1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * raid10.c : Multiple Devices driver for Linux
5 * Copyright (C) 2000-2004 Neil Brown
7 * RAID-10 support for md.
9 * Base on code in raid1.c. See raid1.c for further copyright information.
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
24 #include "md-bitmap.h"
27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
28 * The layout of data is defined by
31 * near_copies (stored in low byte of layout)
32 * far_copies (stored in second byte of layout)
33 * far_offset (stored in bit 16 of layout )
34 * use_far_sets (stored in bit 17 of layout )
35 * use_far_sets_bugfixed (stored in bit 18 of layout )
37 * The data to be stored is divided into chunks using chunksize. Each device
38 * is divided into far_copies sections. In each section, chunks are laid out
39 * in a style similar to raid0, but near_copies copies of each chunk is stored
40 * (each on a different drive). The starting device for each section is offset
41 * near_copies from the starting device of the previous section. Thus there
42 * are (near_copies * far_copies) of each chunk, and each is on a different
43 * drive. near_copies and far_copies must be at least one, and their product
44 * is at most raid_disks.
46 * If far_offset is true, then the far_copies are handled a bit differently.
47 * The copies are still in different stripes, but instead of being very far
48 * apart on disk, there are adjacent stripes.
50 * The far and offset algorithms are handled slightly differently if
51 * 'use_far_sets' is true. In this case, the array's devices are grouped into
52 * sets that are (near_copies * far_copies) in size. The far copied stripes
53 * are still shifted by 'near_copies' devices, but this shifting stays confined
54 * to the set rather than the entire array. This is done to improve the number
55 * of device combinations that can fail without causing the array to fail.
56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62 * [A B] [C D] [A B] [C D E]
63 * |...| |...| |...| | ... |
64 * [B A] [D C] [B A] [E C D]
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
77 #define raid10_log(md, fmt, args...) \
78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
83 * for resync bio, r10bio pointer can be retrieved from the per-bio
84 * 'struct resync_pages'.
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
88 return get_resync_pages(bio)->raid_bio;
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
93 struct r10conf *conf = data;
94 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
96 /* allocate a r10bio with room for raid_disks entries in the
98 return kzalloc(size, gfp_flags);
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
110 * When performing a resync, we need to read and compare, so
111 * we need as many pages are there are copies.
112 * When performing a recovery, we need 2 bios, one for read,
113 * one for write (we recover only one drive per r10buf)
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
118 struct r10conf *conf = data;
119 struct r10bio *r10_bio;
122 int nalloc, nalloc_rp;
123 struct resync_pages *rps;
125 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
129 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131 nalloc = conf->copies; /* resync */
133 nalloc = 2; /* recovery */
135 /* allocate once for all bios */
136 if (!conf->have_replacement)
139 nalloc_rp = nalloc * 2;
140 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
142 goto out_free_r10bio;
147 for (j = nalloc ; j-- ; ) {
148 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
151 r10_bio->devs[j].bio = bio;
152 if (!conf->have_replacement)
154 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
157 r10_bio->devs[j].repl_bio = bio;
160 * Allocate RESYNC_PAGES data pages and attach them
163 for (j = 0; j < nalloc; j++) {
164 struct bio *rbio = r10_bio->devs[j].repl_bio;
165 struct resync_pages *rp, *rp_repl;
169 rp_repl = &rps[nalloc + j];
171 bio = r10_bio->devs[j].bio;
173 if (!j || test_bit(MD_RECOVERY_SYNC,
174 &conf->mddev->recovery)) {
175 if (resync_alloc_pages(rp, gfp_flags))
178 memcpy(rp, &rps[0], sizeof(*rp));
179 resync_get_all_pages(rp);
182 rp->raid_bio = r10_bio;
183 bio->bi_private = rp;
185 memcpy(rp_repl, rp, sizeof(*rp));
186 rbio->bi_private = rp_repl;
194 resync_free_pages(&rps[j]);
198 for ( ; j < nalloc; j++) {
199 if (r10_bio->devs[j].bio)
200 bio_put(r10_bio->devs[j].bio);
201 if (r10_bio->devs[j].repl_bio)
202 bio_put(r10_bio->devs[j].repl_bio);
206 rbio_pool_free(r10_bio, conf);
210 static void r10buf_pool_free(void *__r10_bio, void *data)
212 struct r10conf *conf = data;
213 struct r10bio *r10bio = __r10_bio;
215 struct resync_pages *rp = NULL;
217 for (j = conf->copies; j--; ) {
218 struct bio *bio = r10bio->devs[j].bio;
221 rp = get_resync_pages(bio);
222 resync_free_pages(rp);
226 bio = r10bio->devs[j].repl_bio;
231 /* resync pages array stored in the 1st bio's .bi_private */
234 rbio_pool_free(r10bio, conf);
237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 for (i = 0; i < conf->geo.raid_disks; i++) {
242 struct bio **bio = & r10_bio->devs[i].bio;
243 if (!BIO_SPECIAL(*bio))
246 bio = &r10_bio->devs[i].repl_bio;
247 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
253 static void free_r10bio(struct r10bio *r10_bio)
255 struct r10conf *conf = r10_bio->mddev->private;
257 put_all_bios(conf, r10_bio);
258 mempool_free(r10_bio, &conf->r10bio_pool);
261 static void put_buf(struct r10bio *r10_bio)
263 struct r10conf *conf = r10_bio->mddev->private;
265 mempool_free(r10_bio, &conf->r10buf_pool);
270 static void reschedule_retry(struct r10bio *r10_bio)
273 struct mddev *mddev = r10_bio->mddev;
274 struct r10conf *conf = mddev->private;
276 spin_lock_irqsave(&conf->device_lock, flags);
277 list_add(&r10_bio->retry_list, &conf->retry_list);
279 spin_unlock_irqrestore(&conf->device_lock, flags);
281 /* wake up frozen array... */
282 wake_up(&conf->wait_barrier);
284 md_wakeup_thread(mddev->thread);
288 * raid_end_bio_io() is called when we have finished servicing a mirrored
289 * operation and are ready to return a success/failure code to the buffer
292 static void raid_end_bio_io(struct r10bio *r10_bio)
294 struct bio *bio = r10_bio->master_bio;
295 struct r10conf *conf = r10_bio->mddev->private;
297 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298 bio->bi_status = BLK_STS_IOERR;
300 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
301 bio_end_io_acct(bio, r10_bio->start_time);
304 * Wake up any possible resync thread that waits for the device
309 free_r10bio(r10_bio);
313 * Update disk head position estimator based on IRQ completion info.
315 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
317 struct r10conf *conf = r10_bio->mddev->private;
319 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
320 r10_bio->devs[slot].addr + (r10_bio->sectors);
324 * Find the disk number which triggered given bio
326 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
327 struct bio *bio, int *slotp, int *replp)
332 for (slot = 0; slot < conf->geo.raid_disks; slot++) {
333 if (r10_bio->devs[slot].bio == bio)
335 if (r10_bio->devs[slot].repl_bio == bio) {
341 update_head_pos(slot, r10_bio);
347 return r10_bio->devs[slot].devnum;
350 static void raid10_end_read_request(struct bio *bio)
352 int uptodate = !bio->bi_status;
353 struct r10bio *r10_bio = bio->bi_private;
355 struct md_rdev *rdev;
356 struct r10conf *conf = r10_bio->mddev->private;
358 slot = r10_bio->read_slot;
359 rdev = r10_bio->devs[slot].rdev;
361 * this branch is our 'one mirror IO has finished' event handler:
363 update_head_pos(slot, r10_bio);
367 * Set R10BIO_Uptodate in our master bio, so that
368 * we will return a good error code to the higher
369 * levels even if IO on some other mirrored buffer fails.
371 * The 'master' represents the composite IO operation to
372 * user-side. So if something waits for IO, then it will
373 * wait for the 'master' bio.
375 set_bit(R10BIO_Uptodate, &r10_bio->state);
377 /* If all other devices that store this block have
378 * failed, we want to return the error upwards rather
379 * than fail the last device. Here we redefine
380 * "uptodate" to mean "Don't want to retry"
382 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
387 raid_end_bio_io(r10_bio);
388 rdev_dec_pending(rdev, conf->mddev);
391 * oops, read error - keep the refcount on the rdev
393 char b[BDEVNAME_SIZE];
394 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
396 bdevname(rdev->bdev, b),
397 (unsigned long long)r10_bio->sector);
398 set_bit(R10BIO_ReadError, &r10_bio->state);
399 reschedule_retry(r10_bio);
403 static void close_write(struct r10bio *r10_bio)
405 /* clear the bitmap if all writes complete successfully */
406 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
408 !test_bit(R10BIO_Degraded, &r10_bio->state),
410 md_write_end(r10_bio->mddev);
413 static void one_write_done(struct r10bio *r10_bio)
415 if (atomic_dec_and_test(&r10_bio->remaining)) {
416 if (test_bit(R10BIO_WriteError, &r10_bio->state))
417 reschedule_retry(r10_bio);
419 close_write(r10_bio);
420 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
421 reschedule_retry(r10_bio);
423 raid_end_bio_io(r10_bio);
428 static void raid10_end_write_request(struct bio *bio)
430 struct r10bio *r10_bio = bio->bi_private;
433 struct r10conf *conf = r10_bio->mddev->private;
435 struct md_rdev *rdev = NULL;
436 struct bio *to_put = NULL;
439 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
441 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
444 rdev = conf->mirrors[dev].replacement;
448 rdev = conf->mirrors[dev].rdev;
451 * this branch is our 'one mirror IO has finished' event handler:
453 if (bio->bi_status && !discard_error) {
455 /* Never record new bad blocks to replacement,
458 md_error(rdev->mddev, rdev);
460 set_bit(WriteErrorSeen, &rdev->flags);
461 if (!test_and_set_bit(WantReplacement, &rdev->flags))
462 set_bit(MD_RECOVERY_NEEDED,
463 &rdev->mddev->recovery);
466 if (test_bit(FailFast, &rdev->flags) &&
467 (bio->bi_opf & MD_FAILFAST)) {
468 md_error(rdev->mddev, rdev);
472 * When the device is faulty, it is not necessary to
473 * handle write error.
475 if (!test_bit(Faulty, &rdev->flags))
476 set_bit(R10BIO_WriteError, &r10_bio->state);
478 /* Fail the request */
479 set_bit(R10BIO_Degraded, &r10_bio->state);
480 r10_bio->devs[slot].bio = NULL;
487 * Set R10BIO_Uptodate in our master bio, so that
488 * we will return a good error code for to the higher
489 * levels even if IO on some other mirrored buffer fails.
491 * The 'master' represents the composite IO operation to
492 * user-side. So if something waits for IO, then it will
493 * wait for the 'master' bio.
499 * Do not set R10BIO_Uptodate if the current device is
500 * rebuilding or Faulty. This is because we cannot use
501 * such device for properly reading the data back (we could
502 * potentially use it, if the current write would have felt
503 * before rdev->recovery_offset, but for simplicity we don't
506 if (test_bit(In_sync, &rdev->flags) &&
507 !test_bit(Faulty, &rdev->flags))
508 set_bit(R10BIO_Uptodate, &r10_bio->state);
510 /* Maybe we can clear some bad blocks. */
511 if (is_badblock(rdev,
512 r10_bio->devs[slot].addr,
514 &first_bad, &bad_sectors) && !discard_error) {
517 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
519 r10_bio->devs[slot].bio = IO_MADE_GOOD;
521 set_bit(R10BIO_MadeGood, &r10_bio->state);
527 * Let's see if all mirrored write operations have finished
530 one_write_done(r10_bio);
532 rdev_dec_pending(rdev, conf->mddev);
538 * RAID10 layout manager
539 * As well as the chunksize and raid_disks count, there are two
540 * parameters: near_copies and far_copies.
541 * near_copies * far_copies must be <= raid_disks.
542 * Normally one of these will be 1.
543 * If both are 1, we get raid0.
544 * If near_copies == raid_disks, we get raid1.
546 * Chunks are laid out in raid0 style with near_copies copies of the
547 * first chunk, followed by near_copies copies of the next chunk and
549 * If far_copies > 1, then after 1/far_copies of the array has been assigned
550 * as described above, we start again with a device offset of near_copies.
551 * So we effectively have another copy of the whole array further down all
552 * the drives, but with blocks on different drives.
553 * With this layout, and block is never stored twice on the one device.
555 * raid10_find_phys finds the sector offset of a given virtual sector
556 * on each device that it is on.
558 * raid10_find_virt does the reverse mapping, from a device and a
559 * sector offset to a virtual address
562 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
570 int last_far_set_start, last_far_set_size;
572 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
573 last_far_set_start *= geo->far_set_size;
575 last_far_set_size = geo->far_set_size;
576 last_far_set_size += (geo->raid_disks % geo->far_set_size);
578 /* now calculate first sector/dev */
579 chunk = r10bio->sector >> geo->chunk_shift;
580 sector = r10bio->sector & geo->chunk_mask;
582 chunk *= geo->near_copies;
584 dev = sector_div(stripe, geo->raid_disks);
586 stripe *= geo->far_copies;
588 sector += stripe << geo->chunk_shift;
590 /* and calculate all the others */
591 for (n = 0; n < geo->near_copies; n++) {
595 r10bio->devs[slot].devnum = d;
596 r10bio->devs[slot].addr = s;
599 for (f = 1; f < geo->far_copies; f++) {
600 set = d / geo->far_set_size;
601 d += geo->near_copies;
603 if ((geo->raid_disks % geo->far_set_size) &&
604 (d > last_far_set_start)) {
605 d -= last_far_set_start;
606 d %= last_far_set_size;
607 d += last_far_set_start;
609 d %= geo->far_set_size;
610 d += geo->far_set_size * set;
613 r10bio->devs[slot].devnum = d;
614 r10bio->devs[slot].addr = s;
618 if (dev >= geo->raid_disks) {
620 sector += (geo->chunk_mask + 1);
625 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
627 struct geom *geo = &conf->geo;
629 if (conf->reshape_progress != MaxSector &&
630 ((r10bio->sector >= conf->reshape_progress) !=
631 conf->mddev->reshape_backwards)) {
632 set_bit(R10BIO_Previous, &r10bio->state);
635 clear_bit(R10BIO_Previous, &r10bio->state);
637 __raid10_find_phys(geo, r10bio);
640 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
642 sector_t offset, chunk, vchunk;
643 /* Never use conf->prev as this is only called during resync
644 * or recovery, so reshape isn't happening
646 struct geom *geo = &conf->geo;
647 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
648 int far_set_size = geo->far_set_size;
649 int last_far_set_start;
651 if (geo->raid_disks % geo->far_set_size) {
652 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
653 last_far_set_start *= geo->far_set_size;
655 if (dev >= last_far_set_start) {
656 far_set_size = geo->far_set_size;
657 far_set_size += (geo->raid_disks % geo->far_set_size);
658 far_set_start = last_far_set_start;
662 offset = sector & geo->chunk_mask;
663 if (geo->far_offset) {
665 chunk = sector >> geo->chunk_shift;
666 fc = sector_div(chunk, geo->far_copies);
667 dev -= fc * geo->near_copies;
668 if (dev < far_set_start)
671 while (sector >= geo->stride) {
672 sector -= geo->stride;
673 if (dev < (geo->near_copies + far_set_start))
674 dev += far_set_size - geo->near_copies;
676 dev -= geo->near_copies;
678 chunk = sector >> geo->chunk_shift;
680 vchunk = chunk * geo->raid_disks + dev;
681 sector_div(vchunk, geo->near_copies);
682 return (vchunk << geo->chunk_shift) + offset;
686 * This routine returns the disk from which the requested read should
687 * be done. There is a per-array 'next expected sequential IO' sector
688 * number - if this matches on the next IO then we use the last disk.
689 * There is also a per-disk 'last know head position' sector that is
690 * maintained from IRQ contexts, both the normal and the resync IO
691 * completion handlers update this position correctly. If there is no
692 * perfect sequential match then we pick the disk whose head is closest.
694 * If there are 2 mirrors in the same 2 devices, performance degrades
695 * because position is mirror, not device based.
697 * The rdev for the device selected will have nr_pending incremented.
701 * FIXME: possibly should rethink readbalancing and do it differently
702 * depending on near_copies / far_copies geometry.
704 static struct md_rdev *read_balance(struct r10conf *conf,
705 struct r10bio *r10_bio,
708 const sector_t this_sector = r10_bio->sector;
710 int sectors = r10_bio->sectors;
711 int best_good_sectors;
712 sector_t new_distance, best_dist;
713 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
715 int best_dist_slot, best_pending_slot;
716 bool has_nonrot_disk = false;
717 unsigned int min_pending;
718 struct geom *geo = &conf->geo;
720 raid10_find_phys(conf, r10_bio);
723 min_pending = UINT_MAX;
724 best_dist_rdev = NULL;
725 best_pending_rdev = NULL;
726 best_dist = MaxSector;
727 best_good_sectors = 0;
729 clear_bit(R10BIO_FailFast, &r10_bio->state);
731 * Check if we can balance. We can balance on the whole
732 * device if no resync is going on (recovery is ok), or below
733 * the resync window. We take the first readable disk when
734 * above the resync window.
736 if ((conf->mddev->recovery_cp < MaxSector
737 && (this_sector + sectors >= conf->next_resync)) ||
738 (mddev_is_clustered(conf->mddev) &&
739 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
740 this_sector + sectors)))
743 for (slot = 0; slot < conf->copies ; slot++) {
747 unsigned int pending;
750 if (r10_bio->devs[slot].bio == IO_BLOCKED)
752 disk = r10_bio->devs[slot].devnum;
753 rdev = rcu_dereference(conf->mirrors[disk].replacement);
754 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
755 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
756 rdev = rcu_dereference(conf->mirrors[disk].rdev);
758 test_bit(Faulty, &rdev->flags))
760 if (!test_bit(In_sync, &rdev->flags) &&
761 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
764 dev_sector = r10_bio->devs[slot].addr;
765 if (is_badblock(rdev, dev_sector, sectors,
766 &first_bad, &bad_sectors)) {
767 if (best_dist < MaxSector)
768 /* Already have a better slot */
770 if (first_bad <= dev_sector) {
771 /* Cannot read here. If this is the
772 * 'primary' device, then we must not read
773 * beyond 'bad_sectors' from another device.
775 bad_sectors -= (dev_sector - first_bad);
776 if (!do_balance && sectors > bad_sectors)
777 sectors = bad_sectors;
778 if (best_good_sectors > sectors)
779 best_good_sectors = sectors;
781 sector_t good_sectors =
782 first_bad - dev_sector;
783 if (good_sectors > best_good_sectors) {
784 best_good_sectors = good_sectors;
785 best_dist_slot = slot;
786 best_dist_rdev = rdev;
789 /* Must read from here */
794 best_good_sectors = sectors;
799 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
800 has_nonrot_disk |= nonrot;
801 pending = atomic_read(&rdev->nr_pending);
802 if (min_pending > pending && nonrot) {
803 min_pending = pending;
804 best_pending_slot = slot;
805 best_pending_rdev = rdev;
808 if (best_dist_slot >= 0)
809 /* At least 2 disks to choose from so failfast is OK */
810 set_bit(R10BIO_FailFast, &r10_bio->state);
811 /* This optimisation is debatable, and completely destroys
812 * sequential read speed for 'far copies' arrays. So only
813 * keep it for 'near' arrays, and review those later.
815 if (geo->near_copies > 1 && !pending)
818 /* for far > 1 always use the lowest address */
819 else if (geo->far_copies > 1)
820 new_distance = r10_bio->devs[slot].addr;
822 new_distance = abs(r10_bio->devs[slot].addr -
823 conf->mirrors[disk].head_position);
825 if (new_distance < best_dist) {
826 best_dist = new_distance;
827 best_dist_slot = slot;
828 best_dist_rdev = rdev;
831 if (slot >= conf->copies) {
832 if (has_nonrot_disk) {
833 slot = best_pending_slot;
834 rdev = best_pending_rdev;
836 slot = best_dist_slot;
837 rdev = best_dist_rdev;
842 atomic_inc(&rdev->nr_pending);
843 r10_bio->read_slot = slot;
847 *max_sectors = best_good_sectors;
852 static void flush_pending_writes(struct r10conf *conf)
854 /* Any writes that have been queued but are awaiting
855 * bitmap updates get flushed here.
857 spin_lock_irq(&conf->device_lock);
859 if (conf->pending_bio_list.head) {
860 struct blk_plug plug;
863 bio = bio_list_get(&conf->pending_bio_list);
864 conf->pending_count = 0;
865 spin_unlock_irq(&conf->device_lock);
868 * As this is called in a wait_event() loop (see freeze_array),
869 * current->state might be TASK_UNINTERRUPTIBLE which will
870 * cause a warning when we prepare to wait again. As it is
871 * rare that this path is taken, it is perfectly safe to force
872 * us to go around the wait_event() loop again, so the warning
873 * is a false-positive. Silence the warning by resetting
876 __set_current_state(TASK_RUNNING);
878 blk_start_plug(&plug);
879 /* flush any pending bitmap writes to disk
880 * before proceeding w/ I/O */
881 md_bitmap_unplug(conf->mddev->bitmap);
882 wake_up(&conf->wait_barrier);
884 while (bio) { /* submit pending writes */
885 struct bio *next = bio->bi_next;
886 struct md_rdev *rdev = (void*)bio->bi_bdev;
888 bio_set_dev(bio, rdev->bdev);
889 if (test_bit(Faulty, &rdev->flags)) {
891 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
892 !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
896 submit_bio_noacct(bio);
899 blk_finish_plug(&plug);
901 spin_unlock_irq(&conf->device_lock);
905 * Sometimes we need to suspend IO while we do something else,
906 * either some resync/recovery, or reconfigure the array.
907 * To do this we raise a 'barrier'.
908 * The 'barrier' is a counter that can be raised multiple times
909 * to count how many activities are happening which preclude
911 * We can only raise the barrier if there is no pending IO.
912 * i.e. if nr_pending == 0.
913 * We choose only to raise the barrier if no-one is waiting for the
914 * barrier to go down. This means that as soon as an IO request
915 * is ready, no other operations which require a barrier will start
916 * until the IO request has had a chance.
918 * So: regular IO calls 'wait_barrier'. When that returns there
919 * is no backgroup IO happening, It must arrange to call
920 * allow_barrier when it has finished its IO.
921 * backgroup IO calls must call raise_barrier. Once that returns
922 * there is no normal IO happeing. It must arrange to call
923 * lower_barrier when the particular background IO completes.
926 static void raise_barrier(struct r10conf *conf, int force)
928 BUG_ON(force && !conf->barrier);
929 spin_lock_irq(&conf->resync_lock);
931 /* Wait until no block IO is waiting (unless 'force') */
932 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
935 /* block any new IO from starting */
938 /* Now wait for all pending IO to complete */
939 wait_event_lock_irq(conf->wait_barrier,
940 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
943 spin_unlock_irq(&conf->resync_lock);
946 static void lower_barrier(struct r10conf *conf)
949 spin_lock_irqsave(&conf->resync_lock, flags);
951 spin_unlock_irqrestore(&conf->resync_lock, flags);
952 wake_up(&conf->wait_barrier);
955 static void wait_barrier(struct r10conf *conf)
957 spin_lock_irq(&conf->resync_lock);
959 struct bio_list *bio_list = current->bio_list;
961 /* Wait for the barrier to drop.
962 * However if there are already pending
963 * requests (preventing the barrier from
964 * rising completely), and the
965 * pre-process bio queue isn't empty,
966 * then don't wait, as we need to empty
967 * that queue to get the nr_pending
970 raid10_log(conf->mddev, "wait barrier");
971 wait_event_lock_irq(conf->wait_barrier,
973 (atomic_read(&conf->nr_pending) &&
975 (!bio_list_empty(&bio_list[0]) ||
976 !bio_list_empty(&bio_list[1]))) ||
977 /* move on if recovery thread is
980 (conf->mddev->thread->tsk == current &&
981 test_bit(MD_RECOVERY_RUNNING,
982 &conf->mddev->recovery) &&
983 conf->nr_queued > 0),
986 if (!conf->nr_waiting)
987 wake_up(&conf->wait_barrier);
989 atomic_inc(&conf->nr_pending);
990 spin_unlock_irq(&conf->resync_lock);
993 static void allow_barrier(struct r10conf *conf)
995 if ((atomic_dec_and_test(&conf->nr_pending)) ||
996 (conf->array_freeze_pending))
997 wake_up(&conf->wait_barrier);
1000 static void freeze_array(struct r10conf *conf, int extra)
1002 /* stop syncio and normal IO and wait for everything to
1004 * We increment barrier and nr_waiting, and then
1005 * wait until nr_pending match nr_queued+extra
1006 * This is called in the context of one normal IO request
1007 * that has failed. Thus any sync request that might be pending
1008 * will be blocked by nr_pending, and we need to wait for
1009 * pending IO requests to complete or be queued for re-try.
1010 * Thus the number queued (nr_queued) plus this request (extra)
1011 * must match the number of pending IOs (nr_pending) before
1014 spin_lock_irq(&conf->resync_lock);
1015 conf->array_freeze_pending++;
1018 wait_event_lock_irq_cmd(conf->wait_barrier,
1019 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1021 flush_pending_writes(conf));
1023 conf->array_freeze_pending--;
1024 spin_unlock_irq(&conf->resync_lock);
1027 static void unfreeze_array(struct r10conf *conf)
1029 /* reverse the effect of the freeze */
1030 spin_lock_irq(&conf->resync_lock);
1033 wake_up(&conf->wait_barrier);
1034 spin_unlock_irq(&conf->resync_lock);
1037 static sector_t choose_data_offset(struct r10bio *r10_bio,
1038 struct md_rdev *rdev)
1040 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1041 test_bit(R10BIO_Previous, &r10_bio->state))
1042 return rdev->data_offset;
1044 return rdev->new_data_offset;
1047 struct raid10_plug_cb {
1048 struct blk_plug_cb cb;
1049 struct bio_list pending;
1053 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1055 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1057 struct mddev *mddev = plug->cb.data;
1058 struct r10conf *conf = mddev->private;
1061 if (from_schedule || current->bio_list) {
1062 spin_lock_irq(&conf->device_lock);
1063 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1064 conf->pending_count += plug->pending_cnt;
1065 spin_unlock_irq(&conf->device_lock);
1066 wake_up(&conf->wait_barrier);
1067 md_wakeup_thread(mddev->thread);
1072 /* we aren't scheduling, so we can do the write-out directly. */
1073 bio = bio_list_get(&plug->pending);
1074 md_bitmap_unplug(mddev->bitmap);
1075 wake_up(&conf->wait_barrier);
1077 while (bio) { /* submit pending writes */
1078 struct bio *next = bio->bi_next;
1079 struct md_rdev *rdev = (void*)bio->bi_bdev;
1080 bio->bi_next = NULL;
1081 bio_set_dev(bio, rdev->bdev);
1082 if (test_bit(Faulty, &rdev->flags)) {
1084 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1085 !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
1086 /* Just ignore it */
1089 submit_bio_noacct(bio);
1096 * 1. Register the new request and wait if the reconstruction thread has put
1097 * up a bar for new requests. Continue immediately if no resync is active
1099 * 2. If IO spans the reshape position. Need to wait for reshape to pass.
1101 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1102 struct bio *bio, sector_t sectors)
1105 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1106 bio->bi_iter.bi_sector < conf->reshape_progress &&
1107 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1108 raid10_log(conf->mddev, "wait reshape");
1109 allow_barrier(conf);
1110 wait_event(conf->wait_barrier,
1111 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1112 conf->reshape_progress >= bio->bi_iter.bi_sector +
1118 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1119 struct r10bio *r10_bio)
1121 struct r10conf *conf = mddev->private;
1122 struct bio *read_bio;
1123 const int op = bio_op(bio);
1124 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1126 struct md_rdev *rdev;
1127 char b[BDEVNAME_SIZE];
1128 int slot = r10_bio->read_slot;
1129 struct md_rdev *err_rdev = NULL;
1130 gfp_t gfp = GFP_NOIO;
1132 if (slot >= 0 && r10_bio->devs[slot].rdev) {
1134 * This is an error retry, but we cannot
1135 * safely dereference the rdev in the r10_bio,
1136 * we must use the one in conf.
1137 * If it has already been disconnected (unlikely)
1138 * we lose the device name in error messages.
1142 * As we are blocking raid10, it is a little safer to
1145 gfp = GFP_NOIO | __GFP_HIGH;
1148 disk = r10_bio->devs[slot].devnum;
1149 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1151 bdevname(err_rdev->bdev, b);
1154 /* This never gets dereferenced */
1155 err_rdev = r10_bio->devs[slot].rdev;
1160 regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1161 rdev = read_balance(conf, r10_bio, &max_sectors);
1164 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1166 (unsigned long long)r10_bio->sector);
1168 raid_end_bio_io(r10_bio);
1172 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1174 bdevname(rdev->bdev, b),
1175 (unsigned long long)r10_bio->sector);
1176 if (max_sectors < bio_sectors(bio)) {
1177 struct bio *split = bio_split(bio, max_sectors,
1178 gfp, &conf->bio_split);
1179 bio_chain(split, bio);
1180 allow_barrier(conf);
1181 submit_bio_noacct(bio);
1184 r10_bio->master_bio = bio;
1185 r10_bio->sectors = max_sectors;
1187 slot = r10_bio->read_slot;
1189 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1190 r10_bio->start_time = bio_start_io_acct(bio);
1191 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1193 r10_bio->devs[slot].bio = read_bio;
1194 r10_bio->devs[slot].rdev = rdev;
1196 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1197 choose_data_offset(r10_bio, rdev);
1198 bio_set_dev(read_bio, rdev->bdev);
1199 read_bio->bi_end_io = raid10_end_read_request;
1200 bio_set_op_attrs(read_bio, op, do_sync);
1201 if (test_bit(FailFast, &rdev->flags) &&
1202 test_bit(R10BIO_FailFast, &r10_bio->state))
1203 read_bio->bi_opf |= MD_FAILFAST;
1204 read_bio->bi_private = r10_bio;
1207 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1209 submit_bio_noacct(read_bio);
1213 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1214 struct bio *bio, bool replacement,
1217 const int op = bio_op(bio);
1218 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1219 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1220 unsigned long flags;
1221 struct blk_plug_cb *cb;
1222 struct raid10_plug_cb *plug = NULL;
1223 struct r10conf *conf = mddev->private;
1224 struct md_rdev *rdev;
1225 int devnum = r10_bio->devs[n_copy].devnum;
1229 rdev = conf->mirrors[devnum].replacement;
1231 /* Replacement just got moved to main 'rdev' */
1233 rdev = conf->mirrors[devnum].rdev;
1236 rdev = conf->mirrors[devnum].rdev;
1238 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1240 r10_bio->devs[n_copy].repl_bio = mbio;
1242 r10_bio->devs[n_copy].bio = mbio;
1244 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1245 choose_data_offset(r10_bio, rdev));
1246 bio_set_dev(mbio, rdev->bdev);
1247 mbio->bi_end_io = raid10_end_write_request;
1248 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1249 if (!replacement && test_bit(FailFast,
1250 &conf->mirrors[devnum].rdev->flags)
1251 && enough(conf, devnum))
1252 mbio->bi_opf |= MD_FAILFAST;
1253 mbio->bi_private = r10_bio;
1255 if (conf->mddev->gendisk)
1256 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1258 /* flush_pending_writes() needs access to the rdev so...*/
1259 mbio->bi_bdev = (void *)rdev;
1261 atomic_inc(&r10_bio->remaining);
1263 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1265 plug = container_of(cb, struct raid10_plug_cb, cb);
1269 bio_list_add(&plug->pending, mbio);
1270 plug->pending_cnt++;
1272 spin_lock_irqsave(&conf->device_lock, flags);
1273 bio_list_add(&conf->pending_bio_list, mbio);
1274 conf->pending_count++;
1275 spin_unlock_irqrestore(&conf->device_lock, flags);
1276 md_wakeup_thread(mddev->thread);
1280 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1283 struct r10conf *conf = mddev->private;
1284 struct md_rdev *blocked_rdev;
1287 blocked_rdev = NULL;
1289 for (i = 0; i < conf->copies; i++) {
1290 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1291 struct md_rdev *rrdev = rcu_dereference(
1292 conf->mirrors[i].replacement);
1295 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1296 atomic_inc(&rdev->nr_pending);
1297 blocked_rdev = rdev;
1300 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1301 atomic_inc(&rrdev->nr_pending);
1302 blocked_rdev = rrdev;
1306 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1308 sector_t dev_sector = r10_bio->devs[i].addr;
1313 * Discard request doesn't care the write result
1314 * so it doesn't need to wait blocked disk here.
1316 if (!r10_bio->sectors)
1319 is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1320 &first_bad, &bad_sectors);
1323 * Mustn't write here until the bad block
1326 atomic_inc(&rdev->nr_pending);
1327 set_bit(BlockedBadBlocks, &rdev->flags);
1328 blocked_rdev = rdev;
1335 if (unlikely(blocked_rdev)) {
1336 /* Have to wait for this device to get unblocked, then retry */
1337 allow_barrier(conf);
1338 raid10_log(conf->mddev, "%s wait rdev %d blocked",
1339 __func__, blocked_rdev->raid_disk);
1340 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1346 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1347 struct r10bio *r10_bio)
1349 struct r10conf *conf = mddev->private;
1354 if ((mddev_is_clustered(mddev) &&
1355 md_cluster_ops->area_resyncing(mddev, WRITE,
1356 bio->bi_iter.bi_sector,
1357 bio_end_sector(bio)))) {
1360 prepare_to_wait(&conf->wait_barrier,
1362 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1363 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1367 finish_wait(&conf->wait_barrier, &w);
1370 sectors = r10_bio->sectors;
1371 regular_request_wait(mddev, conf, bio, sectors);
1372 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1373 (mddev->reshape_backwards
1374 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1375 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1376 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1377 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1378 /* Need to update reshape_position in metadata */
1379 mddev->reshape_position = conf->reshape_progress;
1380 set_mask_bits(&mddev->sb_flags, 0,
1381 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1382 md_wakeup_thread(mddev->thread);
1383 raid10_log(conf->mddev, "wait reshape metadata");
1384 wait_event(mddev->sb_wait,
1385 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1387 conf->reshape_safe = mddev->reshape_position;
1390 if (conf->pending_count >= max_queued_requests) {
1391 md_wakeup_thread(mddev->thread);
1392 raid10_log(mddev, "wait queued");
1393 wait_event(conf->wait_barrier,
1394 conf->pending_count < max_queued_requests);
1396 /* first select target devices under rcu_lock and
1397 * inc refcount on their rdev. Record them by setting
1399 * If there are known/acknowledged bad blocks on any device
1400 * on which we have seen a write error, we want to avoid
1401 * writing to those blocks. This potentially requires several
1402 * writes to write around the bad blocks. Each set of writes
1403 * gets its own r10_bio with a set of bios attached.
1406 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1407 raid10_find_phys(conf, r10_bio);
1409 wait_blocked_dev(mddev, r10_bio);
1412 max_sectors = r10_bio->sectors;
1414 for (i = 0; i < conf->copies; i++) {
1415 int d = r10_bio->devs[i].devnum;
1416 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1417 struct md_rdev *rrdev = rcu_dereference(
1418 conf->mirrors[d].replacement);
1421 if (rdev && (test_bit(Faulty, &rdev->flags)))
1423 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1426 r10_bio->devs[i].bio = NULL;
1427 r10_bio->devs[i].repl_bio = NULL;
1429 if (!rdev && !rrdev) {
1430 set_bit(R10BIO_Degraded, &r10_bio->state);
1433 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1435 sector_t dev_sector = r10_bio->devs[i].addr;
1439 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1440 &first_bad, &bad_sectors);
1441 if (is_bad && first_bad <= dev_sector) {
1442 /* Cannot write here at all */
1443 bad_sectors -= (dev_sector - first_bad);
1444 if (bad_sectors < max_sectors)
1445 /* Mustn't write more than bad_sectors
1446 * to other devices yet
1448 max_sectors = bad_sectors;
1449 /* We don't set R10BIO_Degraded as that
1450 * only applies if the disk is missing,
1451 * so it might be re-added, and we want to
1452 * know to recover this chunk.
1453 * In this case the device is here, and the
1454 * fact that this chunk is not in-sync is
1455 * recorded in the bad block log.
1460 int good_sectors = first_bad - dev_sector;
1461 if (good_sectors < max_sectors)
1462 max_sectors = good_sectors;
1466 r10_bio->devs[i].bio = bio;
1467 atomic_inc(&rdev->nr_pending);
1470 r10_bio->devs[i].repl_bio = bio;
1471 atomic_inc(&rrdev->nr_pending);
1476 if (max_sectors < r10_bio->sectors)
1477 r10_bio->sectors = max_sectors;
1479 if (r10_bio->sectors < bio_sectors(bio)) {
1480 struct bio *split = bio_split(bio, r10_bio->sectors,
1481 GFP_NOIO, &conf->bio_split);
1482 bio_chain(split, bio);
1483 allow_barrier(conf);
1484 submit_bio_noacct(bio);
1487 r10_bio->master_bio = bio;
1490 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1491 r10_bio->start_time = bio_start_io_acct(bio);
1492 atomic_set(&r10_bio->remaining, 1);
1493 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1495 for (i = 0; i < conf->copies; i++) {
1496 if (r10_bio->devs[i].bio)
1497 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1498 if (r10_bio->devs[i].repl_bio)
1499 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1501 one_write_done(r10_bio);
1504 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1506 struct r10conf *conf = mddev->private;
1507 struct r10bio *r10_bio;
1509 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1511 r10_bio->master_bio = bio;
1512 r10_bio->sectors = sectors;
1514 r10_bio->mddev = mddev;
1515 r10_bio->sector = bio->bi_iter.bi_sector;
1517 r10_bio->read_slot = -1;
1518 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1519 conf->geo.raid_disks);
1521 if (bio_data_dir(bio) == READ)
1522 raid10_read_request(mddev, bio, r10_bio);
1524 raid10_write_request(mddev, bio, r10_bio);
1527 static void raid_end_discard_bio(struct r10bio *r10bio)
1529 struct r10conf *conf = r10bio->mddev->private;
1530 struct r10bio *first_r10bio;
1532 while (atomic_dec_and_test(&r10bio->remaining)) {
1534 allow_barrier(conf);
1536 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1537 first_r10bio = (struct r10bio *)r10bio->master_bio;
1538 free_r10bio(r10bio);
1539 r10bio = first_r10bio;
1541 md_write_end(r10bio->mddev);
1542 bio_endio(r10bio->master_bio);
1543 free_r10bio(r10bio);
1549 static void raid10_end_discard_request(struct bio *bio)
1551 struct r10bio *r10_bio = bio->bi_private;
1552 struct r10conf *conf = r10_bio->mddev->private;
1553 struct md_rdev *rdev = NULL;
1558 * We don't care the return value of discard bio
1560 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1561 set_bit(R10BIO_Uptodate, &r10_bio->state);
1563 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1565 rdev = conf->mirrors[dev].replacement;
1568 * raid10_remove_disk uses smp_mb to make sure rdev is set to
1569 * replacement before setting replacement to NULL. It can read
1570 * rdev first without barrier protect even replacment is NULL
1573 rdev = conf->mirrors[dev].rdev;
1576 raid_end_discard_bio(r10_bio);
1577 rdev_dec_pending(rdev, conf->mddev);
1581 * There are some limitations to handle discard bio
1582 * 1st, the discard size is bigger than stripe_size*2.
1583 * 2st, if the discard bio spans reshape progress, we use the old way to
1584 * handle discard bio
1586 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1588 struct r10conf *conf = mddev->private;
1589 struct geom *geo = &conf->geo;
1590 int far_copies = geo->far_copies;
1591 bool first_copy = true;
1592 struct r10bio *r10_bio, *first_r10bio;
1596 unsigned int stripe_size;
1597 unsigned int stripe_data_disks;
1598 sector_t split_size;
1599 sector_t bio_start, bio_end;
1600 sector_t first_stripe_index, last_stripe_index;
1601 sector_t start_disk_offset;
1602 unsigned int start_disk_index;
1603 sector_t end_disk_offset;
1604 unsigned int end_disk_index;
1605 unsigned int remainder;
1607 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1613 * Check reshape again to avoid reshape happens after checking
1614 * MD_RECOVERY_RESHAPE and before wait_barrier
1616 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1619 if (geo->near_copies)
1620 stripe_data_disks = geo->raid_disks / geo->near_copies +
1621 geo->raid_disks % geo->near_copies;
1623 stripe_data_disks = geo->raid_disks;
1625 stripe_size = stripe_data_disks << geo->chunk_shift;
1627 bio_start = bio->bi_iter.bi_sector;
1628 bio_end = bio_end_sector(bio);
1631 * Maybe one discard bio is smaller than strip size or across one
1632 * stripe and discard region is larger than one stripe size. For far
1633 * offset layout, if the discard region is not aligned with stripe
1634 * size, there is hole when we submit discard bio to member disk.
1635 * For simplicity, we only handle discard bio which discard region
1636 * is bigger than stripe_size * 2
1638 if (bio_sectors(bio) < stripe_size*2)
1642 * Keep bio aligned with strip size.
1644 div_u64_rem(bio_start, stripe_size, &remainder);
1646 split_size = stripe_size - remainder;
1647 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1648 bio_chain(split, bio);
1649 allow_barrier(conf);
1650 /* Resend the fist split part */
1651 submit_bio_noacct(split);
1654 div_u64_rem(bio_end, stripe_size, &remainder);
1656 split_size = bio_sectors(bio) - remainder;
1657 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1658 bio_chain(split, bio);
1659 allow_barrier(conf);
1660 /* Resend the second split part */
1661 submit_bio_noacct(bio);
1666 bio_start = bio->bi_iter.bi_sector;
1667 bio_end = bio_end_sector(bio);
1670 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1671 * One stripe contains the chunks from all member disk (one chunk from
1672 * one disk at the same HBA address). For layout detail, see 'man md 4'
1674 chunk = bio_start >> geo->chunk_shift;
1675 chunk *= geo->near_copies;
1676 first_stripe_index = chunk;
1677 start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1678 if (geo->far_offset)
1679 first_stripe_index *= geo->far_copies;
1680 start_disk_offset = (bio_start & geo->chunk_mask) +
1681 (first_stripe_index << geo->chunk_shift);
1683 chunk = bio_end >> geo->chunk_shift;
1684 chunk *= geo->near_copies;
1685 last_stripe_index = chunk;
1686 end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1687 if (geo->far_offset)
1688 last_stripe_index *= geo->far_copies;
1689 end_disk_offset = (bio_end & geo->chunk_mask) +
1690 (last_stripe_index << geo->chunk_shift);
1693 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1694 r10_bio->mddev = mddev;
1696 r10_bio->sectors = 0;
1697 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1698 wait_blocked_dev(mddev, r10_bio);
1701 * For far layout it needs more than one r10bio to cover all regions.
1702 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1703 * to record the discard bio. Other r10bio->master_bio record the first
1704 * r10bio. The first r10bio only release after all other r10bios finish.
1705 * The discard bio returns only first r10bio finishes
1708 r10_bio->master_bio = bio;
1709 set_bit(R10BIO_Discard, &r10_bio->state);
1711 first_r10bio = r10_bio;
1713 r10_bio->master_bio = (struct bio *)first_r10bio;
1716 * first select target devices under rcu_lock and
1717 * inc refcount on their rdev. Record them by setting
1721 for (disk = 0; disk < geo->raid_disks; disk++) {
1722 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1723 struct md_rdev *rrdev = rcu_dereference(
1724 conf->mirrors[disk].replacement);
1726 r10_bio->devs[disk].bio = NULL;
1727 r10_bio->devs[disk].repl_bio = NULL;
1729 if (rdev && (test_bit(Faulty, &rdev->flags)))
1731 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1733 if (!rdev && !rrdev)
1737 r10_bio->devs[disk].bio = bio;
1738 atomic_inc(&rdev->nr_pending);
1741 r10_bio->devs[disk].repl_bio = bio;
1742 atomic_inc(&rrdev->nr_pending);
1747 atomic_set(&r10_bio->remaining, 1);
1748 for (disk = 0; disk < geo->raid_disks; disk++) {
1749 sector_t dev_start, dev_end;
1750 struct bio *mbio, *rbio = NULL;
1753 * Now start to calculate the start and end address for each disk.
1754 * The space between dev_start and dev_end is the discard region.
1756 * For dev_start, it needs to consider three conditions:
1757 * 1st, the disk is before start_disk, you can imagine the disk in
1758 * the next stripe. So the dev_start is the start address of next
1760 * 2st, the disk is after start_disk, it means the disk is at the
1761 * same stripe of first disk
1762 * 3st, the first disk itself, we can use start_disk_offset directly
1764 if (disk < start_disk_index)
1765 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1766 else if (disk > start_disk_index)
1767 dev_start = first_stripe_index * mddev->chunk_sectors;
1769 dev_start = start_disk_offset;
1771 if (disk < end_disk_index)
1772 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1773 else if (disk > end_disk_index)
1774 dev_end = last_stripe_index * mddev->chunk_sectors;
1776 dev_end = end_disk_offset;
1779 * It only handles discard bio which size is >= stripe size, so
1780 * dev_end > dev_start all the time.
1781 * It doesn't need to use rcu lock to get rdev here. We already
1782 * add rdev->nr_pending in the first loop.
1784 if (r10_bio->devs[disk].bio) {
1785 struct md_rdev *rdev = conf->mirrors[disk].rdev;
1786 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1787 mbio->bi_end_io = raid10_end_discard_request;
1788 mbio->bi_private = r10_bio;
1789 r10_bio->devs[disk].bio = mbio;
1790 r10_bio->devs[disk].devnum = disk;
1791 atomic_inc(&r10_bio->remaining);
1792 md_submit_discard_bio(mddev, rdev, mbio,
1793 dev_start + choose_data_offset(r10_bio, rdev),
1794 dev_end - dev_start);
1797 if (r10_bio->devs[disk].repl_bio) {
1798 struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1799 rbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1800 rbio->bi_end_io = raid10_end_discard_request;
1801 rbio->bi_private = r10_bio;
1802 r10_bio->devs[disk].repl_bio = rbio;
1803 r10_bio->devs[disk].devnum = disk;
1804 atomic_inc(&r10_bio->remaining);
1805 md_submit_discard_bio(mddev, rrdev, rbio,
1806 dev_start + choose_data_offset(r10_bio, rrdev),
1807 dev_end - dev_start);
1812 if (!geo->far_offset && --far_copies) {
1813 first_stripe_index += geo->stride >> geo->chunk_shift;
1814 start_disk_offset += geo->stride;
1815 last_stripe_index += geo->stride >> geo->chunk_shift;
1816 end_disk_offset += geo->stride;
1817 atomic_inc(&first_r10bio->remaining);
1818 raid_end_discard_bio(r10_bio);
1823 raid_end_discard_bio(r10_bio);
1827 allow_barrier(conf);
1831 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1833 struct r10conf *conf = mddev->private;
1834 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1835 int chunk_sects = chunk_mask + 1;
1836 int sectors = bio_sectors(bio);
1838 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1839 && md_flush_request(mddev, bio))
1842 if (!md_write_start(mddev, bio))
1845 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1846 if (!raid10_handle_discard(mddev, bio))
1850 * If this request crosses a chunk boundary, we need to split
1853 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1854 sectors > chunk_sects
1855 && (conf->geo.near_copies < conf->geo.raid_disks
1856 || conf->prev.near_copies <
1857 conf->prev.raid_disks)))
1858 sectors = chunk_sects -
1859 (bio->bi_iter.bi_sector &
1861 __make_request(mddev, bio, sectors);
1863 /* In case raid10d snuck in to freeze_array */
1864 wake_up(&conf->wait_barrier);
1868 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1870 struct r10conf *conf = mddev->private;
1873 if (conf->geo.near_copies < conf->geo.raid_disks)
1874 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1875 if (conf->geo.near_copies > 1)
1876 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1877 if (conf->geo.far_copies > 1) {
1878 if (conf->geo.far_offset)
1879 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1881 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1882 if (conf->geo.far_set_size != conf->geo.raid_disks)
1883 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1885 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1886 conf->geo.raid_disks - mddev->degraded);
1888 for (i = 0; i < conf->geo.raid_disks; i++) {
1889 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1890 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1893 seq_printf(seq, "]");
1896 /* check if there are enough drives for
1897 * every block to appear on atleast one.
1898 * Don't consider the device numbered 'ignore'
1899 * as we might be about to remove it.
1901 static int _enough(struct r10conf *conf, int previous, int ignore)
1907 disks = conf->prev.raid_disks;
1908 ncopies = conf->prev.near_copies;
1910 disks = conf->geo.raid_disks;
1911 ncopies = conf->geo.near_copies;
1916 int n = conf->copies;
1920 struct md_rdev *rdev;
1921 if (this != ignore &&
1922 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1923 test_bit(In_sync, &rdev->flags))
1925 this = (this+1) % disks;
1929 first = (first + ncopies) % disks;
1930 } while (first != 0);
1937 static int enough(struct r10conf *conf, int ignore)
1939 /* when calling 'enough', both 'prev' and 'geo' must
1941 * This is ensured if ->reconfig_mutex or ->device_lock
1944 return _enough(conf, 0, ignore) &&
1945 _enough(conf, 1, ignore);
1948 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1950 char b[BDEVNAME_SIZE];
1951 struct r10conf *conf = mddev->private;
1952 unsigned long flags;
1955 * If it is not operational, then we have already marked it as dead
1956 * else if it is the last working disks with "fail_last_dev == false",
1957 * ignore the error, let the next level up know.
1958 * else mark the drive as failed
1960 spin_lock_irqsave(&conf->device_lock, flags);
1961 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1962 && !enough(conf, rdev->raid_disk)) {
1964 * Don't fail the drive, just return an IO error.
1966 spin_unlock_irqrestore(&conf->device_lock, flags);
1969 if (test_and_clear_bit(In_sync, &rdev->flags))
1972 * If recovery is running, make sure it aborts.
1974 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1975 set_bit(Blocked, &rdev->flags);
1976 set_bit(Faulty, &rdev->flags);
1977 set_mask_bits(&mddev->sb_flags, 0,
1978 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1979 spin_unlock_irqrestore(&conf->device_lock, flags);
1980 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1981 "md/raid10:%s: Operation continuing on %d devices.\n",
1982 mdname(mddev), bdevname(rdev->bdev, b),
1983 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1986 static void print_conf(struct r10conf *conf)
1989 struct md_rdev *rdev;
1991 pr_debug("RAID10 conf printout:\n");
1993 pr_debug("(!conf)\n");
1996 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1997 conf->geo.raid_disks);
1999 /* This is only called with ->reconfix_mutex held, so
2000 * rcu protection of rdev is not needed */
2001 for (i = 0; i < conf->geo.raid_disks; i++) {
2002 char b[BDEVNAME_SIZE];
2003 rdev = conf->mirrors[i].rdev;
2005 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
2006 i, !test_bit(In_sync, &rdev->flags),
2007 !test_bit(Faulty, &rdev->flags),
2008 bdevname(rdev->bdev,b));
2012 static void close_sync(struct r10conf *conf)
2015 allow_barrier(conf);
2017 mempool_exit(&conf->r10buf_pool);
2020 static int raid10_spare_active(struct mddev *mddev)
2023 struct r10conf *conf = mddev->private;
2024 struct raid10_info *tmp;
2026 unsigned long flags;
2029 * Find all non-in_sync disks within the RAID10 configuration
2030 * and mark them in_sync
2032 for (i = 0; i < conf->geo.raid_disks; i++) {
2033 tmp = conf->mirrors + i;
2034 if (tmp->replacement
2035 && tmp->replacement->recovery_offset == MaxSector
2036 && !test_bit(Faulty, &tmp->replacement->flags)
2037 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2038 /* Replacement has just become active */
2040 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2043 /* Replaced device not technically faulty,
2044 * but we need to be sure it gets removed
2045 * and never re-added.
2047 set_bit(Faulty, &tmp->rdev->flags);
2048 sysfs_notify_dirent_safe(
2049 tmp->rdev->sysfs_state);
2051 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2052 } else if (tmp->rdev
2053 && tmp->rdev->recovery_offset == MaxSector
2054 && !test_bit(Faulty, &tmp->rdev->flags)
2055 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2057 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2060 spin_lock_irqsave(&conf->device_lock, flags);
2061 mddev->degraded -= count;
2062 spin_unlock_irqrestore(&conf->device_lock, flags);
2068 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2070 struct r10conf *conf = mddev->private;
2074 int last = conf->geo.raid_disks - 1;
2076 if (mddev->recovery_cp < MaxSector)
2077 /* only hot-add to in-sync arrays, as recovery is
2078 * very different from resync
2081 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2084 if (md_integrity_add_rdev(rdev, mddev))
2087 if (rdev->raid_disk >= 0)
2088 first = last = rdev->raid_disk;
2090 if (rdev->saved_raid_disk >= first &&
2091 rdev->saved_raid_disk < conf->geo.raid_disks &&
2092 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2093 mirror = rdev->saved_raid_disk;
2096 for ( ; mirror <= last ; mirror++) {
2097 struct raid10_info *p = &conf->mirrors[mirror];
2098 if (p->recovery_disabled == mddev->recovery_disabled)
2101 if (!test_bit(WantReplacement, &p->rdev->flags) ||
2102 p->replacement != NULL)
2104 clear_bit(In_sync, &rdev->flags);
2105 set_bit(Replacement, &rdev->flags);
2106 rdev->raid_disk = mirror;
2109 disk_stack_limits(mddev->gendisk, rdev->bdev,
2110 rdev->data_offset << 9);
2112 rcu_assign_pointer(p->replacement, rdev);
2117 disk_stack_limits(mddev->gendisk, rdev->bdev,
2118 rdev->data_offset << 9);
2120 p->head_position = 0;
2121 p->recovery_disabled = mddev->recovery_disabled - 1;
2122 rdev->raid_disk = mirror;
2124 if (rdev->saved_raid_disk != mirror)
2126 rcu_assign_pointer(p->rdev, rdev);
2129 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2130 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
2136 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2138 struct r10conf *conf = mddev->private;
2140 int number = rdev->raid_disk;
2141 struct md_rdev **rdevp;
2142 struct raid10_info *p = conf->mirrors + number;
2145 if (rdev == p->rdev)
2147 else if (rdev == p->replacement)
2148 rdevp = &p->replacement;
2152 if (test_bit(In_sync, &rdev->flags) ||
2153 atomic_read(&rdev->nr_pending)) {
2157 /* Only remove non-faulty devices if recovery
2160 if (!test_bit(Faulty, &rdev->flags) &&
2161 mddev->recovery_disabled != p->recovery_disabled &&
2162 (!p->replacement || p->replacement == rdev) &&
2163 number < conf->geo.raid_disks &&
2169 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2171 if (atomic_read(&rdev->nr_pending)) {
2172 /* lost the race, try later */
2178 if (p->replacement) {
2179 /* We must have just cleared 'rdev' */
2180 p->rdev = p->replacement;
2181 clear_bit(Replacement, &p->replacement->flags);
2182 smp_mb(); /* Make sure other CPUs may see both as identical
2183 * but will never see neither -- if they are careful.
2185 p->replacement = NULL;
2188 clear_bit(WantReplacement, &rdev->flags);
2189 err = md_integrity_register(mddev);
2197 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2199 struct r10conf *conf = r10_bio->mddev->private;
2201 if (!bio->bi_status)
2202 set_bit(R10BIO_Uptodate, &r10_bio->state);
2204 /* The write handler will notice the lack of
2205 * R10BIO_Uptodate and record any errors etc
2207 atomic_add(r10_bio->sectors,
2208 &conf->mirrors[d].rdev->corrected_errors);
2210 /* for reconstruct, we always reschedule after a read.
2211 * for resync, only after all reads
2213 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2214 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2215 atomic_dec_and_test(&r10_bio->remaining)) {
2216 /* we have read all the blocks,
2217 * do the comparison in process context in raid10d
2219 reschedule_retry(r10_bio);
2223 static void end_sync_read(struct bio *bio)
2225 struct r10bio *r10_bio = get_resync_r10bio(bio);
2226 struct r10conf *conf = r10_bio->mddev->private;
2227 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2229 __end_sync_read(r10_bio, bio, d);
2232 static void end_reshape_read(struct bio *bio)
2234 /* reshape read bio isn't allocated from r10buf_pool */
2235 struct r10bio *r10_bio = bio->bi_private;
2237 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2240 static void end_sync_request(struct r10bio *r10_bio)
2242 struct mddev *mddev = r10_bio->mddev;
2244 while (atomic_dec_and_test(&r10_bio->remaining)) {
2245 if (r10_bio->master_bio == NULL) {
2246 /* the primary of several recovery bios */
2247 sector_t s = r10_bio->sectors;
2248 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2249 test_bit(R10BIO_WriteError, &r10_bio->state))
2250 reschedule_retry(r10_bio);
2253 md_done_sync(mddev, s, 1);
2256 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2257 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2258 test_bit(R10BIO_WriteError, &r10_bio->state))
2259 reschedule_retry(r10_bio);
2267 static void end_sync_write(struct bio *bio)
2269 struct r10bio *r10_bio = get_resync_r10bio(bio);
2270 struct mddev *mddev = r10_bio->mddev;
2271 struct r10conf *conf = mddev->private;
2277 struct md_rdev *rdev = NULL;
2279 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2281 rdev = conf->mirrors[d].replacement;
2283 rdev = conf->mirrors[d].rdev;
2285 if (bio->bi_status) {
2287 md_error(mddev, rdev);
2289 set_bit(WriteErrorSeen, &rdev->flags);
2290 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2291 set_bit(MD_RECOVERY_NEEDED,
2292 &rdev->mddev->recovery);
2293 set_bit(R10BIO_WriteError, &r10_bio->state);
2295 } else if (is_badblock(rdev,
2296 r10_bio->devs[slot].addr,
2298 &first_bad, &bad_sectors))
2299 set_bit(R10BIO_MadeGood, &r10_bio->state);
2301 rdev_dec_pending(rdev, mddev);
2303 end_sync_request(r10_bio);
2307 * Note: sync and recover and handled very differently for raid10
2308 * This code is for resync.
2309 * For resync, we read through virtual addresses and read all blocks.
2310 * If there is any error, we schedule a write. The lowest numbered
2311 * drive is authoritative.
2312 * However requests come for physical address, so we need to map.
2313 * For every physical address there are raid_disks/copies virtual addresses,
2314 * which is always are least one, but is not necessarly an integer.
2315 * This means that a physical address can span multiple chunks, so we may
2316 * have to submit multiple io requests for a single sync request.
2319 * We check if all blocks are in-sync and only write to blocks that
2322 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2324 struct r10conf *conf = mddev->private;
2326 struct bio *tbio, *fbio;
2328 struct page **tpages, **fpages;
2330 atomic_set(&r10_bio->remaining, 1);
2332 /* find the first device with a block */
2333 for (i=0; i<conf->copies; i++)
2334 if (!r10_bio->devs[i].bio->bi_status)
2337 if (i == conf->copies)
2341 fbio = r10_bio->devs[i].bio;
2342 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2343 fbio->bi_iter.bi_idx = 0;
2344 fpages = get_resync_pages(fbio)->pages;
2346 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2347 /* now find blocks with errors */
2348 for (i=0 ; i < conf->copies ; i++) {
2350 struct md_rdev *rdev;
2351 struct resync_pages *rp;
2353 tbio = r10_bio->devs[i].bio;
2355 if (tbio->bi_end_io != end_sync_read)
2360 tpages = get_resync_pages(tbio)->pages;
2361 d = r10_bio->devs[i].devnum;
2362 rdev = conf->mirrors[d].rdev;
2363 if (!r10_bio->devs[i].bio->bi_status) {
2364 /* We know that the bi_io_vec layout is the same for
2365 * both 'first' and 'i', so we just compare them.
2366 * All vec entries are PAGE_SIZE;
2368 int sectors = r10_bio->sectors;
2369 for (j = 0; j < vcnt; j++) {
2370 int len = PAGE_SIZE;
2371 if (sectors < (len / 512))
2372 len = sectors * 512;
2373 if (memcmp(page_address(fpages[j]),
2374 page_address(tpages[j]),
2381 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2382 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2383 /* Don't fix anything. */
2385 } else if (test_bit(FailFast, &rdev->flags)) {
2386 /* Just give up on this device */
2387 md_error(rdev->mddev, rdev);
2390 /* Ok, we need to write this bio, either to correct an
2391 * inconsistency or to correct an unreadable block.
2392 * First we need to fixup bv_offset, bv_len and
2393 * bi_vecs, as the read request might have corrupted these
2395 rp = get_resync_pages(tbio);
2398 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2400 rp->raid_bio = r10_bio;
2401 tbio->bi_private = rp;
2402 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2403 tbio->bi_end_io = end_sync_write;
2404 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2406 bio_copy_data(tbio, fbio);
2408 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2409 atomic_inc(&r10_bio->remaining);
2410 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2412 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2413 tbio->bi_opf |= MD_FAILFAST;
2414 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2415 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2416 submit_bio_noacct(tbio);
2419 /* Now write out to any replacement devices
2422 for (i = 0; i < conf->copies; i++) {
2425 tbio = r10_bio->devs[i].repl_bio;
2426 if (!tbio || !tbio->bi_end_io)
2428 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2429 && r10_bio->devs[i].bio != fbio)
2430 bio_copy_data(tbio, fbio);
2431 d = r10_bio->devs[i].devnum;
2432 atomic_inc(&r10_bio->remaining);
2433 md_sync_acct(conf->mirrors[d].replacement->bdev,
2435 submit_bio_noacct(tbio);
2439 if (atomic_dec_and_test(&r10_bio->remaining)) {
2440 md_done_sync(mddev, r10_bio->sectors, 1);
2446 * Now for the recovery code.
2447 * Recovery happens across physical sectors.
2448 * We recover all non-is_sync drives by finding the virtual address of
2449 * each, and then choose a working drive that also has that virt address.
2450 * There is a separate r10_bio for each non-in_sync drive.
2451 * Only the first two slots are in use. The first for reading,
2452 * The second for writing.
2455 static void fix_recovery_read_error(struct r10bio *r10_bio)
2457 /* We got a read error during recovery.
2458 * We repeat the read in smaller page-sized sections.
2459 * If a read succeeds, write it to the new device or record
2460 * a bad block if we cannot.
2461 * If a read fails, record a bad block on both old and
2464 struct mddev *mddev = r10_bio->mddev;
2465 struct r10conf *conf = mddev->private;
2466 struct bio *bio = r10_bio->devs[0].bio;
2468 int sectors = r10_bio->sectors;
2470 int dr = r10_bio->devs[0].devnum;
2471 int dw = r10_bio->devs[1].devnum;
2472 struct page **pages = get_resync_pages(bio)->pages;
2476 struct md_rdev *rdev;
2480 if (s > (PAGE_SIZE>>9))
2483 rdev = conf->mirrors[dr].rdev;
2484 addr = r10_bio->devs[0].addr + sect,
2485 ok = sync_page_io(rdev,
2489 REQ_OP_READ, 0, false);
2491 rdev = conf->mirrors[dw].rdev;
2492 addr = r10_bio->devs[1].addr + sect;
2493 ok = sync_page_io(rdev,
2497 REQ_OP_WRITE, 0, false);
2499 set_bit(WriteErrorSeen, &rdev->flags);
2500 if (!test_and_set_bit(WantReplacement,
2502 set_bit(MD_RECOVERY_NEEDED,
2503 &rdev->mddev->recovery);
2507 /* We don't worry if we cannot set a bad block -
2508 * it really is bad so there is no loss in not
2511 rdev_set_badblocks(rdev, addr, s, 0);
2513 if (rdev != conf->mirrors[dw].rdev) {
2514 /* need bad block on destination too */
2515 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2516 addr = r10_bio->devs[1].addr + sect;
2517 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2519 /* just abort the recovery */
2520 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2523 conf->mirrors[dw].recovery_disabled
2524 = mddev->recovery_disabled;
2525 set_bit(MD_RECOVERY_INTR,
2538 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2540 struct r10conf *conf = mddev->private;
2542 struct bio *wbio, *wbio2;
2544 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2545 fix_recovery_read_error(r10_bio);
2546 end_sync_request(r10_bio);
2551 * share the pages with the first bio
2552 * and submit the write request
2554 d = r10_bio->devs[1].devnum;
2555 wbio = r10_bio->devs[1].bio;
2556 wbio2 = r10_bio->devs[1].repl_bio;
2557 /* Need to test wbio2->bi_end_io before we call
2558 * submit_bio_noacct as if the former is NULL,
2559 * the latter is free to free wbio2.
2561 if (wbio2 && !wbio2->bi_end_io)
2563 if (wbio->bi_end_io) {
2564 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2565 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2566 submit_bio_noacct(wbio);
2569 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2570 md_sync_acct(conf->mirrors[d].replacement->bdev,
2571 bio_sectors(wbio2));
2572 submit_bio_noacct(wbio2);
2577 * Used by fix_read_error() to decay the per rdev read_errors.
2578 * We halve the read error count for every hour that has elapsed
2579 * since the last recorded read error.
2582 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2585 unsigned long hours_since_last;
2586 unsigned int read_errors = atomic_read(&rdev->read_errors);
2588 cur_time_mon = ktime_get_seconds();
2590 if (rdev->last_read_error == 0) {
2591 /* first time we've seen a read error */
2592 rdev->last_read_error = cur_time_mon;
2596 hours_since_last = (long)(cur_time_mon -
2597 rdev->last_read_error) / 3600;
2599 rdev->last_read_error = cur_time_mon;
2602 * if hours_since_last is > the number of bits in read_errors
2603 * just set read errors to 0. We do this to avoid
2604 * overflowing the shift of read_errors by hours_since_last.
2606 if (hours_since_last >= 8 * sizeof(read_errors))
2607 atomic_set(&rdev->read_errors, 0);
2609 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2612 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2613 int sectors, struct page *page, int rw)
2618 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2619 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2621 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2625 set_bit(WriteErrorSeen, &rdev->flags);
2626 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2627 set_bit(MD_RECOVERY_NEEDED,
2628 &rdev->mddev->recovery);
2630 /* need to record an error - either for the block or the device */
2631 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2632 md_error(rdev->mddev, rdev);
2637 * This is a kernel thread which:
2639 * 1. Retries failed read operations on working mirrors.
2640 * 2. Updates the raid superblock when problems encounter.
2641 * 3. Performs writes following reads for array synchronising.
2644 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2646 int sect = 0; /* Offset from r10_bio->sector */
2647 int sectors = r10_bio->sectors;
2648 struct md_rdev *rdev;
2649 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2650 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2652 /* still own a reference to this rdev, so it cannot
2653 * have been cleared recently.
2655 rdev = conf->mirrors[d].rdev;
2657 if (test_bit(Faulty, &rdev->flags))
2658 /* drive has already been failed, just ignore any
2659 more fix_read_error() attempts */
2662 check_decay_read_errors(mddev, rdev);
2663 atomic_inc(&rdev->read_errors);
2664 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2665 char b[BDEVNAME_SIZE];
2666 bdevname(rdev->bdev, b);
2668 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2670 atomic_read(&rdev->read_errors), max_read_errors);
2671 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2673 md_error(mddev, rdev);
2674 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2680 int sl = r10_bio->read_slot;
2684 if (s > (PAGE_SIZE>>9))
2692 d = r10_bio->devs[sl].devnum;
2693 rdev = rcu_dereference(conf->mirrors[d].rdev);
2695 test_bit(In_sync, &rdev->flags) &&
2696 !test_bit(Faulty, &rdev->flags) &&
2697 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2698 &first_bad, &bad_sectors) == 0) {
2699 atomic_inc(&rdev->nr_pending);
2701 success = sync_page_io(rdev,
2702 r10_bio->devs[sl].addr +
2706 REQ_OP_READ, 0, false);
2707 rdev_dec_pending(rdev, mddev);
2713 if (sl == conf->copies)
2715 } while (!success && sl != r10_bio->read_slot);
2719 /* Cannot read from anywhere, just mark the block
2720 * as bad on the first device to discourage future
2723 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2724 rdev = conf->mirrors[dn].rdev;
2726 if (!rdev_set_badblocks(
2728 r10_bio->devs[r10_bio->read_slot].addr
2731 md_error(mddev, rdev);
2732 r10_bio->devs[r10_bio->read_slot].bio
2739 /* write it back and re-read */
2741 while (sl != r10_bio->read_slot) {
2742 char b[BDEVNAME_SIZE];
2747 d = r10_bio->devs[sl].devnum;
2748 rdev = rcu_dereference(conf->mirrors[d].rdev);
2750 test_bit(Faulty, &rdev->flags) ||
2751 !test_bit(In_sync, &rdev->flags))
2754 atomic_inc(&rdev->nr_pending);
2756 if (r10_sync_page_io(rdev,
2757 r10_bio->devs[sl].addr +
2759 s, conf->tmppage, WRITE)
2761 /* Well, this device is dead */
2762 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2764 (unsigned long long)(
2766 choose_data_offset(r10_bio,
2768 bdevname(rdev->bdev, b));
2769 pr_notice("md/raid10:%s: %s: failing drive\n",
2771 bdevname(rdev->bdev, b));
2773 rdev_dec_pending(rdev, mddev);
2777 while (sl != r10_bio->read_slot) {
2778 char b[BDEVNAME_SIZE];
2783 d = r10_bio->devs[sl].devnum;
2784 rdev = rcu_dereference(conf->mirrors[d].rdev);
2786 test_bit(Faulty, &rdev->flags) ||
2787 !test_bit(In_sync, &rdev->flags))
2790 atomic_inc(&rdev->nr_pending);
2792 switch (r10_sync_page_io(rdev,
2793 r10_bio->devs[sl].addr +
2798 /* Well, this device is dead */
2799 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2801 (unsigned long long)(
2803 choose_data_offset(r10_bio, rdev)),
2804 bdevname(rdev->bdev, b));
2805 pr_notice("md/raid10:%s: %s: failing drive\n",
2807 bdevname(rdev->bdev, b));
2810 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2812 (unsigned long long)(
2814 choose_data_offset(r10_bio, rdev)),
2815 bdevname(rdev->bdev, b));
2816 atomic_add(s, &rdev->corrected_errors);
2819 rdev_dec_pending(rdev, mddev);
2829 static int narrow_write_error(struct r10bio *r10_bio, int i)
2831 struct bio *bio = r10_bio->master_bio;
2832 struct mddev *mddev = r10_bio->mddev;
2833 struct r10conf *conf = mddev->private;
2834 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2835 /* bio has the data to be written to slot 'i' where
2836 * we just recently had a write error.
2837 * We repeatedly clone the bio and trim down to one block,
2838 * then try the write. Where the write fails we record
2840 * It is conceivable that the bio doesn't exactly align with
2841 * blocks. We must handle this.
2843 * We currently own a reference to the rdev.
2849 int sect_to_write = r10_bio->sectors;
2852 if (rdev->badblocks.shift < 0)
2855 block_sectors = roundup(1 << rdev->badblocks.shift,
2856 bdev_logical_block_size(rdev->bdev) >> 9);
2857 sector = r10_bio->sector;
2858 sectors = ((r10_bio->sector + block_sectors)
2859 & ~(sector_t)(block_sectors - 1))
2862 while (sect_to_write) {
2865 if (sectors > sect_to_write)
2866 sectors = sect_to_write;
2867 /* Write at 'sector' for 'sectors' */
2868 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2869 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2870 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2871 wbio->bi_iter.bi_sector = wsector +
2872 choose_data_offset(r10_bio, rdev);
2873 bio_set_dev(wbio, rdev->bdev);
2874 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2876 if (submit_bio_wait(wbio) < 0)
2878 ok = rdev_set_badblocks(rdev, wsector,
2883 sect_to_write -= sectors;
2885 sectors = block_sectors;
2890 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2892 int slot = r10_bio->read_slot;
2894 struct r10conf *conf = mddev->private;
2895 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2897 /* we got a read error. Maybe the drive is bad. Maybe just
2898 * the block and we can fix it.
2899 * We freeze all other IO, and try reading the block from
2900 * other devices. When we find one, we re-write
2901 * and check it that fixes the read error.
2902 * This is all done synchronously while the array is
2905 bio = r10_bio->devs[slot].bio;
2907 r10_bio->devs[slot].bio = NULL;
2910 r10_bio->devs[slot].bio = IO_BLOCKED;
2911 else if (!test_bit(FailFast, &rdev->flags)) {
2912 freeze_array(conf, 1);
2913 fix_read_error(conf, mddev, r10_bio);
2914 unfreeze_array(conf);
2916 md_error(mddev, rdev);
2918 rdev_dec_pending(rdev, mddev);
2919 allow_barrier(conf);
2921 raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2924 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2926 /* Some sort of write request has finished and it
2927 * succeeded in writing where we thought there was a
2928 * bad block. So forget the bad block.
2929 * Or possibly if failed and we need to record
2933 struct md_rdev *rdev;
2935 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2936 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2937 for (m = 0; m < conf->copies; m++) {
2938 int dev = r10_bio->devs[m].devnum;
2939 rdev = conf->mirrors[dev].rdev;
2940 if (r10_bio->devs[m].bio == NULL ||
2941 r10_bio->devs[m].bio->bi_end_io == NULL)
2943 if (!r10_bio->devs[m].bio->bi_status) {
2944 rdev_clear_badblocks(
2946 r10_bio->devs[m].addr,
2947 r10_bio->sectors, 0);
2949 if (!rdev_set_badblocks(
2951 r10_bio->devs[m].addr,
2952 r10_bio->sectors, 0))
2953 md_error(conf->mddev, rdev);
2955 rdev = conf->mirrors[dev].replacement;
2956 if (r10_bio->devs[m].repl_bio == NULL ||
2957 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2960 if (!r10_bio->devs[m].repl_bio->bi_status) {
2961 rdev_clear_badblocks(
2963 r10_bio->devs[m].addr,
2964 r10_bio->sectors, 0);
2966 if (!rdev_set_badblocks(
2968 r10_bio->devs[m].addr,
2969 r10_bio->sectors, 0))
2970 md_error(conf->mddev, rdev);
2976 for (m = 0; m < conf->copies; m++) {
2977 int dev = r10_bio->devs[m].devnum;
2978 struct bio *bio = r10_bio->devs[m].bio;
2979 rdev = conf->mirrors[dev].rdev;
2980 if (bio == IO_MADE_GOOD) {
2981 rdev_clear_badblocks(
2983 r10_bio->devs[m].addr,
2984 r10_bio->sectors, 0);
2985 rdev_dec_pending(rdev, conf->mddev);
2986 } else if (bio != NULL && bio->bi_status) {
2988 if (!narrow_write_error(r10_bio, m)) {
2989 md_error(conf->mddev, rdev);
2990 set_bit(R10BIO_Degraded,
2993 rdev_dec_pending(rdev, conf->mddev);
2995 bio = r10_bio->devs[m].repl_bio;
2996 rdev = conf->mirrors[dev].replacement;
2997 if (rdev && bio == IO_MADE_GOOD) {
2998 rdev_clear_badblocks(
3000 r10_bio->devs[m].addr,
3001 r10_bio->sectors, 0);
3002 rdev_dec_pending(rdev, conf->mddev);
3006 spin_lock_irq(&conf->device_lock);
3007 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3009 spin_unlock_irq(&conf->device_lock);
3011 * In case freeze_array() is waiting for condition
3012 * nr_pending == nr_queued + extra to be true.
3014 wake_up(&conf->wait_barrier);
3015 md_wakeup_thread(conf->mddev->thread);
3017 if (test_bit(R10BIO_WriteError,
3019 close_write(r10_bio);
3020 raid_end_bio_io(r10_bio);
3025 static void raid10d(struct md_thread *thread)
3027 struct mddev *mddev = thread->mddev;
3028 struct r10bio *r10_bio;
3029 unsigned long flags;
3030 struct r10conf *conf = mddev->private;
3031 struct list_head *head = &conf->retry_list;
3032 struct blk_plug plug;
3034 md_check_recovery(mddev);
3036 if (!list_empty_careful(&conf->bio_end_io_list) &&
3037 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3039 spin_lock_irqsave(&conf->device_lock, flags);
3040 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3041 while (!list_empty(&conf->bio_end_io_list)) {
3042 list_move(conf->bio_end_io_list.prev, &tmp);
3046 spin_unlock_irqrestore(&conf->device_lock, flags);
3047 while (!list_empty(&tmp)) {
3048 r10_bio = list_first_entry(&tmp, struct r10bio,
3050 list_del(&r10_bio->retry_list);
3051 if (mddev->degraded)
3052 set_bit(R10BIO_Degraded, &r10_bio->state);
3054 if (test_bit(R10BIO_WriteError,
3056 close_write(r10_bio);
3057 raid_end_bio_io(r10_bio);
3061 blk_start_plug(&plug);
3064 flush_pending_writes(conf);
3066 spin_lock_irqsave(&conf->device_lock, flags);
3067 if (list_empty(head)) {
3068 spin_unlock_irqrestore(&conf->device_lock, flags);
3071 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3072 list_del(head->prev);
3074 spin_unlock_irqrestore(&conf->device_lock, flags);
3076 mddev = r10_bio->mddev;
3077 conf = mddev->private;
3078 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3079 test_bit(R10BIO_WriteError, &r10_bio->state))
3080 handle_write_completed(conf, r10_bio);
3081 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3082 reshape_request_write(mddev, r10_bio);
3083 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3084 sync_request_write(mddev, r10_bio);
3085 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3086 recovery_request_write(mddev, r10_bio);
3087 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3088 handle_read_error(mddev, r10_bio);
3093 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3094 md_check_recovery(mddev);
3096 blk_finish_plug(&plug);
3099 static int init_resync(struct r10conf *conf)
3103 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3104 BUG_ON(mempool_initialized(&conf->r10buf_pool));
3105 conf->have_replacement = 0;
3106 for (i = 0; i < conf->geo.raid_disks; i++)
3107 if (conf->mirrors[i].replacement)
3108 conf->have_replacement = 1;
3109 ret = mempool_init(&conf->r10buf_pool, buffs,
3110 r10buf_pool_alloc, r10buf_pool_free, conf);
3113 conf->next_resync = 0;
3117 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3119 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3120 struct rsync_pages *rp;
3125 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3126 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3127 nalloc = conf->copies; /* resync */
3129 nalloc = 2; /* recovery */
3131 for (i = 0; i < nalloc; i++) {
3132 bio = r10bio->devs[i].bio;
3133 rp = bio->bi_private;
3135 bio->bi_private = rp;
3136 bio = r10bio->devs[i].repl_bio;
3138 rp = bio->bi_private;
3140 bio->bi_private = rp;
3147 * Set cluster_sync_high since we need other nodes to add the
3148 * range [cluster_sync_low, cluster_sync_high] to suspend list.
3150 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3152 sector_t window_size;
3153 int extra_chunk, chunks;
3156 * First, here we define "stripe" as a unit which across
3157 * all member devices one time, so we get chunks by use
3158 * raid_disks / near_copies. Otherwise, if near_copies is
3159 * close to raid_disks, then resync window could increases
3160 * linearly with the increase of raid_disks, which means
3161 * we will suspend a really large IO window while it is not
3162 * necessary. If raid_disks is not divisible by near_copies,
3163 * an extra chunk is needed to ensure the whole "stripe" is
3167 chunks = conf->geo.raid_disks / conf->geo.near_copies;
3168 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3172 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3175 * At least use a 32M window to align with raid1's resync window
3177 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3178 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3180 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3184 * perform a "sync" on one "block"
3186 * We need to make sure that no normal I/O request - particularly write
3187 * requests - conflict with active sync requests.
3189 * This is achieved by tracking pending requests and a 'barrier' concept
3190 * that can be installed to exclude normal IO requests.
3192 * Resync and recovery are handled very differently.
3193 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3195 * For resync, we iterate over virtual addresses, read all copies,
3196 * and update if there are differences. If only one copy is live,
3198 * For recovery, we iterate over physical addresses, read a good
3199 * value for each non-in_sync drive, and over-write.
3201 * So, for recovery we may have several outstanding complex requests for a
3202 * given address, one for each out-of-sync device. We model this by allocating
3203 * a number of r10_bio structures, one for each out-of-sync device.
3204 * As we setup these structures, we collect all bio's together into a list
3205 * which we then process collectively to add pages, and then process again
3206 * to pass to submit_bio_noacct.
3208 * The r10_bio structures are linked using a borrowed master_bio pointer.
3209 * This link is counted in ->remaining. When the r10_bio that points to NULL
3210 * has its remaining count decremented to 0, the whole complex operation
3215 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3218 struct r10conf *conf = mddev->private;
3219 struct r10bio *r10_bio;
3220 struct bio *biolist = NULL, *bio;
3221 sector_t max_sector, nr_sectors;
3224 sector_t sync_blocks;
3225 sector_t sectors_skipped = 0;
3226 int chunks_skipped = 0;
3227 sector_t chunk_mask = conf->geo.chunk_mask;
3230 if (!mempool_initialized(&conf->r10buf_pool))
3231 if (init_resync(conf))
3235 * Allow skipping a full rebuild for incremental assembly
3236 * of a clean array, like RAID1 does.
3238 if (mddev->bitmap == NULL &&
3239 mddev->recovery_cp == MaxSector &&
3240 mddev->reshape_position == MaxSector &&
3241 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3242 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3243 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3244 conf->fullsync == 0) {
3246 return mddev->dev_sectors - sector_nr;
3250 max_sector = mddev->dev_sectors;
3251 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3252 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3253 max_sector = mddev->resync_max_sectors;
3254 if (sector_nr >= max_sector) {
3255 conf->cluster_sync_low = 0;
3256 conf->cluster_sync_high = 0;
3258 /* If we aborted, we need to abort the
3259 * sync on the 'current' bitmap chucks (there can
3260 * be several when recovering multiple devices).
3261 * as we may have started syncing it but not finished.
3262 * We can find the current address in
3263 * mddev->curr_resync, but for recovery,
3264 * we need to convert that to several
3265 * virtual addresses.
3267 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3273 if (mddev->curr_resync < max_sector) { /* aborted */
3274 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3275 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3277 else for (i = 0; i < conf->geo.raid_disks; i++) {
3279 raid10_find_virt(conf, mddev->curr_resync, i);
3280 md_bitmap_end_sync(mddev->bitmap, sect,
3284 /* completed sync */
3285 if ((!mddev->bitmap || conf->fullsync)
3286 && conf->have_replacement
3287 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3288 /* Completed a full sync so the replacements
3289 * are now fully recovered.
3292 for (i = 0; i < conf->geo.raid_disks; i++) {
3293 struct md_rdev *rdev =
3294 rcu_dereference(conf->mirrors[i].replacement);
3296 rdev->recovery_offset = MaxSector;
3302 md_bitmap_close_sync(mddev->bitmap);
3305 return sectors_skipped;
3308 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3309 return reshape_request(mddev, sector_nr, skipped);
3311 if (chunks_skipped >= conf->geo.raid_disks) {
3312 /* if there has been nothing to do on any drive,
3313 * then there is nothing to do at all..
3316 return (max_sector - sector_nr) + sectors_skipped;
3319 if (max_sector > mddev->resync_max)
3320 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3322 /* make sure whole request will fit in a chunk - if chunks
3325 if (conf->geo.near_copies < conf->geo.raid_disks &&
3326 max_sector > (sector_nr | chunk_mask))
3327 max_sector = (sector_nr | chunk_mask) + 1;
3330 * If there is non-resync activity waiting for a turn, then let it
3331 * though before starting on this new sync request.
3333 if (conf->nr_waiting)
3334 schedule_timeout_uninterruptible(1);
3336 /* Again, very different code for resync and recovery.
3337 * Both must result in an r10bio with a list of bios that
3338 * have bi_end_io, bi_sector, bi_bdev set,
3339 * and bi_private set to the r10bio.
3340 * For recovery, we may actually create several r10bios
3341 * with 2 bios in each, that correspond to the bios in the main one.
3342 * In this case, the subordinate r10bios link back through a
3343 * borrowed master_bio pointer, and the counter in the master
3344 * includes a ref from each subordinate.
3346 /* First, we decide what to do and set ->bi_end_io
3347 * To end_sync_read if we want to read, and
3348 * end_sync_write if we will want to write.
3351 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3352 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3353 /* recovery... the complicated one */
3357 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3363 int need_recover = 0;
3364 int need_replace = 0;
3365 struct raid10_info *mirror = &conf->mirrors[i];
3366 struct md_rdev *mrdev, *mreplace;
3369 mrdev = rcu_dereference(mirror->rdev);
3370 mreplace = rcu_dereference(mirror->replacement);
3372 if (mrdev != NULL &&
3373 !test_bit(Faulty, &mrdev->flags) &&
3374 !test_bit(In_sync, &mrdev->flags))
3376 if (mreplace != NULL &&
3377 !test_bit(Faulty, &mreplace->flags))
3380 if (!need_recover && !need_replace) {
3386 /* want to reconstruct this device */
3388 sect = raid10_find_virt(conf, sector_nr, i);
3389 if (sect >= mddev->resync_max_sectors) {
3390 /* last stripe is not complete - don't
3391 * try to recover this sector.
3396 if (mreplace && test_bit(Faulty, &mreplace->flags))
3398 /* Unless we are doing a full sync, or a replacement
3399 * we only need to recover the block if it is set in
3402 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3404 if (sync_blocks < max_sync)
3405 max_sync = sync_blocks;
3409 /* yep, skip the sync_blocks here, but don't assume
3410 * that there will never be anything to do here
3412 chunks_skipped = -1;
3416 atomic_inc(&mrdev->nr_pending);
3418 atomic_inc(&mreplace->nr_pending);
3421 r10_bio = raid10_alloc_init_r10buf(conf);
3423 raise_barrier(conf, rb2 != NULL);
3424 atomic_set(&r10_bio->remaining, 0);
3426 r10_bio->master_bio = (struct bio*)rb2;
3428 atomic_inc(&rb2->remaining);
3429 r10_bio->mddev = mddev;
3430 set_bit(R10BIO_IsRecover, &r10_bio->state);
3431 r10_bio->sector = sect;
3433 raid10_find_phys(conf, r10_bio);
3435 /* Need to check if the array will still be
3439 for (j = 0; j < conf->geo.raid_disks; j++) {
3440 struct md_rdev *rdev = rcu_dereference(
3441 conf->mirrors[j].rdev);
3442 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3448 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3449 &sync_blocks, still_degraded);
3452 for (j=0; j<conf->copies;j++) {
3454 int d = r10_bio->devs[j].devnum;
3455 sector_t from_addr, to_addr;
3456 struct md_rdev *rdev =
3457 rcu_dereference(conf->mirrors[d].rdev);
3458 sector_t sector, first_bad;
3461 !test_bit(In_sync, &rdev->flags))
3463 /* This is where we read from */
3465 sector = r10_bio->devs[j].addr;
3467 if (is_badblock(rdev, sector, max_sync,
3468 &first_bad, &bad_sectors)) {
3469 if (first_bad > sector)
3470 max_sync = first_bad - sector;
3472 bad_sectors -= (sector
3474 if (max_sync > bad_sectors)
3475 max_sync = bad_sectors;
3479 bio = r10_bio->devs[0].bio;
3480 bio->bi_next = biolist;
3482 bio->bi_end_io = end_sync_read;
3483 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3484 if (test_bit(FailFast, &rdev->flags))
3485 bio->bi_opf |= MD_FAILFAST;
3486 from_addr = r10_bio->devs[j].addr;
3487 bio->bi_iter.bi_sector = from_addr +
3489 bio_set_dev(bio, rdev->bdev);
3490 atomic_inc(&rdev->nr_pending);
3491 /* and we write to 'i' (if not in_sync) */
3493 for (k=0; k<conf->copies; k++)
3494 if (r10_bio->devs[k].devnum == i)
3496 BUG_ON(k == conf->copies);
3497 to_addr = r10_bio->devs[k].addr;
3498 r10_bio->devs[0].devnum = d;
3499 r10_bio->devs[0].addr = from_addr;
3500 r10_bio->devs[1].devnum = i;
3501 r10_bio->devs[1].addr = to_addr;
3504 bio = r10_bio->devs[1].bio;
3505 bio->bi_next = biolist;
3507 bio->bi_end_io = end_sync_write;
3508 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3509 bio->bi_iter.bi_sector = to_addr
3510 + mrdev->data_offset;
3511 bio_set_dev(bio, mrdev->bdev);
3512 atomic_inc(&r10_bio->remaining);
3514 r10_bio->devs[1].bio->bi_end_io = NULL;
3516 /* and maybe write to replacement */
3517 bio = r10_bio->devs[1].repl_bio;
3519 bio->bi_end_io = NULL;
3520 /* Note: if need_replace, then bio
3521 * cannot be NULL as r10buf_pool_alloc will
3522 * have allocated it.
3526 bio->bi_next = biolist;
3528 bio->bi_end_io = end_sync_write;
3529 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3530 bio->bi_iter.bi_sector = to_addr +
3531 mreplace->data_offset;
3532 bio_set_dev(bio, mreplace->bdev);
3533 atomic_inc(&r10_bio->remaining);
3537 if (j == conf->copies) {
3538 /* Cannot recover, so abort the recovery or
3539 * record a bad block */
3541 /* problem is that there are bad blocks
3542 * on other device(s)
3545 for (k = 0; k < conf->copies; k++)
3546 if (r10_bio->devs[k].devnum == i)
3548 if (!test_bit(In_sync,
3550 && !rdev_set_badblocks(
3552 r10_bio->devs[k].addr,
3556 !rdev_set_badblocks(
3558 r10_bio->devs[k].addr,
3563 if (!test_and_set_bit(MD_RECOVERY_INTR,
3565 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3567 mirror->recovery_disabled
3568 = mddev->recovery_disabled;
3572 atomic_dec(&rb2->remaining);
3574 rdev_dec_pending(mrdev, mddev);
3576 rdev_dec_pending(mreplace, mddev);
3579 rdev_dec_pending(mrdev, mddev);
3581 rdev_dec_pending(mreplace, mddev);
3582 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3583 /* Only want this if there is elsewhere to
3584 * read from. 'j' is currently the first
3588 for (; j < conf->copies; j++) {
3589 int d = r10_bio->devs[j].devnum;
3590 if (conf->mirrors[d].rdev &&
3592 &conf->mirrors[d].rdev->flags))
3596 r10_bio->devs[0].bio->bi_opf
3600 if (biolist == NULL) {
3602 struct r10bio *rb2 = r10_bio;
3603 r10_bio = (struct r10bio*) rb2->master_bio;
3604 rb2->master_bio = NULL;
3610 /* resync. Schedule a read for every block at this virt offset */
3614 * Since curr_resync_completed could probably not update in
3615 * time, and we will set cluster_sync_low based on it.
3616 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3617 * safety reason, which ensures curr_resync_completed is
3618 * updated in bitmap_cond_end_sync.
3620 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3621 mddev_is_clustered(mddev) &&
3622 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3624 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3625 &sync_blocks, mddev->degraded) &&
3626 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3627 &mddev->recovery)) {
3628 /* We can skip this block */
3630 return sync_blocks + sectors_skipped;
3632 if (sync_blocks < max_sync)
3633 max_sync = sync_blocks;
3634 r10_bio = raid10_alloc_init_r10buf(conf);
3637 r10_bio->mddev = mddev;
3638 atomic_set(&r10_bio->remaining, 0);
3639 raise_barrier(conf, 0);
3640 conf->next_resync = sector_nr;
3642 r10_bio->master_bio = NULL;
3643 r10_bio->sector = sector_nr;
3644 set_bit(R10BIO_IsSync, &r10_bio->state);
3645 raid10_find_phys(conf, r10_bio);
3646 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3648 for (i = 0; i < conf->copies; i++) {
3649 int d = r10_bio->devs[i].devnum;
3650 sector_t first_bad, sector;
3652 struct md_rdev *rdev;
3654 if (r10_bio->devs[i].repl_bio)
3655 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3657 bio = r10_bio->devs[i].bio;
3658 bio->bi_status = BLK_STS_IOERR;
3660 rdev = rcu_dereference(conf->mirrors[d].rdev);
3661 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3665 sector = r10_bio->devs[i].addr;
3666 if (is_badblock(rdev, sector, max_sync,
3667 &first_bad, &bad_sectors)) {
3668 if (first_bad > sector)
3669 max_sync = first_bad - sector;
3671 bad_sectors -= (sector - first_bad);
3672 if (max_sync > bad_sectors)
3673 max_sync = bad_sectors;
3678 atomic_inc(&rdev->nr_pending);
3679 atomic_inc(&r10_bio->remaining);
3680 bio->bi_next = biolist;
3682 bio->bi_end_io = end_sync_read;
3683 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3684 if (test_bit(FailFast, &rdev->flags))
3685 bio->bi_opf |= MD_FAILFAST;
3686 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3687 bio_set_dev(bio, rdev->bdev);
3690 rdev = rcu_dereference(conf->mirrors[d].replacement);
3691 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3695 atomic_inc(&rdev->nr_pending);
3697 /* Need to set up for writing to the replacement */
3698 bio = r10_bio->devs[i].repl_bio;
3699 bio->bi_status = BLK_STS_IOERR;
3701 sector = r10_bio->devs[i].addr;
3702 bio->bi_next = biolist;
3704 bio->bi_end_io = end_sync_write;
3705 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3706 if (test_bit(FailFast, &rdev->flags))
3707 bio->bi_opf |= MD_FAILFAST;
3708 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3709 bio_set_dev(bio, rdev->bdev);
3715 for (i=0; i<conf->copies; i++) {
3716 int d = r10_bio->devs[i].devnum;
3717 if (r10_bio->devs[i].bio->bi_end_io)
3718 rdev_dec_pending(conf->mirrors[d].rdev,
3720 if (r10_bio->devs[i].repl_bio &&
3721 r10_bio->devs[i].repl_bio->bi_end_io)
3723 conf->mirrors[d].replacement,
3733 if (sector_nr + max_sync < max_sector)
3734 max_sector = sector_nr + max_sync;
3737 int len = PAGE_SIZE;
3738 if (sector_nr + (len>>9) > max_sector)
3739 len = (max_sector - sector_nr) << 9;
3742 for (bio= biolist ; bio ; bio=bio->bi_next) {
3743 struct resync_pages *rp = get_resync_pages(bio);
3744 page = resync_fetch_page(rp, page_idx);
3746 * won't fail because the vec table is big enough
3747 * to hold all these pages
3749 bio_add_page(bio, page, len, 0);
3751 nr_sectors += len>>9;
3752 sector_nr += len>>9;
3753 } while (++page_idx < RESYNC_PAGES);
3754 r10_bio->sectors = nr_sectors;
3756 if (mddev_is_clustered(mddev) &&
3757 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3758 /* It is resync not recovery */
3759 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3760 conf->cluster_sync_low = mddev->curr_resync_completed;
3761 raid10_set_cluster_sync_high(conf);
3762 /* Send resync message */
3763 md_cluster_ops->resync_info_update(mddev,
3764 conf->cluster_sync_low,
3765 conf->cluster_sync_high);
3767 } else if (mddev_is_clustered(mddev)) {
3768 /* This is recovery not resync */
3769 sector_t sect_va1, sect_va2;
3770 bool broadcast_msg = false;
3772 for (i = 0; i < conf->geo.raid_disks; i++) {
3774 * sector_nr is a device address for recovery, so we
3775 * need translate it to array address before compare
3776 * with cluster_sync_high.
3778 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3780 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3781 broadcast_msg = true;
3783 * curr_resync_completed is similar as
3784 * sector_nr, so make the translation too.
3786 sect_va2 = raid10_find_virt(conf,
3787 mddev->curr_resync_completed, i);
3789 if (conf->cluster_sync_low == 0 ||
3790 conf->cluster_sync_low > sect_va2)
3791 conf->cluster_sync_low = sect_va2;
3794 if (broadcast_msg) {
3795 raid10_set_cluster_sync_high(conf);
3796 md_cluster_ops->resync_info_update(mddev,
3797 conf->cluster_sync_low,
3798 conf->cluster_sync_high);
3804 biolist = biolist->bi_next;
3806 bio->bi_next = NULL;
3807 r10_bio = get_resync_r10bio(bio);
3808 r10_bio->sectors = nr_sectors;
3810 if (bio->bi_end_io == end_sync_read) {
3811 md_sync_acct_bio(bio, nr_sectors);
3813 submit_bio_noacct(bio);
3817 if (sectors_skipped)
3818 /* pretend they weren't skipped, it makes
3819 * no important difference in this case
3821 md_done_sync(mddev, sectors_skipped, 1);
3823 return sectors_skipped + nr_sectors;
3825 /* There is nowhere to write, so all non-sync
3826 * drives must be failed or in resync, all drives
3827 * have a bad block, so try the next chunk...
3829 if (sector_nr + max_sync < max_sector)
3830 max_sector = sector_nr + max_sync;
3832 sectors_skipped += (max_sector - sector_nr);
3834 sector_nr = max_sector;
3839 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3842 struct r10conf *conf = mddev->private;
3845 raid_disks = min(conf->geo.raid_disks,
3846 conf->prev.raid_disks);
3848 sectors = conf->dev_sectors;
3850 size = sectors >> conf->geo.chunk_shift;
3851 sector_div(size, conf->geo.far_copies);
3852 size = size * raid_disks;
3853 sector_div(size, conf->geo.near_copies);
3855 return size << conf->geo.chunk_shift;
3858 static void calc_sectors(struct r10conf *conf, sector_t size)
3860 /* Calculate the number of sectors-per-device that will
3861 * actually be used, and set conf->dev_sectors and
3865 size = size >> conf->geo.chunk_shift;
3866 sector_div(size, conf->geo.far_copies);
3867 size = size * conf->geo.raid_disks;
3868 sector_div(size, conf->geo.near_copies);
3869 /* 'size' is now the number of chunks in the array */
3870 /* calculate "used chunks per device" */
3871 size = size * conf->copies;
3873 /* We need to round up when dividing by raid_disks to
3874 * get the stride size.
3876 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3878 conf->dev_sectors = size << conf->geo.chunk_shift;
3880 if (conf->geo.far_offset)
3881 conf->geo.stride = 1 << conf->geo.chunk_shift;
3883 sector_div(size, conf->geo.far_copies);
3884 conf->geo.stride = size << conf->geo.chunk_shift;
3888 enum geo_type {geo_new, geo_old, geo_start};
3889 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3892 int layout, chunk, disks;
3895 layout = mddev->layout;
3896 chunk = mddev->chunk_sectors;
3897 disks = mddev->raid_disks - mddev->delta_disks;
3900 layout = mddev->new_layout;
3901 chunk = mddev->new_chunk_sectors;
3902 disks = mddev->raid_disks;
3904 default: /* avoid 'may be unused' warnings */
3905 case geo_start: /* new when starting reshape - raid_disks not
3907 layout = mddev->new_layout;
3908 chunk = mddev->new_chunk_sectors;
3909 disks = mddev->raid_disks + mddev->delta_disks;
3914 if (chunk < (PAGE_SIZE >> 9) ||
3915 !is_power_of_2(chunk))
3918 fc = (layout >> 8) & 255;
3919 fo = layout & (1<<16);
3920 geo->raid_disks = disks;
3921 geo->near_copies = nc;
3922 geo->far_copies = fc;
3923 geo->far_offset = fo;
3924 switch (layout >> 17) {
3925 case 0: /* original layout. simple but not always optimal */
3926 geo->far_set_size = disks;
3928 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3929 * actually using this, but leave code here just in case.*/
3930 geo->far_set_size = disks/fc;
3931 WARN(geo->far_set_size < fc,
3932 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3934 case 2: /* "improved" layout fixed to match documentation */
3935 geo->far_set_size = fc * nc;
3937 default: /* Not a valid layout */
3940 geo->chunk_mask = chunk - 1;
3941 geo->chunk_shift = ffz(~chunk);
3945 static struct r10conf *setup_conf(struct mddev *mddev)
3947 struct r10conf *conf = NULL;
3952 copies = setup_geo(&geo, mddev, geo_new);
3955 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3956 mdname(mddev), PAGE_SIZE);
3960 if (copies < 2 || copies > mddev->raid_disks) {
3961 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3962 mdname(mddev), mddev->new_layout);
3967 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3971 /* FIXME calc properly */
3972 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3973 sizeof(struct raid10_info),
3978 conf->tmppage = alloc_page(GFP_KERNEL);
3983 conf->copies = copies;
3984 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3985 rbio_pool_free, conf);
3989 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3993 calc_sectors(conf, mddev->dev_sectors);
3994 if (mddev->reshape_position == MaxSector) {
3995 conf->prev = conf->geo;
3996 conf->reshape_progress = MaxSector;
3998 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
4002 conf->reshape_progress = mddev->reshape_position;
4003 if (conf->prev.far_offset)
4004 conf->prev.stride = 1 << conf->prev.chunk_shift;
4006 /* far_copies must be 1 */
4007 conf->prev.stride = conf->dev_sectors;
4009 conf->reshape_safe = conf->reshape_progress;
4010 spin_lock_init(&conf->device_lock);
4011 INIT_LIST_HEAD(&conf->retry_list);
4012 INIT_LIST_HEAD(&conf->bio_end_io_list);
4014 spin_lock_init(&conf->resync_lock);
4015 init_waitqueue_head(&conf->wait_barrier);
4016 atomic_set(&conf->nr_pending, 0);
4019 conf->thread = md_register_thread(raid10d, mddev, "raid10");
4023 conf->mddev = mddev;
4028 mempool_exit(&conf->r10bio_pool);
4029 kfree(conf->mirrors);
4030 safe_put_page(conf->tmppage);
4031 bioset_exit(&conf->bio_split);
4034 return ERR_PTR(err);
4037 static void raid10_set_io_opt(struct r10conf *conf)
4039 int raid_disks = conf->geo.raid_disks;
4041 if (!(conf->geo.raid_disks % conf->geo.near_copies))
4042 raid_disks /= conf->geo.near_copies;
4043 blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4047 static int raid10_run(struct mddev *mddev)
4049 struct r10conf *conf;
4051 struct raid10_info *disk;
4052 struct md_rdev *rdev;
4054 sector_t min_offset_diff = 0;
4056 bool discard_supported = false;
4058 if (mddev_init_writes_pending(mddev) < 0)
4061 if (mddev->private == NULL) {
4062 conf = setup_conf(mddev);
4064 return PTR_ERR(conf);
4065 mddev->private = conf;
4067 conf = mddev->private;
4071 if (mddev_is_clustered(conf->mddev)) {
4074 fc = (mddev->layout >> 8) & 255;
4075 fo = mddev->layout & (1<<16);
4076 if (fc > 1 || fo > 0) {
4077 pr_err("only near layout is supported by clustered"
4083 mddev->thread = conf->thread;
4084 conf->thread = NULL;
4087 blk_queue_max_discard_sectors(mddev->queue,
4089 blk_queue_max_write_same_sectors(mddev->queue, 0);
4090 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4091 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4092 raid10_set_io_opt(conf);
4095 rdev_for_each(rdev, mddev) {
4098 disk_idx = rdev->raid_disk;
4101 if (disk_idx >= conf->geo.raid_disks &&
4102 disk_idx >= conf->prev.raid_disks)
4104 disk = conf->mirrors + disk_idx;
4106 if (test_bit(Replacement, &rdev->flags)) {
4107 if (disk->replacement)
4109 disk->replacement = rdev;
4115 diff = (rdev->new_data_offset - rdev->data_offset);
4116 if (!mddev->reshape_backwards)
4120 if (first || diff < min_offset_diff)
4121 min_offset_diff = diff;
4124 disk_stack_limits(mddev->gendisk, rdev->bdev,
4125 rdev->data_offset << 9);
4127 disk->head_position = 0;
4129 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
4130 discard_supported = true;
4135 if (discard_supported)
4136 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
4139 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
4142 /* need to check that every block has at least one working mirror */
4143 if (!enough(conf, -1)) {
4144 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4149 if (conf->reshape_progress != MaxSector) {
4150 /* must ensure that shape change is supported */
4151 if (conf->geo.far_copies != 1 &&
4152 conf->geo.far_offset == 0)
4154 if (conf->prev.far_copies != 1 &&
4155 conf->prev.far_offset == 0)
4159 mddev->degraded = 0;
4161 i < conf->geo.raid_disks
4162 || i < conf->prev.raid_disks;
4165 disk = conf->mirrors + i;
4167 if (!disk->rdev && disk->replacement) {
4168 /* The replacement is all we have - use it */
4169 disk->rdev = disk->replacement;
4170 disk->replacement = NULL;
4171 clear_bit(Replacement, &disk->rdev->flags);
4175 !test_bit(In_sync, &disk->rdev->flags)) {
4176 disk->head_position = 0;
4179 disk->rdev->saved_raid_disk < 0)
4183 if (disk->replacement &&
4184 !test_bit(In_sync, &disk->replacement->flags) &&
4185 disk->replacement->saved_raid_disk < 0) {
4189 disk->recovery_disabled = mddev->recovery_disabled - 1;
4192 if (mddev->recovery_cp != MaxSector)
4193 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4195 pr_info("md/raid10:%s: active with %d out of %d devices\n",
4196 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4197 conf->geo.raid_disks);
4199 * Ok, everything is just fine now
4201 mddev->dev_sectors = conf->dev_sectors;
4202 size = raid10_size(mddev, 0, 0);
4203 md_set_array_sectors(mddev, size);
4204 mddev->resync_max_sectors = size;
4205 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4207 if (md_integrity_register(mddev))
4210 if (conf->reshape_progress != MaxSector) {
4211 unsigned long before_length, after_length;
4213 before_length = ((1 << conf->prev.chunk_shift) *
4214 conf->prev.far_copies);
4215 after_length = ((1 << conf->geo.chunk_shift) *
4216 conf->geo.far_copies);
4218 if (max(before_length, after_length) > min_offset_diff) {
4219 /* This cannot work */
4220 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4223 conf->offset_diff = min_offset_diff;
4225 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4226 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4227 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4228 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4229 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4231 if (!mddev->sync_thread)
4238 md_unregister_thread(&mddev->thread);
4239 mempool_exit(&conf->r10bio_pool);
4240 safe_put_page(conf->tmppage);
4241 kfree(conf->mirrors);
4243 mddev->private = NULL;
4248 static void raid10_free(struct mddev *mddev, void *priv)
4250 struct r10conf *conf = priv;
4252 mempool_exit(&conf->r10bio_pool);
4253 safe_put_page(conf->tmppage);
4254 kfree(conf->mirrors);
4255 kfree(conf->mirrors_old);
4256 kfree(conf->mirrors_new);
4257 bioset_exit(&conf->bio_split);
4261 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4263 struct r10conf *conf = mddev->private;
4266 raise_barrier(conf, 0);
4268 lower_barrier(conf);
4271 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4273 /* Resize of 'far' arrays is not supported.
4274 * For 'near' and 'offset' arrays we can set the
4275 * number of sectors used to be an appropriate multiple
4276 * of the chunk size.
4277 * For 'offset', this is far_copies*chunksize.
4278 * For 'near' the multiplier is the LCM of
4279 * near_copies and raid_disks.
4280 * So if far_copies > 1 && !far_offset, fail.
4281 * Else find LCM(raid_disks, near_copy)*far_copies and
4282 * multiply by chunk_size. Then round to this number.
4283 * This is mostly done by raid10_size()
4285 struct r10conf *conf = mddev->private;
4286 sector_t oldsize, size;
4288 if (mddev->reshape_position != MaxSector)
4291 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4294 oldsize = raid10_size(mddev, 0, 0);
4295 size = raid10_size(mddev, sectors, 0);
4296 if (mddev->external_size &&
4297 mddev->array_sectors > size)
4299 if (mddev->bitmap) {
4300 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4304 md_set_array_sectors(mddev, size);
4305 if (sectors > mddev->dev_sectors &&
4306 mddev->recovery_cp > oldsize) {
4307 mddev->recovery_cp = oldsize;
4308 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4310 calc_sectors(conf, sectors);
4311 mddev->dev_sectors = conf->dev_sectors;
4312 mddev->resync_max_sectors = size;
4316 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4318 struct md_rdev *rdev;
4319 struct r10conf *conf;
4321 if (mddev->degraded > 0) {
4322 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4324 return ERR_PTR(-EINVAL);
4326 sector_div(size, devs);
4328 /* Set new parameters */
4329 mddev->new_level = 10;
4330 /* new layout: far_copies = 1, near_copies = 2 */
4331 mddev->new_layout = (1<<8) + 2;
4332 mddev->new_chunk_sectors = mddev->chunk_sectors;
4333 mddev->delta_disks = mddev->raid_disks;
4334 mddev->raid_disks *= 2;
4335 /* make sure it will be not marked as dirty */
4336 mddev->recovery_cp = MaxSector;
4337 mddev->dev_sectors = size;
4339 conf = setup_conf(mddev);
4340 if (!IS_ERR(conf)) {
4341 rdev_for_each(rdev, mddev)
4342 if (rdev->raid_disk >= 0) {
4343 rdev->new_raid_disk = rdev->raid_disk * 2;
4344 rdev->sectors = size;
4352 static void *raid10_takeover(struct mddev *mddev)
4354 struct r0conf *raid0_conf;
4356 /* raid10 can take over:
4357 * raid0 - providing it has only two drives
4359 if (mddev->level == 0) {
4360 /* for raid0 takeover only one zone is supported */
4361 raid0_conf = mddev->private;
4362 if (raid0_conf->nr_strip_zones > 1) {
4363 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4365 return ERR_PTR(-EINVAL);
4367 return raid10_takeover_raid0(mddev,
4368 raid0_conf->strip_zone->zone_end,
4369 raid0_conf->strip_zone->nb_dev);
4371 return ERR_PTR(-EINVAL);
4374 static int raid10_check_reshape(struct mddev *mddev)
4376 /* Called when there is a request to change
4377 * - layout (to ->new_layout)
4378 * - chunk size (to ->new_chunk_sectors)
4379 * - raid_disks (by delta_disks)
4380 * or when trying to restart a reshape that was ongoing.
4382 * We need to validate the request and possibly allocate
4383 * space if that might be an issue later.
4385 * Currently we reject any reshape of a 'far' mode array,
4386 * allow chunk size to change if new is generally acceptable,
4387 * allow raid_disks to increase, and allow
4388 * a switch between 'near' mode and 'offset' mode.
4390 struct r10conf *conf = mddev->private;
4393 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4396 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4397 /* mustn't change number of copies */
4399 if (geo.far_copies > 1 && !geo.far_offset)
4400 /* Cannot switch to 'far' mode */
4403 if (mddev->array_sectors & geo.chunk_mask)
4404 /* not factor of array size */
4407 if (!enough(conf, -1))
4410 kfree(conf->mirrors_new);
4411 conf->mirrors_new = NULL;
4412 if (mddev->delta_disks > 0) {
4413 /* allocate new 'mirrors' list */
4415 kcalloc(mddev->raid_disks + mddev->delta_disks,
4416 sizeof(struct raid10_info),
4418 if (!conf->mirrors_new)
4425 * Need to check if array has failed when deciding whether to:
4427 * - remove non-faulty devices
4430 * This determination is simple when no reshape is happening.
4431 * However if there is a reshape, we need to carefully check
4432 * both the before and after sections.
4433 * This is because some failed devices may only affect one
4434 * of the two sections, and some non-in_sync devices may
4435 * be insync in the section most affected by failed devices.
4437 static int calc_degraded(struct r10conf *conf)
4439 int degraded, degraded2;
4444 /* 'prev' section first */
4445 for (i = 0; i < conf->prev.raid_disks; i++) {
4446 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4447 if (!rdev || test_bit(Faulty, &rdev->flags))
4449 else if (!test_bit(In_sync, &rdev->flags))
4450 /* When we can reduce the number of devices in
4451 * an array, this might not contribute to
4452 * 'degraded'. It does now.
4457 if (conf->geo.raid_disks == conf->prev.raid_disks)
4461 for (i = 0; i < conf->geo.raid_disks; i++) {
4462 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4463 if (!rdev || test_bit(Faulty, &rdev->flags))
4465 else if (!test_bit(In_sync, &rdev->flags)) {
4466 /* If reshape is increasing the number of devices,
4467 * this section has already been recovered, so
4468 * it doesn't contribute to degraded.
4471 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4476 if (degraded2 > degraded)
4481 static int raid10_start_reshape(struct mddev *mddev)
4483 /* A 'reshape' has been requested. This commits
4484 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4485 * This also checks if there are enough spares and adds them
4487 * We currently require enough spares to make the final
4488 * array non-degraded. We also require that the difference
4489 * between old and new data_offset - on each device - is
4490 * enough that we never risk over-writing.
4493 unsigned long before_length, after_length;
4494 sector_t min_offset_diff = 0;
4497 struct r10conf *conf = mddev->private;
4498 struct md_rdev *rdev;
4502 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4505 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4508 before_length = ((1 << conf->prev.chunk_shift) *
4509 conf->prev.far_copies);
4510 after_length = ((1 << conf->geo.chunk_shift) *
4511 conf->geo.far_copies);
4513 rdev_for_each(rdev, mddev) {
4514 if (!test_bit(In_sync, &rdev->flags)
4515 && !test_bit(Faulty, &rdev->flags))
4517 if (rdev->raid_disk >= 0) {
4518 long long diff = (rdev->new_data_offset
4519 - rdev->data_offset);
4520 if (!mddev->reshape_backwards)
4524 if (first || diff < min_offset_diff)
4525 min_offset_diff = diff;
4530 if (max(before_length, after_length) > min_offset_diff)
4533 if (spares < mddev->delta_disks)
4536 conf->offset_diff = min_offset_diff;
4537 spin_lock_irq(&conf->device_lock);
4538 if (conf->mirrors_new) {
4539 memcpy(conf->mirrors_new, conf->mirrors,
4540 sizeof(struct raid10_info)*conf->prev.raid_disks);
4542 kfree(conf->mirrors_old);
4543 conf->mirrors_old = conf->mirrors;
4544 conf->mirrors = conf->mirrors_new;
4545 conf->mirrors_new = NULL;
4547 setup_geo(&conf->geo, mddev, geo_start);
4549 if (mddev->reshape_backwards) {
4550 sector_t size = raid10_size(mddev, 0, 0);
4551 if (size < mddev->array_sectors) {
4552 spin_unlock_irq(&conf->device_lock);
4553 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4557 mddev->resync_max_sectors = size;
4558 conf->reshape_progress = size;
4560 conf->reshape_progress = 0;
4561 conf->reshape_safe = conf->reshape_progress;
4562 spin_unlock_irq(&conf->device_lock);
4564 if (mddev->delta_disks && mddev->bitmap) {
4565 struct mdp_superblock_1 *sb = NULL;
4566 sector_t oldsize, newsize;
4568 oldsize = raid10_size(mddev, 0, 0);
4569 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4571 if (!mddev_is_clustered(mddev)) {
4572 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4579 rdev_for_each(rdev, mddev) {
4580 if (rdev->raid_disk > -1 &&
4581 !test_bit(Faulty, &rdev->flags))
4582 sb = page_address(rdev->sb_page);
4586 * some node is already performing reshape, and no need to
4587 * call md_bitmap_resize again since it should be called when
4588 * receiving BITMAP_RESIZE msg
4590 if ((sb && (le32_to_cpu(sb->feature_map) &
4591 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4594 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4598 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4600 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4605 if (mddev->delta_disks > 0) {
4606 rdev_for_each(rdev, mddev)
4607 if (rdev->raid_disk < 0 &&
4608 !test_bit(Faulty, &rdev->flags)) {
4609 if (raid10_add_disk(mddev, rdev) == 0) {
4610 if (rdev->raid_disk >=
4611 conf->prev.raid_disks)
4612 set_bit(In_sync, &rdev->flags);
4614 rdev->recovery_offset = 0;
4616 /* Failure here is OK */
4617 sysfs_link_rdev(mddev, rdev);
4619 } else if (rdev->raid_disk >= conf->prev.raid_disks
4620 && !test_bit(Faulty, &rdev->flags)) {
4621 /* This is a spare that was manually added */
4622 set_bit(In_sync, &rdev->flags);
4625 /* When a reshape changes the number of devices,
4626 * ->degraded is measured against the larger of the
4627 * pre and post numbers.
4629 spin_lock_irq(&conf->device_lock);
4630 mddev->degraded = calc_degraded(conf);
4631 spin_unlock_irq(&conf->device_lock);
4632 mddev->raid_disks = conf->geo.raid_disks;
4633 mddev->reshape_position = conf->reshape_progress;
4634 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4636 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4637 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4638 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4639 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4640 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4642 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4644 if (!mddev->sync_thread) {
4648 conf->reshape_checkpoint = jiffies;
4649 md_wakeup_thread(mddev->sync_thread);
4650 md_new_event(mddev);
4654 mddev->recovery = 0;
4655 spin_lock_irq(&conf->device_lock);
4656 conf->geo = conf->prev;
4657 mddev->raid_disks = conf->geo.raid_disks;
4658 rdev_for_each(rdev, mddev)
4659 rdev->new_data_offset = rdev->data_offset;
4661 conf->reshape_progress = MaxSector;
4662 conf->reshape_safe = MaxSector;
4663 mddev->reshape_position = MaxSector;
4664 spin_unlock_irq(&conf->device_lock);
4668 /* Calculate the last device-address that could contain
4669 * any block from the chunk that includes the array-address 's'
4670 * and report the next address.
4671 * i.e. the address returned will be chunk-aligned and after
4672 * any data that is in the chunk containing 's'.
4674 static sector_t last_dev_address(sector_t s, struct geom *geo)
4676 s = (s | geo->chunk_mask) + 1;
4677 s >>= geo->chunk_shift;
4678 s *= geo->near_copies;
4679 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4680 s *= geo->far_copies;
4681 s <<= geo->chunk_shift;
4685 /* Calculate the first device-address that could contain
4686 * any block from the chunk that includes the array-address 's'.
4687 * This too will be the start of a chunk
4689 static sector_t first_dev_address(sector_t s, struct geom *geo)
4691 s >>= geo->chunk_shift;
4692 s *= geo->near_copies;
4693 sector_div(s, geo->raid_disks);
4694 s *= geo->far_copies;
4695 s <<= geo->chunk_shift;
4699 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4702 /* We simply copy at most one chunk (smallest of old and new)
4703 * at a time, possibly less if that exceeds RESYNC_PAGES,
4704 * or we hit a bad block or something.
4705 * This might mean we pause for normal IO in the middle of
4706 * a chunk, but that is not a problem as mddev->reshape_position
4707 * can record any location.
4709 * If we will want to write to a location that isn't
4710 * yet recorded as 'safe' (i.e. in metadata on disk) then
4711 * we need to flush all reshape requests and update the metadata.
4713 * When reshaping forwards (e.g. to more devices), we interpret
4714 * 'safe' as the earliest block which might not have been copied
4715 * down yet. We divide this by previous stripe size and multiply
4716 * by previous stripe length to get lowest device offset that we
4717 * cannot write to yet.
4718 * We interpret 'sector_nr' as an address that we want to write to.
4719 * From this we use last_device_address() to find where we might
4720 * write to, and first_device_address on the 'safe' position.
4721 * If this 'next' write position is after the 'safe' position,
4722 * we must update the metadata to increase the 'safe' position.
4724 * When reshaping backwards, we round in the opposite direction
4725 * and perform the reverse test: next write position must not be
4726 * less than current safe position.
4728 * In all this the minimum difference in data offsets
4729 * (conf->offset_diff - always positive) allows a bit of slack,
4730 * so next can be after 'safe', but not by more than offset_diff
4732 * We need to prepare all the bios here before we start any IO
4733 * to ensure the size we choose is acceptable to all devices.
4734 * The means one for each copy for write-out and an extra one for
4736 * We store the read-in bio in ->master_bio and the others in
4737 * ->devs[x].bio and ->devs[x].repl_bio.
4739 struct r10conf *conf = mddev->private;
4740 struct r10bio *r10_bio;
4741 sector_t next, safe, last;
4745 struct md_rdev *rdev;
4748 struct bio *bio, *read_bio;
4749 int sectors_done = 0;
4750 struct page **pages;
4752 if (sector_nr == 0) {
4753 /* If restarting in the middle, skip the initial sectors */
4754 if (mddev->reshape_backwards &&
4755 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4756 sector_nr = (raid10_size(mddev, 0, 0)
4757 - conf->reshape_progress);
4758 } else if (!mddev->reshape_backwards &&
4759 conf->reshape_progress > 0)
4760 sector_nr = conf->reshape_progress;
4762 mddev->curr_resync_completed = sector_nr;
4763 sysfs_notify_dirent_safe(mddev->sysfs_completed);
4769 /* We don't use sector_nr to track where we are up to
4770 * as that doesn't work well for ->reshape_backwards.
4771 * So just use ->reshape_progress.
4773 if (mddev->reshape_backwards) {
4774 /* 'next' is the earliest device address that we might
4775 * write to for this chunk in the new layout
4777 next = first_dev_address(conf->reshape_progress - 1,
4780 /* 'safe' is the last device address that we might read from
4781 * in the old layout after a restart
4783 safe = last_dev_address(conf->reshape_safe - 1,
4786 if (next + conf->offset_diff < safe)
4789 last = conf->reshape_progress - 1;
4790 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4791 & conf->prev.chunk_mask);
4792 if (sector_nr + RESYNC_SECTORS < last)
4793 sector_nr = last + 1 - RESYNC_SECTORS;
4795 /* 'next' is after the last device address that we
4796 * might write to for this chunk in the new layout
4798 next = last_dev_address(conf->reshape_progress, &conf->geo);
4800 /* 'safe' is the earliest device address that we might
4801 * read from in the old layout after a restart
4803 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4805 /* Need to update metadata if 'next' might be beyond 'safe'
4806 * as that would possibly corrupt data
4808 if (next > safe + conf->offset_diff)
4811 sector_nr = conf->reshape_progress;
4812 last = sector_nr | (conf->geo.chunk_mask
4813 & conf->prev.chunk_mask);
4815 if (sector_nr + RESYNC_SECTORS <= last)
4816 last = sector_nr + RESYNC_SECTORS - 1;
4820 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4821 /* Need to update reshape_position in metadata */
4823 mddev->reshape_position = conf->reshape_progress;
4824 if (mddev->reshape_backwards)
4825 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4826 - conf->reshape_progress;
4828 mddev->curr_resync_completed = conf->reshape_progress;
4829 conf->reshape_checkpoint = jiffies;
4830 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4831 md_wakeup_thread(mddev->thread);
4832 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4833 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4834 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4835 allow_barrier(conf);
4836 return sectors_done;
4838 conf->reshape_safe = mddev->reshape_position;
4839 allow_barrier(conf);
4842 raise_barrier(conf, 0);
4844 /* Now schedule reads for blocks from sector_nr to last */
4845 r10_bio = raid10_alloc_init_r10buf(conf);
4847 raise_barrier(conf, 1);
4848 atomic_set(&r10_bio->remaining, 0);
4849 r10_bio->mddev = mddev;
4850 r10_bio->sector = sector_nr;
4851 set_bit(R10BIO_IsReshape, &r10_bio->state);
4852 r10_bio->sectors = last - sector_nr + 1;
4853 rdev = read_balance(conf, r10_bio, &max_sectors);
4854 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4857 /* Cannot read from here, so need to record bad blocks
4858 * on all the target devices.
4861 mempool_free(r10_bio, &conf->r10buf_pool);
4862 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4863 return sectors_done;
4866 read_bio = bio_alloc_bioset(GFP_KERNEL, RESYNC_PAGES, &mddev->bio_set);
4868 bio_set_dev(read_bio, rdev->bdev);
4869 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4870 + rdev->data_offset);
4871 read_bio->bi_private = r10_bio;
4872 read_bio->bi_end_io = end_reshape_read;
4873 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4874 r10_bio->master_bio = read_bio;
4875 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4878 * Broadcast RESYNC message to other nodes, so all nodes would not
4879 * write to the region to avoid conflict.
4881 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4882 struct mdp_superblock_1 *sb = NULL;
4883 int sb_reshape_pos = 0;
4885 conf->cluster_sync_low = sector_nr;
4886 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4887 sb = page_address(rdev->sb_page);
4889 sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4891 * Set cluster_sync_low again if next address for array
4892 * reshape is less than cluster_sync_low. Since we can't
4893 * update cluster_sync_low until it has finished reshape.
4895 if (sb_reshape_pos < conf->cluster_sync_low)
4896 conf->cluster_sync_low = sb_reshape_pos;
4899 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4900 conf->cluster_sync_high);
4903 /* Now find the locations in the new layout */
4904 __raid10_find_phys(&conf->geo, r10_bio);
4907 read_bio->bi_next = NULL;
4910 for (s = 0; s < conf->copies*2; s++) {
4912 int d = r10_bio->devs[s/2].devnum;
4913 struct md_rdev *rdev2;
4915 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4916 b = r10_bio->devs[s/2].repl_bio;
4918 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4919 b = r10_bio->devs[s/2].bio;
4921 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4924 bio_set_dev(b, rdev2->bdev);
4925 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4926 rdev2->new_data_offset;
4927 b->bi_end_io = end_reshape_write;
4928 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4933 /* Now add as many pages as possible to all of these bios. */
4936 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4937 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4938 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4939 int len = (max_sectors - s) << 9;
4940 if (len > PAGE_SIZE)
4942 for (bio = blist; bio ; bio = bio->bi_next) {
4944 * won't fail because the vec table is big enough
4945 * to hold all these pages
4947 bio_add_page(bio, page, len, 0);
4949 sector_nr += len >> 9;
4950 nr_sectors += len >> 9;
4953 r10_bio->sectors = nr_sectors;
4955 /* Now submit the read */
4956 md_sync_acct_bio(read_bio, r10_bio->sectors);
4957 atomic_inc(&r10_bio->remaining);
4958 read_bio->bi_next = NULL;
4959 submit_bio_noacct(read_bio);
4960 sectors_done += nr_sectors;
4961 if (sector_nr <= last)
4964 lower_barrier(conf);
4966 /* Now that we have done the whole section we can
4967 * update reshape_progress
4969 if (mddev->reshape_backwards)
4970 conf->reshape_progress -= sectors_done;
4972 conf->reshape_progress += sectors_done;
4974 return sectors_done;
4977 static void end_reshape_request(struct r10bio *r10_bio);
4978 static int handle_reshape_read_error(struct mddev *mddev,
4979 struct r10bio *r10_bio);
4980 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4982 /* Reshape read completed. Hopefully we have a block
4984 * If we got a read error then we do sync 1-page reads from
4985 * elsewhere until we find the data - or give up.
4987 struct r10conf *conf = mddev->private;
4990 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4991 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4992 /* Reshape has been aborted */
4993 md_done_sync(mddev, r10_bio->sectors, 0);
4997 /* We definitely have the data in the pages, schedule the
5000 atomic_set(&r10_bio->remaining, 1);
5001 for (s = 0; s < conf->copies*2; s++) {
5003 int d = r10_bio->devs[s/2].devnum;
5004 struct md_rdev *rdev;
5007 rdev = rcu_dereference(conf->mirrors[d].replacement);
5008 b = r10_bio->devs[s/2].repl_bio;
5010 rdev = rcu_dereference(conf->mirrors[d].rdev);
5011 b = r10_bio->devs[s/2].bio;
5013 if (!rdev || test_bit(Faulty, &rdev->flags)) {
5017 atomic_inc(&rdev->nr_pending);
5019 md_sync_acct_bio(b, r10_bio->sectors);
5020 atomic_inc(&r10_bio->remaining);
5022 submit_bio_noacct(b);
5024 end_reshape_request(r10_bio);
5027 static void end_reshape(struct r10conf *conf)
5029 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5032 spin_lock_irq(&conf->device_lock);
5033 conf->prev = conf->geo;
5034 md_finish_reshape(conf->mddev);
5036 conf->reshape_progress = MaxSector;
5037 conf->reshape_safe = MaxSector;
5038 spin_unlock_irq(&conf->device_lock);
5040 if (conf->mddev->queue)
5041 raid10_set_io_opt(conf);
5045 static void raid10_update_reshape_pos(struct mddev *mddev)
5047 struct r10conf *conf = mddev->private;
5050 md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5051 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5052 || mddev->reshape_position == MaxSector)
5053 conf->reshape_progress = mddev->reshape_position;
5058 static int handle_reshape_read_error(struct mddev *mddev,
5059 struct r10bio *r10_bio)
5061 /* Use sync reads to get the blocks from somewhere else */
5062 int sectors = r10_bio->sectors;
5063 struct r10conf *conf = mddev->private;
5064 struct r10bio *r10b;
5067 struct page **pages;
5069 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5071 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5075 /* reshape IOs share pages from .devs[0].bio */
5076 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5078 r10b->sector = r10_bio->sector;
5079 __raid10_find_phys(&conf->prev, r10b);
5084 int first_slot = slot;
5086 if (s > (PAGE_SIZE >> 9))
5091 int d = r10b->devs[slot].devnum;
5092 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5095 test_bit(Faulty, &rdev->flags) ||
5096 !test_bit(In_sync, &rdev->flags))
5099 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5100 atomic_inc(&rdev->nr_pending);
5102 success = sync_page_io(rdev,
5106 REQ_OP_READ, 0, false);
5107 rdev_dec_pending(rdev, mddev);
5113 if (slot >= conf->copies)
5115 if (slot == first_slot)
5120 /* couldn't read this block, must give up */
5121 set_bit(MD_RECOVERY_INTR,
5133 static void end_reshape_write(struct bio *bio)
5135 struct r10bio *r10_bio = get_resync_r10bio(bio);
5136 struct mddev *mddev = r10_bio->mddev;
5137 struct r10conf *conf = mddev->private;
5141 struct md_rdev *rdev = NULL;
5143 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5145 rdev = conf->mirrors[d].replacement;
5148 rdev = conf->mirrors[d].rdev;
5151 if (bio->bi_status) {
5152 /* FIXME should record badblock */
5153 md_error(mddev, rdev);
5156 rdev_dec_pending(rdev, mddev);
5157 end_reshape_request(r10_bio);
5160 static void end_reshape_request(struct r10bio *r10_bio)
5162 if (!atomic_dec_and_test(&r10_bio->remaining))
5164 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5165 bio_put(r10_bio->master_bio);
5169 static void raid10_finish_reshape(struct mddev *mddev)
5171 struct r10conf *conf = mddev->private;
5173 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5176 if (mddev->delta_disks > 0) {
5177 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5178 mddev->recovery_cp = mddev->resync_max_sectors;
5179 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5181 mddev->resync_max_sectors = mddev->array_sectors;
5185 for (d = conf->geo.raid_disks ;
5186 d < conf->geo.raid_disks - mddev->delta_disks;
5188 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5190 clear_bit(In_sync, &rdev->flags);
5191 rdev = rcu_dereference(conf->mirrors[d].replacement);
5193 clear_bit(In_sync, &rdev->flags);
5197 mddev->layout = mddev->new_layout;
5198 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5199 mddev->reshape_position = MaxSector;
5200 mddev->delta_disks = 0;
5201 mddev->reshape_backwards = 0;
5204 static struct md_personality raid10_personality =
5208 .owner = THIS_MODULE,
5209 .make_request = raid10_make_request,
5211 .free = raid10_free,
5212 .status = raid10_status,
5213 .error_handler = raid10_error,
5214 .hot_add_disk = raid10_add_disk,
5215 .hot_remove_disk= raid10_remove_disk,
5216 .spare_active = raid10_spare_active,
5217 .sync_request = raid10_sync_request,
5218 .quiesce = raid10_quiesce,
5219 .size = raid10_size,
5220 .resize = raid10_resize,
5221 .takeover = raid10_takeover,
5222 .check_reshape = raid10_check_reshape,
5223 .start_reshape = raid10_start_reshape,
5224 .finish_reshape = raid10_finish_reshape,
5225 .update_reshape_pos = raid10_update_reshape_pos,
5228 static int __init raid_init(void)
5230 return register_md_personality(&raid10_personality);
5233 static void raid_exit(void)
5235 unregister_md_personality(&raid10_personality);
5238 module_init(raid_init);
5239 module_exit(raid_exit);
5240 MODULE_LICENSE("GPL");
5241 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5242 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5243 MODULE_ALIAS("md-raid10");
5244 MODULE_ALIAS("md-level-10");
5246 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);