Merge tag 'for-5.11/block-2020-12-14' of git://git.kernel.dk/linux-block
[platform/kernel/linux-starfive.git] / drivers / md / raid10.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72                                 int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76
77 #define raid10_log(md, fmt, args...)                            \
78         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80 #include "raid1-10.c"
81
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88         return get_resync_pages(bio)->raid_bio;
89 }
90
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93         struct r10conf *conf = data;
94         int size = offsetof(struct r10bio, devs[conf->copies]);
95
96         /* allocate a r10bio with room for raid_disks entries in the
97          * bios array */
98         return kzalloc(size, gfp_flags);
99 }
100
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118         struct r10conf *conf = data;
119         struct r10bio *r10_bio;
120         struct bio *bio;
121         int j;
122         int nalloc, nalloc_rp;
123         struct resync_pages *rps;
124
125         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126         if (!r10_bio)
127                 return NULL;
128
129         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131                 nalloc = conf->copies; /* resync */
132         else
133                 nalloc = 2; /* recovery */
134
135         /* allocate once for all bios */
136         if (!conf->have_replacement)
137                 nalloc_rp = nalloc;
138         else
139                 nalloc_rp = nalloc * 2;
140         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141         if (!rps)
142                 goto out_free_r10bio;
143
144         /*
145          * Allocate bios.
146          */
147         for (j = nalloc ; j-- ; ) {
148                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149                 if (!bio)
150                         goto out_free_bio;
151                 r10_bio->devs[j].bio = bio;
152                 if (!conf->have_replacement)
153                         continue;
154                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155                 if (!bio)
156                         goto out_free_bio;
157                 r10_bio->devs[j].repl_bio = bio;
158         }
159         /*
160          * Allocate RESYNC_PAGES data pages and attach them
161          * where needed.
162          */
163         for (j = 0; j < nalloc; j++) {
164                 struct bio *rbio = r10_bio->devs[j].repl_bio;
165                 struct resync_pages *rp, *rp_repl;
166
167                 rp = &rps[j];
168                 if (rbio)
169                         rp_repl = &rps[nalloc + j];
170
171                 bio = r10_bio->devs[j].bio;
172
173                 if (!j || test_bit(MD_RECOVERY_SYNC,
174                                    &conf->mddev->recovery)) {
175                         if (resync_alloc_pages(rp, gfp_flags))
176                                 goto out_free_pages;
177                 } else {
178                         memcpy(rp, &rps[0], sizeof(*rp));
179                         resync_get_all_pages(rp);
180                 }
181
182                 rp->raid_bio = r10_bio;
183                 bio->bi_private = rp;
184                 if (rbio) {
185                         memcpy(rp_repl, rp, sizeof(*rp));
186                         rbio->bi_private = rp_repl;
187                 }
188         }
189
190         return r10_bio;
191
192 out_free_pages:
193         while (--j >= 0)
194                 resync_free_pages(&rps[j]);
195
196         j = 0;
197 out_free_bio:
198         for ( ; j < nalloc; j++) {
199                 if (r10_bio->devs[j].bio)
200                         bio_put(r10_bio->devs[j].bio);
201                 if (r10_bio->devs[j].repl_bio)
202                         bio_put(r10_bio->devs[j].repl_bio);
203         }
204         kfree(rps);
205 out_free_r10bio:
206         rbio_pool_free(r10_bio, conf);
207         return NULL;
208 }
209
210 static void r10buf_pool_free(void *__r10_bio, void *data)
211 {
212         struct r10conf *conf = data;
213         struct r10bio *r10bio = __r10_bio;
214         int j;
215         struct resync_pages *rp = NULL;
216
217         for (j = conf->copies; j--; ) {
218                 struct bio *bio = r10bio->devs[j].bio;
219
220                 if (bio) {
221                         rp = get_resync_pages(bio);
222                         resync_free_pages(rp);
223                         bio_put(bio);
224                 }
225
226                 bio = r10bio->devs[j].repl_bio;
227                 if (bio)
228                         bio_put(bio);
229         }
230
231         /* resync pages array stored in the 1st bio's .bi_private */
232         kfree(rp);
233
234         rbio_pool_free(r10bio, conf);
235 }
236
237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238 {
239         int i;
240
241         for (i = 0; i < conf->copies; i++) {
242                 struct bio **bio = & r10_bio->devs[i].bio;
243                 if (!BIO_SPECIAL(*bio))
244                         bio_put(*bio);
245                 *bio = NULL;
246                 bio = &r10_bio->devs[i].repl_bio;
247                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248                         bio_put(*bio);
249                 *bio = NULL;
250         }
251 }
252
253 static void free_r10bio(struct r10bio *r10_bio)
254 {
255         struct r10conf *conf = r10_bio->mddev->private;
256
257         put_all_bios(conf, r10_bio);
258         mempool_free(r10_bio, &conf->r10bio_pool);
259 }
260
261 static void put_buf(struct r10bio *r10_bio)
262 {
263         struct r10conf *conf = r10_bio->mddev->private;
264
265         mempool_free(r10_bio, &conf->r10buf_pool);
266
267         lower_barrier(conf);
268 }
269
270 static void reschedule_retry(struct r10bio *r10_bio)
271 {
272         unsigned long flags;
273         struct mddev *mddev = r10_bio->mddev;
274         struct r10conf *conf = mddev->private;
275
276         spin_lock_irqsave(&conf->device_lock, flags);
277         list_add(&r10_bio->retry_list, &conf->retry_list);
278         conf->nr_queued ++;
279         spin_unlock_irqrestore(&conf->device_lock, flags);
280
281         /* wake up frozen array... */
282         wake_up(&conf->wait_barrier);
283
284         md_wakeup_thread(mddev->thread);
285 }
286
287 /*
288  * raid_end_bio_io() is called when we have finished servicing a mirrored
289  * operation and are ready to return a success/failure code to the buffer
290  * cache layer.
291  */
292 static void raid_end_bio_io(struct r10bio *r10_bio)
293 {
294         struct bio *bio = r10_bio->master_bio;
295         struct r10conf *conf = r10_bio->mddev->private;
296
297         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298                 bio->bi_status = BLK_STS_IOERR;
299
300         bio_endio(bio);
301         /*
302          * Wake up any possible resync thread that waits for the device
303          * to go idle.
304          */
305         allow_barrier(conf);
306
307         free_r10bio(r10_bio);
308 }
309
310 /*
311  * Update disk head position estimator based on IRQ completion info.
312  */
313 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
314 {
315         struct r10conf *conf = r10_bio->mddev->private;
316
317         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
318                 r10_bio->devs[slot].addr + (r10_bio->sectors);
319 }
320
321 /*
322  * Find the disk number which triggered given bio
323  */
324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
325                          struct bio *bio, int *slotp, int *replp)
326 {
327         int slot;
328         int repl = 0;
329
330         for (slot = 0; slot < conf->copies; slot++) {
331                 if (r10_bio->devs[slot].bio == bio)
332                         break;
333                 if (r10_bio->devs[slot].repl_bio == bio) {
334                         repl = 1;
335                         break;
336                 }
337         }
338
339         BUG_ON(slot == conf->copies);
340         update_head_pos(slot, r10_bio);
341
342         if (slotp)
343                 *slotp = slot;
344         if (replp)
345                 *replp = repl;
346         return r10_bio->devs[slot].devnum;
347 }
348
349 static void raid10_end_read_request(struct bio *bio)
350 {
351         int uptodate = !bio->bi_status;
352         struct r10bio *r10_bio = bio->bi_private;
353         int slot;
354         struct md_rdev *rdev;
355         struct r10conf *conf = r10_bio->mddev->private;
356
357         slot = r10_bio->read_slot;
358         rdev = r10_bio->devs[slot].rdev;
359         /*
360          * this branch is our 'one mirror IO has finished' event handler:
361          */
362         update_head_pos(slot, r10_bio);
363
364         if (uptodate) {
365                 /*
366                  * Set R10BIO_Uptodate in our master bio, so that
367                  * we will return a good error code to the higher
368                  * levels even if IO on some other mirrored buffer fails.
369                  *
370                  * The 'master' represents the composite IO operation to
371                  * user-side. So if something waits for IO, then it will
372                  * wait for the 'master' bio.
373                  */
374                 set_bit(R10BIO_Uptodate, &r10_bio->state);
375         } else {
376                 /* If all other devices that store this block have
377                  * failed, we want to return the error upwards rather
378                  * than fail the last device.  Here we redefine
379                  * "uptodate" to mean "Don't want to retry"
380                  */
381                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
382                              rdev->raid_disk))
383                         uptodate = 1;
384         }
385         if (uptodate) {
386                 raid_end_bio_io(r10_bio);
387                 rdev_dec_pending(rdev, conf->mddev);
388         } else {
389                 /*
390                  * oops, read error - keep the refcount on the rdev
391                  */
392                 char b[BDEVNAME_SIZE];
393                 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
394                                    mdname(conf->mddev),
395                                    bdevname(rdev->bdev, b),
396                                    (unsigned long long)r10_bio->sector);
397                 set_bit(R10BIO_ReadError, &r10_bio->state);
398                 reschedule_retry(r10_bio);
399         }
400 }
401
402 static void close_write(struct r10bio *r10_bio)
403 {
404         /* clear the bitmap if all writes complete successfully */
405         md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
406                            r10_bio->sectors,
407                            !test_bit(R10BIO_Degraded, &r10_bio->state),
408                            0);
409         md_write_end(r10_bio->mddev);
410 }
411
412 static void one_write_done(struct r10bio *r10_bio)
413 {
414         if (atomic_dec_and_test(&r10_bio->remaining)) {
415                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
416                         reschedule_retry(r10_bio);
417                 else {
418                         close_write(r10_bio);
419                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
420                                 reschedule_retry(r10_bio);
421                         else
422                                 raid_end_bio_io(r10_bio);
423                 }
424         }
425 }
426
427 static void raid10_end_write_request(struct bio *bio)
428 {
429         struct r10bio *r10_bio = bio->bi_private;
430         int dev;
431         int dec_rdev = 1;
432         struct r10conf *conf = r10_bio->mddev->private;
433         int slot, repl;
434         struct md_rdev *rdev = NULL;
435         struct bio *to_put = NULL;
436         bool discard_error;
437
438         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
439
440         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
441
442         if (repl)
443                 rdev = conf->mirrors[dev].replacement;
444         if (!rdev) {
445                 smp_rmb();
446                 repl = 0;
447                 rdev = conf->mirrors[dev].rdev;
448         }
449         /*
450          * this branch is our 'one mirror IO has finished' event handler:
451          */
452         if (bio->bi_status && !discard_error) {
453                 if (repl)
454                         /* Never record new bad blocks to replacement,
455                          * just fail it.
456                          */
457                         md_error(rdev->mddev, rdev);
458                 else {
459                         set_bit(WriteErrorSeen, &rdev->flags);
460                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
461                                 set_bit(MD_RECOVERY_NEEDED,
462                                         &rdev->mddev->recovery);
463
464                         dec_rdev = 0;
465                         if (test_bit(FailFast, &rdev->flags) &&
466                             (bio->bi_opf & MD_FAILFAST)) {
467                                 md_error(rdev->mddev, rdev);
468                         }
469
470                         /*
471                          * When the device is faulty, it is not necessary to
472                          * handle write error.
473                          * For failfast, this is the only remaining device,
474                          * We need to retry the write without FailFast.
475                          */
476                         if (!test_bit(Faulty, &rdev->flags))
477                                 set_bit(R10BIO_WriteError, &r10_bio->state);
478                         else {
479                                 r10_bio->devs[slot].bio = NULL;
480                                 to_put = bio;
481                                 dec_rdev = 1;
482                         }
483                 }
484         } else {
485                 /*
486                  * Set R10BIO_Uptodate in our master bio, so that
487                  * we will return a good error code for to the higher
488                  * levels even if IO on some other mirrored buffer fails.
489                  *
490                  * The 'master' represents the composite IO operation to
491                  * user-side. So if something waits for IO, then it will
492                  * wait for the 'master' bio.
493                  */
494                 sector_t first_bad;
495                 int bad_sectors;
496
497                 /*
498                  * Do not set R10BIO_Uptodate if the current device is
499                  * rebuilding or Faulty. This is because we cannot use
500                  * such device for properly reading the data back (we could
501                  * potentially use it, if the current write would have felt
502                  * before rdev->recovery_offset, but for simplicity we don't
503                  * check this here.
504                  */
505                 if (test_bit(In_sync, &rdev->flags) &&
506                     !test_bit(Faulty, &rdev->flags))
507                         set_bit(R10BIO_Uptodate, &r10_bio->state);
508
509                 /* Maybe we can clear some bad blocks. */
510                 if (is_badblock(rdev,
511                                 r10_bio->devs[slot].addr,
512                                 r10_bio->sectors,
513                                 &first_bad, &bad_sectors) && !discard_error) {
514                         bio_put(bio);
515                         if (repl)
516                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
517                         else
518                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
519                         dec_rdev = 0;
520                         set_bit(R10BIO_MadeGood, &r10_bio->state);
521                 }
522         }
523
524         /*
525          *
526          * Let's see if all mirrored write operations have finished
527          * already.
528          */
529         one_write_done(r10_bio);
530         if (dec_rdev)
531                 rdev_dec_pending(rdev, conf->mddev);
532         if (to_put)
533                 bio_put(to_put);
534 }
535
536 /*
537  * RAID10 layout manager
538  * As well as the chunksize and raid_disks count, there are two
539  * parameters: near_copies and far_copies.
540  * near_copies * far_copies must be <= raid_disks.
541  * Normally one of these will be 1.
542  * If both are 1, we get raid0.
543  * If near_copies == raid_disks, we get raid1.
544  *
545  * Chunks are laid out in raid0 style with near_copies copies of the
546  * first chunk, followed by near_copies copies of the next chunk and
547  * so on.
548  * If far_copies > 1, then after 1/far_copies of the array has been assigned
549  * as described above, we start again with a device offset of near_copies.
550  * So we effectively have another copy of the whole array further down all
551  * the drives, but with blocks on different drives.
552  * With this layout, and block is never stored twice on the one device.
553  *
554  * raid10_find_phys finds the sector offset of a given virtual sector
555  * on each device that it is on.
556  *
557  * raid10_find_virt does the reverse mapping, from a device and a
558  * sector offset to a virtual address
559  */
560
561 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
562 {
563         int n,f;
564         sector_t sector;
565         sector_t chunk;
566         sector_t stripe;
567         int dev;
568         int slot = 0;
569         int last_far_set_start, last_far_set_size;
570
571         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
572         last_far_set_start *= geo->far_set_size;
573
574         last_far_set_size = geo->far_set_size;
575         last_far_set_size += (geo->raid_disks % geo->far_set_size);
576
577         /* now calculate first sector/dev */
578         chunk = r10bio->sector >> geo->chunk_shift;
579         sector = r10bio->sector & geo->chunk_mask;
580
581         chunk *= geo->near_copies;
582         stripe = chunk;
583         dev = sector_div(stripe, geo->raid_disks);
584         if (geo->far_offset)
585                 stripe *= geo->far_copies;
586
587         sector += stripe << geo->chunk_shift;
588
589         /* and calculate all the others */
590         for (n = 0; n < geo->near_copies; n++) {
591                 int d = dev;
592                 int set;
593                 sector_t s = sector;
594                 r10bio->devs[slot].devnum = d;
595                 r10bio->devs[slot].addr = s;
596                 slot++;
597
598                 for (f = 1; f < geo->far_copies; f++) {
599                         set = d / geo->far_set_size;
600                         d += geo->near_copies;
601
602                         if ((geo->raid_disks % geo->far_set_size) &&
603                             (d > last_far_set_start)) {
604                                 d -= last_far_set_start;
605                                 d %= last_far_set_size;
606                                 d += last_far_set_start;
607                         } else {
608                                 d %= geo->far_set_size;
609                                 d += geo->far_set_size * set;
610                         }
611                         s += geo->stride;
612                         r10bio->devs[slot].devnum = d;
613                         r10bio->devs[slot].addr = s;
614                         slot++;
615                 }
616                 dev++;
617                 if (dev >= geo->raid_disks) {
618                         dev = 0;
619                         sector += (geo->chunk_mask + 1);
620                 }
621         }
622 }
623
624 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
625 {
626         struct geom *geo = &conf->geo;
627
628         if (conf->reshape_progress != MaxSector &&
629             ((r10bio->sector >= conf->reshape_progress) !=
630              conf->mddev->reshape_backwards)) {
631                 set_bit(R10BIO_Previous, &r10bio->state);
632                 geo = &conf->prev;
633         } else
634                 clear_bit(R10BIO_Previous, &r10bio->state);
635
636         __raid10_find_phys(geo, r10bio);
637 }
638
639 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
640 {
641         sector_t offset, chunk, vchunk;
642         /* Never use conf->prev as this is only called during resync
643          * or recovery, so reshape isn't happening
644          */
645         struct geom *geo = &conf->geo;
646         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
647         int far_set_size = geo->far_set_size;
648         int last_far_set_start;
649
650         if (geo->raid_disks % geo->far_set_size) {
651                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
652                 last_far_set_start *= geo->far_set_size;
653
654                 if (dev >= last_far_set_start) {
655                         far_set_size = geo->far_set_size;
656                         far_set_size += (geo->raid_disks % geo->far_set_size);
657                         far_set_start = last_far_set_start;
658                 }
659         }
660
661         offset = sector & geo->chunk_mask;
662         if (geo->far_offset) {
663                 int fc;
664                 chunk = sector >> geo->chunk_shift;
665                 fc = sector_div(chunk, geo->far_copies);
666                 dev -= fc * geo->near_copies;
667                 if (dev < far_set_start)
668                         dev += far_set_size;
669         } else {
670                 while (sector >= geo->stride) {
671                         sector -= geo->stride;
672                         if (dev < (geo->near_copies + far_set_start))
673                                 dev += far_set_size - geo->near_copies;
674                         else
675                                 dev -= geo->near_copies;
676                 }
677                 chunk = sector >> geo->chunk_shift;
678         }
679         vchunk = chunk * geo->raid_disks + dev;
680         sector_div(vchunk, geo->near_copies);
681         return (vchunk << geo->chunk_shift) + offset;
682 }
683
684 /*
685  * This routine returns the disk from which the requested read should
686  * be done. There is a per-array 'next expected sequential IO' sector
687  * number - if this matches on the next IO then we use the last disk.
688  * There is also a per-disk 'last know head position' sector that is
689  * maintained from IRQ contexts, both the normal and the resync IO
690  * completion handlers update this position correctly. If there is no
691  * perfect sequential match then we pick the disk whose head is closest.
692  *
693  * If there are 2 mirrors in the same 2 devices, performance degrades
694  * because position is mirror, not device based.
695  *
696  * The rdev for the device selected will have nr_pending incremented.
697  */
698
699 /*
700  * FIXME: possibly should rethink readbalancing and do it differently
701  * depending on near_copies / far_copies geometry.
702  */
703 static struct md_rdev *read_balance(struct r10conf *conf,
704                                     struct r10bio *r10_bio,
705                                     int *max_sectors)
706 {
707         const sector_t this_sector = r10_bio->sector;
708         int disk, slot;
709         int sectors = r10_bio->sectors;
710         int best_good_sectors;
711         sector_t new_distance, best_dist;
712         struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
713         int do_balance;
714         int best_dist_slot, best_pending_slot;
715         bool has_nonrot_disk = false;
716         unsigned int min_pending;
717         struct geom *geo = &conf->geo;
718
719         raid10_find_phys(conf, r10_bio);
720         rcu_read_lock();
721         best_dist_slot = -1;
722         min_pending = UINT_MAX;
723         best_dist_rdev = NULL;
724         best_pending_rdev = NULL;
725         best_dist = MaxSector;
726         best_good_sectors = 0;
727         do_balance = 1;
728         clear_bit(R10BIO_FailFast, &r10_bio->state);
729         /*
730          * Check if we can balance. We can balance on the whole
731          * device if no resync is going on (recovery is ok), or below
732          * the resync window. We take the first readable disk when
733          * above the resync window.
734          */
735         if ((conf->mddev->recovery_cp < MaxSector
736              && (this_sector + sectors >= conf->next_resync)) ||
737             (mddev_is_clustered(conf->mddev) &&
738              md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
739                                             this_sector + sectors)))
740                 do_balance = 0;
741
742         for (slot = 0; slot < conf->copies ; slot++) {
743                 sector_t first_bad;
744                 int bad_sectors;
745                 sector_t dev_sector;
746                 unsigned int pending;
747                 bool nonrot;
748
749                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
750                         continue;
751                 disk = r10_bio->devs[slot].devnum;
752                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
753                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
754                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
755                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
756                 if (rdev == NULL ||
757                     test_bit(Faulty, &rdev->flags))
758                         continue;
759                 if (!test_bit(In_sync, &rdev->flags) &&
760                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
761                         continue;
762
763                 dev_sector = r10_bio->devs[slot].addr;
764                 if (is_badblock(rdev, dev_sector, sectors,
765                                 &first_bad, &bad_sectors)) {
766                         if (best_dist < MaxSector)
767                                 /* Already have a better slot */
768                                 continue;
769                         if (first_bad <= dev_sector) {
770                                 /* Cannot read here.  If this is the
771                                  * 'primary' device, then we must not read
772                                  * beyond 'bad_sectors' from another device.
773                                  */
774                                 bad_sectors -= (dev_sector - first_bad);
775                                 if (!do_balance && sectors > bad_sectors)
776                                         sectors = bad_sectors;
777                                 if (best_good_sectors > sectors)
778                                         best_good_sectors = sectors;
779                         } else {
780                                 sector_t good_sectors =
781                                         first_bad - dev_sector;
782                                 if (good_sectors > best_good_sectors) {
783                                         best_good_sectors = good_sectors;
784                                         best_dist_slot = slot;
785                                         best_dist_rdev = rdev;
786                                 }
787                                 if (!do_balance)
788                                         /* Must read from here */
789                                         break;
790                         }
791                         continue;
792                 } else
793                         best_good_sectors = sectors;
794
795                 if (!do_balance)
796                         break;
797
798                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
799                 has_nonrot_disk |= nonrot;
800                 pending = atomic_read(&rdev->nr_pending);
801                 if (min_pending > pending && nonrot) {
802                         min_pending = pending;
803                         best_pending_slot = slot;
804                         best_pending_rdev = rdev;
805                 }
806
807                 if (best_dist_slot >= 0)
808                         /* At least 2 disks to choose from so failfast is OK */
809                         set_bit(R10BIO_FailFast, &r10_bio->state);
810                 /* This optimisation is debatable, and completely destroys
811                  * sequential read speed for 'far copies' arrays.  So only
812                  * keep it for 'near' arrays, and review those later.
813                  */
814                 if (geo->near_copies > 1 && !pending)
815                         new_distance = 0;
816
817                 /* for far > 1 always use the lowest address */
818                 else if (geo->far_copies > 1)
819                         new_distance = r10_bio->devs[slot].addr;
820                 else
821                         new_distance = abs(r10_bio->devs[slot].addr -
822                                            conf->mirrors[disk].head_position);
823
824                 if (new_distance < best_dist) {
825                         best_dist = new_distance;
826                         best_dist_slot = slot;
827                         best_dist_rdev = rdev;
828                 }
829         }
830         if (slot >= conf->copies) {
831                 if (has_nonrot_disk) {
832                         slot = best_pending_slot;
833                         rdev = best_pending_rdev;
834                 } else {
835                         slot = best_dist_slot;
836                         rdev = best_dist_rdev;
837                 }
838         }
839
840         if (slot >= 0) {
841                 atomic_inc(&rdev->nr_pending);
842                 r10_bio->read_slot = slot;
843         } else
844                 rdev = NULL;
845         rcu_read_unlock();
846         *max_sectors = best_good_sectors;
847
848         return rdev;
849 }
850
851 static void flush_pending_writes(struct r10conf *conf)
852 {
853         /* Any writes that have been queued but are awaiting
854          * bitmap updates get flushed here.
855          */
856         spin_lock_irq(&conf->device_lock);
857
858         if (conf->pending_bio_list.head) {
859                 struct blk_plug plug;
860                 struct bio *bio;
861
862                 bio = bio_list_get(&conf->pending_bio_list);
863                 conf->pending_count = 0;
864                 spin_unlock_irq(&conf->device_lock);
865
866                 /*
867                  * As this is called in a wait_event() loop (see freeze_array),
868                  * current->state might be TASK_UNINTERRUPTIBLE which will
869                  * cause a warning when we prepare to wait again.  As it is
870                  * rare that this path is taken, it is perfectly safe to force
871                  * us to go around the wait_event() loop again, so the warning
872                  * is a false-positive. Silence the warning by resetting
873                  * thread state
874                  */
875                 __set_current_state(TASK_RUNNING);
876
877                 blk_start_plug(&plug);
878                 /* flush any pending bitmap writes to disk
879                  * before proceeding w/ I/O */
880                 md_bitmap_unplug(conf->mddev->bitmap);
881                 wake_up(&conf->wait_barrier);
882
883                 while (bio) { /* submit pending writes */
884                         struct bio *next = bio->bi_next;
885                         struct md_rdev *rdev = (void*)bio->bi_disk;
886                         bio->bi_next = NULL;
887                         bio_set_dev(bio, rdev->bdev);
888                         if (test_bit(Faulty, &rdev->flags)) {
889                                 bio_io_error(bio);
890                         } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
891                                             !blk_queue_discard(bio->bi_disk->queue)))
892                                 /* Just ignore it */
893                                 bio_endio(bio);
894                         else
895                                 submit_bio_noacct(bio);
896                         bio = next;
897                 }
898                 blk_finish_plug(&plug);
899         } else
900                 spin_unlock_irq(&conf->device_lock);
901 }
902
903 /* Barriers....
904  * Sometimes we need to suspend IO while we do something else,
905  * either some resync/recovery, or reconfigure the array.
906  * To do this we raise a 'barrier'.
907  * The 'barrier' is a counter that can be raised multiple times
908  * to count how many activities are happening which preclude
909  * normal IO.
910  * We can only raise the barrier if there is no pending IO.
911  * i.e. if nr_pending == 0.
912  * We choose only to raise the barrier if no-one is waiting for the
913  * barrier to go down.  This means that as soon as an IO request
914  * is ready, no other operations which require a barrier will start
915  * until the IO request has had a chance.
916  *
917  * So: regular IO calls 'wait_barrier'.  When that returns there
918  *    is no backgroup IO happening,  It must arrange to call
919  *    allow_barrier when it has finished its IO.
920  * backgroup IO calls must call raise_barrier.  Once that returns
921  *    there is no normal IO happeing.  It must arrange to call
922  *    lower_barrier when the particular background IO completes.
923  */
924
925 static void raise_barrier(struct r10conf *conf, int force)
926 {
927         BUG_ON(force && !conf->barrier);
928         spin_lock_irq(&conf->resync_lock);
929
930         /* Wait until no block IO is waiting (unless 'force') */
931         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
932                             conf->resync_lock);
933
934         /* block any new IO from starting */
935         conf->barrier++;
936
937         /* Now wait for all pending IO to complete */
938         wait_event_lock_irq(conf->wait_barrier,
939                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
940                             conf->resync_lock);
941
942         spin_unlock_irq(&conf->resync_lock);
943 }
944
945 static void lower_barrier(struct r10conf *conf)
946 {
947         unsigned long flags;
948         spin_lock_irqsave(&conf->resync_lock, flags);
949         conf->barrier--;
950         spin_unlock_irqrestore(&conf->resync_lock, flags);
951         wake_up(&conf->wait_barrier);
952 }
953
954 static void wait_barrier(struct r10conf *conf)
955 {
956         spin_lock_irq(&conf->resync_lock);
957         if (conf->barrier) {
958                 struct bio_list *bio_list = current->bio_list;
959                 conf->nr_waiting++;
960                 /* Wait for the barrier to drop.
961                  * However if there are already pending
962                  * requests (preventing the barrier from
963                  * rising completely), and the
964                  * pre-process bio queue isn't empty,
965                  * then don't wait, as we need to empty
966                  * that queue to get the nr_pending
967                  * count down.
968                  */
969                 raid10_log(conf->mddev, "wait barrier");
970                 wait_event_lock_irq(conf->wait_barrier,
971                                     !conf->barrier ||
972                                     (atomic_read(&conf->nr_pending) &&
973                                      bio_list &&
974                                      (!bio_list_empty(&bio_list[0]) ||
975                                       !bio_list_empty(&bio_list[1]))) ||
976                                      /* move on if recovery thread is
977                                       * blocked by us
978                                       */
979                                      (conf->mddev->thread->tsk == current &&
980                                       test_bit(MD_RECOVERY_RUNNING,
981                                                &conf->mddev->recovery) &&
982                                       conf->nr_queued > 0),
983                                     conf->resync_lock);
984                 conf->nr_waiting--;
985                 if (!conf->nr_waiting)
986                         wake_up(&conf->wait_barrier);
987         }
988         atomic_inc(&conf->nr_pending);
989         spin_unlock_irq(&conf->resync_lock);
990 }
991
992 static void allow_barrier(struct r10conf *conf)
993 {
994         if ((atomic_dec_and_test(&conf->nr_pending)) ||
995                         (conf->array_freeze_pending))
996                 wake_up(&conf->wait_barrier);
997 }
998
999 static void freeze_array(struct r10conf *conf, int extra)
1000 {
1001         /* stop syncio and normal IO and wait for everything to
1002          * go quiet.
1003          * We increment barrier and nr_waiting, and then
1004          * wait until nr_pending match nr_queued+extra
1005          * This is called in the context of one normal IO request
1006          * that has failed. Thus any sync request that might be pending
1007          * will be blocked by nr_pending, and we need to wait for
1008          * pending IO requests to complete or be queued for re-try.
1009          * Thus the number queued (nr_queued) plus this request (extra)
1010          * must match the number of pending IOs (nr_pending) before
1011          * we continue.
1012          */
1013         spin_lock_irq(&conf->resync_lock);
1014         conf->array_freeze_pending++;
1015         conf->barrier++;
1016         conf->nr_waiting++;
1017         wait_event_lock_irq_cmd(conf->wait_barrier,
1018                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1019                                 conf->resync_lock,
1020                                 flush_pending_writes(conf));
1021
1022         conf->array_freeze_pending--;
1023         spin_unlock_irq(&conf->resync_lock);
1024 }
1025
1026 static void unfreeze_array(struct r10conf *conf)
1027 {
1028         /* reverse the effect of the freeze */
1029         spin_lock_irq(&conf->resync_lock);
1030         conf->barrier--;
1031         conf->nr_waiting--;
1032         wake_up(&conf->wait_barrier);
1033         spin_unlock_irq(&conf->resync_lock);
1034 }
1035
1036 static sector_t choose_data_offset(struct r10bio *r10_bio,
1037                                    struct md_rdev *rdev)
1038 {
1039         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1040             test_bit(R10BIO_Previous, &r10_bio->state))
1041                 return rdev->data_offset;
1042         else
1043                 return rdev->new_data_offset;
1044 }
1045
1046 struct raid10_plug_cb {
1047         struct blk_plug_cb      cb;
1048         struct bio_list         pending;
1049         int                     pending_cnt;
1050 };
1051
1052 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1053 {
1054         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1055                                                    cb);
1056         struct mddev *mddev = plug->cb.data;
1057         struct r10conf *conf = mddev->private;
1058         struct bio *bio;
1059
1060         if (from_schedule || current->bio_list) {
1061                 spin_lock_irq(&conf->device_lock);
1062                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1063                 conf->pending_count += plug->pending_cnt;
1064                 spin_unlock_irq(&conf->device_lock);
1065                 wake_up(&conf->wait_barrier);
1066                 md_wakeup_thread(mddev->thread);
1067                 kfree(plug);
1068                 return;
1069         }
1070
1071         /* we aren't scheduling, so we can do the write-out directly. */
1072         bio = bio_list_get(&plug->pending);
1073         md_bitmap_unplug(mddev->bitmap);
1074         wake_up(&conf->wait_barrier);
1075
1076         while (bio) { /* submit pending writes */
1077                 struct bio *next = bio->bi_next;
1078                 struct md_rdev *rdev = (void*)bio->bi_disk;
1079                 bio->bi_next = NULL;
1080                 bio_set_dev(bio, rdev->bdev);
1081                 if (test_bit(Faulty, &rdev->flags)) {
1082                         bio_io_error(bio);
1083                 } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1084                                     !blk_queue_discard(bio->bi_disk->queue)))
1085                         /* Just ignore it */
1086                         bio_endio(bio);
1087                 else
1088                         submit_bio_noacct(bio);
1089                 bio = next;
1090         }
1091         kfree(plug);
1092 }
1093
1094 /*
1095  * 1. Register the new request and wait if the reconstruction thread has put
1096  * up a bar for new requests. Continue immediately if no resync is active
1097  * currently.
1098  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1099  */
1100 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1101                                  struct bio *bio, sector_t sectors)
1102 {
1103         wait_barrier(conf);
1104         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1105             bio->bi_iter.bi_sector < conf->reshape_progress &&
1106             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1107                 raid10_log(conf->mddev, "wait reshape");
1108                 allow_barrier(conf);
1109                 wait_event(conf->wait_barrier,
1110                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1111                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1112                            sectors);
1113                 wait_barrier(conf);
1114         }
1115 }
1116
1117 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1118                                 struct r10bio *r10_bio)
1119 {
1120         struct r10conf *conf = mddev->private;
1121         struct bio *read_bio;
1122         const int op = bio_op(bio);
1123         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1124         int max_sectors;
1125         struct md_rdev *rdev;
1126         char b[BDEVNAME_SIZE];
1127         int slot = r10_bio->read_slot;
1128         struct md_rdev *err_rdev = NULL;
1129         gfp_t gfp = GFP_NOIO;
1130
1131         if (r10_bio->devs[slot].rdev) {
1132                 /*
1133                  * This is an error retry, but we cannot
1134                  * safely dereference the rdev in the r10_bio,
1135                  * we must use the one in conf.
1136                  * If it has already been disconnected (unlikely)
1137                  * we lose the device name in error messages.
1138                  */
1139                 int disk;
1140                 /*
1141                  * As we are blocking raid10, it is a little safer to
1142                  * use __GFP_HIGH.
1143                  */
1144                 gfp = GFP_NOIO | __GFP_HIGH;
1145
1146                 rcu_read_lock();
1147                 disk = r10_bio->devs[slot].devnum;
1148                 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1149                 if (err_rdev)
1150                         bdevname(err_rdev->bdev, b);
1151                 else {
1152                         strcpy(b, "???");
1153                         /* This never gets dereferenced */
1154                         err_rdev = r10_bio->devs[slot].rdev;
1155                 }
1156                 rcu_read_unlock();
1157         }
1158
1159         regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1160         rdev = read_balance(conf, r10_bio, &max_sectors);
1161         if (!rdev) {
1162                 if (err_rdev) {
1163                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1164                                             mdname(mddev), b,
1165                                             (unsigned long long)r10_bio->sector);
1166                 }
1167                 raid_end_bio_io(r10_bio);
1168                 return;
1169         }
1170         if (err_rdev)
1171                 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1172                                    mdname(mddev),
1173                                    bdevname(rdev->bdev, b),
1174                                    (unsigned long long)r10_bio->sector);
1175         if (max_sectors < bio_sectors(bio)) {
1176                 struct bio *split = bio_split(bio, max_sectors,
1177                                               gfp, &conf->bio_split);
1178                 bio_chain(split, bio);
1179                 allow_barrier(conf);
1180                 submit_bio_noacct(bio);
1181                 wait_barrier(conf);
1182                 bio = split;
1183                 r10_bio->master_bio = bio;
1184                 r10_bio->sectors = max_sectors;
1185         }
1186         slot = r10_bio->read_slot;
1187
1188         read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1189
1190         r10_bio->devs[slot].bio = read_bio;
1191         r10_bio->devs[slot].rdev = rdev;
1192
1193         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1194                 choose_data_offset(r10_bio, rdev);
1195         bio_set_dev(read_bio, rdev->bdev);
1196         read_bio->bi_end_io = raid10_end_read_request;
1197         bio_set_op_attrs(read_bio, op, do_sync);
1198         if (test_bit(FailFast, &rdev->flags) &&
1199             test_bit(R10BIO_FailFast, &r10_bio->state))
1200                 read_bio->bi_opf |= MD_FAILFAST;
1201         read_bio->bi_private = r10_bio;
1202
1203         if (mddev->gendisk)
1204                 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1205                                       r10_bio->sector);
1206         submit_bio_noacct(read_bio);
1207         return;
1208 }
1209
1210 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1211                                   struct bio *bio, bool replacement,
1212                                   int n_copy)
1213 {
1214         const int op = bio_op(bio);
1215         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1216         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1217         unsigned long flags;
1218         struct blk_plug_cb *cb;
1219         struct raid10_plug_cb *plug = NULL;
1220         struct r10conf *conf = mddev->private;
1221         struct md_rdev *rdev;
1222         int devnum = r10_bio->devs[n_copy].devnum;
1223         struct bio *mbio;
1224
1225         if (replacement) {
1226                 rdev = conf->mirrors[devnum].replacement;
1227                 if (rdev == NULL) {
1228                         /* Replacement just got moved to main 'rdev' */
1229                         smp_mb();
1230                         rdev = conf->mirrors[devnum].rdev;
1231                 }
1232         } else
1233                 rdev = conf->mirrors[devnum].rdev;
1234
1235         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1236         if (replacement)
1237                 r10_bio->devs[n_copy].repl_bio = mbio;
1238         else
1239                 r10_bio->devs[n_copy].bio = mbio;
1240
1241         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1242                                    choose_data_offset(r10_bio, rdev));
1243         bio_set_dev(mbio, rdev->bdev);
1244         mbio->bi_end_io = raid10_end_write_request;
1245         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1246         if (!replacement && test_bit(FailFast,
1247                                      &conf->mirrors[devnum].rdev->flags)
1248                          && enough(conf, devnum))
1249                 mbio->bi_opf |= MD_FAILFAST;
1250         mbio->bi_private = r10_bio;
1251
1252         if (conf->mddev->gendisk)
1253                 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1254                                       r10_bio->sector);
1255         /* flush_pending_writes() needs access to the rdev so...*/
1256         mbio->bi_disk = (void *)rdev;
1257
1258         atomic_inc(&r10_bio->remaining);
1259
1260         cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1261         if (cb)
1262                 plug = container_of(cb, struct raid10_plug_cb, cb);
1263         else
1264                 plug = NULL;
1265         if (plug) {
1266                 bio_list_add(&plug->pending, mbio);
1267                 plug->pending_cnt++;
1268         } else {
1269                 spin_lock_irqsave(&conf->device_lock, flags);
1270                 bio_list_add(&conf->pending_bio_list, mbio);
1271                 conf->pending_count++;
1272                 spin_unlock_irqrestore(&conf->device_lock, flags);
1273                 md_wakeup_thread(mddev->thread);
1274         }
1275 }
1276
1277 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1278                                  struct r10bio *r10_bio)
1279 {
1280         struct r10conf *conf = mddev->private;
1281         int i;
1282         struct md_rdev *blocked_rdev;
1283         sector_t sectors;
1284         int max_sectors;
1285
1286         if ((mddev_is_clustered(mddev) &&
1287              md_cluster_ops->area_resyncing(mddev, WRITE,
1288                                             bio->bi_iter.bi_sector,
1289                                             bio_end_sector(bio)))) {
1290                 DEFINE_WAIT(w);
1291                 for (;;) {
1292                         prepare_to_wait(&conf->wait_barrier,
1293                                         &w, TASK_IDLE);
1294                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1295                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1296                                 break;
1297                         schedule();
1298                 }
1299                 finish_wait(&conf->wait_barrier, &w);
1300         }
1301
1302         sectors = r10_bio->sectors;
1303         regular_request_wait(mddev, conf, bio, sectors);
1304         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1305             (mddev->reshape_backwards
1306              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1307                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1308              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1309                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1310                 /* Need to update reshape_position in metadata */
1311                 mddev->reshape_position = conf->reshape_progress;
1312                 set_mask_bits(&mddev->sb_flags, 0,
1313                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1314                 md_wakeup_thread(mddev->thread);
1315                 raid10_log(conf->mddev, "wait reshape metadata");
1316                 wait_event(mddev->sb_wait,
1317                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1318
1319                 conf->reshape_safe = mddev->reshape_position;
1320         }
1321
1322         if (conf->pending_count >= max_queued_requests) {
1323                 md_wakeup_thread(mddev->thread);
1324                 raid10_log(mddev, "wait queued");
1325                 wait_event(conf->wait_barrier,
1326                            conf->pending_count < max_queued_requests);
1327         }
1328         /* first select target devices under rcu_lock and
1329          * inc refcount on their rdev.  Record them by setting
1330          * bios[x] to bio
1331          * If there are known/acknowledged bad blocks on any device
1332          * on which we have seen a write error, we want to avoid
1333          * writing to those blocks.  This potentially requires several
1334          * writes to write around the bad blocks.  Each set of writes
1335          * gets its own r10_bio with a set of bios attached.
1336          */
1337
1338         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1339         raid10_find_phys(conf, r10_bio);
1340 retry_write:
1341         blocked_rdev = NULL;
1342         rcu_read_lock();
1343         max_sectors = r10_bio->sectors;
1344
1345         for (i = 0;  i < conf->copies; i++) {
1346                 int d = r10_bio->devs[i].devnum;
1347                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1348                 struct md_rdev *rrdev = rcu_dereference(
1349                         conf->mirrors[d].replacement);
1350                 if (rdev == rrdev)
1351                         rrdev = NULL;
1352                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1353                         atomic_inc(&rdev->nr_pending);
1354                         blocked_rdev = rdev;
1355                         break;
1356                 }
1357                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1358                         atomic_inc(&rrdev->nr_pending);
1359                         blocked_rdev = rrdev;
1360                         break;
1361                 }
1362                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1363                         rdev = NULL;
1364                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1365                         rrdev = NULL;
1366
1367                 r10_bio->devs[i].bio = NULL;
1368                 r10_bio->devs[i].repl_bio = NULL;
1369
1370                 if (!rdev && !rrdev) {
1371                         set_bit(R10BIO_Degraded, &r10_bio->state);
1372                         continue;
1373                 }
1374                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1375                         sector_t first_bad;
1376                         sector_t dev_sector = r10_bio->devs[i].addr;
1377                         int bad_sectors;
1378                         int is_bad;
1379
1380                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1381                                              &first_bad, &bad_sectors);
1382                         if (is_bad < 0) {
1383                                 /* Mustn't write here until the bad block
1384                                  * is acknowledged
1385                                  */
1386                                 atomic_inc(&rdev->nr_pending);
1387                                 set_bit(BlockedBadBlocks, &rdev->flags);
1388                                 blocked_rdev = rdev;
1389                                 break;
1390                         }
1391                         if (is_bad && first_bad <= dev_sector) {
1392                                 /* Cannot write here at all */
1393                                 bad_sectors -= (dev_sector - first_bad);
1394                                 if (bad_sectors < max_sectors)
1395                                         /* Mustn't write more than bad_sectors
1396                                          * to other devices yet
1397                                          */
1398                                         max_sectors = bad_sectors;
1399                                 /* We don't set R10BIO_Degraded as that
1400                                  * only applies if the disk is missing,
1401                                  * so it might be re-added, and we want to
1402                                  * know to recover this chunk.
1403                                  * In this case the device is here, and the
1404                                  * fact that this chunk is not in-sync is
1405                                  * recorded in the bad block log.
1406                                  */
1407                                 continue;
1408                         }
1409                         if (is_bad) {
1410                                 int good_sectors = first_bad - dev_sector;
1411                                 if (good_sectors < max_sectors)
1412                                         max_sectors = good_sectors;
1413                         }
1414                 }
1415                 if (rdev) {
1416                         r10_bio->devs[i].bio = bio;
1417                         atomic_inc(&rdev->nr_pending);
1418                 }
1419                 if (rrdev) {
1420                         r10_bio->devs[i].repl_bio = bio;
1421                         atomic_inc(&rrdev->nr_pending);
1422                 }
1423         }
1424         rcu_read_unlock();
1425
1426         if (unlikely(blocked_rdev)) {
1427                 /* Have to wait for this device to get unblocked, then retry */
1428                 int j;
1429                 int d;
1430
1431                 for (j = 0; j < i; j++) {
1432                         if (r10_bio->devs[j].bio) {
1433                                 d = r10_bio->devs[j].devnum;
1434                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1435                         }
1436                         if (r10_bio->devs[j].repl_bio) {
1437                                 struct md_rdev *rdev;
1438                                 d = r10_bio->devs[j].devnum;
1439                                 rdev = conf->mirrors[d].replacement;
1440                                 if (!rdev) {
1441                                         /* Race with remove_disk */
1442                                         smp_mb();
1443                                         rdev = conf->mirrors[d].rdev;
1444                                 }
1445                                 rdev_dec_pending(rdev, mddev);
1446                         }
1447                 }
1448                 allow_barrier(conf);
1449                 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1450                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1451                 wait_barrier(conf);
1452                 goto retry_write;
1453         }
1454
1455         if (max_sectors < r10_bio->sectors)
1456                 r10_bio->sectors = max_sectors;
1457
1458         if (r10_bio->sectors < bio_sectors(bio)) {
1459                 struct bio *split = bio_split(bio, r10_bio->sectors,
1460                                               GFP_NOIO, &conf->bio_split);
1461                 bio_chain(split, bio);
1462                 allow_barrier(conf);
1463                 submit_bio_noacct(bio);
1464                 wait_barrier(conf);
1465                 bio = split;
1466                 r10_bio->master_bio = bio;
1467         }
1468
1469         atomic_set(&r10_bio->remaining, 1);
1470         md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1471
1472         for (i = 0; i < conf->copies; i++) {
1473                 if (r10_bio->devs[i].bio)
1474                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1475                 if (r10_bio->devs[i].repl_bio)
1476                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1477         }
1478         one_write_done(r10_bio);
1479 }
1480
1481 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1482 {
1483         struct r10conf *conf = mddev->private;
1484         struct r10bio *r10_bio;
1485
1486         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1487
1488         r10_bio->master_bio = bio;
1489         r10_bio->sectors = sectors;
1490
1491         r10_bio->mddev = mddev;
1492         r10_bio->sector = bio->bi_iter.bi_sector;
1493         r10_bio->state = 0;
1494         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1495
1496         if (bio_data_dir(bio) == READ)
1497                 raid10_read_request(mddev, bio, r10_bio);
1498         else
1499                 raid10_write_request(mddev, bio, r10_bio);
1500 }
1501
1502 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1503 {
1504         struct r10conf *conf = mddev->private;
1505         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1506         int chunk_sects = chunk_mask + 1;
1507         int sectors = bio_sectors(bio);
1508
1509         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1510             && md_flush_request(mddev, bio))
1511                 return true;
1512
1513         if (!md_write_start(mddev, bio))
1514                 return false;
1515
1516         /*
1517          * If this request crosses a chunk boundary, we need to split
1518          * it.
1519          */
1520         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1521                      sectors > chunk_sects
1522                      && (conf->geo.near_copies < conf->geo.raid_disks
1523                          || conf->prev.near_copies <
1524                          conf->prev.raid_disks)))
1525                 sectors = chunk_sects -
1526                         (bio->bi_iter.bi_sector &
1527                          (chunk_sects - 1));
1528         __make_request(mddev, bio, sectors);
1529
1530         /* In case raid10d snuck in to freeze_array */
1531         wake_up(&conf->wait_barrier);
1532         return true;
1533 }
1534
1535 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1536 {
1537         struct r10conf *conf = mddev->private;
1538         int i;
1539
1540         if (conf->geo.near_copies < conf->geo.raid_disks)
1541                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1542         if (conf->geo.near_copies > 1)
1543                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1544         if (conf->geo.far_copies > 1) {
1545                 if (conf->geo.far_offset)
1546                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1547                 else
1548                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1549                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1550                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1551         }
1552         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1553                                         conf->geo.raid_disks - mddev->degraded);
1554         rcu_read_lock();
1555         for (i = 0; i < conf->geo.raid_disks; i++) {
1556                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1557                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1558         }
1559         rcu_read_unlock();
1560         seq_printf(seq, "]");
1561 }
1562
1563 /* check if there are enough drives for
1564  * every block to appear on atleast one.
1565  * Don't consider the device numbered 'ignore'
1566  * as we might be about to remove it.
1567  */
1568 static int _enough(struct r10conf *conf, int previous, int ignore)
1569 {
1570         int first = 0;
1571         int has_enough = 0;
1572         int disks, ncopies;
1573         if (previous) {
1574                 disks = conf->prev.raid_disks;
1575                 ncopies = conf->prev.near_copies;
1576         } else {
1577                 disks = conf->geo.raid_disks;
1578                 ncopies = conf->geo.near_copies;
1579         }
1580
1581         rcu_read_lock();
1582         do {
1583                 int n = conf->copies;
1584                 int cnt = 0;
1585                 int this = first;
1586                 while (n--) {
1587                         struct md_rdev *rdev;
1588                         if (this != ignore &&
1589                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1590                             test_bit(In_sync, &rdev->flags))
1591                                 cnt++;
1592                         this = (this+1) % disks;
1593                 }
1594                 if (cnt == 0)
1595                         goto out;
1596                 first = (first + ncopies) % disks;
1597         } while (first != 0);
1598         has_enough = 1;
1599 out:
1600         rcu_read_unlock();
1601         return has_enough;
1602 }
1603
1604 static int enough(struct r10conf *conf, int ignore)
1605 {
1606         /* when calling 'enough', both 'prev' and 'geo' must
1607          * be stable.
1608          * This is ensured if ->reconfig_mutex or ->device_lock
1609          * is held.
1610          */
1611         return _enough(conf, 0, ignore) &&
1612                 _enough(conf, 1, ignore);
1613 }
1614
1615 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1616 {
1617         char b[BDEVNAME_SIZE];
1618         struct r10conf *conf = mddev->private;
1619         unsigned long flags;
1620
1621         /*
1622          * If it is not operational, then we have already marked it as dead
1623          * else if it is the last working disks with "fail_last_dev == false",
1624          * ignore the error, let the next level up know.
1625          * else mark the drive as failed
1626          */
1627         spin_lock_irqsave(&conf->device_lock, flags);
1628         if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1629             && !enough(conf, rdev->raid_disk)) {
1630                 /*
1631                  * Don't fail the drive, just return an IO error.
1632                  */
1633                 spin_unlock_irqrestore(&conf->device_lock, flags);
1634                 return;
1635         }
1636         if (test_and_clear_bit(In_sync, &rdev->flags))
1637                 mddev->degraded++;
1638         /*
1639          * If recovery is running, make sure it aborts.
1640          */
1641         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1642         set_bit(Blocked, &rdev->flags);
1643         set_bit(Faulty, &rdev->flags);
1644         set_mask_bits(&mddev->sb_flags, 0,
1645                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1646         spin_unlock_irqrestore(&conf->device_lock, flags);
1647         pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1648                 "md/raid10:%s: Operation continuing on %d devices.\n",
1649                 mdname(mddev), bdevname(rdev->bdev, b),
1650                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1651 }
1652
1653 static void print_conf(struct r10conf *conf)
1654 {
1655         int i;
1656         struct md_rdev *rdev;
1657
1658         pr_debug("RAID10 conf printout:\n");
1659         if (!conf) {
1660                 pr_debug("(!conf)\n");
1661                 return;
1662         }
1663         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1664                  conf->geo.raid_disks);
1665
1666         /* This is only called with ->reconfix_mutex held, so
1667          * rcu protection of rdev is not needed */
1668         for (i = 0; i < conf->geo.raid_disks; i++) {
1669                 char b[BDEVNAME_SIZE];
1670                 rdev = conf->mirrors[i].rdev;
1671                 if (rdev)
1672                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1673                                  i, !test_bit(In_sync, &rdev->flags),
1674                                  !test_bit(Faulty, &rdev->flags),
1675                                  bdevname(rdev->bdev,b));
1676         }
1677 }
1678
1679 static void close_sync(struct r10conf *conf)
1680 {
1681         wait_barrier(conf);
1682         allow_barrier(conf);
1683
1684         mempool_exit(&conf->r10buf_pool);
1685 }
1686
1687 static int raid10_spare_active(struct mddev *mddev)
1688 {
1689         int i;
1690         struct r10conf *conf = mddev->private;
1691         struct raid10_info *tmp;
1692         int count = 0;
1693         unsigned long flags;
1694
1695         /*
1696          * Find all non-in_sync disks within the RAID10 configuration
1697          * and mark them in_sync
1698          */
1699         for (i = 0; i < conf->geo.raid_disks; i++) {
1700                 tmp = conf->mirrors + i;
1701                 if (tmp->replacement
1702                     && tmp->replacement->recovery_offset == MaxSector
1703                     && !test_bit(Faulty, &tmp->replacement->flags)
1704                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1705                         /* Replacement has just become active */
1706                         if (!tmp->rdev
1707                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1708                                 count++;
1709                         if (tmp->rdev) {
1710                                 /* Replaced device not technically faulty,
1711                                  * but we need to be sure it gets removed
1712                                  * and never re-added.
1713                                  */
1714                                 set_bit(Faulty, &tmp->rdev->flags);
1715                                 sysfs_notify_dirent_safe(
1716                                         tmp->rdev->sysfs_state);
1717                         }
1718                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1719                 } else if (tmp->rdev
1720                            && tmp->rdev->recovery_offset == MaxSector
1721                            && !test_bit(Faulty, &tmp->rdev->flags)
1722                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1723                         count++;
1724                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1725                 }
1726         }
1727         spin_lock_irqsave(&conf->device_lock, flags);
1728         mddev->degraded -= count;
1729         spin_unlock_irqrestore(&conf->device_lock, flags);
1730
1731         print_conf(conf);
1732         return count;
1733 }
1734
1735 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1736 {
1737         struct r10conf *conf = mddev->private;
1738         int err = -EEXIST;
1739         int mirror;
1740         int first = 0;
1741         int last = conf->geo.raid_disks - 1;
1742
1743         if (mddev->recovery_cp < MaxSector)
1744                 /* only hot-add to in-sync arrays, as recovery is
1745                  * very different from resync
1746                  */
1747                 return -EBUSY;
1748         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1749                 return -EINVAL;
1750
1751         if (md_integrity_add_rdev(rdev, mddev))
1752                 return -ENXIO;
1753
1754         if (rdev->raid_disk >= 0)
1755                 first = last = rdev->raid_disk;
1756
1757         if (rdev->saved_raid_disk >= first &&
1758             rdev->saved_raid_disk < conf->geo.raid_disks &&
1759             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1760                 mirror = rdev->saved_raid_disk;
1761         else
1762                 mirror = first;
1763         for ( ; mirror <= last ; mirror++) {
1764                 struct raid10_info *p = &conf->mirrors[mirror];
1765                 if (p->recovery_disabled == mddev->recovery_disabled)
1766                         continue;
1767                 if (p->rdev) {
1768                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1769                             p->replacement != NULL)
1770                                 continue;
1771                         clear_bit(In_sync, &rdev->flags);
1772                         set_bit(Replacement, &rdev->flags);
1773                         rdev->raid_disk = mirror;
1774                         err = 0;
1775                         if (mddev->gendisk)
1776                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1777                                                   rdev->data_offset << 9);
1778                         conf->fullsync = 1;
1779                         rcu_assign_pointer(p->replacement, rdev);
1780                         break;
1781                 }
1782
1783                 if (mddev->gendisk)
1784                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1785                                           rdev->data_offset << 9);
1786
1787                 p->head_position = 0;
1788                 p->recovery_disabled = mddev->recovery_disabled - 1;
1789                 rdev->raid_disk = mirror;
1790                 err = 0;
1791                 if (rdev->saved_raid_disk != mirror)
1792                         conf->fullsync = 1;
1793                 rcu_assign_pointer(p->rdev, rdev);
1794                 break;
1795         }
1796         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1797                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1798
1799         print_conf(conf);
1800         return err;
1801 }
1802
1803 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1804 {
1805         struct r10conf *conf = mddev->private;
1806         int err = 0;
1807         int number = rdev->raid_disk;
1808         struct md_rdev **rdevp;
1809         struct raid10_info *p = conf->mirrors + number;
1810
1811         print_conf(conf);
1812         if (rdev == p->rdev)
1813                 rdevp = &p->rdev;
1814         else if (rdev == p->replacement)
1815                 rdevp = &p->replacement;
1816         else
1817                 return 0;
1818
1819         if (test_bit(In_sync, &rdev->flags) ||
1820             atomic_read(&rdev->nr_pending)) {
1821                 err = -EBUSY;
1822                 goto abort;
1823         }
1824         /* Only remove non-faulty devices if recovery
1825          * is not possible.
1826          */
1827         if (!test_bit(Faulty, &rdev->flags) &&
1828             mddev->recovery_disabled != p->recovery_disabled &&
1829             (!p->replacement || p->replacement == rdev) &&
1830             number < conf->geo.raid_disks &&
1831             enough(conf, -1)) {
1832                 err = -EBUSY;
1833                 goto abort;
1834         }
1835         *rdevp = NULL;
1836         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1837                 synchronize_rcu();
1838                 if (atomic_read(&rdev->nr_pending)) {
1839                         /* lost the race, try later */
1840                         err = -EBUSY;
1841                         *rdevp = rdev;
1842                         goto abort;
1843                 }
1844         }
1845         if (p->replacement) {
1846                 /* We must have just cleared 'rdev' */
1847                 p->rdev = p->replacement;
1848                 clear_bit(Replacement, &p->replacement->flags);
1849                 smp_mb(); /* Make sure other CPUs may see both as identical
1850                            * but will never see neither -- if they are careful.
1851                            */
1852                 p->replacement = NULL;
1853         }
1854
1855         clear_bit(WantReplacement, &rdev->flags);
1856         err = md_integrity_register(mddev);
1857
1858 abort:
1859
1860         print_conf(conf);
1861         return err;
1862 }
1863
1864 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1865 {
1866         struct r10conf *conf = r10_bio->mddev->private;
1867
1868         if (!bio->bi_status)
1869                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1870         else
1871                 /* The write handler will notice the lack of
1872                  * R10BIO_Uptodate and record any errors etc
1873                  */
1874                 atomic_add(r10_bio->sectors,
1875                            &conf->mirrors[d].rdev->corrected_errors);
1876
1877         /* for reconstruct, we always reschedule after a read.
1878          * for resync, only after all reads
1879          */
1880         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1881         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1882             atomic_dec_and_test(&r10_bio->remaining)) {
1883                 /* we have read all the blocks,
1884                  * do the comparison in process context in raid10d
1885                  */
1886                 reschedule_retry(r10_bio);
1887         }
1888 }
1889
1890 static void end_sync_read(struct bio *bio)
1891 {
1892         struct r10bio *r10_bio = get_resync_r10bio(bio);
1893         struct r10conf *conf = r10_bio->mddev->private;
1894         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1895
1896         __end_sync_read(r10_bio, bio, d);
1897 }
1898
1899 static void end_reshape_read(struct bio *bio)
1900 {
1901         /* reshape read bio isn't allocated from r10buf_pool */
1902         struct r10bio *r10_bio = bio->bi_private;
1903
1904         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1905 }
1906
1907 static void end_sync_request(struct r10bio *r10_bio)
1908 {
1909         struct mddev *mddev = r10_bio->mddev;
1910
1911         while (atomic_dec_and_test(&r10_bio->remaining)) {
1912                 if (r10_bio->master_bio == NULL) {
1913                         /* the primary of several recovery bios */
1914                         sector_t s = r10_bio->sectors;
1915                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1916                             test_bit(R10BIO_WriteError, &r10_bio->state))
1917                                 reschedule_retry(r10_bio);
1918                         else
1919                                 put_buf(r10_bio);
1920                         md_done_sync(mddev, s, 1);
1921                         break;
1922                 } else {
1923                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1924                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1925                             test_bit(R10BIO_WriteError, &r10_bio->state))
1926                                 reschedule_retry(r10_bio);
1927                         else
1928                                 put_buf(r10_bio);
1929                         r10_bio = r10_bio2;
1930                 }
1931         }
1932 }
1933
1934 static void end_sync_write(struct bio *bio)
1935 {
1936         struct r10bio *r10_bio = get_resync_r10bio(bio);
1937         struct mddev *mddev = r10_bio->mddev;
1938         struct r10conf *conf = mddev->private;
1939         int d;
1940         sector_t first_bad;
1941         int bad_sectors;
1942         int slot;
1943         int repl;
1944         struct md_rdev *rdev = NULL;
1945
1946         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1947         if (repl)
1948                 rdev = conf->mirrors[d].replacement;
1949         else
1950                 rdev = conf->mirrors[d].rdev;
1951
1952         if (bio->bi_status) {
1953                 if (repl)
1954                         md_error(mddev, rdev);
1955                 else {
1956                         set_bit(WriteErrorSeen, &rdev->flags);
1957                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1958                                 set_bit(MD_RECOVERY_NEEDED,
1959                                         &rdev->mddev->recovery);
1960                         set_bit(R10BIO_WriteError, &r10_bio->state);
1961                 }
1962         } else if (is_badblock(rdev,
1963                              r10_bio->devs[slot].addr,
1964                              r10_bio->sectors,
1965                              &first_bad, &bad_sectors))
1966                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1967
1968         rdev_dec_pending(rdev, mddev);
1969
1970         end_sync_request(r10_bio);
1971 }
1972
1973 /*
1974  * Note: sync and recover and handled very differently for raid10
1975  * This code is for resync.
1976  * For resync, we read through virtual addresses and read all blocks.
1977  * If there is any error, we schedule a write.  The lowest numbered
1978  * drive is authoritative.
1979  * However requests come for physical address, so we need to map.
1980  * For every physical address there are raid_disks/copies virtual addresses,
1981  * which is always are least one, but is not necessarly an integer.
1982  * This means that a physical address can span multiple chunks, so we may
1983  * have to submit multiple io requests for a single sync request.
1984  */
1985 /*
1986  * We check if all blocks are in-sync and only write to blocks that
1987  * aren't in sync
1988  */
1989 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1990 {
1991         struct r10conf *conf = mddev->private;
1992         int i, first;
1993         struct bio *tbio, *fbio;
1994         int vcnt;
1995         struct page **tpages, **fpages;
1996
1997         atomic_set(&r10_bio->remaining, 1);
1998
1999         /* find the first device with a block */
2000         for (i=0; i<conf->copies; i++)
2001                 if (!r10_bio->devs[i].bio->bi_status)
2002                         break;
2003
2004         if (i == conf->copies)
2005                 goto done;
2006
2007         first = i;
2008         fbio = r10_bio->devs[i].bio;
2009         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2010         fbio->bi_iter.bi_idx = 0;
2011         fpages = get_resync_pages(fbio)->pages;
2012
2013         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2014         /* now find blocks with errors */
2015         for (i=0 ; i < conf->copies ; i++) {
2016                 int  j, d;
2017                 struct md_rdev *rdev;
2018                 struct resync_pages *rp;
2019
2020                 tbio = r10_bio->devs[i].bio;
2021
2022                 if (tbio->bi_end_io != end_sync_read)
2023                         continue;
2024                 if (i == first)
2025                         continue;
2026
2027                 tpages = get_resync_pages(tbio)->pages;
2028                 d = r10_bio->devs[i].devnum;
2029                 rdev = conf->mirrors[d].rdev;
2030                 if (!r10_bio->devs[i].bio->bi_status) {
2031                         /* We know that the bi_io_vec layout is the same for
2032                          * both 'first' and 'i', so we just compare them.
2033                          * All vec entries are PAGE_SIZE;
2034                          */
2035                         int sectors = r10_bio->sectors;
2036                         for (j = 0; j < vcnt; j++) {
2037                                 int len = PAGE_SIZE;
2038                                 if (sectors < (len / 512))
2039                                         len = sectors * 512;
2040                                 if (memcmp(page_address(fpages[j]),
2041                                            page_address(tpages[j]),
2042                                            len))
2043                                         break;
2044                                 sectors -= len/512;
2045                         }
2046                         if (j == vcnt)
2047                                 continue;
2048                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2049                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2050                                 /* Don't fix anything. */
2051                                 continue;
2052                 } else if (test_bit(FailFast, &rdev->flags)) {
2053                         /* Just give up on this device */
2054                         md_error(rdev->mddev, rdev);
2055                         continue;
2056                 }
2057                 /* Ok, we need to write this bio, either to correct an
2058                  * inconsistency or to correct an unreadable block.
2059                  * First we need to fixup bv_offset, bv_len and
2060                  * bi_vecs, as the read request might have corrupted these
2061                  */
2062                 rp = get_resync_pages(tbio);
2063                 bio_reset(tbio);
2064
2065                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2066
2067                 rp->raid_bio = r10_bio;
2068                 tbio->bi_private = rp;
2069                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2070                 tbio->bi_end_io = end_sync_write;
2071                 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2072
2073                 bio_copy_data(tbio, fbio);
2074
2075                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2076                 atomic_inc(&r10_bio->remaining);
2077                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2078
2079                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2080                         tbio->bi_opf |= MD_FAILFAST;
2081                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2082                 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2083                 submit_bio_noacct(tbio);
2084         }
2085
2086         /* Now write out to any replacement devices
2087          * that are active
2088          */
2089         for (i = 0; i < conf->copies; i++) {
2090                 int d;
2091
2092                 tbio = r10_bio->devs[i].repl_bio;
2093                 if (!tbio || !tbio->bi_end_io)
2094                         continue;
2095                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2096                     && r10_bio->devs[i].bio != fbio)
2097                         bio_copy_data(tbio, fbio);
2098                 d = r10_bio->devs[i].devnum;
2099                 atomic_inc(&r10_bio->remaining);
2100                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2101                              bio_sectors(tbio));
2102                 submit_bio_noacct(tbio);
2103         }
2104
2105 done:
2106         if (atomic_dec_and_test(&r10_bio->remaining)) {
2107                 md_done_sync(mddev, r10_bio->sectors, 1);
2108                 put_buf(r10_bio);
2109         }
2110 }
2111
2112 /*
2113  * Now for the recovery code.
2114  * Recovery happens across physical sectors.
2115  * We recover all non-is_sync drives by finding the virtual address of
2116  * each, and then choose a working drive that also has that virt address.
2117  * There is a separate r10_bio for each non-in_sync drive.
2118  * Only the first two slots are in use. The first for reading,
2119  * The second for writing.
2120  *
2121  */
2122 static void fix_recovery_read_error(struct r10bio *r10_bio)
2123 {
2124         /* We got a read error during recovery.
2125          * We repeat the read in smaller page-sized sections.
2126          * If a read succeeds, write it to the new device or record
2127          * a bad block if we cannot.
2128          * If a read fails, record a bad block on both old and
2129          * new devices.
2130          */
2131         struct mddev *mddev = r10_bio->mddev;
2132         struct r10conf *conf = mddev->private;
2133         struct bio *bio = r10_bio->devs[0].bio;
2134         sector_t sect = 0;
2135         int sectors = r10_bio->sectors;
2136         int idx = 0;
2137         int dr = r10_bio->devs[0].devnum;
2138         int dw = r10_bio->devs[1].devnum;
2139         struct page **pages = get_resync_pages(bio)->pages;
2140
2141         while (sectors) {
2142                 int s = sectors;
2143                 struct md_rdev *rdev;
2144                 sector_t addr;
2145                 int ok;
2146
2147                 if (s > (PAGE_SIZE>>9))
2148                         s = PAGE_SIZE >> 9;
2149
2150                 rdev = conf->mirrors[dr].rdev;
2151                 addr = r10_bio->devs[0].addr + sect,
2152                 ok = sync_page_io(rdev,
2153                                   addr,
2154                                   s << 9,
2155                                   pages[idx],
2156                                   REQ_OP_READ, 0, false);
2157                 if (ok) {
2158                         rdev = conf->mirrors[dw].rdev;
2159                         addr = r10_bio->devs[1].addr + sect;
2160                         ok = sync_page_io(rdev,
2161                                           addr,
2162                                           s << 9,
2163                                           pages[idx],
2164                                           REQ_OP_WRITE, 0, false);
2165                         if (!ok) {
2166                                 set_bit(WriteErrorSeen, &rdev->flags);
2167                                 if (!test_and_set_bit(WantReplacement,
2168                                                       &rdev->flags))
2169                                         set_bit(MD_RECOVERY_NEEDED,
2170                                                 &rdev->mddev->recovery);
2171                         }
2172                 }
2173                 if (!ok) {
2174                         /* We don't worry if we cannot set a bad block -
2175                          * it really is bad so there is no loss in not
2176                          * recording it yet
2177                          */
2178                         rdev_set_badblocks(rdev, addr, s, 0);
2179
2180                         if (rdev != conf->mirrors[dw].rdev) {
2181                                 /* need bad block on destination too */
2182                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2183                                 addr = r10_bio->devs[1].addr + sect;
2184                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2185                                 if (!ok) {
2186                                         /* just abort the recovery */
2187                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2188                                                   mdname(mddev));
2189
2190                                         conf->mirrors[dw].recovery_disabled
2191                                                 = mddev->recovery_disabled;
2192                                         set_bit(MD_RECOVERY_INTR,
2193                                                 &mddev->recovery);
2194                                         break;
2195                                 }
2196                         }
2197                 }
2198
2199                 sectors -= s;
2200                 sect += s;
2201                 idx++;
2202         }
2203 }
2204
2205 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2206 {
2207         struct r10conf *conf = mddev->private;
2208         int d;
2209         struct bio *wbio, *wbio2;
2210
2211         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2212                 fix_recovery_read_error(r10_bio);
2213                 end_sync_request(r10_bio);
2214                 return;
2215         }
2216
2217         /*
2218          * share the pages with the first bio
2219          * and submit the write request
2220          */
2221         d = r10_bio->devs[1].devnum;
2222         wbio = r10_bio->devs[1].bio;
2223         wbio2 = r10_bio->devs[1].repl_bio;
2224         /* Need to test wbio2->bi_end_io before we call
2225          * submit_bio_noacct as if the former is NULL,
2226          * the latter is free to free wbio2.
2227          */
2228         if (wbio2 && !wbio2->bi_end_io)
2229                 wbio2 = NULL;
2230         if (wbio->bi_end_io) {
2231                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2232                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2233                 submit_bio_noacct(wbio);
2234         }
2235         if (wbio2) {
2236                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2237                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2238                              bio_sectors(wbio2));
2239                 submit_bio_noacct(wbio2);
2240         }
2241 }
2242
2243 /*
2244  * Used by fix_read_error() to decay the per rdev read_errors.
2245  * We halve the read error count for every hour that has elapsed
2246  * since the last recorded read error.
2247  *
2248  */
2249 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2250 {
2251         long cur_time_mon;
2252         unsigned long hours_since_last;
2253         unsigned int read_errors = atomic_read(&rdev->read_errors);
2254
2255         cur_time_mon = ktime_get_seconds();
2256
2257         if (rdev->last_read_error == 0) {
2258                 /* first time we've seen a read error */
2259                 rdev->last_read_error = cur_time_mon;
2260                 return;
2261         }
2262
2263         hours_since_last = (long)(cur_time_mon -
2264                             rdev->last_read_error) / 3600;
2265
2266         rdev->last_read_error = cur_time_mon;
2267
2268         /*
2269          * if hours_since_last is > the number of bits in read_errors
2270          * just set read errors to 0. We do this to avoid
2271          * overflowing the shift of read_errors by hours_since_last.
2272          */
2273         if (hours_since_last >= 8 * sizeof(read_errors))
2274                 atomic_set(&rdev->read_errors, 0);
2275         else
2276                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2277 }
2278
2279 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2280                             int sectors, struct page *page, int rw)
2281 {
2282         sector_t first_bad;
2283         int bad_sectors;
2284
2285         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2286             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2287                 return -1;
2288         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2289                 /* success */
2290                 return 1;
2291         if (rw == WRITE) {
2292                 set_bit(WriteErrorSeen, &rdev->flags);
2293                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2294                         set_bit(MD_RECOVERY_NEEDED,
2295                                 &rdev->mddev->recovery);
2296         }
2297         /* need to record an error - either for the block or the device */
2298         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2299                 md_error(rdev->mddev, rdev);
2300         return 0;
2301 }
2302
2303 /*
2304  * This is a kernel thread which:
2305  *
2306  *      1.      Retries failed read operations on working mirrors.
2307  *      2.      Updates the raid superblock when problems encounter.
2308  *      3.      Performs writes following reads for array synchronising.
2309  */
2310
2311 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2312 {
2313         int sect = 0; /* Offset from r10_bio->sector */
2314         int sectors = r10_bio->sectors;
2315         struct md_rdev *rdev;
2316         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2317         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2318
2319         /* still own a reference to this rdev, so it cannot
2320          * have been cleared recently.
2321          */
2322         rdev = conf->mirrors[d].rdev;
2323
2324         if (test_bit(Faulty, &rdev->flags))
2325                 /* drive has already been failed, just ignore any
2326                    more fix_read_error() attempts */
2327                 return;
2328
2329         check_decay_read_errors(mddev, rdev);
2330         atomic_inc(&rdev->read_errors);
2331         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2332                 char b[BDEVNAME_SIZE];
2333                 bdevname(rdev->bdev, b);
2334
2335                 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2336                           mdname(mddev), b,
2337                           atomic_read(&rdev->read_errors), max_read_errors);
2338                 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2339                           mdname(mddev), b);
2340                 md_error(mddev, rdev);
2341                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2342                 return;
2343         }
2344
2345         while(sectors) {
2346                 int s = sectors;
2347                 int sl = r10_bio->read_slot;
2348                 int success = 0;
2349                 int start;
2350
2351                 if (s > (PAGE_SIZE>>9))
2352                         s = PAGE_SIZE >> 9;
2353
2354                 rcu_read_lock();
2355                 do {
2356                         sector_t first_bad;
2357                         int bad_sectors;
2358
2359                         d = r10_bio->devs[sl].devnum;
2360                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2361                         if (rdev &&
2362                             test_bit(In_sync, &rdev->flags) &&
2363                             !test_bit(Faulty, &rdev->flags) &&
2364                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2365                                         &first_bad, &bad_sectors) == 0) {
2366                                 atomic_inc(&rdev->nr_pending);
2367                                 rcu_read_unlock();
2368                                 success = sync_page_io(rdev,
2369                                                        r10_bio->devs[sl].addr +
2370                                                        sect,
2371                                                        s<<9,
2372                                                        conf->tmppage,
2373                                                        REQ_OP_READ, 0, false);
2374                                 rdev_dec_pending(rdev, mddev);
2375                                 rcu_read_lock();
2376                                 if (success)
2377                                         break;
2378                         }
2379                         sl++;
2380                         if (sl == conf->copies)
2381                                 sl = 0;
2382                 } while (!success && sl != r10_bio->read_slot);
2383                 rcu_read_unlock();
2384
2385                 if (!success) {
2386                         /* Cannot read from anywhere, just mark the block
2387                          * as bad on the first device to discourage future
2388                          * reads.
2389                          */
2390                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2391                         rdev = conf->mirrors[dn].rdev;
2392
2393                         if (!rdev_set_badblocks(
2394                                     rdev,
2395                                     r10_bio->devs[r10_bio->read_slot].addr
2396                                     + sect,
2397                                     s, 0)) {
2398                                 md_error(mddev, rdev);
2399                                 r10_bio->devs[r10_bio->read_slot].bio
2400                                         = IO_BLOCKED;
2401                         }
2402                         break;
2403                 }
2404
2405                 start = sl;
2406                 /* write it back and re-read */
2407                 rcu_read_lock();
2408                 while (sl != r10_bio->read_slot) {
2409                         char b[BDEVNAME_SIZE];
2410
2411                         if (sl==0)
2412                                 sl = conf->copies;
2413                         sl--;
2414                         d = r10_bio->devs[sl].devnum;
2415                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2416                         if (!rdev ||
2417                             test_bit(Faulty, &rdev->flags) ||
2418                             !test_bit(In_sync, &rdev->flags))
2419                                 continue;
2420
2421                         atomic_inc(&rdev->nr_pending);
2422                         rcu_read_unlock();
2423                         if (r10_sync_page_io(rdev,
2424                                              r10_bio->devs[sl].addr +
2425                                              sect,
2426                                              s, conf->tmppage, WRITE)
2427                             == 0) {
2428                                 /* Well, this device is dead */
2429                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2430                                           mdname(mddev), s,
2431                                           (unsigned long long)(
2432                                                   sect +
2433                                                   choose_data_offset(r10_bio,
2434                                                                      rdev)),
2435                                           bdevname(rdev->bdev, b));
2436                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2437                                           mdname(mddev),
2438                                           bdevname(rdev->bdev, b));
2439                         }
2440                         rdev_dec_pending(rdev, mddev);
2441                         rcu_read_lock();
2442                 }
2443                 sl = start;
2444                 while (sl != r10_bio->read_slot) {
2445                         char b[BDEVNAME_SIZE];
2446
2447                         if (sl==0)
2448                                 sl = conf->copies;
2449                         sl--;
2450                         d = r10_bio->devs[sl].devnum;
2451                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2452                         if (!rdev ||
2453                             test_bit(Faulty, &rdev->flags) ||
2454                             !test_bit(In_sync, &rdev->flags))
2455                                 continue;
2456
2457                         atomic_inc(&rdev->nr_pending);
2458                         rcu_read_unlock();
2459                         switch (r10_sync_page_io(rdev,
2460                                              r10_bio->devs[sl].addr +
2461                                              sect,
2462                                              s, conf->tmppage,
2463                                                  READ)) {
2464                         case 0:
2465                                 /* Well, this device is dead */
2466                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2467                                        mdname(mddev), s,
2468                                        (unsigned long long)(
2469                                                sect +
2470                                                choose_data_offset(r10_bio, rdev)),
2471                                        bdevname(rdev->bdev, b));
2472                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2473                                        mdname(mddev),
2474                                        bdevname(rdev->bdev, b));
2475                                 break;
2476                         case 1:
2477                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2478                                        mdname(mddev), s,
2479                                        (unsigned long long)(
2480                                                sect +
2481                                                choose_data_offset(r10_bio, rdev)),
2482                                        bdevname(rdev->bdev, b));
2483                                 atomic_add(s, &rdev->corrected_errors);
2484                         }
2485
2486                         rdev_dec_pending(rdev, mddev);
2487                         rcu_read_lock();
2488                 }
2489                 rcu_read_unlock();
2490
2491                 sectors -= s;
2492                 sect += s;
2493         }
2494 }
2495
2496 static int narrow_write_error(struct r10bio *r10_bio, int i)
2497 {
2498         struct bio *bio = r10_bio->master_bio;
2499         struct mddev *mddev = r10_bio->mddev;
2500         struct r10conf *conf = mddev->private;
2501         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2502         /* bio has the data to be written to slot 'i' where
2503          * we just recently had a write error.
2504          * We repeatedly clone the bio and trim down to one block,
2505          * then try the write.  Where the write fails we record
2506          * a bad block.
2507          * It is conceivable that the bio doesn't exactly align with
2508          * blocks.  We must handle this.
2509          *
2510          * We currently own a reference to the rdev.
2511          */
2512
2513         int block_sectors;
2514         sector_t sector;
2515         int sectors;
2516         int sect_to_write = r10_bio->sectors;
2517         int ok = 1;
2518
2519         if (rdev->badblocks.shift < 0)
2520                 return 0;
2521
2522         block_sectors = roundup(1 << rdev->badblocks.shift,
2523                                 bdev_logical_block_size(rdev->bdev) >> 9);
2524         sector = r10_bio->sector;
2525         sectors = ((r10_bio->sector + block_sectors)
2526                    & ~(sector_t)(block_sectors - 1))
2527                 - sector;
2528
2529         while (sect_to_write) {
2530                 struct bio *wbio;
2531                 sector_t wsector;
2532                 if (sectors > sect_to_write)
2533                         sectors = sect_to_write;
2534                 /* Write at 'sector' for 'sectors' */
2535                 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2536                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2537                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2538                 wbio->bi_iter.bi_sector = wsector +
2539                                    choose_data_offset(r10_bio, rdev);
2540                 bio_set_dev(wbio, rdev->bdev);
2541                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2542
2543                 if (submit_bio_wait(wbio) < 0)
2544                         /* Failure! */
2545                         ok = rdev_set_badblocks(rdev, wsector,
2546                                                 sectors, 0)
2547                                 && ok;
2548
2549                 bio_put(wbio);
2550                 sect_to_write -= sectors;
2551                 sector += sectors;
2552                 sectors = block_sectors;
2553         }
2554         return ok;
2555 }
2556
2557 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2558 {
2559         int slot = r10_bio->read_slot;
2560         struct bio *bio;
2561         struct r10conf *conf = mddev->private;
2562         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2563
2564         /* we got a read error. Maybe the drive is bad.  Maybe just
2565          * the block and we can fix it.
2566          * We freeze all other IO, and try reading the block from
2567          * other devices.  When we find one, we re-write
2568          * and check it that fixes the read error.
2569          * This is all done synchronously while the array is
2570          * frozen.
2571          */
2572         bio = r10_bio->devs[slot].bio;
2573         bio_put(bio);
2574         r10_bio->devs[slot].bio = NULL;
2575
2576         if (mddev->ro)
2577                 r10_bio->devs[slot].bio = IO_BLOCKED;
2578         else if (!test_bit(FailFast, &rdev->flags)) {
2579                 freeze_array(conf, 1);
2580                 fix_read_error(conf, mddev, r10_bio);
2581                 unfreeze_array(conf);
2582         } else
2583                 md_error(mddev, rdev);
2584
2585         rdev_dec_pending(rdev, mddev);
2586         allow_barrier(conf);
2587         r10_bio->state = 0;
2588         raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2589 }
2590
2591 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2592 {
2593         /* Some sort of write request has finished and it
2594          * succeeded in writing where we thought there was a
2595          * bad block.  So forget the bad block.
2596          * Or possibly if failed and we need to record
2597          * a bad block.
2598          */
2599         int m;
2600         struct md_rdev *rdev;
2601
2602         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2603             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2604                 for (m = 0; m < conf->copies; m++) {
2605                         int dev = r10_bio->devs[m].devnum;
2606                         rdev = conf->mirrors[dev].rdev;
2607                         if (r10_bio->devs[m].bio == NULL ||
2608                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2609                                 continue;
2610                         if (!r10_bio->devs[m].bio->bi_status) {
2611                                 rdev_clear_badblocks(
2612                                         rdev,
2613                                         r10_bio->devs[m].addr,
2614                                         r10_bio->sectors, 0);
2615                         } else {
2616                                 if (!rdev_set_badblocks(
2617                                             rdev,
2618                                             r10_bio->devs[m].addr,
2619                                             r10_bio->sectors, 0))
2620                                         md_error(conf->mddev, rdev);
2621                         }
2622                         rdev = conf->mirrors[dev].replacement;
2623                         if (r10_bio->devs[m].repl_bio == NULL ||
2624                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2625                                 continue;
2626
2627                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2628                                 rdev_clear_badblocks(
2629                                         rdev,
2630                                         r10_bio->devs[m].addr,
2631                                         r10_bio->sectors, 0);
2632                         } else {
2633                                 if (!rdev_set_badblocks(
2634                                             rdev,
2635                                             r10_bio->devs[m].addr,
2636                                             r10_bio->sectors, 0))
2637                                         md_error(conf->mddev, rdev);
2638                         }
2639                 }
2640                 put_buf(r10_bio);
2641         } else {
2642                 bool fail = false;
2643                 for (m = 0; m < conf->copies; m++) {
2644                         int dev = r10_bio->devs[m].devnum;
2645                         struct bio *bio = r10_bio->devs[m].bio;
2646                         rdev = conf->mirrors[dev].rdev;
2647                         if (bio == IO_MADE_GOOD) {
2648                                 rdev_clear_badblocks(
2649                                         rdev,
2650                                         r10_bio->devs[m].addr,
2651                                         r10_bio->sectors, 0);
2652                                 rdev_dec_pending(rdev, conf->mddev);
2653                         } else if (bio != NULL && bio->bi_status) {
2654                                 fail = true;
2655                                 if (!narrow_write_error(r10_bio, m)) {
2656                                         md_error(conf->mddev, rdev);
2657                                         set_bit(R10BIO_Degraded,
2658                                                 &r10_bio->state);
2659                                 }
2660                                 rdev_dec_pending(rdev, conf->mddev);
2661                         }
2662                         bio = r10_bio->devs[m].repl_bio;
2663                         rdev = conf->mirrors[dev].replacement;
2664                         if (rdev && bio == IO_MADE_GOOD) {
2665                                 rdev_clear_badblocks(
2666                                         rdev,
2667                                         r10_bio->devs[m].addr,
2668                                         r10_bio->sectors, 0);
2669                                 rdev_dec_pending(rdev, conf->mddev);
2670                         }
2671                 }
2672                 if (fail) {
2673                         spin_lock_irq(&conf->device_lock);
2674                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2675                         conf->nr_queued++;
2676                         spin_unlock_irq(&conf->device_lock);
2677                         /*
2678                          * In case freeze_array() is waiting for condition
2679                          * nr_pending == nr_queued + extra to be true.
2680                          */
2681                         wake_up(&conf->wait_barrier);
2682                         md_wakeup_thread(conf->mddev->thread);
2683                 } else {
2684                         if (test_bit(R10BIO_WriteError,
2685                                      &r10_bio->state))
2686                                 close_write(r10_bio);
2687                         raid_end_bio_io(r10_bio);
2688                 }
2689         }
2690 }
2691
2692 static void raid10d(struct md_thread *thread)
2693 {
2694         struct mddev *mddev = thread->mddev;
2695         struct r10bio *r10_bio;
2696         unsigned long flags;
2697         struct r10conf *conf = mddev->private;
2698         struct list_head *head = &conf->retry_list;
2699         struct blk_plug plug;
2700
2701         md_check_recovery(mddev);
2702
2703         if (!list_empty_careful(&conf->bio_end_io_list) &&
2704             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2705                 LIST_HEAD(tmp);
2706                 spin_lock_irqsave(&conf->device_lock, flags);
2707                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2708                         while (!list_empty(&conf->bio_end_io_list)) {
2709                                 list_move(conf->bio_end_io_list.prev, &tmp);
2710                                 conf->nr_queued--;
2711                         }
2712                 }
2713                 spin_unlock_irqrestore(&conf->device_lock, flags);
2714                 while (!list_empty(&tmp)) {
2715                         r10_bio = list_first_entry(&tmp, struct r10bio,
2716                                                    retry_list);
2717                         list_del(&r10_bio->retry_list);
2718                         if (mddev->degraded)
2719                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2720
2721                         if (test_bit(R10BIO_WriteError,
2722                                      &r10_bio->state))
2723                                 close_write(r10_bio);
2724                         raid_end_bio_io(r10_bio);
2725                 }
2726         }
2727
2728         blk_start_plug(&plug);
2729         for (;;) {
2730
2731                 flush_pending_writes(conf);
2732
2733                 spin_lock_irqsave(&conf->device_lock, flags);
2734                 if (list_empty(head)) {
2735                         spin_unlock_irqrestore(&conf->device_lock, flags);
2736                         break;
2737                 }
2738                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2739                 list_del(head->prev);
2740                 conf->nr_queued--;
2741                 spin_unlock_irqrestore(&conf->device_lock, flags);
2742
2743                 mddev = r10_bio->mddev;
2744                 conf = mddev->private;
2745                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2746                     test_bit(R10BIO_WriteError, &r10_bio->state))
2747                         handle_write_completed(conf, r10_bio);
2748                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2749                         reshape_request_write(mddev, r10_bio);
2750                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2751                         sync_request_write(mddev, r10_bio);
2752                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2753                         recovery_request_write(mddev, r10_bio);
2754                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2755                         handle_read_error(mddev, r10_bio);
2756                 else
2757                         WARN_ON_ONCE(1);
2758
2759                 cond_resched();
2760                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2761                         md_check_recovery(mddev);
2762         }
2763         blk_finish_plug(&plug);
2764 }
2765
2766 static int init_resync(struct r10conf *conf)
2767 {
2768         int ret, buffs, i;
2769
2770         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2771         BUG_ON(mempool_initialized(&conf->r10buf_pool));
2772         conf->have_replacement = 0;
2773         for (i = 0; i < conf->geo.raid_disks; i++)
2774                 if (conf->mirrors[i].replacement)
2775                         conf->have_replacement = 1;
2776         ret = mempool_init(&conf->r10buf_pool, buffs,
2777                            r10buf_pool_alloc, r10buf_pool_free, conf);
2778         if (ret)
2779                 return ret;
2780         conf->next_resync = 0;
2781         return 0;
2782 }
2783
2784 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2785 {
2786         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2787         struct rsync_pages *rp;
2788         struct bio *bio;
2789         int nalloc;
2790         int i;
2791
2792         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2793             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2794                 nalloc = conf->copies; /* resync */
2795         else
2796                 nalloc = 2; /* recovery */
2797
2798         for (i = 0; i < nalloc; i++) {
2799                 bio = r10bio->devs[i].bio;
2800                 rp = bio->bi_private;
2801                 bio_reset(bio);
2802                 bio->bi_private = rp;
2803                 bio = r10bio->devs[i].repl_bio;
2804                 if (bio) {
2805                         rp = bio->bi_private;
2806                         bio_reset(bio);
2807                         bio->bi_private = rp;
2808                 }
2809         }
2810         return r10bio;
2811 }
2812
2813 /*
2814  * Set cluster_sync_high since we need other nodes to add the
2815  * range [cluster_sync_low, cluster_sync_high] to suspend list.
2816  */
2817 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2818 {
2819         sector_t window_size;
2820         int extra_chunk, chunks;
2821
2822         /*
2823          * First, here we define "stripe" as a unit which across
2824          * all member devices one time, so we get chunks by use
2825          * raid_disks / near_copies. Otherwise, if near_copies is
2826          * close to raid_disks, then resync window could increases
2827          * linearly with the increase of raid_disks, which means
2828          * we will suspend a really large IO window while it is not
2829          * necessary. If raid_disks is not divisible by near_copies,
2830          * an extra chunk is needed to ensure the whole "stripe" is
2831          * covered.
2832          */
2833
2834         chunks = conf->geo.raid_disks / conf->geo.near_copies;
2835         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2836                 extra_chunk = 0;
2837         else
2838                 extra_chunk = 1;
2839         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2840
2841         /*
2842          * At least use a 32M window to align with raid1's resync window
2843          */
2844         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2845                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2846
2847         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2848 }
2849
2850 /*
2851  * perform a "sync" on one "block"
2852  *
2853  * We need to make sure that no normal I/O request - particularly write
2854  * requests - conflict with active sync requests.
2855  *
2856  * This is achieved by tracking pending requests and a 'barrier' concept
2857  * that can be installed to exclude normal IO requests.
2858  *
2859  * Resync and recovery are handled very differently.
2860  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2861  *
2862  * For resync, we iterate over virtual addresses, read all copies,
2863  * and update if there are differences.  If only one copy is live,
2864  * skip it.
2865  * For recovery, we iterate over physical addresses, read a good
2866  * value for each non-in_sync drive, and over-write.
2867  *
2868  * So, for recovery we may have several outstanding complex requests for a
2869  * given address, one for each out-of-sync device.  We model this by allocating
2870  * a number of r10_bio structures, one for each out-of-sync device.
2871  * As we setup these structures, we collect all bio's together into a list
2872  * which we then process collectively to add pages, and then process again
2873  * to pass to submit_bio_noacct.
2874  *
2875  * The r10_bio structures are linked using a borrowed master_bio pointer.
2876  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2877  * has its remaining count decremented to 0, the whole complex operation
2878  * is complete.
2879  *
2880  */
2881
2882 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2883                              int *skipped)
2884 {
2885         struct r10conf *conf = mddev->private;
2886         struct r10bio *r10_bio;
2887         struct bio *biolist = NULL, *bio;
2888         sector_t max_sector, nr_sectors;
2889         int i;
2890         int max_sync;
2891         sector_t sync_blocks;
2892         sector_t sectors_skipped = 0;
2893         int chunks_skipped = 0;
2894         sector_t chunk_mask = conf->geo.chunk_mask;
2895         int page_idx = 0;
2896
2897         if (!mempool_initialized(&conf->r10buf_pool))
2898                 if (init_resync(conf))
2899                         return 0;
2900
2901         /*
2902          * Allow skipping a full rebuild for incremental assembly
2903          * of a clean array, like RAID1 does.
2904          */
2905         if (mddev->bitmap == NULL &&
2906             mddev->recovery_cp == MaxSector &&
2907             mddev->reshape_position == MaxSector &&
2908             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2909             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2910             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2911             conf->fullsync == 0) {
2912                 *skipped = 1;
2913                 return mddev->dev_sectors - sector_nr;
2914         }
2915
2916  skipped:
2917         max_sector = mddev->dev_sectors;
2918         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2919             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2920                 max_sector = mddev->resync_max_sectors;
2921         if (sector_nr >= max_sector) {
2922                 conf->cluster_sync_low = 0;
2923                 conf->cluster_sync_high = 0;
2924
2925                 /* If we aborted, we need to abort the
2926                  * sync on the 'current' bitmap chucks (there can
2927                  * be several when recovering multiple devices).
2928                  * as we may have started syncing it but not finished.
2929                  * We can find the current address in
2930                  * mddev->curr_resync, but for recovery,
2931                  * we need to convert that to several
2932                  * virtual addresses.
2933                  */
2934                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2935                         end_reshape(conf);
2936                         close_sync(conf);
2937                         return 0;
2938                 }
2939
2940                 if (mddev->curr_resync < max_sector) { /* aborted */
2941                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2942                                 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2943                                                    &sync_blocks, 1);
2944                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2945                                 sector_t sect =
2946                                         raid10_find_virt(conf, mddev->curr_resync, i);
2947                                 md_bitmap_end_sync(mddev->bitmap, sect,
2948                                                    &sync_blocks, 1);
2949                         }
2950                 } else {
2951                         /* completed sync */
2952                         if ((!mddev->bitmap || conf->fullsync)
2953                             && conf->have_replacement
2954                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2955                                 /* Completed a full sync so the replacements
2956                                  * are now fully recovered.
2957                                  */
2958                                 rcu_read_lock();
2959                                 for (i = 0; i < conf->geo.raid_disks; i++) {
2960                                         struct md_rdev *rdev =
2961                                                 rcu_dereference(conf->mirrors[i].replacement);
2962                                         if (rdev)
2963                                                 rdev->recovery_offset = MaxSector;
2964                                 }
2965                                 rcu_read_unlock();
2966                         }
2967                         conf->fullsync = 0;
2968                 }
2969                 md_bitmap_close_sync(mddev->bitmap);
2970                 close_sync(conf);
2971                 *skipped = 1;
2972                 return sectors_skipped;
2973         }
2974
2975         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2976                 return reshape_request(mddev, sector_nr, skipped);
2977
2978         if (chunks_skipped >= conf->geo.raid_disks) {
2979                 /* if there has been nothing to do on any drive,
2980                  * then there is nothing to do at all..
2981                  */
2982                 *skipped = 1;
2983                 return (max_sector - sector_nr) + sectors_skipped;
2984         }
2985
2986         if (max_sector > mddev->resync_max)
2987                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2988
2989         /* make sure whole request will fit in a chunk - if chunks
2990          * are meaningful
2991          */
2992         if (conf->geo.near_copies < conf->geo.raid_disks &&
2993             max_sector > (sector_nr | chunk_mask))
2994                 max_sector = (sector_nr | chunk_mask) + 1;
2995
2996         /*
2997          * If there is non-resync activity waiting for a turn, then let it
2998          * though before starting on this new sync request.
2999          */
3000         if (conf->nr_waiting)
3001                 schedule_timeout_uninterruptible(1);
3002
3003         /* Again, very different code for resync and recovery.
3004          * Both must result in an r10bio with a list of bios that
3005          * have bi_end_io, bi_sector, bi_disk set,
3006          * and bi_private set to the r10bio.
3007          * For recovery, we may actually create several r10bios
3008          * with 2 bios in each, that correspond to the bios in the main one.
3009          * In this case, the subordinate r10bios link back through a
3010          * borrowed master_bio pointer, and the counter in the master
3011          * includes a ref from each subordinate.
3012          */
3013         /* First, we decide what to do and set ->bi_end_io
3014          * To end_sync_read if we want to read, and
3015          * end_sync_write if we will want to write.
3016          */
3017
3018         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3019         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3020                 /* recovery... the complicated one */
3021                 int j;
3022                 r10_bio = NULL;
3023
3024                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3025                         int still_degraded;
3026                         struct r10bio *rb2;
3027                         sector_t sect;
3028                         int must_sync;
3029                         int any_working;
3030                         int need_recover = 0;
3031                         int need_replace = 0;
3032                         struct raid10_info *mirror = &conf->mirrors[i];
3033                         struct md_rdev *mrdev, *mreplace;
3034
3035                         rcu_read_lock();
3036                         mrdev = rcu_dereference(mirror->rdev);
3037                         mreplace = rcu_dereference(mirror->replacement);
3038
3039                         if (mrdev != NULL &&
3040                             !test_bit(Faulty, &mrdev->flags) &&
3041                             !test_bit(In_sync, &mrdev->flags))
3042                                 need_recover = 1;
3043                         if (mreplace != NULL &&
3044                             !test_bit(Faulty, &mreplace->flags))
3045                                 need_replace = 1;
3046
3047                         if (!need_recover && !need_replace) {
3048                                 rcu_read_unlock();
3049                                 continue;
3050                         }
3051
3052                         still_degraded = 0;
3053                         /* want to reconstruct this device */
3054                         rb2 = r10_bio;
3055                         sect = raid10_find_virt(conf, sector_nr, i);
3056                         if (sect >= mddev->resync_max_sectors) {
3057                                 /* last stripe is not complete - don't
3058                                  * try to recover this sector.
3059                                  */
3060                                 rcu_read_unlock();
3061                                 continue;
3062                         }
3063                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3064                                 mreplace = NULL;
3065                         /* Unless we are doing a full sync, or a replacement
3066                          * we only need to recover the block if it is set in
3067                          * the bitmap
3068                          */
3069                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3070                                                          &sync_blocks, 1);
3071                         if (sync_blocks < max_sync)
3072                                 max_sync = sync_blocks;
3073                         if (!must_sync &&
3074                             mreplace == NULL &&
3075                             !conf->fullsync) {
3076                                 /* yep, skip the sync_blocks here, but don't assume
3077                                  * that there will never be anything to do here
3078                                  */
3079                                 chunks_skipped = -1;
3080                                 rcu_read_unlock();
3081                                 continue;
3082                         }
3083                         atomic_inc(&mrdev->nr_pending);
3084                         if (mreplace)
3085                                 atomic_inc(&mreplace->nr_pending);
3086                         rcu_read_unlock();
3087
3088                         r10_bio = raid10_alloc_init_r10buf(conf);
3089                         r10_bio->state = 0;
3090                         raise_barrier(conf, rb2 != NULL);
3091                         atomic_set(&r10_bio->remaining, 0);
3092
3093                         r10_bio->master_bio = (struct bio*)rb2;
3094                         if (rb2)
3095                                 atomic_inc(&rb2->remaining);
3096                         r10_bio->mddev = mddev;
3097                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3098                         r10_bio->sector = sect;
3099
3100                         raid10_find_phys(conf, r10_bio);
3101
3102                         /* Need to check if the array will still be
3103                          * degraded
3104                          */
3105                         rcu_read_lock();
3106                         for (j = 0; j < conf->geo.raid_disks; j++) {
3107                                 struct md_rdev *rdev = rcu_dereference(
3108                                         conf->mirrors[j].rdev);
3109                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3110                                         still_degraded = 1;
3111                                         break;
3112                                 }
3113                         }
3114
3115                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3116                                                          &sync_blocks, still_degraded);
3117
3118                         any_working = 0;
3119                         for (j=0; j<conf->copies;j++) {
3120                                 int k;
3121                                 int d = r10_bio->devs[j].devnum;
3122                                 sector_t from_addr, to_addr;
3123                                 struct md_rdev *rdev =
3124                                         rcu_dereference(conf->mirrors[d].rdev);
3125                                 sector_t sector, first_bad;
3126                                 int bad_sectors;
3127                                 if (!rdev ||
3128                                     !test_bit(In_sync, &rdev->flags))
3129                                         continue;
3130                                 /* This is where we read from */
3131                                 any_working = 1;
3132                                 sector = r10_bio->devs[j].addr;
3133
3134                                 if (is_badblock(rdev, sector, max_sync,
3135                                                 &first_bad, &bad_sectors)) {
3136                                         if (first_bad > sector)
3137                                                 max_sync = first_bad - sector;
3138                                         else {
3139                                                 bad_sectors -= (sector
3140                                                                 - first_bad);
3141                                                 if (max_sync > bad_sectors)
3142                                                         max_sync = bad_sectors;
3143                                                 continue;
3144                                         }
3145                                 }
3146                                 bio = r10_bio->devs[0].bio;
3147                                 bio->bi_next = biolist;
3148                                 biolist = bio;
3149                                 bio->bi_end_io = end_sync_read;
3150                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3151                                 if (test_bit(FailFast, &rdev->flags))
3152                                         bio->bi_opf |= MD_FAILFAST;
3153                                 from_addr = r10_bio->devs[j].addr;
3154                                 bio->bi_iter.bi_sector = from_addr +
3155                                         rdev->data_offset;
3156                                 bio_set_dev(bio, rdev->bdev);
3157                                 atomic_inc(&rdev->nr_pending);
3158                                 /* and we write to 'i' (if not in_sync) */
3159
3160                                 for (k=0; k<conf->copies; k++)
3161                                         if (r10_bio->devs[k].devnum == i)
3162                                                 break;
3163                                 BUG_ON(k == conf->copies);
3164                                 to_addr = r10_bio->devs[k].addr;
3165                                 r10_bio->devs[0].devnum = d;
3166                                 r10_bio->devs[0].addr = from_addr;
3167                                 r10_bio->devs[1].devnum = i;
3168                                 r10_bio->devs[1].addr = to_addr;
3169
3170                                 if (need_recover) {
3171                                         bio = r10_bio->devs[1].bio;
3172                                         bio->bi_next = biolist;
3173                                         biolist = bio;
3174                                         bio->bi_end_io = end_sync_write;
3175                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3176                                         bio->bi_iter.bi_sector = to_addr
3177                                                 + mrdev->data_offset;
3178                                         bio_set_dev(bio, mrdev->bdev);
3179                                         atomic_inc(&r10_bio->remaining);
3180                                 } else
3181                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3182
3183                                 /* and maybe write to replacement */
3184                                 bio = r10_bio->devs[1].repl_bio;
3185                                 if (bio)
3186                                         bio->bi_end_io = NULL;
3187                                 /* Note: if need_replace, then bio
3188                                  * cannot be NULL as r10buf_pool_alloc will
3189                                  * have allocated it.
3190                                  */
3191                                 if (!need_replace)
3192                                         break;
3193                                 bio->bi_next = biolist;
3194                                 biolist = bio;
3195                                 bio->bi_end_io = end_sync_write;
3196                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3197                                 bio->bi_iter.bi_sector = to_addr +
3198                                         mreplace->data_offset;
3199                                 bio_set_dev(bio, mreplace->bdev);
3200                                 atomic_inc(&r10_bio->remaining);
3201                                 break;
3202                         }
3203                         rcu_read_unlock();
3204                         if (j == conf->copies) {
3205                                 /* Cannot recover, so abort the recovery or
3206                                  * record a bad block */
3207                                 if (any_working) {
3208                                         /* problem is that there are bad blocks
3209                                          * on other device(s)
3210                                          */
3211                                         int k;
3212                                         for (k = 0; k < conf->copies; k++)
3213                                                 if (r10_bio->devs[k].devnum == i)
3214                                                         break;
3215                                         if (!test_bit(In_sync,
3216                                                       &mrdev->flags)
3217                                             && !rdev_set_badblocks(
3218                                                     mrdev,
3219                                                     r10_bio->devs[k].addr,
3220                                                     max_sync, 0))
3221                                                 any_working = 0;
3222                                         if (mreplace &&
3223                                             !rdev_set_badblocks(
3224                                                     mreplace,
3225                                                     r10_bio->devs[k].addr,
3226                                                     max_sync, 0))
3227                                                 any_working = 0;
3228                                 }
3229                                 if (!any_working)  {
3230                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3231                                                               &mddev->recovery))
3232                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3233                                                        mdname(mddev));
3234                                         mirror->recovery_disabled
3235                                                 = mddev->recovery_disabled;
3236                                 }
3237                                 put_buf(r10_bio);
3238                                 if (rb2)
3239                                         atomic_dec(&rb2->remaining);
3240                                 r10_bio = rb2;
3241                                 rdev_dec_pending(mrdev, mddev);
3242                                 if (mreplace)
3243                                         rdev_dec_pending(mreplace, mddev);
3244                                 break;
3245                         }
3246                         rdev_dec_pending(mrdev, mddev);
3247                         if (mreplace)
3248                                 rdev_dec_pending(mreplace, mddev);
3249                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3250                                 /* Only want this if there is elsewhere to
3251                                  * read from. 'j' is currently the first
3252                                  * readable copy.
3253                                  */
3254                                 int targets = 1;
3255                                 for (; j < conf->copies; j++) {
3256                                         int d = r10_bio->devs[j].devnum;
3257                                         if (conf->mirrors[d].rdev &&
3258                                             test_bit(In_sync,
3259                                                       &conf->mirrors[d].rdev->flags))
3260                                                 targets++;
3261                                 }
3262                                 if (targets == 1)
3263                                         r10_bio->devs[0].bio->bi_opf
3264                                                 &= ~MD_FAILFAST;
3265                         }
3266                 }
3267                 if (biolist == NULL) {
3268                         while (r10_bio) {
3269                                 struct r10bio *rb2 = r10_bio;
3270                                 r10_bio = (struct r10bio*) rb2->master_bio;
3271                                 rb2->master_bio = NULL;
3272                                 put_buf(rb2);
3273                         }
3274                         goto giveup;
3275                 }
3276         } else {
3277                 /* resync. Schedule a read for every block at this virt offset */
3278                 int count = 0;
3279
3280                 /*
3281                  * Since curr_resync_completed could probably not update in
3282                  * time, and we will set cluster_sync_low based on it.
3283                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3284                  * safety reason, which ensures curr_resync_completed is
3285                  * updated in bitmap_cond_end_sync.
3286                  */
3287                 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3288                                         mddev_is_clustered(mddev) &&
3289                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3290
3291                 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3292                                           &sync_blocks, mddev->degraded) &&
3293                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3294                                                  &mddev->recovery)) {
3295                         /* We can skip this block */
3296                         *skipped = 1;
3297                         return sync_blocks + sectors_skipped;
3298                 }
3299                 if (sync_blocks < max_sync)
3300                         max_sync = sync_blocks;
3301                 r10_bio = raid10_alloc_init_r10buf(conf);
3302                 r10_bio->state = 0;
3303
3304                 r10_bio->mddev = mddev;
3305                 atomic_set(&r10_bio->remaining, 0);
3306                 raise_barrier(conf, 0);
3307                 conf->next_resync = sector_nr;
3308
3309                 r10_bio->master_bio = NULL;
3310                 r10_bio->sector = sector_nr;
3311                 set_bit(R10BIO_IsSync, &r10_bio->state);
3312                 raid10_find_phys(conf, r10_bio);
3313                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3314
3315                 for (i = 0; i < conf->copies; i++) {
3316                         int d = r10_bio->devs[i].devnum;
3317                         sector_t first_bad, sector;
3318                         int bad_sectors;
3319                         struct md_rdev *rdev;
3320
3321                         if (r10_bio->devs[i].repl_bio)
3322                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3323
3324                         bio = r10_bio->devs[i].bio;
3325                         bio->bi_status = BLK_STS_IOERR;
3326                         rcu_read_lock();
3327                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3328                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3329                                 rcu_read_unlock();
3330                                 continue;
3331                         }
3332                         sector = r10_bio->devs[i].addr;
3333                         if (is_badblock(rdev, sector, max_sync,
3334                                         &first_bad, &bad_sectors)) {
3335                                 if (first_bad > sector)
3336                                         max_sync = first_bad - sector;
3337                                 else {
3338                                         bad_sectors -= (sector - first_bad);
3339                                         if (max_sync > bad_sectors)
3340                                                 max_sync = bad_sectors;
3341                                         rcu_read_unlock();
3342                                         continue;
3343                                 }
3344                         }
3345                         atomic_inc(&rdev->nr_pending);
3346                         atomic_inc(&r10_bio->remaining);
3347                         bio->bi_next = biolist;
3348                         biolist = bio;
3349                         bio->bi_end_io = end_sync_read;
3350                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3351                         if (test_bit(FailFast, &rdev->flags))
3352                                 bio->bi_opf |= MD_FAILFAST;
3353                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3354                         bio_set_dev(bio, rdev->bdev);
3355                         count++;
3356
3357                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3358                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3359                                 rcu_read_unlock();
3360                                 continue;
3361                         }
3362                         atomic_inc(&rdev->nr_pending);
3363
3364                         /* Need to set up for writing to the replacement */
3365                         bio = r10_bio->devs[i].repl_bio;
3366                         bio->bi_status = BLK_STS_IOERR;
3367
3368                         sector = r10_bio->devs[i].addr;
3369                         bio->bi_next = biolist;
3370                         biolist = bio;
3371                         bio->bi_end_io = end_sync_write;
3372                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3373                         if (test_bit(FailFast, &rdev->flags))
3374                                 bio->bi_opf |= MD_FAILFAST;
3375                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3376                         bio_set_dev(bio, rdev->bdev);
3377                         count++;
3378                         rcu_read_unlock();
3379                 }
3380
3381                 if (count < 2) {
3382                         for (i=0; i<conf->copies; i++) {
3383                                 int d = r10_bio->devs[i].devnum;
3384                                 if (r10_bio->devs[i].bio->bi_end_io)
3385                                         rdev_dec_pending(conf->mirrors[d].rdev,
3386                                                          mddev);
3387                                 if (r10_bio->devs[i].repl_bio &&
3388                                     r10_bio->devs[i].repl_bio->bi_end_io)
3389                                         rdev_dec_pending(
3390                                                 conf->mirrors[d].replacement,
3391                                                 mddev);
3392                         }
3393                         put_buf(r10_bio);
3394                         biolist = NULL;
3395                         goto giveup;
3396                 }
3397         }
3398
3399         nr_sectors = 0;
3400         if (sector_nr + max_sync < max_sector)
3401                 max_sector = sector_nr + max_sync;
3402         do {
3403                 struct page *page;
3404                 int len = PAGE_SIZE;
3405                 if (sector_nr + (len>>9) > max_sector)
3406                         len = (max_sector - sector_nr) << 9;
3407                 if (len == 0)
3408                         break;
3409                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3410                         struct resync_pages *rp = get_resync_pages(bio);
3411                         page = resync_fetch_page(rp, page_idx);
3412                         /*
3413                          * won't fail because the vec table is big enough
3414                          * to hold all these pages
3415                          */
3416                         bio_add_page(bio, page, len, 0);
3417                 }
3418                 nr_sectors += len>>9;
3419                 sector_nr += len>>9;
3420         } while (++page_idx < RESYNC_PAGES);
3421         r10_bio->sectors = nr_sectors;
3422
3423         if (mddev_is_clustered(mddev) &&
3424             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3425                 /* It is resync not recovery */
3426                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3427                         conf->cluster_sync_low = mddev->curr_resync_completed;
3428                         raid10_set_cluster_sync_high(conf);
3429                         /* Send resync message */
3430                         md_cluster_ops->resync_info_update(mddev,
3431                                                 conf->cluster_sync_low,
3432                                                 conf->cluster_sync_high);
3433                 }
3434         } else if (mddev_is_clustered(mddev)) {
3435                 /* This is recovery not resync */
3436                 sector_t sect_va1, sect_va2;
3437                 bool broadcast_msg = false;
3438
3439                 for (i = 0; i < conf->geo.raid_disks; i++) {
3440                         /*
3441                          * sector_nr is a device address for recovery, so we
3442                          * need translate it to array address before compare
3443                          * with cluster_sync_high.
3444                          */
3445                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3446
3447                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3448                                 broadcast_msg = true;
3449                                 /*
3450                                  * curr_resync_completed is similar as
3451                                  * sector_nr, so make the translation too.
3452                                  */
3453                                 sect_va2 = raid10_find_virt(conf,
3454                                         mddev->curr_resync_completed, i);
3455
3456                                 if (conf->cluster_sync_low == 0 ||
3457                                     conf->cluster_sync_low > sect_va2)
3458                                         conf->cluster_sync_low = sect_va2;
3459                         }
3460                 }
3461                 if (broadcast_msg) {
3462                         raid10_set_cluster_sync_high(conf);
3463                         md_cluster_ops->resync_info_update(mddev,
3464                                                 conf->cluster_sync_low,
3465                                                 conf->cluster_sync_high);
3466                 }
3467         }
3468
3469         while (biolist) {
3470                 bio = biolist;
3471                 biolist = biolist->bi_next;
3472
3473                 bio->bi_next = NULL;
3474                 r10_bio = get_resync_r10bio(bio);
3475                 r10_bio->sectors = nr_sectors;
3476
3477                 if (bio->bi_end_io == end_sync_read) {
3478                         md_sync_acct_bio(bio, nr_sectors);
3479                         bio->bi_status = 0;
3480                         submit_bio_noacct(bio);
3481                 }
3482         }
3483
3484         if (sectors_skipped)
3485                 /* pretend they weren't skipped, it makes
3486                  * no important difference in this case
3487                  */
3488                 md_done_sync(mddev, sectors_skipped, 1);
3489
3490         return sectors_skipped + nr_sectors;
3491  giveup:
3492         /* There is nowhere to write, so all non-sync
3493          * drives must be failed or in resync, all drives
3494          * have a bad block, so try the next chunk...
3495          */
3496         if (sector_nr + max_sync < max_sector)
3497                 max_sector = sector_nr + max_sync;
3498
3499         sectors_skipped += (max_sector - sector_nr);
3500         chunks_skipped ++;
3501         sector_nr = max_sector;
3502         goto skipped;
3503 }
3504
3505 static sector_t
3506 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3507 {
3508         sector_t size;
3509         struct r10conf *conf = mddev->private;
3510
3511         if (!raid_disks)
3512                 raid_disks = min(conf->geo.raid_disks,
3513                                  conf->prev.raid_disks);
3514         if (!sectors)
3515                 sectors = conf->dev_sectors;
3516
3517         size = sectors >> conf->geo.chunk_shift;
3518         sector_div(size, conf->geo.far_copies);
3519         size = size * raid_disks;
3520         sector_div(size, conf->geo.near_copies);
3521
3522         return size << conf->geo.chunk_shift;
3523 }
3524
3525 static void calc_sectors(struct r10conf *conf, sector_t size)
3526 {
3527         /* Calculate the number of sectors-per-device that will
3528          * actually be used, and set conf->dev_sectors and
3529          * conf->stride
3530          */
3531
3532         size = size >> conf->geo.chunk_shift;
3533         sector_div(size, conf->geo.far_copies);
3534         size = size * conf->geo.raid_disks;
3535         sector_div(size, conf->geo.near_copies);
3536         /* 'size' is now the number of chunks in the array */
3537         /* calculate "used chunks per device" */
3538         size = size * conf->copies;
3539
3540         /* We need to round up when dividing by raid_disks to
3541          * get the stride size.
3542          */
3543         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3544
3545         conf->dev_sectors = size << conf->geo.chunk_shift;
3546
3547         if (conf->geo.far_offset)
3548                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3549         else {
3550                 sector_div(size, conf->geo.far_copies);
3551                 conf->geo.stride = size << conf->geo.chunk_shift;
3552         }
3553 }
3554
3555 enum geo_type {geo_new, geo_old, geo_start};
3556 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3557 {
3558         int nc, fc, fo;
3559         int layout, chunk, disks;
3560         switch (new) {
3561         case geo_old:
3562                 layout = mddev->layout;
3563                 chunk = mddev->chunk_sectors;
3564                 disks = mddev->raid_disks - mddev->delta_disks;
3565                 break;
3566         case geo_new:
3567                 layout = mddev->new_layout;
3568                 chunk = mddev->new_chunk_sectors;
3569                 disks = mddev->raid_disks;
3570                 break;
3571         default: /* avoid 'may be unused' warnings */
3572         case geo_start: /* new when starting reshape - raid_disks not
3573                          * updated yet. */
3574                 layout = mddev->new_layout;
3575                 chunk = mddev->new_chunk_sectors;
3576                 disks = mddev->raid_disks + mddev->delta_disks;
3577                 break;
3578         }
3579         if (layout >> 19)
3580                 return -1;
3581         if (chunk < (PAGE_SIZE >> 9) ||
3582             !is_power_of_2(chunk))
3583                 return -2;
3584         nc = layout & 255;
3585         fc = (layout >> 8) & 255;
3586         fo = layout & (1<<16);
3587         geo->raid_disks = disks;
3588         geo->near_copies = nc;
3589         geo->far_copies = fc;
3590         geo->far_offset = fo;
3591         switch (layout >> 17) {
3592         case 0: /* original layout.  simple but not always optimal */
3593                 geo->far_set_size = disks;
3594                 break;
3595         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3596                  * actually using this, but leave code here just in case.*/
3597                 geo->far_set_size = disks/fc;
3598                 WARN(geo->far_set_size < fc,
3599                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3600                 break;
3601         case 2: /* "improved" layout fixed to match documentation */
3602                 geo->far_set_size = fc * nc;
3603                 break;
3604         default: /* Not a valid layout */
3605                 return -1;
3606         }
3607         geo->chunk_mask = chunk - 1;
3608         geo->chunk_shift = ffz(~chunk);
3609         return nc*fc;
3610 }
3611
3612 static struct r10conf *setup_conf(struct mddev *mddev)
3613 {
3614         struct r10conf *conf = NULL;
3615         int err = -EINVAL;
3616         struct geom geo;
3617         int copies;
3618
3619         copies = setup_geo(&geo, mddev, geo_new);
3620
3621         if (copies == -2) {
3622                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3623                         mdname(mddev), PAGE_SIZE);
3624                 goto out;
3625         }
3626
3627         if (copies < 2 || copies > mddev->raid_disks) {
3628                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3629                         mdname(mddev), mddev->new_layout);
3630                 goto out;
3631         }
3632
3633         err = -ENOMEM;
3634         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3635         if (!conf)
3636                 goto out;
3637
3638         /* FIXME calc properly */
3639         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3640                                 sizeof(struct raid10_info),
3641                                 GFP_KERNEL);
3642         if (!conf->mirrors)
3643                 goto out;
3644
3645         conf->tmppage = alloc_page(GFP_KERNEL);
3646         if (!conf->tmppage)
3647                 goto out;
3648
3649         conf->geo = geo;
3650         conf->copies = copies;
3651         err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3652                            rbio_pool_free, conf);
3653         if (err)
3654                 goto out;
3655
3656         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3657         if (err)
3658                 goto out;
3659
3660         calc_sectors(conf, mddev->dev_sectors);
3661         if (mddev->reshape_position == MaxSector) {
3662                 conf->prev = conf->geo;
3663                 conf->reshape_progress = MaxSector;
3664         } else {
3665                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3666                         err = -EINVAL;
3667                         goto out;
3668                 }
3669                 conf->reshape_progress = mddev->reshape_position;
3670                 if (conf->prev.far_offset)
3671                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3672                 else
3673                         /* far_copies must be 1 */
3674                         conf->prev.stride = conf->dev_sectors;
3675         }
3676         conf->reshape_safe = conf->reshape_progress;
3677         spin_lock_init(&conf->device_lock);
3678         INIT_LIST_HEAD(&conf->retry_list);
3679         INIT_LIST_HEAD(&conf->bio_end_io_list);
3680
3681         spin_lock_init(&conf->resync_lock);
3682         init_waitqueue_head(&conf->wait_barrier);
3683         atomic_set(&conf->nr_pending, 0);
3684
3685         err = -ENOMEM;
3686         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3687         if (!conf->thread)
3688                 goto out;
3689
3690         conf->mddev = mddev;
3691         return conf;
3692
3693  out:
3694         if (conf) {
3695                 mempool_exit(&conf->r10bio_pool);
3696                 kfree(conf->mirrors);
3697                 safe_put_page(conf->tmppage);
3698                 bioset_exit(&conf->bio_split);
3699                 kfree(conf);
3700         }
3701         return ERR_PTR(err);
3702 }
3703
3704 static void raid10_set_io_opt(struct r10conf *conf)
3705 {
3706         int raid_disks = conf->geo.raid_disks;
3707
3708         if (!(conf->geo.raid_disks % conf->geo.near_copies))
3709                 raid_disks /= conf->geo.near_copies;
3710         blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
3711                          raid_disks);
3712 }
3713
3714 static int raid10_run(struct mddev *mddev)
3715 {
3716         struct r10conf *conf;
3717         int i, disk_idx;
3718         struct raid10_info *disk;
3719         struct md_rdev *rdev;
3720         sector_t size;
3721         sector_t min_offset_diff = 0;
3722         int first = 1;
3723         bool discard_supported = false;
3724
3725         if (mddev_init_writes_pending(mddev) < 0)
3726                 return -ENOMEM;
3727
3728         if (mddev->private == NULL) {
3729                 conf = setup_conf(mddev);
3730                 if (IS_ERR(conf))
3731                         return PTR_ERR(conf);
3732                 mddev->private = conf;
3733         }
3734         conf = mddev->private;
3735         if (!conf)
3736                 goto out;
3737
3738         if (mddev_is_clustered(conf->mddev)) {
3739                 int fc, fo;
3740
3741                 fc = (mddev->layout >> 8) & 255;
3742                 fo = mddev->layout & (1<<16);
3743                 if (fc > 1 || fo > 0) {
3744                         pr_err("only near layout is supported by clustered"
3745                                 " raid10\n");
3746                         goto out_free_conf;
3747                 }
3748         }
3749
3750         mddev->thread = conf->thread;
3751         conf->thread = NULL;
3752
3753         if (mddev->queue) {
3754                 blk_queue_max_discard_sectors(mddev->queue,
3755                                               mddev->chunk_sectors);
3756                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3757                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3758                 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
3759                 raid10_set_io_opt(conf);
3760         }
3761
3762         rdev_for_each(rdev, mddev) {
3763                 long long diff;
3764
3765                 disk_idx = rdev->raid_disk;
3766                 if (disk_idx < 0)
3767                         continue;
3768                 if (disk_idx >= conf->geo.raid_disks &&
3769                     disk_idx >= conf->prev.raid_disks)
3770                         continue;
3771                 disk = conf->mirrors + disk_idx;
3772
3773                 if (test_bit(Replacement, &rdev->flags)) {
3774                         if (disk->replacement)
3775                                 goto out_free_conf;
3776                         disk->replacement = rdev;
3777                 } else {
3778                         if (disk->rdev)
3779                                 goto out_free_conf;
3780                         disk->rdev = rdev;
3781                 }
3782                 diff = (rdev->new_data_offset - rdev->data_offset);
3783                 if (!mddev->reshape_backwards)
3784                         diff = -diff;
3785                 if (diff < 0)
3786                         diff = 0;
3787                 if (first || diff < min_offset_diff)
3788                         min_offset_diff = diff;
3789
3790                 if (mddev->gendisk)
3791                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3792                                           rdev->data_offset << 9);
3793
3794                 disk->head_position = 0;
3795
3796                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3797                         discard_supported = true;
3798                 first = 0;
3799         }
3800
3801         if (mddev->queue) {
3802                 if (discard_supported)
3803                         blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3804                                                 mddev->queue);
3805                 else
3806                         blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3807                                                   mddev->queue);
3808         }
3809         /* need to check that every block has at least one working mirror */
3810         if (!enough(conf, -1)) {
3811                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3812                        mdname(mddev));
3813                 goto out_free_conf;
3814         }
3815
3816         if (conf->reshape_progress != MaxSector) {
3817                 /* must ensure that shape change is supported */
3818                 if (conf->geo.far_copies != 1 &&
3819                     conf->geo.far_offset == 0)
3820                         goto out_free_conf;
3821                 if (conf->prev.far_copies != 1 &&
3822                     conf->prev.far_offset == 0)
3823                         goto out_free_conf;
3824         }
3825
3826         mddev->degraded = 0;
3827         for (i = 0;
3828              i < conf->geo.raid_disks
3829                      || i < conf->prev.raid_disks;
3830              i++) {
3831
3832                 disk = conf->mirrors + i;
3833
3834                 if (!disk->rdev && disk->replacement) {
3835                         /* The replacement is all we have - use it */
3836                         disk->rdev = disk->replacement;
3837                         disk->replacement = NULL;
3838                         clear_bit(Replacement, &disk->rdev->flags);
3839                 }
3840
3841                 if (!disk->rdev ||
3842                     !test_bit(In_sync, &disk->rdev->flags)) {
3843                         disk->head_position = 0;
3844                         mddev->degraded++;
3845                         if (disk->rdev &&
3846                             disk->rdev->saved_raid_disk < 0)
3847                                 conf->fullsync = 1;
3848                 }
3849
3850                 if (disk->replacement &&
3851                     !test_bit(In_sync, &disk->replacement->flags) &&
3852                     disk->replacement->saved_raid_disk < 0) {
3853                         conf->fullsync = 1;
3854                 }
3855
3856                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3857         }
3858
3859         if (mddev->recovery_cp != MaxSector)
3860                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3861                           mdname(mddev));
3862         pr_info("md/raid10:%s: active with %d out of %d devices\n",
3863                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3864                 conf->geo.raid_disks);
3865         /*
3866          * Ok, everything is just fine now
3867          */
3868         mddev->dev_sectors = conf->dev_sectors;
3869         size = raid10_size(mddev, 0, 0);
3870         md_set_array_sectors(mddev, size);
3871         mddev->resync_max_sectors = size;
3872         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3873
3874         if (md_integrity_register(mddev))
3875                 goto out_free_conf;
3876
3877         if (conf->reshape_progress != MaxSector) {
3878                 unsigned long before_length, after_length;
3879
3880                 before_length = ((1 << conf->prev.chunk_shift) *
3881                                  conf->prev.far_copies);
3882                 after_length = ((1 << conf->geo.chunk_shift) *
3883                                 conf->geo.far_copies);
3884
3885                 if (max(before_length, after_length) > min_offset_diff) {
3886                         /* This cannot work */
3887                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3888                         goto out_free_conf;
3889                 }
3890                 conf->offset_diff = min_offset_diff;
3891
3892                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3893                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3894                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3895                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3896                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3897                                                         "reshape");
3898                 if (!mddev->sync_thread)
3899                         goto out_free_conf;
3900         }
3901
3902         return 0;
3903
3904 out_free_conf:
3905         md_unregister_thread(&mddev->thread);
3906         mempool_exit(&conf->r10bio_pool);
3907         safe_put_page(conf->tmppage);
3908         kfree(conf->mirrors);
3909         kfree(conf);
3910         mddev->private = NULL;
3911 out:
3912         return -EIO;
3913 }
3914
3915 static void raid10_free(struct mddev *mddev, void *priv)
3916 {
3917         struct r10conf *conf = priv;
3918
3919         mempool_exit(&conf->r10bio_pool);
3920         safe_put_page(conf->tmppage);
3921         kfree(conf->mirrors);
3922         kfree(conf->mirrors_old);
3923         kfree(conf->mirrors_new);
3924         bioset_exit(&conf->bio_split);
3925         kfree(conf);
3926 }
3927
3928 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3929 {
3930         struct r10conf *conf = mddev->private;
3931
3932         if (quiesce)
3933                 raise_barrier(conf, 0);
3934         else
3935                 lower_barrier(conf);
3936 }
3937
3938 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3939 {
3940         /* Resize of 'far' arrays is not supported.
3941          * For 'near' and 'offset' arrays we can set the
3942          * number of sectors used to be an appropriate multiple
3943          * of the chunk size.
3944          * For 'offset', this is far_copies*chunksize.
3945          * For 'near' the multiplier is the LCM of
3946          * near_copies and raid_disks.
3947          * So if far_copies > 1 && !far_offset, fail.
3948          * Else find LCM(raid_disks, near_copy)*far_copies and
3949          * multiply by chunk_size.  Then round to this number.
3950          * This is mostly done by raid10_size()
3951          */
3952         struct r10conf *conf = mddev->private;
3953         sector_t oldsize, size;
3954
3955         if (mddev->reshape_position != MaxSector)
3956                 return -EBUSY;
3957
3958         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3959                 return -EINVAL;
3960
3961         oldsize = raid10_size(mddev, 0, 0);
3962         size = raid10_size(mddev, sectors, 0);
3963         if (mddev->external_size &&
3964             mddev->array_sectors > size)
3965                 return -EINVAL;
3966         if (mddev->bitmap) {
3967                 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3968                 if (ret)
3969                         return ret;
3970         }
3971         md_set_array_sectors(mddev, size);
3972         if (sectors > mddev->dev_sectors &&
3973             mddev->recovery_cp > oldsize) {
3974                 mddev->recovery_cp = oldsize;
3975                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3976         }
3977         calc_sectors(conf, sectors);
3978         mddev->dev_sectors = conf->dev_sectors;
3979         mddev->resync_max_sectors = size;
3980         return 0;
3981 }
3982
3983 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3984 {
3985         struct md_rdev *rdev;
3986         struct r10conf *conf;
3987
3988         if (mddev->degraded > 0) {
3989                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3990                         mdname(mddev));
3991                 return ERR_PTR(-EINVAL);
3992         }
3993         sector_div(size, devs);
3994
3995         /* Set new parameters */
3996         mddev->new_level = 10;
3997         /* new layout: far_copies = 1, near_copies = 2 */
3998         mddev->new_layout = (1<<8) + 2;
3999         mddev->new_chunk_sectors = mddev->chunk_sectors;
4000         mddev->delta_disks = mddev->raid_disks;
4001         mddev->raid_disks *= 2;
4002         /* make sure it will be not marked as dirty */
4003         mddev->recovery_cp = MaxSector;
4004         mddev->dev_sectors = size;
4005
4006         conf = setup_conf(mddev);
4007         if (!IS_ERR(conf)) {
4008                 rdev_for_each(rdev, mddev)
4009                         if (rdev->raid_disk >= 0) {
4010                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4011                                 rdev->sectors = size;
4012                         }
4013                 conf->barrier = 1;
4014         }
4015
4016         return conf;
4017 }
4018
4019 static void *raid10_takeover(struct mddev *mddev)
4020 {
4021         struct r0conf *raid0_conf;
4022
4023         /* raid10 can take over:
4024          *  raid0 - providing it has only two drives
4025          */
4026         if (mddev->level == 0) {
4027                 /* for raid0 takeover only one zone is supported */
4028                 raid0_conf = mddev->private;
4029                 if (raid0_conf->nr_strip_zones > 1) {
4030                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4031                                 mdname(mddev));
4032                         return ERR_PTR(-EINVAL);
4033                 }
4034                 return raid10_takeover_raid0(mddev,
4035                         raid0_conf->strip_zone->zone_end,
4036                         raid0_conf->strip_zone->nb_dev);
4037         }
4038         return ERR_PTR(-EINVAL);
4039 }
4040
4041 static int raid10_check_reshape(struct mddev *mddev)
4042 {
4043         /* Called when there is a request to change
4044          * - layout (to ->new_layout)
4045          * - chunk size (to ->new_chunk_sectors)
4046          * - raid_disks (by delta_disks)
4047          * or when trying to restart a reshape that was ongoing.
4048          *
4049          * We need to validate the request and possibly allocate
4050          * space if that might be an issue later.
4051          *
4052          * Currently we reject any reshape of a 'far' mode array,
4053          * allow chunk size to change if new is generally acceptable,
4054          * allow raid_disks to increase, and allow
4055          * a switch between 'near' mode and 'offset' mode.
4056          */
4057         struct r10conf *conf = mddev->private;
4058         struct geom geo;
4059
4060         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4061                 return -EINVAL;
4062
4063         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4064                 /* mustn't change number of copies */
4065                 return -EINVAL;
4066         if (geo.far_copies > 1 && !geo.far_offset)
4067                 /* Cannot switch to 'far' mode */
4068                 return -EINVAL;
4069
4070         if (mddev->array_sectors & geo.chunk_mask)
4071                         /* not factor of array size */
4072                         return -EINVAL;
4073
4074         if (!enough(conf, -1))
4075                 return -EINVAL;
4076
4077         kfree(conf->mirrors_new);
4078         conf->mirrors_new = NULL;
4079         if (mddev->delta_disks > 0) {
4080                 /* allocate new 'mirrors' list */
4081                 conf->mirrors_new =
4082                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4083                                 sizeof(struct raid10_info),
4084                                 GFP_KERNEL);
4085                 if (!conf->mirrors_new)
4086                         return -ENOMEM;
4087         }
4088         return 0;
4089 }
4090
4091 /*
4092  * Need to check if array has failed when deciding whether to:
4093  *  - start an array
4094  *  - remove non-faulty devices
4095  *  - add a spare
4096  *  - allow a reshape
4097  * This determination is simple when no reshape is happening.
4098  * However if there is a reshape, we need to carefully check
4099  * both the before and after sections.
4100  * This is because some failed devices may only affect one
4101  * of the two sections, and some non-in_sync devices may
4102  * be insync in the section most affected by failed devices.
4103  */
4104 static int calc_degraded(struct r10conf *conf)
4105 {
4106         int degraded, degraded2;
4107         int i;
4108
4109         rcu_read_lock();
4110         degraded = 0;
4111         /* 'prev' section first */
4112         for (i = 0; i < conf->prev.raid_disks; i++) {
4113                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4114                 if (!rdev || test_bit(Faulty, &rdev->flags))
4115                         degraded++;
4116                 else if (!test_bit(In_sync, &rdev->flags))
4117                         /* When we can reduce the number of devices in
4118                          * an array, this might not contribute to
4119                          * 'degraded'.  It does now.
4120                          */
4121                         degraded++;
4122         }
4123         rcu_read_unlock();
4124         if (conf->geo.raid_disks == conf->prev.raid_disks)
4125                 return degraded;
4126         rcu_read_lock();
4127         degraded2 = 0;
4128         for (i = 0; i < conf->geo.raid_disks; i++) {
4129                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4130                 if (!rdev || test_bit(Faulty, &rdev->flags))
4131                         degraded2++;
4132                 else if (!test_bit(In_sync, &rdev->flags)) {
4133                         /* If reshape is increasing the number of devices,
4134                          * this section has already been recovered, so
4135                          * it doesn't contribute to degraded.
4136                          * else it does.
4137                          */
4138                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4139                                 degraded2++;
4140                 }
4141         }
4142         rcu_read_unlock();
4143         if (degraded2 > degraded)
4144                 return degraded2;
4145         return degraded;
4146 }
4147
4148 static int raid10_start_reshape(struct mddev *mddev)
4149 {
4150         /* A 'reshape' has been requested. This commits
4151          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4152          * This also checks if there are enough spares and adds them
4153          * to the array.
4154          * We currently require enough spares to make the final
4155          * array non-degraded.  We also require that the difference
4156          * between old and new data_offset - on each device - is
4157          * enough that we never risk over-writing.
4158          */
4159
4160         unsigned long before_length, after_length;
4161         sector_t min_offset_diff = 0;
4162         int first = 1;
4163         struct geom new;
4164         struct r10conf *conf = mddev->private;
4165         struct md_rdev *rdev;
4166         int spares = 0;
4167         int ret;
4168
4169         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4170                 return -EBUSY;
4171
4172         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4173                 return -EINVAL;
4174
4175         before_length = ((1 << conf->prev.chunk_shift) *
4176                          conf->prev.far_copies);
4177         after_length = ((1 << conf->geo.chunk_shift) *
4178                         conf->geo.far_copies);
4179
4180         rdev_for_each(rdev, mddev) {
4181                 if (!test_bit(In_sync, &rdev->flags)
4182                     && !test_bit(Faulty, &rdev->flags))
4183                         spares++;
4184                 if (rdev->raid_disk >= 0) {
4185                         long long diff = (rdev->new_data_offset
4186                                           - rdev->data_offset);
4187                         if (!mddev->reshape_backwards)
4188                                 diff = -diff;
4189                         if (diff < 0)
4190                                 diff = 0;
4191                         if (first || diff < min_offset_diff)
4192                                 min_offset_diff = diff;
4193                         first = 0;
4194                 }
4195         }
4196
4197         if (max(before_length, after_length) > min_offset_diff)
4198                 return -EINVAL;
4199
4200         if (spares < mddev->delta_disks)
4201                 return -EINVAL;
4202
4203         conf->offset_diff = min_offset_diff;
4204         spin_lock_irq(&conf->device_lock);
4205         if (conf->mirrors_new) {
4206                 memcpy(conf->mirrors_new, conf->mirrors,
4207                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4208                 smp_mb();
4209                 kfree(conf->mirrors_old);
4210                 conf->mirrors_old = conf->mirrors;
4211                 conf->mirrors = conf->mirrors_new;
4212                 conf->mirrors_new = NULL;
4213         }
4214         setup_geo(&conf->geo, mddev, geo_start);
4215         smp_mb();
4216         if (mddev->reshape_backwards) {
4217                 sector_t size = raid10_size(mddev, 0, 0);
4218                 if (size < mddev->array_sectors) {
4219                         spin_unlock_irq(&conf->device_lock);
4220                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4221                                 mdname(mddev));
4222                         return -EINVAL;
4223                 }
4224                 mddev->resync_max_sectors = size;
4225                 conf->reshape_progress = size;
4226         } else
4227                 conf->reshape_progress = 0;
4228         conf->reshape_safe = conf->reshape_progress;
4229         spin_unlock_irq(&conf->device_lock);
4230
4231         if (mddev->delta_disks && mddev->bitmap) {
4232                 struct mdp_superblock_1 *sb = NULL;
4233                 sector_t oldsize, newsize;
4234
4235                 oldsize = raid10_size(mddev, 0, 0);
4236                 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4237
4238                 if (!mddev_is_clustered(mddev)) {
4239                         ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4240                         if (ret)
4241                                 goto abort;
4242                         else
4243                                 goto out;
4244                 }
4245
4246                 rdev_for_each(rdev, mddev) {
4247                         if (rdev->raid_disk > -1 &&
4248                             !test_bit(Faulty, &rdev->flags))
4249                                 sb = page_address(rdev->sb_page);
4250                 }
4251
4252                 /*
4253                  * some node is already performing reshape, and no need to
4254                  * call md_bitmap_resize again since it should be called when
4255                  * receiving BITMAP_RESIZE msg
4256                  */
4257                 if ((sb && (le32_to_cpu(sb->feature_map) &
4258                             MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4259                         goto out;
4260
4261                 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4262                 if (ret)
4263                         goto abort;
4264
4265                 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4266                 if (ret) {
4267                         md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4268                         goto abort;
4269                 }
4270         }
4271 out:
4272         if (mddev->delta_disks > 0) {
4273                 rdev_for_each(rdev, mddev)
4274                         if (rdev->raid_disk < 0 &&
4275                             !test_bit(Faulty, &rdev->flags)) {
4276                                 if (raid10_add_disk(mddev, rdev) == 0) {
4277                                         if (rdev->raid_disk >=
4278                                             conf->prev.raid_disks)
4279                                                 set_bit(In_sync, &rdev->flags);
4280                                         else
4281                                                 rdev->recovery_offset = 0;
4282
4283                                         /* Failure here is OK */
4284                                         sysfs_link_rdev(mddev, rdev);
4285                                 }
4286                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4287                                    && !test_bit(Faulty, &rdev->flags)) {
4288                                 /* This is a spare that was manually added */
4289                                 set_bit(In_sync, &rdev->flags);
4290                         }
4291         }
4292         /* When a reshape changes the number of devices,
4293          * ->degraded is measured against the larger of the
4294          * pre and  post numbers.
4295          */
4296         spin_lock_irq(&conf->device_lock);
4297         mddev->degraded = calc_degraded(conf);
4298         spin_unlock_irq(&conf->device_lock);
4299         mddev->raid_disks = conf->geo.raid_disks;
4300         mddev->reshape_position = conf->reshape_progress;
4301         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4302
4303         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4304         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4305         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4306         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4307         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4308
4309         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4310                                                 "reshape");
4311         if (!mddev->sync_thread) {
4312                 ret = -EAGAIN;
4313                 goto abort;
4314         }
4315         conf->reshape_checkpoint = jiffies;
4316         md_wakeup_thread(mddev->sync_thread);
4317         md_new_event(mddev);
4318         return 0;
4319
4320 abort:
4321         mddev->recovery = 0;
4322         spin_lock_irq(&conf->device_lock);
4323         conf->geo = conf->prev;
4324         mddev->raid_disks = conf->geo.raid_disks;
4325         rdev_for_each(rdev, mddev)
4326                 rdev->new_data_offset = rdev->data_offset;
4327         smp_wmb();
4328         conf->reshape_progress = MaxSector;
4329         conf->reshape_safe = MaxSector;
4330         mddev->reshape_position = MaxSector;
4331         spin_unlock_irq(&conf->device_lock);
4332         return ret;
4333 }
4334
4335 /* Calculate the last device-address that could contain
4336  * any block from the chunk that includes the array-address 's'
4337  * and report the next address.
4338  * i.e. the address returned will be chunk-aligned and after
4339  * any data that is in the chunk containing 's'.
4340  */
4341 static sector_t last_dev_address(sector_t s, struct geom *geo)
4342 {
4343         s = (s | geo->chunk_mask) + 1;
4344         s >>= geo->chunk_shift;
4345         s *= geo->near_copies;
4346         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4347         s *= geo->far_copies;
4348         s <<= geo->chunk_shift;
4349         return s;
4350 }
4351
4352 /* Calculate the first device-address that could contain
4353  * any block from the chunk that includes the array-address 's'.
4354  * This too will be the start of a chunk
4355  */
4356 static sector_t first_dev_address(sector_t s, struct geom *geo)
4357 {
4358         s >>= geo->chunk_shift;
4359         s *= geo->near_copies;
4360         sector_div(s, geo->raid_disks);
4361         s *= geo->far_copies;
4362         s <<= geo->chunk_shift;
4363         return s;
4364 }
4365
4366 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4367                                 int *skipped)
4368 {
4369         /* We simply copy at most one chunk (smallest of old and new)
4370          * at a time, possibly less if that exceeds RESYNC_PAGES,
4371          * or we hit a bad block or something.
4372          * This might mean we pause for normal IO in the middle of
4373          * a chunk, but that is not a problem as mddev->reshape_position
4374          * can record any location.
4375          *
4376          * If we will want to write to a location that isn't
4377          * yet recorded as 'safe' (i.e. in metadata on disk) then
4378          * we need to flush all reshape requests and update the metadata.
4379          *
4380          * When reshaping forwards (e.g. to more devices), we interpret
4381          * 'safe' as the earliest block which might not have been copied
4382          * down yet.  We divide this by previous stripe size and multiply
4383          * by previous stripe length to get lowest device offset that we
4384          * cannot write to yet.
4385          * We interpret 'sector_nr' as an address that we want to write to.
4386          * From this we use last_device_address() to find where we might
4387          * write to, and first_device_address on the  'safe' position.
4388          * If this 'next' write position is after the 'safe' position,
4389          * we must update the metadata to increase the 'safe' position.
4390          *
4391          * When reshaping backwards, we round in the opposite direction
4392          * and perform the reverse test:  next write position must not be
4393          * less than current safe position.
4394          *
4395          * In all this the minimum difference in data offsets
4396          * (conf->offset_diff - always positive) allows a bit of slack,
4397          * so next can be after 'safe', but not by more than offset_diff
4398          *
4399          * We need to prepare all the bios here before we start any IO
4400          * to ensure the size we choose is acceptable to all devices.
4401          * The means one for each copy for write-out and an extra one for
4402          * read-in.
4403          * We store the read-in bio in ->master_bio and the others in
4404          * ->devs[x].bio and ->devs[x].repl_bio.
4405          */
4406         struct r10conf *conf = mddev->private;
4407         struct r10bio *r10_bio;
4408         sector_t next, safe, last;
4409         int max_sectors;
4410         int nr_sectors;
4411         int s;
4412         struct md_rdev *rdev;
4413         int need_flush = 0;
4414         struct bio *blist;
4415         struct bio *bio, *read_bio;
4416         int sectors_done = 0;
4417         struct page **pages;
4418
4419         if (sector_nr == 0) {
4420                 /* If restarting in the middle, skip the initial sectors */
4421                 if (mddev->reshape_backwards &&
4422                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4423                         sector_nr = (raid10_size(mddev, 0, 0)
4424                                      - conf->reshape_progress);
4425                 } else if (!mddev->reshape_backwards &&
4426                            conf->reshape_progress > 0)
4427                         sector_nr = conf->reshape_progress;
4428                 if (sector_nr) {
4429                         mddev->curr_resync_completed = sector_nr;
4430                         sysfs_notify_dirent_safe(mddev->sysfs_completed);
4431                         *skipped = 1;
4432                         return sector_nr;
4433                 }
4434         }
4435
4436         /* We don't use sector_nr to track where we are up to
4437          * as that doesn't work well for ->reshape_backwards.
4438          * So just use ->reshape_progress.
4439          */
4440         if (mddev->reshape_backwards) {
4441                 /* 'next' is the earliest device address that we might
4442                  * write to for this chunk in the new layout
4443                  */
4444                 next = first_dev_address(conf->reshape_progress - 1,
4445                                          &conf->geo);
4446
4447                 /* 'safe' is the last device address that we might read from
4448                  * in the old layout after a restart
4449                  */
4450                 safe = last_dev_address(conf->reshape_safe - 1,
4451                                         &conf->prev);
4452
4453                 if (next + conf->offset_diff < safe)
4454                         need_flush = 1;
4455
4456                 last = conf->reshape_progress - 1;
4457                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4458                                                & conf->prev.chunk_mask);
4459                 if (sector_nr + RESYNC_SECTORS < last)
4460                         sector_nr = last + 1 - RESYNC_SECTORS;
4461         } else {
4462                 /* 'next' is after the last device address that we
4463                  * might write to for this chunk in the new layout
4464                  */
4465                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4466
4467                 /* 'safe' is the earliest device address that we might
4468                  * read from in the old layout after a restart
4469                  */
4470                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4471
4472                 /* Need to update metadata if 'next' might be beyond 'safe'
4473                  * as that would possibly corrupt data
4474                  */
4475                 if (next > safe + conf->offset_diff)
4476                         need_flush = 1;
4477
4478                 sector_nr = conf->reshape_progress;
4479                 last  = sector_nr | (conf->geo.chunk_mask
4480                                      & conf->prev.chunk_mask);
4481
4482                 if (sector_nr + RESYNC_SECTORS <= last)
4483                         last = sector_nr + RESYNC_SECTORS - 1;
4484         }
4485
4486         if (need_flush ||
4487             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4488                 /* Need to update reshape_position in metadata */
4489                 wait_barrier(conf);
4490                 mddev->reshape_position = conf->reshape_progress;
4491                 if (mddev->reshape_backwards)
4492                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4493                                 - conf->reshape_progress;
4494                 else
4495                         mddev->curr_resync_completed = conf->reshape_progress;
4496                 conf->reshape_checkpoint = jiffies;
4497                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4498                 md_wakeup_thread(mddev->thread);
4499                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4500                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4501                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4502                         allow_barrier(conf);
4503                         return sectors_done;
4504                 }
4505                 conf->reshape_safe = mddev->reshape_position;
4506                 allow_barrier(conf);
4507         }
4508
4509         raise_barrier(conf, 0);
4510 read_more:
4511         /* Now schedule reads for blocks from sector_nr to last */
4512         r10_bio = raid10_alloc_init_r10buf(conf);
4513         r10_bio->state = 0;
4514         raise_barrier(conf, 1);
4515         atomic_set(&r10_bio->remaining, 0);
4516         r10_bio->mddev = mddev;
4517         r10_bio->sector = sector_nr;
4518         set_bit(R10BIO_IsReshape, &r10_bio->state);
4519         r10_bio->sectors = last - sector_nr + 1;
4520         rdev = read_balance(conf, r10_bio, &max_sectors);
4521         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4522
4523         if (!rdev) {
4524                 /* Cannot read from here, so need to record bad blocks
4525                  * on all the target devices.
4526                  */
4527                 // FIXME
4528                 mempool_free(r10_bio, &conf->r10buf_pool);
4529                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4530                 return sectors_done;
4531         }
4532
4533         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4534
4535         bio_set_dev(read_bio, rdev->bdev);
4536         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4537                                + rdev->data_offset);
4538         read_bio->bi_private = r10_bio;
4539         read_bio->bi_end_io = end_reshape_read;
4540         bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4541         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4542         read_bio->bi_status = 0;
4543         read_bio->bi_vcnt = 0;
4544         read_bio->bi_iter.bi_size = 0;
4545         r10_bio->master_bio = read_bio;
4546         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4547
4548         /*
4549          * Broadcast RESYNC message to other nodes, so all nodes would not
4550          * write to the region to avoid conflict.
4551         */
4552         if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4553                 struct mdp_superblock_1 *sb = NULL;
4554                 int sb_reshape_pos = 0;
4555
4556                 conf->cluster_sync_low = sector_nr;
4557                 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4558                 sb = page_address(rdev->sb_page);
4559                 if (sb) {
4560                         sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4561                         /*
4562                          * Set cluster_sync_low again if next address for array
4563                          * reshape is less than cluster_sync_low. Since we can't
4564                          * update cluster_sync_low until it has finished reshape.
4565                          */
4566                         if (sb_reshape_pos < conf->cluster_sync_low)
4567                                 conf->cluster_sync_low = sb_reshape_pos;
4568                 }
4569
4570                 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4571                                                           conf->cluster_sync_high);
4572         }
4573
4574         /* Now find the locations in the new layout */
4575         __raid10_find_phys(&conf->geo, r10_bio);
4576
4577         blist = read_bio;
4578         read_bio->bi_next = NULL;
4579
4580         rcu_read_lock();
4581         for (s = 0; s < conf->copies*2; s++) {
4582                 struct bio *b;
4583                 int d = r10_bio->devs[s/2].devnum;
4584                 struct md_rdev *rdev2;
4585                 if (s&1) {
4586                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4587                         b = r10_bio->devs[s/2].repl_bio;
4588                 } else {
4589                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4590                         b = r10_bio->devs[s/2].bio;
4591                 }
4592                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4593                         continue;
4594
4595                 bio_set_dev(b, rdev2->bdev);
4596                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4597                         rdev2->new_data_offset;
4598                 b->bi_end_io = end_reshape_write;
4599                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4600                 b->bi_next = blist;
4601                 blist = b;
4602         }
4603
4604         /* Now add as many pages as possible to all of these bios. */
4605
4606         nr_sectors = 0;
4607         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4608         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4609                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4610                 int len = (max_sectors - s) << 9;
4611                 if (len > PAGE_SIZE)
4612                         len = PAGE_SIZE;
4613                 for (bio = blist; bio ; bio = bio->bi_next) {
4614                         /*
4615                          * won't fail because the vec table is big enough
4616                          * to hold all these pages
4617                          */
4618                         bio_add_page(bio, page, len, 0);
4619                 }
4620                 sector_nr += len >> 9;
4621                 nr_sectors += len >> 9;
4622         }
4623         rcu_read_unlock();
4624         r10_bio->sectors = nr_sectors;
4625
4626         /* Now submit the read */
4627         md_sync_acct_bio(read_bio, r10_bio->sectors);
4628         atomic_inc(&r10_bio->remaining);
4629         read_bio->bi_next = NULL;
4630         submit_bio_noacct(read_bio);
4631         sectors_done += nr_sectors;
4632         if (sector_nr <= last)
4633                 goto read_more;
4634
4635         lower_barrier(conf);
4636
4637         /* Now that we have done the whole section we can
4638          * update reshape_progress
4639          */
4640         if (mddev->reshape_backwards)
4641                 conf->reshape_progress -= sectors_done;
4642         else
4643                 conf->reshape_progress += sectors_done;
4644
4645         return sectors_done;
4646 }
4647
4648 static void end_reshape_request(struct r10bio *r10_bio);
4649 static int handle_reshape_read_error(struct mddev *mddev,
4650                                      struct r10bio *r10_bio);
4651 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4652 {
4653         /* Reshape read completed.  Hopefully we have a block
4654          * to write out.
4655          * If we got a read error then we do sync 1-page reads from
4656          * elsewhere until we find the data - or give up.
4657          */
4658         struct r10conf *conf = mddev->private;
4659         int s;
4660
4661         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4662                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4663                         /* Reshape has been aborted */
4664                         md_done_sync(mddev, r10_bio->sectors, 0);
4665                         return;
4666                 }
4667
4668         /* We definitely have the data in the pages, schedule the
4669          * writes.
4670          */
4671         atomic_set(&r10_bio->remaining, 1);
4672         for (s = 0; s < conf->copies*2; s++) {
4673                 struct bio *b;
4674                 int d = r10_bio->devs[s/2].devnum;
4675                 struct md_rdev *rdev;
4676                 rcu_read_lock();
4677                 if (s&1) {
4678                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4679                         b = r10_bio->devs[s/2].repl_bio;
4680                 } else {
4681                         rdev = rcu_dereference(conf->mirrors[d].rdev);
4682                         b = r10_bio->devs[s/2].bio;
4683                 }
4684                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4685                         rcu_read_unlock();
4686                         continue;
4687                 }
4688                 atomic_inc(&rdev->nr_pending);
4689                 rcu_read_unlock();
4690                 md_sync_acct_bio(b, r10_bio->sectors);
4691                 atomic_inc(&r10_bio->remaining);
4692                 b->bi_next = NULL;
4693                 submit_bio_noacct(b);
4694         }
4695         end_reshape_request(r10_bio);
4696 }
4697
4698 static void end_reshape(struct r10conf *conf)
4699 {
4700         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4701                 return;
4702
4703         spin_lock_irq(&conf->device_lock);
4704         conf->prev = conf->geo;
4705         md_finish_reshape(conf->mddev);
4706         smp_wmb();
4707         conf->reshape_progress = MaxSector;
4708         conf->reshape_safe = MaxSector;
4709         spin_unlock_irq(&conf->device_lock);
4710
4711         if (conf->mddev->queue)
4712                 raid10_set_io_opt(conf);
4713         conf->fullsync = 0;
4714 }
4715
4716 static void raid10_update_reshape_pos(struct mddev *mddev)
4717 {
4718         struct r10conf *conf = mddev->private;
4719         sector_t lo, hi;
4720
4721         md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4722         if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4723             || mddev->reshape_position == MaxSector)
4724                 conf->reshape_progress = mddev->reshape_position;
4725         else
4726                 WARN_ON_ONCE(1);
4727 }
4728
4729 static int handle_reshape_read_error(struct mddev *mddev,
4730                                      struct r10bio *r10_bio)
4731 {
4732         /* Use sync reads to get the blocks from somewhere else */
4733         int sectors = r10_bio->sectors;
4734         struct r10conf *conf = mddev->private;
4735         struct r10bio *r10b;
4736         int slot = 0;
4737         int idx = 0;
4738         struct page **pages;
4739
4740         r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4741         if (!r10b) {
4742                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4743                 return -ENOMEM;
4744         }
4745
4746         /* reshape IOs share pages from .devs[0].bio */
4747         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4748
4749         r10b->sector = r10_bio->sector;
4750         __raid10_find_phys(&conf->prev, r10b);
4751
4752         while (sectors) {
4753                 int s = sectors;
4754                 int success = 0;
4755                 int first_slot = slot;
4756
4757                 if (s > (PAGE_SIZE >> 9))
4758                         s = PAGE_SIZE >> 9;
4759
4760                 rcu_read_lock();
4761                 while (!success) {
4762                         int d = r10b->devs[slot].devnum;
4763                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4764                         sector_t addr;
4765                         if (rdev == NULL ||
4766                             test_bit(Faulty, &rdev->flags) ||
4767                             !test_bit(In_sync, &rdev->flags))
4768                                 goto failed;
4769
4770                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4771                         atomic_inc(&rdev->nr_pending);
4772                         rcu_read_unlock();
4773                         success = sync_page_io(rdev,
4774                                                addr,
4775                                                s << 9,
4776                                                pages[idx],
4777                                                REQ_OP_READ, 0, false);
4778                         rdev_dec_pending(rdev, mddev);
4779                         rcu_read_lock();
4780                         if (success)
4781                                 break;
4782                 failed:
4783                         slot++;
4784                         if (slot >= conf->copies)
4785                                 slot = 0;
4786                         if (slot == first_slot)
4787                                 break;
4788                 }
4789                 rcu_read_unlock();
4790                 if (!success) {
4791                         /* couldn't read this block, must give up */
4792                         set_bit(MD_RECOVERY_INTR,
4793                                 &mddev->recovery);
4794                         kfree(r10b);
4795                         return -EIO;
4796                 }
4797                 sectors -= s;
4798                 idx++;
4799         }
4800         kfree(r10b);
4801         return 0;
4802 }
4803
4804 static void end_reshape_write(struct bio *bio)
4805 {
4806         struct r10bio *r10_bio = get_resync_r10bio(bio);
4807         struct mddev *mddev = r10_bio->mddev;
4808         struct r10conf *conf = mddev->private;
4809         int d;
4810         int slot;
4811         int repl;
4812         struct md_rdev *rdev = NULL;
4813
4814         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4815         if (repl)
4816                 rdev = conf->mirrors[d].replacement;
4817         if (!rdev) {
4818                 smp_mb();
4819                 rdev = conf->mirrors[d].rdev;
4820         }
4821
4822         if (bio->bi_status) {
4823                 /* FIXME should record badblock */
4824                 md_error(mddev, rdev);
4825         }
4826
4827         rdev_dec_pending(rdev, mddev);
4828         end_reshape_request(r10_bio);
4829 }
4830
4831 static void end_reshape_request(struct r10bio *r10_bio)
4832 {
4833         if (!atomic_dec_and_test(&r10_bio->remaining))
4834                 return;
4835         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4836         bio_put(r10_bio->master_bio);
4837         put_buf(r10_bio);
4838 }
4839
4840 static void raid10_finish_reshape(struct mddev *mddev)
4841 {
4842         struct r10conf *conf = mddev->private;
4843
4844         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4845                 return;
4846
4847         if (mddev->delta_disks > 0) {
4848                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4849                         mddev->recovery_cp = mddev->resync_max_sectors;
4850                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4851                 }
4852                 mddev->resync_max_sectors = mddev->array_sectors;
4853         } else {
4854                 int d;
4855                 rcu_read_lock();
4856                 for (d = conf->geo.raid_disks ;
4857                      d < conf->geo.raid_disks - mddev->delta_disks;
4858                      d++) {
4859                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4860                         if (rdev)
4861                                 clear_bit(In_sync, &rdev->flags);
4862                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4863                         if (rdev)
4864                                 clear_bit(In_sync, &rdev->flags);
4865                 }
4866                 rcu_read_unlock();
4867         }
4868         mddev->layout = mddev->new_layout;
4869         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4870         mddev->reshape_position = MaxSector;
4871         mddev->delta_disks = 0;
4872         mddev->reshape_backwards = 0;
4873 }
4874
4875 static struct md_personality raid10_personality =
4876 {
4877         .name           = "raid10",
4878         .level          = 10,
4879         .owner          = THIS_MODULE,
4880         .make_request   = raid10_make_request,
4881         .run            = raid10_run,
4882         .free           = raid10_free,
4883         .status         = raid10_status,
4884         .error_handler  = raid10_error,
4885         .hot_add_disk   = raid10_add_disk,
4886         .hot_remove_disk= raid10_remove_disk,
4887         .spare_active   = raid10_spare_active,
4888         .sync_request   = raid10_sync_request,
4889         .quiesce        = raid10_quiesce,
4890         .size           = raid10_size,
4891         .resize         = raid10_resize,
4892         .takeover       = raid10_takeover,
4893         .check_reshape  = raid10_check_reshape,
4894         .start_reshape  = raid10_start_reshape,
4895         .finish_reshape = raid10_finish_reshape,
4896         .update_reshape_pos = raid10_update_reshape_pos,
4897 };
4898
4899 static int __init raid_init(void)
4900 {
4901         return register_md_personality(&raid10_personality);
4902 }
4903
4904 static void raid_exit(void)
4905 {
4906         unregister_md_personality(&raid10_personality);
4907 }
4908
4909 module_init(raid_init);
4910 module_exit(raid_exit);
4911 MODULE_LICENSE("GPL");
4912 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4913 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4914 MODULE_ALIAS("md-raid10");
4915 MODULE_ALIAS("md-level-10");
4916
4917 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);