo;
4395
4396         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4397                 return -EINVAL;
4398
4399         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4400                 /* mustn't change number of copies */
4401                 return -EINVAL;
4402         if (geo.far_copies > 1 && !geo.far_offset)
4403                 /* Cannot switch to 'far' mode */
4404                 return -EINVAL;
4405
4406         if (mddev->array_sectors & geo.chunk_mask)
4407                         /* not factor of array size */
4408                         return -EINVAL;
4409
4410         if (!enough(conf, -1))
4411                 return -EINVAL;
4412
4413         kfree(conf->mirrors_new);
4414         conf->mirrors_new = NULL;
4415         if (mddev->delta_disks > 0) {
4416                 /* allocate new 'mirrors' list */
4417                 conf->mirrors_new =
4418                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4419                                 sizeof(struct raid10_info),
4420                                 GFP_KERNEL);
4421                 if (!conf->mirrors_new)
4422                         return -ENOMEM;
4423         }
4424         return 0;
4425 }
4426
4427 /*
4428  * Need to check if array has failed when deciding whether to:
4429  *  - start an array
4430  *  - remove non-faulty devices
4431  *  - add a spare
4432  *  - allow a reshape
4433  * This determination is simple when no reshape is happening.
4434  * However if there is a reshape, we need to carefully check
4435  * both the before and after sections.
4436  * This is because some failed devices may only affect one
4437  * of the two sections, and some non-in_sync devices may
4438  * be insync in the section most affected by failed devices.
4439  */
4440 static int calc_degraded(struct r10conf *conf)
4441 {
4442         int degraded, degraded2;
4443         int i;
4444
4445         rcu_read_lock();
4446         degraded = 0;
4447         /* 'prev' section first */
4448         for (i = 0; i < conf->prev.raid_disks; i++) {
4449                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4450                 if (!rdev || test_bit(Faulty, &rdev->flags))
4451                         degraded++;
4452                 else if (!test_bit(In_sync, &rdev->flags))
4453                         /* When we can reduce the number of devices in
4454                          * an array, this might not contribute to
4455                          * 'degraded'.  It does now.
4456                          */
4457                         degraded++;
4458         }
4459         rcu_read_unlock();
4460         if (conf->geo.raid_disks == conf->prev.raid_disks)
4461                 return degraded;
4462         rcu_read_lock();
4463         degraded2 = 0;
4464         for (i = 0; i < conf->geo.raid_disks; i++) {
4465                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4466                 if (!rdev || test_bit(Faulty, &rdev->flags))
4467                         degraded2++;
4468                 else if (!test_bit(In_sync, &rdev->flags)) {
4469                         /* If reshape is increasing the number of devices,
4470                          * this section has already been recovered, so
4471                          * it doesn't contribute to degraded.
4472                          * else it does.
4473                          */
4474                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4475                                 degraded2++;
4476                 }
4477         }
4478         rcu_read_unlock();
4479         if (degraded2 > degraded)
4480                 return degraded2;
4481         return degraded;
4482 }
4483
4484 static int raid10_start_reshape(struct mddev *mddev)
4485 {
4486         /* A 'reshape' has been requested. This commits
4487          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4488          * This also checks if there are enough spares and adds them
4489          * to the array.
4490          * We currently require enough spares to make the final
4491          * array non-degraded.  We also require that the difference
4492          * between old and new data_offset - on each device - is
4493          * enough that we never risk over-writing.
4494          */
4495
4496         unsigned long before_length, after_length;
4497         sector_t min_offset_diff = 0;
4498         int first = 1;
4499         struct geom new;
4500         struct r10conf *conf = mddev->private;
4501         struct md_rdev *rdev;
4502         int spares = 0;
4503         int ret;
4504
4505         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4506                 return -EBUSY;
4507
4508         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4509                 return -EINVAL;
4510
4511         before_length = ((1 << conf->prev.chunk_shift) *
4512                          conf->prev.far_copies);
4513         after_length = ((1 << conf->geo.chunk_shift) *
4514                         conf->geo.far_copies);
4515
4516         rdev_for_each(rdev, mddev) {
4517                 if (!test_bit(In_sync, &rdev->flags)
4518                     && !test_bit(Faulty, &rdev->flags))
4519                         spares++;
4520                 if (rdev->raid_disk >= 0) {
4521                         long long diff = (rdev->new_data_offset
4522                                           - rdev->data_offset);
4523                         if (!mddev->reshape_backwards)
4524                                 diff = -diff;
4525                         if (diff < 0)
4526                                 diff = 0;
4527                         if (first || diff < min_offset_diff)
4528                                 min_offset_diff = diff;
4529                         first = 0;
4530                 }
4531         }
4532
4533         if (max(before_length, after_length) > min_offset_diff)
4534                 return -EINVAL;
4535
4536         if (spares < mddev->delta_disks)
4537                 return -EINVAL;
4538
4539         conf->offset_diff = min_offset_diff;
4540         spin_lock_irq(&conf->device_lock);
4541         if (conf->mirrors_new) {
4542                 memcpy(conf->mirrors_new, conf->mirrors,
4543                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4544                 smp_mb();
4545                 kfree(conf->mirrors_old);
4546                 conf->mirrors_old = conf->mirrors;
4547                 conf->mirrors = conf->mirrors_new;
4548                 conf->mirrors_new = NULL;
4549         }
4550         setup_geo(&conf->geo, mddev, geo_start);
4551         smp_mb();
4552         if (mddev->reshape_backwards) {
4553                 sector_t size = raid10_size(mddev, 0, 0);
4554                 if (size < mddev->array_sectors) {
4555                         spin_unlock_irq(&conf->device_lock);
4556                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4557                                 mdname(mddev));
4558                         return -EINVAL;
4559                 }
4560                 mddev->resync_max_sectors = size;
4561                 conf->reshape_progress = size;
4562         } else
4563                 conf->reshape_progress = 0;
4564         conf->reshape_safe = conf->reshape_progress;
4565         spin_unlock_irq(&conf->device_lock);
4566
4567         if (mddev->delta_disks && mddev->bitmap) {
4568                 struct mdp_superblock_1 *sb = NULL;
4569                 sector_t oldsize, newsize;
4570
4571                 oldsize = raid10_size(mddev, 0, 0);
4572                 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4573
4574                 if (!mddev_is_clustered(mddev)) {
4575                         ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4576                         if (ret)
4577                                 goto abort;
4578                         else
4579                                 goto out;
4580                 }
4581
4582                 rdev_for_each(rdev, mddev) {
4583                         if (rdev->raid_disk > -1 &&
4584                             !test_bit(Faulty, &rdev->flags))
4585                                 sb = page_address(rdev->sb_page);
4586                 }
4587
4588                 /*
4589                  * some node is already performing reshape, and no need to
4590                  * call md_bitmap_resize again since it should be called when
4591                  * receiving BITMAP_RESIZE msg
4592                  */
4593                 if ((sb && (le32_to_cpu(sb->feature_map) &
4594                             MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4595                         goto out;
4596
4597                 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4598                 if (ret)
4599                         goto abort;
4600
4601                 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4602                 if (ret) {
4603                         md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4604                         goto abort;
4605                 }
4606         }
4607 out:
4608         if (mddev->delta_disks > 0) {
4609                 rdev_for_each(rdev, mddev)
4610                         if (rdev->raid_disk < 0 &&
4611                             !test_bit(Faulty, &rdev->flags)) {
4612                                 if (raid10_add_disk(mddev, rdev) == 0) {
4613                                         if (rdev->raid_disk >=
4614                                             conf->prev.raid_disks)
4615                                                 set_bit(In_sync, &rdev->flags);
4616                                         else
4617                                                 rdev->recovery_offset = 0;
4618
4619                                         /* Failure here is OK */
4620                                         sysfs_link_rdev(mddev, rdev);
4621                                 }
4622                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4623                                    && !test_bit(Faulty, &rdev->flags)) {
4624                                 /* This is a spare that was manually added */
4625                                 set_bit(In_sync, &rdev->flags);
4626                         }
4627         }
4628         /* When a reshape changes the number of devices,
4629          * ->degraded is measured against the larger of the
4630          * pre and  post numbers.
4631          */
4632         spin_lock_irq(&conf->device_lock);
4633         mddev->degraded = calc_degraded(conf);
4634         spin_unlock_irq(&conf->device_lock);
4635         mddev->raid_disks = conf->geo.raid_disks;
4636         mddev->reshape_position = conf->reshape_progress;
4637         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4638
4639         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4640         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4641         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4642         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4643         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4644
4645         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4646                                                 "reshape");
4647         if (!mddev->sync_thread) {
4648                 ret = -EAGAIN;
4649                 goto abort;
4650         }
4651         conf->reshape_checkpoint = jiffies;
4652         md_wakeup_thread(mddev->sync_thread);
4653         md_new_event(mddev);
4654         return 0;
4655
4656 abort:
4657         mddev->recovery = 0;
4658         spin_lock_irq(&conf->device_lock);
4659         conf->geo = conf->prev;
4660         mddev->raid_disks = conf->geo.raid_disks;
4661         rdev_for_each(rdev, mddev)
4662                 rdev->new_data_offset = rdev->data_offset;
4663         smp_wmb();
4664         conf->reshape_progress = MaxSector;
4665         conf->reshape_safe = MaxSector;
4666         mddev->reshape_position = MaxSector;
4667         spin_unlock_irq(&conf->device_lock);
4668         return ret;
4669 }
4670
4671 /* Calculate the last device-address that could contain
4672  * any block from the chunk that includes the array-address 's'
4673  * and report the next address.
4674  * i.e. the address returned will be chunk-aligned and after
4675  * any data that is in the chunk containing 's'.
4676  */
4677 static sector_t last_dev_address(sector_t s, struct geom *geo)
4678 {
4679         s = (s | geo->chunk_mask) + 1;
4680         s >>= geo->chunk_shift;
4681         s *= geo->near_copies;
4682         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4683         s *= geo->far_copies;
4684         s <<= geo->chunk_shift;
4685         return s;
4686 }
4687
4688 /* Calculate the first device-address that could contain
4689  * any block from the chunk that includes the array-address 's'.
4690  * This too will be the start of a chunk
4691  */
4692 static sector_t first_dev_address(sector_t s, struct geom *geo)
4693 {
4694         s >>= geo->chunk_shift;
4695         s *= geo->near_copies;
4696         sector_div(s, geo->raid_disks);
4697         s *= geo->far_copies;
4698         s <<= geo->chunk_shift;
4699         return s;
4700 }
4701
4702 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4703                                 int *skipped)
4704 {
4705         /* We simply copy at most one chunk (smallest of old and new)
4706          * at a time, possibly less if that exceeds RESYNC_PAGES,
4707          * or we hit a bad block or something.
4708          * This might mean we pause for normal IO in the middle of
4709          * a chunk, but that is not a problem as mddev->reshape_position
4710          * can record any location.
4711          *
4712          * If we will want to write to a location that isn't
4713          * yet recorded as 'safe' (i.e. in metadata on disk) then
4714          * we need to flush all reshape requests and update the metadata.
4715          *
4716          * When reshaping forwards (e.g. to more devices), we interpret
4717          * 'safe' as the earliest block which might not have been copied
4718          * down yet.  We divide this by previous stripe size and multiply
4719          * by previous stripe length to get lowest device offset that we
4720          * cannot write to yet.
4721          * We interpret 'sector_nr' as an address that we want to write to.
4722          * From this we use last_device_address() to find where we might
4723          * write to, and first_device_address on the  'safe' position.
4724          * If this 'next' write position is after the 'safe' position,
4725          * we must update the metadata to increase the 'safe' position.
4726          *
4727          * When reshaping backwards, we round in the opposite direction
4728          * and perform the reverse test:  next write position must not be
4729          * less than current safe position.
4730          *
4731          * In all this the minimum difference in data offsets
4732          * (conf->offset_diff - always positive) allows a bit of slack,
4733          * so next can be after 'safe', but not by more than offset_diff
4734          *
4735          * We need to prepare all the bios here before we start any IO
4736          * to ensure the size we choose is acceptable to all devices.
4737          * The means one for each copy for write-out and an extra one for
4738          * read-in.
4739          * We store the read-in bio in ->master_bio and the others in
4740          * ->devs[x].bio and ->devs[x].repl_bio.
4741          */
4742         struct r10conf *conf = mddev->private;
4743         struct r10bio *r10_bio;
4744         sector_t next, safe, last;
4745         int max_sectors;
4746         int nr_sectors;
4747         int s;
4748         struct md_rdev *rdev;
4749         int need_flush = 0;
4750         struct bio *blist;
4751         struct bio *bio, *read_bio;
4752         int sectors_done = 0;
4753         struct page **pages;
4754
4755         if (sector_nr == 0) {
4756                 /* If restarting in the middle, skip the initial sectors */
4757                 if (mddev->reshape_backwards &&
4758                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4759                         sector_nr = (raid10_size(mddev, 0, 0)
4760                                      - conf->reshape_progress);
4761                 } else if (!mddev->reshape_backwards &&
4762                            conf->reshape_progress > 0)
4763                         sector_nr = conf->reshape_progress;
4764                 if (sector_nr) {
4765                         mddev->curr_resync_completed = sector_nr;
4766                         sysfs_notify_dirent_safe(mddev->sysfs_completed);
4767                         *skipped = 1;
4768                         return sector_nr;
4769                 }
4770         }
4771
4772         /* We don't use sector_nr to track where we are up to
4773          * as that doesn't work well for ->reshape_backwards.
4774          * So just use ->reshape_progress.
4775          */
4776         if (mddev->reshape_backwards) {
4777                 /* 'next' is the earliest device address that we might
4778                  * write to for this chunk in the new layout
4779                  */
4780                 next = first_dev_address(conf->reshape_progress - 1,
4781                                          &conf->geo);
4782
4783                 /* 'safe' is the last device address that we might read from
4784                  * in the old layout after a restart
4785                  */
4786                 safe = last_dev_address(conf->reshape_safe - 1,
4787                                         &conf->prev);
4788
4789                 if (next + conf->offset_diff < safe)
4790                         need_flush = 1;
4791
4792                 last = conf->reshape_progress - 1;
4793                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4794                                                & conf->prev.chunk_mask);
4795                 if (sector_nr + RESYNC_SECTORS < last)
4796                         sector_nr = last + 1 - RESYNC_SECTORS;
4797         } else {
4798                 /* 'next' is after the last device address that we
4799                  * might write to for this chunk in the new layout
4800                  */
4801                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4802
4803                 /* 'safe' is the earliest device address that we might
4804                  * read from in the old layout after a restart
4805                  */
4806                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4807
4808                 /* Need to update metadata if 'next' might be beyond 'safe'
4809                  * as that would possibly corrupt data
4810                  */
4811                 if (next > safe + conf->offset_diff)
4812                         need_flush = 1;
4813
4814                 sector_nr = conf->reshape_progress;
4815                 last  = sector_nr | (conf->geo.chunk_mask
4816                                      & conf->prev.chunk_mask);
4817
4818                 if (sector_nr + RESYNC_SECTORS <= last)
4819                         last = sector_nr + RESYNC_SECTORS - 1;
4820         }
4821
4822         if (need_flush ||
4823             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4824                 /* Need to update reshape_position in metadata */
4825                 wait_barrier(conf);
4826                 mddev->reshape_position = conf->reshape_progress;
4827                 if (mddev->reshape_backwards)
4828                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4829                                 - conf->reshape_progress;
4830                 else
4831                         mddev->curr_resync_completed = conf->reshape_progress;
4832                 conf->reshape_checkpoint = jiffies;
4833                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4834                 md_wakeup_thread(mddev->thread);
4835                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4836                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4837                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4838                         allow_barrier(conf);
4839                         return sectors_done;
4840                 }
4841                 conf->reshape_safe = mddev->reshape_position;
4842                 allow_barrier(conf);
4843         }
4844
4845         raise_barrier(conf, 0);
4846 read_more:
4847         /* Now schedule reads for blocks from sector_nr to last */
4848         r10_bio = raid10_alloc_init_r10buf(conf);
4849         r10_bio->state = 0;
4850         raise_barrier(conf, 1);
4851         atomic_set(&r10_bio->remaining, 0);
4852         r10_bio->mddev = mddev;
4853         r10_bio->sector = sector_nr;
4854         set_bit(R10BIO_IsReshape, &r10_bio->state);
4855         r10_bio->sectors = last - sector_nr + 1;
4856         rdev = read_balance(conf, r10_bio, &max_sectors);
4857         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4858
4859         if (!rdev) {
4860                 /* Cannot read from here, so need to record bad blocks
4861                  * on all the target devices.
4862                  */
4863                 // FIXME
4864                 mempool_free(r10_bio, &conf->r10buf_pool);
4865                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4866                 return sectors_done;
4867         }
4868
4869         read_bio = bio_alloc_bioset(GFP_KERNEL, RESYNC_PAGES, &mddev->bio_set);
4870
4871         bio_set_dev(read_bio, rdev->bdev);
4872         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4873                                + rdev->data_offset);
4874         read_bio->bi_private = r10_bio;
4875         read_bio->bi_end_io = end_reshape_read;
4876         bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4877         r10_bio->master_bio = read_bio;
4878         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4879
4880         /*
4881          * Broadcast RESYNC message to other nodes, so all nodes would not
4882          * write to the region to avoid conflict.
4883         */
4884         if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4885                 struct mdp_superblock_1 *sb = NULL;
4886                 int sb_reshape_pos = 0;
4887
4888                 conf->cluster_sync_low = sector_nr;
4889                 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4890                 sb = page_address(rdev->sb_page);
4891                 if (sb) {
4892                         sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4893                         /*
4894                          * Set cluster_sync_low again if next address for array
4895                          * reshape is less than cluster_sync_low. Since we can't
4896                          * update cluster_sync_low until it has finished reshape.
4897                          */
4898                         if (sb_reshape_pos < conf->cluster_sync_low)
4899                                 conf->cluster_sync_low = sb_reshape_pos;
4900                 }
4901
4902                 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4903                                                           conf->cluster_sync_high);
4904         }
4905
4906         /* Now find the locations in the new layout */
4907         __raid10_find_phys(&conf->geo, r10_bio);
4908
4909         blist = read_bio;
4910         read_bio->bi_next = NULL;
4911
4912         rcu_read_lock();
4913         for (s = 0; s < conf->copies*2; s++) {
4914                 struct bio *b;
4915                 int d = r10_bio->devs[s/2].devnum;
4916                 struct md_rdev *rdev2;
4917                 if (s&1) {
4918                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4919                         b = r10_bio->devs[s/2].repl_bio;
4920                 } else {
4921                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4922                         b = r10_bio->devs[s/2].bio;
4923                 }
4924                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4925                         continue;
4926
4927                 bio_set_dev(b, rdev2->bdev);
4928                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4929                         rdev2->new_data_offset;
4930                 b->bi_end_io = end_reshape_write;
4931                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4932                 b->bi_next = blist;
4933                 blist = b;
4934         }
4935
4936         /* Now add as many pages as possible to all of these bios. */
4937
4938         nr_sectors = 0;
4939         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4940         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4941                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4942                 int len = (max_sectors - s) << 9;
4943                 if (len > PAGE_SIZE)
4944                         len = PAGE_SIZE;
4945                 for (bio = blist; bio ; bio = bio->bi_next) {
4946                         /*
4947                          * won't fail because the vec table is big enough
4948                          * to hold all these pages
4949                          */
4950                         bio_add_page(bio, page, len, 0);
4951                 }
4952                 sector_nr += len >> 9;
4953                 nr_sectors += len >> 9;
4954         }
4955         rcu_read_unlock();
4956         r10_bio->sectors = nr_sectors;
4957
4958         /* Now submit the read */
4959         md_sync_acct_bio(read_bio, r10_bio->sectors);
4960         atomic_inc(&r10_bio->remaining);
4961         read_bio->bi_next = NULL;
4962         submit_bio_noacct(read_bio);
4963         sectors_done += nr_sectors;
4964         if (sector_nr <= last)
4965                 goto read_more;
4966
4967         lower_barrier(conf);
4968
4969         /* Now that we have done the whole section we can
4970          * update reshape_progress
4971          */
4972         if (mddev->reshape_backwards)
4973                 conf->reshape_progress -= sectors_done;
4974         else
4975                 conf->reshape_progress += sectors_done;
4976
4977         return sectors_done;
4978 }
4979
4980 static void end_reshape_request(struct r10bio *r10_bio);
4981 static int handle_reshape_read_error(struct mddev *mddev,
4982                                      struct r10bio *r10_bio);
4983 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4984 {
4985         /* Reshape read completed.  Hopefully we have a block
4986          * to write out.
4987          * If we got a read error then we do sync 1-page reads from
4988          * elsewhere until we find the data - or give up.
4989          */
4990         struct r10conf *conf = mddev->private;
4991         int s;
4992
4993         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4994                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4995                         /* Reshape has been aborted */
4996                         md_done_sync(mddev, r10_bio->sectors, 0);
4997                         return;
4998                 }
4999
5000         /* We definitely have the data in the pages, schedule the
5001          * writes.
5002          */
5003         atomic_set(&r10_bio->remaining, 1);
5004         for (s = 0; s < conf->copies*2; s++) {
5005                 struct bio *b;
5006                 int d = r10_bio->devs[s/2].devnum;
5007                 struct md_rdev *rdev;
5008                 rcu_read_lock();
5009                 if (s&1) {
5010                         rdev = rcu_dereference(conf->mirrors[d].replacement);
5011                         b = r10_bio->devs[s/2].repl_bio;
5012                 } else {
5013                         rdev = rcu_dereference(conf->mirrors[d].rdev);
5014                         b = r10_bio->devs[s/2].bio;
5015                 }
5016                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
5017                         rcu_read_unlock();
5018                         continue;
5019                 }
5020                 atomic_inc(&rdev->nr_pending);
5021                 rcu_read_unlock();
5022                 md_sync_acct_bio(b, r10_bio->sectors);
5023                 atomic_inc(&r10_bio->remaining);
5024                 b->bi_next = NULL;
5025                 submit_bio_noacct(b);
5026         }
5027         end_reshape_request(r10_bio);
5028 }
5029
5030 static void end_reshape(struct r10conf *conf)
5031 {
5032         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5033                 return;
5034
5035         spin_lock_irq(&conf->device_lock);
5036         conf->prev = conf->geo;
5037         md_finish_reshape(conf->mddev);
5038         smp_wmb();
5039         conf->reshape_progress = MaxSector;
5040         conf->reshape_safe = MaxSector;
5041         spin_unlock_irq(&conf->device_lock);
5042
5043         if (conf->mddev->queue)
5044                 raid10_set_io_opt(conf);
5045         conf->fullsync = 0;
5046 }
5047
5048 static void raid10_update_reshape_pos(struct mddev *mddev)
5049 {
5050         struct r10conf *conf = mddev->private;
5051         sector_t lo, hi;
5052
5053         md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5054         if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5055             || mddev->reshape_position == MaxSector)
5056                 conf->reshape_progress = mddev->reshape_position;
5057         else
5058                 WARN_ON_ONCE(1);
5059 }
5060
5061 static int handle_reshape_read_error(struct mddev *mddev,
5062                                      struct r10bio *r10_bio)
5063 {
5064         /* Use sync reads to get the blocks from somewhere else */
5065         int sectors = r10_bio->sectors;
5066         struct r10conf *conf = mddev->private;
5067         struct r10bio *r10b;
5068         int slot = 0;
5069         int idx = 0;
5070         struct page **pages;
5071
5072         r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5073         if (!r10b) {
5074                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5075                 return -ENOMEM;
5076         }
5077
5078         /* reshape IOs share pages from .devs[0].bio */
5079         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5080
5081         r10b->sector = r10_bio->sector;
5082         __raid10_find_phys(&conf->prev, r10b);
5083
5084         while (sectors) {
5085                 int s = sectors;
5086                 int success = 0;
5087                 int first_slot = slot;
5088
5089                 if (s > (PAGE_SIZE >> 9))
5090                         s = PAGE_SIZE >> 9;
5091
5092                 rcu_read_lock();
5093                 while (!success) {
5094                         int d = r10b->devs[slot].devnum;
5095                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5096                         sector_t addr;
5097                         if (rdev == NULL ||
5098                             test_bit(Faulty, &rdev->flags) ||
5099                             !test_bit(In_sync, &rdev->flags))
5100                                 goto failed;
5101
5102                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5103                         atomic_inc(&rdev->nr_pending);
5104                         rcu_read_unlock();
5105                         success = sync_page_io(rdev,
5106                                                addr,
5107                                                s << 9,
5108                                                pages[idx],
5109                                                REQ_OP_READ, 0, false);
5110                         rdev_dec_pending(rdev, mddev);
5111                         rcu_read_lock();
5112                         if (success)
5113                                 break;
5114                 failed:
5115                         slot++;
5116                         if (slot >= conf->copies)
5117                                 slot = 0;
5118                         if (slot == first_slot)
5119                                 break;
5120                 }
5121                 rcu_read_unlock();
5122                 if (!success) {
5123                         /* couldn't read this block, must give up */
5124                         set_bit(MD_RECOVERY_INTR,
5125                                 &mddev->recovery);
5126                         kfree(r10b);
5127                         return -EIO;
5128                 }
5129                 sectors -= s;
5130                 idx++;
5131         }
5132         kfree(r10b);
5133         return 0;
5134 }
5135
5136 static void end_reshape_write(struct bio *bio)
5137 {
5138         struct r10bio *r10_bio = get_resync_r10bio(bio);
5139         struct mddev *mddev = r10_bio->mddev;
5140         struct r10conf *conf = mddev->private;
5141         int d;
5142         int slot;
5143         int repl;
5144         struct md_rdev *rdev = NULL;
5145
5146         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5147         if (repl)
5148                 rdev = conf->mirrors[d].replacement;
5149         if (!rdev) {
5150                 smp_mb();
5151                 rdev = conf->mirrors[d].rdev;
5152         }
5153
5154         if (bio->bi_status) {
5155                 /* FIXME should record badblock */
5156                 md_error(mddev, rdev);
5157         }
5158
5159         rdev_dec_pending(rdev, mddev);
5160         end_reshape_request(r10_bio);
5161 }
5162
5163 static void end_reshape_request(struct r10bio *r10_bio)
5164 {
5165         if (!atomic_dec_and_test(&r10_bio->remaining))
5166                 return;
5167         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5168         bio_put(r10_bio->master_bio);
5169         put_buf(r10_bio);
5170 }
5171
5172 static void raid10_finish_reshape(struct mddev *mddev)
5173 {
5174         struct r10conf *conf = mddev->private;
5175
5176         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5177                 return;
5178
5179         if (mddev->delta_disks > 0) {
5180                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5181                         mddev->recovery_cp = mddev->resync_max_sectors;
5182                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5183                 }
5184                 mddev->resync_max_sectors = mddev->array_sectors;
5185         } else {
5186                 int d;
5187                 rcu_read_lock();
5188                 for (d = conf->geo.raid_disks ;
5189                      d < conf->geo.raid_disks - mddev->delta_disks;
5190                      d++) {
5191                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5192                         if (rdev)
5193                                 clear_bit(In_sync, &rdev->flags);
5194                         rdev = rcu_dereference(conf->mirrors[d].replacement);
5195                         if (rdev)
5196                                 clear_bit(In_sync, &rdev->flags);
5197                 }
5198                 rcu_read_unlock();
5199         }
5200         mddev->layout = mddev->new_layout;
5201         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5202         mddev->reshape_position = MaxSector;
5203         mddev->delta_disks = 0;
5204         mddev->reshape_backwards = 0;
5205 }
5206
5207 static struct md_personality raid10_personality =
5208 {
5209         .name           = "raid10",
5210         .level          = 10,
5211         .owner          = THIS_MODULE,
5212         .make_request   = raid10_make_request,
5213         .run            = raid10_run,
5214         .free           = raid10_free,
5215         .status         = raid10_status,
5216         .error_handler  = raid10_error,
5217         .hot_add_disk   = raid10_add_disk,
5218         .hot_remove_disk= raid10_remove_disk,
5219         .spare_active   = raid10_spare_active,
5220         .sync_request   = raid10_sync_request,
5221         .quiesce        = raid10_quiesce,
5222         .size           = raid10_size,
5223         .resize         = raid10_resize,
5224         .takeover       = raid10_takeover,
5225         .check_reshape  = raid10_check_reshape,
5226         .start_reshape  = raid10_start_reshape,
5227         .finish_reshape = raid10_finish_reshape,
5228         .update_reshape_pos = raid10_update_reshape_pos,
5229 };
5230
5231 static int __init raid_init(void)
5232 {
5233         return register_md_personality(&raid10_personality);
5234 }
5235
5236 static void raid_exit(void)
5237 {
5238         unregister_md_personality(&raid10_personality);
5239 }
5240
5241 module_init(raid_init);
5242 module_exit(raid_exit);
5243 MODULE_LICENSE("GPL");
5244 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5245 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5246 MODULE_ALIAS("md-raid10");
5247 MODULE_ALIAS("md-level-10");
5248
5249 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);