tty: n_gsm: avoid call of sleeping functions from atomic context
[platform/kernel/linux-rpi.git] / drivers / md / raid10.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72                                 int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76
77 #define raid10_log(md, fmt, args...)                            \
78         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80 #include "raid1-10.c"
81
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88         return get_resync_pages(bio)->raid_bio;
89 }
90
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93         struct r10conf *conf = data;
94         int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
95
96         /* allocate a r10bio with room for raid_disks entries in the
97          * bios array */
98         return kzalloc(size, gfp_flags);
99 }
100
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118         struct r10conf *conf = data;
119         struct r10bio *r10_bio;
120         struct bio *bio;
121         int j;
122         int nalloc, nalloc_rp;
123         struct resync_pages *rps;
124
125         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126         if (!r10_bio)
127                 return NULL;
128
129         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131                 nalloc = conf->copies; /* resync */
132         else
133                 nalloc = 2; /* recovery */
134
135         /* allocate once for all bios */
136         if (!conf->have_replacement)
137                 nalloc_rp = nalloc;
138         else
139                 nalloc_rp = nalloc * 2;
140         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141         if (!rps)
142                 goto out_free_r10bio;
143
144         /*
145          * Allocate bios.
146          */
147         for (j = nalloc ; j-- ; ) {
148                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
149                 if (!bio)
150                         goto out_free_bio;
151                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
152                 r10_bio->devs[j].bio = bio;
153                 if (!conf->have_replacement)
154                         continue;
155                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
156                 if (!bio)
157                         goto out_free_bio;
158                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
159                 r10_bio->devs[j].repl_bio = bio;
160         }
161         /*
162          * Allocate RESYNC_PAGES data pages and attach them
163          * where needed.
164          */
165         for (j = 0; j < nalloc; j++) {
166                 struct bio *rbio = r10_bio->devs[j].repl_bio;
167                 struct resync_pages *rp, *rp_repl;
168
169                 rp = &rps[j];
170                 if (rbio)
171                         rp_repl = &rps[nalloc + j];
172
173                 bio = r10_bio->devs[j].bio;
174
175                 if (!j || test_bit(MD_RECOVERY_SYNC,
176                                    &conf->mddev->recovery)) {
177                         if (resync_alloc_pages(rp, gfp_flags))
178                                 goto out_free_pages;
179                 } else {
180                         memcpy(rp, &rps[0], sizeof(*rp));
181                         resync_get_all_pages(rp);
182                 }
183
184                 rp->raid_bio = r10_bio;
185                 bio->bi_private = rp;
186                 if (rbio) {
187                         memcpy(rp_repl, rp, sizeof(*rp));
188                         rbio->bi_private = rp_repl;
189                 }
190         }
191
192         return r10_bio;
193
194 out_free_pages:
195         while (--j >= 0)
196                 resync_free_pages(&rps[j]);
197
198         j = 0;
199 out_free_bio:
200         for ( ; j < nalloc; j++) {
201                 if (r10_bio->devs[j].bio)
202                         bio_uninit(r10_bio->devs[j].bio);
203                 kfree(r10_bio->devs[j].bio);
204                 if (r10_bio->devs[j].repl_bio)
205                         bio_uninit(r10_bio->devs[j].repl_bio);
206                 kfree(r10_bio->devs[j].repl_bio);
207         }
208         kfree(rps);
209 out_free_r10bio:
210         rbio_pool_free(r10_bio, conf);
211         return NULL;
212 }
213
214 static void r10buf_pool_free(void *__r10_bio, void *data)
215 {
216         struct r10conf *conf = data;
217         struct r10bio *r10bio = __r10_bio;
218         int j;
219         struct resync_pages *rp = NULL;
220
221         for (j = conf->copies; j--; ) {
222                 struct bio *bio = r10bio->devs[j].bio;
223
224                 if (bio) {
225                         rp = get_resync_pages(bio);
226                         resync_free_pages(rp);
227                         bio_uninit(bio);
228                         kfree(bio);
229                 }
230
231                 bio = r10bio->devs[j].repl_bio;
232                 if (bio) {
233                         bio_uninit(bio);
234                         kfree(bio);
235                 }
236         }
237
238         /* resync pages array stored in the 1st bio's .bi_private */
239         kfree(rp);
240
241         rbio_pool_free(r10bio, conf);
242 }
243
244 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
245 {
246         int i;
247
248         for (i = 0; i < conf->geo.raid_disks; i++) {
249                 struct bio **bio = & r10_bio->devs[i].bio;
250                 if (!BIO_SPECIAL(*bio))
251                         bio_put(*bio);
252                 *bio = NULL;
253                 bio = &r10_bio->devs[i].repl_bio;
254                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
255                         bio_put(*bio);
256                 *bio = NULL;
257         }
258 }
259
260 static void free_r10bio(struct r10bio *r10_bio)
261 {
262         struct r10conf *conf = r10_bio->mddev->private;
263
264         put_all_bios(conf, r10_bio);
265         mempool_free(r10_bio, &conf->r10bio_pool);
266 }
267
268 static void put_buf(struct r10bio *r10_bio)
269 {
270         struct r10conf *conf = r10_bio->mddev->private;
271
272         mempool_free(r10_bio, &conf->r10buf_pool);
273
274         lower_barrier(conf);
275 }
276
277 static void reschedule_retry(struct r10bio *r10_bio)
278 {
279         unsigned long flags;
280         struct mddev *mddev = r10_bio->mddev;
281         struct r10conf *conf = mddev->private;
282
283         spin_lock_irqsave(&conf->device_lock, flags);
284         list_add(&r10_bio->retry_list, &conf->retry_list);
285         conf->nr_queued ++;
286         spin_unlock_irqrestore(&conf->device_lock, flags);
287
288         /* wake up frozen array... */
289         wake_up(&conf->wait_barrier);
290
291         md_wakeup_thread(mddev->thread);
292 }
293
294 /*
295  * raid_end_bio_io() is called when we have finished servicing a mirrored
296  * operation and are ready to return a success/failure code to the buffer
297  * cache layer.
298  */
299 static void raid_end_bio_io(struct r10bio *r10_bio)
300 {
301         struct bio *bio = r10_bio->master_bio;
302         struct r10conf *conf = r10_bio->mddev->private;
303
304         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
305                 bio->bi_status = BLK_STS_IOERR;
306
307         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
308                 bio_end_io_acct(bio, r10_bio->start_time);
309         bio_endio(bio);
310         /*
311          * Wake up any possible resync thread that waits for the device
312          * to go idle.
313          */
314         allow_barrier(conf);
315
316         free_r10bio(r10_bio);
317 }
318
319 /*
320  * Update disk head position estimator based on IRQ completion info.
321  */
322 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
323 {
324         struct r10conf *conf = r10_bio->mddev->private;
325
326         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
327                 r10_bio->devs[slot].addr + (r10_bio->sectors);
328 }
329
330 /*
331  * Find the disk number which triggered given bio
332  */
333 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
334                          struct bio *bio, int *slotp, int *replp)
335 {
336         int slot;
337         int repl = 0;
338
339         for (slot = 0; slot < conf->geo.raid_disks; slot++) {
340                 if (r10_bio->devs[slot].bio == bio)
341                         break;
342                 if (r10_bio->devs[slot].repl_bio == bio) {
343                         repl = 1;
344                         break;
345                 }
346         }
347
348         update_head_pos(slot, r10_bio);
349
350         if (slotp)
351                 *slotp = slot;
352         if (replp)
353                 *replp = repl;
354         return r10_bio->devs[slot].devnum;
355 }
356
357 static void raid10_end_read_request(struct bio *bio)
358 {
359         int uptodate = !bio->bi_status;
360         struct r10bio *r10_bio = bio->bi_private;
361         int slot;
362         struct md_rdev *rdev;
363         struct r10conf *conf = r10_bio->mddev->private;
364
365         slot = r10_bio->read_slot;
366         rdev = r10_bio->devs[slot].rdev;
367         /*
368          * this branch is our 'one mirror IO has finished' event handler:
369          */
370         update_head_pos(slot, r10_bio);
371
372         if (uptodate) {
373                 /*
374                  * Set R10BIO_Uptodate in our master bio, so that
375                  * we will return a good error code to the higher
376                  * levels even if IO on some other mirrored buffer fails.
377                  *
378                  * The 'master' represents the composite IO operation to
379                  * user-side. So if something waits for IO, then it will
380                  * wait for the 'master' bio.
381                  */
382                 set_bit(R10BIO_Uptodate, &r10_bio->state);
383         } else {
384                 /* If all other devices that store this block have
385                  * failed, we want to return the error upwards rather
386                  * than fail the last device.  Here we redefine
387                  * "uptodate" to mean "Don't want to retry"
388                  */
389                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
390                              rdev->raid_disk))
391                         uptodate = 1;
392         }
393         if (uptodate) {
394                 raid_end_bio_io(r10_bio);
395                 rdev_dec_pending(rdev, conf->mddev);
396         } else {
397                 /*
398                  * oops, read error - keep the refcount on the rdev
399                  */
400                 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
401                                    mdname(conf->mddev),
402                                    rdev->bdev,
403                                    (unsigned long long)r10_bio->sector);
404                 set_bit(R10BIO_ReadError, &r10_bio->state);
405                 reschedule_retry(r10_bio);
406         }
407 }
408
409 static void close_write(struct r10bio *r10_bio)
410 {
411         /* clear the bitmap if all writes complete successfully */
412         md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
413                            r10_bio->sectors,
414                            !test_bit(R10BIO_Degraded, &r10_bio->state),
415                            0);
416         md_write_end(r10_bio->mddev);
417 }
418
419 static void one_write_done(struct r10bio *r10_bio)
420 {
421         if (atomic_dec_and_test(&r10_bio->remaining)) {
422                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
423                         reschedule_retry(r10_bio);
424                 else {
425                         close_write(r10_bio);
426                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
427                                 reschedule_retry(r10_bio);
428                         else
429                                 raid_end_bio_io(r10_bio);
430                 }
431         }
432 }
433
434 static void raid10_end_write_request(struct bio *bio)
435 {
436         struct r10bio *r10_bio = bio->bi_private;
437         int dev;
438         int dec_rdev = 1;
439         struct r10conf *conf = r10_bio->mddev->private;
440         int slot, repl;
441         struct md_rdev *rdev = NULL;
442         struct bio *to_put = NULL;
443         bool discard_error;
444
445         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
446
447         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
448
449         if (repl)
450                 rdev = conf->mirrors[dev].replacement;
451         if (!rdev) {
452                 smp_rmb();
453                 repl = 0;
454                 rdev = conf->mirrors[dev].rdev;
455         }
456         /*
457          * this branch is our 'one mirror IO has finished' event handler:
458          */
459         if (bio->bi_status && !discard_error) {
460                 if (repl)
461                         /* Never record new bad blocks to replacement,
462                          * just fail it.
463                          */
464                         md_error(rdev->mddev, rdev);
465                 else {
466                         set_bit(WriteErrorSeen, &rdev->flags);
467                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
468                                 set_bit(MD_RECOVERY_NEEDED,
469                                         &rdev->mddev->recovery);
470
471                         dec_rdev = 0;
472                         if (test_bit(FailFast, &rdev->flags) &&
473                             (bio->bi_opf & MD_FAILFAST)) {
474                                 md_error(rdev->mddev, rdev);
475                         }
476
477                         /*
478                          * When the device is faulty, it is not necessary to
479                          * handle write error.
480                          */
481                         if (!test_bit(Faulty, &rdev->flags))
482                                 set_bit(R10BIO_WriteError, &r10_bio->state);
483                         else {
484                                 /* Fail the request */
485                                 set_bit(R10BIO_Degraded, &r10_bio->state);
486                                 r10_bio->devs[slot].bio = NULL;
487                                 to_put = bio;
488                                 dec_rdev = 1;
489                         }
490                 }
491         } else {
492                 /*
493                  * Set R10BIO_Uptodate in our master bio, so that
494                  * we will return a good error code for to the higher
495                  * levels even if IO on some other mirrored buffer fails.
496                  *
497                  * The 'master' represents the composite IO operation to
498                  * user-side. So if something waits for IO, then it will
499                  * wait for the 'master' bio.
500                  */
501                 sector_t first_bad;
502                 int bad_sectors;
503
504                 /*
505                  * Do not set R10BIO_Uptodate if the current device is
506                  * rebuilding or Faulty. This is because we cannot use
507                  * such device for properly reading the data back (we could
508                  * potentially use it, if the current write would have felt
509                  * before rdev->recovery_offset, but for simplicity we don't
510                  * check this here.
511                  */
512                 if (test_bit(In_sync, &rdev->flags) &&
513                     !test_bit(Faulty, &rdev->flags))
514                         set_bit(R10BIO_Uptodate, &r10_bio->state);
515
516                 /* Maybe we can clear some bad blocks. */
517                 if (is_badblock(rdev,
518                                 r10_bio->devs[slot].addr,
519                                 r10_bio->sectors,
520                                 &first_bad, &bad_sectors) && !discard_error) {
521                         bio_put(bio);
522                         if (repl)
523                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
524                         else
525                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
526                         dec_rdev = 0;
527                         set_bit(R10BIO_MadeGood, &r10_bio->state);
528                 }
529         }
530
531         /*
532          *
533          * Let's see if all mirrored write operations have finished
534          * already.
535          */
536         one_write_done(r10_bio);
537         if (dec_rdev)
538                 rdev_dec_pending(rdev, conf->mddev);
539         if (to_put)
540                 bio_put(to_put);
541 }
542
543 /*
544  * RAID10 layout manager
545  * As well as the chunksize and raid_disks count, there are two
546  * parameters: near_copies and far_copies.
547  * near_copies * far_copies must be <= raid_disks.
548  * Normally one of these will be 1.
549  * If both are 1, we get raid0.
550  * If near_copies == raid_disks, we get raid1.
551  *
552  * Chunks are laid out in raid0 style with near_copies copies of the
553  * first chunk, followed by near_copies copies of the next chunk and
554  * so on.
555  * If far_copies > 1, then after 1/far_copies of the array has been assigned
556  * as described above, we start again with a device offset of near_copies.
557  * So we effectively have another copy of the whole array further down all
558  * the drives, but with blocks on different drives.
559  * With this layout, and block is never stored twice on the one device.
560  *
561  * raid10_find_phys finds the sector offset of a given virtual sector
562  * on each device that it is on.
563  *
564  * raid10_find_virt does the reverse mapping, from a device and a
565  * sector offset to a virtual address
566  */
567
568 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
569 {
570         int n,f;
571         sector_t sector;
572         sector_t chunk;
573         sector_t stripe;
574         int dev;
575         int slot = 0;
576         int last_far_set_start, last_far_set_size;
577
578         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
579         last_far_set_start *= geo->far_set_size;
580
581         last_far_set_size = geo->far_set_size;
582         last_far_set_size += (geo->raid_disks % geo->far_set_size);
583
584         /* now calculate first sector/dev */
585         chunk = r10bio->sector >> geo->chunk_shift;
586         sector = r10bio->sector & geo->chunk_mask;
587
588         chunk *= geo->near_copies;
589         stripe = chunk;
590         dev = sector_div(stripe, geo->raid_disks);
591         if (geo->far_offset)
592                 stripe *= geo->far_copies;
593
594         sector += stripe << geo->chunk_shift;
595
596         /* and calculate all the others */
597         for (n = 0; n < geo->near_copies; n++) {
598                 int d = dev;
599                 int set;
600                 sector_t s = sector;
601                 r10bio->devs[slot].devnum = d;
602                 r10bio->devs[slot].addr = s;
603                 slot++;
604
605                 for (f = 1; f < geo->far_copies; f++) {
606                         set = d / geo->far_set_size;
607                         d += geo->near_copies;
608
609                         if ((geo->raid_disks % geo->far_set_size) &&
610                             (d > last_far_set_start)) {
611                                 d -= last_far_set_start;
612                                 d %= last_far_set_size;
613                                 d += last_far_set_start;
614                         } else {
615                                 d %= geo->far_set_size;
616                                 d += geo->far_set_size * set;
617                         }
618                         s += geo->stride;
619                         r10bio->devs[slot].devnum = d;
620                         r10bio->devs[slot].addr = s;
621                         slot++;
622                 }
623                 dev++;
624                 if (dev >= geo->raid_disks) {
625                         dev = 0;
626                         sector += (geo->chunk_mask + 1);
627                 }
628         }
629 }
630
631 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
632 {
633         struct geom *geo = &conf->geo;
634
635         if (conf->reshape_progress != MaxSector &&
636             ((r10bio->sector >= conf->reshape_progress) !=
637              conf->mddev->reshape_backwards)) {
638                 set_bit(R10BIO_Previous, &r10bio->state);
639                 geo = &conf->prev;
640         } else
641                 clear_bit(R10BIO_Previous, &r10bio->state);
642
643         __raid10_find_phys(geo, r10bio);
644 }
645
646 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
647 {
648         sector_t offset, chunk, vchunk;
649         /* Never use conf->prev as this is only called during resync
650          * or recovery, so reshape isn't happening
651          */
652         struct geom *geo = &conf->geo;
653         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
654         int far_set_size = geo->far_set_size;
655         int last_far_set_start;
656
657         if (geo->raid_disks % geo->far_set_size) {
658                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
659                 last_far_set_start *= geo->far_set_size;
660
661                 if (dev >= last_far_set_start) {
662                         far_set_size = geo->far_set_size;
663                         far_set_size += (geo->raid_disks % geo->far_set_size);
664                         far_set_start = last_far_set_start;
665                 }
666         }
667
668         offset = sector & geo->chunk_mask;
669         if (geo->far_offset) {
670                 int fc;
671                 chunk = sector >> geo->chunk_shift;
672                 fc = sector_div(chunk, geo->far_copies);
673                 dev -= fc * geo->near_copies;
674                 if (dev < far_set_start)
675                         dev += far_set_size;
676         } else {
677                 while (sector >= geo->stride) {
678                         sector -= geo->stride;
679                         if (dev < (geo->near_copies + far_set_start))
680                                 dev += far_set_size - geo->near_copies;
681                         else
682                                 dev -= geo->near_copies;
683                 }
684                 chunk = sector >> geo->chunk_shift;
685         }
686         vchunk = chunk * geo->raid_disks + dev;
687         sector_div(vchunk, geo->near_copies);
688         return (vchunk << geo->chunk_shift) + offset;
689 }
690
691 /*
692  * This routine returns the disk from which the requested read should
693  * be done. There is a per-array 'next expected sequential IO' sector
694  * number - if this matches on the next IO then we use the last disk.
695  * There is also a per-disk 'last know head position' sector that is
696  * maintained from IRQ contexts, both the normal and the resync IO
697  * completion handlers update this position correctly. If there is no
698  * perfect sequential match then we pick the disk whose head is closest.
699  *
700  * If there are 2 mirrors in the same 2 devices, performance degrades
701  * because position is mirror, not device based.
702  *
703  * The rdev for the device selected will have nr_pending incremented.
704  */
705
706 /*
707  * FIXME: possibly should rethink readbalancing and do it differently
708  * depending on near_copies / far_copies geometry.
709  */
710 static struct md_rdev *read_balance(struct r10conf *conf,
711                                     struct r10bio *r10_bio,
712                                     int *max_sectors)
713 {
714         const sector_t this_sector = r10_bio->sector;
715         int disk, slot;
716         int sectors = r10_bio->sectors;
717         int best_good_sectors;
718         sector_t new_distance, best_dist;
719         struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
720         int do_balance;
721         int best_dist_slot, best_pending_slot;
722         bool has_nonrot_disk = false;
723         unsigned int min_pending;
724         struct geom *geo = &conf->geo;
725
726         raid10_find_phys(conf, r10_bio);
727         rcu_read_lock();
728         best_dist_slot = -1;
729         min_pending = UINT_MAX;
730         best_dist_rdev = NULL;
731         best_pending_rdev = NULL;
732         best_dist = MaxSector;
733         best_good_sectors = 0;
734         do_balance = 1;
735         clear_bit(R10BIO_FailFast, &r10_bio->state);
736         /*
737          * Check if we can balance. We can balance on the whole
738          * device if no resync is going on (recovery is ok), or below
739          * the resync window. We take the first readable disk when
740          * above the resync window.
741          */
742         if ((conf->mddev->recovery_cp < MaxSector
743              && (this_sector + sectors >= conf->next_resync)) ||
744             (mddev_is_clustered(conf->mddev) &&
745              md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
746                                             this_sector + sectors)))
747                 do_balance = 0;
748
749         for (slot = 0; slot < conf->copies ; slot++) {
750                 sector_t first_bad;
751                 int bad_sectors;
752                 sector_t dev_sector;
753                 unsigned int pending;
754                 bool nonrot;
755
756                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
757                         continue;
758                 disk = r10_bio->devs[slot].devnum;
759                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
760                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
761                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
762                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
763                 if (rdev == NULL ||
764                     test_bit(Faulty, &rdev->flags))
765                         continue;
766                 if (!test_bit(In_sync, &rdev->flags) &&
767                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
768                         continue;
769
770                 dev_sector = r10_bio->devs[slot].addr;
771                 if (is_badblock(rdev, dev_sector, sectors,
772                                 &first_bad, &bad_sectors)) {
773                         if (best_dist < MaxSector)
774                                 /* Already have a better slot */
775                                 continue;
776                         if (first_bad <= dev_sector) {
777                                 /* Cannot read here.  If this is the
778                                  * 'primary' device, then we must not read
779                                  * beyond 'bad_sectors' from another device.
780                                  */
781                                 bad_sectors -= (dev_sector - first_bad);
782                                 if (!do_balance && sectors > bad_sectors)
783                                         sectors = bad_sectors;
784                                 if (best_good_sectors > sectors)
785                                         best_good_sectors = sectors;
786                         } else {
787                                 sector_t good_sectors =
788                                         first_bad - dev_sector;
789                                 if (good_sectors > best_good_sectors) {
790                                         best_good_sectors = good_sectors;
791                                         best_dist_slot = slot;
792                                         best_dist_rdev = rdev;
793                                 }
794                                 if (!do_balance)
795                                         /* Must read from here */
796                                         break;
797                         }
798                         continue;
799                 } else
800                         best_good_sectors = sectors;
801
802                 if (!do_balance)
803                         break;
804
805                 nonrot = bdev_nonrot(rdev->bdev);
806                 has_nonrot_disk |= nonrot;
807                 pending = atomic_read(&rdev->nr_pending);
808                 if (min_pending > pending && nonrot) {
809                         min_pending = pending;
810                         best_pending_slot = slot;
811                         best_pending_rdev = rdev;
812                 }
813
814                 if (best_dist_slot >= 0)
815                         /* At least 2 disks to choose from so failfast is OK */
816                         set_bit(R10BIO_FailFast, &r10_bio->state);
817                 /* This optimisation is debatable, and completely destroys
818                  * sequential read speed for 'far copies' arrays.  So only
819                  * keep it for 'near' arrays, and review those later.
820                  */
821                 if (geo->near_copies > 1 && !pending)
822                         new_distance = 0;
823
824                 /* for far > 1 always use the lowest address */
825                 else if (geo->far_copies > 1)
826                         new_distance = r10_bio->devs[slot].addr;
827                 else
828                         new_distance = abs(r10_bio->devs[slot].addr -
829                                            conf->mirrors[disk].head_position);
830
831                 if (new_distance < best_dist) {
832                         best_dist = new_distance;
833                         best_dist_slot = slot;
834                         best_dist_rdev = rdev;
835                 }
836         }
837         if (slot >= conf->copies) {
838                 if (has_nonrot_disk) {
839                         slot = best_pending_slot;
840                         rdev = best_pending_rdev;
841                 } else {
842                         slot = best_dist_slot;
843                         rdev = best_dist_rdev;
844                 }
845         }
846
847         if (slot >= 0) {
848                 atomic_inc(&rdev->nr_pending);
849                 r10_bio->read_slot = slot;
850         } else
851                 rdev = NULL;
852         rcu_read_unlock();
853         *max_sectors = best_good_sectors;
854
855         return rdev;
856 }
857
858 static void flush_pending_writes(struct r10conf *conf)
859 {
860         /* Any writes that have been queued but are awaiting
861          * bitmap updates get flushed here.
862          */
863         spin_lock_irq(&conf->device_lock);
864
865         if (conf->pending_bio_list.head) {
866                 struct blk_plug plug;
867                 struct bio *bio;
868
869                 bio = bio_list_get(&conf->pending_bio_list);
870                 spin_unlock_irq(&conf->device_lock);
871
872                 /*
873                  * As this is called in a wait_event() loop (see freeze_array),
874                  * current->state might be TASK_UNINTERRUPTIBLE which will
875                  * cause a warning when we prepare to wait again.  As it is
876                  * rare that this path is taken, it is perfectly safe to force
877                  * us to go around the wait_event() loop again, so the warning
878                  * is a false-positive. Silence the warning by resetting
879                  * thread state
880                  */
881                 __set_current_state(TASK_RUNNING);
882
883                 blk_start_plug(&plug);
884                 /* flush any pending bitmap writes to disk
885                  * before proceeding w/ I/O */
886                 md_bitmap_unplug(conf->mddev->bitmap);
887                 wake_up(&conf->wait_barrier);
888
889                 while (bio) { /* submit pending writes */
890                         struct bio *next = bio->bi_next;
891                         struct md_rdev *rdev = (void*)bio->bi_bdev;
892                         bio->bi_next = NULL;
893                         bio_set_dev(bio, rdev->bdev);
894                         if (test_bit(Faulty, &rdev->flags)) {
895                                 bio_io_error(bio);
896                         } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
897                                             !bdev_max_discard_sectors(bio->bi_bdev)))
898                                 /* Just ignore it */
899                                 bio_endio(bio);
900                         else
901                                 submit_bio_noacct(bio);
902                         bio = next;
903                 }
904                 blk_finish_plug(&plug);
905         } else
906                 spin_unlock_irq(&conf->device_lock);
907 }
908
909 /* Barriers....
910  * Sometimes we need to suspend IO while we do something else,
911  * either some resync/recovery, or reconfigure the array.
912  * To do this we raise a 'barrier'.
913  * The 'barrier' is a counter that can be raised multiple times
914  * to count how many activities are happening which preclude
915  * normal IO.
916  * We can only raise the barrier if there is no pending IO.
917  * i.e. if nr_pending == 0.
918  * We choose only to raise the barrier if no-one is waiting for the
919  * barrier to go down.  This means that as soon as an IO request
920  * is ready, no other operations which require a barrier will start
921  * until the IO request has had a chance.
922  *
923  * So: regular IO calls 'wait_barrier'.  When that returns there
924  *    is no backgroup IO happening,  It must arrange to call
925  *    allow_barrier when it has finished its IO.
926  * backgroup IO calls must call raise_barrier.  Once that returns
927  *    there is no normal IO happeing.  It must arrange to call
928  *    lower_barrier when the particular background IO completes.
929  */
930
931 static void raise_barrier(struct r10conf *conf, int force)
932 {
933         BUG_ON(force && !conf->barrier);
934         spin_lock_irq(&conf->resync_lock);
935
936         /* Wait until no block IO is waiting (unless 'force') */
937         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
938                             conf->resync_lock);
939
940         /* block any new IO from starting */
941         conf->barrier++;
942
943         /* Now wait for all pending IO to complete */
944         wait_event_lock_irq(conf->wait_barrier,
945                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
946                             conf->resync_lock);
947
948         spin_unlock_irq(&conf->resync_lock);
949 }
950
951 static void lower_barrier(struct r10conf *conf)
952 {
953         unsigned long flags;
954         spin_lock_irqsave(&conf->resync_lock, flags);
955         conf->barrier--;
956         spin_unlock_irqrestore(&conf->resync_lock, flags);
957         wake_up(&conf->wait_barrier);
958 }
959
960 static bool wait_barrier(struct r10conf *conf, bool nowait)
961 {
962         bool ret = true;
963
964         spin_lock_irq(&conf->resync_lock);
965         if (conf->barrier) {
966                 struct bio_list *bio_list = current->bio_list;
967                 conf->nr_waiting++;
968                 /* Wait for the barrier to drop.
969                  * However if there are already pending
970                  * requests (preventing the barrier from
971                  * rising completely), and the
972                  * pre-process bio queue isn't empty,
973                  * then don't wait, as we need to empty
974                  * that queue to get the nr_pending
975                  * count down.
976                  */
977                 /* Return false when nowait flag is set */
978                 if (nowait) {
979                         ret = false;
980                 } else {
981                         raid10_log(conf->mddev, "wait barrier");
982                         wait_event_lock_irq(conf->wait_barrier,
983                                             !conf->barrier ||
984                                             (atomic_read(&conf->nr_pending) &&
985                                              bio_list &&
986                                              (!bio_list_empty(&bio_list[0]) ||
987                                               !bio_list_empty(&bio_list[1]))) ||
988                                              /* move on if recovery thread is
989                                               * blocked by us
990                                               */
991                                              (conf->mddev->thread->tsk == current &&
992                                               test_bit(MD_RECOVERY_RUNNING,
993                                                        &conf->mddev->recovery) &&
994                                               conf->nr_queued > 0),
995                                             conf->resync_lock);
996                 }
997                 conf->nr_waiting--;
998                 if (!conf->nr_waiting)
999                         wake_up(&conf->wait_barrier);
1000         }
1001         /* Only increment nr_pending when we wait */
1002         if (ret)
1003                 atomic_inc(&conf->nr_pending);
1004         spin_unlock_irq(&conf->resync_lock);
1005         return ret;
1006 }
1007
1008 static void allow_barrier(struct r10conf *conf)
1009 {
1010         if ((atomic_dec_and_test(&conf->nr_pending)) ||
1011                         (conf->array_freeze_pending))
1012                 wake_up(&conf->wait_barrier);
1013 }
1014
1015 static void freeze_array(struct r10conf *conf, int extra)
1016 {
1017         /* stop syncio and normal IO and wait for everything to
1018          * go quiet.
1019          * We increment barrier and nr_waiting, and then
1020          * wait until nr_pending match nr_queued+extra
1021          * This is called in the context of one normal IO request
1022          * that has failed. Thus any sync request that might be pending
1023          * will be blocked by nr_pending, and we need to wait for
1024          * pending IO requests to complete or be queued for re-try.
1025          * Thus the number queued (nr_queued) plus this request (extra)
1026          * must match the number of pending IOs (nr_pending) before
1027          * we continue.
1028          */
1029         spin_lock_irq(&conf->resync_lock);
1030         conf->array_freeze_pending++;
1031         conf->barrier++;
1032         conf->nr_waiting++;
1033         wait_event_lock_irq_cmd(conf->wait_barrier,
1034                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1035                                 conf->resync_lock,
1036                                 flush_pending_writes(conf));
1037
1038         conf->array_freeze_pending--;
1039         spin_unlock_irq(&conf->resync_lock);
1040 }
1041
1042 static void unfreeze_array(struct r10conf *conf)
1043 {
1044         /* reverse the effect of the freeze */
1045         spin_lock_irq(&conf->resync_lock);
1046         conf->barrier--;
1047         conf->nr_waiting--;
1048         wake_up(&conf->wait_barrier);
1049         spin_unlock_irq(&conf->resync_lock);
1050 }
1051
1052 static sector_t choose_data_offset(struct r10bio *r10_bio,
1053                                    struct md_rdev *rdev)
1054 {
1055         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1056             test_bit(R10BIO_Previous, &r10_bio->state))
1057                 return rdev->data_offset;
1058         else
1059                 return rdev->new_data_offset;
1060 }
1061
1062 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1063 {
1064         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1065         struct mddev *mddev = plug->cb.data;
1066         struct r10conf *conf = mddev->private;
1067         struct bio *bio;
1068
1069         if (from_schedule || current->bio_list) {
1070                 spin_lock_irq(&conf->device_lock);
1071                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1072                 spin_unlock_irq(&conf->device_lock);
1073                 wake_up(&conf->wait_barrier);
1074                 md_wakeup_thread(mddev->thread);
1075                 kfree(plug);
1076                 return;
1077         }
1078
1079         /* we aren't scheduling, so we can do the write-out directly. */
1080         bio = bio_list_get(&plug->pending);
1081         md_bitmap_unplug(mddev->bitmap);
1082         wake_up(&conf->wait_barrier);
1083
1084         while (bio) { /* submit pending writes */
1085                 struct bio *next = bio->bi_next;
1086                 struct md_rdev *rdev = (void*)bio->bi_bdev;
1087                 bio->bi_next = NULL;
1088                 bio_set_dev(bio, rdev->bdev);
1089                 if (test_bit(Faulty, &rdev->flags)) {
1090                         bio_io_error(bio);
1091                 } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1092                                     !bdev_max_discard_sectors(bio->bi_bdev)))
1093                         /* Just ignore it */
1094                         bio_endio(bio);
1095                 else
1096                         submit_bio_noacct(bio);
1097                 bio = next;
1098         }
1099         kfree(plug);
1100 }
1101
1102 /*
1103  * 1. Register the new request and wait if the reconstruction thread has put
1104  * up a bar for new requests. Continue immediately if no resync is active
1105  * currently.
1106  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1107  */
1108 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1109                                  struct bio *bio, sector_t sectors)
1110 {
1111         /* Bail out if REQ_NOWAIT is set for the bio */
1112         if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1113                 bio_wouldblock_error(bio);
1114                 return false;
1115         }
1116         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1117             bio->bi_iter.bi_sector < conf->reshape_progress &&
1118             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1119                 allow_barrier(conf);
1120                 if (bio->bi_opf & REQ_NOWAIT) {
1121                         bio_wouldblock_error(bio);
1122                         return false;
1123                 }
1124                 raid10_log(conf->mddev, "wait reshape");
1125                 wait_event(conf->wait_barrier,
1126                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1127                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1128                            sectors);
1129                 wait_barrier(conf, false);
1130         }
1131         return true;
1132 }
1133
1134 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1135                                 struct r10bio *r10_bio)
1136 {
1137         struct r10conf *conf = mddev->private;
1138         struct bio *read_bio;
1139         const enum req_op op = bio_op(bio);
1140         const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1141         int max_sectors;
1142         struct md_rdev *rdev;
1143         char b[BDEVNAME_SIZE];
1144         int slot = r10_bio->read_slot;
1145         struct md_rdev *err_rdev = NULL;
1146         gfp_t gfp = GFP_NOIO;
1147
1148         if (slot >= 0 && r10_bio->devs[slot].rdev) {
1149                 /*
1150                  * This is an error retry, but we cannot
1151                  * safely dereference the rdev in the r10_bio,
1152                  * we must use the one in conf.
1153                  * If it has already been disconnected (unlikely)
1154                  * we lose the device name in error messages.
1155                  */
1156                 int disk;
1157                 /*
1158                  * As we are blocking raid10, it is a little safer to
1159                  * use __GFP_HIGH.
1160                  */
1161                 gfp = GFP_NOIO | __GFP_HIGH;
1162
1163                 rcu_read_lock();
1164                 disk = r10_bio->devs[slot].devnum;
1165                 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1166                 if (err_rdev)
1167                         snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1168                 else {
1169                         strcpy(b, "???");
1170                         /* This never gets dereferenced */
1171                         err_rdev = r10_bio->devs[slot].rdev;
1172                 }
1173                 rcu_read_unlock();
1174         }
1175
1176         if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1177                 return;
1178         rdev = read_balance(conf, r10_bio, &max_sectors);
1179         if (!rdev) {
1180                 if (err_rdev) {
1181                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1182                                             mdname(mddev), b,
1183                                             (unsigned long long)r10_bio->sector);
1184                 }
1185                 raid_end_bio_io(r10_bio);
1186                 return;
1187         }
1188         if (err_rdev)
1189                 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1190                                    mdname(mddev),
1191                                    rdev->bdev,
1192                                    (unsigned long long)r10_bio->sector);
1193         if (max_sectors < bio_sectors(bio)) {
1194                 struct bio *split = bio_split(bio, max_sectors,
1195                                               gfp, &conf->bio_split);
1196                 bio_chain(split, bio);
1197                 allow_barrier(conf);
1198                 submit_bio_noacct(bio);
1199                 wait_barrier(conf, false);
1200                 bio = split;
1201                 r10_bio->master_bio = bio;
1202                 r10_bio->sectors = max_sectors;
1203         }
1204         slot = r10_bio->read_slot;
1205
1206         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1207                 r10_bio->start_time = bio_start_io_acct(bio);
1208         read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1209
1210         r10_bio->devs[slot].bio = read_bio;
1211         r10_bio->devs[slot].rdev = rdev;
1212
1213         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1214                 choose_data_offset(r10_bio, rdev);
1215         read_bio->bi_end_io = raid10_end_read_request;
1216         bio_set_op_attrs(read_bio, op, do_sync);
1217         if (test_bit(FailFast, &rdev->flags) &&
1218             test_bit(R10BIO_FailFast, &r10_bio->state))
1219                 read_bio->bi_opf |= MD_FAILFAST;
1220         read_bio->bi_private = r10_bio;
1221
1222         if (mddev->gendisk)
1223                 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1224                                       r10_bio->sector);
1225         submit_bio_noacct(read_bio);
1226         return;
1227 }
1228
1229 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1230                                   struct bio *bio, bool replacement,
1231                                   int n_copy)
1232 {
1233         const enum req_op op = bio_op(bio);
1234         const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1235         const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1236         unsigned long flags;
1237         struct blk_plug_cb *cb;
1238         struct raid1_plug_cb *plug = NULL;
1239         struct r10conf *conf = mddev->private;
1240         struct md_rdev *rdev;
1241         int devnum = r10_bio->devs[n_copy].devnum;
1242         struct bio *mbio;
1243
1244         if (replacement) {
1245                 rdev = conf->mirrors[devnum].replacement;
1246                 if (rdev == NULL) {
1247                         /* Replacement just got moved to main 'rdev' */
1248                         smp_mb();
1249                         rdev = conf->mirrors[devnum].rdev;
1250                 }
1251         } else
1252                 rdev = conf->mirrors[devnum].rdev;
1253
1254         mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1255         if (replacement)
1256                 r10_bio->devs[n_copy].repl_bio = mbio;
1257         else
1258                 r10_bio->devs[n_copy].bio = mbio;
1259
1260         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1261                                    choose_data_offset(r10_bio, rdev));
1262         mbio->bi_end_io = raid10_end_write_request;
1263         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1264         if (!replacement && test_bit(FailFast,
1265                                      &conf->mirrors[devnum].rdev->flags)
1266                          && enough(conf, devnum))
1267                 mbio->bi_opf |= MD_FAILFAST;
1268         mbio->bi_private = r10_bio;
1269
1270         if (conf->mddev->gendisk)
1271                 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1272                                       r10_bio->sector);
1273         /* flush_pending_writes() needs access to the rdev so...*/
1274         mbio->bi_bdev = (void *)rdev;
1275
1276         atomic_inc(&r10_bio->remaining);
1277
1278         cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1279         if (cb)
1280                 plug = container_of(cb, struct raid1_plug_cb, cb);
1281         else
1282                 plug = NULL;
1283         if (plug) {
1284                 bio_list_add(&plug->pending, mbio);
1285         } else {
1286                 spin_lock_irqsave(&conf->device_lock, flags);
1287                 bio_list_add(&conf->pending_bio_list, mbio);
1288                 spin_unlock_irqrestore(&conf->device_lock, flags);
1289                 md_wakeup_thread(mddev->thread);
1290         }
1291 }
1292
1293 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1294 {
1295         int i;
1296         struct r10conf *conf = mddev->private;
1297         struct md_rdev *blocked_rdev;
1298
1299 retry_wait:
1300         blocked_rdev = NULL;
1301         rcu_read_lock();
1302         for (i = 0; i < conf->copies; i++) {
1303                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1304                 struct md_rdev *rrdev = rcu_dereference(
1305                         conf->mirrors[i].replacement);
1306                 if (rdev == rrdev)
1307                         rrdev = NULL;
1308                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1309                         atomic_inc(&rdev->nr_pending);
1310                         blocked_rdev = rdev;
1311                         break;
1312                 }
1313                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1314                         atomic_inc(&rrdev->nr_pending);
1315                         blocked_rdev = rrdev;
1316                         break;
1317                 }
1318
1319                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1320                         sector_t first_bad;
1321                         sector_t dev_sector = r10_bio->devs[i].addr;
1322                         int bad_sectors;
1323                         int is_bad;
1324
1325                         /*
1326                          * Discard request doesn't care the write result
1327                          * so it doesn't need to wait blocked disk here.
1328                          */
1329                         if (!r10_bio->sectors)
1330                                 continue;
1331
1332                         is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1333                                              &first_bad, &bad_sectors);
1334                         if (is_bad < 0) {
1335                                 /*
1336                                  * Mustn't write here until the bad block
1337                                  * is acknowledged
1338                                  */
1339                                 atomic_inc(&rdev->nr_pending);
1340                                 set_bit(BlockedBadBlocks, &rdev->flags);
1341                                 blocked_rdev = rdev;
1342                                 break;
1343                         }
1344                 }
1345         }
1346         rcu_read_unlock();
1347
1348         if (unlikely(blocked_rdev)) {
1349                 /* Have to wait for this device to get unblocked, then retry */
1350                 allow_barrier(conf);
1351                 raid10_log(conf->mddev, "%s wait rdev %d blocked",
1352                                 __func__, blocked_rdev->raid_disk);
1353                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1354                 wait_barrier(conf, false);
1355                 goto retry_wait;
1356         }
1357 }
1358
1359 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1360                                  struct r10bio *r10_bio)
1361 {
1362         struct r10conf *conf = mddev->private;
1363         int i;
1364         sector_t sectors;
1365         int max_sectors;
1366
1367         if ((mddev_is_clustered(mddev) &&
1368              md_cluster_ops->area_resyncing(mddev, WRITE,
1369                                             bio->bi_iter.bi_sector,
1370                                             bio_end_sector(bio)))) {
1371                 DEFINE_WAIT(w);
1372                 /* Bail out if REQ_NOWAIT is set for the bio */
1373                 if (bio->bi_opf & REQ_NOWAIT) {
1374                         bio_wouldblock_error(bio);
1375                         return;
1376                 }
1377                 for (;;) {
1378                         prepare_to_wait(&conf->wait_barrier,
1379                                         &w, TASK_IDLE);
1380                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1381                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1382                                 break;
1383                         schedule();
1384                 }
1385                 finish_wait(&conf->wait_barrier, &w);
1386         }
1387
1388         sectors = r10_bio->sectors;
1389         if (!regular_request_wait(mddev, conf, bio, sectors))
1390                 return;
1391         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1392             (mddev->reshape_backwards
1393              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1394                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1395              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1396                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1397                 /* Need to update reshape_position in metadata */
1398                 mddev->reshape_position = conf->reshape_progress;
1399                 set_mask_bits(&mddev->sb_flags, 0,
1400                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1401                 md_wakeup_thread(mddev->thread);
1402                 if (bio->bi_opf & REQ_NOWAIT) {
1403                         allow_barrier(conf);
1404                         bio_wouldblock_error(bio);
1405                         return;
1406                 }
1407                 raid10_log(conf->mddev, "wait reshape metadata");
1408                 wait_event(mddev->sb_wait,
1409                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1410
1411                 conf->reshape_safe = mddev->reshape_position;
1412         }
1413
1414         /* first select target devices under rcu_lock and
1415          * inc refcount on their rdev.  Record them by setting
1416          * bios[x] to bio
1417          * If there are known/acknowledged bad blocks on any device
1418          * on which we have seen a write error, we want to avoid
1419          * writing to those blocks.  This potentially requires several
1420          * writes to write around the bad blocks.  Each set of writes
1421          * gets its own r10_bio with a set of bios attached.
1422          */
1423
1424         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1425         raid10_find_phys(conf, r10_bio);
1426
1427         wait_blocked_dev(mddev, r10_bio);
1428
1429         rcu_read_lock();
1430         max_sectors = r10_bio->sectors;
1431
1432         for (i = 0;  i < conf->copies; i++) {
1433                 int d = r10_bio->devs[i].devnum;
1434                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1435                 struct md_rdev *rrdev = rcu_dereference(
1436                         conf->mirrors[d].replacement);
1437                 if (rdev == rrdev)
1438                         rrdev = NULL;
1439                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1440                         rdev = NULL;
1441                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1442                         rrdev = NULL;
1443
1444                 r10_bio->devs[i].bio = NULL;
1445                 r10_bio->devs[i].repl_bio = NULL;
1446
1447                 if (!rdev && !rrdev) {
1448                         set_bit(R10BIO_Degraded, &r10_bio->state);
1449                         continue;
1450                 }
1451                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1452                         sector_t first_bad;
1453                         sector_t dev_sector = r10_bio->devs[i].addr;
1454                         int bad_sectors;
1455                         int is_bad;
1456
1457                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1458                                              &first_bad, &bad_sectors);
1459                         if (is_bad && first_bad <= dev_sector) {
1460                                 /* Cannot write here at all */
1461                                 bad_sectors -= (dev_sector - first_bad);
1462                                 if (bad_sectors < max_sectors)
1463                                         /* Mustn't write more than bad_sectors
1464                                          * to other devices yet
1465                                          */
1466                                         max_sectors = bad_sectors;
1467                                 /* We don't set R10BIO_Degraded as that
1468                                  * only applies if the disk is missing,
1469                                  * so it might be re-added, and we want to
1470                                  * know to recover this chunk.
1471                                  * In this case the device is here, and the
1472                                  * fact that this chunk is not in-sync is
1473                                  * recorded in the bad block log.
1474                                  */
1475                                 continue;
1476                         }
1477                         if (is_bad) {
1478                                 int good_sectors = first_bad - dev_sector;
1479                                 if (good_sectors < max_sectors)
1480                                         max_sectors = good_sectors;
1481                         }
1482                 }
1483                 if (rdev) {
1484                         r10_bio->devs[i].bio = bio;
1485                         atomic_inc(&rdev->nr_pending);
1486                 }
1487                 if (rrdev) {
1488                         r10_bio->devs[i].repl_bio = bio;
1489                         atomic_inc(&rrdev->nr_pending);
1490                 }
1491         }
1492         rcu_read_unlock();
1493
1494         if (max_sectors < r10_bio->sectors)
1495                 r10_bio->sectors = max_sectors;
1496
1497         if (r10_bio->sectors < bio_sectors(bio)) {
1498                 struct bio *split = bio_split(bio, r10_bio->sectors,
1499                                               GFP_NOIO, &conf->bio_split);
1500                 bio_chain(split, bio);
1501                 allow_barrier(conf);
1502                 submit_bio_noacct(bio);
1503                 wait_barrier(conf, false);
1504                 bio = split;
1505                 r10_bio->master_bio = bio;
1506         }
1507
1508         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1509                 r10_bio->start_time = bio_start_io_acct(bio);
1510         atomic_set(&r10_bio->remaining, 1);
1511         md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1512
1513         for (i = 0; i < conf->copies; i++) {
1514                 if (r10_bio->devs[i].bio)
1515                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1516                 if (r10_bio->devs[i].repl_bio)
1517                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1518         }
1519         one_write_done(r10_bio);
1520 }
1521
1522 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1523 {
1524         struct r10conf *conf = mddev->private;
1525         struct r10bio *r10_bio;
1526
1527         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1528
1529         r10_bio->master_bio = bio;
1530         r10_bio->sectors = sectors;
1531
1532         r10_bio->mddev = mddev;
1533         r10_bio->sector = bio->bi_iter.bi_sector;
1534         r10_bio->state = 0;
1535         r10_bio->read_slot = -1;
1536         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1537                         conf->geo.raid_disks);
1538
1539         if (bio_data_dir(bio) == READ)
1540                 raid10_read_request(mddev, bio, r10_bio);
1541         else
1542                 raid10_write_request(mddev, bio, r10_bio);
1543 }
1544
1545 static void raid_end_discard_bio(struct r10bio *r10bio)
1546 {
1547         struct r10conf *conf = r10bio->mddev->private;
1548         struct r10bio *first_r10bio;
1549
1550         while (atomic_dec_and_test(&r10bio->remaining)) {
1551
1552                 allow_barrier(conf);
1553
1554                 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1555                         first_r10bio = (struct r10bio *)r10bio->master_bio;
1556                         free_r10bio(r10bio);
1557                         r10bio = first_r10bio;
1558                 } else {
1559                         md_write_end(r10bio->mddev);
1560                         bio_endio(r10bio->master_bio);
1561                         free_r10bio(r10bio);
1562                         break;
1563                 }
1564         }
1565 }
1566
1567 static void raid10_end_discard_request(struct bio *bio)
1568 {
1569         struct r10bio *r10_bio = bio->bi_private;
1570         struct r10conf *conf = r10_bio->mddev->private;
1571         struct md_rdev *rdev = NULL;
1572         int dev;
1573         int slot, repl;
1574
1575         /*
1576          * We don't care the return value of discard bio
1577          */
1578         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1579                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1580
1581         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1582         if (repl)
1583                 rdev = conf->mirrors[dev].replacement;
1584         if (!rdev) {
1585                 /*
1586                  * raid10_remove_disk uses smp_mb to make sure rdev is set to
1587                  * replacement before setting replacement to NULL. It can read
1588                  * rdev first without barrier protect even replacment is NULL
1589                  */
1590                 smp_rmb();
1591                 rdev = conf->mirrors[dev].rdev;
1592         }
1593
1594         raid_end_discard_bio(r10_bio);
1595         rdev_dec_pending(rdev, conf->mddev);
1596 }
1597
1598 /*
1599  * There are some limitations to handle discard bio
1600  * 1st, the discard size is bigger than stripe_size*2.
1601  * 2st, if the discard bio spans reshape progress, we use the old way to
1602  * handle discard bio
1603  */
1604 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1605 {
1606         struct r10conf *conf = mddev->private;
1607         struct geom *geo = &conf->geo;
1608         int far_copies = geo->far_copies;
1609         bool first_copy = true;
1610         struct r10bio *r10_bio, *first_r10bio;
1611         struct bio *split;
1612         int disk;
1613         sector_t chunk;
1614         unsigned int stripe_size;
1615         unsigned int stripe_data_disks;
1616         sector_t split_size;
1617         sector_t bio_start, bio_end;
1618         sector_t first_stripe_index, last_stripe_index;
1619         sector_t start_disk_offset;
1620         unsigned int start_disk_index;
1621         sector_t end_disk_offset;
1622         unsigned int end_disk_index;
1623         unsigned int remainder;
1624
1625         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1626                 return -EAGAIN;
1627
1628         if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1629                 bio_wouldblock_error(bio);
1630                 return 0;
1631         }
1632         wait_barrier(conf, false);
1633
1634         /*
1635          * Check reshape again to avoid reshape happens after checking
1636          * MD_RECOVERY_RESHAPE and before wait_barrier
1637          */
1638         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1639                 goto out;
1640
1641         if (geo->near_copies)
1642                 stripe_data_disks = geo->raid_disks / geo->near_copies +
1643                                         geo->raid_disks % geo->near_copies;
1644         else
1645                 stripe_data_disks = geo->raid_disks;
1646
1647         stripe_size = stripe_data_disks << geo->chunk_shift;
1648
1649         bio_start = bio->bi_iter.bi_sector;
1650         bio_end = bio_end_sector(bio);
1651
1652         /*
1653          * Maybe one discard bio is smaller than strip size or across one
1654          * stripe and discard region is larger than one stripe size. For far
1655          * offset layout, if the discard region is not aligned with stripe
1656          * size, there is hole when we submit discard bio to member disk.
1657          * For simplicity, we only handle discard bio which discard region
1658          * is bigger than stripe_size * 2
1659          */
1660         if (bio_sectors(bio) < stripe_size*2)
1661                 goto out;
1662
1663         /*
1664          * Keep bio aligned with strip size.
1665          */
1666         div_u64_rem(bio_start, stripe_size, &remainder);
1667         if (remainder) {
1668                 split_size = stripe_size - remainder;
1669                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1670                 bio_chain(split, bio);
1671                 allow_barrier(conf);
1672                 /* Resend the fist split part */
1673                 submit_bio_noacct(split);
1674                 wait_barrier(conf, false);
1675         }
1676         div_u64_rem(bio_end, stripe_size, &remainder);
1677         if (remainder) {
1678                 split_size = bio_sectors(bio) - remainder;
1679                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1680                 bio_chain(split, bio);
1681                 allow_barrier(conf);
1682                 /* Resend the second split part */
1683                 submit_bio_noacct(bio);
1684                 bio = split;
1685                 wait_barrier(conf, false);
1686         }
1687
1688         bio_start = bio->bi_iter.bi_sector;
1689         bio_end = bio_end_sector(bio);
1690
1691         /*
1692          * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1693          * One stripe contains the chunks from all member disk (one chunk from
1694          * one disk at the same HBA address). For layout detail, see 'man md 4'
1695          */
1696         chunk = bio_start >> geo->chunk_shift;
1697         chunk *= geo->near_copies;
1698         first_stripe_index = chunk;
1699         start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1700         if (geo->far_offset)
1701                 first_stripe_index *= geo->far_copies;
1702         start_disk_offset = (bio_start & geo->chunk_mask) +
1703                                 (first_stripe_index << geo->chunk_shift);
1704
1705         chunk = bio_end >> geo->chunk_shift;
1706         chunk *= geo->near_copies;
1707         last_stripe_index = chunk;
1708         end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1709         if (geo->far_offset)
1710                 last_stripe_index *= geo->far_copies;
1711         end_disk_offset = (bio_end & geo->chunk_mask) +
1712                                 (last_stripe_index << geo->chunk_shift);
1713
1714 retry_discard:
1715         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1716         r10_bio->mddev = mddev;
1717         r10_bio->state = 0;
1718         r10_bio->sectors = 0;
1719         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1720         wait_blocked_dev(mddev, r10_bio);
1721
1722         /*
1723          * For far layout it needs more than one r10bio to cover all regions.
1724          * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1725          * to record the discard bio. Other r10bio->master_bio record the first
1726          * r10bio. The first r10bio only release after all other r10bios finish.
1727          * The discard bio returns only first r10bio finishes
1728          */
1729         if (first_copy) {
1730                 r10_bio->master_bio = bio;
1731                 set_bit(R10BIO_Discard, &r10_bio->state);
1732                 first_copy = false;
1733                 first_r10bio = r10_bio;
1734         } else
1735                 r10_bio->master_bio = (struct bio *)first_r10bio;
1736
1737         /*
1738          * first select target devices under rcu_lock and
1739          * inc refcount on their rdev.  Record them by setting
1740          * bios[x] to bio
1741          */
1742         rcu_read_lock();
1743         for (disk = 0; disk < geo->raid_disks; disk++) {
1744                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1745                 struct md_rdev *rrdev = rcu_dereference(
1746                         conf->mirrors[disk].replacement);
1747
1748                 r10_bio->devs[disk].bio = NULL;
1749                 r10_bio->devs[disk].repl_bio = NULL;
1750
1751                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1752                         rdev = NULL;
1753                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1754                         rrdev = NULL;
1755                 if (!rdev && !rrdev)
1756                         continue;
1757
1758                 if (rdev) {
1759                         r10_bio->devs[disk].bio = bio;
1760                         atomic_inc(&rdev->nr_pending);
1761                 }
1762                 if (rrdev) {
1763                         r10_bio->devs[disk].repl_bio = bio;
1764                         atomic_inc(&rrdev->nr_pending);
1765                 }
1766         }
1767         rcu_read_unlock();
1768
1769         atomic_set(&r10_bio->remaining, 1);
1770         for (disk = 0; disk < geo->raid_disks; disk++) {
1771                 sector_t dev_start, dev_end;
1772                 struct bio *mbio, *rbio = NULL;
1773
1774                 /*
1775                  * Now start to calculate the start and end address for each disk.
1776                  * The space between dev_start and dev_end is the discard region.
1777                  *
1778                  * For dev_start, it needs to consider three conditions:
1779                  * 1st, the disk is before start_disk, you can imagine the disk in
1780                  * the next stripe. So the dev_start is the start address of next
1781                  * stripe.
1782                  * 2st, the disk is after start_disk, it means the disk is at the
1783                  * same stripe of first disk
1784                  * 3st, the first disk itself, we can use start_disk_offset directly
1785                  */
1786                 if (disk < start_disk_index)
1787                         dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1788                 else if (disk > start_disk_index)
1789                         dev_start = first_stripe_index * mddev->chunk_sectors;
1790                 else
1791                         dev_start = start_disk_offset;
1792
1793                 if (disk < end_disk_index)
1794                         dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1795                 else if (disk > end_disk_index)
1796                         dev_end = last_stripe_index * mddev->chunk_sectors;
1797                 else
1798                         dev_end = end_disk_offset;
1799
1800                 /*
1801                  * It only handles discard bio which size is >= stripe size, so
1802                  * dev_end > dev_start all the time.
1803                  * It doesn't need to use rcu lock to get rdev here. We already
1804                  * add rdev->nr_pending in the first loop.
1805                  */
1806                 if (r10_bio->devs[disk].bio) {
1807                         struct md_rdev *rdev = conf->mirrors[disk].rdev;
1808                         mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1809                                                &mddev->bio_set);
1810                         mbio->bi_end_io = raid10_end_discard_request;
1811                         mbio->bi_private = r10_bio;
1812                         r10_bio->devs[disk].bio = mbio;
1813                         r10_bio->devs[disk].devnum = disk;
1814                         atomic_inc(&r10_bio->remaining);
1815                         md_submit_discard_bio(mddev, rdev, mbio,
1816                                         dev_start + choose_data_offset(r10_bio, rdev),
1817                                         dev_end - dev_start);
1818                         bio_endio(mbio);
1819                 }
1820                 if (r10_bio->devs[disk].repl_bio) {
1821                         struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1822                         rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1823                                                &mddev->bio_set);
1824                         rbio->bi_end_io = raid10_end_discard_request;
1825                         rbio->bi_private = r10_bio;
1826                         r10_bio->devs[disk].repl_bio = rbio;
1827                         r10_bio->devs[disk].devnum = disk;
1828                         atomic_inc(&r10_bio->remaining);
1829                         md_submit_discard_bio(mddev, rrdev, rbio,
1830                                         dev_start + choose_data_offset(r10_bio, rrdev),
1831                                         dev_end - dev_start);
1832                         bio_endio(rbio);
1833                 }
1834         }
1835
1836         if (!geo->far_offset && --far_copies) {
1837                 first_stripe_index += geo->stride >> geo->chunk_shift;
1838                 start_disk_offset += geo->stride;
1839                 last_stripe_index += geo->stride >> geo->chunk_shift;
1840                 end_disk_offset += geo->stride;
1841                 atomic_inc(&first_r10bio->remaining);
1842                 raid_end_discard_bio(r10_bio);
1843                 wait_barrier(conf, false);
1844                 goto retry_discard;
1845         }
1846
1847         raid_end_discard_bio(r10_bio);
1848
1849         return 0;
1850 out:
1851         allow_barrier(conf);
1852         return -EAGAIN;
1853 }
1854
1855 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1856 {
1857         struct r10conf *conf = mddev->private;
1858         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1859         int chunk_sects = chunk_mask + 1;
1860         int sectors = bio_sectors(bio);
1861
1862         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1863             && md_flush_request(mddev, bio))
1864                 return true;
1865
1866         if (!md_write_start(mddev, bio))
1867                 return false;
1868
1869         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1870                 if (!raid10_handle_discard(mddev, bio))
1871                         return true;
1872
1873         /*
1874          * If this request crosses a chunk boundary, we need to split
1875          * it.
1876          */
1877         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1878                      sectors > chunk_sects
1879                      && (conf->geo.near_copies < conf->geo.raid_disks
1880                          || conf->prev.near_copies <
1881                          conf->prev.raid_disks)))
1882                 sectors = chunk_sects -
1883                         (bio->bi_iter.bi_sector &
1884                          (chunk_sects - 1));
1885         __make_request(mddev, bio, sectors);
1886
1887         /* In case raid10d snuck in to freeze_array */
1888         wake_up(&conf->wait_barrier);
1889         return true;
1890 }
1891
1892 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1893 {
1894         struct r10conf *conf = mddev->private;
1895         int i;
1896
1897         if (conf->geo.near_copies < conf->geo.raid_disks)
1898                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1899         if (conf->geo.near_copies > 1)
1900                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1901         if (conf->geo.far_copies > 1) {
1902                 if (conf->geo.far_offset)
1903                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1904                 else
1905                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1906                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1907                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1908         }
1909         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1910                                         conf->geo.raid_disks - mddev->degraded);
1911         rcu_read_lock();
1912         for (i = 0; i < conf->geo.raid_disks; i++) {
1913                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1914                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1915         }
1916         rcu_read_unlock();
1917         seq_printf(seq, "]");
1918 }
1919
1920 /* check if there are enough drives for
1921  * every block to appear on atleast one.
1922  * Don't consider the device numbered 'ignore'
1923  * as we might be about to remove it.
1924  */
1925 static int _enough(struct r10conf *conf, int previous, int ignore)
1926 {
1927         int first = 0;
1928         int has_enough = 0;
1929         int disks, ncopies;
1930         if (previous) {
1931                 disks = conf->prev.raid_disks;
1932                 ncopies = conf->prev.near_copies;
1933         } else {
1934                 disks = conf->geo.raid_disks;
1935                 ncopies = conf->geo.near_copies;
1936         }
1937
1938         rcu_read_lock();
1939         do {
1940                 int n = conf->copies;
1941                 int cnt = 0;
1942                 int this = first;
1943                 while (n--) {
1944                         struct md_rdev *rdev;
1945                         if (this != ignore &&
1946                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1947                             test_bit(In_sync, &rdev->flags))
1948                                 cnt++;
1949                         this = (this+1) % disks;
1950                 }
1951                 if (cnt == 0)
1952                         goto out;
1953                 first = (first + ncopies) % disks;
1954         } while (first != 0);
1955         has_enough = 1;
1956 out:
1957         rcu_read_unlock();
1958         return has_enough;
1959 }
1960
1961 static int enough(struct r10conf *conf, int ignore)
1962 {
1963         /* when calling 'enough', both 'prev' and 'geo' must
1964          * be stable.
1965          * This is ensured if ->reconfig_mutex or ->device_lock
1966          * is held.
1967          */
1968         return _enough(conf, 0, ignore) &&
1969                 _enough(conf, 1, ignore);
1970 }
1971
1972 /**
1973  * raid10_error() - RAID10 error handler.
1974  * @mddev: affected md device.
1975  * @rdev: member device to fail.
1976  *
1977  * The routine acknowledges &rdev failure and determines new @mddev state.
1978  * If it failed, then:
1979  *      - &MD_BROKEN flag is set in &mddev->flags.
1980  * Otherwise, it must be degraded:
1981  *      - recovery is interrupted.
1982  *      - &mddev->degraded is bumped.
1983
1984  * @rdev is marked as &Faulty excluding case when array is failed and
1985  * &mddev->fail_last_dev is off.
1986  */
1987 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1988 {
1989         struct r10conf *conf = mddev->private;
1990         unsigned long flags;
1991
1992         spin_lock_irqsave(&conf->device_lock, flags);
1993
1994         if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
1995                 set_bit(MD_BROKEN, &mddev->flags);
1996
1997                 if (!mddev->fail_last_dev) {
1998                         spin_unlock_irqrestore(&conf->device_lock, flags);
1999                         return;
2000                 }
2001         }
2002         if (test_and_clear_bit(In_sync, &rdev->flags))
2003                 mddev->degraded++;
2004
2005         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2006         set_bit(Blocked, &rdev->flags);
2007         set_bit(Faulty, &rdev->flags);
2008         set_mask_bits(&mddev->sb_flags, 0,
2009                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2010         spin_unlock_irqrestore(&conf->device_lock, flags);
2011         pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2012                 "md/raid10:%s: Operation continuing on %d devices.\n",
2013                 mdname(mddev), rdev->bdev,
2014                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2015 }
2016
2017 static void print_conf(struct r10conf *conf)
2018 {
2019         int i;
2020         struct md_rdev *rdev;
2021
2022         pr_debug("RAID10 conf printout:\n");
2023         if (!conf) {
2024                 pr_debug("(!conf)\n");
2025                 return;
2026         }
2027         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2028                  conf->geo.raid_disks);
2029
2030         /* This is only called with ->reconfix_mutex held, so
2031          * rcu protection of rdev is not needed */
2032         for (i = 0; i < conf->geo.raid_disks; i++) {
2033                 rdev = conf->mirrors[i].rdev;
2034                 if (rdev)
2035                         pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2036                                  i, !test_bit(In_sync, &rdev->flags),
2037                                  !test_bit(Faulty, &rdev->flags),
2038                                  rdev->bdev);
2039         }
2040 }
2041
2042 static void close_sync(struct r10conf *conf)
2043 {
2044         wait_barrier(conf, false);
2045         allow_barrier(conf);
2046
2047         mempool_exit(&conf->r10buf_pool);
2048 }
2049
2050 static int raid10_spare_active(struct mddev *mddev)
2051 {
2052         int i;
2053         struct r10conf *conf = mddev->private;
2054         struct raid10_info *tmp;
2055         int count = 0;
2056         unsigned long flags;
2057
2058         /*
2059          * Find all non-in_sync disks within the RAID10 configuration
2060          * and mark them in_sync
2061          */
2062         for (i = 0; i < conf->geo.raid_disks; i++) {
2063                 tmp = conf->mirrors + i;
2064                 if (tmp->replacement
2065                     && tmp->replacement->recovery_offset == MaxSector
2066                     && !test_bit(Faulty, &tmp->replacement->flags)
2067                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2068                         /* Replacement has just become active */
2069                         if (!tmp->rdev
2070                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2071                                 count++;
2072                         if (tmp->rdev) {
2073                                 /* Replaced device not technically faulty,
2074                                  * but we need to be sure it gets removed
2075                                  * and never re-added.
2076                                  */
2077                                 set_bit(Faulty, &tmp->rdev->flags);
2078                                 sysfs_notify_dirent_safe(
2079                                         tmp->rdev->sysfs_state);
2080                         }
2081                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2082                 } else if (tmp->rdev
2083                            && tmp->rdev->recovery_offset == MaxSector
2084                            && !test_bit(Faulty, &tmp->rdev->flags)
2085                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2086                         count++;
2087                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2088                 }
2089         }
2090         spin_lock_irqsave(&conf->device_lock, flags);
2091         mddev->degraded -= count;
2092         spin_unlock_irqrestore(&conf->device_lock, flags);
2093
2094         print_conf(conf);
2095         return count;
2096 }
2097
2098 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2099 {
2100         struct r10conf *conf = mddev->private;
2101         int err = -EEXIST;
2102         int mirror;
2103         int first = 0;
2104         int last = conf->geo.raid_disks - 1;
2105
2106         if (mddev->recovery_cp < MaxSector)
2107                 /* only hot-add to in-sync arrays, as recovery is
2108                  * very different from resync
2109                  */
2110                 return -EBUSY;
2111         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2112                 return -EINVAL;
2113
2114         if (md_integrity_add_rdev(rdev, mddev))
2115                 return -ENXIO;
2116
2117         if (rdev->raid_disk >= 0)
2118                 first = last = rdev->raid_disk;
2119
2120         if (rdev->saved_raid_disk >= first &&
2121             rdev->saved_raid_disk < conf->geo.raid_disks &&
2122             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2123                 mirror = rdev->saved_raid_disk;
2124         else
2125                 mirror = first;
2126         for ( ; mirror <= last ; mirror++) {
2127                 struct raid10_info *p = &conf->mirrors[mirror];
2128                 if (p->recovery_disabled == mddev->recovery_disabled)
2129                         continue;
2130                 if (p->rdev) {
2131                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
2132                             p->replacement != NULL)
2133                                 continue;
2134                         clear_bit(In_sync, &rdev->flags);
2135                         set_bit(Replacement, &rdev->flags);
2136                         rdev->raid_disk = mirror;
2137                         err = 0;
2138                         if (mddev->gendisk)
2139                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2140                                                   rdev->data_offset << 9);
2141                         conf->fullsync = 1;
2142                         rcu_assign_pointer(p->replacement, rdev);
2143                         break;
2144                 }
2145
2146                 if (mddev->gendisk)
2147                         disk_stack_limits(mddev->gendisk, rdev->bdev,
2148                                           rdev->data_offset << 9);
2149
2150                 p->head_position = 0;
2151                 p->recovery_disabled = mddev->recovery_disabled - 1;
2152                 rdev->raid_disk = mirror;
2153                 err = 0;
2154                 if (rdev->saved_raid_disk != mirror)
2155                         conf->fullsync = 1;
2156                 rcu_assign_pointer(p->rdev, rdev);
2157                 break;
2158         }
2159
2160         print_conf(conf);
2161         return err;
2162 }
2163
2164 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2165 {
2166         struct r10conf *conf = mddev->private;
2167         int err = 0;
2168         int number = rdev->raid_disk;
2169         struct md_rdev **rdevp;
2170         struct raid10_info *p;
2171
2172         print_conf(conf);
2173         if (unlikely(number >= mddev->raid_disks))
2174                 return 0;
2175         p = conf->mirrors + number;
2176         if (rdev == p->rdev)
2177                 rdevp = &p->rdev;
2178         else if (rdev == p->replacement)
2179                 rdevp = &p->replacement;
2180         else
2181                 return 0;
2182
2183         if (test_bit(In_sync, &rdev->flags) ||
2184             atomic_read(&rdev->nr_pending)) {
2185                 err = -EBUSY;
2186                 goto abort;
2187         }
2188         /* Only remove non-faulty devices if recovery
2189          * is not possible.
2190          */
2191         if (!test_bit(Faulty, &rdev->flags) &&
2192             mddev->recovery_disabled != p->recovery_disabled &&
2193             (!p->replacement || p->replacement == rdev) &&
2194             number < conf->geo.raid_disks &&
2195             enough(conf, -1)) {
2196                 err = -EBUSY;
2197                 goto abort;
2198         }
2199         *rdevp = NULL;
2200         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2201                 synchronize_rcu();
2202                 if (atomic_read(&rdev->nr_pending)) {
2203                         /* lost the race, try later */
2204                         err = -EBUSY;
2205                         *rdevp = rdev;
2206                         goto abort;
2207                 }
2208         }
2209         if (p->replacement) {
2210                 /* We must have just cleared 'rdev' */
2211                 p->rdev = p->replacement;
2212                 clear_bit(Replacement, &p->replacement->flags);
2213                 smp_mb(); /* Make sure other CPUs may see both as identical
2214                            * but will never see neither -- if they are careful.
2215                            */
2216                 p->replacement = NULL;
2217         }
2218
2219         clear_bit(WantReplacement, &rdev->flags);
2220         err = md_integrity_register(mddev);
2221
2222 abort:
2223
2224         print_conf(conf);
2225         return err;
2226 }
2227
2228 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2229 {
2230         struct r10conf *conf = r10_bio->mddev->private;
2231
2232         if (!bio->bi_status)
2233                 set_bit(R10BIO_Uptodate, &r10_bio->state);
2234         else
2235                 /* The write handler will notice the lack of
2236                  * R10BIO_Uptodate and record any errors etc
2237                  */
2238                 atomic_add(r10_bio->sectors,
2239                            &conf->mirrors[d].rdev->corrected_errors);
2240
2241         /* for reconstruct, we always reschedule after a read.
2242          * for resync, only after all reads
2243          */
2244         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2245         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2246             atomic_dec_and_test(&r10_bio->remaining)) {
2247                 /* we have read all the blocks,
2248                  * do the comparison in process context in raid10d
2249                  */
2250                 reschedule_retry(r10_bio);
2251         }
2252 }
2253
2254 static void end_sync_read(struct bio *bio)
2255 {
2256         struct r10bio *r10_bio = get_resync_r10bio(bio);
2257         struct r10conf *conf = r10_bio->mddev->private;
2258         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2259
2260         __end_sync_read(r10_bio, bio, d);
2261 }
2262
2263 static void end_reshape_read(struct bio *bio)
2264 {
2265         /* reshape read bio isn't allocated from r10buf_pool */
2266         struct r10bio *r10_bio = bio->bi_private;
2267
2268         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2269 }
2270
2271 static void end_sync_request(struct r10bio *r10_bio)
2272 {
2273         struct mddev *mddev = r10_bio->mddev;
2274
2275         while (atomic_dec_and_test(&r10_bio->remaining)) {
2276                 if (r10_bio->master_bio == NULL) {
2277                         /* the primary of several recovery bios */
2278                         sector_t s = r10_bio->sectors;
2279                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2280                             test_bit(R10BIO_WriteError, &r10_bio->state))
2281                                 reschedule_retry(r10_bio);
2282                         else
2283                                 put_buf(r10_bio);
2284                         md_done_sync(mddev, s, 1);
2285                         break;
2286                 } else {
2287                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2288                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2289                             test_bit(R10BIO_WriteError, &r10_bio->state))
2290                                 reschedule_retry(r10_bio);
2291                         else
2292                                 put_buf(r10_bio);
2293                         r10_bio = r10_bio2;
2294                 }
2295         }
2296 }
2297
2298 static void end_sync_write(struct bio *bio)
2299 {
2300         struct r10bio *r10_bio = get_resync_r10bio(bio);
2301         struct mddev *mddev = r10_bio->mddev;
2302         struct r10conf *conf = mddev->private;
2303         int d;
2304         sector_t first_bad;
2305         int bad_sectors;
2306         int slot;
2307         int repl;
2308         struct md_rdev *rdev = NULL;
2309
2310         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2311         if (repl)
2312                 rdev = conf->mirrors[d].replacement;
2313         else
2314                 rdev = conf->mirrors[d].rdev;
2315
2316         if (bio->bi_status) {
2317                 if (repl)
2318                         md_error(mddev, rdev);
2319                 else {
2320                         set_bit(WriteErrorSeen, &rdev->flags);
2321                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2322                                 set_bit(MD_RECOVERY_NEEDED,
2323                                         &rdev->mddev->recovery);
2324                         set_bit(R10BIO_WriteError, &r10_bio->state);
2325                 }
2326         } else if (is_badblock(rdev,
2327                              r10_bio->devs[slot].addr,
2328                              r10_bio->sectors,
2329                              &first_bad, &bad_sectors))
2330                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2331
2332         rdev_dec_pending(rdev, mddev);
2333
2334         end_sync_request(r10_bio);
2335 }
2336
2337 /*
2338  * Note: sync and recover and handled very differently for raid10
2339  * This code is for resync.
2340  * For resync, we read through virtual addresses and read all blocks.
2341  * If there is any error, we schedule a write.  The lowest numbered
2342  * drive is authoritative.
2343  * However requests come for physical address, so we need to map.
2344  * For every physical address there are raid_disks/copies virtual addresses,
2345  * which is always are least one, but is not necessarly an integer.
2346  * This means that a physical address can span multiple chunks, so we may
2347  * have to submit multiple io requests for a single sync request.
2348  */
2349 /*
2350  * We check if all blocks are in-sync and only write to blocks that
2351  * aren't in sync
2352  */
2353 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2354 {
2355         struct r10conf *conf = mddev->private;
2356         int i, first;
2357         struct bio *tbio, *fbio;
2358         int vcnt;
2359         struct page **tpages, **fpages;
2360
2361         atomic_set(&r10_bio->remaining, 1);
2362
2363         /* find the first device with a block */
2364         for (i=0; i<conf->copies; i++)
2365                 if (!r10_bio->devs[i].bio->bi_status)
2366                         break;
2367
2368         if (i == conf->copies)
2369                 goto done;
2370
2371         first = i;
2372         fbio = r10_bio->devs[i].bio;
2373         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2374         fbio->bi_iter.bi_idx = 0;
2375         fpages = get_resync_pages(fbio)->pages;
2376
2377         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2378         /* now find blocks with errors */
2379         for (i=0 ; i < conf->copies ; i++) {
2380                 int  j, d;
2381                 struct md_rdev *rdev;
2382                 struct resync_pages *rp;
2383
2384                 tbio = r10_bio->devs[i].bio;
2385
2386                 if (tbio->bi_end_io != end_sync_read)
2387                         continue;
2388                 if (i == first)
2389                         continue;
2390
2391                 tpages = get_resync_pages(tbio)->pages;
2392                 d = r10_bio->devs[i].devnum;
2393                 rdev = conf->mirrors[d].rdev;
2394                 if (!r10_bio->devs[i].bio->bi_status) {
2395                         /* We know that the bi_io_vec layout is the same for
2396                          * both 'first' and 'i', so we just compare them.
2397                          * All vec entries are PAGE_SIZE;
2398                          */
2399                         int sectors = r10_bio->sectors;
2400                         for (j = 0; j < vcnt; j++) {
2401                                 int len = PAGE_SIZE;
2402                                 if (sectors < (len / 512))
2403                                         len = sectors * 512;
2404                                 if (memcmp(page_address(fpages[j]),
2405                                            page_address(tpages[j]),
2406                                            len))
2407                                         break;
2408                                 sectors -= len/512;
2409                         }
2410                         if (j == vcnt)
2411                                 continue;
2412                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2413                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2414                                 /* Don't fix anything. */
2415                                 continue;
2416                 } else if (test_bit(FailFast, &rdev->flags)) {
2417                         /* Just give up on this device */
2418                         md_error(rdev->mddev, rdev);
2419                         continue;
2420                 }
2421                 /* Ok, we need to write this bio, either to correct an
2422                  * inconsistency or to correct an unreadable block.
2423                  * First we need to fixup bv_offset, bv_len and
2424                  * bi_vecs, as the read request might have corrupted these
2425                  */
2426                 rp = get_resync_pages(tbio);
2427                 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2428
2429                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2430
2431                 rp->raid_bio = r10_bio;
2432                 tbio->bi_private = rp;
2433                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2434                 tbio->bi_end_io = end_sync_write;
2435
2436                 bio_copy_data(tbio, fbio);
2437
2438                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2439                 atomic_inc(&r10_bio->remaining);
2440                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2441
2442                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2443                         tbio->bi_opf |= MD_FAILFAST;
2444                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2445                 submit_bio_noacct(tbio);
2446         }
2447
2448         /* Now write out to any replacement devices
2449          * that are active
2450          */
2451         for (i = 0; i < conf->copies; i++) {
2452                 int d;
2453
2454                 tbio = r10_bio->devs[i].repl_bio;
2455                 if (!tbio || !tbio->bi_end_io)
2456                         continue;
2457                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2458                     && r10_bio->devs[i].bio != fbio)
2459                         bio_copy_data(tbio, fbio);
2460                 d = r10_bio->devs[i].devnum;
2461                 atomic_inc(&r10_bio->remaining);
2462                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2463                              bio_sectors(tbio));
2464                 submit_bio_noacct(tbio);
2465         }
2466
2467 done:
2468         if (atomic_dec_and_test(&r10_bio->remaining)) {
2469                 md_done_sync(mddev, r10_bio->sectors, 1);
2470                 put_buf(r10_bio);
2471         }
2472 }
2473
2474 /*
2475  * Now for the recovery code.
2476  * Recovery happens across physical sectors.
2477  * We recover all non-is_sync drives by finding the virtual address of
2478  * each, and then choose a working drive that also has that virt address.
2479  * There is a separate r10_bio for each non-in_sync drive.
2480  * Only the first two slots are in use. The first for reading,
2481  * The second for writing.
2482  *
2483  */
2484 static void fix_recovery_read_error(struct r10bio *r10_bio)
2485 {
2486         /* We got a read error during recovery.
2487          * We repeat the read in smaller page-sized sections.
2488          * If a read succeeds, write it to the new device or record
2489          * a bad block if we cannot.
2490          * If a read fails, record a bad block on both old and
2491          * new devices.
2492          */
2493         struct mddev *mddev = r10_bio->mddev;
2494         struct r10conf *conf = mddev->private;
2495         struct bio *bio = r10_bio->devs[0].bio;
2496         sector_t sect = 0;
2497         int sectors = r10_bio->sectors;
2498         int idx = 0;
2499         int dr = r10_bio->devs[0].devnum;
2500         int dw = r10_bio->devs[1].devnum;
2501         struct page **pages = get_resync_pages(bio)->pages;
2502
2503         while (sectors) {
2504                 int s = sectors;
2505                 struct md_rdev *rdev;
2506                 sector_t addr;
2507                 int ok;
2508
2509                 if (s > (PAGE_SIZE>>9))
2510                         s = PAGE_SIZE >> 9;
2511
2512                 rdev = conf->mirrors[dr].rdev;
2513                 addr = r10_bio->devs[0].addr + sect,
2514                 ok = sync_page_io(rdev,
2515                                   addr,
2516                                   s << 9,
2517                                   pages[idx],
2518                                   REQ_OP_READ, false);
2519                 if (ok) {
2520                         rdev = conf->mirrors[dw].rdev;
2521                         addr = r10_bio->devs[1].addr + sect;
2522                         ok = sync_page_io(rdev,
2523                                           addr,
2524                                           s << 9,
2525                                           pages[idx],
2526                                           REQ_OP_WRITE, false);
2527                         if (!ok) {
2528                                 set_bit(WriteErrorSeen, &rdev->flags);
2529                                 if (!test_and_set_bit(WantReplacement,
2530                                                       &rdev->flags))
2531                                         set_bit(MD_RECOVERY_NEEDED,
2532                                                 &rdev->mddev->recovery);
2533                         }
2534                 }
2535                 if (!ok) {
2536                         /* We don't worry if we cannot set a bad block -
2537                          * it really is bad so there is no loss in not
2538                          * recording it yet
2539                          */
2540                         rdev_set_badblocks(rdev, addr, s, 0);
2541
2542                         if (rdev != conf->mirrors[dw].rdev) {
2543                                 /* need bad block on destination too */
2544                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2545                                 addr = r10_bio->devs[1].addr + sect;
2546                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2547                                 if (!ok) {
2548                                         /* just abort the recovery */
2549                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2550                                                   mdname(mddev));
2551
2552                                         conf->mirrors[dw].recovery_disabled
2553                                                 = mddev->recovery_disabled;
2554                                         set_bit(MD_RECOVERY_INTR,
2555                                                 &mddev->recovery);
2556                                         break;
2557                                 }
2558                         }
2559                 }
2560
2561                 sectors -= s;
2562                 sect += s;
2563                 idx++;
2564         }
2565 }
2566
2567 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2568 {
2569         struct r10conf *conf = mddev->private;
2570         int d;
2571         struct bio *wbio, *wbio2;
2572
2573         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2574                 fix_recovery_read_error(r10_bio);
2575                 end_sync_request(r10_bio);
2576                 return;
2577         }
2578
2579         /*
2580          * share the pages with the first bio
2581          * and submit the write request
2582          */
2583         d = r10_bio->devs[1].devnum;
2584         wbio = r10_bio->devs[1].bio;
2585         wbio2 = r10_bio->devs[1].repl_bio;
2586         /* Need to test wbio2->bi_end_io before we call
2587          * submit_bio_noacct as if the former is NULL,
2588          * the latter is free to free wbio2.
2589          */
2590         if (wbio2 && !wbio2->bi_end_io)
2591                 wbio2 = NULL;
2592         if (wbio->bi_end_io) {
2593                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2594                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2595                 submit_bio_noacct(wbio);
2596         }
2597         if (wbio2) {
2598                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2599                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2600                              bio_sectors(wbio2));
2601                 submit_bio_noacct(wbio2);
2602         }
2603 }
2604
2605 /*
2606  * Used by fix_read_error() to decay the per rdev read_errors.
2607  * We halve the read error count for every hour that has elapsed
2608  * since the last recorded read error.
2609  *
2610  */
2611 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2612 {
2613         long cur_time_mon;
2614         unsigned long hours_since_last;
2615         unsigned int read_errors = atomic_read(&rdev->read_errors);
2616
2617         cur_time_mon = ktime_get_seconds();
2618
2619         if (rdev->last_read_error == 0) {
2620                 /* first time we've seen a read error */
2621                 rdev->last_read_error = cur_time_mon;
2622                 return;
2623         }
2624
2625         hours_since_last = (long)(cur_time_mon -
2626                             rdev->last_read_error) / 3600;
2627
2628         rdev->last_read_error = cur_time_mon;
2629
2630         /*
2631          * if hours_since_last is > the number of bits in read_errors
2632          * just set read errors to 0. We do this to avoid
2633          * overflowing the shift of read_errors by hours_since_last.
2634          */
2635         if (hours_since_last >= 8 * sizeof(read_errors))
2636                 atomic_set(&rdev->read_errors, 0);
2637         else
2638                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2639 }
2640
2641 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2642                             int sectors, struct page *page, int rw)
2643 {
2644         sector_t first_bad;
2645         int bad_sectors;
2646
2647         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2648             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2649                 return -1;
2650         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2651                 /* success */
2652                 return 1;
2653         if (rw == WRITE) {
2654                 set_bit(WriteErrorSeen, &rdev->flags);
2655                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2656                         set_bit(MD_RECOVERY_NEEDED,
2657                                 &rdev->mddev->recovery);
2658         }
2659         /* need to record an error - either for the block or the device */
2660         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2661                 md_error(rdev->mddev, rdev);
2662         return 0;
2663 }
2664
2665 /*
2666  * This is a kernel thread which:
2667  *
2668  *      1.      Retries failed read operations on working mirrors.
2669  *      2.      Updates the raid superblock when problems encounter.
2670  *      3.      Performs writes following reads for array synchronising.
2671  */
2672
2673 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2674 {
2675         int sect = 0; /* Offset from r10_bio->sector */
2676         int sectors = r10_bio->sectors;
2677         struct md_rdev *rdev;
2678         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2679         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2680
2681         /* still own a reference to this rdev, so it cannot
2682          * have been cleared recently.
2683          */
2684         rdev = conf->mirrors[d].rdev;
2685
2686         if (test_bit(Faulty, &rdev->flags))
2687                 /* drive has already been failed, just ignore any
2688                    more fix_read_error() attempts */
2689                 return;
2690
2691         check_decay_read_errors(mddev, rdev);
2692         atomic_inc(&rdev->read_errors);
2693         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2694                 pr_notice("md/raid10:%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2695                           mdname(mddev), rdev->bdev,
2696                           atomic_read(&rdev->read_errors), max_read_errors);
2697                 pr_notice("md/raid10:%s: %pg: Failing raid device\n",
2698                           mdname(mddev), rdev->bdev);
2699                 md_error(mddev, rdev);
2700                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2701                 return;
2702         }
2703
2704         while(sectors) {
2705                 int s = sectors;
2706                 int sl = r10_bio->read_slot;
2707                 int success = 0;
2708                 int start;
2709
2710                 if (s > (PAGE_SIZE>>9))
2711                         s = PAGE_SIZE >> 9;
2712
2713                 rcu_read_lock();
2714                 do {
2715                         sector_t first_bad;
2716                         int bad_sectors;
2717
2718                         d = r10_bio->devs[sl].devnum;
2719                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2720                         if (rdev &&
2721                             test_bit(In_sync, &rdev->flags) &&
2722                             !test_bit(Faulty, &rdev->flags) &&
2723                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2724                                         &first_bad, &bad_sectors) == 0) {
2725                                 atomic_inc(&rdev->nr_pending);
2726                                 rcu_read_unlock();
2727                                 success = sync_page_io(rdev,
2728                                                        r10_bio->devs[sl].addr +
2729                                                        sect,
2730                                                        s<<9,
2731                                                        conf->tmppage,
2732                                                        REQ_OP_READ, false);
2733                                 rdev_dec_pending(rdev, mddev);
2734                                 rcu_read_lock();
2735                                 if (success)
2736                                         break;
2737                         }
2738                         sl++;
2739                         if (sl == conf->copies)
2740                                 sl = 0;
2741                 } while (!success && sl != r10_bio->read_slot);
2742                 rcu_read_unlock();
2743
2744                 if (!success) {
2745                         /* Cannot read from anywhere, just mark the block
2746                          * as bad on the first device to discourage future
2747                          * reads.
2748                          */
2749                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2750                         rdev = conf->mirrors[dn].rdev;
2751
2752                         if (!rdev_set_badblocks(
2753                                     rdev,
2754                                     r10_bio->devs[r10_bio->read_slot].addr
2755                                     + sect,
2756                                     s, 0)) {
2757                                 md_error(mddev, rdev);
2758                                 r10_bio->devs[r10_bio->read_slot].bio
2759                                         = IO_BLOCKED;
2760                         }
2761                         break;
2762                 }
2763
2764                 start = sl;
2765                 /* write it back and re-read */
2766                 rcu_read_lock();
2767                 while (sl != r10_bio->read_slot) {
2768                         if (sl==0)
2769                                 sl = conf->copies;
2770                         sl--;
2771                         d = r10_bio->devs[sl].devnum;
2772                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2773                         if (!rdev ||
2774                             test_bit(Faulty, &rdev->flags) ||
2775                             !test_bit(In_sync, &rdev->flags))
2776                                 continue;
2777
2778                         atomic_inc(&rdev->nr_pending);
2779                         rcu_read_unlock();
2780                         if (r10_sync_page_io(rdev,
2781                                              r10_bio->devs[sl].addr +
2782                                              sect,
2783                                              s, conf->tmppage, WRITE)
2784                             == 0) {
2785                                 /* Well, this device is dead */
2786                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2787                                           mdname(mddev), s,
2788                                           (unsigned long long)(
2789                                                   sect +
2790                                                   choose_data_offset(r10_bio,
2791                                                                      rdev)),
2792                                           rdev->bdev);
2793                                 pr_notice("md/raid10:%s: %pg: failing drive\n",
2794                                           mdname(mddev),
2795                                           rdev->bdev);
2796                         }
2797                         rdev_dec_pending(rdev, mddev);
2798                         rcu_read_lock();
2799                 }
2800                 sl = start;
2801                 while (sl != r10_bio->read_slot) {
2802                         if (sl==0)
2803                                 sl = conf->copies;
2804                         sl--;
2805                         d = r10_bio->devs[sl].devnum;
2806                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2807                         if (!rdev ||
2808                             test_bit(Faulty, &rdev->flags) ||
2809                             !test_bit(In_sync, &rdev->flags))
2810                                 continue;
2811
2812                         atomic_inc(&rdev->nr_pending);
2813                         rcu_read_unlock();
2814                         switch (r10_sync_page_io(rdev,
2815                                              r10_bio->devs[sl].addr +
2816                                              sect,
2817                                              s, conf->tmppage,
2818                                                  READ)) {
2819                         case 0:
2820                                 /* Well, this device is dead */
2821                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2822                                        mdname(mddev), s,
2823                                        (unsigned long long)(
2824                                                sect +
2825                                                choose_data_offset(r10_bio, rdev)),
2826                                        rdev->bdev);
2827                                 pr_notice("md/raid10:%s: %pg: failing drive\n",
2828                                        mdname(mddev),
2829                                        rdev->bdev);
2830                                 break;
2831                         case 1:
2832                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2833                                        mdname(mddev), s,
2834                                        (unsigned long long)(
2835                                                sect +
2836                                                choose_data_offset(r10_bio, rdev)),
2837                                        rdev->bdev);
2838                                 atomic_add(s, &rdev->corrected_errors);
2839                         }
2840
2841                         rdev_dec_pending(rdev, mddev);
2842                         rcu_read_lock();
2843                 }
2844                 rcu_read_unlock();
2845
2846                 sectors -= s;
2847                 sect += s;
2848         }
2849 }
2850
2851 static int narrow_write_error(struct r10bio *r10_bio, int i)
2852 {
2853         struct bio *bio = r10_bio->master_bio;
2854         struct mddev *mddev = r10_bio->mddev;
2855         struct r10conf *conf = mddev->private;
2856         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2857         /* bio has the data to be written to slot 'i' where
2858          * we just recently had a write error.
2859          * We repeatedly clone the bio and trim down to one block,
2860          * then try the write.  Where the write fails we record
2861          * a bad block.
2862          * It is conceivable that the bio doesn't exactly align with
2863          * blocks.  We must handle this.
2864          *
2865          * We currently own a reference to the rdev.
2866          */
2867
2868         int block_sectors;
2869         sector_t sector;
2870         int sectors;
2871         int sect_to_write = r10_bio->sectors;
2872         int ok = 1;
2873
2874         if (rdev->badblocks.shift < 0)
2875                 return 0;
2876
2877         block_sectors = roundup(1 << rdev->badblocks.shift,
2878                                 bdev_logical_block_size(rdev->bdev) >> 9);
2879         sector = r10_bio->sector;
2880         sectors = ((r10_bio->sector + block_sectors)
2881                    & ~(sector_t)(block_sectors - 1))
2882                 - sector;
2883
2884         while (sect_to_write) {
2885                 struct bio *wbio;
2886                 sector_t wsector;
2887                 if (sectors > sect_to_write)
2888                         sectors = sect_to_write;
2889                 /* Write at 'sector' for 'sectors' */
2890                 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2891                                        &mddev->bio_set);
2892                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2893                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2894                 wbio->bi_iter.bi_sector = wsector +
2895                                    choose_data_offset(r10_bio, rdev);
2896                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2897
2898                 if (submit_bio_wait(wbio) < 0)
2899                         /* Failure! */
2900                         ok = rdev_set_badblocks(rdev, wsector,
2901                                                 sectors, 0)
2902                                 && ok;
2903
2904                 bio_put(wbio);
2905                 sect_to_write -= sectors;
2906                 sector += sectors;
2907                 sectors = block_sectors;
2908         }
2909         return ok;
2910 }
2911
2912 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2913 {
2914         int slot = r10_bio->read_slot;
2915         struct bio *bio;
2916         struct r10conf *conf = mddev->private;
2917         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2918
2919         /* we got a read error. Maybe the drive is bad.  Maybe just
2920          * the block and we can fix it.
2921          * We freeze all other IO, and try reading the block from
2922          * other devices.  When we find one, we re-write
2923          * and check it that fixes the read error.
2924          * This is all done synchronously while the array is
2925          * frozen.
2926          */
2927         bio = r10_bio->devs[slot].bio;
2928         bio_put(bio);
2929         r10_bio->devs[slot].bio = NULL;
2930
2931         if (mddev->ro)
2932                 r10_bio->devs[slot].bio = IO_BLOCKED;
2933         else if (!test_bit(FailFast, &rdev->flags)) {
2934                 freeze_array(conf, 1);
2935                 fix_read_error(conf, mddev, r10_bio);
2936                 unfreeze_array(conf);
2937         } else
2938                 md_error(mddev, rdev);
2939
2940         rdev_dec_pending(rdev, mddev);
2941         allow_barrier(conf);
2942         r10_bio->state = 0;
2943         raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2944 }
2945
2946 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2947 {
2948         /* Some sort of write request has finished and it
2949          * succeeded in writing where we thought there was a
2950          * bad block.  So forget the bad block.
2951          * Or possibly if failed and we need to record
2952          * a bad block.
2953          */
2954         int m;
2955         struct md_rdev *rdev;
2956
2957         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2958             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2959                 for (m = 0; m < conf->copies; m++) {
2960                         int dev = r10_bio->devs[m].devnum;
2961                         rdev = conf->mirrors[dev].rdev;
2962                         if (r10_bio->devs[m].bio == NULL ||
2963                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2964                                 continue;
2965                         if (!r10_bio->devs[m].bio->bi_status) {
2966                                 rdev_clear_badblocks(
2967                                         rdev,
2968                                         r10_bio->devs[m].addr,
2969                                         r10_bio->sectors, 0);
2970                         } else {
2971                                 if (!rdev_set_badblocks(
2972                                             rdev,
2973                                             r10_bio->devs[m].addr,
2974                                             r10_bio->sectors, 0))
2975                                         md_error(conf->mddev, rdev);
2976                         }
2977                         rdev = conf->mirrors[dev].replacement;
2978                         if (r10_bio->devs[m].repl_bio == NULL ||
2979                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2980                                 continue;
2981
2982                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2983                                 rdev_clear_badblocks(
2984                                         rdev,
2985                                         r10_bio->devs[m].addr,
2986                                         r10_bio->sectors, 0);
2987                         } else {
2988                                 if (!rdev_set_badblocks(
2989                                             rdev,
2990                                             r10_bio->devs[m].addr,
2991                                             r10_bio->sectors, 0))
2992                                         md_error(conf->mddev, rdev);
2993                         }
2994                 }
2995                 put_buf(r10_bio);
2996         } else {
2997                 bool fail = false;
2998                 for (m = 0; m < conf->copies; m++) {
2999                         int dev = r10_bio->devs[m].devnum;
3000                         struct bio *bio = r10_bio->devs[m].bio;
3001                         rdev = conf->mirrors[dev].rdev;
3002                         if (bio == IO_MADE_GOOD) {
3003                                 rdev_clear_badblocks(
3004                                         rdev,
3005                                         r10_bio->devs[m].addr,
3006                                         r10_bio->sectors, 0);
3007                                 rdev_dec_pending(rdev, conf->mddev);
3008                         } else if (bio != NULL && bio->bi_status) {
3009                                 fail = true;
3010                                 if (!narrow_write_error(r10_bio, m)) {
3011                                         md_error(conf->mddev, rdev);
3012                                         set_bit(R10BIO_Degraded,
3013                                                 &r10_bio->state);
3014                                 }
3015                                 rdev_dec_pending(rdev, conf->mddev);
3016                         }
3017                         bio = r10_bio->devs[m].repl_bio;
3018                         rdev = conf->mirrors[dev].replacement;
3019                         if (rdev && bio == IO_MADE_GOOD) {
3020                                 rdev_clear_badblocks(
3021                                         rdev,
3022                                         r10_bio->devs[m].addr,
3023                                         r10_bio->sectors, 0);
3024                                 rdev_dec_pending(rdev, conf->mddev);
3025                         }
3026                 }
3027                 if (fail) {
3028                         spin_lock_irq(&conf->device_lock);
3029                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3030                         conf->nr_queued++;
3031                         spin_unlock_irq(&conf->device_lock);
3032                         /*
3033                          * In case freeze_array() is waiting for condition
3034                          * nr_pending == nr_queued + extra to be true.
3035                          */
3036                         wake_up(&conf->wait_barrier);
3037                         md_wakeup_thread(conf->mddev->thread);
3038                 } else {
3039                         if (test_bit(R10BIO_WriteError,
3040                                      &r10_bio->state))
3041                                 close_write(r10_bio);
3042                         raid_end_bio_io(r10_bio);
3043                 }
3044         }
3045 }
3046
3047 static void raid10d(struct md_thread *thread)
3048 {
3049         struct mddev *mddev = thread->mddev;
3050         struct r10bio *r10_bio;
3051         unsigned long flags;
3052         struct r10conf *conf = mddev->private;
3053         struct list_head *head = &conf->retry_list;
3054         struct blk_plug plug;
3055
3056         md_check_recovery(mddev);
3057
3058         if (!list_empty_careful(&conf->bio_end_io_list) &&
3059             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3060                 LIST_HEAD(tmp);
3061                 spin_lock_irqsave(&conf->device_lock, flags);
3062                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3063                         while (!list_empty(&conf->bio_end_io_list)) {
3064                                 list_move(conf->bio_end_io_list.prev, &tmp);
3065                                 conf->nr_queued--;
3066                         }
3067                 }
3068                 spin_unlock_irqrestore(&conf->device_lock, flags);
3069                 while (!list_empty(&tmp)) {
3070                         r10_bio = list_first_entry(&tmp, struct r10bio,
3071                                                    retry_list);
3072                         list_del(&r10_bio->retry_list);
3073                         if (mddev->degraded)
3074                                 set_bit(R10BIO_Degraded, &r10_bio->state);
3075
3076                         if (test_bit(R10BIO_WriteError,
3077                                      &r10_bio->state))
3078                                 close_write(r10_bio);
3079                         raid_end_bio_io(r10_bio);
3080                 }
3081         }
3082
3083         blk_start_plug(&plug);
3084         for (;;) {
3085
3086                 flush_pending_writes(conf);
3087
3088                 spin_lock_irqsave(&conf->device_lock, flags);
3089                 if (list_empty(head)) {
3090                         spin_unlock_irqrestore(&conf->device_lock, flags);
3091                         break;
3092                 }
3093                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3094                 list_del(head->prev);
3095                 conf->nr_queued--;
3096                 spin_unlock_irqrestore(&conf->device_lock, flags);
3097
3098                 mddev = r10_bio->mddev;
3099                 conf = mddev->private;
3100                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3101                     test_bit(R10BIO_WriteError, &r10_bio->state))
3102                         handle_write_completed(conf, r10_bio);
3103                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3104                         reshape_request_write(mddev, r10_bio);
3105                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3106                         sync_request_write(mddev, r10_bio);
3107                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3108                         recovery_request_write(mddev, r10_bio);
3109                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3110                         handle_read_error(mddev, r10_bio);
3111                 else
3112                         WARN_ON_ONCE(1);
3113
3114                 cond_resched();
3115                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3116                         md_check_recovery(mddev);
3117         }
3118         blk_finish_plug(&plug);
3119 }
3120
3121 static int init_resync(struct r10conf *conf)
3122 {
3123         int ret, buffs, i;
3124
3125         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3126         BUG_ON(mempool_initialized(&conf->r10buf_pool));
3127         conf->have_replacement = 0;
3128         for (i = 0; i < conf->geo.raid_disks; i++)
3129                 if (conf->mirrors[i].replacement)
3130                         conf->have_replacement = 1;
3131         ret = mempool_init(&conf->r10buf_pool, buffs,
3132                            r10buf_pool_alloc, r10buf_pool_free, conf);
3133         if (ret)
3134                 return ret;
3135         conf->next_resync = 0;
3136         return 0;
3137 }
3138
3139 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3140 {
3141         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3142         struct rsync_pages *rp;
3143         struct bio *bio;
3144         int nalloc;
3145         int i;
3146
3147         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3148             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3149                 nalloc = conf->copies; /* resync */
3150         else
3151                 nalloc = 2; /* recovery */
3152
3153         for (i = 0; i < nalloc; i++) {
3154                 bio = r10bio->devs[i].bio;
3155                 rp = bio->bi_private;
3156                 bio_reset(bio, NULL, 0);
3157                 bio->bi_private = rp;
3158                 bio = r10bio->devs[i].repl_bio;
3159                 if (bio) {
3160                         rp = bio->bi_private;
3161                         bio_reset(bio, NULL, 0);
3162                         bio->bi_private = rp;
3163                 }
3164         }
3165         return r10bio;
3166 }
3167
3168 /*
3169  * Set cluster_sync_high since we need other nodes to add the
3170  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3171  */
3172 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3173 {
3174         sector_t window_size;
3175         int extra_chunk, chunks;
3176
3177         /*
3178          * First, here we define "stripe" as a unit which across
3179          * all member devices one time, so we get chunks by use
3180          * raid_disks / near_copies. Otherwise, if near_copies is
3181          * close to raid_disks, then resync window could increases
3182          * linearly with the increase of raid_disks, which means
3183          * we will suspend a really large IO window while it is not
3184          * necessary. If raid_disks is not divisible by near_copies,
3185          * an extra chunk is needed to ensure the whole "stripe" is
3186          * covered.
3187          */
3188
3189         chunks = conf->geo.raid_disks / conf->geo.near_copies;
3190         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3191                 extra_chunk = 0;
3192         else
3193                 extra_chunk = 1;
3194         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3195
3196         /*
3197          * At least use a 32M window to align with raid1's resync window
3198          */
3199         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3200                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3201
3202         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3203 }
3204
3205 /*
3206  * perform a "sync" on one "block"
3207  *
3208  * We need to make sure that no normal I/O request - particularly write
3209  * requests - conflict with active sync requests.
3210  *
3211  * This is achieved by tracking pending requests and a 'barrier' concept
3212  * that can be installed to exclude normal IO requests.
3213  *
3214  * Resync and recovery are handled very differently.
3215  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3216  *
3217  * For resync, we iterate over virtual addresses, read all copies,
3218  * and update if there are differences.  If only one copy is live,
3219  * skip it.
3220  * For recovery, we iterate over physical addresses, read a good
3221  * value for each non-in_sync drive, and over-write.
3222  *
3223  * So, for recovery we may have several outstanding complex requests for a
3224  * given address, one for each out-of-sync device.  We model this by allocating
3225  * a number of r10_bio structures, one for each out-of-sync device.
3226  * As we setup these structures, we collect all bio's together into a list
3227  * which we then process collectively to add pages, and then process again
3228  * to pass to submit_bio_noacct.
3229  *
3230  * The r10_bio structures are linked using a borrowed master_bio pointer.
3231  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3232  * has its remaining count decremented to 0, the whole complex operation
3233  * is complete.
3234  *
3235  */
3236
3237 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3238                              int *skipped)
3239 {
3240         struct r10conf *conf = mddev->private;
3241         struct r10bio *r10_bio;
3242         struct bio *biolist = NULL, *bio;
3243         sector_t max_sector, nr_sectors;
3244         int i;
3245         int max_sync;
3246         sector_t sync_blocks;
3247         sector_t sectors_skipped = 0;
3248         int chunks_skipped = 0;
3249         sector_t chunk_mask = conf->geo.chunk_mask;
3250         int page_idx = 0;
3251
3252         if (!mempool_initialized(&conf->r10buf_pool))
3253                 if (init_resync(conf))
3254                         return 0;
3255
3256         /*
3257          * Allow skipping a full rebuild for incremental assembly
3258          * of a clean array, like RAID1 does.
3259          */
3260         if (mddev->bitmap == NULL &&
3261             mddev->recovery_cp == MaxSector &&
3262             mddev->reshape_position == MaxSector &&
3263             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3264             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3265             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3266             conf->fullsync == 0) {
3267                 *skipped = 1;
3268                 return mddev->dev_sectors - sector_nr;
3269         }
3270
3271  skipped:
3272         max_sector = mddev->dev_sectors;
3273         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3274             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3275                 max_sector = mddev->resync_max_sectors;
3276         if (sector_nr >= max_sector) {
3277                 conf->cluster_sync_low = 0;
3278                 conf->cluster_sync_high = 0;
3279
3280                 /* If we aborted, we need to abort the
3281                  * sync on the 'current' bitmap chucks (there can
3282                  * be several when recovering multiple devices).
3283                  * as we may have started syncing it but not finished.
3284                  * We can find the current address in
3285                  * mddev->curr_resync, but for recovery,
3286                  * we need to convert that to several
3287                  * virtual addresses.
3288                  */
3289                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3290                         end_reshape(conf);
3291                         close_sync(conf);
3292                         return 0;
3293                 }
3294
3295                 if (mddev->curr_resync < max_sector) { /* aborted */
3296                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3297                                 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3298                                                    &sync_blocks, 1);
3299                         else for (i = 0; i < conf->geo.raid_disks; i++) {
3300                                 sector_t sect =
3301                                         raid10_find_virt(conf, mddev->curr_resync, i);
3302                                 md_bitmap_end_sync(mddev->bitmap, sect,
3303                                                    &sync_blocks, 1);
3304                         }
3305                 } else {
3306                         /* completed sync */
3307                         if ((!mddev->bitmap || conf->fullsync)
3308                             && conf->have_replacement
3309                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3310                                 /* Completed a full sync so the replacements
3311                                  * are now fully recovered.
3312                                  */
3313                                 rcu_read_lock();
3314                                 for (i = 0; i < conf->geo.raid_disks; i++) {
3315                                         struct md_rdev *rdev =
3316                                                 rcu_dereference(conf->mirrors[i].replacement);
3317                                         if (rdev)
3318                                                 rdev->recovery_offset = MaxSector;
3319                                 }
3320                                 rcu_read_unlock();
3321                         }
3322                         conf->fullsync = 0;
3323                 }
3324                 md_bitmap_close_sync(mddev->bitmap);
3325                 close_sync(conf);
3326                 *skipped = 1;
3327                 return sectors_skipped;
3328         }
3329
3330         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3331                 return reshape_request(mddev, sector_nr, skipped);
3332
3333         if (chunks_skipped >= conf->geo.raid_disks) {
3334                 /* if there has been nothing to do on any drive,
3335                  * then there is nothing to do at all..
3336                  */
3337                 *skipped = 1;
3338                 return (max_sector - sector_nr) + sectors_skipped;
3339         }
3340
3341         if (max_sector > mddev->resync_max)
3342                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3343
3344         /* make sure whole request will fit in a chunk - if chunks
3345          * are meaningful
3346          */
3347         if (conf->geo.near_copies < conf->geo.raid_disks &&
3348             max_sector > (sector_nr | chunk_mask))
3349                 max_sector = (sector_nr | chunk_mask) + 1;
3350
3351         /*
3352          * If there is non-resync activity waiting for a turn, then let it
3353          * though before starting on this new sync request.
3354          */
3355         if (conf->nr_waiting)
3356                 schedule_timeout_uninterruptible(1);
3357
3358         /* Again, very different code for resync and recovery.
3359          * Both must result in an r10bio with a list of bios that
3360          * have bi_end_io, bi_sector, bi_bdev set,
3361          * and bi_private set to the r10bio.
3362          * For recovery, we may actually create several r10bios
3363          * with 2 bios in each, that correspond to the bios in the main one.
3364          * In this case, the subordinate r10bios link back through a
3365          * borrowed master_bio pointer, and the counter in the master
3366          * includes a ref from each subordinate.
3367          */
3368         /* First, we decide what to do and set ->bi_end_io
3369          * To end_sync_read if we want to read, and
3370          * end_sync_write if we will want to write.
3371          */
3372
3373         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3374         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3375                 /* recovery... the complicated one */
3376                 int j;
3377                 r10_bio = NULL;
3378
3379                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3380                         int still_degraded;
3381                         struct r10bio *rb2;
3382                         sector_t sect;
3383                         int must_sync;
3384                         int any_working;
3385                         int need_recover = 0;
3386                         int need_replace = 0;
3387                         struct raid10_info *mirror = &conf->mirrors[i];
3388                         struct md_rdev *mrdev, *mreplace;
3389
3390                         rcu_read_lock();
3391                         mrdev = rcu_dereference(mirror->rdev);
3392                         mreplace = rcu_dereference(mirror->replacement);
3393
3394                         if (mrdev != NULL &&
3395                             !test_bit(Faulty, &mrdev->flags) &&
3396                             !test_bit(In_sync, &mrdev->flags))
3397                                 need_recover = 1;
3398                         if (mreplace != NULL &&
3399                             !test_bit(Faulty, &mreplace->flags))
3400                                 need_replace = 1;
3401
3402                         if (!need_recover && !need_replace) {
3403                                 rcu_read_unlock();
3404                                 continue;
3405                         }
3406
3407                         still_degraded = 0;
3408                         /* want to reconstruct this device */
3409                         rb2 = r10_bio;
3410                         sect = raid10_find_virt(conf, sector_nr, i);
3411                         if (sect >= mddev->resync_max_sectors) {
3412                                 /* last stripe is not complete - don't
3413                                  * try to recover this sector.
3414                                  */
3415                                 rcu_read_unlock();
3416                                 continue;
3417                         }
3418                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3419                                 mreplace = NULL;
3420                         /* Unless we are doing a full sync, or a replacement
3421                          * we only need to recover the block if it is set in
3422                          * the bitmap
3423                          */
3424                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3425                                                          &sync_blocks, 1);
3426                         if (sync_blocks < max_sync)
3427                                 max_sync = sync_blocks;
3428                         if (!must_sync &&
3429                             mreplace == NULL &&
3430                             !conf->fullsync) {
3431                                 /* yep, skip the sync_blocks here, but don't assume
3432                                  * that there will never be anything to do here
3433                                  */
3434                                 chunks_skipped = -1;
3435                                 rcu_read_unlock();
3436                                 continue;
3437                         }
3438                         atomic_inc(&mrdev->nr_pending);
3439                         if (mreplace)
3440                                 atomic_inc(&mreplace->nr_pending);
3441                         rcu_read_unlock();
3442
3443                         r10_bio = raid10_alloc_init_r10buf(conf);
3444                         r10_bio->state = 0;
3445                         raise_barrier(conf, rb2 != NULL);
3446                         atomic_set(&r10_bio->remaining, 0);
3447
3448                         r10_bio->master_bio = (struct bio*)rb2;
3449                         if (rb2)
3450                                 atomic_inc(&rb2->remaining);
3451                         r10_bio->mddev = mddev;
3452                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3453                         r10_bio->sector = sect;
3454
3455                         raid10_find_phys(conf, r10_bio);
3456
3457                         /* Need to check if the array will still be
3458                          * degraded
3459                          */
3460                         rcu_read_lock();
3461                         for (j = 0; j < conf->geo.raid_disks; j++) {
3462                                 struct md_rdev *rdev = rcu_dereference(
3463                                         conf->mirrors[j].rdev);
3464                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3465                                         still_degraded = 1;
3466                                         break;
3467                                 }
3468                         }
3469
3470                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3471                                                          &sync_blocks, still_degraded);
3472
3473                         any_working = 0;
3474                         for (j=0; j<conf->copies;j++) {
3475                                 int k;
3476                                 int d = r10_bio->devs[j].devnum;
3477                                 sector_t from_addr, to_addr;
3478                                 struct md_rdev *rdev =
3479                                         rcu_dereference(conf->mirrors[d].rdev);
3480                                 sector_t sector, first_bad;
3481                                 int bad_sectors;
3482                                 if (!rdev ||
3483                                     !test_bit(In_sync, &rdev->flags))
3484                                         continue;
3485                                 /* This is where we read from */
3486                                 any_working = 1;
3487                                 sector = r10_bio->devs[j].addr;
3488
3489                                 if (is_badblock(rdev, sector, max_sync,
3490                                                 &first_bad, &bad_sectors)) {
3491                                         if (first_bad > sector)
3492                                                 max_sync = first_bad - sector;
3493                                         else {
3494                                                 bad_sectors -= (sector
3495                                                                 - first_bad);
3496                                                 if (max_sync > bad_sectors)
3497                                                         max_sync = bad_sectors;
3498                                                 continue;
3499                                         }
3500                                 }
3501                                 bio = r10_bio->devs[0].bio;
3502                                 bio->bi_next = biolist;
3503                                 biolist = bio;
3504                                 bio->bi_end_io = end_sync_read;
3505                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3506                                 if (test_bit(FailFast, &rdev->flags))
3507                                         bio->bi_opf |= MD_FAILFAST;
3508                                 from_addr = r10_bio->devs[j].addr;
3509                                 bio->bi_iter.bi_sector = from_addr +
3510                                         rdev->data_offset;
3511                                 bio_set_dev(bio, rdev->bdev);
3512                                 atomic_inc(&rdev->nr_pending);
3513                                 /* and we write to 'i' (if not in_sync) */
3514
3515                                 for (k=0; k<conf->copies; k++)
3516                                         if (r10_bio->devs[k].devnum == i)
3517                                                 break;
3518                                 BUG_ON(k == conf->copies);
3519                                 to_addr = r10_bio->devs[k].addr;
3520                                 r10_bio->devs[0].devnum = d;
3521                                 r10_bio->devs[0].addr = from_addr;
3522                                 r10_bio->devs[1].devnum = i;
3523                                 r10_bio->devs[1].addr = to_addr;
3524
3525                                 if (need_recover) {
3526                                         bio = r10_bio->devs[1].bio;
3527                                         bio->bi_next = biolist;
3528                                         biolist = bio;
3529                                         bio->bi_end_io = end_sync_write;
3530                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3531                                         bio->bi_iter.bi_sector = to_addr
3532                                                 + mrdev->data_offset;
3533                                         bio_set_dev(bio, mrdev->bdev);
3534                                         atomic_inc(&r10_bio->remaining);
3535                                 } else
3536                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3537
3538                                 /* and maybe write to replacement */
3539                                 bio = r10_bio->devs[1].repl_bio;
3540                                 if (bio)
3541                                         bio->bi_end_io = NULL;
3542                                 /* Note: if need_replace, then bio
3543                                  * cannot be NULL as r10buf_pool_alloc will
3544                                  * have allocated it.
3545                                  */
3546                                 if (!need_replace)
3547                                         break;
3548                                 bio->bi_next = biolist;
3549                                 biolist = bio;
3550                                 bio->bi_end_io = end_sync_write;
3551                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3552                                 bio->bi_iter.bi_sector = to_addr +
3553                                         mreplace->data_offset;
3554                                 bio_set_dev(bio, mreplace->bdev);
3555                                 atomic_inc(&r10_bio->remaining);
3556                                 break;
3557                         }
3558                         rcu_read_unlock();
3559                         if (j == conf->copies) {
3560                                 /* Cannot recover, so abort the recovery or
3561                                  * record a bad block */
3562                                 if (any_working) {
3563                                         /* problem is that there are bad blocks
3564                                          * on other device(s)
3565                                          */
3566                                         int k;
3567                                         for (k = 0; k < conf->copies; k++)
3568                                                 if (r10_bio->devs[k].devnum == i)
3569                                                         break;
3570                                         if (!test_bit(In_sync,
3571                                                       &mrdev->flags)
3572                                             && !rdev_set_badblocks(
3573                                                     mrdev,
3574                                                     r10_bio->devs[k].addr,
3575                                                     max_sync, 0))
3576                                                 any_working = 0;
3577                                         if (mreplace &&
3578                                             !rdev_set_badblocks(
3579                                                     mreplace,
3580                                                     r10_bio->devs[k].addr,
3581                                                     max_sync, 0))
3582                                                 any_working = 0;
3583                                 }
3584                                 if (!any_working)  {
3585                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3586                                                               &mddev->recovery))
3587                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3588                                                        mdname(mddev));
3589                                         mirror->recovery_disabled
3590                                                 = mddev->recovery_disabled;
3591                                 }
3592                                 put_buf(r10_bio);
3593                                 if (rb2)
3594                                         atomic_dec(&rb2->remaining);
3595                                 r10_bio = rb2;
3596                                 rdev_dec_pending(mrdev, mddev);
3597                                 if (mreplace)
3598                                         rdev_dec_pending(mreplace, mddev);
3599                                 break;
3600                         }
3601                         rdev_dec_pending(mrdev, mddev);
3602                         if (mreplace)
3603                                 rdev_dec_pending(mreplace, mddev);
3604                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3605                                 /* Only want this if there is elsewhere to
3606                                  * read from. 'j' is currently the first
3607                                  * readable copy.
3608                                  */
3609                                 int targets = 1;
3610                                 for (; j < conf->copies; j++) {
3611                                         int d = r10_bio->devs[j].devnum;
3612                                         if (conf->mirrors[d].rdev &&
3613                                             test_bit(In_sync,
3614                                                       &conf->mirrors[d].rdev->flags))
3615                                                 targets++;
3616                                 }
3617                                 if (targets == 1)
3618                                         r10_bio->devs[0].bio->bi_opf
3619                                                 &= ~MD_FAILFAST;
3620                         }
3621                 }
3622                 if (biolist == NULL) {
3623                         while (r10_bio) {
3624                                 struct r10bio *rb2 = r10_bio;
3625                                 r10_bio = (struct r10bio*) rb2->master_bio;
3626                                 rb2->master_bio = NULL;
3627                                 put_buf(rb2);
3628                         }
3629                         goto giveup;
3630                 }
3631         } else {
3632                 /* resync. Schedule a read for every block at this virt offset */
3633                 int count = 0;
3634
3635                 /*
3636                  * Since curr_resync_completed could probably not update in
3637                  * time, and we will set cluster_sync_low based on it.
3638                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3639                  * safety reason, which ensures curr_resync_completed is
3640                  * updated in bitmap_cond_end_sync.
3641                  */
3642                 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3643                                         mddev_is_clustered(mddev) &&
3644                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3645
3646                 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3647                                           &sync_blocks, mddev->degraded) &&
3648                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3649                                                  &mddev->recovery)) {
3650                         /* We can skip this block */
3651                         *skipped = 1;
3652                         return sync_blocks + sectors_skipped;
3653                 }
3654                 if (sync_blocks < max_sync)
3655                         max_sync = sync_blocks;
3656                 r10_bio = raid10_alloc_init_r10buf(conf);
3657                 r10_bio->state = 0;
3658
3659                 r10_bio->mddev = mddev;
3660                 atomic_set(&r10_bio->remaining, 0);
3661                 raise_barrier(conf, 0);
3662                 conf->next_resync = sector_nr;
3663
3664                 r10_bio->master_bio = NULL;
3665                 r10_bio->sector = sector_nr;
3666                 set_bit(R10BIO_IsSync, &r10_bio->state);
3667                 raid10_find_phys(conf, r10_bio);
3668                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3669
3670                 for (i = 0; i < conf->copies; i++) {
3671                         int d = r10_bio->devs[i].devnum;
3672                         sector_t first_bad, sector;
3673                         int bad_sectors;
3674                         struct md_rdev *rdev;
3675
3676                         if (r10_bio->devs[i].repl_bio)
3677                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3678
3679                         bio = r10_bio->devs[i].bio;
3680                         bio->bi_status = BLK_STS_IOERR;
3681                         rcu_read_lock();
3682                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3683                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3684                                 rcu_read_unlock();
3685                                 continue;
3686                         }
3687                         sector = r10_bio->devs[i].addr;
3688                         if (is_badblock(rdev, sector, max_sync,
3689                                         &first_bad, &bad_sectors)) {
3690                                 if (first_bad > sector)
3691                                         max_sync = first_bad - sector;
3692                                 else {
3693                                         bad_sectors -= (sector - first_bad);
3694                                         if (max_sync > bad_sectors)
3695                                                 max_sync = bad_sectors;
3696                                         rcu_read_unlock();
3697                                         continue;
3698                                 }
3699                         }
3700                         atomic_inc(&rdev->nr_pending);
3701                         atomic_inc(&r10_bio->remaining);
3702                         bio->bi_next = biolist;
3703                         biolist = bio;
3704                         bio->bi_end_io = end_sync_read;
3705                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3706                         if (test_bit(FailFast, &rdev->flags))
3707                                 bio->bi_opf |= MD_FAILFAST;
3708                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3709                         bio_set_dev(bio, rdev->bdev);
3710                         count++;
3711
3712                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3713                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3714                                 rcu_read_unlock();
3715                                 continue;
3716                         }
3717                         atomic_inc(&rdev->nr_pending);
3718
3719                         /* Need to set up for writing to the replacement */
3720                         bio = r10_bio->devs[i].repl_bio;
3721                         bio->bi_status = BLK_STS_IOERR;
3722
3723                         sector = r10_bio->devs[i].addr;
3724                         bio->bi_next = biolist;
3725                         biolist = bio;
3726                         bio->bi_end_io = end_sync_write;
3727                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3728                         if (test_bit(FailFast, &rdev->flags))
3729                                 bio->bi_opf |= MD_FAILFAST;
3730                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3731                         bio_set_dev(bio, rdev->bdev);
3732                         count++;
3733                         rcu_read_unlock();
3734                 }
3735
3736                 if (count < 2) {
3737                         for (i=0; i<conf->copies; i++) {
3738                                 int d = r10_bio->devs[i].devnum;
3739                                 if (r10_bio->devs[i].bio->bi_end_io)
3740                                         rdev_dec_pending(conf->mirrors[d].rdev,
3741                                                          mddev);
3742                                 if (r10_bio->devs[i].repl_bio &&
3743                                     r10_bio->devs[i].repl_bio->bi_end_io)
3744                                         rdev_dec_pending(
3745                                                 conf->mirrors[d].replacement,
3746                                                 mddev);
3747                         }
3748                         put_buf(r10_bio);
3749                         biolist = NULL;
3750                         goto giveup;
3751                 }
3752         }
3753
3754         nr_sectors = 0;
3755         if (sector_nr + max_sync < max_sector)
3756                 max_sector = sector_nr + max_sync;
3757         do {
3758                 struct page *page;
3759                 int len = PAGE_SIZE;
3760                 if (sector_nr + (len>>9) > max_sector)
3761                         len = (max_sector - sector_nr) << 9;
3762                 if (len == 0)
3763                         break;
3764                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3765                         struct resync_pages *rp = get_resync_pages(bio);
3766                         page = resync_fetch_page(rp, page_idx);
3767                         /*
3768                          * won't fail because the vec table is big enough
3769                          * to hold all these pages
3770                          */
3771                         bio_add_page(bio, page, len, 0);
3772                 }
3773                 nr_sectors += len>>9;
3774                 sector_nr += len>>9;
3775         } while (++page_idx < RESYNC_PAGES);
3776         r10_bio->sectors = nr_sectors;
3777
3778         if (mddev_is_clustered(mddev) &&
3779             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3780                 /* It is resync not recovery */
3781                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3782                         conf->cluster_sync_low = mddev->curr_resync_completed;
3783                         raid10_set_cluster_sync_high(conf);
3784                         /* Send resync message */
3785                         md_cluster_ops->resync_info_update(mddev,
3786                                                 conf->cluster_sync_low,
3787                                                 conf->cluster_sync_high);
3788                 }
3789         } else if (mddev_is_clustered(mddev)) {
3790                 /* This is recovery not resync */
3791                 sector_t sect_va1, sect_va2;
3792                 bool broadcast_msg = false;
3793
3794                 for (i = 0; i < conf->geo.raid_disks; i++) {
3795                         /*
3796                          * sector_nr is a device address for recovery, so we
3797                          * need translate it to array address before compare
3798                          * with cluster_sync_high.
3799                          */
3800                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3801
3802                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3803                                 broadcast_msg = true;
3804                                 /*
3805                                  * curr_resync_completed is similar as
3806                                  * sector_nr, so make the translation too.
3807                                  */
3808                                 sect_va2 = raid10_find_virt(conf,
3809                                         mddev->curr_resync_completed, i);
3810
3811                                 if (conf->cluster_sync_low == 0 ||
3812                                     conf->cluster_sync_low > sect_va2)
3813                                         conf->cluster_sync_low = sect_va2;
3814                         }
3815                 }
3816                 if (broadcast_msg) {
3817                         raid10_set_cluster_sync_high(conf);
3818                         md_cluster_ops->resync_info_update(mddev,
3819                                                 conf->cluster_sync_low,
3820                                                 conf->cluster_sync_high);
3821                 }
3822         }
3823
3824         while (biolist) {
3825                 bio = biolist;
3826                 biolist = biolist->bi_next;
3827
3828                 bio->bi_next = NULL;
3829                 r10_bio = get_resync_r10bio(bio);
3830                 r10_bio->sectors = nr_sectors;
3831
3832                 if (bio->bi_end_io == end_sync_read) {
3833                         md_sync_acct_bio(bio, nr_sectors);
3834                         bio->bi_status = 0;
3835                         submit_bio_noacct(bio);
3836                 }
3837         }
3838
3839         if (sectors_skipped)
3840                 /* pretend they weren't skipped, it makes
3841                  * no important difference in this case
3842                  */
3843                 md_done_sync(mddev, sectors_skipped, 1);
3844
3845         return sectors_skipped + nr_sectors;
3846  giveup:
3847         /* There is nowhere to write, so all non-sync
3848          * drives must be failed or in resync, all drives
3849          * have a bad block, so try the next chunk...
3850          */
3851         if (sector_nr + max_sync < max_sector)
3852                 max_sector = sector_nr + max_sync;
3853
3854         sectors_skipped += (max_sector - sector_nr);
3855         chunks_skipped ++;
3856         sector_nr = max_sector;
3857         goto skipped;
3858 }
3859
3860 static sector_t
3861 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3862 {
3863         sector_t size;
3864         struct r10conf *conf = mddev->private;
3865
3866         if (!raid_disks)
3867                 raid_disks = min(conf->geo.raid_disks,
3868                                  conf->prev.raid_disks);
3869         if (!sectors)
3870                 sectors = conf->dev_sectors;
3871
3872         size = sectors >> conf->geo.chunk_shift;
3873         sector_div(size, conf->geo.far_copies);
3874         size = size * raid_disks;
3875         sector_div(size, conf->geo.near_copies);
3876
3877         return size << conf->geo.chunk_shift;
3878 }
3879
3880 static void calc_sectors(struct r10conf *conf, sector_t size)
3881 {
3882         /* Calculate the number of sectors-per-device that will
3883          * actually be used, and set conf->dev_sectors and
3884          * conf->stride
3885          */
3886
3887         size = size >> conf->geo.chunk_shift;
3888         sector_div(size, conf->geo.far_copies);
3889         size = size * conf->geo.raid_disks;
3890         sector_div(size, conf->geo.near_copies);
3891         /* 'size' is now the number of chunks in the array */
3892         /* calculate "used chunks per device" */
3893         size = size * conf->copies;
3894
3895         /* We need to round up when dividing by raid_disks to
3896          * get the stride size.
3897          */
3898         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3899
3900         conf->dev_sectors = size << conf->geo.chunk_shift;
3901
3902         if (conf->geo.far_offset)
3903                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3904         else {
3905                 sector_div(size, conf->geo.far_copies);
3906                 conf->geo.stride = size << conf->geo.chunk_shift;
3907         }
3908 }
3909
3910 enum geo_type {geo_new, geo_old, geo_start};
3911 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3912 {
3913         int nc, fc, fo;
3914         int layout, chunk, disks;
3915         switch (new) {
3916         case geo_old:
3917                 layout = mddev->layout;
3918                 chunk = mddev->chunk_sectors;
3919                 disks = mddev->raid_disks - mddev->delta_disks;
3920                 break;
3921         case geo_new:
3922                 layout = mddev->new_layout;
3923                 chunk = mddev->new_chunk_sectors;
3924                 disks = mddev->raid_disks;
3925                 break;
3926         default: /* avoid 'may be unused' warnings */
3927         case geo_start: /* new when starting reshape - raid_disks not
3928                          * updated yet. */
3929                 layout = mddev->new_layout;
3930                 chunk = mddev->new_chunk_sectors;
3931                 disks = mddev->raid_disks + mddev->delta_disks;
3932                 break;
3933         }
3934         if (layout >> 19)
3935                 return -1;
3936         if (chunk < (PAGE_SIZE >> 9) ||
3937             !is_power_of_2(chunk))
3938                 return -2;
3939         nc = layout & 255;
3940         fc = (layout >> 8) & 255;
3941         fo = layout & (1<<16);
3942         geo->raid_disks = disks;
3943         geo->near_copies = nc;
3944         geo->far_copies = fc;
3945         geo->far_offset = fo;
3946         switch (layout >> 17) {
3947         case 0: /* original layout.  simple but not always optimal */
3948                 geo->far_set_size = disks;
3949                 break;
3950         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3951                  * actually using this, but leave code here just in case.*/
3952                 geo->far_set_size = disks/fc;
3953                 WARN(geo->far_set_size < fc,
3954                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3955                 break;
3956         case 2: /* "improved" layout fixed to match documentation */
3957                 geo->far_set_size = fc * nc;
3958                 break;
3959         default: /* Not a valid layout */
3960                 return -1;
3961         }
3962         geo->chunk_mask = chunk - 1;
3963         geo->chunk_shift = ffz(~chunk);
3964         return nc*fc;
3965 }
3966
3967 static struct r10conf *setup_conf(struct mddev *mddev)
3968 {
3969         struct r10conf *conf = NULL;
3970         int err = -EINVAL;
3971         struct geom geo;
3972         int copies;
3973
3974         copies = setup_geo(&geo, mddev, geo_new);
3975
3976         if (copies == -2) {
3977                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3978                         mdname(mddev), PAGE_SIZE);
3979                 goto out;
3980         }
3981
3982         if (copies < 2 || copies > mddev->raid_disks) {
3983                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3984                         mdname(mddev), mddev->new_layout);
3985                 goto out;
3986         }
3987
3988         err = -ENOMEM;
3989         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3990         if (!conf)
3991                 goto out;
3992
3993         /* FIXME calc properly */
3994         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3995                                 sizeof(struct raid10_info),
3996                                 GFP_KERNEL);
3997         if (!conf->mirrors)
3998                 goto out;
3999
4000         conf->tmppage = alloc_page(GFP_KERNEL);
4001         if (!conf->tmppage)
4002                 goto out;
4003
4004         conf->geo = geo;
4005         conf->copies = copies;
4006         err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
4007                            rbio_pool_free, conf);
4008         if (err)
4009                 goto out;
4010
4011         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
4012         if (err)
4013                 goto out;
4014
4015         calc_sectors(conf, mddev->dev_sectors);
4016         if (mddev->reshape_position == MaxSector) {
4017                 conf->prev = conf->geo;
4018                 conf->reshape_progress = MaxSector;
4019         } else {
4020                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
4021                         err = -EINVAL;
4022                         goto out;
4023                 }
4024                 conf->reshape_progress = mddev->reshape_position;
4025                 if (conf->prev.far_offset)
4026                         conf->prev.stride = 1 << conf->prev.chunk_shift;
4027                 else
4028                         /* far_copies must be 1 */
4029                         conf->prev.stride = conf->dev_sectors;
4030         }
4031         conf->reshape_safe = conf->reshape_progress;
4032         spin_lock_init(&conf->device_lock);
4033         INIT_LIST_HEAD(&conf->retry_list);
4034         INIT_LIST_HEAD(&conf->bio_end_io_list);
4035
4036         spin_lock_init(&conf->resync_lock);
4037         init_waitqueue_head(&conf->wait_barrier);
4038         atomic_set(&conf->nr_pending, 0);
4039
4040         err = -ENOMEM;
4041         conf->thread = md_register_thread(raid10d, mddev, "raid10");
4042         if (!conf->thread)
4043                 goto out;
4044
4045         conf->mddev = mddev;
4046         return conf;
4047
4048  out:
4049         if (conf) {
4050                 mempool_exit(&conf->r10bio_pool);
4051                 kfree(conf->mirrors);
4052                 safe_put_page(conf->tmppage);
4053                 bioset_exit(&conf->bio_split);
4054                 kfree(conf);
4055         }
4056         return ERR_PTR(err);
4057 }
4058
4059 static void raid10_set_io_opt(struct r10conf *conf)
4060 {
4061         int raid_disks = conf->geo.raid_disks;
4062
4063         if (!(conf->geo.raid_disks % conf->geo.near_copies))
4064                 raid_disks /= conf->geo.near_copies;
4065         blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4066                          raid_disks);
4067 }
4068
4069 static int raid10_run(struct mddev *mddev)
4070 {
4071         struct r10conf *conf;
4072         int i, disk_idx;
4073         struct raid10_info *disk;
4074         struct md_rdev *rdev;
4075         sector_t size;
4076         sector_t min_offset_diff = 0;
4077         int first = 1;
4078
4079         if (mddev_init_writes_pending(mddev) < 0)
4080                 return -ENOMEM;
4081
4082         if (mddev->private == NULL) {
4083                 conf = setup_conf(mddev);
4084                 if (IS_ERR(conf))
4085                         return PTR_ERR(conf);
4086                 mddev->private = conf;
4087         }
4088         conf = mddev->private;
4089         if (!conf)
4090                 goto out;
4091
4092         if (mddev_is_clustered(conf->mddev)) {
4093                 int fc, fo;
4094
4095                 fc = (mddev->layout >> 8) & 255;
4096                 fo = mddev->layout & (1<<16);
4097                 if (fc > 1 || fo > 0) {
4098                         pr_err("only near layout is supported by clustered"
4099                                 " raid10\n");
4100                         goto out_free_conf;
4101                 }
4102         }
4103
4104         mddev->thread = conf->thread;
4105         conf->thread = NULL;
4106
4107         if (mddev->queue) {
4108                 blk_queue_max_discard_sectors(mddev->queue,
4109                                               UINT_MAX);
4110                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4111                 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4112                 raid10_set_io_opt(conf);
4113         }
4114
4115         rdev_for_each(rdev, mddev) {
4116                 long long diff;
4117
4118                 disk_idx = rdev->raid_disk;
4119                 if (disk_idx < 0)
4120                         continue;
4121                 if (disk_idx >= conf->geo.raid_disks &&
4122                     disk_idx >= conf->prev.raid_disks)
4123                         continue;
4124                 disk = conf->mirrors + disk_idx;
4125
4126                 if (test_bit(Replacement, &rdev->flags)) {
4127                         if (disk->replacement)
4128                                 goto out_free_conf;
4129                         disk->replacement = rdev;
4130                 } else {
4131                         if (disk->rdev)
4132                                 goto out_free_conf;
4133                         disk->rdev = rdev;
4134                 }
4135                 diff = (rdev->new_data_offset - rdev->data_offset);
4136                 if (!mddev->reshape_backwards)
4137                         diff = -diff;
4138                 if (diff < 0)
4139                         diff = 0;
4140                 if (first || diff < min_offset_diff)
4141                         min_offset_diff = diff;
4142
4143                 if (mddev->gendisk)
4144                         disk_stack_limits(mddev->gendisk, rdev->bdev,
4145                                           rdev->data_offset << 9);
4146
4147                 disk->head_position = 0;
4148                 first = 0;
4149         }
4150
4151         /* need to check that every block has at least one working mirror */
4152         if (!enough(conf, -1)) {
4153                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4154                        mdname(mddev));
4155                 goto out_free_conf;
4156         }
4157
4158         if (conf->reshape_progress != MaxSector) {
4159                 /* must ensure that shape change is supported */
4160                 if (conf->geo.far_copies != 1 &&
4161                     conf->geo.far_offset == 0)
4162                         goto out_free_conf;
4163                 if (conf->prev.far_copies != 1 &&
4164                     conf->prev.far_offset == 0)
4165                         goto out_free_conf;
4166         }
4167
4168         mddev->degraded = 0;
4169         for (i = 0;
4170              i < conf->geo.raid_disks
4171                      || i < conf->prev.raid_disks;
4172              i++) {
4173
4174                 disk = conf->mirrors + i;
4175
4176                 if (!disk->rdev && disk->replacement) {
4177                         /* The replacement is all we have - use it */
4178                         disk->rdev = disk->replacement;
4179                         disk->replacement = NULL;
4180                         clear_bit(Replacement, &disk->rdev->flags);
4181                 }
4182
4183                 if (!disk->rdev ||
4184                     !test_bit(In_sync, &disk->rdev->flags)) {
4185                         disk->head_position = 0;
4186                         mddev->degraded++;
4187                         if (disk->rdev &&
4188                             disk->rdev->saved_raid_disk < 0)
4189                                 conf->fullsync = 1;
4190                 }
4191
4192                 if (disk->replacement &&
4193                     !test_bit(In_sync, &disk->replacement->flags) &&
4194                     disk->replacement->saved_raid_disk < 0) {
4195                         conf->fullsync = 1;
4196                 }
4197
4198                 disk->recovery_disabled = mddev->recovery_disabled - 1;
4199         }
4200
4201         if (mddev->recovery_cp != MaxSector)
4202                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4203                           mdname(mddev));
4204         pr_info("md/raid10:%s: active with %d out of %d devices\n",
4205                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4206                 conf->geo.raid_disks);
4207         /*
4208          * Ok, everything is just fine now
4209          */
4210         mddev->dev_sectors = conf->dev_sectors;
4211         size = raid10_size(mddev, 0, 0);
4212         md_set_array_sectors(mddev, size);
4213         mddev->resync_max_sectors = size;
4214         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4215
4216         if (md_integrity_register(mddev))
4217                 goto out_free_conf;
4218
4219         if (conf->reshape_progress != MaxSector) {
4220                 unsigned long before_length, after_length;
4221
4222                 before_length = ((1 << conf->prev.chunk_shift) *
4223                                  conf->prev.far_copies);
4224                 after_length = ((1 << conf->geo.chunk_shift) *
4225                                 conf->geo.far_copies);
4226
4227                 if (max(before_length, after_length) > min_offset_diff) {
4228                         /* This cannot work */
4229                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4230                         goto out_free_conf;
4231                 }
4232                 conf->offset_diff = min_offset_diff;
4233
4234                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4235                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4236                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4237                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4238                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4239                                                         "reshape");
4240                 if (!mddev->sync_thread)
4241                         goto out_free_conf;
4242         }
4243
4244         return 0;
4245
4246 out_free_conf:
4247         md_unregister_thread(&mddev->thread);
4248         mempool_exit(&conf->r10bio_pool);
4249         safe_put_page(conf->tmppage);
4250         kfree(conf->mirrors);
4251         kfree(conf);
4252         mddev->private = NULL;
4253 out:
4254         return -EIO;
4255 }
4256
4257 static void raid10_free(struct mddev *mddev, void *priv)
4258 {
4259         struct r10conf *conf = priv;
4260
4261         mempool_exit(&conf->r10bio_pool);
4262         safe_put_page(conf->tmppage);
4263         kfree(conf->mirrors);
4264         kfree(conf->mirrors_old);
4265         kfree(conf->mirrors_new);
4266         bioset_exit(&conf->bio_split);
4267         kfree(conf);
4268 }
4269
4270 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4271 {
4272         struct r10conf *conf = mddev->private;
4273
4274         if (quiesce)
4275                 raise_barrier(conf, 0);
4276         else
4277                 lower_barrier(conf);
4278 }
4279
4280 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4281 {
4282         /* Resize of 'far' arrays is not supported.
4283          * For 'near' and 'offset' arrays we can set the
4284          * number of sectors used to be an appropriate multiple
4285          * of the chunk size.
4286          * For 'offset', this is far_copies*chunksize.
4287          * For 'near' the multiplier is the LCM of
4288          * near_copies and raid_disks.
4289          * So if far_copies > 1 && !far_offset, fail.
4290          * Else find LCM(raid_disks, near_copy)*far_copies and
4291          * multiply by chunk_size.  Then round to this number.
4292          * This is mostly done by raid10_size()
4293          */
4294         struct r10conf *conf = mddev->private;
4295         sector_t oldsize, size;
4296
4297         if (mddev->reshape_position != MaxSector)
4298                 return -EBUSY;
4299
4300         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4301                 return -EINVAL;
4302
4303         oldsize = raid10_size(mddev, 0, 0);
4304         size = raid10_size(mddev, sectors, 0);
4305         if (mddev->external_size &&
4306             mddev->array_sectors > size)
4307                 return -EINVAL;
4308         if (mddev->bitmap) {
4309                 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4310                 if (ret)
4311                         return ret;
4312         }
4313         md_set_array_sectors(mddev, size);
4314         if (sectors > mddev->dev_sectors &&
4315             mddev->recovery_cp > oldsize) {
4316                 mddev->recovery_cp = oldsize;
4317                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4318         }
4319         calc_sectors(conf, sectors);
4320         mddev->dev_sectors = conf->dev_sectors;
4321         mddev->resync_max_sectors = size;
4322         return 0;
4323 }
4324
4325 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4326 {
4327         struct md_rdev *rdev;
4328         struct r10conf *conf;
4329
4330         if (mddev->degraded > 0) {
4331                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4332                         mdname(mddev));
4333                 return ERR_PTR(-EINVAL);
4334         }
4335         sector_div(size, devs);
4336
4337         /* Set new parameters */
4338         mddev->new_level = 10;
4339         /* new layout: far_copies = 1, near_copies = 2 */
4340         mddev->new_layout = (1<<8) + 2;
4341         mddev->new_chunk_sectors = mddev->chunk_sectors;
4342         mddev->delta_disks = mddev->raid_disks;
4343         mddev->raid_disks *= 2;
4344         /* make sure it will be not marked as dirty */
4345         mddev->recovery_cp = MaxSector;
4346         mddev->dev_sectors = size;
4347
4348         conf = setup_conf(mddev);
4349         if (!IS_ERR(conf)) {
4350                 rdev_for_each(rdev, mddev)
4351                         if (rdev->raid_disk >= 0) {
4352                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4353                                 rdev->sectors = size;
4354                         }
4355                 conf->barrier = 1;
4356         }
4357
4358         return conf;
4359 }
4360
4361 static void *raid10_takeover(struct mddev *mddev)
4362 {
4363         struct r0conf *raid0_conf;
4364
4365         /* raid10 can take over:
4366          *  raid0 - providing it has only two drives
4367          */
4368         if (mddev->level == 0) {
4369                 /* for raid0 takeover only one zone is supported */
4370                 raid0_conf = mddev->private;
4371                 if (raid0_conf->nr_strip_zones > 1) {
4372                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4373                                 mdname(mddev));
4374                         return ERR_PTR(-EINVAL);
4375                 }
4376                 return raid10_takeover_raid0(mddev,
4377                         raid0_conf->strip_zone->zone_end,
4378                         raid0_conf->strip_zone->nb_dev);
4379         }
4380         return ERR_PTR(-EINVAL);
4381 }
4382
4383 static int raid10_check_reshape(struct mddev *mddev)
4384 {
4385         /* Called when there is a request to change
4386          * - layout (to ->new_layout)
4387          * - chunk size (to ->new_chunk_sectors)
4388          * - raid_disks (by delta_disks)
4389          * or when trying to restart a reshape that was ongoing.
4390          *
4391          * We need to validate the request and possibly allocate
4392          * space if that might be an issue later.
4393          *
4394          * Currently we reject any reshape of a 'far' mode array,
4395          * allow chunk size to change if new is generally acceptable,
4396          * allow raid_disks to increase, and allow
4397          * a switch between 'near' mode and 'offset' mode.
4398          */
4399         struct r10conf *conf = mddev->private;
4400         struct geom geo;
4401
4402         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4403                 return -EINVAL;
4404
4405         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4406                 /* mustn't change number of copies */
4407                 return -EINVAL;
4408         if (geo.far_copies > 1 && !geo.far_offset)
4409                 /* Cannot switch to 'far' mode */
4410                 return -EINVAL;
4411
4412         if (mddev->array_sectors & geo.chunk_mask)
4413                         /* not factor of array size */
4414                         return -EINVAL;
4415
4416         if (!enough(conf, -1))
4417                 return -EINVAL;
4418
4419         kfree(conf->mirrors_new);
4420         conf->mirrors_new = NULL;
4421         if (mddev->delta_disks > 0) {
4422                 /* allocate new 'mirrors' list */
4423                 conf->mirrors_new =
4424                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4425                                 sizeof(struct raid10_info),
4426                                 GFP_KERNEL);
4427                 if (!conf->mirrors_new)
4428                         return -ENOMEM;
4429         }
4430         return 0;
4431 }
4432
4433 /*
4434  * Need to check if array has failed when deciding whether to:
4435  *  - start an array
4436  *  - remove non-faulty devices
4437  *  - add a spare
4438  *  - allow a reshape
4439  * This determination is simple when no reshape is happening.
4440  * However if there is a reshape, we need to carefully check
4441  * both the before and after sections.
4442  * This is because some failed devices may only affect one
4443  * of the two sections, and some non-in_sync devices may
4444  * be insync in the section most affected by failed devices.
4445  */
4446 static int calc_degraded(struct r10conf *conf)
4447 {
4448         int degraded, degraded2;
4449         int i;
4450
4451         rcu_read_lock();
4452         degraded = 0;
4453         /* 'prev' section first */
4454         for (i = 0; i < conf->prev.raid_disks; i++) {
4455                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4456                 if (!rdev || test_bit(Faulty, &rdev->flags))
4457                         degraded++;
4458                 else if (!test_bit(In_sync, &rdev->flags))
4459                         /* When we can reduce the number of devices in
4460                          * an array, this might not contribute to
4461                          * 'degraded'.  It does now.
4462                          */
4463                         degraded++;
4464         }
4465         rcu_read_unlock();
4466         if (conf->geo.raid_disks == conf->prev.raid_disks)
4467                 return degraded;
4468         rcu_read_lock();
4469         degraded2 = 0;
4470         for (i = 0; i < conf->geo.raid_disks; i++) {
4471                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4472                 if (!rdev || test_bit(Faulty, &rdev->flags))
4473                         degraded2++;
4474                 else if (!test_bit(In_sync, &rdev->flags)) {
4475                         /* If reshape is increasing the number of devices,
4476                          * this section has already been recovered, so
4477                          * it doesn't contribute to degraded.
4478                          * else it does.
4479                          */
4480                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4481                                 degraded2++;
4482                 }
4483         }
4484         rcu_read_unlock();
4485         if (degraded2 > degraded)
4486                 return degraded2;
4487         return degraded;
4488 }
4489
4490 static int raid10_start_reshape(struct mddev *mddev)
4491 {
4492         /* A 'reshape' has been requested. This commits
4493          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4494          * This also checks if there are enough spares and adds them
4495          * to the array.
4496          * We currently require enough spares to make the final
4497          * array non-degraded.  We also require that the difference
4498          * between old and new data_offset - on each device - is
4499          * enough that we never risk over-writing.
4500          */
4501
4502         unsigned long before_length, after_length;
4503         sector_t min_offset_diff = 0;
4504         int first = 1;
4505         struct geom new;
4506         struct r10conf *conf = mddev->private;
4507         struct md_rdev *rdev;
4508         int spares = 0;
4509         int ret;
4510
4511         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4512                 return -EBUSY;
4513
4514         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4515                 return -EINVAL;
4516
4517         before_length = ((1 << conf->prev.chunk_shift) *
4518                          conf->prev.far_copies);
4519         after_length = ((1 << conf->geo.chunk_shift) *
4520                         conf->geo.far_copies);
4521
4522         rdev_for_each(rdev, mddev) {
4523                 if (!test_bit(In_sync, &rdev->flags)
4524                     && !test_bit(Faulty, &rdev->flags))
4525                         spares++;
4526                 if (rdev->raid_disk >= 0) {
4527                         long long diff = (rdev->new_data_offset
4528                                           - rdev->data_offset);
4529                         if (!mddev->reshape_backwards)
4530                                 diff = -diff;
4531                         if (diff < 0)
4532                                 diff = 0;
4533                         if (first || diff < min_offset_diff)
4534                                 min_offset_diff = diff;
4535                         first = 0;
4536                 }
4537         }
4538
4539         if (max(before_length, after_length) > min_offset_diff)
4540                 return -EINVAL;
4541
4542         if (spares < mddev->delta_disks)
4543                 return -EINVAL;
4544
4545         conf->offset_diff = min_offset_diff;
4546         spin_lock_irq(&conf->device_lock);
4547         if (conf->mirrors_new) {
4548                 memcpy(conf->mirrors_new, conf->mirrors,
4549                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4550                 smp_mb();
4551                 kfree(conf->mirrors_old);
4552                 conf->mirrors_old = conf->mirrors;
4553                 conf->mirrors = conf->mirrors_new;
4554                 conf->mirrors_new = NULL;
4555         }
4556         setup_geo(&conf->geo, mddev, geo_start);
4557         smp_mb();
4558         if (mddev->reshape_backwards) {
4559                 sector_t size = raid10_size(mddev, 0, 0);
4560                 if (size < mddev->array_sectors) {
4561                         spin_unlock_irq(&conf->device_lock);
4562                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4563                                 mdname(mddev));
4564                         return -EINVAL;
4565                 }
4566                 mddev->resync_max_sectors = size;
4567                 conf->reshape_progress = size;
4568         } else
4569                 conf->reshape_progress = 0;
4570         conf->reshape_safe = conf->reshape_progress;
4571         spin_unlock_irq(&conf->device_lock);
4572
4573         if (mddev->delta_disks && mddev->bitmap) {
4574                 struct mdp_superblock_1 *sb = NULL;
4575                 sector_t oldsize, newsize;
4576
4577                 oldsize = raid10_size(mddev, 0, 0);
4578                 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4579
4580                 if (!mddev_is_clustered(mddev)) {
4581                         ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4582                         if (ret)
4583                                 goto abort;
4584                         else
4585                                 goto out;
4586                 }
4587
4588                 rdev_for_each(rdev, mddev) {
4589                         if (rdev->raid_disk > -1 &&
4590                             !test_bit(Faulty, &rdev->flags))
4591                                 sb = page_address(rdev->sb_page);
4592                 }
4593
4594                 /*
4595                  * some node is already performing reshape, and no need to
4596                  * call md_bitmap_resize again since it should be called when
4597                  * receiving BITMAP_RESIZE msg
4598                  */
4599                 if ((sb && (le32_to_cpu(sb->feature_map) &
4600                             MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4601                         goto out;
4602
4603                 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4604                 if (ret)
4605                         goto abort;
4606
4607                 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4608                 if (ret) {
4609                         md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4610                         goto abort;
4611                 }
4612         }
4613 out:
4614         if (mddev->delta_disks > 0) {
4615                 rdev_for_each(rdev, mddev)
4616                         if (rdev->raid_disk < 0 &&
4617                             !test_bit(Faulty, &rdev->flags)) {
4618                                 if (raid10_add_disk(mddev, rdev) == 0) {
4619                                         if (rdev->raid_disk >=
4620                                             conf->prev.raid_disks)
4621                                                 set_bit(In_sync, &rdev->flags);
4622                                         else
4623                                                 rdev->recovery_offset = 0;
4624
4625                                         /* Failure here is OK */
4626                                         sysfs_link_rdev(mddev, rdev);
4627                                 }
4628                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4629                                    && !test_bit(Faulty, &rdev->flags)) {
4630                                 /* This is a spare that was manually added */
4631                                 set_bit(In_sync, &rdev->flags);
4632                         }
4633         }
4634         /* When a reshape changes the number of devices,
4635          * ->degraded is measured against the larger of the
4636          * pre and  post numbers.
4637          */
4638         spin_lock_irq(&conf->device_lock);
4639         mddev->degraded = calc_degraded(conf);
4640         spin_unlock_irq(&conf->device_lock);
4641         mddev->raid_disks = conf->geo.raid_disks;
4642         mddev->reshape_position = conf->reshape_progress;
4643         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4644
4645         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4646         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4647         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4648         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4649         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4650
4651         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4652                                                 "reshape");
4653         if (!mddev->sync_thread) {
4654                 ret = -EAGAIN;
4655                 goto abort;
4656         }
4657         conf->reshape_checkpoint = jiffies;
4658         md_wakeup_thread(mddev->sync_thread);
4659         md_new_event();
4660         return 0;
4661
4662 abort:
4663         mddev->recovery = 0;
4664         spin_lock_irq(&conf->device_lock);
4665         conf->geo = conf->prev;
4666         mddev->raid_disks = conf->geo.raid_disks;
4667         rdev_for_each(rdev, mddev)
4668                 rdev->new_data_offset = rdev->data_offset;
4669         smp_wmb();
4670         conf->reshape_progress = MaxSector;
4671         conf->reshape_safe = MaxSector;
4672         mddev->reshape_position = MaxSector;
4673         spin_unlock_irq(&conf->device_lock);
4674         return ret;
4675 }
4676
4677 /* Calculate the last device-address that could contain
4678  * any block from the chunk that includes the array-address 's'
4679  * and report the next address.
4680  * i.e. the address returned will be chunk-aligned and after
4681  * any data that is in the chunk containing 's'.
4682  */
4683 static sector_t last_dev_address(sector_t s, struct geom *geo)
4684 {
4685         s = (s | geo->chunk_mask) + 1;
4686         s >>= geo->chunk_shift;
4687         s *= geo->near_copies;
4688         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4689         s *= geo->far_copies;
4690         s <<= geo->chunk_shift;
4691         return s;
4692 }
4693
4694 /* Calculate the first device-address that could contain
4695  * any block from the chunk that includes the array-address 's'.
4696  * This too will be the start of a chunk
4697  */
4698 static sector_t first_dev_address(sector_t s, struct geom *geo)
4699 {
4700         s >>= geo->chunk_shift;
4701         s *= geo->near_copies;
4702         sector_div(s, geo->raid_disks);
4703         s *= geo->far_copies;
4704         s <<= geo->chunk_shift;
4705         return s;
4706 }
4707
4708 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4709                                 int *skipped)
4710 {
4711         /* We simply copy at most one chunk (smallest of old and new)
4712          * at a time, possibly less if that exceeds RESYNC_PAGES,
4713          * or we hit a bad block or something.
4714          * This might mean we pause for normal IO in the middle of
4715          * a chunk, but that is not a problem as mddev->reshape_position
4716          * can record any location.
4717          *
4718          * If we will want to write to a location that isn't
4719          * yet recorded as 'safe' (i.e. in metadata on disk) then
4720          * we need to flush all reshape requests and update the metadata.
4721          *
4722          * When reshaping forwards (e.g. to more devices), we interpret
4723          * 'safe' as the earliest block which might not have been copied
4724          * down yet.  We divide this by previous stripe size and multiply
4725          * by previous stripe length to get lowest device offset that we
4726          * cannot write to yet.
4727          * We interpret 'sector_nr' as an address that we want to write to.
4728          * From this we use last_device_address() to find where we might
4729          * write to, and first_device_address on the  'safe' position.
4730          * If this 'next' write position is after the 'safe' position,
4731          * we must update the metadata to increase the 'safe' position.
4732          *
4733          * When reshaping backwards, we round in the opposite direction
4734          * and perform the reverse test:  next write position must not be
4735          * less than current safe position.
4736          *
4737          * In all this the minimum difference in data offsets
4738          * (conf->offset_diff - always positive) allows a bit of slack,
4739          * so next can be after 'safe', but not by more than offset_diff
4740          *
4741          * We need to prepare all the bios here before we start any IO
4742          * to ensure the size we choose is acceptable to all devices.
4743          * The means one for each copy for write-out and an extra one for
4744          * read-in.
4745          * We store the read-in bio in ->master_bio and the others in
4746          * ->devs[x].bio and ->devs[x].repl_bio.
4747          */
4748         struct r10conf *conf = mddev->private;
4749         struct r10bio *r10_bio;
4750         sector_t next, safe, last;
4751         int max_sectors;
4752         int nr_sectors;
4753         int s;
4754         struct md_rdev *rdev;
4755         int need_flush = 0;
4756         struct bio *blist;
4757         struct bio *bio, *read_bio;
4758         int sectors_done = 0;
4759         struct page **pages;
4760
4761         if (sector_nr == 0) {
4762                 /* If restarting in the middle, skip the initial sectors */
4763                 if (mddev->reshape_backwards &&
4764                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4765                         sector_nr = (raid10_size(mddev, 0, 0)
4766                                      - conf->reshape_progress);
4767                 } else if (!mddev->reshape_backwards &&
4768                            conf->reshape_progress > 0)
4769                         sector_nr = conf->reshape_progress;
4770                 if (sector_nr) {
4771                         mddev->curr_resync_completed = sector_nr;
4772                         sysfs_notify_dirent_safe(mddev->sysfs_completed);
4773                         *skipped = 1;
4774                         return sector_nr;
4775                 }
4776         }
4777
4778         /* We don't use sector_nr to track where we are up to
4779          * as that doesn't work well for ->reshape_backwards.
4780          * So just use ->reshape_progress.
4781          */
4782         if (mddev->reshape_backwards) {
4783                 /* 'next' is the earliest device address that we might
4784                  * write to for this chunk in the new layout
4785                  */
4786                 next = first_dev_address(conf->reshape_progress - 1,
4787                                          &conf->geo);
4788
4789                 /* 'safe' is the last device address that we might read from
4790                  * in the old layout after a restart
4791                  */
4792                 safe = last_dev_address(conf->reshape_safe - 1,
4793                                         &conf->prev);
4794
4795                 if (next + conf->offset_diff < safe)
4796                         need_flush = 1;
4797
4798                 last = conf->reshape_progress - 1;
4799                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4800                                                & conf->prev.chunk_mask);
4801                 if (sector_nr + RESYNC_SECTORS < last)
4802                         sector_nr = last + 1 - RESYNC_SECTORS;
4803         } else {
4804                 /* 'next' is after the last device address that we
4805                  * might write to for this chunk in the new layout
4806                  */
4807                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4808
4809                 /* 'safe' is the earliest device address that we might
4810                  * read from in the old layout after a restart
4811                  */
4812                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4813
4814                 /* Need to update metadata if 'next' might be beyond 'safe'
4815                  * as that would possibly corrupt data
4816                  */
4817                 if (next > safe + conf->offset_diff)
4818                         need_flush = 1;
4819
4820                 sector_nr = conf->reshape_progress;
4821                 last  = sector_nr | (conf->geo.chunk_mask
4822                                      & conf->prev.chunk_mask);
4823
4824                 if (sector_nr + RESYNC_SECTORS <= last)
4825                         last = sector_nr + RESYNC_SECTORS - 1;
4826         }
4827
4828         if (need_flush ||
4829             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4830                 /* Need to update reshape_position in metadata */
4831                 wait_barrier(conf, false);
4832                 mddev->reshape_position = conf->reshape_progress;
4833                 if (mddev->reshape_backwards)
4834                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4835                                 - conf->reshape_progress;
4836                 else
4837                         mddev->curr_resync_completed = conf->reshape_progress;
4838                 conf->reshape_checkpoint = jiffies;
4839                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4840                 md_wakeup_thread(mddev->thread);
4841                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4842                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4843                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4844                         allow_barrier(conf);
4845                         return sectors_done;
4846                 }
4847                 conf->reshape_safe = mddev->reshape_position;
4848                 allow_barrier(conf);
4849         }
4850
4851         raise_barrier(conf, 0);
4852 read_more:
4853         /* Now schedule reads for blocks from sector_nr to last */
4854         r10_bio = raid10_alloc_init_r10buf(conf);
4855         r10_bio->state = 0;
4856         raise_barrier(conf, 1);
4857         atomic_set(&r10_bio->remaining, 0);
4858         r10_bio->mddev = mddev;
4859         r10_bio->sector = sector_nr;
4860         set_bit(R10BIO_IsReshape, &r10_bio->state);
4861         r10_bio->sectors = last - sector_nr + 1;
4862         rdev = read_balance(conf, r10_bio, &max_sectors);
4863         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4864
4865         if (!rdev) {
4866                 /* Cannot read from here, so need to record bad blocks
4867                  * on all the target devices.
4868                  */
4869                 // FIXME
4870                 mempool_free(r10_bio, &conf->r10buf_pool);
4871                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4872                 return sectors_done;
4873         }
4874
4875         read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4876                                     GFP_KERNEL, &mddev->bio_set);
4877         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4878                                + rdev->data_offset);
4879         read_bio->bi_private = r10_bio;
4880         read_bio->bi_end_io = end_reshape_read;
4881         r10_bio->master_bio = read_bio;
4882         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4883
4884         /*
4885          * Broadcast RESYNC message to other nodes, so all nodes would not
4886          * write to the region to avoid conflict.
4887         */
4888         if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4889                 struct mdp_superblock_1 *sb = NULL;
4890                 int sb_reshape_pos = 0;
4891
4892                 conf->cluster_sync_low = sector_nr;
4893                 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4894                 sb = page_address(rdev->sb_page);
4895                 if (sb) {
4896                         sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4897                         /*
4898                          * Set cluster_sync_low again if next address for array
4899                          * reshape is less than cluster_sync_low. Since we can't
4900                          * update cluster_sync_low until it has finished reshape.
4901                          */
4902                         if (sb_reshape_pos < conf->cluster_sync_low)
4903                                 conf->cluster_sync_low = sb_reshape_pos;
4904                 }
4905
4906                 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4907                                                           conf->cluster_sync_high);
4908         }
4909
4910         /* Now find the locations in the new layout */
4911         __raid10_find_phys(&conf->geo, r10_bio);
4912
4913         blist = read_bio;
4914         read_bio->bi_next = NULL;
4915
4916         rcu_read_lock();
4917         for (s = 0; s < conf->copies*2; s++) {
4918                 struct bio *b;
4919                 int d = r10_bio->devs[s/2].devnum;
4920                 struct md_rdev *rdev2;
4921                 if (s&1) {
4922                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4923                         b = r10_bio->devs[s/2].repl_bio;
4924                 } else {
4925                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4926                         b = r10_bio->devs[s/2].bio;
4927                 }
4928                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4929                         continue;
4930
4931                 bio_set_dev(b, rdev2->bdev);
4932                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4933                         rdev2->new_data_offset;
4934                 b->bi_end_io = end_reshape_write;
4935                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4936                 b->bi_next = blist;
4937                 blist = b;
4938         }
4939
4940         /* Now add as many pages as possible to all of these bios. */
4941
4942         nr_sectors = 0;
4943         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4944         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4945                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4946                 int len = (max_sectors - s) << 9;
4947                 if (len > PAGE_SIZE)
4948                         len = PAGE_SIZE;
4949                 for (bio = blist; bio ; bio = bio->bi_next) {
4950                         /*
4951                          * won't fail because the vec table is big enough
4952                          * to hold all these pages
4953                          */
4954                         bio_add_page(bio, page, len, 0);
4955                 }
4956                 sector_nr += len >> 9;
4957                 nr_sectors += len >> 9;
4958         }
4959         rcu_read_unlock();
4960         r10_bio->sectors = nr_sectors;
4961
4962         /* Now submit the read */
4963         md_sync_acct_bio(read_bio, r10_bio->sectors);
4964         atomic_inc(&r10_bio->remaining);
4965         read_bio->bi_next = NULL;
4966         submit_bio_noacct(read_bio);
4967         sectors_done += nr_sectors;
4968         if (sector_nr <= last)
4969                 goto read_more;
4970
4971         lower_barrier(conf);
4972
4973         /* Now that we have done the whole section we can
4974          * update reshape_progress
4975          */
4976         if (mddev->reshape_backwards)
4977                 conf->reshape_progress -= sectors_done;
4978         else
4979                 conf->reshape_progress += sectors_done;
4980
4981         return sectors_done;
4982 }
4983
4984 static void end_reshape_request(struct r10bio *r10_bio);
4985 static int handle_reshape_read_error(struct mddev *mddev,
4986                                      struct r10bio *r10_bio);
4987 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4988 {
4989         /* Reshape read completed.  Hopefully we have a block
4990          * to write out.
4991          * If we got a read error then we do sync 1-page reads from
4992          * elsewhere until we find the data - or give up.
4993          */
4994         struct r10conf *conf = mddev->private;
4995         int s;
4996
4997         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4998                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4999                         /* Reshape has been aborted */
5000                         md_done_sync(mddev, r10_bio->sectors, 0);
5001                         return;
5002                 }
5003
5004         /* We definitely have the data in the pages, schedule the
5005          * writes.
5006          */
5007         atomic_set(&r10_bio->remaining, 1);
5008         for (s = 0; s < conf->copies*2; s++) {
5009                 struct bio *b;
5010                 int d = r10_bio->devs[s/2].devnum;
5011                 struct md_rdev *rdev;
5012                 rcu_read_lock();
5013                 if (s&1) {
5014                         rdev = rcu_dereference(conf->mirrors[d].replacement);
5015                         b = r10_bio->devs[s/2].repl_bio;
5016                 } else {
5017                         rdev = rcu_dereference(conf->mirrors[d].rdev);
5018                         b = r10_bio->devs[s/2].bio;
5019                 }
5020                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
5021                         rcu_read_unlock();
5022                         continue;
5023                 }
5024                 atomic_inc(&rdev->nr_pending);
5025                 rcu_read_unlock();
5026                 md_sync_acct_bio(b, r10_bio->sectors);
5027                 atomic_inc(&r10_bio->remaining);
5028                 b->bi_next = NULL;
5029                 submit_bio_noacct(b);
5030         }
5031         end_reshape_request(r10_bio);
5032 }
5033
5034 static void end_reshape(struct r10conf *conf)
5035 {
5036         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5037                 return;
5038
5039         spin_lock_irq(&conf->device_lock);
5040         conf->prev = conf->geo;
5041         md_finish_reshape(conf->mddev);
5042         smp_wmb();
5043         conf->reshape_progress = MaxSector;
5044         conf->reshape_safe = MaxSector;
5045         spin_unlock_irq(&conf->device_lock);
5046
5047         if (conf->mddev->queue)
5048                 raid10_set_io_opt(conf);
5049         conf->fullsync = 0;
5050 }
5051
5052 static void raid10_update_reshape_pos(struct mddev *mddev)
5053 {
5054         struct r10conf *conf = mddev->private;
5055         sector_t lo, hi;
5056
5057         md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5058         if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5059             || mddev->reshape_position == MaxSector)
5060                 conf->reshape_progress = mddev->reshape_position;
5061         else
5062                 WARN_ON_ONCE(1);
5063 }
5064
5065 static int handle_reshape_read_error(struct mddev *mddev,
5066                                      struct r10bio *r10_bio)
5067 {
5068         /* Use sync reads to get the blocks from somewhere else */
5069         int sectors = r10_bio->sectors;
5070         struct r10conf *conf = mddev->private;
5071         struct r10bio *r10b;
5072         int slot = 0;
5073         int idx = 0;
5074         struct page **pages;
5075
5076         r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5077         if (!r10b) {
5078                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5079                 return -ENOMEM;
5080         }
5081
5082         /* reshape IOs share pages from .devs[0].bio */
5083         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5084
5085         r10b->sector = r10_bio->sector;
5086         __raid10_find_phys(&conf->prev, r10b);
5087
5088         while (sectors) {
5089                 int s = sectors;
5090                 int success = 0;
5091                 int first_slot = slot;
5092
5093                 if (s > (PAGE_SIZE >> 9))
5094                         s = PAGE_SIZE >> 9;
5095
5096                 rcu_read_lock();
5097                 while (!success) {
5098                         int d = r10b->devs[slot].devnum;
5099                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5100                         sector_t addr;
5101                         if (rdev == NULL ||
5102                             test_bit(Faulty, &rdev->flags) ||
5103                             !test_bit(In_sync, &rdev->flags))
5104                                 goto failed;
5105
5106                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5107                         atomic_inc(&rdev->nr_pending);
5108                         rcu_read_unlock();
5109                         success = sync_page_io(rdev,
5110                                                addr,
5111                                                s << 9,
5112                                                pages[idx],
5113                                                REQ_OP_READ, false);
5114                         rdev_dec_pending(rdev, mddev);
5115                         rcu_read_lock();
5116                         if (success)
5117                                 break;
5118                 failed:
5119                         slot++;
5120                         if (slot >= conf->copies)
5121                                 slot = 0;
5122                         if (slot == first_slot)
5123                                 break;
5124                 }
5125                 rcu_read_unlock();
5126                 if (!success) {
5127                         /* couldn't read this block, must give up */
5128                         set_bit(MD_RECOVERY_INTR,
5129                                 &mddev->recovery);
5130                         kfree(r10b);
5131                         return -EIO;
5132                 }
5133                 sectors -= s;
5134                 idx++;
5135         }
5136         kfree(r10b);
5137         return 0;
5138 }
5139
5140 static void end_reshape_write(struct bio *bio)
5141 {
5142         struct r10bio *r10_bio = get_resync_r10bio(bio);
5143         struct mddev *mddev = r10_bio->mddev;
5144         struct r10conf *conf = mddev->private;
5145         int d;
5146         int slot;
5147         int repl;
5148         struct md_rdev *rdev = NULL;
5149
5150         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5151         if (repl)
5152                 rdev = conf->mirrors[d].replacement;
5153         if (!rdev) {
5154                 smp_mb();
5155                 rdev = conf->mirrors[d].rdev;
5156         }
5157
5158         if (bio->bi_status) {
5159                 /* FIXME should record badblock */
5160                 md_error(mddev, rdev);
5161         }
5162
5163         rdev_dec_pending(rdev, mddev);
5164         end_reshape_request(r10_bio);
5165 }
5166
5167 static void end_reshape_request(struct r10bio *r10_bio)
5168 {
5169         if (!atomic_dec_and_test(&r10_bio->remaining))
5170                 return;
5171         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5172         bio_put(r10_bio->master_bio);
5173         put_buf(r10_bio);
5174 }
5175
5176 static void raid10_finish_reshape(struct mddev *mddev)
5177 {
5178         struct r10conf *conf = mddev->private;
5179
5180         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5181                 return;
5182
5183         if (mddev->delta_disks > 0) {
5184                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5185                         mddev->recovery_cp = mddev->resync_max_sectors;
5186                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5187                 }
5188                 mddev->resync_max_sectors = mddev->array_sectors;
5189         } else {
5190                 int d;
5191                 rcu_read_lock();
5192                 for (d = conf->geo.raid_disks ;
5193                      d < conf->geo.raid_disks - mddev->delta_disks;
5194                      d++) {
5195                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5196                         if (rdev)
5197                                 clear_bit(In_sync, &rdev->flags);
5198                         rdev = rcu_dereference(conf->mirrors[d].replacement);
5199                         if (rdev)
5200                                 clear_bit(In_sync, &rdev->flags);
5201                 }
5202                 rcu_read_unlock();
5203         }
5204         mddev->layout = mddev->new_layout;
5205         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5206         mddev->reshape_position = MaxSector;
5207         mddev->delta_disks = 0;
5208         mddev->reshape_backwards = 0;
5209 }
5210
5211 static struct md_personality raid10_personality =
5212 {
5213         .name           = "raid10",
5214         .level          = 10,
5215         .owner          = THIS_MODULE,
5216         .make_request   = raid10_make_request,
5217         .run            = raid10_run,
5218         .free           = raid10_free,
5219         .status         = raid10_status,
5220         .error_handler  = raid10_error,
5221         .hot_add_disk   = raid10_add_disk,
5222         .hot_remove_disk= raid10_remove_disk,
5223         .spare_active   = raid10_spare_active,
5224         .sync_request   = raid10_sync_request,
5225         .quiesce        = raid10_quiesce,
5226         .size           = raid10_size,
5227         .resize         = raid10_resize,
5228         .takeover       = raid10_takeover,
5229         .check_reshape  = raid10_check_reshape,
5230         .start_reshape  = raid10_start_reshape,
5231         .finish_reshape = raid10_finish_reshape,
5232         .update_reshape_pos = raid10_update_reshape_pos,
5233 };
5234
5235 static int __init raid_init(void)
5236 {
5237         return register_md_personality(&raid10_personality);
5238 }
5239
5240 static void raid_exit(void)
5241 {
5242         unregister_md_personality(&raid10_personality);
5243 }
5244
5245 module_init(raid_init);
5246 module_exit(raid_exit);
5247 MODULE_LICENSE("GPL");
5248 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5249 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5250 MODULE_ALIAS("md-raid10");
5251 MODULE_ALIAS("md-level-10");