2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
42 * The data to be stored is divided into chunks using chunksize.
43 * Each device is divided into far_copies sections.
44 * In each section, chunks are laid out in a style similar to raid0, but
45 * near_copies copies of each chunk is stored (each on a different drive).
46 * The starting device for each section is offset near_copies from the starting
47 * device of the previous section.
48 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
50 * near_copies and far_copies must be at least one, and their product is at most
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of be very far apart
55 * on disk, there are adjacent stripes.
59 * Number of guaranteed r10bios in case of extreme VM load:
61 #define NR_RAID10_BIOS 256
63 /* when we get a read error on a read-only array, we redirect to another
64 * device without failing the first device, or trying to over-write to
65 * correct the read error. To keep track of bad blocks on a per-bio
66 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
68 #define IO_BLOCKED ((struct bio *)1)
69 /* When we successfully write to a known bad-block, we need to remove the
70 * bad-block marking which must be done from process context. So we record
71 * the success by setting devs[n].bio to IO_MADE_GOOD
73 #define IO_MADE_GOOD ((struct bio *)2)
75 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
77 /* When there are this many requests queued to be written by
78 * the raid10 thread, we become 'congested' to provide back-pressure
81 static int max_queued_requests = 1024;
83 static void allow_barrier(struct r10conf *conf);
84 static void lower_barrier(struct r10conf *conf);
85 static int enough(struct r10conf *conf, int ignore);
86 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
88 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
89 static void end_reshape_write(struct bio *bio, int error);
90 static void end_reshape(struct r10conf *conf);
92 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
94 struct r10conf *conf = data;
95 int size = offsetof(struct r10bio, devs[conf->copies]);
97 /* allocate a r10bio with room for raid_disks entries in the
99 return kzalloc(size, gfp_flags);
102 static void r10bio_pool_free(void *r10_bio, void *data)
107 /* Maximum size of each resync request */
108 #define RESYNC_BLOCK_SIZE (64*1024)
109 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
110 /* amount of memory to reserve for resync requests */
111 #define RESYNC_WINDOW (1024*1024)
112 /* maximum number of concurrent requests, memory permitting */
113 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
116 * When performing a resync, we need to read and compare, so
117 * we need as many pages are there are copies.
118 * When performing a recovery, we need 2 bios, one for read,
119 * one for write (we recover only one drive per r10buf)
122 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
124 struct r10conf *conf = data;
126 struct r10bio *r10_bio;
131 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
135 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
136 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
137 nalloc = conf->copies; /* resync */
139 nalloc = 2; /* recovery */
144 for (j = nalloc ; j-- ; ) {
145 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
148 r10_bio->devs[j].bio = bio;
149 if (!conf->have_replacement)
151 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
154 r10_bio->devs[j].repl_bio = bio;
157 * Allocate RESYNC_PAGES data pages and attach them
160 for (j = 0 ; j < nalloc; j++) {
161 struct bio *rbio = r10_bio->devs[j].repl_bio;
162 bio = r10_bio->devs[j].bio;
163 for (i = 0; i < RESYNC_PAGES; i++) {
164 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
165 &conf->mddev->recovery)) {
166 /* we can share bv_page's during recovery
168 struct bio *rbio = r10_bio->devs[0].bio;
169 page = rbio->bi_io_vec[i].bv_page;
172 page = alloc_page(gfp_flags);
176 bio->bi_io_vec[i].bv_page = page;
178 rbio->bi_io_vec[i].bv_page = page;
186 safe_put_page(bio->bi_io_vec[i-1].bv_page);
188 for (i = 0; i < RESYNC_PAGES ; i++)
189 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
192 for ( ; j < nalloc; j++) {
193 if (r10_bio->devs[j].bio)
194 bio_put(r10_bio->devs[j].bio);
195 if (r10_bio->devs[j].repl_bio)
196 bio_put(r10_bio->devs[j].repl_bio);
198 r10bio_pool_free(r10_bio, conf);
202 static void r10buf_pool_free(void *__r10_bio, void *data)
205 struct r10conf *conf = data;
206 struct r10bio *r10bio = __r10_bio;
209 for (j=0; j < conf->copies; j++) {
210 struct bio *bio = r10bio->devs[j].bio;
212 for (i = 0; i < RESYNC_PAGES; i++) {
213 safe_put_page(bio->bi_io_vec[i].bv_page);
214 bio->bi_io_vec[i].bv_page = NULL;
218 bio = r10bio->devs[j].repl_bio;
222 r10bio_pool_free(r10bio, conf);
225 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
229 for (i = 0; i < conf->copies; i++) {
230 struct bio **bio = & r10_bio->devs[i].bio;
231 if (!BIO_SPECIAL(*bio))
234 bio = &r10_bio->devs[i].repl_bio;
235 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
241 static void free_r10bio(struct r10bio *r10_bio)
243 struct r10conf *conf = r10_bio->mddev->private;
245 put_all_bios(conf, r10_bio);
246 mempool_free(r10_bio, conf->r10bio_pool);
249 static void put_buf(struct r10bio *r10_bio)
251 struct r10conf *conf = r10_bio->mddev->private;
253 mempool_free(r10_bio, conf->r10buf_pool);
258 static void reschedule_retry(struct r10bio *r10_bio)
261 struct mddev *mddev = r10_bio->mddev;
262 struct r10conf *conf = mddev->private;
264 spin_lock_irqsave(&conf->device_lock, flags);
265 list_add(&r10_bio->retry_list, &conf->retry_list);
267 spin_unlock_irqrestore(&conf->device_lock, flags);
269 /* wake up frozen array... */
270 wake_up(&conf->wait_barrier);
272 md_wakeup_thread(mddev->thread);
276 * raid_end_bio_io() is called when we have finished servicing a mirrored
277 * operation and are ready to return a success/failure code to the buffer
280 static void raid_end_bio_io(struct r10bio *r10_bio)
282 struct bio *bio = r10_bio->master_bio;
284 struct r10conf *conf = r10_bio->mddev->private;
286 if (bio->bi_phys_segments) {
288 spin_lock_irqsave(&conf->device_lock, flags);
289 bio->bi_phys_segments--;
290 done = (bio->bi_phys_segments == 0);
291 spin_unlock_irqrestore(&conf->device_lock, flags);
294 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
295 clear_bit(BIO_UPTODATE, &bio->bi_flags);
299 * Wake up any possible resync thread that waits for the device
304 free_r10bio(r10_bio);
308 * Update disk head position estimator based on IRQ completion info.
310 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
312 struct r10conf *conf = r10_bio->mddev->private;
314 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
315 r10_bio->devs[slot].addr + (r10_bio->sectors);
319 * Find the disk number which triggered given bio
321 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
322 struct bio *bio, int *slotp, int *replp)
327 for (slot = 0; slot < conf->copies; slot++) {
328 if (r10_bio->devs[slot].bio == bio)
330 if (r10_bio->devs[slot].repl_bio == bio) {
336 BUG_ON(slot == conf->copies);
337 update_head_pos(slot, r10_bio);
343 return r10_bio->devs[slot].devnum;
346 static void raid10_end_read_request(struct bio *bio, int error)
348 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
349 struct r10bio *r10_bio = bio->bi_private;
351 struct md_rdev *rdev;
352 struct r10conf *conf = r10_bio->mddev->private;
355 slot = r10_bio->read_slot;
356 dev = r10_bio->devs[slot].devnum;
357 rdev = r10_bio->devs[slot].rdev;
359 * this branch is our 'one mirror IO has finished' event handler:
361 update_head_pos(slot, r10_bio);
365 * Set R10BIO_Uptodate in our master bio, so that
366 * we will return a good error code to the higher
367 * levels even if IO on some other mirrored buffer fails.
369 * The 'master' represents the composite IO operation to
370 * user-side. So if something waits for IO, then it will
371 * wait for the 'master' bio.
373 set_bit(R10BIO_Uptodate, &r10_bio->state);
375 /* If all other devices that store this block have
376 * failed, we want to return the error upwards rather
377 * than fail the last device. Here we redefine
378 * "uptodate" to mean "Don't want to retry"
381 spin_lock_irqsave(&conf->device_lock, flags);
382 if (!enough(conf, rdev->raid_disk))
384 spin_unlock_irqrestore(&conf->device_lock, flags);
387 raid_end_bio_io(r10_bio);
388 rdev_dec_pending(rdev, conf->mddev);
391 * oops, read error - keep the refcount on the rdev
393 char b[BDEVNAME_SIZE];
394 printk_ratelimited(KERN_ERR
395 "md/raid10:%s: %s: rescheduling sector %llu\n",
397 bdevname(rdev->bdev, b),
398 (unsigned long long)r10_bio->sector);
399 set_bit(R10BIO_ReadError, &r10_bio->state);
400 reschedule_retry(r10_bio);
404 static void close_write(struct r10bio *r10_bio)
406 /* clear the bitmap if all writes complete successfully */
407 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
409 !test_bit(R10BIO_Degraded, &r10_bio->state),
411 md_write_end(r10_bio->mddev);
414 static void one_write_done(struct r10bio *r10_bio)
416 if (atomic_dec_and_test(&r10_bio->remaining)) {
417 if (test_bit(R10BIO_WriteError, &r10_bio->state))
418 reschedule_retry(r10_bio);
420 close_write(r10_bio);
421 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
422 reschedule_retry(r10_bio);
424 raid_end_bio_io(r10_bio);
429 static void raid10_end_write_request(struct bio *bio, int error)
431 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
432 struct r10bio *r10_bio = bio->bi_private;
435 struct r10conf *conf = r10_bio->mddev->private;
437 struct md_rdev *rdev = NULL;
439 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
442 rdev = conf->mirrors[dev].replacement;
446 rdev = conf->mirrors[dev].rdev;
449 * this branch is our 'one mirror IO has finished' event handler:
453 /* Never record new bad blocks to replacement,
456 md_error(rdev->mddev, rdev);
458 set_bit(WriteErrorSeen, &rdev->flags);
459 if (!test_and_set_bit(WantReplacement, &rdev->flags))
460 set_bit(MD_RECOVERY_NEEDED,
461 &rdev->mddev->recovery);
462 set_bit(R10BIO_WriteError, &r10_bio->state);
467 * Set R10BIO_Uptodate in our master bio, so that
468 * we will return a good error code for to the higher
469 * levels even if IO on some other mirrored buffer fails.
471 * The 'master' represents the composite IO operation to
472 * user-side. So if something waits for IO, then it will
473 * wait for the 'master' bio.
478 set_bit(R10BIO_Uptodate, &r10_bio->state);
480 /* Maybe we can clear some bad blocks. */
481 if (is_badblock(rdev,
482 r10_bio->devs[slot].addr,
484 &first_bad, &bad_sectors)) {
487 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
489 r10_bio->devs[slot].bio = IO_MADE_GOOD;
491 set_bit(R10BIO_MadeGood, &r10_bio->state);
497 * Let's see if all mirrored write operations have finished
500 one_write_done(r10_bio);
502 rdev_dec_pending(rdev, conf->mddev);
506 * RAID10 layout manager
507 * As well as the chunksize and raid_disks count, there are two
508 * parameters: near_copies and far_copies.
509 * near_copies * far_copies must be <= raid_disks.
510 * Normally one of these will be 1.
511 * If both are 1, we get raid0.
512 * If near_copies == raid_disks, we get raid1.
514 * Chunks are laid out in raid0 style with near_copies copies of the
515 * first chunk, followed by near_copies copies of the next chunk and
517 * If far_copies > 1, then after 1/far_copies of the array has been assigned
518 * as described above, we start again with a device offset of near_copies.
519 * So we effectively have another copy of the whole array further down all
520 * the drives, but with blocks on different drives.
521 * With this layout, and block is never stored twice on the one device.
523 * raid10_find_phys finds the sector offset of a given virtual sector
524 * on each device that it is on.
526 * raid10_find_virt does the reverse mapping, from a device and a
527 * sector offset to a virtual address
530 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
539 /* now calculate first sector/dev */
540 chunk = r10bio->sector >> geo->chunk_shift;
541 sector = r10bio->sector & geo->chunk_mask;
543 chunk *= geo->near_copies;
545 dev = sector_div(stripe, geo->raid_disks);
547 stripe *= geo->far_copies;
549 sector += stripe << geo->chunk_shift;
551 /* and calculate all the others */
552 for (n = 0; n < geo->near_copies; n++) {
555 r10bio->devs[slot].addr = sector;
556 r10bio->devs[slot].devnum = d;
559 for (f = 1; f < geo->far_copies; f++) {
560 d += geo->near_copies;
561 if (d >= geo->raid_disks)
562 d -= geo->raid_disks;
564 r10bio->devs[slot].devnum = d;
565 r10bio->devs[slot].addr = s;
569 if (dev >= geo->raid_disks) {
571 sector += (geo->chunk_mask + 1);
576 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
578 struct geom *geo = &conf->geo;
580 if (conf->reshape_progress != MaxSector &&
581 ((r10bio->sector >= conf->reshape_progress) !=
582 conf->mddev->reshape_backwards)) {
583 set_bit(R10BIO_Previous, &r10bio->state);
586 clear_bit(R10BIO_Previous, &r10bio->state);
588 __raid10_find_phys(geo, r10bio);
591 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
593 sector_t offset, chunk, vchunk;
594 /* Never use conf->prev as this is only called during resync
595 * or recovery, so reshape isn't happening
597 struct geom *geo = &conf->geo;
599 offset = sector & geo->chunk_mask;
600 if (geo->far_offset) {
602 chunk = sector >> geo->chunk_shift;
603 fc = sector_div(chunk, geo->far_copies);
604 dev -= fc * geo->near_copies;
606 dev += geo->raid_disks;
608 while (sector >= geo->stride) {
609 sector -= geo->stride;
610 if (dev < geo->near_copies)
611 dev += geo->raid_disks - geo->near_copies;
613 dev -= geo->near_copies;
615 chunk = sector >> geo->chunk_shift;
617 vchunk = chunk * geo->raid_disks + dev;
618 sector_div(vchunk, geo->near_copies);
619 return (vchunk << geo->chunk_shift) + offset;
623 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
625 * @bvm: properties of new bio
626 * @biovec: the request that could be merged to it.
628 * Return amount of bytes we can accept at this offset
629 * This requires checking for end-of-chunk if near_copies != raid_disks,
630 * and for subordinate merge_bvec_fns if merge_check_needed.
632 static int raid10_mergeable_bvec(struct request_queue *q,
633 struct bvec_merge_data *bvm,
634 struct bio_vec *biovec)
636 struct mddev *mddev = q->queuedata;
637 struct r10conf *conf = mddev->private;
638 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
640 unsigned int chunk_sectors;
641 unsigned int bio_sectors = bvm->bi_size >> 9;
642 struct geom *geo = &conf->geo;
644 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
645 if (conf->reshape_progress != MaxSector &&
646 ((sector >= conf->reshape_progress) !=
647 conf->mddev->reshape_backwards))
650 if (geo->near_copies < geo->raid_disks) {
651 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
652 + bio_sectors)) << 9;
654 /* bio_add cannot handle a negative return */
656 if (max <= biovec->bv_len && bio_sectors == 0)
657 return biovec->bv_len;
659 max = biovec->bv_len;
661 if (mddev->merge_check_needed) {
663 struct r10bio r10_bio;
664 struct r10dev devs[conf->copies];
666 struct r10bio *r10_bio = &on_stack.r10_bio;
668 if (conf->reshape_progress != MaxSector) {
669 /* Cannot give any guidance during reshape */
670 if (max <= biovec->bv_len && bio_sectors == 0)
671 return biovec->bv_len;
674 r10_bio->sector = sector;
675 raid10_find_phys(conf, r10_bio);
677 for (s = 0; s < conf->copies; s++) {
678 int disk = r10_bio->devs[s].devnum;
679 struct md_rdev *rdev = rcu_dereference(
680 conf->mirrors[disk].rdev);
681 if (rdev && !test_bit(Faulty, &rdev->flags)) {
682 struct request_queue *q =
683 bdev_get_queue(rdev->bdev);
684 if (q->merge_bvec_fn) {
685 bvm->bi_sector = r10_bio->devs[s].addr
687 bvm->bi_bdev = rdev->bdev;
688 max = min(max, q->merge_bvec_fn(
692 rdev = rcu_dereference(conf->mirrors[disk].replacement);
693 if (rdev && !test_bit(Faulty, &rdev->flags)) {
694 struct request_queue *q =
695 bdev_get_queue(rdev->bdev);
696 if (q->merge_bvec_fn) {
697 bvm->bi_sector = r10_bio->devs[s].addr
699 bvm->bi_bdev = rdev->bdev;
700 max = min(max, q->merge_bvec_fn(
711 * This routine returns the disk from which the requested read should
712 * be done. There is a per-array 'next expected sequential IO' sector
713 * number - if this matches on the next IO then we use the last disk.
714 * There is also a per-disk 'last know head position' sector that is
715 * maintained from IRQ contexts, both the normal and the resync IO
716 * completion handlers update this position correctly. If there is no
717 * perfect sequential match then we pick the disk whose head is closest.
719 * If there are 2 mirrors in the same 2 devices, performance degrades
720 * because position is mirror, not device based.
722 * The rdev for the device selected will have nr_pending incremented.
726 * FIXME: possibly should rethink readbalancing and do it differently
727 * depending on near_copies / far_copies geometry.
729 static struct md_rdev *read_balance(struct r10conf *conf,
730 struct r10bio *r10_bio,
733 const sector_t this_sector = r10_bio->sector;
735 int sectors = r10_bio->sectors;
736 int best_good_sectors;
737 sector_t new_distance, best_dist;
738 struct md_rdev *best_rdev, *rdev = NULL;
741 struct geom *geo = &conf->geo;
743 raid10_find_phys(conf, r10_bio);
746 sectors = r10_bio->sectors;
749 best_dist = MaxSector;
750 best_good_sectors = 0;
753 * Check if we can balance. We can balance on the whole
754 * device if no resync is going on (recovery is ok), or below
755 * the resync window. We take the first readable disk when
756 * above the resync window.
758 if (conf->mddev->recovery_cp < MaxSector
759 && (this_sector + sectors >= conf->next_resync))
762 for (slot = 0; slot < conf->copies ; slot++) {
767 if (r10_bio->devs[slot].bio == IO_BLOCKED)
769 disk = r10_bio->devs[slot].devnum;
770 rdev = rcu_dereference(conf->mirrors[disk].replacement);
771 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
772 test_bit(Unmerged, &rdev->flags) ||
773 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
774 rdev = rcu_dereference(conf->mirrors[disk].rdev);
776 test_bit(Faulty, &rdev->flags) ||
777 test_bit(Unmerged, &rdev->flags))
779 if (!test_bit(In_sync, &rdev->flags) &&
780 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
783 dev_sector = r10_bio->devs[slot].addr;
784 if (is_badblock(rdev, dev_sector, sectors,
785 &first_bad, &bad_sectors)) {
786 if (best_dist < MaxSector)
787 /* Already have a better slot */
789 if (first_bad <= dev_sector) {
790 /* Cannot read here. If this is the
791 * 'primary' device, then we must not read
792 * beyond 'bad_sectors' from another device.
794 bad_sectors -= (dev_sector - first_bad);
795 if (!do_balance && sectors > bad_sectors)
796 sectors = bad_sectors;
797 if (best_good_sectors > sectors)
798 best_good_sectors = sectors;
800 sector_t good_sectors =
801 first_bad - dev_sector;
802 if (good_sectors > best_good_sectors) {
803 best_good_sectors = good_sectors;
808 /* Must read from here */
813 best_good_sectors = sectors;
818 /* This optimisation is debatable, and completely destroys
819 * sequential read speed for 'far copies' arrays. So only
820 * keep it for 'near' arrays, and review those later.
822 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
825 /* for far > 1 always use the lowest address */
826 if (geo->far_copies > 1)
827 new_distance = r10_bio->devs[slot].addr;
829 new_distance = abs(r10_bio->devs[slot].addr -
830 conf->mirrors[disk].head_position);
831 if (new_distance < best_dist) {
832 best_dist = new_distance;
837 if (slot >= conf->copies) {
843 atomic_inc(&rdev->nr_pending);
844 if (test_bit(Faulty, &rdev->flags)) {
845 /* Cannot risk returning a device that failed
846 * before we inc'ed nr_pending
848 rdev_dec_pending(rdev, conf->mddev);
851 r10_bio->read_slot = slot;
855 *max_sectors = best_good_sectors;
860 int md_raid10_congested(struct mddev *mddev, int bits)
862 struct r10conf *conf = mddev->private;
865 if ((bits & (1 << BDI_async_congested)) &&
866 conf->pending_count >= max_queued_requests)
871 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
874 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
875 if (rdev && !test_bit(Faulty, &rdev->flags)) {
876 struct request_queue *q = bdev_get_queue(rdev->bdev);
878 ret |= bdi_congested(&q->backing_dev_info, bits);
884 EXPORT_SYMBOL_GPL(md_raid10_congested);
886 static int raid10_congested(void *data, int bits)
888 struct mddev *mddev = data;
890 return mddev_congested(mddev, bits) ||
891 md_raid10_congested(mddev, bits);
894 static void flush_pending_writes(struct r10conf *conf)
896 /* Any writes that have been queued but are awaiting
897 * bitmap updates get flushed here.
899 spin_lock_irq(&conf->device_lock);
901 if (conf->pending_bio_list.head) {
903 bio = bio_list_get(&conf->pending_bio_list);
904 conf->pending_count = 0;
905 spin_unlock_irq(&conf->device_lock);
906 /* flush any pending bitmap writes to disk
907 * before proceeding w/ I/O */
908 bitmap_unplug(conf->mddev->bitmap);
909 wake_up(&conf->wait_barrier);
911 while (bio) { /* submit pending writes */
912 struct bio *next = bio->bi_next;
914 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
915 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
919 generic_make_request(bio);
923 spin_unlock_irq(&conf->device_lock);
927 * Sometimes we need to suspend IO while we do something else,
928 * either some resync/recovery, or reconfigure the array.
929 * To do this we raise a 'barrier'.
930 * The 'barrier' is a counter that can be raised multiple times
931 * to count how many activities are happening which preclude
933 * We can only raise the barrier if there is no pending IO.
934 * i.e. if nr_pending == 0.
935 * We choose only to raise the barrier if no-one is waiting for the
936 * barrier to go down. This means that as soon as an IO request
937 * is ready, no other operations which require a barrier will start
938 * until the IO request has had a chance.
940 * So: regular IO calls 'wait_barrier'. When that returns there
941 * is no backgroup IO happening, It must arrange to call
942 * allow_barrier when it has finished its IO.
943 * backgroup IO calls must call raise_barrier. Once that returns
944 * there is no normal IO happeing. It must arrange to call
945 * lower_barrier when the particular background IO completes.
948 static void raise_barrier(struct r10conf *conf, int force)
950 BUG_ON(force && !conf->barrier);
951 spin_lock_irq(&conf->resync_lock);
953 /* Wait until no block IO is waiting (unless 'force') */
954 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
957 /* block any new IO from starting */
960 /* Now wait for all pending IO to complete */
961 wait_event_lock_irq(conf->wait_barrier,
962 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
965 spin_unlock_irq(&conf->resync_lock);
968 static void lower_barrier(struct r10conf *conf)
971 spin_lock_irqsave(&conf->resync_lock, flags);
973 spin_unlock_irqrestore(&conf->resync_lock, flags);
974 wake_up(&conf->wait_barrier);
977 static void wait_barrier(struct r10conf *conf)
979 spin_lock_irq(&conf->resync_lock);
982 /* Wait for the barrier to drop.
983 * However if there are already pending
984 * requests (preventing the barrier from
985 * rising completely), and the
986 * pre-process bio queue isn't empty,
987 * then don't wait, as we need to empty
988 * that queue to get the nr_pending
991 wait_event_lock_irq(conf->wait_barrier,
995 !bio_list_empty(current->bio_list)),
1000 spin_unlock_irq(&conf->resync_lock);
1003 static void allow_barrier(struct r10conf *conf)
1005 unsigned long flags;
1006 spin_lock_irqsave(&conf->resync_lock, flags);
1008 spin_unlock_irqrestore(&conf->resync_lock, flags);
1009 wake_up(&conf->wait_barrier);
1012 static void freeze_array(struct r10conf *conf)
1014 /* stop syncio and normal IO and wait for everything to
1016 * We increment barrier and nr_waiting, and then
1017 * wait until nr_pending match nr_queued+1
1018 * This is called in the context of one normal IO request
1019 * that has failed. Thus any sync request that might be pending
1020 * will be blocked by nr_pending, and we need to wait for
1021 * pending IO requests to complete or be queued for re-try.
1022 * Thus the number queued (nr_queued) plus this request (1)
1023 * must match the number of pending IOs (nr_pending) before
1026 spin_lock_irq(&conf->resync_lock);
1029 wait_event_lock_irq_cmd(conf->wait_barrier,
1030 conf->nr_pending == conf->nr_queued+1,
1032 flush_pending_writes(conf));
1034 spin_unlock_irq(&conf->resync_lock);
1037 static void unfreeze_array(struct r10conf *conf)
1039 /* reverse the effect of the freeze */
1040 spin_lock_irq(&conf->resync_lock);
1043 wake_up(&conf->wait_barrier);
1044 spin_unlock_irq(&conf->resync_lock);
1047 static sector_t choose_data_offset(struct r10bio *r10_bio,
1048 struct md_rdev *rdev)
1050 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1051 test_bit(R10BIO_Previous, &r10_bio->state))
1052 return rdev->data_offset;
1054 return rdev->new_data_offset;
1057 struct raid10_plug_cb {
1058 struct blk_plug_cb cb;
1059 struct bio_list pending;
1063 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1065 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1067 struct mddev *mddev = plug->cb.data;
1068 struct r10conf *conf = mddev->private;
1071 if (from_schedule || current->bio_list) {
1072 spin_lock_irq(&conf->device_lock);
1073 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1074 conf->pending_count += plug->pending_cnt;
1075 spin_unlock_irq(&conf->device_lock);
1076 md_wakeup_thread(mddev->thread);
1081 /* we aren't scheduling, so we can do the write-out directly. */
1082 bio = bio_list_get(&plug->pending);
1083 bitmap_unplug(mddev->bitmap);
1084 wake_up(&conf->wait_barrier);
1086 while (bio) { /* submit pending writes */
1087 struct bio *next = bio->bi_next;
1088 bio->bi_next = NULL;
1089 generic_make_request(bio);
1095 static void make_request(struct mddev *mddev, struct bio * bio)
1097 struct r10conf *conf = mddev->private;
1098 struct r10bio *r10_bio;
1099 struct bio *read_bio;
1101 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1102 int chunk_sects = chunk_mask + 1;
1103 const int rw = bio_data_dir(bio);
1104 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1105 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1106 const unsigned long do_discard = (bio->bi_rw
1107 & (REQ_DISCARD | REQ_SECURE));
1108 unsigned long flags;
1109 struct md_rdev *blocked_rdev;
1110 struct blk_plug_cb *cb;
1111 struct raid10_plug_cb *plug = NULL;
1112 int sectors_handled;
1116 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1117 md_flush_request(mddev, bio);
1121 /* If this request crosses a chunk boundary, we need to
1122 * split it. This will only happen for 1 PAGE (or less) requests.
1124 if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1126 && (conf->geo.near_copies < conf->geo.raid_disks
1127 || conf->prev.near_copies < conf->prev.raid_disks))) {
1128 struct bio_pair *bp;
1129 /* Sanity check -- queue functions should prevent this happening */
1130 if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) ||
1133 /* This is a one page bio that upper layers
1134 * refuse to split for us, so we need to split it.
1137 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1139 /* Each of these 'make_request' calls will call 'wait_barrier'.
1140 * If the first succeeds but the second blocks due to the resync
1141 * thread raising the barrier, we will deadlock because the
1142 * IO to the underlying device will be queued in generic_make_request
1143 * and will never complete, so will never reduce nr_pending.
1144 * So increment nr_waiting here so no new raise_barriers will
1145 * succeed, and so the second wait_barrier cannot block.
1147 spin_lock_irq(&conf->resync_lock);
1149 spin_unlock_irq(&conf->resync_lock);
1151 make_request(mddev, &bp->bio1);
1152 make_request(mddev, &bp->bio2);
1154 spin_lock_irq(&conf->resync_lock);
1156 wake_up(&conf->wait_barrier);
1157 spin_unlock_irq(&conf->resync_lock);
1159 bio_pair_release(bp);
1162 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1163 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1164 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1170 md_write_start(mddev, bio);
1173 * Register the new request and wait if the reconstruction
1174 * thread has put up a bar for new requests.
1175 * Continue immediately if no resync is active currently.
1179 sectors = bio->bi_size >> 9;
1180 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1181 bio->bi_sector < conf->reshape_progress &&
1182 bio->bi_sector + sectors > conf->reshape_progress) {
1183 /* IO spans the reshape position. Need to wait for
1186 allow_barrier(conf);
1187 wait_event(conf->wait_barrier,
1188 conf->reshape_progress <= bio->bi_sector ||
1189 conf->reshape_progress >= bio->bi_sector + sectors);
1192 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1193 bio_data_dir(bio) == WRITE &&
1194 (mddev->reshape_backwards
1195 ? (bio->bi_sector < conf->reshape_safe &&
1196 bio->bi_sector + sectors > conf->reshape_progress)
1197 : (bio->bi_sector + sectors > conf->reshape_safe &&
1198 bio->bi_sector < conf->reshape_progress))) {
1199 /* Need to update reshape_position in metadata */
1200 mddev->reshape_position = conf->reshape_progress;
1201 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1202 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1203 md_wakeup_thread(mddev->thread);
1204 wait_event(mddev->sb_wait,
1205 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1207 conf->reshape_safe = mddev->reshape_position;
1210 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1212 r10_bio->master_bio = bio;
1213 r10_bio->sectors = sectors;
1215 r10_bio->mddev = mddev;
1216 r10_bio->sector = bio->bi_sector;
1219 /* We might need to issue multiple reads to different
1220 * devices if there are bad blocks around, so we keep
1221 * track of the number of reads in bio->bi_phys_segments.
1222 * If this is 0, there is only one r10_bio and no locking
1223 * will be needed when the request completes. If it is
1224 * non-zero, then it is the number of not-completed requests.
1226 bio->bi_phys_segments = 0;
1227 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1231 * read balancing logic:
1233 struct md_rdev *rdev;
1237 rdev = read_balance(conf, r10_bio, &max_sectors);
1239 raid_end_bio_io(r10_bio);
1242 slot = r10_bio->read_slot;
1244 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1245 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1248 r10_bio->devs[slot].bio = read_bio;
1249 r10_bio->devs[slot].rdev = rdev;
1251 read_bio->bi_sector = r10_bio->devs[slot].addr +
1252 choose_data_offset(r10_bio, rdev);
1253 read_bio->bi_bdev = rdev->bdev;
1254 read_bio->bi_end_io = raid10_end_read_request;
1255 read_bio->bi_rw = READ | do_sync;
1256 read_bio->bi_private = r10_bio;
1258 if (max_sectors < r10_bio->sectors) {
1259 /* Could not read all from this device, so we will
1260 * need another r10_bio.
1262 sectors_handled = (r10_bio->sectors + max_sectors
1264 r10_bio->sectors = max_sectors;
1265 spin_lock_irq(&conf->device_lock);
1266 if (bio->bi_phys_segments == 0)
1267 bio->bi_phys_segments = 2;
1269 bio->bi_phys_segments++;
1270 spin_unlock(&conf->device_lock);
1271 /* Cannot call generic_make_request directly
1272 * as that will be queued in __generic_make_request
1273 * and subsequent mempool_alloc might block
1274 * waiting for it. so hand bio over to raid10d.
1276 reschedule_retry(r10_bio);
1278 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1280 r10_bio->master_bio = bio;
1281 r10_bio->sectors = ((bio->bi_size >> 9)
1284 r10_bio->mddev = mddev;
1285 r10_bio->sector = bio->bi_sector + sectors_handled;
1288 generic_make_request(read_bio);
1295 if (conf->pending_count >= max_queued_requests) {
1296 md_wakeup_thread(mddev->thread);
1297 wait_event(conf->wait_barrier,
1298 conf->pending_count < max_queued_requests);
1300 /* first select target devices under rcu_lock and
1301 * inc refcount on their rdev. Record them by setting
1303 * If there are known/acknowledged bad blocks on any device
1304 * on which we have seen a write error, we want to avoid
1305 * writing to those blocks. This potentially requires several
1306 * writes to write around the bad blocks. Each set of writes
1307 * gets its own r10_bio with a set of bios attached. The number
1308 * of r10_bios is recored in bio->bi_phys_segments just as with
1312 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1313 raid10_find_phys(conf, r10_bio);
1315 blocked_rdev = NULL;
1317 max_sectors = r10_bio->sectors;
1319 for (i = 0; i < conf->copies; i++) {
1320 int d = r10_bio->devs[i].devnum;
1321 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1322 struct md_rdev *rrdev = rcu_dereference(
1323 conf->mirrors[d].replacement);
1326 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1327 atomic_inc(&rdev->nr_pending);
1328 blocked_rdev = rdev;
1331 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1332 atomic_inc(&rrdev->nr_pending);
1333 blocked_rdev = rrdev;
1336 if (rdev && (test_bit(Faulty, &rdev->flags)
1337 || test_bit(Unmerged, &rdev->flags)))
1339 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1340 || test_bit(Unmerged, &rrdev->flags)))
1343 r10_bio->devs[i].bio = NULL;
1344 r10_bio->devs[i].repl_bio = NULL;
1346 if (!rdev && !rrdev) {
1347 set_bit(R10BIO_Degraded, &r10_bio->state);
1350 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1352 sector_t dev_sector = r10_bio->devs[i].addr;
1356 is_bad = is_badblock(rdev, dev_sector,
1358 &first_bad, &bad_sectors);
1360 /* Mustn't write here until the bad block
1363 atomic_inc(&rdev->nr_pending);
1364 set_bit(BlockedBadBlocks, &rdev->flags);
1365 blocked_rdev = rdev;
1368 if (is_bad && first_bad <= dev_sector) {
1369 /* Cannot write here at all */
1370 bad_sectors -= (dev_sector - first_bad);
1371 if (bad_sectors < max_sectors)
1372 /* Mustn't write more than bad_sectors
1373 * to other devices yet
1375 max_sectors = bad_sectors;
1376 /* We don't set R10BIO_Degraded as that
1377 * only applies if the disk is missing,
1378 * so it might be re-added, and we want to
1379 * know to recover this chunk.
1380 * In this case the device is here, and the
1381 * fact that this chunk is not in-sync is
1382 * recorded in the bad block log.
1387 int good_sectors = first_bad - dev_sector;
1388 if (good_sectors < max_sectors)
1389 max_sectors = good_sectors;
1393 r10_bio->devs[i].bio = bio;
1394 atomic_inc(&rdev->nr_pending);
1397 r10_bio->devs[i].repl_bio = bio;
1398 atomic_inc(&rrdev->nr_pending);
1403 if (unlikely(blocked_rdev)) {
1404 /* Have to wait for this device to get unblocked, then retry */
1408 for (j = 0; j < i; j++) {
1409 if (r10_bio->devs[j].bio) {
1410 d = r10_bio->devs[j].devnum;
1411 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1413 if (r10_bio->devs[j].repl_bio) {
1414 struct md_rdev *rdev;
1415 d = r10_bio->devs[j].devnum;
1416 rdev = conf->mirrors[d].replacement;
1418 /* Race with remove_disk */
1420 rdev = conf->mirrors[d].rdev;
1422 rdev_dec_pending(rdev, mddev);
1425 allow_barrier(conf);
1426 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1431 if (max_sectors < r10_bio->sectors) {
1432 /* We are splitting this into multiple parts, so
1433 * we need to prepare for allocating another r10_bio.
1435 r10_bio->sectors = max_sectors;
1436 spin_lock_irq(&conf->device_lock);
1437 if (bio->bi_phys_segments == 0)
1438 bio->bi_phys_segments = 2;
1440 bio->bi_phys_segments++;
1441 spin_unlock_irq(&conf->device_lock);
1443 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1445 atomic_set(&r10_bio->remaining, 1);
1446 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1448 for (i = 0; i < conf->copies; i++) {
1450 int d = r10_bio->devs[i].devnum;
1451 if (r10_bio->devs[i].bio) {
1452 struct md_rdev *rdev = conf->mirrors[d].rdev;
1453 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1454 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1456 r10_bio->devs[i].bio = mbio;
1458 mbio->bi_sector = (r10_bio->devs[i].addr+
1459 choose_data_offset(r10_bio,
1461 mbio->bi_bdev = rdev->bdev;
1462 mbio->bi_end_io = raid10_end_write_request;
1463 mbio->bi_rw = WRITE | do_sync | do_fua | do_discard;
1464 mbio->bi_private = r10_bio;
1466 atomic_inc(&r10_bio->remaining);
1468 cb = blk_check_plugged(raid10_unplug, mddev,
1471 plug = container_of(cb, struct raid10_plug_cb,
1475 spin_lock_irqsave(&conf->device_lock, flags);
1477 bio_list_add(&plug->pending, mbio);
1478 plug->pending_cnt++;
1480 bio_list_add(&conf->pending_bio_list, mbio);
1481 conf->pending_count++;
1483 spin_unlock_irqrestore(&conf->device_lock, flags);
1485 md_wakeup_thread(mddev->thread);
1488 if (r10_bio->devs[i].repl_bio) {
1489 struct md_rdev *rdev = conf->mirrors[d].replacement;
1491 /* Replacement just got moved to main 'rdev' */
1493 rdev = conf->mirrors[d].rdev;
1495 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1496 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1498 r10_bio->devs[i].repl_bio = mbio;
1500 mbio->bi_sector = (r10_bio->devs[i].addr +
1503 mbio->bi_bdev = rdev->bdev;
1504 mbio->bi_end_io = raid10_end_write_request;
1505 mbio->bi_rw = WRITE | do_sync | do_fua | do_discard;
1506 mbio->bi_private = r10_bio;
1508 atomic_inc(&r10_bio->remaining);
1509 spin_lock_irqsave(&conf->device_lock, flags);
1510 bio_list_add(&conf->pending_bio_list, mbio);
1511 conf->pending_count++;
1512 spin_unlock_irqrestore(&conf->device_lock, flags);
1513 if (!mddev_check_plugged(mddev))
1514 md_wakeup_thread(mddev->thread);
1518 /* Don't remove the bias on 'remaining' (one_write_done) until
1519 * after checking if we need to go around again.
1522 if (sectors_handled < (bio->bi_size >> 9)) {
1523 one_write_done(r10_bio);
1524 /* We need another r10_bio. It has already been counted
1525 * in bio->bi_phys_segments.
1527 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1529 r10_bio->master_bio = bio;
1530 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1532 r10_bio->mddev = mddev;
1533 r10_bio->sector = bio->bi_sector + sectors_handled;
1537 one_write_done(r10_bio);
1539 /* In case raid10d snuck in to freeze_array */
1540 wake_up(&conf->wait_barrier);
1543 static void status(struct seq_file *seq, struct mddev *mddev)
1545 struct r10conf *conf = mddev->private;
1548 if (conf->geo.near_copies < conf->geo.raid_disks)
1549 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1550 if (conf->geo.near_copies > 1)
1551 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1552 if (conf->geo.far_copies > 1) {
1553 if (conf->geo.far_offset)
1554 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1556 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1558 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1559 conf->geo.raid_disks - mddev->degraded);
1560 for (i = 0; i < conf->geo.raid_disks; i++)
1561 seq_printf(seq, "%s",
1562 conf->mirrors[i].rdev &&
1563 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1564 seq_printf(seq, "]");
1567 /* check if there are enough drives for
1568 * every block to appear on atleast one.
1569 * Don't consider the device numbered 'ignore'
1570 * as we might be about to remove it.
1572 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1577 int n = conf->copies;
1581 if (conf->mirrors[this].rdev &&
1584 this = (this+1) % geo->raid_disks;
1588 first = (first + geo->near_copies) % geo->raid_disks;
1589 } while (first != 0);
1593 static int enough(struct r10conf *conf, int ignore)
1595 return _enough(conf, &conf->geo, ignore) &&
1596 _enough(conf, &conf->prev, ignore);
1599 static void error(struct mddev *mddev, struct md_rdev *rdev)
1601 char b[BDEVNAME_SIZE];
1602 struct r10conf *conf = mddev->private;
1605 * If it is not operational, then we have already marked it as dead
1606 * else if it is the last working disks, ignore the error, let the
1607 * next level up know.
1608 * else mark the drive as failed
1610 if (test_bit(In_sync, &rdev->flags)
1611 && !enough(conf, rdev->raid_disk))
1613 * Don't fail the drive, just return an IO error.
1616 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1617 unsigned long flags;
1618 spin_lock_irqsave(&conf->device_lock, flags);
1620 spin_unlock_irqrestore(&conf->device_lock, flags);
1622 * if recovery is running, make sure it aborts.
1624 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1626 set_bit(Blocked, &rdev->flags);
1627 set_bit(Faulty, &rdev->flags);
1628 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1630 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1631 "md/raid10:%s: Operation continuing on %d devices.\n",
1632 mdname(mddev), bdevname(rdev->bdev, b),
1633 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1636 static void print_conf(struct r10conf *conf)
1639 struct raid10_info *tmp;
1641 printk(KERN_DEBUG "RAID10 conf printout:\n");
1643 printk(KERN_DEBUG "(!conf)\n");
1646 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1647 conf->geo.raid_disks);
1649 for (i = 0; i < conf->geo.raid_disks; i++) {
1650 char b[BDEVNAME_SIZE];
1651 tmp = conf->mirrors + i;
1653 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1654 i, !test_bit(In_sync, &tmp->rdev->flags),
1655 !test_bit(Faulty, &tmp->rdev->flags),
1656 bdevname(tmp->rdev->bdev,b));
1660 static void close_sync(struct r10conf *conf)
1663 allow_barrier(conf);
1665 mempool_destroy(conf->r10buf_pool);
1666 conf->r10buf_pool = NULL;
1669 static int raid10_spare_active(struct mddev *mddev)
1672 struct r10conf *conf = mddev->private;
1673 struct raid10_info *tmp;
1675 unsigned long flags;
1678 * Find all non-in_sync disks within the RAID10 configuration
1679 * and mark them in_sync
1681 for (i = 0; i < conf->geo.raid_disks; i++) {
1682 tmp = conf->mirrors + i;
1683 if (tmp->replacement
1684 && tmp->replacement->recovery_offset == MaxSector
1685 && !test_bit(Faulty, &tmp->replacement->flags)
1686 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1687 /* Replacement has just become active */
1689 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1692 /* Replaced device not technically faulty,
1693 * but we need to be sure it gets removed
1694 * and never re-added.
1696 set_bit(Faulty, &tmp->rdev->flags);
1697 sysfs_notify_dirent_safe(
1698 tmp->rdev->sysfs_state);
1700 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1701 } else if (tmp->rdev
1702 && !test_bit(Faulty, &tmp->rdev->flags)
1703 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1705 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1708 spin_lock_irqsave(&conf->device_lock, flags);
1709 mddev->degraded -= count;
1710 spin_unlock_irqrestore(&conf->device_lock, flags);
1717 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1719 struct r10conf *conf = mddev->private;
1723 int last = conf->geo.raid_disks - 1;
1724 struct request_queue *q = bdev_get_queue(rdev->bdev);
1726 if (mddev->recovery_cp < MaxSector)
1727 /* only hot-add to in-sync arrays, as recovery is
1728 * very different from resync
1731 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1734 if (rdev->raid_disk >= 0)
1735 first = last = rdev->raid_disk;
1737 if (q->merge_bvec_fn) {
1738 set_bit(Unmerged, &rdev->flags);
1739 mddev->merge_check_needed = 1;
1742 if (rdev->saved_raid_disk >= first &&
1743 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1744 mirror = rdev->saved_raid_disk;
1747 for ( ; mirror <= last ; mirror++) {
1748 struct raid10_info *p = &conf->mirrors[mirror];
1749 if (p->recovery_disabled == mddev->recovery_disabled)
1752 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1753 p->replacement != NULL)
1755 clear_bit(In_sync, &rdev->flags);
1756 set_bit(Replacement, &rdev->flags);
1757 rdev->raid_disk = mirror;
1759 disk_stack_limits(mddev->gendisk, rdev->bdev,
1760 rdev->data_offset << 9);
1762 rcu_assign_pointer(p->replacement, rdev);
1766 disk_stack_limits(mddev->gendisk, rdev->bdev,
1767 rdev->data_offset << 9);
1769 p->head_position = 0;
1770 p->recovery_disabled = mddev->recovery_disabled - 1;
1771 rdev->raid_disk = mirror;
1773 if (rdev->saved_raid_disk != mirror)
1775 rcu_assign_pointer(p->rdev, rdev);
1778 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1779 /* Some requests might not have seen this new
1780 * merge_bvec_fn. We must wait for them to complete
1781 * before merging the device fully.
1782 * First we make sure any code which has tested
1783 * our function has submitted the request, then
1784 * we wait for all outstanding requests to complete.
1786 synchronize_sched();
1787 raise_barrier(conf, 0);
1788 lower_barrier(conf);
1789 clear_bit(Unmerged, &rdev->flags);
1791 md_integrity_add_rdev(rdev, mddev);
1792 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1793 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1799 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1801 struct r10conf *conf = mddev->private;
1803 int number = rdev->raid_disk;
1804 struct md_rdev **rdevp;
1805 struct raid10_info *p = conf->mirrors + number;
1808 if (rdev == p->rdev)
1810 else if (rdev == p->replacement)
1811 rdevp = &p->replacement;
1815 if (test_bit(In_sync, &rdev->flags) ||
1816 atomic_read(&rdev->nr_pending)) {
1820 /* Only remove faulty devices if recovery
1823 if (!test_bit(Faulty, &rdev->flags) &&
1824 mddev->recovery_disabled != p->recovery_disabled &&
1825 (!p->replacement || p->replacement == rdev) &&
1826 number < conf->geo.raid_disks &&
1833 if (atomic_read(&rdev->nr_pending)) {
1834 /* lost the race, try later */
1838 } else if (p->replacement) {
1839 /* We must have just cleared 'rdev' */
1840 p->rdev = p->replacement;
1841 clear_bit(Replacement, &p->replacement->flags);
1842 smp_mb(); /* Make sure other CPUs may see both as identical
1843 * but will never see neither -- if they are careful.
1845 p->replacement = NULL;
1846 clear_bit(WantReplacement, &rdev->flags);
1848 /* We might have just remove the Replacement as faulty
1849 * Clear the flag just in case
1851 clear_bit(WantReplacement, &rdev->flags);
1853 err = md_integrity_register(mddev);
1862 static void end_sync_read(struct bio *bio, int error)
1864 struct r10bio *r10_bio = bio->bi_private;
1865 struct r10conf *conf = r10_bio->mddev->private;
1868 if (bio == r10_bio->master_bio) {
1869 /* this is a reshape read */
1870 d = r10_bio->read_slot; /* really the read dev */
1872 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1874 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1875 set_bit(R10BIO_Uptodate, &r10_bio->state);
1877 /* The write handler will notice the lack of
1878 * R10BIO_Uptodate and record any errors etc
1880 atomic_add(r10_bio->sectors,
1881 &conf->mirrors[d].rdev->corrected_errors);
1883 /* for reconstruct, we always reschedule after a read.
1884 * for resync, only after all reads
1886 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1887 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1888 atomic_dec_and_test(&r10_bio->remaining)) {
1889 /* we have read all the blocks,
1890 * do the comparison in process context in raid10d
1892 reschedule_retry(r10_bio);
1896 static void end_sync_request(struct r10bio *r10_bio)
1898 struct mddev *mddev = r10_bio->mddev;
1900 while (atomic_dec_and_test(&r10_bio->remaining)) {
1901 if (r10_bio->master_bio == NULL) {
1902 /* the primary of several recovery bios */
1903 sector_t s = r10_bio->sectors;
1904 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1905 test_bit(R10BIO_WriteError, &r10_bio->state))
1906 reschedule_retry(r10_bio);
1909 md_done_sync(mddev, s, 1);
1912 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1913 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1914 test_bit(R10BIO_WriteError, &r10_bio->state))
1915 reschedule_retry(r10_bio);
1923 static void end_sync_write(struct bio *bio, int error)
1925 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1926 struct r10bio *r10_bio = bio->bi_private;
1927 struct mddev *mddev = r10_bio->mddev;
1928 struct r10conf *conf = mddev->private;
1934 struct md_rdev *rdev = NULL;
1936 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1938 rdev = conf->mirrors[d].replacement;
1940 rdev = conf->mirrors[d].rdev;
1944 md_error(mddev, rdev);
1946 set_bit(WriteErrorSeen, &rdev->flags);
1947 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1948 set_bit(MD_RECOVERY_NEEDED,
1949 &rdev->mddev->recovery);
1950 set_bit(R10BIO_WriteError, &r10_bio->state);
1952 } else if (is_badblock(rdev,
1953 r10_bio->devs[slot].addr,
1955 &first_bad, &bad_sectors))
1956 set_bit(R10BIO_MadeGood, &r10_bio->state);
1958 rdev_dec_pending(rdev, mddev);
1960 end_sync_request(r10_bio);
1964 * Note: sync and recover and handled very differently for raid10
1965 * This code is for resync.
1966 * For resync, we read through virtual addresses and read all blocks.
1967 * If there is any error, we schedule a write. The lowest numbered
1968 * drive is authoritative.
1969 * However requests come for physical address, so we need to map.
1970 * For every physical address there are raid_disks/copies virtual addresses,
1971 * which is always are least one, but is not necessarly an integer.
1972 * This means that a physical address can span multiple chunks, so we may
1973 * have to submit multiple io requests for a single sync request.
1976 * We check if all blocks are in-sync and only write to blocks that
1979 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1981 struct r10conf *conf = mddev->private;
1983 struct bio *tbio, *fbio;
1986 atomic_set(&r10_bio->remaining, 1);
1988 /* find the first device with a block */
1989 for (i=0; i<conf->copies; i++)
1990 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1993 if (i == conf->copies)
1997 fbio = r10_bio->devs[i].bio;
1999 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2000 /* now find blocks with errors */
2001 for (i=0 ; i < conf->copies ; i++) {
2004 tbio = r10_bio->devs[i].bio;
2006 if (tbio->bi_end_io != end_sync_read)
2010 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2011 /* We know that the bi_io_vec layout is the same for
2012 * both 'first' and 'i', so we just compare them.
2013 * All vec entries are PAGE_SIZE;
2015 for (j = 0; j < vcnt; j++)
2016 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2017 page_address(tbio->bi_io_vec[j].bv_page),
2018 fbio->bi_io_vec[j].bv_len))
2022 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2023 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2024 /* Don't fix anything. */
2027 /* Ok, we need to write this bio, either to correct an
2028 * inconsistency or to correct an unreadable block.
2029 * First we need to fixup bv_offset, bv_len and
2030 * bi_vecs, as the read request might have corrupted these
2032 tbio->bi_vcnt = vcnt;
2033 tbio->bi_size = r10_bio->sectors << 9;
2035 tbio->bi_phys_segments = 0;
2036 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
2037 tbio->bi_flags |= 1 << BIO_UPTODATE;
2038 tbio->bi_next = NULL;
2039 tbio->bi_rw = WRITE;
2040 tbio->bi_private = r10_bio;
2041 tbio->bi_sector = r10_bio->devs[i].addr;
2043 for (j=0; j < vcnt ; j++) {
2044 tbio->bi_io_vec[j].bv_offset = 0;
2045 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2047 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2048 page_address(fbio->bi_io_vec[j].bv_page),
2051 tbio->bi_end_io = end_sync_write;
2053 d = r10_bio->devs[i].devnum;
2054 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2055 atomic_inc(&r10_bio->remaining);
2056 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
2058 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2059 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2060 generic_make_request(tbio);
2063 /* Now write out to any replacement devices
2066 for (i = 0; i < conf->copies; i++) {
2069 tbio = r10_bio->devs[i].repl_bio;
2070 if (!tbio || !tbio->bi_end_io)
2072 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2073 && r10_bio->devs[i].bio != fbio)
2074 for (j = 0; j < vcnt; j++)
2075 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2076 page_address(fbio->bi_io_vec[j].bv_page),
2078 d = r10_bio->devs[i].devnum;
2079 atomic_inc(&r10_bio->remaining);
2080 md_sync_acct(conf->mirrors[d].replacement->bdev,
2081 tbio->bi_size >> 9);
2082 generic_make_request(tbio);
2086 if (atomic_dec_and_test(&r10_bio->remaining)) {
2087 md_done_sync(mddev, r10_bio->sectors, 1);
2093 * Now for the recovery code.
2094 * Recovery happens across physical sectors.
2095 * We recover all non-is_sync drives by finding the virtual address of
2096 * each, and then choose a working drive that also has that virt address.
2097 * There is a separate r10_bio for each non-in_sync drive.
2098 * Only the first two slots are in use. The first for reading,
2099 * The second for writing.
2102 static void fix_recovery_read_error(struct r10bio *r10_bio)
2104 /* We got a read error during recovery.
2105 * We repeat the read in smaller page-sized sections.
2106 * If a read succeeds, write it to the new device or record
2107 * a bad block if we cannot.
2108 * If a read fails, record a bad block on both old and
2111 struct mddev *mddev = r10_bio->mddev;
2112 struct r10conf *conf = mddev->private;
2113 struct bio *bio = r10_bio->devs[0].bio;
2115 int sectors = r10_bio->sectors;
2117 int dr = r10_bio->devs[0].devnum;
2118 int dw = r10_bio->devs[1].devnum;
2122 struct md_rdev *rdev;
2126 if (s > (PAGE_SIZE>>9))
2129 rdev = conf->mirrors[dr].rdev;
2130 addr = r10_bio->devs[0].addr + sect,
2131 ok = sync_page_io(rdev,
2134 bio->bi_io_vec[idx].bv_page,
2137 rdev = conf->mirrors[dw].rdev;
2138 addr = r10_bio->devs[1].addr + sect;
2139 ok = sync_page_io(rdev,
2142 bio->bi_io_vec[idx].bv_page,
2145 set_bit(WriteErrorSeen, &rdev->flags);
2146 if (!test_and_set_bit(WantReplacement,
2148 set_bit(MD_RECOVERY_NEEDED,
2149 &rdev->mddev->recovery);
2153 /* We don't worry if we cannot set a bad block -
2154 * it really is bad so there is no loss in not
2157 rdev_set_badblocks(rdev, addr, s, 0);
2159 if (rdev != conf->mirrors[dw].rdev) {
2160 /* need bad block on destination too */
2161 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2162 addr = r10_bio->devs[1].addr + sect;
2163 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2165 /* just abort the recovery */
2167 "md/raid10:%s: recovery aborted"
2168 " due to read error\n",
2171 conf->mirrors[dw].recovery_disabled
2172 = mddev->recovery_disabled;
2173 set_bit(MD_RECOVERY_INTR,
2186 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2188 struct r10conf *conf = mddev->private;
2190 struct bio *wbio, *wbio2;
2192 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2193 fix_recovery_read_error(r10_bio);
2194 end_sync_request(r10_bio);
2199 * share the pages with the first bio
2200 * and submit the write request
2202 d = r10_bio->devs[1].devnum;
2203 wbio = r10_bio->devs[1].bio;
2204 wbio2 = r10_bio->devs[1].repl_bio;
2205 if (wbio->bi_end_io) {
2206 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2207 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2208 generic_make_request(wbio);
2210 if (wbio2 && wbio2->bi_end_io) {
2211 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2212 md_sync_acct(conf->mirrors[d].replacement->bdev,
2213 wbio2->bi_size >> 9);
2214 generic_make_request(wbio2);
2220 * Used by fix_read_error() to decay the per rdev read_errors.
2221 * We halve the read error count for every hour that has elapsed
2222 * since the last recorded read error.
2225 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2227 struct timespec cur_time_mon;
2228 unsigned long hours_since_last;
2229 unsigned int read_errors = atomic_read(&rdev->read_errors);
2231 ktime_get_ts(&cur_time_mon);
2233 if (rdev->last_read_error.tv_sec == 0 &&
2234 rdev->last_read_error.tv_nsec == 0) {
2235 /* first time we've seen a read error */
2236 rdev->last_read_error = cur_time_mon;
2240 hours_since_last = (cur_time_mon.tv_sec -
2241 rdev->last_read_error.tv_sec) / 3600;
2243 rdev->last_read_error = cur_time_mon;
2246 * if hours_since_last is > the number of bits in read_errors
2247 * just set read errors to 0. We do this to avoid
2248 * overflowing the shift of read_errors by hours_since_last.
2250 if (hours_since_last >= 8 * sizeof(read_errors))
2251 atomic_set(&rdev->read_errors, 0);
2253 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2256 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2257 int sectors, struct page *page, int rw)
2262 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2263 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2265 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2269 set_bit(WriteErrorSeen, &rdev->flags);
2270 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2271 set_bit(MD_RECOVERY_NEEDED,
2272 &rdev->mddev->recovery);
2274 /* need to record an error - either for the block or the device */
2275 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2276 md_error(rdev->mddev, rdev);
2281 * This is a kernel thread which:
2283 * 1. Retries failed read operations on working mirrors.
2284 * 2. Updates the raid superblock when problems encounter.
2285 * 3. Performs writes following reads for array synchronising.
2288 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2290 int sect = 0; /* Offset from r10_bio->sector */
2291 int sectors = r10_bio->sectors;
2292 struct md_rdev*rdev;
2293 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2294 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2296 /* still own a reference to this rdev, so it cannot
2297 * have been cleared recently.
2299 rdev = conf->mirrors[d].rdev;
2301 if (test_bit(Faulty, &rdev->flags))
2302 /* drive has already been failed, just ignore any
2303 more fix_read_error() attempts */
2306 check_decay_read_errors(mddev, rdev);
2307 atomic_inc(&rdev->read_errors);
2308 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2309 char b[BDEVNAME_SIZE];
2310 bdevname(rdev->bdev, b);
2313 "md/raid10:%s: %s: Raid device exceeded "
2314 "read_error threshold [cur %d:max %d]\n",
2316 atomic_read(&rdev->read_errors), max_read_errors);
2318 "md/raid10:%s: %s: Failing raid device\n",
2320 md_error(mddev, conf->mirrors[d].rdev);
2321 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2327 int sl = r10_bio->read_slot;
2331 if (s > (PAGE_SIZE>>9))
2339 d = r10_bio->devs[sl].devnum;
2340 rdev = rcu_dereference(conf->mirrors[d].rdev);
2342 !test_bit(Unmerged, &rdev->flags) &&
2343 test_bit(In_sync, &rdev->flags) &&
2344 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2345 &first_bad, &bad_sectors) == 0) {
2346 atomic_inc(&rdev->nr_pending);
2348 success = sync_page_io(rdev,
2349 r10_bio->devs[sl].addr +
2352 conf->tmppage, READ, false);
2353 rdev_dec_pending(rdev, mddev);
2359 if (sl == conf->copies)
2361 } while (!success && sl != r10_bio->read_slot);
2365 /* Cannot read from anywhere, just mark the block
2366 * as bad on the first device to discourage future
2369 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2370 rdev = conf->mirrors[dn].rdev;
2372 if (!rdev_set_badblocks(
2374 r10_bio->devs[r10_bio->read_slot].addr
2377 md_error(mddev, rdev);
2378 r10_bio->devs[r10_bio->read_slot].bio
2385 /* write it back and re-read */
2387 while (sl != r10_bio->read_slot) {
2388 char b[BDEVNAME_SIZE];
2393 d = r10_bio->devs[sl].devnum;
2394 rdev = rcu_dereference(conf->mirrors[d].rdev);
2396 test_bit(Unmerged, &rdev->flags) ||
2397 !test_bit(In_sync, &rdev->flags))
2400 atomic_inc(&rdev->nr_pending);
2402 if (r10_sync_page_io(rdev,
2403 r10_bio->devs[sl].addr +
2405 s, conf->tmppage, WRITE)
2407 /* Well, this device is dead */
2409 "md/raid10:%s: read correction "
2411 " (%d sectors at %llu on %s)\n",
2413 (unsigned long long)(
2415 choose_data_offset(r10_bio,
2417 bdevname(rdev->bdev, b));
2418 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2421 bdevname(rdev->bdev, b));
2423 rdev_dec_pending(rdev, mddev);
2427 while (sl != r10_bio->read_slot) {
2428 char b[BDEVNAME_SIZE];
2433 d = r10_bio->devs[sl].devnum;
2434 rdev = rcu_dereference(conf->mirrors[d].rdev);
2436 !test_bit(In_sync, &rdev->flags))
2439 atomic_inc(&rdev->nr_pending);
2441 switch (r10_sync_page_io(rdev,
2442 r10_bio->devs[sl].addr +
2447 /* Well, this device is dead */
2449 "md/raid10:%s: unable to read back "
2451 " (%d sectors at %llu on %s)\n",
2453 (unsigned long long)(
2455 choose_data_offset(r10_bio, rdev)),
2456 bdevname(rdev->bdev, b));
2457 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2460 bdevname(rdev->bdev, b));
2464 "md/raid10:%s: read error corrected"
2465 " (%d sectors at %llu on %s)\n",
2467 (unsigned long long)(
2469 choose_data_offset(r10_bio, rdev)),
2470 bdevname(rdev->bdev, b));
2471 atomic_add(s, &rdev->corrected_errors);
2474 rdev_dec_pending(rdev, mddev);
2484 static void bi_complete(struct bio *bio, int error)
2486 complete((struct completion *)bio->bi_private);
2489 static int submit_bio_wait(int rw, struct bio *bio)
2491 struct completion event;
2494 init_completion(&event);
2495 bio->bi_private = &event;
2496 bio->bi_end_io = bi_complete;
2497 submit_bio(rw, bio);
2498 wait_for_completion(&event);
2500 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2503 static int narrow_write_error(struct r10bio *r10_bio, int i)
2505 struct bio *bio = r10_bio->master_bio;
2506 struct mddev *mddev = r10_bio->mddev;
2507 struct r10conf *conf = mddev->private;
2508 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2509 /* bio has the data to be written to slot 'i' where
2510 * we just recently had a write error.
2511 * We repeatedly clone the bio and trim down to one block,
2512 * then try the write. Where the write fails we record
2514 * It is conceivable that the bio doesn't exactly align with
2515 * blocks. We must handle this.
2517 * We currently own a reference to the rdev.
2523 int sect_to_write = r10_bio->sectors;
2526 if (rdev->badblocks.shift < 0)
2529 block_sectors = 1 << rdev->badblocks.shift;
2530 sector = r10_bio->sector;
2531 sectors = ((r10_bio->sector + block_sectors)
2532 & ~(sector_t)(block_sectors - 1))
2535 while (sect_to_write) {
2537 if (sectors > sect_to_write)
2538 sectors = sect_to_write;
2539 /* Write at 'sector' for 'sectors' */
2540 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2541 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2542 wbio->bi_sector = (r10_bio->devs[i].addr+
2543 choose_data_offset(r10_bio, rdev) +
2544 (sector - r10_bio->sector));
2545 wbio->bi_bdev = rdev->bdev;
2546 if (submit_bio_wait(WRITE, wbio) == 0)
2548 ok = rdev_set_badblocks(rdev, sector,
2553 sect_to_write -= sectors;
2555 sectors = block_sectors;
2560 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2562 int slot = r10_bio->read_slot;
2564 struct r10conf *conf = mddev->private;
2565 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2566 char b[BDEVNAME_SIZE];
2567 unsigned long do_sync;
2570 /* we got a read error. Maybe the drive is bad. Maybe just
2571 * the block and we can fix it.
2572 * We freeze all other IO, and try reading the block from
2573 * other devices. When we find one, we re-write
2574 * and check it that fixes the read error.
2575 * This is all done synchronously while the array is
2578 bio = r10_bio->devs[slot].bio;
2579 bdevname(bio->bi_bdev, b);
2581 r10_bio->devs[slot].bio = NULL;
2583 if (mddev->ro == 0) {
2585 fix_read_error(conf, mddev, r10_bio);
2586 unfreeze_array(conf);
2588 r10_bio->devs[slot].bio = IO_BLOCKED;
2590 rdev_dec_pending(rdev, mddev);
2593 rdev = read_balance(conf, r10_bio, &max_sectors);
2595 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2596 " read error for block %llu\n",
2598 (unsigned long long)r10_bio->sector);
2599 raid_end_bio_io(r10_bio);
2603 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2604 slot = r10_bio->read_slot;
2607 "md/raid10:%s: %s: redirecting "
2608 "sector %llu to another mirror\n",
2610 bdevname(rdev->bdev, b),
2611 (unsigned long long)r10_bio->sector);
2612 bio = bio_clone_mddev(r10_bio->master_bio,
2615 r10_bio->sector - bio->bi_sector,
2617 r10_bio->devs[slot].bio = bio;
2618 r10_bio->devs[slot].rdev = rdev;
2619 bio->bi_sector = r10_bio->devs[slot].addr
2620 + choose_data_offset(r10_bio, rdev);
2621 bio->bi_bdev = rdev->bdev;
2622 bio->bi_rw = READ | do_sync;
2623 bio->bi_private = r10_bio;
2624 bio->bi_end_io = raid10_end_read_request;
2625 if (max_sectors < r10_bio->sectors) {
2626 /* Drat - have to split this up more */
2627 struct bio *mbio = r10_bio->master_bio;
2628 int sectors_handled =
2629 r10_bio->sector + max_sectors
2631 r10_bio->sectors = max_sectors;
2632 spin_lock_irq(&conf->device_lock);
2633 if (mbio->bi_phys_segments == 0)
2634 mbio->bi_phys_segments = 2;
2636 mbio->bi_phys_segments++;
2637 spin_unlock_irq(&conf->device_lock);
2638 generic_make_request(bio);
2640 r10_bio = mempool_alloc(conf->r10bio_pool,
2642 r10_bio->master_bio = mbio;
2643 r10_bio->sectors = (mbio->bi_size >> 9)
2646 set_bit(R10BIO_ReadError,
2648 r10_bio->mddev = mddev;
2649 r10_bio->sector = mbio->bi_sector
2654 generic_make_request(bio);
2657 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2659 /* Some sort of write request has finished and it
2660 * succeeded in writing where we thought there was a
2661 * bad block. So forget the bad block.
2662 * Or possibly if failed and we need to record
2666 struct md_rdev *rdev;
2668 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2669 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2670 for (m = 0; m < conf->copies; m++) {
2671 int dev = r10_bio->devs[m].devnum;
2672 rdev = conf->mirrors[dev].rdev;
2673 if (r10_bio->devs[m].bio == NULL)
2675 if (test_bit(BIO_UPTODATE,
2676 &r10_bio->devs[m].bio->bi_flags)) {
2677 rdev_clear_badblocks(
2679 r10_bio->devs[m].addr,
2680 r10_bio->sectors, 0);
2682 if (!rdev_set_badblocks(
2684 r10_bio->devs[m].addr,
2685 r10_bio->sectors, 0))
2686 md_error(conf->mddev, rdev);
2688 rdev = conf->mirrors[dev].replacement;
2689 if (r10_bio->devs[m].repl_bio == NULL)
2691 if (test_bit(BIO_UPTODATE,
2692 &r10_bio->devs[m].repl_bio->bi_flags)) {
2693 rdev_clear_badblocks(
2695 r10_bio->devs[m].addr,
2696 r10_bio->sectors, 0);
2698 if (!rdev_set_badblocks(
2700 r10_bio->devs[m].addr,
2701 r10_bio->sectors, 0))
2702 md_error(conf->mddev, rdev);
2707 for (m = 0; m < conf->copies; m++) {
2708 int dev = r10_bio->devs[m].devnum;
2709 struct bio *bio = r10_bio->devs[m].bio;
2710 rdev = conf->mirrors[dev].rdev;
2711 if (bio == IO_MADE_GOOD) {
2712 rdev_clear_badblocks(
2714 r10_bio->devs[m].addr,
2715 r10_bio->sectors, 0);
2716 rdev_dec_pending(rdev, conf->mddev);
2717 } else if (bio != NULL &&
2718 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2719 if (!narrow_write_error(r10_bio, m)) {
2720 md_error(conf->mddev, rdev);
2721 set_bit(R10BIO_Degraded,
2724 rdev_dec_pending(rdev, conf->mddev);
2726 bio = r10_bio->devs[m].repl_bio;
2727 rdev = conf->mirrors[dev].replacement;
2728 if (rdev && bio == IO_MADE_GOOD) {
2729 rdev_clear_badblocks(
2731 r10_bio->devs[m].addr,
2732 r10_bio->sectors, 0);
2733 rdev_dec_pending(rdev, conf->mddev);
2736 if (test_bit(R10BIO_WriteError,
2738 close_write(r10_bio);
2739 raid_end_bio_io(r10_bio);
2743 static void raid10d(struct md_thread *thread)
2745 struct mddev *mddev = thread->mddev;
2746 struct r10bio *r10_bio;
2747 unsigned long flags;
2748 struct r10conf *conf = mddev->private;
2749 struct list_head *head = &conf->retry_list;
2750 struct blk_plug plug;
2752 md_check_recovery(mddev);
2754 blk_start_plug(&plug);
2757 flush_pending_writes(conf);
2759 spin_lock_irqsave(&conf->device_lock, flags);
2760 if (list_empty(head)) {
2761 spin_unlock_irqrestore(&conf->device_lock, flags);
2764 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2765 list_del(head->prev);
2767 spin_unlock_irqrestore(&conf->device_lock, flags);
2769 mddev = r10_bio->mddev;
2770 conf = mddev->private;
2771 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2772 test_bit(R10BIO_WriteError, &r10_bio->state))
2773 handle_write_completed(conf, r10_bio);
2774 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2775 reshape_request_write(mddev, r10_bio);
2776 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2777 sync_request_write(mddev, r10_bio);
2778 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2779 recovery_request_write(mddev, r10_bio);
2780 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2781 handle_read_error(mddev, r10_bio);
2783 /* just a partial read to be scheduled from a
2786 int slot = r10_bio->read_slot;
2787 generic_make_request(r10_bio->devs[slot].bio);
2791 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2792 md_check_recovery(mddev);
2794 blk_finish_plug(&plug);
2798 static int init_resync(struct r10conf *conf)
2803 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2804 BUG_ON(conf->r10buf_pool);
2805 conf->have_replacement = 0;
2806 for (i = 0; i < conf->geo.raid_disks; i++)
2807 if (conf->mirrors[i].replacement)
2808 conf->have_replacement = 1;
2809 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2810 if (!conf->r10buf_pool)
2812 conf->next_resync = 0;
2817 * perform a "sync" on one "block"
2819 * We need to make sure that no normal I/O request - particularly write
2820 * requests - conflict with active sync requests.
2822 * This is achieved by tracking pending requests and a 'barrier' concept
2823 * that can be installed to exclude normal IO requests.
2825 * Resync and recovery are handled very differently.
2826 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2828 * For resync, we iterate over virtual addresses, read all copies,
2829 * and update if there are differences. If only one copy is live,
2831 * For recovery, we iterate over physical addresses, read a good
2832 * value for each non-in_sync drive, and over-write.
2834 * So, for recovery we may have several outstanding complex requests for a
2835 * given address, one for each out-of-sync device. We model this by allocating
2836 * a number of r10_bio structures, one for each out-of-sync device.
2837 * As we setup these structures, we collect all bio's together into a list
2838 * which we then process collectively to add pages, and then process again
2839 * to pass to generic_make_request.
2841 * The r10_bio structures are linked using a borrowed master_bio pointer.
2842 * This link is counted in ->remaining. When the r10_bio that points to NULL
2843 * has its remaining count decremented to 0, the whole complex operation
2848 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2849 int *skipped, int go_faster)
2851 struct r10conf *conf = mddev->private;
2852 struct r10bio *r10_bio;
2853 struct bio *biolist = NULL, *bio;
2854 sector_t max_sector, nr_sectors;
2857 sector_t sync_blocks;
2858 sector_t sectors_skipped = 0;
2859 int chunks_skipped = 0;
2860 sector_t chunk_mask = conf->geo.chunk_mask;
2862 if (!conf->r10buf_pool)
2863 if (init_resync(conf))
2867 max_sector = mddev->dev_sectors;
2868 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2869 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2870 max_sector = mddev->resync_max_sectors;
2871 if (sector_nr >= max_sector) {
2872 /* If we aborted, we need to abort the
2873 * sync on the 'current' bitmap chucks (there can
2874 * be several when recovering multiple devices).
2875 * as we may have started syncing it but not finished.
2876 * We can find the current address in
2877 * mddev->curr_resync, but for recovery,
2878 * we need to convert that to several
2879 * virtual addresses.
2881 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2886 if (mddev->curr_resync < max_sector) { /* aborted */
2887 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2888 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2890 else for (i = 0; i < conf->geo.raid_disks; i++) {
2892 raid10_find_virt(conf, mddev->curr_resync, i);
2893 bitmap_end_sync(mddev->bitmap, sect,
2897 /* completed sync */
2898 if ((!mddev->bitmap || conf->fullsync)
2899 && conf->have_replacement
2900 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2901 /* Completed a full sync so the replacements
2902 * are now fully recovered.
2904 for (i = 0; i < conf->geo.raid_disks; i++)
2905 if (conf->mirrors[i].replacement)
2906 conf->mirrors[i].replacement
2912 bitmap_close_sync(mddev->bitmap);
2915 return sectors_skipped;
2918 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2919 return reshape_request(mddev, sector_nr, skipped);
2921 if (chunks_skipped >= conf->geo.raid_disks) {
2922 /* if there has been nothing to do on any drive,
2923 * then there is nothing to do at all..
2926 return (max_sector - sector_nr) + sectors_skipped;
2929 if (max_sector > mddev->resync_max)
2930 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2932 /* make sure whole request will fit in a chunk - if chunks
2935 if (conf->geo.near_copies < conf->geo.raid_disks &&
2936 max_sector > (sector_nr | chunk_mask))
2937 max_sector = (sector_nr | chunk_mask) + 1;
2939 * If there is non-resync activity waiting for us then
2940 * put in a delay to throttle resync.
2942 if (!go_faster && conf->nr_waiting)
2943 msleep_interruptible(1000);
2945 /* Again, very different code for resync and recovery.
2946 * Both must result in an r10bio with a list of bios that
2947 * have bi_end_io, bi_sector, bi_bdev set,
2948 * and bi_private set to the r10bio.
2949 * For recovery, we may actually create several r10bios
2950 * with 2 bios in each, that correspond to the bios in the main one.
2951 * In this case, the subordinate r10bios link back through a
2952 * borrowed master_bio pointer, and the counter in the master
2953 * includes a ref from each subordinate.
2955 /* First, we decide what to do and set ->bi_end_io
2956 * To end_sync_read if we want to read, and
2957 * end_sync_write if we will want to write.
2960 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2961 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2962 /* recovery... the complicated one */
2966 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2972 struct raid10_info *mirror = &conf->mirrors[i];
2974 if ((mirror->rdev == NULL ||
2975 test_bit(In_sync, &mirror->rdev->flags))
2977 (mirror->replacement == NULL ||
2979 &mirror->replacement->flags)))
2983 /* want to reconstruct this device */
2985 sect = raid10_find_virt(conf, sector_nr, i);
2986 if (sect >= mddev->resync_max_sectors) {
2987 /* last stripe is not complete - don't
2988 * try to recover this sector.
2992 /* Unless we are doing a full sync, or a replacement
2993 * we only need to recover the block if it is set in
2996 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2998 if (sync_blocks < max_sync)
2999 max_sync = sync_blocks;
3001 mirror->replacement == NULL &&
3003 /* yep, skip the sync_blocks here, but don't assume
3004 * that there will never be anything to do here
3006 chunks_skipped = -1;
3010 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3011 raise_barrier(conf, rb2 != NULL);
3012 atomic_set(&r10_bio->remaining, 0);
3014 r10_bio->master_bio = (struct bio*)rb2;
3016 atomic_inc(&rb2->remaining);
3017 r10_bio->mddev = mddev;
3018 set_bit(R10BIO_IsRecover, &r10_bio->state);
3019 r10_bio->sector = sect;
3021 raid10_find_phys(conf, r10_bio);
3023 /* Need to check if the array will still be
3026 for (j = 0; j < conf->geo.raid_disks; j++)
3027 if (conf->mirrors[j].rdev == NULL ||
3028 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3033 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3034 &sync_blocks, still_degraded);
3037 for (j=0; j<conf->copies;j++) {
3039 int d = r10_bio->devs[j].devnum;
3040 sector_t from_addr, to_addr;
3041 struct md_rdev *rdev;
3042 sector_t sector, first_bad;
3044 if (!conf->mirrors[d].rdev ||
3045 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3047 /* This is where we read from */
3049 rdev = conf->mirrors[d].rdev;
3050 sector = r10_bio->devs[j].addr;
3052 if (is_badblock(rdev, sector, max_sync,
3053 &first_bad, &bad_sectors)) {
3054 if (first_bad > sector)
3055 max_sync = first_bad - sector;
3057 bad_sectors -= (sector
3059 if (max_sync > bad_sectors)
3060 max_sync = bad_sectors;
3064 bio = r10_bio->devs[0].bio;
3065 bio->bi_next = biolist;
3067 bio->bi_private = r10_bio;
3068 bio->bi_end_io = end_sync_read;
3070 from_addr = r10_bio->devs[j].addr;
3071 bio->bi_sector = from_addr + rdev->data_offset;
3072 bio->bi_bdev = rdev->bdev;
3073 atomic_inc(&rdev->nr_pending);
3074 /* and we write to 'i' (if not in_sync) */
3076 for (k=0; k<conf->copies; k++)
3077 if (r10_bio->devs[k].devnum == i)
3079 BUG_ON(k == conf->copies);
3080 to_addr = r10_bio->devs[k].addr;
3081 r10_bio->devs[0].devnum = d;
3082 r10_bio->devs[0].addr = from_addr;
3083 r10_bio->devs[1].devnum = i;
3084 r10_bio->devs[1].addr = to_addr;
3086 rdev = mirror->rdev;
3087 if (!test_bit(In_sync, &rdev->flags)) {
3088 bio = r10_bio->devs[1].bio;
3089 bio->bi_next = biolist;
3091 bio->bi_private = r10_bio;
3092 bio->bi_end_io = end_sync_write;
3094 bio->bi_sector = to_addr
3095 + rdev->data_offset;
3096 bio->bi_bdev = rdev->bdev;
3097 atomic_inc(&r10_bio->remaining);
3099 r10_bio->devs[1].bio->bi_end_io = NULL;
3101 /* and maybe write to replacement */
3102 bio = r10_bio->devs[1].repl_bio;
3104 bio->bi_end_io = NULL;
3105 rdev = mirror->replacement;
3106 /* Note: if rdev != NULL, then bio
3107 * cannot be NULL as r10buf_pool_alloc will
3108 * have allocated it.
3109 * So the second test here is pointless.
3110 * But it keeps semantic-checkers happy, and
3111 * this comment keeps human reviewers
3114 if (rdev == NULL || bio == NULL ||
3115 test_bit(Faulty, &rdev->flags))
3117 bio->bi_next = biolist;
3119 bio->bi_private = r10_bio;
3120 bio->bi_end_io = end_sync_write;
3122 bio->bi_sector = to_addr + rdev->data_offset;
3123 bio->bi_bdev = rdev->bdev;
3124 atomic_inc(&r10_bio->remaining);
3127 if (j == conf->copies) {
3128 /* Cannot recover, so abort the recovery or
3129 * record a bad block */
3132 atomic_dec(&rb2->remaining);
3135 /* problem is that there are bad blocks
3136 * on other device(s)
3139 for (k = 0; k < conf->copies; k++)
3140 if (r10_bio->devs[k].devnum == i)
3142 if (!test_bit(In_sync,
3143 &mirror->rdev->flags)
3144 && !rdev_set_badblocks(
3146 r10_bio->devs[k].addr,
3149 if (mirror->replacement &&
3150 !rdev_set_badblocks(
3151 mirror->replacement,
3152 r10_bio->devs[k].addr,
3157 if (!test_and_set_bit(MD_RECOVERY_INTR,
3159 printk(KERN_INFO "md/raid10:%s: insufficient "
3160 "working devices for recovery.\n",
3162 mirror->recovery_disabled
3163 = mddev->recovery_disabled;
3168 if (biolist == NULL) {
3170 struct r10bio *rb2 = r10_bio;
3171 r10_bio = (struct r10bio*) rb2->master_bio;
3172 rb2->master_bio = NULL;
3178 /* resync. Schedule a read for every block at this virt offset */
3181 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3183 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3184 &sync_blocks, mddev->degraded) &&
3185 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3186 &mddev->recovery)) {
3187 /* We can skip this block */
3189 return sync_blocks + sectors_skipped;
3191 if (sync_blocks < max_sync)
3192 max_sync = sync_blocks;
3193 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3195 r10_bio->mddev = mddev;
3196 atomic_set(&r10_bio->remaining, 0);
3197 raise_barrier(conf, 0);
3198 conf->next_resync = sector_nr;
3200 r10_bio->master_bio = NULL;
3201 r10_bio->sector = sector_nr;
3202 set_bit(R10BIO_IsSync, &r10_bio->state);
3203 raid10_find_phys(conf, r10_bio);
3204 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3206 for (i = 0; i < conf->copies; i++) {
3207 int d = r10_bio->devs[i].devnum;
3208 sector_t first_bad, sector;
3211 if (r10_bio->devs[i].repl_bio)
3212 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3214 bio = r10_bio->devs[i].bio;
3215 bio->bi_end_io = NULL;
3216 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3217 if (conf->mirrors[d].rdev == NULL ||
3218 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3220 sector = r10_bio->devs[i].addr;
3221 if (is_badblock(conf->mirrors[d].rdev,
3223 &first_bad, &bad_sectors)) {
3224 if (first_bad > sector)
3225 max_sync = first_bad - sector;
3227 bad_sectors -= (sector - first_bad);
3228 if (max_sync > bad_sectors)
3229 max_sync = bad_sectors;
3233 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3234 atomic_inc(&r10_bio->remaining);
3235 bio->bi_next = biolist;
3237 bio->bi_private = r10_bio;
3238 bio->bi_end_io = end_sync_read;
3240 bio->bi_sector = sector +
3241 conf->mirrors[d].rdev->data_offset;
3242 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3245 if (conf->mirrors[d].replacement == NULL ||
3247 &conf->mirrors[d].replacement->flags))
3250 /* Need to set up for writing to the replacement */
3251 bio = r10_bio->devs[i].repl_bio;
3252 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3254 sector = r10_bio->devs[i].addr;
3255 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3256 bio->bi_next = biolist;
3258 bio->bi_private = r10_bio;
3259 bio->bi_end_io = end_sync_write;
3261 bio->bi_sector = sector +
3262 conf->mirrors[d].replacement->data_offset;
3263 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3268 for (i=0; i<conf->copies; i++) {
3269 int d = r10_bio->devs[i].devnum;
3270 if (r10_bio->devs[i].bio->bi_end_io)
3271 rdev_dec_pending(conf->mirrors[d].rdev,
3273 if (r10_bio->devs[i].repl_bio &&
3274 r10_bio->devs[i].repl_bio->bi_end_io)
3276 conf->mirrors[d].replacement,
3285 for (bio = biolist; bio ; bio=bio->bi_next) {
3287 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3289 bio->bi_flags |= 1 << BIO_UPTODATE;
3292 bio->bi_phys_segments = 0;
3297 if (sector_nr + max_sync < max_sector)
3298 max_sector = sector_nr + max_sync;
3301 int len = PAGE_SIZE;
3302 if (sector_nr + (len>>9) > max_sector)
3303 len = (max_sector - sector_nr) << 9;
3306 for (bio= biolist ; bio ; bio=bio->bi_next) {
3308 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3309 if (bio_add_page(bio, page, len, 0))
3313 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3314 for (bio2 = biolist;
3315 bio2 && bio2 != bio;
3316 bio2 = bio2->bi_next) {
3317 /* remove last page from this bio */
3319 bio2->bi_size -= len;
3320 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3324 nr_sectors += len>>9;
3325 sector_nr += len>>9;
3326 } while (biolist->bi_vcnt < RESYNC_PAGES);
3328 r10_bio->sectors = nr_sectors;
3332 biolist = biolist->bi_next;
3334 bio->bi_next = NULL;
3335 r10_bio = bio->bi_private;
3336 r10_bio->sectors = nr_sectors;
3338 if (bio->bi_end_io == end_sync_read) {
3339 md_sync_acct(bio->bi_bdev, nr_sectors);
3340 generic_make_request(bio);
3344 if (sectors_skipped)
3345 /* pretend they weren't skipped, it makes
3346 * no important difference in this case
3348 md_done_sync(mddev, sectors_skipped, 1);
3350 return sectors_skipped + nr_sectors;
3352 /* There is nowhere to write, so all non-sync
3353 * drives must be failed or in resync, all drives
3354 * have a bad block, so try the next chunk...
3356 if (sector_nr + max_sync < max_sector)
3357 max_sector = sector_nr + max_sync;
3359 sectors_skipped += (max_sector - sector_nr);
3361 sector_nr = max_sector;
3366 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3369 struct r10conf *conf = mddev->private;
3372 raid_disks = min(conf->geo.raid_disks,
3373 conf->prev.raid_disks);
3375 sectors = conf->dev_sectors;
3377 size = sectors >> conf->geo.chunk_shift;
3378 sector_div(size, conf->geo.far_copies);
3379 size = size * raid_disks;
3380 sector_div(size, conf->geo.near_copies);
3382 return size << conf->geo.chunk_shift;
3385 static void calc_sectors(struct r10conf *conf, sector_t size)
3387 /* Calculate the number of sectors-per-device that will
3388 * actually be used, and set conf->dev_sectors and
3392 size = size >> conf->geo.chunk_shift;
3393 sector_div(size, conf->geo.far_copies);
3394 size = size * conf->geo.raid_disks;
3395 sector_div(size, conf->geo.near_copies);
3396 /* 'size' is now the number of chunks in the array */
3397 /* calculate "used chunks per device" */
3398 size = size * conf->copies;
3400 /* We need to round up when dividing by raid_disks to
3401 * get the stride size.
3403 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3405 conf->dev_sectors = size << conf->geo.chunk_shift;
3407 if (conf->geo.far_offset)
3408 conf->geo.stride = 1 << conf->geo.chunk_shift;
3410 sector_div(size, conf->geo.far_copies);
3411 conf->geo.stride = size << conf->geo.chunk_shift;
3415 enum geo_type {geo_new, geo_old, geo_start};
3416 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3419 int layout, chunk, disks;
3422 layout = mddev->layout;
3423 chunk = mddev->chunk_sectors;
3424 disks = mddev->raid_disks - mddev->delta_disks;
3427 layout = mddev->new_layout;
3428 chunk = mddev->new_chunk_sectors;
3429 disks = mddev->raid_disks;
3431 default: /* avoid 'may be unused' warnings */
3432 case geo_start: /* new when starting reshape - raid_disks not
3434 layout = mddev->new_layout;
3435 chunk = mddev->new_chunk_sectors;
3436 disks = mddev->raid_disks + mddev->delta_disks;
3441 if (chunk < (PAGE_SIZE >> 9) ||
3442 !is_power_of_2(chunk))
3445 fc = (layout >> 8) & 255;
3446 fo = layout & (1<<16);
3447 geo->raid_disks = disks;
3448 geo->near_copies = nc;
3449 geo->far_copies = fc;
3450 geo->far_offset = fo;
3451 geo->chunk_mask = chunk - 1;
3452 geo->chunk_shift = ffz(~chunk);
3456 static struct r10conf *setup_conf(struct mddev *mddev)
3458 struct r10conf *conf = NULL;
3463 copies = setup_geo(&geo, mddev, geo_new);
3466 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3467 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3468 mdname(mddev), PAGE_SIZE);
3472 if (copies < 2 || copies > mddev->raid_disks) {
3473 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3474 mdname(mddev), mddev->new_layout);
3479 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3483 /* FIXME calc properly */
3484 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3485 max(0,mddev->delta_disks)),
3490 conf->tmppage = alloc_page(GFP_KERNEL);
3495 conf->copies = copies;
3496 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3497 r10bio_pool_free, conf);
3498 if (!conf->r10bio_pool)
3501 calc_sectors(conf, mddev->dev_sectors);
3502 if (mddev->reshape_position == MaxSector) {
3503 conf->prev = conf->geo;
3504 conf->reshape_progress = MaxSector;
3506 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3510 conf->reshape_progress = mddev->reshape_position;
3511 if (conf->prev.far_offset)
3512 conf->prev.stride = 1 << conf->prev.chunk_shift;
3514 /* far_copies must be 1 */
3515 conf->prev.stride = conf->dev_sectors;
3517 spin_lock_init(&conf->device_lock);
3518 INIT_LIST_HEAD(&conf->retry_list);
3520 spin_lock_init(&conf->resync_lock);
3521 init_waitqueue_head(&conf->wait_barrier);
3523 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3527 conf->mddev = mddev;
3532 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3535 if (conf->r10bio_pool)
3536 mempool_destroy(conf->r10bio_pool);
3537 kfree(conf->mirrors);
3538 safe_put_page(conf->tmppage);
3541 return ERR_PTR(err);
3544 static int run(struct mddev *mddev)
3546 struct r10conf *conf;
3547 int i, disk_idx, chunk_size;
3548 struct raid10_info *disk;
3549 struct md_rdev *rdev;
3551 sector_t min_offset_diff = 0;
3553 bool discard_supported = false;
3555 if (mddev->private == NULL) {
3556 conf = setup_conf(mddev);
3558 return PTR_ERR(conf);
3559 mddev->private = conf;
3561 conf = mddev->private;
3565 mddev->thread = conf->thread;
3566 conf->thread = NULL;
3568 chunk_size = mddev->chunk_sectors << 9;
3570 blk_queue_max_discard_sectors(mddev->queue,
3571 mddev->chunk_sectors);
3572 blk_queue_io_min(mddev->queue, chunk_size);
3573 if (conf->geo.raid_disks % conf->geo.near_copies)
3574 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3576 blk_queue_io_opt(mddev->queue, chunk_size *
3577 (conf->geo.raid_disks / conf->geo.near_copies));
3580 rdev_for_each(rdev, mddev) {
3582 struct request_queue *q;
3584 disk_idx = rdev->raid_disk;
3587 if (disk_idx >= conf->geo.raid_disks &&
3588 disk_idx >= conf->prev.raid_disks)
3590 disk = conf->mirrors + disk_idx;
3592 if (test_bit(Replacement, &rdev->flags)) {
3593 if (disk->replacement)
3595 disk->replacement = rdev;
3601 q = bdev_get_queue(rdev->bdev);
3602 if (q->merge_bvec_fn)
3603 mddev->merge_check_needed = 1;
3604 diff = (rdev->new_data_offset - rdev->data_offset);
3605 if (!mddev->reshape_backwards)
3609 if (first || diff < min_offset_diff)
3610 min_offset_diff = diff;
3613 disk_stack_limits(mddev->gendisk, rdev->bdev,
3614 rdev->data_offset << 9);
3616 disk->head_position = 0;
3618 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3619 discard_supported = true;
3623 if (discard_supported)
3624 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3627 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3630 /* need to check that every block has at least one working mirror */
3631 if (!enough(conf, -1)) {
3632 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3637 if (conf->reshape_progress != MaxSector) {
3638 /* must ensure that shape change is supported */
3639 if (conf->geo.far_copies != 1 &&
3640 conf->geo.far_offset == 0)
3642 if (conf->prev.far_copies != 1 &&
3643 conf->geo.far_offset == 0)
3647 mddev->degraded = 0;
3649 i < conf->geo.raid_disks
3650 || i < conf->prev.raid_disks;
3653 disk = conf->mirrors + i;
3655 if (!disk->rdev && disk->replacement) {
3656 /* The replacement is all we have - use it */
3657 disk->rdev = disk->replacement;
3658 disk->replacement = NULL;
3659 clear_bit(Replacement, &disk->rdev->flags);
3663 !test_bit(In_sync, &disk->rdev->flags)) {
3664 disk->head_position = 0;
3669 disk->recovery_disabled = mddev->recovery_disabled - 1;
3672 if (mddev->recovery_cp != MaxSector)
3673 printk(KERN_NOTICE "md/raid10:%s: not clean"
3674 " -- starting background reconstruction\n",
3677 "md/raid10:%s: active with %d out of %d devices\n",
3678 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3679 conf->geo.raid_disks);
3681 * Ok, everything is just fine now
3683 mddev->dev_sectors = conf->dev_sectors;
3684 size = raid10_size(mddev, 0, 0);
3685 md_set_array_sectors(mddev, size);
3686 mddev->resync_max_sectors = size;
3689 int stripe = conf->geo.raid_disks *
3690 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3691 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3692 mddev->queue->backing_dev_info.congested_data = mddev;
3694 /* Calculate max read-ahead size.
3695 * We need to readahead at least twice a whole stripe....
3698 stripe /= conf->geo.near_copies;
3699 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3700 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3701 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3705 if (md_integrity_register(mddev))
3708 if (conf->reshape_progress != MaxSector) {
3709 unsigned long before_length, after_length;
3711 before_length = ((1 << conf->prev.chunk_shift) *
3712 conf->prev.far_copies);
3713 after_length = ((1 << conf->geo.chunk_shift) *
3714 conf->geo.far_copies);
3716 if (max(before_length, after_length) > min_offset_diff) {
3717 /* This cannot work */
3718 printk("md/raid10: offset difference not enough to continue reshape\n");
3721 conf->offset_diff = min_offset_diff;
3723 conf->reshape_safe = conf->reshape_progress;
3724 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3725 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3726 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3727 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3728 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3735 md_unregister_thread(&mddev->thread);
3736 if (conf->r10bio_pool)
3737 mempool_destroy(conf->r10bio_pool);
3738 safe_put_page(conf->tmppage);
3739 kfree(conf->mirrors);
3741 mddev->private = NULL;
3746 static int stop(struct mddev *mddev)
3748 struct r10conf *conf = mddev->private;
3750 raise_barrier(conf, 0);
3751 lower_barrier(conf);
3753 md_unregister_thread(&mddev->thread);
3755 /* the unplug fn references 'conf'*/
3756 blk_sync_queue(mddev->queue);
3758 if (conf->r10bio_pool)
3759 mempool_destroy(conf->r10bio_pool);
3760 kfree(conf->mirrors);
3762 mddev->private = NULL;
3766 static void raid10_quiesce(struct mddev *mddev, int state)
3768 struct r10conf *conf = mddev->private;
3772 raise_barrier(conf, 0);
3775 lower_barrier(conf);
3780 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3782 /* Resize of 'far' arrays is not supported.
3783 * For 'near' and 'offset' arrays we can set the
3784 * number of sectors used to be an appropriate multiple
3785 * of the chunk size.
3786 * For 'offset', this is far_copies*chunksize.
3787 * For 'near' the multiplier is the LCM of
3788 * near_copies and raid_disks.
3789 * So if far_copies > 1 && !far_offset, fail.
3790 * Else find LCM(raid_disks, near_copy)*far_copies and
3791 * multiply by chunk_size. Then round to this number.
3792 * This is mostly done by raid10_size()
3794 struct r10conf *conf = mddev->private;
3795 sector_t oldsize, size;
3797 if (mddev->reshape_position != MaxSector)
3800 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3803 oldsize = raid10_size(mddev, 0, 0);
3804 size = raid10_size(mddev, sectors, 0);
3805 if (mddev->external_size &&
3806 mddev->array_sectors > size)
3808 if (mddev->bitmap) {
3809 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3813 md_set_array_sectors(mddev, size);
3814 set_capacity(mddev->gendisk, mddev->array_sectors);
3815 revalidate_disk(mddev->gendisk);
3816 if (sectors > mddev->dev_sectors &&
3817 mddev->recovery_cp > oldsize) {
3818 mddev->recovery_cp = oldsize;
3819 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3821 calc_sectors(conf, sectors);
3822 mddev->dev_sectors = conf->dev_sectors;
3823 mddev->resync_max_sectors = size;
3827 static void *raid10_takeover_raid0(struct mddev *mddev)
3829 struct md_rdev *rdev;
3830 struct r10conf *conf;
3832 if (mddev->degraded > 0) {
3833 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3835 return ERR_PTR(-EINVAL);
3838 /* Set new parameters */
3839 mddev->new_level = 10;
3840 /* new layout: far_copies = 1, near_copies = 2 */
3841 mddev->new_layout = (1<<8) + 2;
3842 mddev->new_chunk_sectors = mddev->chunk_sectors;
3843 mddev->delta_disks = mddev->raid_disks;
3844 mddev->raid_disks *= 2;
3845 /* make sure it will be not marked as dirty */
3846 mddev->recovery_cp = MaxSector;
3848 conf = setup_conf(mddev);
3849 if (!IS_ERR(conf)) {
3850 rdev_for_each(rdev, mddev)
3851 if (rdev->raid_disk >= 0)
3852 rdev->new_raid_disk = rdev->raid_disk * 2;
3859 static void *raid10_takeover(struct mddev *mddev)
3861 struct r0conf *raid0_conf;
3863 /* raid10 can take over:
3864 * raid0 - providing it has only two drives
3866 if (mddev->level == 0) {
3867 /* for raid0 takeover only one zone is supported */
3868 raid0_conf = mddev->private;
3869 if (raid0_conf->nr_strip_zones > 1) {
3870 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3871 " with more than one zone.\n",
3873 return ERR_PTR(-EINVAL);
3875 return raid10_takeover_raid0(mddev);
3877 return ERR_PTR(-EINVAL);
3880 static int raid10_check_reshape(struct mddev *mddev)
3882 /* Called when there is a request to change
3883 * - layout (to ->new_layout)
3884 * - chunk size (to ->new_chunk_sectors)
3885 * - raid_disks (by delta_disks)
3886 * or when trying to restart a reshape that was ongoing.
3888 * We need to validate the request and possibly allocate
3889 * space if that might be an issue later.
3891 * Currently we reject any reshape of a 'far' mode array,
3892 * allow chunk size to change if new is generally acceptable,
3893 * allow raid_disks to increase, and allow
3894 * a switch between 'near' mode and 'offset' mode.
3896 struct r10conf *conf = mddev->private;
3899 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3902 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3903 /* mustn't change number of copies */
3905 if (geo.far_copies > 1 && !geo.far_offset)
3906 /* Cannot switch to 'far' mode */
3909 if (mddev->array_sectors & geo.chunk_mask)
3910 /* not factor of array size */
3913 if (!enough(conf, -1))
3916 kfree(conf->mirrors_new);
3917 conf->mirrors_new = NULL;
3918 if (mddev->delta_disks > 0) {
3919 /* allocate new 'mirrors' list */
3920 conf->mirrors_new = kzalloc(
3921 sizeof(struct raid10_info)
3922 *(mddev->raid_disks +
3923 mddev->delta_disks),
3925 if (!conf->mirrors_new)
3932 * Need to check if array has failed when deciding whether to:
3934 * - remove non-faulty devices
3937 * This determination is simple when no reshape is happening.
3938 * However if there is a reshape, we need to carefully check
3939 * both the before and after sections.
3940 * This is because some failed devices may only affect one
3941 * of the two sections, and some non-in_sync devices may
3942 * be insync in the section most affected by failed devices.
3944 static int calc_degraded(struct r10conf *conf)
3946 int degraded, degraded2;
3951 /* 'prev' section first */
3952 for (i = 0; i < conf->prev.raid_disks; i++) {
3953 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3954 if (!rdev || test_bit(Faulty, &rdev->flags))
3956 else if (!test_bit(In_sync, &rdev->flags))
3957 /* When we can reduce the number of devices in
3958 * an array, this might not contribute to
3959 * 'degraded'. It does now.
3964 if (conf->geo.raid_disks == conf->prev.raid_disks)
3968 for (i = 0; i < conf->geo.raid_disks; i++) {
3969 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3970 if (!rdev || test_bit(Faulty, &rdev->flags))
3972 else if (!test_bit(In_sync, &rdev->flags)) {
3973 /* If reshape is increasing the number of devices,
3974 * this section has already been recovered, so
3975 * it doesn't contribute to degraded.
3978 if (conf->geo.raid_disks <= conf->prev.raid_disks)
3983 if (degraded2 > degraded)
3988 static int raid10_start_reshape(struct mddev *mddev)
3990 /* A 'reshape' has been requested. This commits
3991 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3992 * This also checks if there are enough spares and adds them
3994 * We currently require enough spares to make the final
3995 * array non-degraded. We also require that the difference
3996 * between old and new data_offset - on each device - is
3997 * enough that we never risk over-writing.
4000 unsigned long before_length, after_length;
4001 sector_t min_offset_diff = 0;
4004 struct r10conf *conf = mddev->private;
4005 struct md_rdev *rdev;
4009 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4012 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4015 before_length = ((1 << conf->prev.chunk_shift) *
4016 conf->prev.far_copies);
4017 after_length = ((1 << conf->geo.chunk_shift) *
4018 conf->geo.far_copies);
4020 rdev_for_each(rdev, mddev) {
4021 if (!test_bit(In_sync, &rdev->flags)
4022 && !test_bit(Faulty, &rdev->flags))
4024 if (rdev->raid_disk >= 0) {
4025 long long diff = (rdev->new_data_offset
4026 - rdev->data_offset);
4027 if (!mddev->reshape_backwards)
4031 if (first || diff < min_offset_diff)
4032 min_offset_diff = diff;
4036 if (max(before_length, after_length) > min_offset_diff)
4039 if (spares < mddev->delta_disks)
4042 conf->offset_diff = min_offset_diff;
4043 spin_lock_irq(&conf->device_lock);
4044 if (conf->mirrors_new) {
4045 memcpy(conf->mirrors_new, conf->mirrors,
4046 sizeof(struct raid10_info)*conf->prev.raid_disks);
4048 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4049 conf->mirrors_old = conf->mirrors;
4050 conf->mirrors = conf->mirrors_new;
4051 conf->mirrors_new = NULL;
4053 setup_geo(&conf->geo, mddev, geo_start);
4055 if (mddev->reshape_backwards) {
4056 sector_t size = raid10_size(mddev, 0, 0);
4057 if (size < mddev->array_sectors) {
4058 spin_unlock_irq(&conf->device_lock);
4059 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4063 mddev->resync_max_sectors = size;
4064 conf->reshape_progress = size;
4066 conf->reshape_progress = 0;
4067 spin_unlock_irq(&conf->device_lock);
4069 if (mddev->delta_disks && mddev->bitmap) {
4070 ret = bitmap_resize(mddev->bitmap,
4071 raid10_size(mddev, 0,
4072 conf->geo.raid_disks),
4077 if (mddev->delta_disks > 0) {
4078 rdev_for_each(rdev, mddev)
4079 if (rdev->raid_disk < 0 &&
4080 !test_bit(Faulty, &rdev->flags)) {
4081 if (raid10_add_disk(mddev, rdev) == 0) {
4082 if (rdev->raid_disk >=
4083 conf->prev.raid_disks)
4084 set_bit(In_sync, &rdev->flags);
4086 rdev->recovery_offset = 0;
4088 if (sysfs_link_rdev(mddev, rdev))
4089 /* Failure here is OK */;
4091 } else if (rdev->raid_disk >= conf->prev.raid_disks
4092 && !test_bit(Faulty, &rdev->flags)) {
4093 /* This is a spare that was manually added */
4094 set_bit(In_sync, &rdev->flags);
4097 /* When a reshape changes the number of devices,
4098 * ->degraded is measured against the larger of the
4099 * pre and post numbers.
4101 spin_lock_irq(&conf->device_lock);
4102 mddev->degraded = calc_degraded(conf);
4103 spin_unlock_irq(&conf->device_lock);
4104 mddev->raid_disks = conf->geo.raid_disks;
4105 mddev->reshape_position = conf->reshape_progress;
4106 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4108 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4109 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4110 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4111 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4113 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4115 if (!mddev->sync_thread) {
4119 conf->reshape_checkpoint = jiffies;
4120 md_wakeup_thread(mddev->sync_thread);
4121 md_new_event(mddev);
4125 mddev->recovery = 0;
4126 spin_lock_irq(&conf->device_lock);
4127 conf->geo = conf->prev;
4128 mddev->raid_disks = conf->geo.raid_disks;
4129 rdev_for_each(rdev, mddev)
4130 rdev->new_data_offset = rdev->data_offset;
4132 conf->reshape_progress = MaxSector;
4133 mddev->reshape_position = MaxSector;
4134 spin_unlock_irq(&conf->device_lock);
4138 /* Calculate the last device-address that could contain
4139 * any block from the chunk that includes the array-address 's'
4140 * and report the next address.
4141 * i.e. the address returned will be chunk-aligned and after
4142 * any data that is in the chunk containing 's'.
4144 static sector_t last_dev_address(sector_t s, struct geom *geo)
4146 s = (s | geo->chunk_mask) + 1;
4147 s >>= geo->chunk_shift;
4148 s *= geo->near_copies;
4149 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4150 s *= geo->far_copies;
4151 s <<= geo->chunk_shift;
4155 /* Calculate the first device-address that could contain
4156 * any block from the chunk that includes the array-address 's'.
4157 * This too will be the start of a chunk
4159 static sector_t first_dev_address(sector_t s, struct geom *geo)
4161 s >>= geo->chunk_shift;
4162 s *= geo->near_copies;
4163 sector_div(s, geo->raid_disks);
4164 s *= geo->far_copies;
4165 s <<= geo->chunk_shift;
4169 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4172 /* We simply copy at most one chunk (smallest of old and new)
4173 * at a time, possibly less if that exceeds RESYNC_PAGES,
4174 * or we hit a bad block or something.
4175 * This might mean we pause for normal IO in the middle of
4176 * a chunk, but that is not a problem was mddev->reshape_position
4177 * can record any location.
4179 * If we will want to write to a location that isn't
4180 * yet recorded as 'safe' (i.e. in metadata on disk) then
4181 * we need to flush all reshape requests and update the metadata.
4183 * When reshaping forwards (e.g. to more devices), we interpret
4184 * 'safe' as the earliest block which might not have been copied
4185 * down yet. We divide this by previous stripe size and multiply
4186 * by previous stripe length to get lowest device offset that we
4187 * cannot write to yet.
4188 * We interpret 'sector_nr' as an address that we want to write to.
4189 * From this we use last_device_address() to find where we might
4190 * write to, and first_device_address on the 'safe' position.
4191 * If this 'next' write position is after the 'safe' position,
4192 * we must update the metadata to increase the 'safe' position.
4194 * When reshaping backwards, we round in the opposite direction
4195 * and perform the reverse test: next write position must not be
4196 * less than current safe position.
4198 * In all this the minimum difference in data offsets
4199 * (conf->offset_diff - always positive) allows a bit of slack,
4200 * so next can be after 'safe', but not by more than offset_disk
4202 * We need to prepare all the bios here before we start any IO
4203 * to ensure the size we choose is acceptable to all devices.
4204 * The means one for each copy for write-out and an extra one for
4206 * We store the read-in bio in ->master_bio and the others in
4207 * ->devs[x].bio and ->devs[x].repl_bio.
4209 struct r10conf *conf = mddev->private;
4210 struct r10bio *r10_bio;
4211 sector_t next, safe, last;
4215 struct md_rdev *rdev;
4218 struct bio *bio, *read_bio;
4219 int sectors_done = 0;
4221 if (sector_nr == 0) {
4222 /* If restarting in the middle, skip the initial sectors */
4223 if (mddev->reshape_backwards &&
4224 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4225 sector_nr = (raid10_size(mddev, 0, 0)
4226 - conf->reshape_progress);
4227 } else if (!mddev->reshape_backwards &&
4228 conf->reshape_progress > 0)
4229 sector_nr = conf->reshape_progress;
4231 mddev->curr_resync_completed = sector_nr;
4232 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4238 /* We don't use sector_nr to track where we are up to
4239 * as that doesn't work well for ->reshape_backwards.
4240 * So just use ->reshape_progress.
4242 if (mddev->reshape_backwards) {
4243 /* 'next' is the earliest device address that we might
4244 * write to for this chunk in the new layout
4246 next = first_dev_address(conf->reshape_progress - 1,
4249 /* 'safe' is the last device address that we might read from
4250 * in the old layout after a restart
4252 safe = last_dev_address(conf->reshape_safe - 1,
4255 if (next + conf->offset_diff < safe)
4258 last = conf->reshape_progress - 1;
4259 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4260 & conf->prev.chunk_mask);
4261 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4262 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4264 /* 'next' is after the last device address that we
4265 * might write to for this chunk in the new layout
4267 next = last_dev_address(conf->reshape_progress, &conf->geo);
4269 /* 'safe' is the earliest device address that we might
4270 * read from in the old layout after a restart
4272 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4274 /* Need to update metadata if 'next' might be beyond 'safe'
4275 * as that would possibly corrupt data
4277 if (next > safe + conf->offset_diff)
4280 sector_nr = conf->reshape_progress;
4281 last = sector_nr | (conf->geo.chunk_mask
4282 & conf->prev.chunk_mask);
4284 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4285 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4289 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4290 /* Need to update reshape_position in metadata */
4292 mddev->reshape_position = conf->reshape_progress;
4293 if (mddev->reshape_backwards)
4294 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4295 - conf->reshape_progress;
4297 mddev->curr_resync_completed = conf->reshape_progress;
4298 conf->reshape_checkpoint = jiffies;
4299 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4300 md_wakeup_thread(mddev->thread);
4301 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4302 kthread_should_stop());
4303 conf->reshape_safe = mddev->reshape_position;
4304 allow_barrier(conf);
4308 /* Now schedule reads for blocks from sector_nr to last */
4309 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4310 raise_barrier(conf, sectors_done != 0);
4311 atomic_set(&r10_bio->remaining, 0);
4312 r10_bio->mddev = mddev;
4313 r10_bio->sector = sector_nr;
4314 set_bit(R10BIO_IsReshape, &r10_bio->state);
4315 r10_bio->sectors = last - sector_nr + 1;
4316 rdev = read_balance(conf, r10_bio, &max_sectors);
4317 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4320 /* Cannot read from here, so need to record bad blocks
4321 * on all the target devices.
4324 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4325 return sectors_done;
4328 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4330 read_bio->bi_bdev = rdev->bdev;
4331 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4332 + rdev->data_offset);
4333 read_bio->bi_private = r10_bio;
4334 read_bio->bi_end_io = end_sync_read;
4335 read_bio->bi_rw = READ;
4336 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4337 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4338 read_bio->bi_vcnt = 0;
4339 read_bio->bi_idx = 0;
4340 read_bio->bi_size = 0;
4341 r10_bio->master_bio = read_bio;
4342 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4344 /* Now find the locations in the new layout */
4345 __raid10_find_phys(&conf->geo, r10_bio);
4348 read_bio->bi_next = NULL;
4350 for (s = 0; s < conf->copies*2; s++) {
4352 int d = r10_bio->devs[s/2].devnum;
4353 struct md_rdev *rdev2;
4355 rdev2 = conf->mirrors[d].replacement;
4356 b = r10_bio->devs[s/2].repl_bio;
4358 rdev2 = conf->mirrors[d].rdev;
4359 b = r10_bio->devs[s/2].bio;
4361 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4363 b->bi_bdev = rdev2->bdev;
4364 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4365 b->bi_private = r10_bio;
4366 b->bi_end_io = end_reshape_write;
4368 b->bi_flags &= ~(BIO_POOL_MASK - 1);
4369 b->bi_flags |= 1 << BIO_UPTODATE;
4377 /* Now add as many pages as possible to all of these bios. */
4380 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4381 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4382 int len = (max_sectors - s) << 9;
4383 if (len > PAGE_SIZE)
4385 for (bio = blist; bio ; bio = bio->bi_next) {
4387 if (bio_add_page(bio, page, len, 0))
4390 /* Didn't fit, must stop */
4392 bio2 && bio2 != bio;
4393 bio2 = bio2->bi_next) {
4394 /* Remove last page from this bio */
4396 bio2->bi_size -= len;
4397 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4401 sector_nr += len >> 9;
4402 nr_sectors += len >> 9;
4405 r10_bio->sectors = nr_sectors;
4407 /* Now submit the read */
4408 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4409 atomic_inc(&r10_bio->remaining);
4410 read_bio->bi_next = NULL;
4411 generic_make_request(read_bio);
4412 sector_nr += nr_sectors;
4413 sectors_done += nr_sectors;
4414 if (sector_nr <= last)
4417 /* Now that we have done the whole section we can
4418 * update reshape_progress
4420 if (mddev->reshape_backwards)
4421 conf->reshape_progress -= sectors_done;
4423 conf->reshape_progress += sectors_done;
4425 return sectors_done;
4428 static void end_reshape_request(struct r10bio *r10_bio);
4429 static int handle_reshape_read_error(struct mddev *mddev,
4430 struct r10bio *r10_bio);
4431 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4433 /* Reshape read completed. Hopefully we have a block
4435 * If we got a read error then we do sync 1-page reads from
4436 * elsewhere until we find the data - or give up.
4438 struct r10conf *conf = mddev->private;
4441 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4442 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4443 /* Reshape has been aborted */
4444 md_done_sync(mddev, r10_bio->sectors, 0);
4448 /* We definitely have the data in the pages, schedule the
4451 atomic_set(&r10_bio->remaining, 1);
4452 for (s = 0; s < conf->copies*2; s++) {
4454 int d = r10_bio->devs[s/2].devnum;
4455 struct md_rdev *rdev;
4457 rdev = conf->mirrors[d].replacement;
4458 b = r10_bio->devs[s/2].repl_bio;
4460 rdev = conf->mirrors[d].rdev;
4461 b = r10_bio->devs[s/2].bio;
4463 if (!rdev || test_bit(Faulty, &rdev->flags))
4465 atomic_inc(&rdev->nr_pending);
4466 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4467 atomic_inc(&r10_bio->remaining);
4469 generic_make_request(b);
4471 end_reshape_request(r10_bio);
4474 static void end_reshape(struct r10conf *conf)
4476 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4479 spin_lock_irq(&conf->device_lock);
4480 conf->prev = conf->geo;
4481 md_finish_reshape(conf->mddev);
4483 conf->reshape_progress = MaxSector;
4484 spin_unlock_irq(&conf->device_lock);
4486 /* read-ahead size must cover two whole stripes, which is
4487 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4489 if (conf->mddev->queue) {
4490 int stripe = conf->geo.raid_disks *
4491 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4492 stripe /= conf->geo.near_copies;
4493 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4494 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4500 static int handle_reshape_read_error(struct mddev *mddev,
4501 struct r10bio *r10_bio)
4503 /* Use sync reads to get the blocks from somewhere else */
4504 int sectors = r10_bio->sectors;
4505 struct r10conf *conf = mddev->private;
4507 struct r10bio r10_bio;
4508 struct r10dev devs[conf->copies];
4510 struct r10bio *r10b = &on_stack.r10_bio;
4513 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4515 r10b->sector = r10_bio->sector;
4516 __raid10_find_phys(&conf->prev, r10b);
4521 int first_slot = slot;
4523 if (s > (PAGE_SIZE >> 9))
4527 int d = r10b->devs[slot].devnum;
4528 struct md_rdev *rdev = conf->mirrors[d].rdev;
4531 test_bit(Faulty, &rdev->flags) ||
4532 !test_bit(In_sync, &rdev->flags))
4535 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4536 success = sync_page_io(rdev,
4545 if (slot >= conf->copies)
4547 if (slot == first_slot)
4551 /* couldn't read this block, must give up */
4552 set_bit(MD_RECOVERY_INTR,
4562 static void end_reshape_write(struct bio *bio, int error)
4564 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4565 struct r10bio *r10_bio = bio->bi_private;
4566 struct mddev *mddev = r10_bio->mddev;
4567 struct r10conf *conf = mddev->private;
4571 struct md_rdev *rdev = NULL;
4573 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4575 rdev = conf->mirrors[d].replacement;
4578 rdev = conf->mirrors[d].rdev;
4582 /* FIXME should record badblock */
4583 md_error(mddev, rdev);
4586 rdev_dec_pending(rdev, mddev);
4587 end_reshape_request(r10_bio);
4590 static void end_reshape_request(struct r10bio *r10_bio)
4592 if (!atomic_dec_and_test(&r10_bio->remaining))
4594 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4595 bio_put(r10_bio->master_bio);
4599 static void raid10_finish_reshape(struct mddev *mddev)
4601 struct r10conf *conf = mddev->private;
4603 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4606 if (mddev->delta_disks > 0) {
4607 sector_t size = raid10_size(mddev, 0, 0);
4608 md_set_array_sectors(mddev, size);
4609 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4610 mddev->recovery_cp = mddev->resync_max_sectors;
4611 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4613 mddev->resync_max_sectors = size;
4614 set_capacity(mddev->gendisk, mddev->array_sectors);
4615 revalidate_disk(mddev->gendisk);
4618 for (d = conf->geo.raid_disks ;
4619 d < conf->geo.raid_disks - mddev->delta_disks;
4621 struct md_rdev *rdev = conf->mirrors[d].rdev;
4623 clear_bit(In_sync, &rdev->flags);
4624 rdev = conf->mirrors[d].replacement;
4626 clear_bit(In_sync, &rdev->flags);
4629 mddev->layout = mddev->new_layout;
4630 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4631 mddev->reshape_position = MaxSector;
4632 mddev->delta_disks = 0;
4633 mddev->reshape_backwards = 0;
4636 static struct md_personality raid10_personality =
4640 .owner = THIS_MODULE,
4641 .make_request = make_request,
4645 .error_handler = error,
4646 .hot_add_disk = raid10_add_disk,
4647 .hot_remove_disk= raid10_remove_disk,
4648 .spare_active = raid10_spare_active,
4649 .sync_request = sync_request,
4650 .quiesce = raid10_quiesce,
4651 .size = raid10_size,
4652 .resize = raid10_resize,
4653 .takeover = raid10_takeover,
4654 .check_reshape = raid10_check_reshape,
4655 .start_reshape = raid10_start_reshape,
4656 .finish_reshape = raid10_finish_reshape,
4659 static int __init raid_init(void)
4661 return register_md_personality(&raid10_personality);
4664 static void raid_exit(void)
4666 unregister_md_personality(&raid10_personality);
4669 module_init(raid_init);
4670 module_exit(raid_exit);
4671 MODULE_LICENSE("GPL");
4672 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4673 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4674 MODULE_ALIAS("md-raid10");
4675 MODULE_ALIAS("md-level-10");
4677 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);