Merge tag 'leds-6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/pavel/linux...
[platform/kernel/linux-starfive.git] / drivers / md / raid10.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72                                 int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76
77 #define raid10_log(md, fmt, args...)                            \
78         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80 #include "raid1-10.c"
81
82 #define NULL_CMD
83 #define cmd_before(conf, cmd) \
84         do { \
85                 write_sequnlock_irq(&(conf)->resync_lock); \
86                 cmd; \
87         } while (0)
88 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
89
90 #define wait_event_barrier_cmd(conf, cond, cmd) \
91         wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
92                        cmd_after(conf))
93
94 #define wait_event_barrier(conf, cond) \
95         wait_event_barrier_cmd(conf, cond, NULL_CMD)
96
97 /*
98  * for resync bio, r10bio pointer can be retrieved from the per-bio
99  * 'struct resync_pages'.
100  */
101 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
102 {
103         return get_resync_pages(bio)->raid_bio;
104 }
105
106 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
107 {
108         struct r10conf *conf = data;
109         int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
110
111         /* allocate a r10bio with room for raid_disks entries in the
112          * bios array */
113         return kzalloc(size, gfp_flags);
114 }
115
116 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
117 /* amount of memory to reserve for resync requests */
118 #define RESYNC_WINDOW (1024*1024)
119 /* maximum number of concurrent requests, memory permitting */
120 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
121 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
122 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
123
124 /*
125  * When performing a resync, we need to read and compare, so
126  * we need as many pages are there are copies.
127  * When performing a recovery, we need 2 bios, one for read,
128  * one for write (we recover only one drive per r10buf)
129  *
130  */
131 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
132 {
133         struct r10conf *conf = data;
134         struct r10bio *r10_bio;
135         struct bio *bio;
136         int j;
137         int nalloc, nalloc_rp;
138         struct resync_pages *rps;
139
140         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
141         if (!r10_bio)
142                 return NULL;
143
144         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
145             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
146                 nalloc = conf->copies; /* resync */
147         else
148                 nalloc = 2; /* recovery */
149
150         /* allocate once for all bios */
151         if (!conf->have_replacement)
152                 nalloc_rp = nalloc;
153         else
154                 nalloc_rp = nalloc * 2;
155         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
156         if (!rps)
157                 goto out_free_r10bio;
158
159         /*
160          * Allocate bios.
161          */
162         for (j = nalloc ; j-- ; ) {
163                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
164                 if (!bio)
165                         goto out_free_bio;
166                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
167                 r10_bio->devs[j].bio = bio;
168                 if (!conf->have_replacement)
169                         continue;
170                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
171                 if (!bio)
172                         goto out_free_bio;
173                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
174                 r10_bio->devs[j].repl_bio = bio;
175         }
176         /*
177          * Allocate RESYNC_PAGES data pages and attach them
178          * where needed.
179          */
180         for (j = 0; j < nalloc; j++) {
181                 struct bio *rbio = r10_bio->devs[j].repl_bio;
182                 struct resync_pages *rp, *rp_repl;
183
184                 rp = &rps[j];
185                 if (rbio)
186                         rp_repl = &rps[nalloc + j];
187
188                 bio = r10_bio->devs[j].bio;
189
190                 if (!j || test_bit(MD_RECOVERY_SYNC,
191                                    &conf->mddev->recovery)) {
192                         if (resync_alloc_pages(rp, gfp_flags))
193                                 goto out_free_pages;
194                 } else {
195                         memcpy(rp, &rps[0], sizeof(*rp));
196                         resync_get_all_pages(rp);
197                 }
198
199                 rp->raid_bio = r10_bio;
200                 bio->bi_private = rp;
201                 if (rbio) {
202                         memcpy(rp_repl, rp, sizeof(*rp));
203                         rbio->bi_private = rp_repl;
204                 }
205         }
206
207         return r10_bio;
208
209 out_free_pages:
210         while (--j >= 0)
211                 resync_free_pages(&rps[j]);
212
213         j = 0;
214 out_free_bio:
215         for ( ; j < nalloc; j++) {
216                 if (r10_bio->devs[j].bio)
217                         bio_uninit(r10_bio->devs[j].bio);
218                 kfree(r10_bio->devs[j].bio);
219                 if (r10_bio->devs[j].repl_bio)
220                         bio_uninit(r10_bio->devs[j].repl_bio);
221                 kfree(r10_bio->devs[j].repl_bio);
222         }
223         kfree(rps);
224 out_free_r10bio:
225         rbio_pool_free(r10_bio, conf);
226         return NULL;
227 }
228
229 static void r10buf_pool_free(void *__r10_bio, void *data)
230 {
231         struct r10conf *conf = data;
232         struct r10bio *r10bio = __r10_bio;
233         int j;
234         struct resync_pages *rp = NULL;
235
236         for (j = conf->copies; j--; ) {
237                 struct bio *bio = r10bio->devs[j].bio;
238
239                 if (bio) {
240                         rp = get_resync_pages(bio);
241                         resync_free_pages(rp);
242                         bio_uninit(bio);
243                         kfree(bio);
244                 }
245
246                 bio = r10bio->devs[j].repl_bio;
247                 if (bio) {
248                         bio_uninit(bio);
249                         kfree(bio);
250                 }
251         }
252
253         /* resync pages array stored in the 1st bio's .bi_private */
254         kfree(rp);
255
256         rbio_pool_free(r10bio, conf);
257 }
258
259 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
260 {
261         int i;
262
263         for (i = 0; i < conf->geo.raid_disks; i++) {
264                 struct bio **bio = & r10_bio->devs[i].bio;
265                 if (!BIO_SPECIAL(*bio))
266                         bio_put(*bio);
267                 *bio = NULL;
268                 bio = &r10_bio->devs[i].repl_bio;
269                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
270                         bio_put(*bio);
271                 *bio = NULL;
272         }
273 }
274
275 static void free_r10bio(struct r10bio *r10_bio)
276 {
277         struct r10conf *conf = r10_bio->mddev->private;
278
279         put_all_bios(conf, r10_bio);
280         mempool_free(r10_bio, &conf->r10bio_pool);
281 }
282
283 static void put_buf(struct r10bio *r10_bio)
284 {
285         struct r10conf *conf = r10_bio->mddev->private;
286
287         mempool_free(r10_bio, &conf->r10buf_pool);
288
289         lower_barrier(conf);
290 }
291
292 static void wake_up_barrier(struct r10conf *conf)
293 {
294         if (wq_has_sleeper(&conf->wait_barrier))
295                 wake_up(&conf->wait_barrier);
296 }
297
298 static void reschedule_retry(struct r10bio *r10_bio)
299 {
300         unsigned long flags;
301         struct mddev *mddev = r10_bio->mddev;
302         struct r10conf *conf = mddev->private;
303
304         spin_lock_irqsave(&conf->device_lock, flags);
305         list_add(&r10_bio->retry_list, &conf->retry_list);
306         conf->nr_queued ++;
307         spin_unlock_irqrestore(&conf->device_lock, flags);
308
309         /* wake up frozen array... */
310         wake_up(&conf->wait_barrier);
311
312         md_wakeup_thread(mddev->thread);
313 }
314
315 /*
316  * raid_end_bio_io() is called when we have finished servicing a mirrored
317  * operation and are ready to return a success/failure code to the buffer
318  * cache layer.
319  */
320 static void raid_end_bio_io(struct r10bio *r10_bio)
321 {
322         struct bio *bio = r10_bio->master_bio;
323         struct r10conf *conf = r10_bio->mddev->private;
324
325         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
326                 bio->bi_status = BLK_STS_IOERR;
327
328         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
329                 bio_end_io_acct(bio, r10_bio->start_time);
330         bio_endio(bio);
331         /*
332          * Wake up any possible resync thread that waits for the device
333          * to go idle.
334          */
335         allow_barrier(conf);
336
337         free_r10bio(r10_bio);
338 }
339
340 /*
341  * Update disk head position estimator based on IRQ completion info.
342  */
343 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
344 {
345         struct r10conf *conf = r10_bio->mddev->private;
346
347         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
348                 r10_bio->devs[slot].addr + (r10_bio->sectors);
349 }
350
351 /*
352  * Find the disk number which triggered given bio
353  */
354 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
355                          struct bio *bio, int *slotp, int *replp)
356 {
357         int slot;
358         int repl = 0;
359
360         for (slot = 0; slot < conf->geo.raid_disks; slot++) {
361                 if (r10_bio->devs[slot].bio == bio)
362                         break;
363                 if (r10_bio->devs[slot].repl_bio == bio) {
364                         repl = 1;
365                         break;
366                 }
367         }
368
369         update_head_pos(slot, r10_bio);
370
371         if (slotp)
372                 *slotp = slot;
373         if (replp)
374                 *replp = repl;
375         return r10_bio->devs[slot].devnum;
376 }
377
378 static void raid10_end_read_request(struct bio *bio)
379 {
380         int uptodate = !bio->bi_status;
381         struct r10bio *r10_bio = bio->bi_private;
382         int slot;
383         struct md_rdev *rdev;
384         struct r10conf *conf = r10_bio->mddev->private;
385
386         slot = r10_bio->read_slot;
387         rdev = r10_bio->devs[slot].rdev;
388         /*
389          * this branch is our 'one mirror IO has finished' event handler:
390          */
391         update_head_pos(slot, r10_bio);
392
393         if (uptodate) {
394                 /*
395                  * Set R10BIO_Uptodate in our master bio, so that
396                  * we will return a good error code to the higher
397                  * levels even if IO on some other mirrored buffer fails.
398                  *
399                  * The 'master' represents the composite IO operation to
400                  * user-side. So if something waits for IO, then it will
401                  * wait for the 'master' bio.
402                  */
403                 set_bit(R10BIO_Uptodate, &r10_bio->state);
404         } else {
405                 /* If all other devices that store this block have
406                  * failed, we want to return the error upwards rather
407                  * than fail the last device.  Here we redefine
408                  * "uptodate" to mean "Don't want to retry"
409                  */
410                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
411                              rdev->raid_disk))
412                         uptodate = 1;
413         }
414         if (uptodate) {
415                 raid_end_bio_io(r10_bio);
416                 rdev_dec_pending(rdev, conf->mddev);
417         } else {
418                 /*
419                  * oops, read error - keep the refcount on the rdev
420                  */
421                 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
422                                    mdname(conf->mddev),
423                                    rdev->bdev,
424                                    (unsigned long long)r10_bio->sector);
425                 set_bit(R10BIO_ReadError, &r10_bio->state);
426                 reschedule_retry(r10_bio);
427         }
428 }
429
430 static void close_write(struct r10bio *r10_bio)
431 {
432         /* clear the bitmap if all writes complete successfully */
433         md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
434                            r10_bio->sectors,
435                            !test_bit(R10BIO_Degraded, &r10_bio->state),
436                            0);
437         md_write_end(r10_bio->mddev);
438 }
439
440 static void one_write_done(struct r10bio *r10_bio)
441 {
442         if (atomic_dec_and_test(&r10_bio->remaining)) {
443                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
444                         reschedule_retry(r10_bio);
445                 else {
446                         close_write(r10_bio);
447                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
448                                 reschedule_retry(r10_bio);
449                         else
450                                 raid_end_bio_io(r10_bio);
451                 }
452         }
453 }
454
455 static void raid10_end_write_request(struct bio *bio)
456 {
457         struct r10bio *r10_bio = bio->bi_private;
458         int dev;
459         int dec_rdev = 1;
460         struct r10conf *conf = r10_bio->mddev->private;
461         int slot, repl;
462         struct md_rdev *rdev = NULL;
463         struct bio *to_put = NULL;
464         bool discard_error;
465
466         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
467
468         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
469
470         if (repl)
471                 rdev = conf->mirrors[dev].replacement;
472         if (!rdev) {
473                 smp_rmb();
474                 repl = 0;
475                 rdev = conf->mirrors[dev].rdev;
476         }
477         /*
478          * this branch is our 'one mirror IO has finished' event handler:
479          */
480         if (bio->bi_status && !discard_error) {
481                 if (repl)
482                         /* Never record new bad blocks to replacement,
483                          * just fail it.
484                          */
485                         md_error(rdev->mddev, rdev);
486                 else {
487                         set_bit(WriteErrorSeen, &rdev->flags);
488                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
489                                 set_bit(MD_RECOVERY_NEEDED,
490                                         &rdev->mddev->recovery);
491
492                         dec_rdev = 0;
493                         if (test_bit(FailFast, &rdev->flags) &&
494                             (bio->bi_opf & MD_FAILFAST)) {
495                                 md_error(rdev->mddev, rdev);
496                         }
497
498                         /*
499                          * When the device is faulty, it is not necessary to
500                          * handle write error.
501                          */
502                         if (!test_bit(Faulty, &rdev->flags))
503                                 set_bit(R10BIO_WriteError, &r10_bio->state);
504                         else {
505                                 /* Fail the request */
506                                 set_bit(R10BIO_Degraded, &r10_bio->state);
507                                 r10_bio->devs[slot].bio = NULL;
508                                 to_put = bio;
509                                 dec_rdev = 1;
510                         }
511                 }
512         } else {
513                 /*
514                  * Set R10BIO_Uptodate in our master bio, so that
515                  * we will return a good error code for to the higher
516                  * levels even if IO on some other mirrored buffer fails.
517                  *
518                  * The 'master' represents the composite IO operation to
519                  * user-side. So if something waits for IO, then it will
520                  * wait for the 'master' bio.
521                  */
522                 sector_t first_bad;
523                 int bad_sectors;
524
525                 /*
526                  * Do not set R10BIO_Uptodate if the current device is
527                  * rebuilding or Faulty. This is because we cannot use
528                  * such device for properly reading the data back (we could
529                  * potentially use it, if the current write would have felt
530                  * before rdev->recovery_offset, but for simplicity we don't
531                  * check this here.
532                  */
533                 if (test_bit(In_sync, &rdev->flags) &&
534                     !test_bit(Faulty, &rdev->flags))
535                         set_bit(R10BIO_Uptodate, &r10_bio->state);
536
537                 /* Maybe we can clear some bad blocks. */
538                 if (is_badblock(rdev,
539                                 r10_bio->devs[slot].addr,
540                                 r10_bio->sectors,
541                                 &first_bad, &bad_sectors) && !discard_error) {
542                         bio_put(bio);
543                         if (repl)
544                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
545                         else
546                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
547                         dec_rdev = 0;
548                         set_bit(R10BIO_MadeGood, &r10_bio->state);
549                 }
550         }
551
552         /*
553          *
554          * Let's see if all mirrored write operations have finished
555          * already.
556          */
557         one_write_done(r10_bio);
558         if (dec_rdev)
559                 rdev_dec_pending(rdev, conf->mddev);
560         if (to_put)
561                 bio_put(to_put);
562 }
563
564 /*
565  * RAID10 layout manager
566  * As well as the chunksize and raid_disks count, there are two
567  * parameters: near_copies and far_copies.
568  * near_copies * far_copies must be <= raid_disks.
569  * Normally one of these will be 1.
570  * If both are 1, we get raid0.
571  * If near_copies == raid_disks, we get raid1.
572  *
573  * Chunks are laid out in raid0 style with near_copies copies of the
574  * first chunk, followed by near_copies copies of the next chunk and
575  * so on.
576  * If far_copies > 1, then after 1/far_copies of the array has been assigned
577  * as described above, we start again with a device offset of near_copies.
578  * So we effectively have another copy of the whole array further down all
579  * the drives, but with blocks on different drives.
580  * With this layout, and block is never stored twice on the one device.
581  *
582  * raid10_find_phys finds the sector offset of a given virtual sector
583  * on each device that it is on.
584  *
585  * raid10_find_virt does the reverse mapping, from a device and a
586  * sector offset to a virtual address
587  */
588
589 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
590 {
591         int n,f;
592         sector_t sector;
593         sector_t chunk;
594         sector_t stripe;
595         int dev;
596         int slot = 0;
597         int last_far_set_start, last_far_set_size;
598
599         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
600         last_far_set_start *= geo->far_set_size;
601
602         last_far_set_size = geo->far_set_size;
603         last_far_set_size += (geo->raid_disks % geo->far_set_size);
604
605         /* now calculate first sector/dev */
606         chunk = r10bio->sector >> geo->chunk_shift;
607         sector = r10bio->sector & geo->chunk_mask;
608
609         chunk *= geo->near_copies;
610         stripe = chunk;
611         dev = sector_div(stripe, geo->raid_disks);
612         if (geo->far_offset)
613                 stripe *= geo->far_copies;
614
615         sector += stripe << geo->chunk_shift;
616
617         /* and calculate all the others */
618         for (n = 0; n < geo->near_copies; n++) {
619                 int d = dev;
620                 int set;
621                 sector_t s = sector;
622                 r10bio->devs[slot].devnum = d;
623                 r10bio->devs[slot].addr = s;
624                 slot++;
625
626                 for (f = 1; f < geo->far_copies; f++) {
627                         set = d / geo->far_set_size;
628                         d += geo->near_copies;
629
630                         if ((geo->raid_disks % geo->far_set_size) &&
631                             (d > last_far_set_start)) {
632                                 d -= last_far_set_start;
633                                 d %= last_far_set_size;
634                                 d += last_far_set_start;
635                         } else {
636                                 d %= geo->far_set_size;
637                                 d += geo->far_set_size * set;
638                         }
639                         s += geo->stride;
640                         r10bio->devs[slot].devnum = d;
641                         r10bio->devs[slot].addr = s;
642                         slot++;
643                 }
644                 dev++;
645                 if (dev >= geo->raid_disks) {
646                         dev = 0;
647                         sector += (geo->chunk_mask + 1);
648                 }
649         }
650 }
651
652 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
653 {
654         struct geom *geo = &conf->geo;
655
656         if (conf->reshape_progress != MaxSector &&
657             ((r10bio->sector >= conf->reshape_progress) !=
658              conf->mddev->reshape_backwards)) {
659                 set_bit(R10BIO_Previous, &r10bio->state);
660                 geo = &conf->prev;
661         } else
662                 clear_bit(R10BIO_Previous, &r10bio->state);
663
664         __raid10_find_phys(geo, r10bio);
665 }
666
667 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
668 {
669         sector_t offset, chunk, vchunk;
670         /* Never use conf->prev as this is only called during resync
671          * or recovery, so reshape isn't happening
672          */
673         struct geom *geo = &conf->geo;
674         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
675         int far_set_size = geo->far_set_size;
676         int last_far_set_start;
677
678         if (geo->raid_disks % geo->far_set_size) {
679                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
680                 last_far_set_start *= geo->far_set_size;
681
682                 if (dev >= last_far_set_start) {
683                         far_set_size = geo->far_set_size;
684                         far_set_size += (geo->raid_disks % geo->far_set_size);
685                         far_set_start = last_far_set_start;
686                 }
687         }
688
689         offset = sector & geo->chunk_mask;
690         if (geo->far_offset) {
691                 int fc;
692                 chunk = sector >> geo->chunk_shift;
693                 fc = sector_div(chunk, geo->far_copies);
694                 dev -= fc * geo->near_copies;
695                 if (dev < far_set_start)
696                         dev += far_set_size;
697         } else {
698                 while (sector >= geo->stride) {
699                         sector -= geo->stride;
700                         if (dev < (geo->near_copies + far_set_start))
701                                 dev += far_set_size - geo->near_copies;
702                         else
703                                 dev -= geo->near_copies;
704                 }
705                 chunk = sector >> geo->chunk_shift;
706         }
707         vchunk = chunk * geo->raid_disks + dev;
708         sector_div(vchunk, geo->near_copies);
709         return (vchunk << geo->chunk_shift) + offset;
710 }
711
712 /*
713  * This routine returns the disk from which the requested read should
714  * be done. There is a per-array 'next expected sequential IO' sector
715  * number - if this matches on the next IO then we use the last disk.
716  * There is also a per-disk 'last know head position' sector that is
717  * maintained from IRQ contexts, both the normal and the resync IO
718  * completion handlers update this position correctly. If there is no
719  * perfect sequential match then we pick the disk whose head is closest.
720  *
721  * If there are 2 mirrors in the same 2 devices, performance degrades
722  * because position is mirror, not device based.
723  *
724  * The rdev for the device selected will have nr_pending incremented.
725  */
726
727 /*
728  * FIXME: possibly should rethink readbalancing and do it differently
729  * depending on near_copies / far_copies geometry.
730  */
731 static struct md_rdev *read_balance(struct r10conf *conf,
732                                     struct r10bio *r10_bio,
733                                     int *max_sectors)
734 {
735         const sector_t this_sector = r10_bio->sector;
736         int disk, slot;
737         int sectors = r10_bio->sectors;
738         int best_good_sectors;
739         sector_t new_distance, best_dist;
740         struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
741         int do_balance;
742         int best_dist_slot, best_pending_slot;
743         bool has_nonrot_disk = false;
744         unsigned int min_pending;
745         struct geom *geo = &conf->geo;
746
747         raid10_find_phys(conf, r10_bio);
748         rcu_read_lock();
749         best_dist_slot = -1;
750         min_pending = UINT_MAX;
751         best_dist_rdev = NULL;
752         best_pending_rdev = NULL;
753         best_dist = MaxSector;
754         best_good_sectors = 0;
755         do_balance = 1;
756         clear_bit(R10BIO_FailFast, &r10_bio->state);
757         /*
758          * Check if we can balance. We can balance on the whole
759          * device if no resync is going on (recovery is ok), or below
760          * the resync window. We take the first readable disk when
761          * above the resync window.
762          */
763         if ((conf->mddev->recovery_cp < MaxSector
764              && (this_sector + sectors >= conf->next_resync)) ||
765             (mddev_is_clustered(conf->mddev) &&
766              md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
767                                             this_sector + sectors)))
768                 do_balance = 0;
769
770         for (slot = 0; slot < conf->copies ; slot++) {
771                 sector_t first_bad;
772                 int bad_sectors;
773                 sector_t dev_sector;
774                 unsigned int pending;
775                 bool nonrot;
776
777                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
778                         continue;
779                 disk = r10_bio->devs[slot].devnum;
780                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
781                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
782                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
783                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
784                 if (rdev == NULL ||
785                     test_bit(Faulty, &rdev->flags))
786                         continue;
787                 if (!test_bit(In_sync, &rdev->flags) &&
788                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
789                         continue;
790
791                 dev_sector = r10_bio->devs[slot].addr;
792                 if (is_badblock(rdev, dev_sector, sectors,
793                                 &first_bad, &bad_sectors)) {
794                         if (best_dist < MaxSector)
795                                 /* Already have a better slot */
796                                 continue;
797                         if (first_bad <= dev_sector) {
798                                 /* Cannot read here.  If this is the
799                                  * 'primary' device, then we must not read
800                                  * beyond 'bad_sectors' from another device.
801                                  */
802                                 bad_sectors -= (dev_sector - first_bad);
803                                 if (!do_balance && sectors > bad_sectors)
804                                         sectors = bad_sectors;
805                                 if (best_good_sectors > sectors)
806                                         best_good_sectors = sectors;
807                         } else {
808                                 sector_t good_sectors =
809                                         first_bad - dev_sector;
810                                 if (good_sectors > best_good_sectors) {
811                                         best_good_sectors = good_sectors;
812                                         best_dist_slot = slot;
813                                         best_dist_rdev = rdev;
814                                 }
815                                 if (!do_balance)
816                                         /* Must read from here */
817                                         break;
818                         }
819                         continue;
820                 } else
821                         best_good_sectors = sectors;
822
823                 if (!do_balance)
824                         break;
825
826                 nonrot = bdev_nonrot(rdev->bdev);
827                 has_nonrot_disk |= nonrot;
828                 pending = atomic_read(&rdev->nr_pending);
829                 if (min_pending > pending && nonrot) {
830                         min_pending = pending;
831                         best_pending_slot = slot;
832                         best_pending_rdev = rdev;
833                 }
834
835                 if (best_dist_slot >= 0)
836                         /* At least 2 disks to choose from so failfast is OK */
837                         set_bit(R10BIO_FailFast, &r10_bio->state);
838                 /* This optimisation is debatable, and completely destroys
839                  * sequential read speed for 'far copies' arrays.  So only
840                  * keep it for 'near' arrays, and review those later.
841                  */
842                 if (geo->near_copies > 1 && !pending)
843                         new_distance = 0;
844
845                 /* for far > 1 always use the lowest address */
846                 else if (geo->far_copies > 1)
847                         new_distance = r10_bio->devs[slot].addr;
848                 else
849                         new_distance = abs(r10_bio->devs[slot].addr -
850                                            conf->mirrors[disk].head_position);
851
852                 if (new_distance < best_dist) {
853                         best_dist = new_distance;
854                         best_dist_slot = slot;
855                         best_dist_rdev = rdev;
856                 }
857         }
858         if (slot >= conf->copies) {
859                 if (has_nonrot_disk) {
860                         slot = best_pending_slot;
861                         rdev = best_pending_rdev;
862                 } else {
863                         slot = best_dist_slot;
864                         rdev = best_dist_rdev;
865                 }
866         }
867
868         if (slot >= 0) {
869                 atomic_inc(&rdev->nr_pending);
870                 r10_bio->read_slot = slot;
871         } else
872                 rdev = NULL;
873         rcu_read_unlock();
874         *max_sectors = best_good_sectors;
875
876         return rdev;
877 }
878
879 static void flush_pending_writes(struct r10conf *conf)
880 {
881         /* Any writes that have been queued but are awaiting
882          * bitmap updates get flushed here.
883          */
884         spin_lock_irq(&conf->device_lock);
885
886         if (conf->pending_bio_list.head) {
887                 struct blk_plug plug;
888                 struct bio *bio;
889
890                 bio = bio_list_get(&conf->pending_bio_list);
891                 spin_unlock_irq(&conf->device_lock);
892
893                 /*
894                  * As this is called in a wait_event() loop (see freeze_array),
895                  * current->state might be TASK_UNINTERRUPTIBLE which will
896                  * cause a warning when we prepare to wait again.  As it is
897                  * rare that this path is taken, it is perfectly safe to force
898                  * us to go around the wait_event() loop again, so the warning
899                  * is a false-positive. Silence the warning by resetting
900                  * thread state
901                  */
902                 __set_current_state(TASK_RUNNING);
903
904                 blk_start_plug(&plug);
905                 /* flush any pending bitmap writes to disk
906                  * before proceeding w/ I/O */
907                 md_bitmap_unplug(conf->mddev->bitmap);
908                 wake_up(&conf->wait_barrier);
909
910                 while (bio) { /* submit pending writes */
911                         struct bio *next = bio->bi_next;
912                         struct md_rdev *rdev = (void*)bio->bi_bdev;
913                         bio->bi_next = NULL;
914                         bio_set_dev(bio, rdev->bdev);
915                         if (test_bit(Faulty, &rdev->flags)) {
916                                 bio_io_error(bio);
917                         } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
918                                             !bdev_max_discard_sectors(bio->bi_bdev)))
919                                 /* Just ignore it */
920                                 bio_endio(bio);
921                         else
922                                 submit_bio_noacct(bio);
923                         bio = next;
924                 }
925                 blk_finish_plug(&plug);
926         } else
927                 spin_unlock_irq(&conf->device_lock);
928 }
929
930 /* Barriers....
931  * Sometimes we need to suspend IO while we do something else,
932  * either some resync/recovery, or reconfigure the array.
933  * To do this we raise a 'barrier'.
934  * The 'barrier' is a counter that can be raised multiple times
935  * to count how many activities are happening which preclude
936  * normal IO.
937  * We can only raise the barrier if there is no pending IO.
938  * i.e. if nr_pending == 0.
939  * We choose only to raise the barrier if no-one is waiting for the
940  * barrier to go down.  This means that as soon as an IO request
941  * is ready, no other operations which require a barrier will start
942  * until the IO request has had a chance.
943  *
944  * So: regular IO calls 'wait_barrier'.  When that returns there
945  *    is no backgroup IO happening,  It must arrange to call
946  *    allow_barrier when it has finished its IO.
947  * backgroup IO calls must call raise_barrier.  Once that returns
948  *    there is no normal IO happeing.  It must arrange to call
949  *    lower_barrier when the particular background IO completes.
950  */
951
952 static void raise_barrier(struct r10conf *conf, int force)
953 {
954         write_seqlock_irq(&conf->resync_lock);
955         BUG_ON(force && !conf->barrier);
956
957         /* Wait until no block IO is waiting (unless 'force') */
958         wait_event_barrier(conf, force || !conf->nr_waiting);
959
960         /* block any new IO from starting */
961         WRITE_ONCE(conf->barrier, conf->barrier + 1);
962
963         /* Now wait for all pending IO to complete */
964         wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
965                                  conf->barrier < RESYNC_DEPTH);
966
967         write_sequnlock_irq(&conf->resync_lock);
968 }
969
970 static void lower_barrier(struct r10conf *conf)
971 {
972         unsigned long flags;
973
974         write_seqlock_irqsave(&conf->resync_lock, flags);
975         WRITE_ONCE(conf->barrier, conf->barrier - 1);
976         write_sequnlock_irqrestore(&conf->resync_lock, flags);
977         wake_up(&conf->wait_barrier);
978 }
979
980 static bool stop_waiting_barrier(struct r10conf *conf)
981 {
982         struct bio_list *bio_list = current->bio_list;
983
984         /* barrier is dropped */
985         if (!conf->barrier)
986                 return true;
987
988         /*
989          * If there are already pending requests (preventing the barrier from
990          * rising completely), and the pre-process bio queue isn't empty, then
991          * don't wait, as we need to empty that queue to get the nr_pending
992          * count down.
993          */
994         if (atomic_read(&conf->nr_pending) && bio_list &&
995             (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
996                 return true;
997
998         /* move on if recovery thread is blocked by us */
999         if (conf->mddev->thread->tsk == current &&
1000             test_bit(MD_RECOVERY_RUNNING, &conf->mddev->recovery) &&
1001             conf->nr_queued > 0)
1002                 return true;
1003
1004         return false;
1005 }
1006
1007 static bool wait_barrier_nolock(struct r10conf *conf)
1008 {
1009         unsigned int seq = read_seqbegin(&conf->resync_lock);
1010
1011         if (READ_ONCE(conf->barrier))
1012                 return false;
1013
1014         atomic_inc(&conf->nr_pending);
1015         if (!read_seqretry(&conf->resync_lock, seq))
1016                 return true;
1017
1018         if (atomic_dec_and_test(&conf->nr_pending))
1019                 wake_up_barrier(conf);
1020
1021         return false;
1022 }
1023
1024 static bool wait_barrier(struct r10conf *conf, bool nowait)
1025 {
1026         bool ret = true;
1027
1028         if (wait_barrier_nolock(conf))
1029                 return true;
1030
1031         write_seqlock_irq(&conf->resync_lock);
1032         if (conf->barrier) {
1033                 /* Return false when nowait flag is set */
1034                 if (nowait) {
1035                         ret = false;
1036                 } else {
1037                         conf->nr_waiting++;
1038                         raid10_log(conf->mddev, "wait barrier");
1039                         wait_event_barrier(conf, stop_waiting_barrier(conf));
1040                         conf->nr_waiting--;
1041                 }
1042                 if (!conf->nr_waiting)
1043                         wake_up(&conf->wait_barrier);
1044         }
1045         /* Only increment nr_pending when we wait */
1046         if (ret)
1047                 atomic_inc(&conf->nr_pending);
1048         write_sequnlock_irq(&conf->resync_lock);
1049         return ret;
1050 }
1051
1052 static void allow_barrier(struct r10conf *conf)
1053 {
1054         if ((atomic_dec_and_test(&conf->nr_pending)) ||
1055                         (conf->array_freeze_pending))
1056                 wake_up_barrier(conf);
1057 }
1058
1059 static void freeze_array(struct r10conf *conf, int extra)
1060 {
1061         /* stop syncio and normal IO and wait for everything to
1062          * go quiet.
1063          * We increment barrier and nr_waiting, and then
1064          * wait until nr_pending match nr_queued+extra
1065          * This is called in the context of one normal IO request
1066          * that has failed. Thus any sync request that might be pending
1067          * will be blocked by nr_pending, and we need to wait for
1068          * pending IO requests to complete or be queued for re-try.
1069          * Thus the number queued (nr_queued) plus this request (extra)
1070          * must match the number of pending IOs (nr_pending) before
1071          * we continue.
1072          */
1073         write_seqlock_irq(&conf->resync_lock);
1074         conf->array_freeze_pending++;
1075         WRITE_ONCE(conf->barrier, conf->barrier + 1);
1076         conf->nr_waiting++;
1077         wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1078                         conf->nr_queued + extra, flush_pending_writes(conf));
1079         conf->array_freeze_pending--;
1080         write_sequnlock_irq(&conf->resync_lock);
1081 }
1082
1083 static void unfreeze_array(struct r10conf *conf)
1084 {
1085         /* reverse the effect of the freeze */
1086         write_seqlock_irq(&conf->resync_lock);
1087         WRITE_ONCE(conf->barrier, conf->barrier - 1);
1088         conf->nr_waiting--;
1089         wake_up(&conf->wait_barrier);
1090         write_sequnlock_irq(&conf->resync_lock);
1091 }
1092
1093 static sector_t choose_data_offset(struct r10bio *r10_bio,
1094                                    struct md_rdev *rdev)
1095 {
1096         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1097             test_bit(R10BIO_Previous, &r10_bio->state))
1098                 return rdev->data_offset;
1099         else
1100                 return rdev->new_data_offset;
1101 }
1102
1103 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1104 {
1105         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1106         struct mddev *mddev = plug->cb.data;
1107         struct r10conf *conf = mddev->private;
1108         struct bio *bio;
1109
1110         if (from_schedule || current->bio_list) {
1111                 spin_lock_irq(&conf->device_lock);
1112                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1113                 spin_unlock_irq(&conf->device_lock);
1114                 wake_up(&conf->wait_barrier);
1115                 md_wakeup_thread(mddev->thread);
1116                 kfree(plug);
1117                 return;
1118         }
1119
1120         /* we aren't scheduling, so we can do the write-out directly. */
1121         bio = bio_list_get(&plug->pending);
1122         md_bitmap_unplug(mddev->bitmap);
1123         wake_up(&conf->wait_barrier);
1124
1125         while (bio) { /* submit pending writes */
1126                 struct bio *next = bio->bi_next;
1127                 struct md_rdev *rdev = (void*)bio->bi_bdev;
1128                 bio->bi_next = NULL;
1129                 bio_set_dev(bio, rdev->bdev);
1130                 if (test_bit(Faulty, &rdev->flags)) {
1131                         bio_io_error(bio);
1132                 } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1133                                     !bdev_max_discard_sectors(bio->bi_bdev)))
1134                         /* Just ignore it */
1135                         bio_endio(bio);
1136                 else
1137                         submit_bio_noacct(bio);
1138                 bio = next;
1139         }
1140         kfree(plug);
1141 }
1142
1143 /*
1144  * 1. Register the new request and wait if the reconstruction thread has put
1145  * up a bar for new requests. Continue immediately if no resync is active
1146  * currently.
1147  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1148  */
1149 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1150                                  struct bio *bio, sector_t sectors)
1151 {
1152         /* Bail out if REQ_NOWAIT is set for the bio */
1153         if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1154                 bio_wouldblock_error(bio);
1155                 return false;
1156         }
1157         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1158             bio->bi_iter.bi_sector < conf->reshape_progress &&
1159             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1160                 allow_barrier(conf);
1161                 if (bio->bi_opf & REQ_NOWAIT) {
1162                         bio_wouldblock_error(bio);
1163                         return false;
1164                 }
1165                 raid10_log(conf->mddev, "wait reshape");
1166                 wait_event(conf->wait_barrier,
1167                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1168                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1169                            sectors);
1170                 wait_barrier(conf, false);
1171         }
1172         return true;
1173 }
1174
1175 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1176                                 struct r10bio *r10_bio)
1177 {
1178         struct r10conf *conf = mddev->private;
1179         struct bio *read_bio;
1180         const enum req_op op = bio_op(bio);
1181         const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1182         int max_sectors;
1183         struct md_rdev *rdev;
1184         char b[BDEVNAME_SIZE];
1185         int slot = r10_bio->read_slot;
1186         struct md_rdev *err_rdev = NULL;
1187         gfp_t gfp = GFP_NOIO;
1188
1189         if (slot >= 0 && r10_bio->devs[slot].rdev) {
1190                 /*
1191                  * This is an error retry, but we cannot
1192                  * safely dereference the rdev in the r10_bio,
1193                  * we must use the one in conf.
1194                  * If it has already been disconnected (unlikely)
1195                  * we lose the device name in error messages.
1196                  */
1197                 int disk;
1198                 /*
1199                  * As we are blocking raid10, it is a little safer to
1200                  * use __GFP_HIGH.
1201                  */
1202                 gfp = GFP_NOIO | __GFP_HIGH;
1203
1204                 rcu_read_lock();
1205                 disk = r10_bio->devs[slot].devnum;
1206                 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1207                 if (err_rdev)
1208                         snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1209                 else {
1210                         strcpy(b, "???");
1211                         /* This never gets dereferenced */
1212                         err_rdev = r10_bio->devs[slot].rdev;
1213                 }
1214                 rcu_read_unlock();
1215         }
1216
1217         if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1218                 return;
1219         rdev = read_balance(conf, r10_bio, &max_sectors);
1220         if (!rdev) {
1221                 if (err_rdev) {
1222                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1223                                             mdname(mddev), b,
1224                                             (unsigned long long)r10_bio->sector);
1225                 }
1226                 raid_end_bio_io(r10_bio);
1227                 return;
1228         }
1229         if (err_rdev)
1230                 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1231                                    mdname(mddev),
1232                                    rdev->bdev,
1233                                    (unsigned long long)r10_bio->sector);
1234         if (max_sectors < bio_sectors(bio)) {
1235                 struct bio *split = bio_split(bio, max_sectors,
1236                                               gfp, &conf->bio_split);
1237                 bio_chain(split, bio);
1238                 allow_barrier(conf);
1239                 submit_bio_noacct(bio);
1240                 wait_barrier(conf, false);
1241                 bio = split;
1242                 r10_bio->master_bio = bio;
1243                 r10_bio->sectors = max_sectors;
1244         }
1245         slot = r10_bio->read_slot;
1246
1247         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1248                 r10_bio->start_time = bio_start_io_acct(bio);
1249         read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1250
1251         r10_bio->devs[slot].bio = read_bio;
1252         r10_bio->devs[slot].rdev = rdev;
1253
1254         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1255                 choose_data_offset(r10_bio, rdev);
1256         read_bio->bi_end_io = raid10_end_read_request;
1257         bio_set_op_attrs(read_bio, op, do_sync);
1258         if (test_bit(FailFast, &rdev->flags) &&
1259             test_bit(R10BIO_FailFast, &r10_bio->state))
1260                 read_bio->bi_opf |= MD_FAILFAST;
1261         read_bio->bi_private = r10_bio;
1262
1263         if (mddev->gendisk)
1264                 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1265                                       r10_bio->sector);
1266         submit_bio_noacct(read_bio);
1267         return;
1268 }
1269
1270 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1271                                   struct bio *bio, bool replacement,
1272                                   int n_copy)
1273 {
1274         const enum req_op op = bio_op(bio);
1275         const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1276         const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1277         unsigned long flags;
1278         struct blk_plug_cb *cb;
1279         struct raid1_plug_cb *plug = NULL;
1280         struct r10conf *conf = mddev->private;
1281         struct md_rdev *rdev;
1282         int devnum = r10_bio->devs[n_copy].devnum;
1283         struct bio *mbio;
1284
1285         if (replacement) {
1286                 rdev = conf->mirrors[devnum].replacement;
1287                 if (rdev == NULL) {
1288                         /* Replacement just got moved to main 'rdev' */
1289                         smp_mb();
1290                         rdev = conf->mirrors[devnum].rdev;
1291                 }
1292         } else
1293                 rdev = conf->mirrors[devnum].rdev;
1294
1295         mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1296         if (replacement)
1297                 r10_bio->devs[n_copy].repl_bio = mbio;
1298         else
1299                 r10_bio->devs[n_copy].bio = mbio;
1300
1301         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1302                                    choose_data_offset(r10_bio, rdev));
1303         mbio->bi_end_io = raid10_end_write_request;
1304         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1305         if (!replacement && test_bit(FailFast,
1306                                      &conf->mirrors[devnum].rdev->flags)
1307                          && enough(conf, devnum))
1308                 mbio->bi_opf |= MD_FAILFAST;
1309         mbio->bi_private = r10_bio;
1310
1311         if (conf->mddev->gendisk)
1312                 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1313                                       r10_bio->sector);
1314         /* flush_pending_writes() needs access to the rdev so...*/
1315         mbio->bi_bdev = (void *)rdev;
1316
1317         atomic_inc(&r10_bio->remaining);
1318
1319         cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1320         if (cb)
1321                 plug = container_of(cb, struct raid1_plug_cb, cb);
1322         else
1323                 plug = NULL;
1324         if (plug) {
1325                 bio_list_add(&plug->pending, mbio);
1326         } else {
1327                 spin_lock_irqsave(&conf->device_lock, flags);
1328                 bio_list_add(&conf->pending_bio_list, mbio);
1329                 spin_unlock_irqrestore(&conf->device_lock, flags);
1330                 md_wakeup_thread(mddev->thread);
1331         }
1332 }
1333
1334 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1335 {
1336         int i;
1337         struct r10conf *conf = mddev->private;
1338         struct md_rdev *blocked_rdev;
1339
1340 retry_wait:
1341         blocked_rdev = NULL;
1342         rcu_read_lock();
1343         for (i = 0; i < conf->copies; i++) {
1344                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1345                 struct md_rdev *rrdev = rcu_dereference(
1346                         conf->mirrors[i].replacement);
1347                 if (rdev == rrdev)
1348                         rrdev = NULL;
1349                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1350                         atomic_inc(&rdev->nr_pending);
1351                         blocked_rdev = rdev;
1352                         break;
1353                 }
1354                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1355                         atomic_inc(&rrdev->nr_pending);
1356                         blocked_rdev = rrdev;
1357                         break;
1358                 }
1359
1360                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1361                         sector_t first_bad;
1362                         sector_t dev_sector = r10_bio->devs[i].addr;
1363                         int bad_sectors;
1364                         int is_bad;
1365
1366                         /*
1367                          * Discard request doesn't care the write result
1368                          * so it doesn't need to wait blocked disk here.
1369                          */
1370                         if (!r10_bio->sectors)
1371                                 continue;
1372
1373                         is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1374                                              &first_bad, &bad_sectors);
1375                         if (is_bad < 0) {
1376                                 /*
1377                                  * Mustn't write here until the bad block
1378                                  * is acknowledged
1379                                  */
1380                                 atomic_inc(&rdev->nr_pending);
1381                                 set_bit(BlockedBadBlocks, &rdev->flags);
1382                                 blocked_rdev = rdev;
1383                                 break;
1384                         }
1385                 }
1386         }
1387         rcu_read_unlock();
1388
1389         if (unlikely(blocked_rdev)) {
1390                 /* Have to wait for this device to get unblocked, then retry */
1391                 allow_barrier(conf);
1392                 raid10_log(conf->mddev, "%s wait rdev %d blocked",
1393                                 __func__, blocked_rdev->raid_disk);
1394                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1395                 wait_barrier(conf, false);
1396                 goto retry_wait;
1397         }
1398 }
1399
1400 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1401                                  struct r10bio *r10_bio)
1402 {
1403         struct r10conf *conf = mddev->private;
1404         int i;
1405         sector_t sectors;
1406         int max_sectors;
1407
1408         if ((mddev_is_clustered(mddev) &&
1409              md_cluster_ops->area_resyncing(mddev, WRITE,
1410                                             bio->bi_iter.bi_sector,
1411                                             bio_end_sector(bio)))) {
1412                 DEFINE_WAIT(w);
1413                 /* Bail out if REQ_NOWAIT is set for the bio */
1414                 if (bio->bi_opf & REQ_NOWAIT) {
1415                         bio_wouldblock_error(bio);
1416                         return;
1417                 }
1418                 for (;;) {
1419                         prepare_to_wait(&conf->wait_barrier,
1420                                         &w, TASK_IDLE);
1421                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1422                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1423                                 break;
1424                         schedule();
1425                 }
1426                 finish_wait(&conf->wait_barrier, &w);
1427         }
1428
1429         sectors = r10_bio->sectors;
1430         if (!regular_request_wait(mddev, conf, bio, sectors))
1431                 return;
1432         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1433             (mddev->reshape_backwards
1434              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1435                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1436              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1437                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1438                 /* Need to update reshape_position in metadata */
1439                 mddev->reshape_position = conf->reshape_progress;
1440                 set_mask_bits(&mddev->sb_flags, 0,
1441                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1442                 md_wakeup_thread(mddev->thread);
1443                 if (bio->bi_opf & REQ_NOWAIT) {
1444                         allow_barrier(conf);
1445                         bio_wouldblock_error(bio);
1446                         return;
1447                 }
1448                 raid10_log(conf->mddev, "wait reshape metadata");
1449                 wait_event(mddev->sb_wait,
1450                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1451
1452                 conf->reshape_safe = mddev->reshape_position;
1453         }
1454
1455         /* first select target devices under rcu_lock and
1456          * inc refcount on their rdev.  Record them by setting
1457          * bios[x] to bio
1458          * If there are known/acknowledged bad blocks on any device
1459          * on which we have seen a write error, we want to avoid
1460          * writing to those blocks.  This potentially requires several
1461          * writes to write around the bad blocks.  Each set of writes
1462          * gets its own r10_bio with a set of bios attached.
1463          */
1464
1465         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1466         raid10_find_phys(conf, r10_bio);
1467
1468         wait_blocked_dev(mddev, r10_bio);
1469
1470         rcu_read_lock();
1471         max_sectors = r10_bio->sectors;
1472
1473         for (i = 0;  i < conf->copies; i++) {
1474                 int d = r10_bio->devs[i].devnum;
1475                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1476                 struct md_rdev *rrdev = rcu_dereference(
1477                         conf->mirrors[d].replacement);
1478                 if (rdev == rrdev)
1479                         rrdev = NULL;
1480                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1481                         rdev = NULL;
1482                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1483                         rrdev = NULL;
1484
1485                 r10_bio->devs[i].bio = NULL;
1486                 r10_bio->devs[i].repl_bio = NULL;
1487
1488                 if (!rdev && !rrdev) {
1489                         set_bit(R10BIO_Degraded, &r10_bio->state);
1490                         continue;
1491                 }
1492                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1493                         sector_t first_bad;
1494                         sector_t dev_sector = r10_bio->devs[i].addr;
1495                         int bad_sectors;
1496                         int is_bad;
1497
1498                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1499                                              &first_bad, &bad_sectors);
1500                         if (is_bad && first_bad <= dev_sector) {
1501                                 /* Cannot write here at all */
1502                                 bad_sectors -= (dev_sector - first_bad);
1503                                 if (bad_sectors < max_sectors)
1504                                         /* Mustn't write more than bad_sectors
1505                                          * to other devices yet
1506                                          */
1507                                         max_sectors = bad_sectors;
1508                                 /* We don't set R10BIO_Degraded as that
1509                                  * only applies if the disk is missing,
1510                                  * so it might be re-added, and we want to
1511                                  * know to recover this chunk.
1512                                  * In this case the device is here, and the
1513                                  * fact that this chunk is not in-sync is
1514                                  * recorded in the bad block log.
1515                                  */
1516                                 continue;
1517                         }
1518                         if (is_bad) {
1519                                 int good_sectors = first_bad - dev_sector;
1520                                 if (good_sectors < max_sectors)
1521                                         max_sectors = good_sectors;
1522                         }
1523                 }
1524                 if (rdev) {
1525                         r10_bio->devs[i].bio = bio;
1526                         atomic_inc(&rdev->nr_pending);
1527                 }
1528                 if (rrdev) {
1529                         r10_bio->devs[i].repl_bio = bio;
1530                         atomic_inc(&rrdev->nr_pending);
1531                 }
1532         }
1533         rcu_read_unlock();
1534
1535         if (max_sectors < r10_bio->sectors)
1536                 r10_bio->sectors = max_sectors;
1537
1538         if (r10_bio->sectors < bio_sectors(bio)) {
1539                 struct bio *split = bio_split(bio, r10_bio->sectors,
1540                                               GFP_NOIO, &conf->bio_split);
1541                 bio_chain(split, bio);
1542                 allow_barrier(conf);
1543                 submit_bio_noacct(bio);
1544                 wait_barrier(conf, false);
1545                 bio = split;
1546                 r10_bio->master_bio = bio;
1547         }
1548
1549         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1550                 r10_bio->start_time = bio_start_io_acct(bio);
1551         atomic_set(&r10_bio->remaining, 1);
1552         md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1553
1554         for (i = 0; i < conf->copies; i++) {
1555                 if (r10_bio->devs[i].bio)
1556                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1557                 if (r10_bio->devs[i].repl_bio)
1558                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1559         }
1560         one_write_done(r10_bio);
1561 }
1562
1563 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1564 {
1565         struct r10conf *conf = mddev->private;
1566         struct r10bio *r10_bio;
1567
1568         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1569
1570         r10_bio->master_bio = bio;
1571         r10_bio->sectors = sectors;
1572
1573         r10_bio->mddev = mddev;
1574         r10_bio->sector = bio->bi_iter.bi_sector;
1575         r10_bio->state = 0;
1576         r10_bio->read_slot = -1;
1577         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1578                         conf->geo.raid_disks);
1579
1580         if (bio_data_dir(bio) == READ)
1581                 raid10_read_request(mddev, bio, r10_bio);
1582         else
1583                 raid10_write_request(mddev, bio, r10_bio);
1584 }
1585
1586 static void raid_end_discard_bio(struct r10bio *r10bio)
1587 {
1588         struct r10conf *conf = r10bio->mddev->private;
1589         struct r10bio *first_r10bio;
1590
1591         while (atomic_dec_and_test(&r10bio->remaining)) {
1592
1593                 allow_barrier(conf);
1594
1595                 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1596                         first_r10bio = (struct r10bio *)r10bio->master_bio;
1597                         free_r10bio(r10bio);
1598                         r10bio = first_r10bio;
1599                 } else {
1600                         md_write_end(r10bio->mddev);
1601                         bio_endio(r10bio->master_bio);
1602                         free_r10bio(r10bio);
1603                         break;
1604                 }
1605         }
1606 }
1607
1608 static void raid10_end_discard_request(struct bio *bio)
1609 {
1610         struct r10bio *r10_bio = bio->bi_private;
1611         struct r10conf *conf = r10_bio->mddev->private;
1612         struct md_rdev *rdev = NULL;
1613         int dev;
1614         int slot, repl;
1615
1616         /*
1617          * We don't care the return value of discard bio
1618          */
1619         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1620                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1621
1622         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1623         if (repl)
1624                 rdev = conf->mirrors[dev].replacement;
1625         if (!rdev) {
1626                 /*
1627                  * raid10_remove_disk uses smp_mb to make sure rdev is set to
1628                  * replacement before setting replacement to NULL. It can read
1629                  * rdev first without barrier protect even replacment is NULL
1630                  */
1631                 smp_rmb();
1632                 rdev = conf->mirrors[dev].rdev;
1633         }
1634
1635         raid_end_discard_bio(r10_bio);
1636         rdev_dec_pending(rdev, conf->mddev);
1637 }
1638
1639 /*
1640  * There are some limitations to handle discard bio
1641  * 1st, the discard size is bigger than stripe_size*2.
1642  * 2st, if the discard bio spans reshape progress, we use the old way to
1643  * handle discard bio
1644  */
1645 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1646 {
1647         struct r10conf *conf = mddev->private;
1648         struct geom *geo = &conf->geo;
1649         int far_copies = geo->far_copies;
1650         bool first_copy = true;
1651         struct r10bio *r10_bio, *first_r10bio;
1652         struct bio *split;
1653         int disk;
1654         sector_t chunk;
1655         unsigned int stripe_size;
1656         unsigned int stripe_data_disks;
1657         sector_t split_size;
1658         sector_t bio_start, bio_end;
1659         sector_t first_stripe_index, last_stripe_index;
1660         sector_t start_disk_offset;
1661         unsigned int start_disk_index;
1662         sector_t end_disk_offset;
1663         unsigned int end_disk_index;
1664         unsigned int remainder;
1665
1666         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1667                 return -EAGAIN;
1668
1669         if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1670                 bio_wouldblock_error(bio);
1671                 return 0;
1672         }
1673         wait_barrier(conf, false);
1674
1675         /*
1676          * Check reshape again to avoid reshape happens after checking
1677          * MD_RECOVERY_RESHAPE and before wait_barrier
1678          */
1679         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1680                 goto out;
1681
1682         if (geo->near_copies)
1683                 stripe_data_disks = geo->raid_disks / geo->near_copies +
1684                                         geo->raid_disks % geo->near_copies;
1685         else
1686                 stripe_data_disks = geo->raid_disks;
1687
1688         stripe_size = stripe_data_disks << geo->chunk_shift;
1689
1690         bio_start = bio->bi_iter.bi_sector;
1691         bio_end = bio_end_sector(bio);
1692
1693         /*
1694          * Maybe one discard bio is smaller than strip size or across one
1695          * stripe and discard region is larger than one stripe size. For far
1696          * offset layout, if the discard region is not aligned with stripe
1697          * size, there is hole when we submit discard bio to member disk.
1698          * For simplicity, we only handle discard bio which discard region
1699          * is bigger than stripe_size * 2
1700          */
1701         if (bio_sectors(bio) < stripe_size*2)
1702                 goto out;
1703
1704         /*
1705          * Keep bio aligned with strip size.
1706          */
1707         div_u64_rem(bio_start, stripe_size, &remainder);
1708         if (remainder) {
1709                 split_size = stripe_size - remainder;
1710                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1711                 bio_chain(split, bio);
1712                 allow_barrier(conf);
1713                 /* Resend the fist split part */
1714                 submit_bio_noacct(split);
1715                 wait_barrier(conf, false);
1716         }
1717         div_u64_rem(bio_end, stripe_size, &remainder);
1718         if (remainder) {
1719                 split_size = bio_sectors(bio) - remainder;
1720                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1721                 bio_chain(split, bio);
1722                 allow_barrier(conf);
1723                 /* Resend the second split part */
1724                 submit_bio_noacct(bio);
1725                 bio = split;
1726                 wait_barrier(conf, false);
1727         }
1728
1729         bio_start = bio->bi_iter.bi_sector;
1730         bio_end = bio_end_sector(bio);
1731
1732         /*
1733          * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1734          * One stripe contains the chunks from all member disk (one chunk from
1735          * one disk at the same HBA address). For layout detail, see 'man md 4'
1736          */
1737         chunk = bio_start >> geo->chunk_shift;
1738         chunk *= geo->near_copies;
1739         first_stripe_index = chunk;
1740         start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1741         if (geo->far_offset)
1742                 first_stripe_index *= geo->far_copies;
1743         start_disk_offset = (bio_start & geo->chunk_mask) +
1744                                 (first_stripe_index << geo->chunk_shift);
1745
1746         chunk = bio_end >> geo->chunk_shift;
1747         chunk *= geo->near_copies;
1748         last_stripe_index = chunk;
1749         end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1750         if (geo->far_offset)
1751                 last_stripe_index *= geo->far_copies;
1752         end_disk_offset = (bio_end & geo->chunk_mask) +
1753                                 (last_stripe_index << geo->chunk_shift);
1754
1755 retry_discard:
1756         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1757         r10_bio->mddev = mddev;
1758         r10_bio->state = 0;
1759         r10_bio->sectors = 0;
1760         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1761         wait_blocked_dev(mddev, r10_bio);
1762
1763         /*
1764          * For far layout it needs more than one r10bio to cover all regions.
1765          * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1766          * to record the discard bio. Other r10bio->master_bio record the first
1767          * r10bio. The first r10bio only release after all other r10bios finish.
1768          * The discard bio returns only first r10bio finishes
1769          */
1770         if (first_copy) {
1771                 r10_bio->master_bio = bio;
1772                 set_bit(R10BIO_Discard, &r10_bio->state);
1773                 first_copy = false;
1774                 first_r10bio = r10_bio;
1775         } else
1776                 r10_bio->master_bio = (struct bio *)first_r10bio;
1777
1778         /*
1779          * first select target devices under rcu_lock and
1780          * inc refcount on their rdev.  Record them by setting
1781          * bios[x] to bio
1782          */
1783         rcu_read_lock();
1784         for (disk = 0; disk < geo->raid_disks; disk++) {
1785                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1786                 struct md_rdev *rrdev = rcu_dereference(
1787                         conf->mirrors[disk].replacement);
1788
1789                 r10_bio->devs[disk].bio = NULL;
1790                 r10_bio->devs[disk].repl_bio = NULL;
1791
1792                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1793                         rdev = NULL;
1794                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1795                         rrdev = NULL;
1796                 if (!rdev && !rrdev)
1797                         continue;
1798
1799                 if (rdev) {
1800                         r10_bio->devs[disk].bio = bio;
1801                         atomic_inc(&rdev->nr_pending);
1802                 }
1803                 if (rrdev) {
1804                         r10_bio->devs[disk].repl_bio = bio;
1805                         atomic_inc(&rrdev->nr_pending);
1806                 }
1807         }
1808         rcu_read_unlock();
1809
1810         atomic_set(&r10_bio->remaining, 1);
1811         for (disk = 0; disk < geo->raid_disks; disk++) {
1812                 sector_t dev_start, dev_end;
1813                 struct bio *mbio, *rbio = NULL;
1814
1815                 /*
1816                  * Now start to calculate the start and end address for each disk.
1817                  * The space between dev_start and dev_end is the discard region.
1818                  *
1819                  * For dev_start, it needs to consider three conditions:
1820                  * 1st, the disk is before start_disk, you can imagine the disk in
1821                  * the next stripe. So the dev_start is the start address of next
1822                  * stripe.
1823                  * 2st, the disk is after start_disk, it means the disk is at the
1824                  * same stripe of first disk
1825                  * 3st, the first disk itself, we can use start_disk_offset directly
1826                  */
1827                 if (disk < start_disk_index)
1828                         dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1829                 else if (disk > start_disk_index)
1830                         dev_start = first_stripe_index * mddev->chunk_sectors;
1831                 else
1832                         dev_start = start_disk_offset;
1833
1834                 if (disk < end_disk_index)
1835                         dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1836                 else if (disk > end_disk_index)
1837                         dev_end = last_stripe_index * mddev->chunk_sectors;
1838                 else
1839                         dev_end = end_disk_offset;
1840
1841                 /*
1842                  * It only handles discard bio which size is >= stripe size, so
1843                  * dev_end > dev_start all the time.
1844                  * It doesn't need to use rcu lock to get rdev here. We already
1845                  * add rdev->nr_pending in the first loop.
1846                  */
1847                 if (r10_bio->devs[disk].bio) {
1848                         struct md_rdev *rdev = conf->mirrors[disk].rdev;
1849                         mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1850                                                &mddev->bio_set);
1851                         mbio->bi_end_io = raid10_end_discard_request;
1852                         mbio->bi_private = r10_bio;
1853                         r10_bio->devs[disk].bio = mbio;
1854                         r10_bio->devs[disk].devnum = disk;
1855                         atomic_inc(&r10_bio->remaining);
1856                         md_submit_discard_bio(mddev, rdev, mbio,
1857                                         dev_start + choose_data_offset(r10_bio, rdev),
1858                                         dev_end - dev_start);
1859                         bio_endio(mbio);
1860                 }
1861                 if (r10_bio->devs[disk].repl_bio) {
1862                         struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1863                         rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1864                                                &mddev->bio_set);
1865                         rbio->bi_end_io = raid10_end_discard_request;
1866                         rbio->bi_private = r10_bio;
1867                         r10_bio->devs[disk].repl_bio = rbio;
1868                         r10_bio->devs[disk].devnum = disk;
1869                         atomic_inc(&r10_bio->remaining);
1870                         md_submit_discard_bio(mddev, rrdev, rbio,
1871                                         dev_start + choose_data_offset(r10_bio, rrdev),
1872                                         dev_end - dev_start);
1873                         bio_endio(rbio);
1874                 }
1875         }
1876
1877         if (!geo->far_offset && --far_copies) {
1878                 first_stripe_index += geo->stride >> geo->chunk_shift;
1879                 start_disk_offset += geo->stride;
1880                 last_stripe_index += geo->stride >> geo->chunk_shift;
1881                 end_disk_offset += geo->stride;
1882                 atomic_inc(&first_r10bio->remaining);
1883                 raid_end_discard_bio(r10_bio);
1884                 wait_barrier(conf, false);
1885                 goto retry_discard;
1886         }
1887
1888         raid_end_discard_bio(r10_bio);
1889
1890         return 0;
1891 out:
1892         allow_barrier(conf);
1893         return -EAGAIN;
1894 }
1895
1896 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1897 {
1898         struct r10conf *conf = mddev->private;
1899         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1900         int chunk_sects = chunk_mask + 1;
1901         int sectors = bio_sectors(bio);
1902
1903         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1904             && md_flush_request(mddev, bio))
1905                 return true;
1906
1907         if (!md_write_start(mddev, bio))
1908                 return false;
1909
1910         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1911                 if (!raid10_handle_discard(mddev, bio))
1912                         return true;
1913
1914         /*
1915          * If this request crosses a chunk boundary, we need to split
1916          * it.
1917          */
1918         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1919                      sectors > chunk_sects
1920                      && (conf->geo.near_copies < conf->geo.raid_disks
1921                          || conf->prev.near_copies <
1922                          conf->prev.raid_disks)))
1923                 sectors = chunk_sects -
1924                         (bio->bi_iter.bi_sector &
1925                          (chunk_sects - 1));
1926         __make_request(mddev, bio, sectors);
1927
1928         /* In case raid10d snuck in to freeze_array */
1929         wake_up_barrier(conf);
1930         return true;
1931 }
1932
1933 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1934 {
1935         struct r10conf *conf = mddev->private;
1936         int i;
1937
1938         if (conf->geo.near_copies < conf->geo.raid_disks)
1939                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1940         if (conf->geo.near_copies > 1)
1941                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1942         if (conf->geo.far_copies > 1) {
1943                 if (conf->geo.far_offset)
1944                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1945                 else
1946                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1947                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1948                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1949         }
1950         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1951                                         conf->geo.raid_disks - mddev->degraded);
1952         rcu_read_lock();
1953         for (i = 0; i < conf->geo.raid_disks; i++) {
1954                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1955                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1956         }
1957         rcu_read_unlock();
1958         seq_printf(seq, "]");
1959 }
1960
1961 /* check if there are enough drives for
1962  * every block to appear on atleast one.
1963  * Don't consider the device numbered 'ignore'
1964  * as we might be about to remove it.
1965  */
1966 static int _enough(struct r10conf *conf, int previous, int ignore)
1967 {
1968         int first = 0;
1969         int has_enough = 0;
1970         int disks, ncopies;
1971         if (previous) {
1972                 disks = conf->prev.raid_disks;
1973                 ncopies = conf->prev.near_copies;
1974         } else {
1975                 disks = conf->geo.raid_disks;
1976                 ncopies = conf->geo.near_copies;
1977         }
1978
1979         rcu_read_lock();
1980         do {
1981                 int n = conf->copies;
1982                 int cnt = 0;
1983                 int this = first;
1984                 while (n--) {
1985                         struct md_rdev *rdev;
1986                         if (this != ignore &&
1987                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1988                             test_bit(In_sync, &rdev->flags))
1989                                 cnt++;
1990                         this = (this+1) % disks;
1991                 }
1992                 if (cnt == 0)
1993                         goto out;
1994                 first = (first + ncopies) % disks;
1995         } while (first != 0);
1996         has_enough = 1;
1997 out:
1998         rcu_read_unlock();
1999         return has_enough;
2000 }
2001
2002 static int enough(struct r10conf *conf, int ignore)
2003 {
2004         /* when calling 'enough', both 'prev' and 'geo' must
2005          * be stable.
2006          * This is ensured if ->reconfig_mutex or ->device_lock
2007          * is held.
2008          */
2009         return _enough(conf, 0, ignore) &&
2010                 _enough(conf, 1, ignore);
2011 }
2012
2013 /**
2014  * raid10_error() - RAID10 error handler.
2015  * @mddev: affected md device.
2016  * @rdev: member device to fail.
2017  *
2018  * The routine acknowledges &rdev failure and determines new @mddev state.
2019  * If it failed, then:
2020  *      - &MD_BROKEN flag is set in &mddev->flags.
2021  * Otherwise, it must be degraded:
2022  *      - recovery is interrupted.
2023  *      - &mddev->degraded is bumped.
2024  *
2025  * @rdev is marked as &Faulty excluding case when array is failed and
2026  * &mddev->fail_last_dev is off.
2027  */
2028 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
2029 {
2030         struct r10conf *conf = mddev->private;
2031         unsigned long flags;
2032
2033         spin_lock_irqsave(&conf->device_lock, flags);
2034
2035         if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
2036                 set_bit(MD_BROKEN, &mddev->flags);
2037
2038                 if (!mddev->fail_last_dev) {
2039                         spin_unlock_irqrestore(&conf->device_lock, flags);
2040                         return;
2041                 }
2042         }
2043         if (test_and_clear_bit(In_sync, &rdev->flags))
2044                 mddev->degraded++;
2045
2046         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2047         set_bit(Blocked, &rdev->flags);
2048         set_bit(Faulty, &rdev->flags);
2049         set_mask_bits(&mddev->sb_flags, 0,
2050                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2051         spin_unlock_irqrestore(&conf->device_lock, flags);
2052         pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2053                 "md/raid10:%s: Operation continuing on %d devices.\n",
2054                 mdname(mddev), rdev->bdev,
2055                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2056 }
2057
2058 static void print_conf(struct r10conf *conf)
2059 {
2060         int i;
2061         struct md_rdev *rdev;
2062
2063         pr_debug("RAID10 conf printout:\n");
2064         if (!conf) {
2065                 pr_debug("(!conf)\n");
2066                 return;
2067         }
2068         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2069                  conf->geo.raid_disks);
2070
2071         /* This is only called with ->reconfix_mutex held, so
2072          * rcu protection of rdev is not needed */
2073         for (i = 0; i < conf->geo.raid_disks; i++) {
2074                 rdev = conf->mirrors[i].rdev;
2075                 if (rdev)
2076                         pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2077                                  i, !test_bit(In_sync, &rdev->flags),
2078                                  !test_bit(Faulty, &rdev->flags),
2079                                  rdev->bdev);
2080         }
2081 }
2082
2083 static void close_sync(struct r10conf *conf)
2084 {
2085         wait_barrier(conf, false);
2086         allow_barrier(conf);
2087
2088         mempool_exit(&conf->r10buf_pool);
2089 }
2090
2091 static int raid10_spare_active(struct mddev *mddev)
2092 {
2093         int i;
2094         struct r10conf *conf = mddev->private;
2095         struct raid10_info *tmp;
2096         int count = 0;
2097         unsigned long flags;
2098
2099         /*
2100          * Find all non-in_sync disks within the RAID10 configuration
2101          * and mark them in_sync
2102          */
2103         for (i = 0; i < conf->geo.raid_disks; i++) {
2104                 tmp = conf->mirrors + i;
2105                 if (tmp->replacement
2106                     && tmp->replacement->recovery_offset == MaxSector
2107                     && !test_bit(Faulty, &tmp->replacement->flags)
2108                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2109                         /* Replacement has just become active */
2110                         if (!tmp->rdev
2111                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2112                                 count++;
2113                         if (tmp->rdev) {
2114                                 /* Replaced device not technically faulty,
2115                                  * but we need to be sure it gets removed
2116                                  * and never re-added.
2117                                  */
2118                                 set_bit(Faulty, &tmp->rdev->flags);
2119                                 sysfs_notify_dirent_safe(
2120                                         tmp->rdev->sysfs_state);
2121                         }
2122                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2123                 } else if (tmp->rdev
2124                            && tmp->rdev->recovery_offset == MaxSector
2125                            && !test_bit(Faulty, &tmp->rdev->flags)
2126                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2127                         count++;
2128                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2129                 }
2130         }
2131         spin_lock_irqsave(&conf->device_lock, flags);
2132         mddev->degraded -= count;
2133         spin_unlock_irqrestore(&conf->device_lock, flags);
2134
2135         print_conf(conf);
2136         return count;
2137 }
2138
2139 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2140 {
2141         struct r10conf *conf = mddev->private;
2142         int err = -EEXIST;
2143         int mirror;
2144         int first = 0;
2145         int last = conf->geo.raid_disks - 1;
2146
2147         if (mddev->recovery_cp < MaxSector)
2148                 /* only hot-add to in-sync arrays, as recovery is
2149                  * very different from resync
2150                  */
2151                 return -EBUSY;
2152         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2153                 return -EINVAL;
2154
2155         if (md_integrity_add_rdev(rdev, mddev))
2156                 return -ENXIO;
2157
2158         if (rdev->raid_disk >= 0)
2159                 first = last = rdev->raid_disk;
2160
2161         if (rdev->saved_raid_disk >= first &&
2162             rdev->saved_raid_disk < conf->geo.raid_disks &&
2163             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2164                 mirror = rdev->saved_raid_disk;
2165         else
2166                 mirror = first;
2167         for ( ; mirror <= last ; mirror++) {
2168                 struct raid10_info *p = &conf->mirrors[mirror];
2169                 if (p->recovery_disabled == mddev->recovery_disabled)
2170                         continue;
2171                 if (p->rdev) {
2172                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
2173                             p->replacement != NULL)
2174                                 continue;
2175                         clear_bit(In_sync, &rdev->flags);
2176                         set_bit(Replacement, &rdev->flags);
2177                         rdev->raid_disk = mirror;
2178                         err = 0;
2179                         if (mddev->gendisk)
2180                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2181                                                   rdev->data_offset << 9);
2182                         conf->fullsync = 1;
2183                         rcu_assign_pointer(p->replacement, rdev);
2184                         break;
2185                 }
2186
2187                 if (mddev->gendisk)
2188                         disk_stack_limits(mddev->gendisk, rdev->bdev,
2189                                           rdev->data_offset << 9);
2190
2191                 p->head_position = 0;
2192                 p->recovery_disabled = mddev->recovery_disabled - 1;
2193                 rdev->raid_disk = mirror;
2194                 err = 0;
2195                 if (rdev->saved_raid_disk != mirror)
2196                         conf->fullsync = 1;
2197                 rcu_assign_pointer(p->rdev, rdev);
2198                 break;
2199         }
2200
2201         print_conf(conf);
2202         return err;
2203 }
2204
2205 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2206 {
2207         struct r10conf *conf = mddev->private;
2208         int err = 0;
2209         int number = rdev->raid_disk;
2210         struct md_rdev **rdevp;
2211         struct raid10_info *p;
2212
2213         print_conf(conf);
2214         if (unlikely(number >= mddev->raid_disks))
2215                 return 0;
2216         p = conf->mirrors + number;
2217         if (rdev == p->rdev)
2218                 rdevp = &p->rdev;
2219         else if (rdev == p->replacement)
2220                 rdevp = &p->replacement;
2221         else
2222                 return 0;
2223
2224         if (test_bit(In_sync, &rdev->flags) ||
2225             atomic_read(&rdev->nr_pending)) {
2226                 err = -EBUSY;
2227                 goto abort;
2228         }
2229         /* Only remove non-faulty devices if recovery
2230          * is not possible.
2231          */
2232         if (!test_bit(Faulty, &rdev->flags) &&
2233             mddev->recovery_disabled != p->recovery_disabled &&
2234             (!p->replacement || p->replacement == rdev) &&
2235             number < conf->geo.raid_disks &&
2236             enough(conf, -1)) {
2237                 err = -EBUSY;
2238                 goto abort;
2239         }
2240         *rdevp = NULL;
2241         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2242                 synchronize_rcu();
2243                 if (atomic_read(&rdev->nr_pending)) {
2244                         /* lost the race, try later */
2245                         err = -EBUSY;
2246                         *rdevp = rdev;
2247                         goto abort;
2248                 }
2249         }
2250         if (p->replacement) {
2251                 /* We must have just cleared 'rdev' */
2252                 p->rdev = p->replacement;
2253                 clear_bit(Replacement, &p->replacement->flags);
2254                 smp_mb(); /* Make sure other CPUs may see both as identical
2255                            * but will never see neither -- if they are careful.
2256                            */
2257                 p->replacement = NULL;
2258         }
2259
2260         clear_bit(WantReplacement, &rdev->flags);
2261         err = md_integrity_register(mddev);
2262
2263 abort:
2264
2265         print_conf(conf);
2266         return err;
2267 }
2268
2269 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2270 {
2271         struct r10conf *conf = r10_bio->mddev->private;
2272
2273         if (!bio->bi_status)
2274                 set_bit(R10BIO_Uptodate, &r10_bio->state);
2275         else
2276                 /* The write handler will notice the lack of
2277                  * R10BIO_Uptodate and record any errors etc
2278                  */
2279                 atomic_add(r10_bio->sectors,
2280                            &conf->mirrors[d].rdev->corrected_errors);
2281
2282         /* for reconstruct, we always reschedule after a read.
2283          * for resync, only after all reads
2284          */
2285         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2286         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2287             atomic_dec_and_test(&r10_bio->remaining)) {
2288                 /* we have read all the blocks,
2289                  * do the comparison in process context in raid10d
2290                  */
2291                 reschedule_retry(r10_bio);
2292         }
2293 }
2294
2295 static void end_sync_read(struct bio *bio)
2296 {
2297         struct r10bio *r10_bio = get_resync_r10bio(bio);
2298         struct r10conf *conf = r10_bio->mddev->private;
2299         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2300
2301         __end_sync_read(r10_bio, bio, d);
2302 }
2303
2304 static void end_reshape_read(struct bio *bio)
2305 {
2306         /* reshape read bio isn't allocated from r10buf_pool */
2307         struct r10bio *r10_bio = bio->bi_private;
2308
2309         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2310 }
2311
2312 static void end_sync_request(struct r10bio *r10_bio)
2313 {
2314         struct mddev *mddev = r10_bio->mddev;
2315
2316         while (atomic_dec_and_test(&r10_bio->remaining)) {
2317                 if (r10_bio->master_bio == NULL) {
2318                         /* the primary of several recovery bios */
2319                         sector_t s = r10_bio->sectors;
2320                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2321                             test_bit(R10BIO_WriteError, &r10_bio->state))
2322                                 reschedule_retry(r10_bio);
2323                         else
2324                                 put_buf(r10_bio);
2325                         md_done_sync(mddev, s, 1);
2326                         break;
2327                 } else {
2328                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2329                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2330                             test_bit(R10BIO_WriteError, &r10_bio->state))
2331                                 reschedule_retry(r10_bio);
2332                         else
2333                                 put_buf(r10_bio);
2334                         r10_bio = r10_bio2;
2335                 }
2336         }
2337 }
2338
2339 static void end_sync_write(struct bio *bio)
2340 {
2341         struct r10bio *r10_bio = get_resync_r10bio(bio);
2342         struct mddev *mddev = r10_bio->mddev;
2343         struct r10conf *conf = mddev->private;
2344         int d;
2345         sector_t first_bad;
2346         int bad_sectors;
2347         int slot;
2348         int repl;
2349         struct md_rdev *rdev = NULL;
2350
2351         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2352         if (repl)
2353                 rdev = conf->mirrors[d].replacement;
2354         else
2355                 rdev = conf->mirrors[d].rdev;
2356
2357         if (bio->bi_status) {
2358                 if (repl)
2359                         md_error(mddev, rdev);
2360                 else {
2361                         set_bit(WriteErrorSeen, &rdev->flags);
2362                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2363                                 set_bit(MD_RECOVERY_NEEDED,
2364                                         &rdev->mddev->recovery);
2365                         set_bit(R10BIO_WriteError, &r10_bio->state);
2366                 }
2367         } else if (is_badblock(rdev,
2368                              r10_bio->devs[slot].addr,
2369                              r10_bio->sectors,
2370                              &first_bad, &bad_sectors))
2371                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2372
2373         rdev_dec_pending(rdev, mddev);
2374
2375         end_sync_request(r10_bio);
2376 }
2377
2378 /*
2379  * Note: sync and recover and handled very differently for raid10
2380  * This code is for resync.
2381  * For resync, we read through virtual addresses and read all blocks.
2382  * If there is any error, we schedule a write.  The lowest numbered
2383  * drive is authoritative.
2384  * However requests come for physical address, so we need to map.
2385  * For every physical address there are raid_disks/copies virtual addresses,
2386  * which is always are least one, but is not necessarly an integer.
2387  * This means that a physical address can span multiple chunks, so we may
2388  * have to submit multiple io requests for a single sync request.
2389  */
2390 /*
2391  * We check if all blocks are in-sync and only write to blocks that
2392  * aren't in sync
2393  */
2394 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2395 {
2396         struct r10conf *conf = mddev->private;
2397         int i, first;
2398         struct bio *tbio, *fbio;
2399         int vcnt;
2400         struct page **tpages, **fpages;
2401
2402         atomic_set(&r10_bio->remaining, 1);
2403
2404         /* find the first device with a block */
2405         for (i=0; i<conf->copies; i++)
2406                 if (!r10_bio->devs[i].bio->bi_status)
2407                         break;
2408
2409         if (i == conf->copies)
2410                 goto done;
2411
2412         first = i;
2413         fbio = r10_bio->devs[i].bio;
2414         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2415         fbio->bi_iter.bi_idx = 0;
2416         fpages = get_resync_pages(fbio)->pages;
2417
2418         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2419         /* now find blocks with errors */
2420         for (i=0 ; i < conf->copies ; i++) {
2421                 int  j, d;
2422                 struct md_rdev *rdev;
2423                 struct resync_pages *rp;
2424
2425                 tbio = r10_bio->devs[i].bio;
2426
2427                 if (tbio->bi_end_io != end_sync_read)
2428                         continue;
2429                 if (i == first)
2430                         continue;
2431
2432                 tpages = get_resync_pages(tbio)->pages;
2433                 d = r10_bio->devs[i].devnum;
2434                 rdev = conf->mirrors[d].rdev;
2435                 if (!r10_bio->devs[i].bio->bi_status) {
2436                         /* We know that the bi_io_vec layout is the same for
2437                          * both 'first' and 'i', so we just compare them.
2438                          * All vec entries are PAGE_SIZE;
2439                          */
2440                         int sectors = r10_bio->sectors;
2441                         for (j = 0; j < vcnt; j++) {
2442                                 int len = PAGE_SIZE;
2443                                 if (sectors < (len / 512))
2444                                         len = sectors * 512;
2445                                 if (memcmp(page_address(fpages[j]),
2446                                            page_address(tpages[j]),
2447                                            len))
2448                                         break;
2449                                 sectors -= len/512;
2450                         }
2451                         if (j == vcnt)
2452                                 continue;
2453                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2454                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2455                                 /* Don't fix anything. */
2456                                 continue;
2457                 } else if (test_bit(FailFast, &rdev->flags)) {
2458                         /* Just give up on this device */
2459                         md_error(rdev->mddev, rdev);
2460                         continue;
2461                 }
2462                 /* Ok, we need to write this bio, either to correct an
2463                  * inconsistency or to correct an unreadable block.
2464                  * First we need to fixup bv_offset, bv_len and
2465                  * bi_vecs, as the read request might have corrupted these
2466                  */
2467                 rp = get_resync_pages(tbio);
2468                 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2469
2470                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2471
2472                 rp->raid_bio = r10_bio;
2473                 tbio->bi_private = rp;
2474                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2475                 tbio->bi_end_io = end_sync_write;
2476
2477                 bio_copy_data(tbio, fbio);
2478
2479                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2480                 atomic_inc(&r10_bio->remaining);
2481                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2482
2483                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2484                         tbio->bi_opf |= MD_FAILFAST;
2485                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2486                 submit_bio_noacct(tbio);
2487         }
2488
2489         /* Now write out to any replacement devices
2490          * that are active
2491          */
2492         for (i = 0; i < conf->copies; i++) {
2493                 int d;
2494
2495                 tbio = r10_bio->devs[i].repl_bio;
2496                 if (!tbio || !tbio->bi_end_io)
2497                         continue;
2498                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2499                     && r10_bio->devs[i].bio != fbio)
2500                         bio_copy_data(tbio, fbio);
2501                 d = r10_bio->devs[i].devnum;
2502                 atomic_inc(&r10_bio->remaining);
2503                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2504                              bio_sectors(tbio));
2505                 submit_bio_noacct(tbio);
2506         }
2507
2508 done:
2509         if (atomic_dec_and_test(&r10_bio->remaining)) {
2510                 md_done_sync(mddev, r10_bio->sectors, 1);
2511                 put_buf(r10_bio);
2512         }
2513 }
2514
2515 /*
2516  * Now for the recovery code.
2517  * Recovery happens across physical sectors.
2518  * We recover all non-is_sync drives by finding the virtual address of
2519  * each, and then choose a working drive that also has that virt address.
2520  * There is a separate r10_bio for each non-in_sync drive.
2521  * Only the first two slots are in use. The first for reading,
2522  * The second for writing.
2523  *
2524  */
2525 static void fix_recovery_read_error(struct r10bio *r10_bio)
2526 {
2527         /* We got a read error during recovery.
2528          * We repeat the read in smaller page-sized sections.
2529          * If a read succeeds, write it to the new device or record
2530          * a bad block if we cannot.
2531          * If a read fails, record a bad block on both old and
2532          * new devices.
2533          */
2534         struct mddev *mddev = r10_bio->mddev;
2535         struct r10conf *conf = mddev->private;
2536         struct bio *bio = r10_bio->devs[0].bio;
2537         sector_t sect = 0;
2538         int sectors = r10_bio->sectors;
2539         int idx = 0;
2540         int dr = r10_bio->devs[0].devnum;
2541         int dw = r10_bio->devs[1].devnum;
2542         struct page **pages = get_resync_pages(bio)->pages;
2543
2544         while (sectors) {
2545                 int s = sectors;
2546                 struct md_rdev *rdev;
2547                 sector_t addr;
2548                 int ok;
2549
2550                 if (s > (PAGE_SIZE>>9))
2551                         s = PAGE_SIZE >> 9;
2552
2553                 rdev = conf->mirrors[dr].rdev;
2554                 addr = r10_bio->devs[0].addr + sect,
2555                 ok = sync_page_io(rdev,
2556                                   addr,
2557                                   s << 9,
2558                                   pages[idx],
2559                                   REQ_OP_READ, false);
2560                 if (ok) {
2561                         rdev = conf->mirrors[dw].rdev;
2562                         addr = r10_bio->devs[1].addr + sect;
2563                         ok = sync_page_io(rdev,
2564                                           addr,
2565                                           s << 9,
2566                                           pages[idx],
2567                                           REQ_OP_WRITE, false);
2568                         if (!ok) {
2569                                 set_bit(WriteErrorSeen, &rdev->flags);
2570                                 if (!test_and_set_bit(WantReplacement,
2571                                                       &rdev->flags))
2572                                         set_bit(MD_RECOVERY_NEEDED,
2573                                                 &rdev->mddev->recovery);
2574                         }
2575                 }
2576                 if (!ok) {
2577                         /* We don't worry if we cannot set a bad block -
2578                          * it really is bad so there is no loss in not
2579                          * recording it yet
2580                          */
2581                         rdev_set_badblocks(rdev, addr, s, 0);
2582
2583                         if (rdev != conf->mirrors[dw].rdev) {
2584                                 /* need bad block on destination too */
2585                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2586                                 addr = r10_bio->devs[1].addr + sect;
2587                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2588                                 if (!ok) {
2589                                         /* just abort the recovery */
2590                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2591                                                   mdname(mddev));
2592
2593                                         conf->mirrors[dw].recovery_disabled
2594                                                 = mddev->recovery_disabled;
2595                                         set_bit(MD_RECOVERY_INTR,
2596                                                 &mddev->recovery);
2597                                         break;
2598                                 }
2599                         }
2600                 }
2601
2602                 sectors -= s;
2603                 sect += s;
2604                 idx++;
2605         }
2606 }
2607
2608 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2609 {
2610         struct r10conf *conf = mddev->private;
2611         int d;
2612         struct bio *wbio, *wbio2;
2613
2614         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2615                 fix_recovery_read_error(r10_bio);
2616                 end_sync_request(r10_bio);
2617                 return;
2618         }
2619
2620         /*
2621          * share the pages with the first bio
2622          * and submit the write request
2623          */
2624         d = r10_bio->devs[1].devnum;
2625         wbio = r10_bio->devs[1].bio;
2626         wbio2 = r10_bio->devs[1].repl_bio;
2627         /* Need to test wbio2->bi_end_io before we call
2628          * submit_bio_noacct as if the former is NULL,
2629          * the latter is free to free wbio2.
2630          */
2631         if (wbio2 && !wbio2->bi_end_io)
2632                 wbio2 = NULL;
2633         if (wbio->bi_end_io) {
2634                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2635                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2636                 submit_bio_noacct(wbio);
2637         }
2638         if (wbio2) {
2639                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2640                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2641                              bio_sectors(wbio2));
2642                 submit_bio_noacct(wbio2);
2643         }
2644 }
2645
2646 /*
2647  * Used by fix_read_error() to decay the per rdev read_errors.
2648  * We halve the read error count for every hour that has elapsed
2649  * since the last recorded read error.
2650  *
2651  */
2652 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2653 {
2654         long cur_time_mon;
2655         unsigned long hours_since_last;
2656         unsigned int read_errors = atomic_read(&rdev->read_errors);
2657
2658         cur_time_mon = ktime_get_seconds();
2659
2660         if (rdev->last_read_error == 0) {
2661                 /* first time we've seen a read error */
2662                 rdev->last_read_error = cur_time_mon;
2663                 return;
2664         }
2665
2666         hours_since_last = (long)(cur_time_mon -
2667                             rdev->last_read_error) / 3600;
2668
2669         rdev->last_read_error = cur_time_mon;
2670
2671         /*
2672          * if hours_since_last is > the number of bits in read_errors
2673          * just set read errors to 0. We do this to avoid
2674          * overflowing the shift of read_errors by hours_since_last.
2675          */
2676         if (hours_since_last >= 8 * sizeof(read_errors))
2677                 atomic_set(&rdev->read_errors, 0);
2678         else
2679                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2680 }
2681
2682 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2683                             int sectors, struct page *page, enum req_op op)
2684 {
2685         sector_t first_bad;
2686         int bad_sectors;
2687
2688         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2689             && (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2690                 return -1;
2691         if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2692                 /* success */
2693                 return 1;
2694         if (op == REQ_OP_WRITE) {
2695                 set_bit(WriteErrorSeen, &rdev->flags);
2696                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2697                         set_bit(MD_RECOVERY_NEEDED,
2698                                 &rdev->mddev->recovery);
2699         }
2700         /* need to record an error - either for the block or the device */
2701         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2702                 md_error(rdev->mddev, rdev);
2703         return 0;
2704 }
2705
2706 /*
2707  * This is a kernel thread which:
2708  *
2709  *      1.      Retries failed read operations on working mirrors.
2710  *      2.      Updates the raid superblock when problems encounter.
2711  *      3.      Performs writes following reads for array synchronising.
2712  */
2713
2714 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2715 {
2716         int sect = 0; /* Offset from r10_bio->sector */
2717         int sectors = r10_bio->sectors;
2718         struct md_rdev *rdev;
2719         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2720         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2721
2722         /* still own a reference to this rdev, so it cannot
2723          * have been cleared recently.
2724          */
2725         rdev = conf->mirrors[d].rdev;
2726
2727         if (test_bit(Faulty, &rdev->flags))
2728                 /* drive has already been failed, just ignore any
2729                    more fix_read_error() attempts */
2730                 return;
2731
2732         check_decay_read_errors(mddev, rdev);
2733         atomic_inc(&rdev->read_errors);
2734         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2735                 pr_notice("md/raid10:%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2736                           mdname(mddev), rdev->bdev,
2737                           atomic_read(&rdev->read_errors), max_read_errors);
2738                 pr_notice("md/raid10:%s: %pg: Failing raid device\n",
2739                           mdname(mddev), rdev->bdev);
2740                 md_error(mddev, rdev);
2741                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2742                 return;
2743         }
2744
2745         while(sectors) {
2746                 int s = sectors;
2747                 int sl = r10_bio->read_slot;
2748                 int success = 0;
2749                 int start;
2750
2751                 if (s > (PAGE_SIZE>>9))
2752                         s = PAGE_SIZE >> 9;
2753
2754                 rcu_read_lock();
2755                 do {
2756                         sector_t first_bad;
2757                         int bad_sectors;
2758
2759                         d = r10_bio->devs[sl].devnum;
2760                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2761                         if (rdev &&
2762                             test_bit(In_sync, &rdev->flags) &&
2763                             !test_bit(Faulty, &rdev->flags) &&
2764                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2765                                         &first_bad, &bad_sectors) == 0) {
2766                                 atomic_inc(&rdev->nr_pending);
2767                                 rcu_read_unlock();
2768                                 success = sync_page_io(rdev,
2769                                                        r10_bio->devs[sl].addr +
2770                                                        sect,
2771                                                        s<<9,
2772                                                        conf->tmppage,
2773                                                        REQ_OP_READ, false);
2774                                 rdev_dec_pending(rdev, mddev);
2775                                 rcu_read_lock();
2776                                 if (success)
2777                                         break;
2778                         }
2779                         sl++;
2780                         if (sl == conf->copies)
2781                                 sl = 0;
2782                 } while (!success && sl != r10_bio->read_slot);
2783                 rcu_read_unlock();
2784
2785                 if (!success) {
2786                         /* Cannot read from anywhere, just mark the block
2787                          * as bad on the first device to discourage future
2788                          * reads.
2789                          */
2790                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2791                         rdev = conf->mirrors[dn].rdev;
2792
2793                         if (!rdev_set_badblocks(
2794                                     rdev,
2795                                     r10_bio->devs[r10_bio->read_slot].addr
2796                                     + sect,
2797                                     s, 0)) {
2798                                 md_error(mddev, rdev);
2799                                 r10_bio->devs[r10_bio->read_slot].bio
2800                                         = IO_BLOCKED;
2801                         }
2802                         break;
2803                 }
2804
2805                 start = sl;
2806                 /* write it back and re-read */
2807                 rcu_read_lock();
2808                 while (sl != r10_bio->read_slot) {
2809                         if (sl==0)
2810                                 sl = conf->copies;
2811                         sl--;
2812                         d = r10_bio->devs[sl].devnum;
2813                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2814                         if (!rdev ||
2815                             test_bit(Faulty, &rdev->flags) ||
2816                             !test_bit(In_sync, &rdev->flags))
2817                                 continue;
2818
2819                         atomic_inc(&rdev->nr_pending);
2820                         rcu_read_unlock();
2821                         if (r10_sync_page_io(rdev,
2822                                              r10_bio->devs[sl].addr +
2823                                              sect,
2824                                              s, conf->tmppage, REQ_OP_WRITE)
2825                             == 0) {
2826                                 /* Well, this device is dead */
2827                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2828                                           mdname(mddev), s,
2829                                           (unsigned long long)(
2830                                                   sect +
2831                                                   choose_data_offset(r10_bio,
2832                                                                      rdev)),
2833                                           rdev->bdev);
2834                                 pr_notice("md/raid10:%s: %pg: failing drive\n",
2835                                           mdname(mddev),
2836                                           rdev->bdev);
2837                         }
2838                         rdev_dec_pending(rdev, mddev);
2839                         rcu_read_lock();
2840                 }
2841                 sl = start;
2842                 while (sl != r10_bio->read_slot) {
2843                         if (sl==0)
2844                                 sl = conf->copies;
2845                         sl--;
2846                         d = r10_bio->devs[sl].devnum;
2847                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2848                         if (!rdev ||
2849                             test_bit(Faulty, &rdev->flags) ||
2850                             !test_bit(In_sync, &rdev->flags))
2851                                 continue;
2852
2853                         atomic_inc(&rdev->nr_pending);
2854                         rcu_read_unlock();
2855                         switch (r10_sync_page_io(rdev,
2856                                              r10_bio->devs[sl].addr +
2857                                              sect,
2858                                              s, conf->tmppage, REQ_OP_READ)) {
2859                         case 0:
2860                                 /* Well, this device is dead */
2861                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2862                                        mdname(mddev), s,
2863                                        (unsigned long long)(
2864                                                sect +
2865                                                choose_data_offset(r10_bio, rdev)),
2866                                        rdev->bdev);
2867                                 pr_notice("md/raid10:%s: %pg: failing drive\n",
2868                                        mdname(mddev),
2869                                        rdev->bdev);
2870                                 break;
2871                         case 1:
2872                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2873                                        mdname(mddev), s,
2874                                        (unsigned long long)(
2875                                                sect +
2876                                                choose_data_offset(r10_bio, rdev)),
2877                                        rdev->bdev);
2878                                 atomic_add(s, &rdev->corrected_errors);
2879                         }
2880
2881                         rdev_dec_pending(rdev, mddev);
2882                         rcu_read_lock();
2883                 }
2884                 rcu_read_unlock();
2885
2886                 sectors -= s;
2887                 sect += s;
2888         }
2889 }
2890
2891 static int narrow_write_error(struct r10bio *r10_bio, int i)
2892 {
2893         struct bio *bio = r10_bio->master_bio;
2894         struct mddev *mddev = r10_bio->mddev;
2895         struct r10conf *conf = mddev->private;
2896         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2897         /* bio has the data to be written to slot 'i' where
2898          * we just recently had a write error.
2899          * We repeatedly clone the bio and trim down to one block,
2900          * then try the write.  Where the write fails we record
2901          * a bad block.
2902          * It is conceivable that the bio doesn't exactly align with
2903          * blocks.  We must handle this.
2904          *
2905          * We currently own a reference to the rdev.
2906          */
2907
2908         int block_sectors;
2909         sector_t sector;
2910         int sectors;
2911         int sect_to_write = r10_bio->sectors;
2912         int ok = 1;
2913
2914         if (rdev->badblocks.shift < 0)
2915                 return 0;
2916
2917         block_sectors = roundup(1 << rdev->badblocks.shift,
2918                                 bdev_logical_block_size(rdev->bdev) >> 9);
2919         sector = r10_bio->sector;
2920         sectors = ((r10_bio->sector + block_sectors)
2921                    & ~(sector_t)(block_sectors - 1))
2922                 - sector;
2923
2924         while (sect_to_write) {
2925                 struct bio *wbio;
2926                 sector_t wsector;
2927                 if (sectors > sect_to_write)
2928                         sectors = sect_to_write;
2929                 /* Write at 'sector' for 'sectors' */
2930                 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2931                                        &mddev->bio_set);
2932                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2933                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2934                 wbio->bi_iter.bi_sector = wsector +
2935                                    choose_data_offset(r10_bio, rdev);
2936                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2937
2938                 if (submit_bio_wait(wbio) < 0)
2939                         /* Failure! */
2940                         ok = rdev_set_badblocks(rdev, wsector,
2941                                                 sectors, 0)
2942                                 && ok;
2943
2944                 bio_put(wbio);
2945                 sect_to_write -= sectors;
2946                 sector += sectors;
2947                 sectors = block_sectors;
2948         }
2949         return ok;
2950 }
2951
2952 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2953 {
2954         int slot = r10_bio->read_slot;
2955         struct bio *bio;
2956         struct r10conf *conf = mddev->private;
2957         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2958
2959         /* we got a read error. Maybe the drive is bad.  Maybe just
2960          * the block and we can fix it.
2961          * We freeze all other IO, and try reading the block from
2962          * other devices.  When we find one, we re-write
2963          * and check it that fixes the read error.
2964          * This is all done synchronously while the array is
2965          * frozen.
2966          */
2967         bio = r10_bio->devs[slot].bio;
2968         bio_put(bio);
2969         r10_bio->devs[slot].bio = NULL;
2970
2971         if (mddev->ro)
2972                 r10_bio->devs[slot].bio = IO_BLOCKED;
2973         else if (!test_bit(FailFast, &rdev->flags)) {
2974                 freeze_array(conf, 1);
2975                 fix_read_error(conf, mddev, r10_bio);
2976                 unfreeze_array(conf);
2977         } else
2978                 md_error(mddev, rdev);
2979
2980         rdev_dec_pending(rdev, mddev);
2981         allow_barrier(conf);
2982         r10_bio->state = 0;
2983         raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2984 }
2985
2986 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2987 {
2988         /* Some sort of write request has finished and it
2989          * succeeded in writing where we thought there was a
2990          * bad block.  So forget the bad block.
2991          * Or possibly if failed and we need to record
2992          * a bad block.
2993          */
2994         int m;
2995         struct md_rdev *rdev;
2996
2997         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2998             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2999                 for (m = 0; m < conf->copies; m++) {
3000                         int dev = r10_bio->devs[m].devnum;
3001                         rdev = conf->mirrors[dev].rdev;
3002                         if (r10_bio->devs[m].bio == NULL ||
3003                                 r10_bio->devs[m].bio->bi_end_io == NULL)
3004                                 continue;
3005                         if (!r10_bio->devs[m].bio->bi_status) {
3006                                 rdev_clear_badblocks(
3007                                         rdev,
3008                                         r10_bio->devs[m].addr,
3009                                         r10_bio->sectors, 0);
3010                         } else {
3011                                 if (!rdev_set_badblocks(
3012                                             rdev,
3013                                             r10_bio->devs[m].addr,
3014                                             r10_bio->sectors, 0))
3015                                         md_error(conf->mddev, rdev);
3016                         }
3017                         rdev = conf->mirrors[dev].replacement;
3018                         if (r10_bio->devs[m].repl_bio == NULL ||
3019                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
3020                                 continue;
3021
3022                         if (!r10_bio->devs[m].repl_bio->bi_status) {
3023                                 rdev_clear_badblocks(
3024                                         rdev,
3025                                         r10_bio->devs[m].addr,
3026                                         r10_bio->sectors, 0);
3027                         } else {
3028                                 if (!rdev_set_badblocks(
3029                                             rdev,
3030                                             r10_bio->devs[m].addr,
3031                                             r10_bio->sectors, 0))
3032                                         md_error(conf->mddev, rdev);
3033                         }
3034                 }
3035                 put_buf(r10_bio);
3036         } else {
3037                 bool fail = false;
3038                 for (m = 0; m < conf->copies; m++) {
3039                         int dev = r10_bio->devs[m].devnum;
3040                         struct bio *bio = r10_bio->devs[m].bio;
3041                         rdev = conf->mirrors[dev].rdev;
3042                         if (bio == IO_MADE_GOOD) {
3043                                 rdev_clear_badblocks(
3044                                         rdev,
3045                                         r10_bio->devs[m].addr,
3046                                         r10_bio->sectors, 0);
3047                                 rdev_dec_pending(rdev, conf->mddev);
3048                         } else if (bio != NULL && bio->bi_status) {
3049                                 fail = true;
3050                                 if (!narrow_write_error(r10_bio, m)) {
3051                                         md_error(conf->mddev, rdev);
3052                                         set_bit(R10BIO_Degraded,
3053                                                 &r10_bio->state);
3054                                 }
3055                                 rdev_dec_pending(rdev, conf->mddev);
3056                         }
3057                         bio = r10_bio->devs[m].repl_bio;
3058                         rdev = conf->mirrors[dev].replacement;
3059                         if (rdev && bio == IO_MADE_GOOD) {
3060                                 rdev_clear_badblocks(
3061                                         rdev,
3062                                         r10_bio->devs[m].addr,
3063                                         r10_bio->sectors, 0);
3064                                 rdev_dec_pending(rdev, conf->mddev);
3065                         }
3066                 }
3067                 if (fail) {
3068                         spin_lock_irq(&conf->device_lock);
3069                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3070                         conf->nr_queued++;
3071                         spin_unlock_irq(&conf->device_lock);
3072                         /*
3073                          * In case freeze_array() is waiting for condition
3074                          * nr_pending == nr_queued + extra to be true.
3075                          */
3076                         wake_up(&conf->wait_barrier);
3077                         md_wakeup_thread(conf->mddev->thread);
3078                 } else {
3079                         if (test_bit(R10BIO_WriteError,
3080                                      &r10_bio->state))
3081                                 close_write(r10_bio);
3082                         raid_end_bio_io(r10_bio);
3083                 }
3084         }
3085 }
3086
3087 static void raid10d(struct md_thread *thread)
3088 {
3089         struct mddev *mddev = thread->mddev;
3090         struct r10bio *r10_bio;
3091         unsigned long flags;
3092         struct r10conf *conf = mddev->private;
3093         struct list_head *head = &conf->retry_list;
3094         struct blk_plug plug;
3095
3096         md_check_recovery(mddev);
3097
3098         if (!list_empty_careful(&conf->bio_end_io_list) &&
3099             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3100                 LIST_HEAD(tmp);
3101                 spin_lock_irqsave(&conf->device_lock, flags);
3102                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3103                         while (!list_empty(&conf->bio_end_io_list)) {
3104                                 list_move(conf->bio_end_io_list.prev, &tmp);
3105                                 conf->nr_queued--;
3106                         }
3107                 }
3108                 spin_unlock_irqrestore(&conf->device_lock, flags);
3109                 while (!list_empty(&tmp)) {
3110                         r10_bio = list_first_entry(&tmp, struct r10bio,
3111                                                    retry_list);
3112                         list_del(&r10_bio->retry_list);
3113                         if (mddev->degraded)
3114                                 set_bit(R10BIO_Degraded, &r10_bio->state);
3115
3116                         if (test_bit(R10BIO_WriteError,
3117                                      &r10_bio->state))
3118                                 close_write(r10_bio);
3119                         raid_end_bio_io(r10_bio);
3120                 }
3121         }
3122
3123         blk_start_plug(&plug);
3124         for (;;) {
3125
3126                 flush_pending_writes(conf);
3127
3128                 spin_lock_irqsave(&conf->device_lock, flags);
3129                 if (list_empty(head)) {
3130                         spin_unlock_irqrestore(&conf->device_lock, flags);
3131                         break;
3132                 }
3133                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3134                 list_del(head->prev);
3135                 conf->nr_queued--;
3136                 spin_unlock_irqrestore(&conf->device_lock, flags);
3137
3138                 mddev = r10_bio->mddev;
3139                 conf = mddev->private;
3140                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3141                     test_bit(R10BIO_WriteError, &r10_bio->state))
3142                         handle_write_completed(conf, r10_bio);
3143                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3144                         reshape_request_write(mddev, r10_bio);
3145                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3146                         sync_request_write(mddev, r10_bio);
3147                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3148                         recovery_request_write(mddev, r10_bio);
3149                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3150                         handle_read_error(mddev, r10_bio);
3151                 else
3152                         WARN_ON_ONCE(1);
3153
3154                 cond_resched();
3155                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3156                         md_check_recovery(mddev);
3157         }
3158         blk_finish_plug(&plug);
3159 }
3160
3161 static int init_resync(struct r10conf *conf)
3162 {
3163         int ret, buffs, i;
3164
3165         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3166         BUG_ON(mempool_initialized(&conf->r10buf_pool));
3167         conf->have_replacement = 0;
3168         for (i = 0; i < conf->geo.raid_disks; i++)
3169                 if (conf->mirrors[i].replacement)
3170                         conf->have_replacement = 1;
3171         ret = mempool_init(&conf->r10buf_pool, buffs,
3172                            r10buf_pool_alloc, r10buf_pool_free, conf);
3173         if (ret)
3174                 return ret;
3175         conf->next_resync = 0;
3176         return 0;
3177 }
3178
3179 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3180 {
3181         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3182         struct rsync_pages *rp;
3183         struct bio *bio;
3184         int nalloc;
3185         int i;
3186
3187         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3188             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3189                 nalloc = conf->copies; /* resync */
3190         else
3191                 nalloc = 2; /* recovery */
3192
3193         for (i = 0; i < nalloc; i++) {
3194                 bio = r10bio->devs[i].bio;
3195                 rp = bio->bi_private;
3196                 bio_reset(bio, NULL, 0);
3197                 bio->bi_private = rp;
3198                 bio = r10bio->devs[i].repl_bio;
3199                 if (bio) {
3200                         rp = bio->bi_private;
3201                         bio_reset(bio, NULL, 0);
3202                         bio->bi_private = rp;
3203                 }
3204         }
3205         return r10bio;
3206 }
3207
3208 /*
3209  * Set cluster_sync_high since we need other nodes to add the
3210  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3211  */
3212 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3213 {
3214         sector_t window_size;
3215         int extra_chunk, chunks;
3216
3217         /*
3218          * First, here we define "stripe" as a unit which across
3219          * all member devices one time, so we get chunks by use
3220          * raid_disks / near_copies. Otherwise, if near_copies is
3221          * close to raid_disks, then resync window could increases
3222          * linearly with the increase of raid_disks, which means
3223          * we will suspend a really large IO window while it is not
3224          * necessary. If raid_disks is not divisible by near_copies,
3225          * an extra chunk is needed to ensure the whole "stripe" is
3226          * covered.
3227          */
3228
3229         chunks = conf->geo.raid_disks / conf->geo.near_copies;
3230         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3231                 extra_chunk = 0;
3232         else
3233                 extra_chunk = 1;
3234         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3235
3236         /*
3237          * At least use a 32M window to align with raid1's resync window
3238          */
3239         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3240                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3241
3242         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3243 }
3244
3245 /*
3246  * perform a "sync" on one "block"
3247  *
3248  * We need to make sure that no normal I/O request - particularly write
3249  * requests - conflict with active sync requests.
3250  *
3251  * This is achieved by tracking pending requests and a 'barrier' concept
3252  * that can be installed to exclude normal IO requests.
3253  *
3254  * Resync and recovery are handled very differently.
3255  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3256  *
3257  * For resync, we iterate over virtual addresses, read all copies,
3258  * and update if there are differences.  If only one copy is live,
3259  * skip it.
3260  * For recovery, we iterate over physical addresses, read a good
3261  * value for each non-in_sync drive, and over-write.
3262  *
3263  * So, for recovery we may have several outstanding complex requests for a
3264  * given address, one for each out-of-sync device.  We model this by allocating
3265  * a number of r10_bio structures, one for each out-of-sync device.
3266  * As we setup these structures, we collect all bio's together into a list
3267  * which we then process collectively to add pages, and then process again
3268  * to pass to submit_bio_noacct.
3269  *
3270  * The r10_bio structures are linked using a borrowed master_bio pointer.
3271  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3272  * has its remaining count decremented to 0, the whole complex operation
3273  * is complete.
3274  *
3275  */
3276
3277 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3278                              int *skipped)
3279 {
3280         struct r10conf *conf = mddev->private;
3281         struct r10bio *r10_bio;
3282         struct bio *biolist = NULL, *bio;
3283         sector_t max_sector, nr_sectors;
3284         int i;
3285         int max_sync;
3286         sector_t sync_blocks;
3287         sector_t sectors_skipped = 0;
3288         int chunks_skipped = 0;
3289         sector_t chunk_mask = conf->geo.chunk_mask;
3290         int page_idx = 0;
3291
3292         if (!mempool_initialized(&conf->r10buf_pool))
3293                 if (init_resync(conf))
3294                         return 0;
3295
3296         /*
3297          * Allow skipping a full rebuild for incremental assembly
3298          * of a clean array, like RAID1 does.
3299          */
3300         if (mddev->bitmap == NULL &&
3301             mddev->recovery_cp == MaxSector &&
3302             mddev->reshape_position == MaxSector &&
3303             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3304             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3305             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3306             conf->fullsync == 0) {
3307                 *skipped = 1;
3308                 return mddev->dev_sectors - sector_nr;
3309         }
3310
3311  skipped:
3312         max_sector = mddev->dev_sectors;
3313         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3314             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3315                 max_sector = mddev->resync_max_sectors;
3316         if (sector_nr >= max_sector) {
3317                 conf->cluster_sync_low = 0;
3318                 conf->cluster_sync_high = 0;
3319
3320                 /* If we aborted, we need to abort the
3321                  * sync on the 'current' bitmap chucks (there can
3322                  * be several when recovering multiple devices).
3323                  * as we may have started syncing it but not finished.
3324                  * We can find the current address in
3325                  * mddev->curr_resync, but for recovery,
3326                  * we need to convert that to several
3327                  * virtual addresses.
3328                  */
3329                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3330                         end_reshape(conf);
3331                         close_sync(conf);
3332                         return 0;
3333                 }
3334
3335                 if (mddev->curr_resync < max_sector) { /* aborted */
3336                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3337                                 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3338                                                    &sync_blocks, 1);
3339                         else for (i = 0; i < conf->geo.raid_disks; i++) {
3340                                 sector_t sect =
3341                                         raid10_find_virt(conf, mddev->curr_resync, i);
3342                                 md_bitmap_end_sync(mddev->bitmap, sect,
3343                                                    &sync_blocks, 1);
3344                         }
3345                 } else {
3346                         /* completed sync */
3347                         if ((!mddev->bitmap || conf->fullsync)
3348                             && conf->have_replacement
3349                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3350                                 /* Completed a full sync so the replacements
3351                                  * are now fully recovered.
3352                                  */
3353                                 rcu_read_lock();
3354                                 for (i = 0; i < conf->geo.raid_disks; i++) {
3355                                         struct md_rdev *rdev =
3356                                                 rcu_dereference(conf->mirrors[i].replacement);
3357                                         if (rdev)
3358                                                 rdev->recovery_offset = MaxSector;
3359                                 }
3360                                 rcu_read_unlock();
3361                         }
3362                         conf->fullsync = 0;
3363                 }
3364                 md_bitmap_close_sync(mddev->bitmap);
3365                 close_sync(conf);
3366                 *skipped = 1;
3367                 return sectors_skipped;
3368         }
3369
3370         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3371                 return reshape_request(mddev, sector_nr, skipped);
3372
3373         if (chunks_skipped >= conf->geo.raid_disks) {
3374                 /* if there has been nothing to do on any drive,
3375                  * then there is nothing to do at all..
3376                  */
3377                 *skipped = 1;
3378                 return (max_sector - sector_nr) + sectors_skipped;
3379         }
3380
3381         if (max_sector > mddev->resync_max)
3382                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3383
3384         /* make sure whole request will fit in a chunk - if chunks
3385          * are meaningful
3386          */
3387         if (conf->geo.near_copies < conf->geo.raid_disks &&
3388             max_sector > (sector_nr | chunk_mask))
3389                 max_sector = (sector_nr | chunk_mask) + 1;
3390
3391         /*
3392          * If there is non-resync activity waiting for a turn, then let it
3393          * though before starting on this new sync request.
3394          */
3395         if (conf->nr_waiting)
3396                 schedule_timeout_uninterruptible(1);
3397
3398         /* Again, very different code for resync and recovery.
3399          * Both must result in an r10bio with a list of bios that
3400          * have bi_end_io, bi_sector, bi_bdev set,
3401          * and bi_private set to the r10bio.
3402          * For recovery, we may actually create several r10bios
3403          * with 2 bios in each, that correspond to the bios in the main one.
3404          * In this case, the subordinate r10bios link back through a
3405          * borrowed master_bio pointer, and the counter in the master
3406          * includes a ref from each subordinate.
3407          */
3408         /* First, we decide what to do and set ->bi_end_io
3409          * To end_sync_read if we want to read, and
3410          * end_sync_write if we will want to write.
3411          */
3412
3413         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3414         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3415                 /* recovery... the complicated one */
3416                 int j;
3417                 r10_bio = NULL;
3418
3419                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3420                         int still_degraded;
3421                         struct r10bio *rb2;
3422                         sector_t sect;
3423                         int must_sync;
3424                         int any_working;
3425                         int need_recover = 0;
3426                         int need_replace = 0;
3427                         struct raid10_info *mirror = &conf->mirrors[i];
3428                         struct md_rdev *mrdev, *mreplace;
3429
3430                         rcu_read_lock();
3431                         mrdev = rcu_dereference(mirror->rdev);
3432                         mreplace = rcu_dereference(mirror->replacement);
3433
3434                         if (mrdev != NULL &&
3435                             !test_bit(Faulty, &mrdev->flags) &&
3436                             !test_bit(In_sync, &mrdev->flags))
3437                                 need_recover = 1;
3438                         if (mreplace != NULL &&
3439                             !test_bit(Faulty, &mreplace->flags))
3440                                 need_replace = 1;
3441
3442                         if (!need_recover && !need_replace) {
3443                                 rcu_read_unlock();
3444                                 continue;
3445                         }
3446
3447                         still_degraded = 0;
3448                         /* want to reconstruct this device */
3449                         rb2 = r10_bio;
3450                         sect = raid10_find_virt(conf, sector_nr, i);
3451                         if (sect >= mddev->resync_max_sectors) {
3452                                 /* last stripe is not complete - don't
3453                                  * try to recover this sector.
3454                                  */
3455                                 rcu_read_unlock();
3456                                 continue;
3457                         }
3458                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3459                                 mreplace = NULL;
3460                         /* Unless we are doing a full sync, or a replacement
3461                          * we only need to recover the block if it is set in
3462                          * the bitmap
3463                          */
3464                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3465                                                          &sync_blocks, 1);
3466                         if (sync_blocks < max_sync)
3467                                 max_sync = sync_blocks;
3468                         if (!must_sync &&
3469                             mreplace == NULL &&
3470                             !conf->fullsync) {
3471                                 /* yep, skip the sync_blocks here, but don't assume
3472                                  * that there will never be anything to do here
3473                                  */
3474                                 chunks_skipped = -1;
3475                                 rcu_read_unlock();
3476                                 continue;
3477                         }
3478                         atomic_inc(&mrdev->nr_pending);
3479                         if (mreplace)
3480                                 atomic_inc(&mreplace->nr_pending);
3481                         rcu_read_unlock();
3482
3483                         r10_bio = raid10_alloc_init_r10buf(conf);
3484                         r10_bio->state = 0;
3485                         raise_barrier(conf, rb2 != NULL);
3486                         atomic_set(&r10_bio->remaining, 0);
3487
3488                         r10_bio->master_bio = (struct bio*)rb2;
3489                         if (rb2)
3490                                 atomic_inc(&rb2->remaining);
3491                         r10_bio->mddev = mddev;
3492                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3493                         r10_bio->sector = sect;
3494
3495                         raid10_find_phys(conf, r10_bio);
3496
3497                         /* Need to check if the array will still be
3498                          * degraded
3499                          */
3500                         rcu_read_lock();
3501                         for (j = 0; j < conf->geo.raid_disks; j++) {
3502                                 struct md_rdev *rdev = rcu_dereference(
3503                                         conf->mirrors[j].rdev);
3504                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3505                                         still_degraded = 1;
3506                                         break;
3507                                 }
3508                         }
3509
3510                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3511                                                          &sync_blocks, still_degraded);
3512
3513                         any_working = 0;
3514                         for (j=0; j<conf->copies;j++) {
3515                                 int k;
3516                                 int d = r10_bio->devs[j].devnum;
3517                                 sector_t from_addr, to_addr;
3518                                 struct md_rdev *rdev =
3519                                         rcu_dereference(conf->mirrors[d].rdev);
3520                                 sector_t sector, first_bad;
3521                                 int bad_sectors;
3522                                 if (!rdev ||
3523                                     !test_bit(In_sync, &rdev->flags))
3524                                         continue;
3525                                 /* This is where we read from */
3526                                 any_working = 1;
3527                                 sector = r10_bio->devs[j].addr;
3528
3529                                 if (is_badblock(rdev, sector, max_sync,
3530                                                 &first_bad, &bad_sectors)) {
3531                                         if (first_bad > sector)
3532                                                 max_sync = first_bad - sector;
3533                                         else {
3534                                                 bad_sectors -= (sector
3535                                                                 - first_bad);
3536                                                 if (max_sync > bad_sectors)
3537                                                         max_sync = bad_sectors;
3538                                                 continue;
3539                                         }
3540                                 }
3541                                 bio = r10_bio->devs[0].bio;
3542                                 bio->bi_next = biolist;
3543                                 biolist = bio;
3544                                 bio->bi_end_io = end_sync_read;
3545                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3546                                 if (test_bit(FailFast, &rdev->flags))
3547                                         bio->bi_opf |= MD_FAILFAST;
3548                                 from_addr = r10_bio->devs[j].addr;
3549                                 bio->bi_iter.bi_sector = from_addr +
3550                                         rdev->data_offset;
3551                                 bio_set_dev(bio, rdev->bdev);
3552                                 atomic_inc(&rdev->nr_pending);
3553                                 /* and we write to 'i' (if not in_sync) */
3554
3555                                 for (k=0; k<conf->copies; k++)
3556                                         if (r10_bio->devs[k].devnum == i)
3557                                                 break;
3558                                 BUG_ON(k == conf->copies);
3559                                 to_addr = r10_bio->devs[k].addr;
3560                                 r10_bio->devs[0].devnum = d;
3561                                 r10_bio->devs[0].addr = from_addr;
3562                                 r10_bio->devs[1].devnum = i;
3563                                 r10_bio->devs[1].addr = to_addr;
3564
3565                                 if (need_recover) {
3566                                         bio = r10_bio->devs[1].bio;
3567                                         bio->bi_next = biolist;
3568                                         biolist = bio;
3569                                         bio->bi_end_io = end_sync_write;
3570                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3571                                         bio->bi_iter.bi_sector = to_addr
3572                                                 + mrdev->data_offset;
3573                                         bio_set_dev(bio, mrdev->bdev);
3574                                         atomic_inc(&r10_bio->remaining);
3575                                 } else
3576                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3577
3578                                 /* and maybe write to replacement */
3579                                 bio = r10_bio->devs[1].repl_bio;
3580                                 if (bio)
3581                                         bio->bi_end_io = NULL;
3582                                 /* Note: if need_replace, then bio
3583                                  * cannot be NULL as r10buf_pool_alloc will
3584                                  * have allocated it.
3585                                  */
3586                                 if (!need_replace)
3587                                         break;
3588                                 bio->bi_next = biolist;
3589                                 biolist = bio;
3590                                 bio->bi_end_io = end_sync_write;
3591                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3592                                 bio->bi_iter.bi_sector = to_addr +
3593                                         mreplace->data_offset;
3594                                 bio_set_dev(bio, mreplace->bdev);
3595                                 atomic_inc(&r10_bio->remaining);
3596                                 break;
3597                         }
3598                         rcu_read_unlock();
3599                         if (j == conf->copies) {
3600                                 /* Cannot recover, so abort the recovery or
3601                                  * record a bad block */
3602                                 if (any_working) {
3603                                         /* problem is that there are bad blocks
3604                                          * on other device(s)
3605                                          */
3606                                         int k;
3607                                         for (k = 0; k < conf->copies; k++)
3608                                                 if (r10_bio->devs[k].devnum == i)
3609                                                         break;
3610                                         if (!test_bit(In_sync,
3611                                                       &mrdev->flags)
3612                                             && !rdev_set_badblocks(
3613                                                     mrdev,
3614                                                     r10_bio->devs[k].addr,
3615                                                     max_sync, 0))
3616                                                 any_working = 0;
3617                                         if (mreplace &&
3618                                             !rdev_set_badblocks(
3619                                                     mreplace,
3620                                                     r10_bio->devs[k].addr,
3621                                                     max_sync, 0))
3622                                                 any_working = 0;
3623                                 }
3624                                 if (!any_working)  {
3625                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3626                                                               &mddev->recovery))
3627                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3628                                                        mdname(mddev));
3629                                         mirror->recovery_disabled
3630                                                 = mddev->recovery_disabled;
3631                                 }
3632                                 put_buf(r10_bio);
3633                                 if (rb2)
3634                                         atomic_dec(&rb2->remaining);
3635                                 r10_bio = rb2;
3636                                 rdev_dec_pending(mrdev, mddev);
3637                                 if (mreplace)
3638                                         rdev_dec_pending(mreplace, mddev);
3639                                 break;
3640                         }
3641                         rdev_dec_pending(mrdev, mddev);
3642                         if (mreplace)
3643                                 rdev_dec_pending(mreplace, mddev);
3644                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3645                                 /* Only want this if there is elsewhere to
3646                                  * read from. 'j' is currently the first
3647                                  * readable copy.
3648                                  */
3649                                 int targets = 1;
3650                                 for (; j < conf->copies; j++) {
3651                                         int d = r10_bio->devs[j].devnum;
3652                                         if (conf->mirrors[d].rdev &&
3653                                             test_bit(In_sync,
3654                                                       &conf->mirrors[d].rdev->flags))
3655                                                 targets++;
3656                                 }
3657                                 if (targets == 1)
3658                                         r10_bio->devs[0].bio->bi_opf
3659                                                 &= ~MD_FAILFAST;
3660                         }
3661                 }
3662                 if (biolist == NULL) {
3663                         while (r10_bio) {
3664                                 struct r10bio *rb2 = r10_bio;
3665                                 r10_bio = (struct r10bio*) rb2->master_bio;
3666                                 rb2->master_bio = NULL;
3667                                 put_buf(rb2);
3668                         }
3669                         goto giveup;
3670                 }
3671         } else {
3672                 /* resync. Schedule a read for every block at this virt offset */
3673                 int count = 0;
3674
3675                 /*
3676                  * Since curr_resync_completed could probably not update in
3677                  * time, and we will set cluster_sync_low based on it.
3678                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3679                  * safety reason, which ensures curr_resync_completed is
3680                  * updated in bitmap_cond_end_sync.
3681                  */
3682                 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3683                                         mddev_is_clustered(mddev) &&
3684                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3685
3686                 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3687                                           &sync_blocks, mddev->degraded) &&
3688                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3689                                                  &mddev->recovery)) {
3690                         /* We can skip this block */
3691                         *skipped = 1;
3692                         return sync_blocks + sectors_skipped;
3693                 }
3694                 if (sync_blocks < max_sync)
3695                         max_sync = sync_blocks;
3696                 r10_bio = raid10_alloc_init_r10buf(conf);
3697                 r10_bio->state = 0;
3698
3699                 r10_bio->mddev = mddev;
3700                 atomic_set(&r10_bio->remaining, 0);
3701                 raise_barrier(conf, 0);
3702                 conf->next_resync = sector_nr;
3703
3704                 r10_bio->master_bio = NULL;
3705                 r10_bio->sector = sector_nr;
3706                 set_bit(R10BIO_IsSync, &r10_bio->state);
3707                 raid10_find_phys(conf, r10_bio);
3708                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3709
3710                 for (i = 0; i < conf->copies; i++) {
3711                         int d = r10_bio->devs[i].devnum;
3712                         sector_t first_bad, sector;
3713                         int bad_sectors;
3714                         struct md_rdev *rdev;
3715
3716                         if (r10_bio->devs[i].repl_bio)
3717                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3718
3719                         bio = r10_bio->devs[i].bio;
3720                         bio->bi_status = BLK_STS_IOERR;
3721                         rcu_read_lock();
3722                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3723                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3724                                 rcu_read_unlock();
3725                                 continue;
3726                         }
3727                         sector = r10_bio->devs[i].addr;
3728                         if (is_badblock(rdev, sector, max_sync,
3729                                         &first_bad, &bad_sectors)) {
3730                                 if (first_bad > sector)
3731                                         max_sync = first_bad - sector;
3732                                 else {
3733                                         bad_sectors -= (sector - first_bad);
3734                                         if (max_sync > bad_sectors)
3735                                                 max_sync = bad_sectors;
3736                                         rcu_read_unlock();
3737                                         continue;
3738                                 }
3739                         }
3740                         atomic_inc(&rdev->nr_pending);
3741                         atomic_inc(&r10_bio->remaining);
3742                         bio->bi_next = biolist;
3743                         biolist = bio;
3744                         bio->bi_end_io = end_sync_read;
3745                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3746                         if (test_bit(FailFast, &rdev->flags))
3747                                 bio->bi_opf |= MD_FAILFAST;
3748                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3749                         bio_set_dev(bio, rdev->bdev);
3750                         count++;
3751
3752                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3753                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3754                                 rcu_read_unlock();
3755                                 continue;
3756                         }
3757                         atomic_inc(&rdev->nr_pending);
3758
3759                         /* Need to set up for writing to the replacement */
3760                         bio = r10_bio->devs[i].repl_bio;
3761                         bio->bi_status = BLK_STS_IOERR;
3762
3763                         sector = r10_bio->devs[i].addr;
3764                         bio->bi_next = biolist;
3765                         biolist = bio;
3766                         bio->bi_end_io = end_sync_write;
3767                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3768                         if (test_bit(FailFast, &rdev->flags))
3769                                 bio->bi_opf |= MD_FAILFAST;
3770                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3771                         bio_set_dev(bio, rdev->bdev);
3772                         count++;
3773                         rcu_read_unlock();
3774                 }
3775
3776                 if (count < 2) {
3777                         for (i=0; i<conf->copies; i++) {
3778                                 int d = r10_bio->devs[i].devnum;
3779                                 if (r10_bio->devs[i].bio->bi_end_io)
3780                                         rdev_dec_pending(conf->mirrors[d].rdev,
3781                                                          mddev);
3782                                 if (r10_bio->devs[i].repl_bio &&
3783                                     r10_bio->devs[i].repl_bio->bi_end_io)
3784                                         rdev_dec_pending(
3785                                                 conf->mirrors[d].replacement,
3786                                                 mddev);
3787                         }
3788                         put_buf(r10_bio);
3789                         biolist = NULL;
3790                         goto giveup;
3791                 }
3792         }
3793
3794         nr_sectors = 0;
3795         if (sector_nr + max_sync < max_sector)
3796                 max_sector = sector_nr + max_sync;
3797         do {
3798                 struct page *page;
3799                 int len = PAGE_SIZE;
3800                 if (sector_nr + (len>>9) > max_sector)
3801                         len = (max_sector - sector_nr) << 9;
3802                 if (len == 0)
3803                         break;
3804                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3805                         struct resync_pages *rp = get_resync_pages(bio);
3806                         page = resync_fetch_page(rp, page_idx);
3807                         /*
3808                          * won't fail because the vec table is big enough
3809                          * to hold all these pages
3810                          */
3811                         bio_add_page(bio, page, len, 0);
3812                 }
3813                 nr_sectors += len>>9;
3814                 sector_nr += len>>9;
3815         } while (++page_idx < RESYNC_PAGES);
3816         r10_bio->sectors = nr_sectors;
3817
3818         if (mddev_is_clustered(mddev) &&
3819             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3820                 /* It is resync not recovery */
3821                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3822                         conf->cluster_sync_low = mddev->curr_resync_completed;
3823                         raid10_set_cluster_sync_high(conf);
3824                         /* Send resync message */
3825                         md_cluster_ops->resync_info_update(mddev,
3826                                                 conf->cluster_sync_low,
3827                                                 conf->cluster_sync_high);
3828                 }
3829         } else if (mddev_is_clustered(mddev)) {
3830                 /* This is recovery not resync */
3831                 sector_t sect_va1, sect_va2;
3832                 bool broadcast_msg = false;
3833
3834                 for (i = 0; i < conf->geo.raid_disks; i++) {
3835                         /*
3836                          * sector_nr is a device address for recovery, so we
3837                          * need translate it to array address before compare
3838                          * with cluster_sync_high.
3839                          */
3840                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3841
3842                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3843                                 broadcast_msg = true;
3844                                 /*
3845                                  * curr_resync_completed is similar as
3846                                  * sector_nr, so make the translation too.
3847                                  */
3848                                 sect_va2 = raid10_find_virt(conf,
3849                                         mddev->curr_resync_completed, i);
3850
3851                                 if (conf->cluster_sync_low == 0 ||
3852                                     conf->cluster_sync_low > sect_va2)
3853                                         conf->cluster_sync_low = sect_va2;
3854                         }
3855                 }
3856                 if (broadcast_msg) {
3857                         raid10_set_cluster_sync_high(conf);
3858                         md_cluster_ops->resync_info_update(mddev,
3859                                                 conf->cluster_sync_low,
3860                                                 conf->cluster_sync_high);
3861                 }
3862         }
3863
3864         while (biolist) {
3865                 bio = biolist;
3866                 biolist = biolist->bi_next;
3867
3868                 bio->bi_next = NULL;
3869                 r10_bio = get_resync_r10bio(bio);
3870                 r10_bio->sectors = nr_sectors;
3871
3872                 if (bio->bi_end_io == end_sync_read) {
3873                         md_sync_acct_bio(bio, nr_sectors);
3874                         bio->bi_status = 0;
3875                         submit_bio_noacct(bio);
3876                 }
3877         }
3878
3879         if (sectors_skipped)
3880                 /* pretend they weren't skipped, it makes
3881                  * no important difference in this case
3882                  */
3883                 md_done_sync(mddev, sectors_skipped, 1);
3884
3885         return sectors_skipped + nr_sectors;
3886  giveup:
3887         /* There is nowhere to write, so all non-sync
3888          * drives must be failed or in resync, all drives
3889          * have a bad block, so try the next chunk...
3890          */
3891         if (sector_nr + max_sync < max_sector)
3892                 max_sector = sector_nr + max_sync;
3893
3894         sectors_skipped += (max_sector - sector_nr);
3895         chunks_skipped ++;
3896         sector_nr = max_sector;
3897         goto skipped;
3898 }
3899
3900 static sector_t
3901 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3902 {
3903         sector_t size;
3904         struct r10conf *conf = mddev->private;
3905
3906         if (!raid_disks)
3907                 raid_disks = min(conf->geo.raid_disks,
3908                                  conf->prev.raid_disks);
3909         if (!sectors)
3910                 sectors = conf->dev_sectors;
3911
3912         size = sectors >> conf->geo.chunk_shift;
3913         sector_div(size, conf->geo.far_copies);
3914         size = size * raid_disks;
3915         sector_div(size, conf->geo.near_copies);
3916
3917         return size << conf->geo.chunk_shift;
3918 }
3919
3920 static void calc_sectors(struct r10conf *conf, sector_t size)
3921 {
3922         /* Calculate the number of sectors-per-device that will
3923          * actually be used, and set conf->dev_sectors and
3924          * conf->stride
3925          */
3926
3927         size = size >> conf->geo.chunk_shift;
3928         sector_div(size, conf->geo.far_copies);
3929         size = size * conf->geo.raid_disks;
3930         sector_div(size, conf->geo.near_copies);
3931         /* 'size' is now the number of chunks in the array */
3932         /* calculate "used chunks per device" */
3933         size = size * conf->copies;
3934
3935         /* We need to round up when dividing by raid_disks to
3936          * get the stride size.
3937          */
3938         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3939
3940         conf->dev_sectors = size << conf->geo.chunk_shift;
3941
3942         if (conf->geo.far_offset)
3943                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3944         else {
3945                 sector_div(size, conf->geo.far_copies);
3946                 conf->geo.stride = size << conf->geo.chunk_shift;
3947         }
3948 }
3949
3950 enum geo_type {geo_new, geo_old, geo_start};
3951 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3952 {
3953         int nc, fc, fo;
3954         int layout, chunk, disks;
3955         switch (new) {
3956         case geo_old:
3957                 layout = mddev->layout;
3958                 chunk = mddev->chunk_sectors;
3959                 disks = mddev->raid_disks - mddev->delta_disks;
3960                 break;
3961         case geo_new:
3962                 layout = mddev->new_layout;
3963                 chunk = mddev->new_chunk_sectors;
3964                 disks = mddev->raid_disks;
3965                 break;
3966         default: /* avoid 'may be unused' warnings */
3967         case geo_start: /* new when starting reshape - raid_disks not
3968                          * updated yet. */
3969                 layout = mddev->new_layout;
3970                 chunk = mddev->new_chunk_sectors;
3971                 disks = mddev->raid_disks + mddev->delta_disks;
3972                 break;
3973         }
3974         if (layout >> 19)
3975                 return -1;
3976         if (chunk < (PAGE_SIZE >> 9) ||
3977             !is_power_of_2(chunk))
3978                 return -2;
3979         nc = layout & 255;
3980         fc = (layout >> 8) & 255;
3981         fo = layout & (1<<16);
3982         geo->raid_disks = disks;
3983         geo->near_copies = nc;
3984         geo->far_copies = fc;
3985         geo->far_offset = fo;
3986         switch (layout >> 17) {
3987         case 0: /* original layout.  simple but not always optimal */
3988                 geo->far_set_size = disks;
3989                 break;
3990         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3991                  * actually using this, but leave code here just in case.*/
3992                 geo->far_set_size = disks/fc;
3993                 WARN(geo->far_set_size < fc,
3994                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3995                 break;
3996         case 2: /* "improved" layout fixed to match documentation */
3997                 geo->far_set_size = fc * nc;
3998                 break;
3999         default: /* Not a valid layout */
4000                 return -1;
4001         }
4002         geo->chunk_mask = chunk - 1;
4003         geo->chunk_shift = ffz(~chunk);
4004         return nc*fc;
4005 }
4006
4007 static struct r10conf *setup_conf(struct mddev *mddev)
4008 {
4009         struct r10conf *conf = NULL;
4010         int err = -EINVAL;
4011         struct geom geo;
4012         int copies;
4013
4014         copies = setup_geo(&geo, mddev, geo_new);
4015
4016         if (copies == -2) {
4017                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
4018                         mdname(mddev), PAGE_SIZE);
4019                 goto out;
4020         }
4021
4022         if (copies < 2 || copies > mddev->raid_disks) {
4023                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
4024                         mdname(mddev), mddev->new_layout);
4025                 goto out;
4026         }
4027
4028         err = -ENOMEM;
4029         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
4030         if (!conf)
4031                 goto out;
4032
4033         /* FIXME calc properly */
4034         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
4035                                 sizeof(struct raid10_info),
4036                                 GFP_KERNEL);
4037         if (!conf->mirrors)
4038                 goto out;
4039
4040         conf->tmppage = alloc_page(GFP_KERNEL);
4041         if (!conf->tmppage)
4042                 goto out;
4043
4044         conf->geo = geo;
4045         conf->copies = copies;
4046         err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
4047                            rbio_pool_free, conf);
4048         if (err)
4049                 goto out;
4050
4051         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
4052         if (err)
4053                 goto out;
4054
4055         calc_sectors(conf, mddev->dev_sectors);
4056         if (mddev->reshape_position == MaxSector) {
4057                 conf->prev = conf->geo;
4058                 conf->reshape_progress = MaxSector;
4059         } else {
4060                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
4061                         err = -EINVAL;
4062                         goto out;
4063                 }
4064                 conf->reshape_progress = mddev->reshape_position;
4065                 if (conf->prev.far_offset)
4066                         conf->prev.stride = 1 << conf->prev.chunk_shift;
4067                 else
4068                         /* far_copies must be 1 */
4069                         conf->prev.stride = conf->dev_sectors;
4070         }
4071         conf->reshape_safe = conf->reshape_progress;
4072         spin_lock_init(&conf->device_lock);
4073         INIT_LIST_HEAD(&conf->retry_list);
4074         INIT_LIST_HEAD(&conf->bio_end_io_list);
4075
4076         seqlock_init(&conf->resync_lock);
4077         init_waitqueue_head(&conf->wait_barrier);
4078         atomic_set(&conf->nr_pending, 0);
4079
4080         err = -ENOMEM;
4081         conf->thread = md_register_thread(raid10d, mddev, "raid10");
4082         if (!conf->thread)
4083                 goto out;
4084
4085         conf->mddev = mddev;
4086         return conf;
4087
4088  out:
4089         if (conf) {
4090                 mempool_exit(&conf->r10bio_pool);
4091                 kfree(conf->mirrors);
4092                 safe_put_page(conf->tmppage);
4093                 bioset_exit(&conf->bio_split);
4094                 kfree(conf);
4095         }
4096         return ERR_PTR(err);
4097 }
4098
4099 static void raid10_set_io_opt(struct r10conf *conf)
4100 {
4101         int raid_disks = conf->geo.raid_disks;
4102
4103         if (!(conf->geo.raid_disks % conf->geo.near_copies))
4104                 raid_disks /= conf->geo.near_copies;
4105         blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4106                          raid_disks);
4107 }
4108
4109 static int raid10_run(struct mddev *mddev)
4110 {
4111         struct r10conf *conf;
4112         int i, disk_idx;
4113         struct raid10_info *disk;
4114         struct md_rdev *rdev;
4115         sector_t size;
4116         sector_t min_offset_diff = 0;
4117         int first = 1;
4118
4119         if (mddev_init_writes_pending(mddev) < 0)
4120                 return -ENOMEM;
4121
4122         if (mddev->private == NULL) {
4123                 conf = setup_conf(mddev);
4124                 if (IS_ERR(conf))
4125                         return PTR_ERR(conf);
4126                 mddev->private = conf;
4127         }
4128         conf = mddev->private;
4129         if (!conf)
4130                 goto out;
4131
4132         if (mddev_is_clustered(conf->mddev)) {
4133                 int fc, fo;
4134
4135                 fc = (mddev->layout >> 8) & 255;
4136                 fo = mddev->layout & (1<<16);
4137                 if (fc > 1 || fo > 0) {
4138                         pr_err("only near layout is supported by clustered"
4139                                 " raid10\n");
4140                         goto out_free_conf;
4141                 }
4142         }
4143
4144         mddev->thread = conf->thread;
4145         conf->thread = NULL;
4146
4147         if (mddev->queue) {
4148                 blk_queue_max_discard_sectors(mddev->queue,
4149                                               UINT_MAX);
4150                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4151                 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4152                 raid10_set_io_opt(conf);
4153         }
4154
4155         rdev_for_each(rdev, mddev) {
4156                 long long diff;
4157
4158                 disk_idx = rdev->raid_disk;
4159                 if (disk_idx < 0)
4160                         continue;
4161                 if (disk_idx >= conf->geo.raid_disks &&
4162                     disk_idx >= conf->prev.raid_disks)
4163                         continue;
4164                 disk = conf->mirrors + disk_idx;
4165
4166                 if (test_bit(Replacement, &rdev->flags)) {
4167                         if (disk->replacement)
4168                                 goto out_free_conf;
4169                         disk->replacement = rdev;
4170                 } else {
4171                         if (disk->rdev)
4172                                 goto out_free_conf;
4173                         disk->rdev = rdev;
4174                 }
4175                 diff = (rdev->new_data_offset - rdev->data_offset);
4176                 if (!mddev->reshape_backwards)
4177                         diff = -diff;
4178                 if (diff < 0)
4179                         diff = 0;
4180                 if (first || diff < min_offset_diff)
4181                         min_offset_diff = diff;
4182
4183                 if (mddev->gendisk)
4184                         disk_stack_limits(mddev->gendisk, rdev->bdev,
4185                                           rdev->data_offset << 9);
4186
4187                 disk->head_position = 0;
4188                 first = 0;
4189         }
4190
4191         /* need to check that every block has at least one working mirror */
4192         if (!enough(conf, -1)) {
4193                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4194                        mdname(mddev));
4195                 goto out_free_conf;
4196         }
4197
4198         if (conf->reshape_progress != MaxSector) {
4199                 /* must ensure that shape change is supported */
4200                 if (conf->geo.far_copies != 1 &&
4201                     conf->geo.far_offset == 0)
4202                         goto out_free_conf;
4203                 if (conf->prev.far_copies != 1 &&
4204                     conf->prev.far_offset == 0)
4205                         goto out_free_conf;
4206         }
4207
4208         mddev->degraded = 0;
4209         for (i = 0;
4210              i < conf->geo.raid_disks
4211                      || i < conf->prev.raid_disks;
4212              i++) {
4213
4214                 disk = conf->mirrors + i;
4215
4216                 if (!disk->rdev && disk->replacement) {
4217                         /* The replacement is all we have - use it */
4218                         disk->rdev = disk->replacement;
4219                         disk->replacement = NULL;
4220                         clear_bit(Replacement, &disk->rdev->flags);
4221                 }
4222
4223                 if (!disk->rdev ||
4224                     !test_bit(In_sync, &disk->rdev->flags)) {
4225                         disk->head_position = 0;
4226                         mddev->degraded++;
4227                         if (disk->rdev &&
4228                             disk->rdev->saved_raid_disk < 0)
4229                                 conf->fullsync = 1;
4230                 }
4231
4232                 if (disk->replacement &&
4233                     !test_bit(In_sync, &disk->replacement->flags) &&
4234                     disk->replacement->saved_raid_disk < 0) {
4235                         conf->fullsync = 1;
4236                 }
4237
4238                 disk->recovery_disabled = mddev->recovery_disabled - 1;
4239         }
4240
4241         if (mddev->recovery_cp != MaxSector)
4242                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4243                           mdname(mddev));
4244         pr_info("md/raid10:%s: active with %d out of %d devices\n",
4245                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4246                 conf->geo.raid_disks);
4247         /*
4248          * Ok, everything is just fine now
4249          */
4250         mddev->dev_sectors = conf->dev_sectors;
4251         size = raid10_size(mddev, 0, 0);
4252         md_set_array_sectors(mddev, size);
4253         mddev->resync_max_sectors = size;
4254         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4255
4256         if (md_integrity_register(mddev))
4257                 goto out_free_conf;
4258
4259         if (conf->reshape_progress != MaxSector) {
4260                 unsigned long before_length, after_length;
4261
4262                 before_length = ((1 << conf->prev.chunk_shift) *
4263                                  conf->prev.far_copies);
4264                 after_length = ((1 << conf->geo.chunk_shift) *
4265                                 conf->geo.far_copies);
4266
4267                 if (max(before_length, after_length) > min_offset_diff) {
4268                         /* This cannot work */
4269                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4270                         goto out_free_conf;
4271                 }
4272                 conf->offset_diff = min_offset_diff;
4273
4274                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4275                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4276                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4277                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4278                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4279                                                         "reshape");
4280                 if (!mddev->sync_thread)
4281                         goto out_free_conf;
4282         }
4283
4284         return 0;
4285
4286 out_free_conf:
4287         md_unregister_thread(&mddev->thread);
4288         mempool_exit(&conf->r10bio_pool);
4289         safe_put_page(conf->tmppage);
4290         kfree(conf->mirrors);
4291         kfree(conf);
4292         mddev->private = NULL;
4293 out:
4294         return -EIO;
4295 }
4296
4297 static void raid10_free(struct mddev *mddev, void *priv)
4298 {
4299         struct r10conf *conf = priv;
4300
4301         mempool_exit(&conf->r10bio_pool);
4302         safe_put_page(conf->tmppage);
4303         kfree(conf->mirrors);
4304         kfree(conf->mirrors_old);
4305         kfree(conf->mirrors_new);
4306         bioset_exit(&conf->bio_split);
4307         kfree(conf);
4308 }
4309
4310 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4311 {
4312         struct r10conf *conf = mddev->private;
4313
4314         if (quiesce)
4315                 raise_barrier(conf, 0);
4316         else
4317                 lower_barrier(conf);
4318 }
4319
4320 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4321 {
4322         /* Resize of 'far' arrays is not supported.
4323          * For 'near' and 'offset' arrays we can set the
4324          * number of sectors used to be an appropriate multiple
4325          * of the chunk size.
4326          * For 'offset', this is far_copies*chunksize.
4327          * For 'near' the multiplier is the LCM of
4328          * near_copies and raid_disks.
4329          * So if far_copies > 1 && !far_offset, fail.
4330          * Else find LCM(raid_disks, near_copy)*far_copies and
4331          * multiply by chunk_size.  Then round to this number.
4332          * This is mostly done by raid10_size()
4333          */
4334         struct r10conf *conf = mddev->private;
4335         sector_t oldsize, size;
4336
4337         if (mddev->reshape_position != MaxSector)
4338                 return -EBUSY;
4339
4340         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4341                 return -EINVAL;
4342
4343         oldsize = raid10_size(mddev, 0, 0);
4344         size = raid10_size(mddev, sectors, 0);
4345         if (mddev->external_size &&
4346             mddev->array_sectors > size)
4347                 return -EINVAL;
4348         if (mddev->bitmap) {
4349                 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4350                 if (ret)
4351                         return ret;
4352         }
4353         md_set_array_sectors(mddev, size);
4354         if (sectors > mddev->dev_sectors &&
4355             mddev->recovery_cp > oldsize) {
4356                 mddev->recovery_cp = oldsize;
4357                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4358         }
4359         calc_sectors(conf, sectors);
4360         mddev->dev_sectors = conf->dev_sectors;
4361         mddev->resync_max_sectors = size;
4362         return 0;
4363 }
4364
4365 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4366 {
4367         struct md_rdev *rdev;
4368         struct r10conf *conf;
4369
4370         if (mddev->degraded > 0) {
4371                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4372                         mdname(mddev));
4373                 return ERR_PTR(-EINVAL);
4374         }
4375         sector_div(size, devs);
4376
4377         /* Set new parameters */
4378         mddev->new_level = 10;
4379         /* new layout: far_copies = 1, near_copies = 2 */
4380         mddev->new_layout = (1<<8) + 2;
4381         mddev->new_chunk_sectors = mddev->chunk_sectors;
4382         mddev->delta_disks = mddev->raid_disks;
4383         mddev->raid_disks *= 2;
4384         /* make sure it will be not marked as dirty */
4385         mddev->recovery_cp = MaxSector;
4386         mddev->dev_sectors = size;
4387
4388         conf = setup_conf(mddev);
4389         if (!IS_ERR(conf)) {
4390                 rdev_for_each(rdev, mddev)
4391                         if (rdev->raid_disk >= 0) {
4392                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4393                                 rdev->sectors = size;
4394                         }
4395                 WRITE_ONCE(conf->barrier, 1);
4396         }
4397
4398         return conf;
4399 }
4400
4401 static void *raid10_takeover(struct mddev *mddev)
4402 {
4403         struct r0conf *raid0_conf;
4404
4405         /* raid10 can take over:
4406          *  raid0 - providing it has only two drives
4407          */
4408         if (mddev->level == 0) {
4409                 /* for raid0 takeover only one zone is supported */
4410                 raid0_conf = mddev->private;
4411                 if (raid0_conf->nr_strip_zones > 1) {
4412                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4413                                 mdname(mddev));
4414                         return ERR_PTR(-EINVAL);
4415                 }
4416                 return raid10_takeover_raid0(mddev,
4417                         raid0_conf->strip_zone->zone_end,
4418                         raid0_conf->strip_zone->nb_dev);
4419         }
4420         return ERR_PTR(-EINVAL);
4421 }
4422
4423 static int raid10_check_reshape(struct mddev *mddev)
4424 {
4425         /* Called when there is a request to change
4426          * - layout (to ->new_layout)
4427          * - chunk size (to ->new_chunk_sectors)
4428          * - raid_disks (by delta_disks)
4429          * or when trying to restart a reshape that was ongoing.
4430          *
4431          * We need to validate the request and possibly allocate
4432          * space if that might be an issue later.
4433          *
4434          * Currently we reject any reshape of a 'far' mode array,
4435          * allow chunk size to change if new is generally acceptable,
4436          * allow raid_disks to increase, and allow
4437          * a switch between 'near' mode and 'offset' mode.
4438          */
4439         struct r10conf *conf = mddev->private;
4440         struct geom geo;
4441
4442         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4443                 return -EINVAL;
4444
4445         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4446                 /* mustn't change number of copies */
4447                 return -EINVAL;
4448         if (geo.far_copies > 1 && !geo.far_offset)
4449                 /* Cannot switch to 'far' mode */
4450                 return -EINVAL;
4451
4452         if (mddev->array_sectors & geo.chunk_mask)
4453                         /* not factor of array size */
4454                         return -EINVAL;
4455
4456         if (!enough(conf, -1))
4457                 return -EINVAL;
4458
4459         kfree(conf->mirrors_new);
4460         conf->mirrors_new = NULL;
4461         if (mddev->delta_disks > 0) {
4462                 /* allocate new 'mirrors' list */
4463                 conf->mirrors_new =
4464                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4465                                 sizeof(struct raid10_info),
4466                                 GFP_KERNEL);
4467                 if (!conf->mirrors_new)
4468                         return -ENOMEM;
4469         }
4470         return 0;
4471 }
4472
4473 /*
4474  * Need to check if array has failed when deciding whether to:
4475  *  - start an array
4476  *  - remove non-faulty devices
4477  *  - add a spare
4478  *  - allow a reshape
4479  * This determination is simple when no reshape is happening.
4480  * However if there is a reshape, we need to carefully check
4481  * both the before and after sections.
4482  * This is because some failed devices may only affect one
4483  * of the two sections, and some non-in_sync devices may
4484  * be insync in the section most affected by failed devices.
4485  */
4486 static int calc_degraded(struct r10conf *conf)
4487 {
4488         int degraded, degraded2;
4489         int i;
4490
4491         rcu_read_lock();
4492         degraded = 0;
4493         /* 'prev' section first */
4494         for (i = 0; i < conf->prev.raid_disks; i++) {
4495                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4496                 if (!rdev || test_bit(Faulty, &rdev->flags))
4497                         degraded++;
4498                 else if (!test_bit(In_sync, &rdev->flags))
4499                         /* When we can reduce the number of devices in
4500                          * an array, this might not contribute to
4501                          * 'degraded'.  It does now.
4502                          */
4503                         degraded++;
4504         }
4505         rcu_read_unlock();
4506         if (conf->geo.raid_disks == conf->prev.raid_disks)
4507                 return degraded;
4508         rcu_read_lock();
4509         degraded2 = 0;
4510         for (i = 0; i < conf->geo.raid_disks; i++) {
4511                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4512                 if (!rdev || test_bit(Faulty, &rdev->flags))
4513                         degraded2++;
4514                 else if (!test_bit(In_sync, &rdev->flags)) {
4515                         /* If reshape is increasing the number of devices,
4516                          * this section has already been recovered, so
4517                          * it doesn't contribute to degraded.
4518                          * else it does.
4519                          */
4520                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4521                                 degraded2++;
4522                 }
4523         }
4524         rcu_read_unlock();
4525         if (degraded2 > degraded)
4526                 return degraded2;
4527         return degraded;
4528 }
4529
4530 static int raid10_start_reshape(struct mddev *mddev)
4531 {
4532         /* A 'reshape' has been requested. This commits
4533          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4534          * This also checks if there are enough spares and adds them
4535          * to the array.
4536          * We currently require enough spares to make the final
4537          * array non-degraded.  We also require that the difference
4538          * between old and new data_offset - on each device - is
4539          * enough that we never risk over-writing.
4540          */
4541
4542         unsigned long before_length, after_length;
4543         sector_t min_offset_diff = 0;
4544         int first = 1;
4545         struct geom new;
4546         struct r10conf *conf = mddev->private;
4547         struct md_rdev *rdev;
4548         int spares = 0;
4549         int ret;
4550
4551         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4552                 return -EBUSY;
4553
4554         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4555                 return -EINVAL;
4556
4557         before_length = ((1 << conf->prev.chunk_shift) *
4558                          conf->prev.far_copies);
4559         after_length = ((1 << conf->geo.chunk_shift) *
4560                         conf->geo.far_copies);
4561
4562         rdev_for_each(rdev, mddev) {
4563                 if (!test_bit(In_sync, &rdev->flags)
4564                     && !test_bit(Faulty, &rdev->flags))
4565                         spares++;
4566                 if (rdev->raid_disk >= 0) {
4567                         long long diff = (rdev->new_data_offset
4568                                           - rdev->data_offset);
4569                         if (!mddev->reshape_backwards)
4570                                 diff = -diff;
4571                         if (diff < 0)
4572                                 diff = 0;
4573                         if (first || diff < min_offset_diff)
4574                                 min_offset_diff = diff;
4575                         first = 0;
4576                 }
4577         }
4578
4579         if (max(before_length, after_length) > min_offset_diff)
4580                 return -EINVAL;
4581
4582         if (spares < mddev->delta_disks)
4583                 return -EINVAL;
4584
4585         conf->offset_diff = min_offset_diff;
4586         spin_lock_irq(&conf->device_lock);
4587         if (conf->mirrors_new) {
4588                 memcpy(conf->mirrors_new, conf->mirrors,
4589                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4590                 smp_mb();
4591                 kfree(conf->mirrors_old);
4592                 conf->mirrors_old = conf->mirrors;
4593                 conf->mirrors = conf->mirrors_new;
4594                 conf->mirrors_new = NULL;
4595         }
4596         setup_geo(&conf->geo, mddev, geo_start);
4597         smp_mb();
4598         if (mddev->reshape_backwards) {
4599                 sector_t size = raid10_size(mddev, 0, 0);
4600                 if (size < mddev->array_sectors) {
4601                         spin_unlock_irq(&conf->device_lock);
4602                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4603                                 mdname(mddev));
4604                         return -EINVAL;
4605                 }
4606                 mddev->resync_max_sectors = size;
4607                 conf->reshape_progress = size;
4608         } else
4609                 conf->reshape_progress = 0;
4610         conf->reshape_safe = conf->reshape_progress;
4611         spin_unlock_irq(&conf->device_lock);
4612
4613         if (mddev->delta_disks && mddev->bitmap) {
4614                 struct mdp_superblock_1 *sb = NULL;
4615                 sector_t oldsize, newsize;
4616
4617                 oldsize = raid10_size(mddev, 0, 0);
4618                 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4619
4620                 if (!mddev_is_clustered(mddev)) {
4621                         ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4622                         if (ret)
4623                                 goto abort;
4624                         else
4625                                 goto out;
4626                 }
4627
4628                 rdev_for_each(rdev, mddev) {
4629                         if (rdev->raid_disk > -1 &&
4630                             !test_bit(Faulty, &rdev->flags))
4631                                 sb = page_address(rdev->sb_page);
4632                 }
4633
4634                 /*
4635                  * some node is already performing reshape, and no need to
4636                  * call md_bitmap_resize again since it should be called when
4637                  * receiving BITMAP_RESIZE msg
4638                  */
4639                 if ((sb && (le32_to_cpu(sb->feature_map) &
4640                             MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4641                         goto out;
4642
4643                 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4644                 if (ret)
4645                         goto abort;
4646
4647                 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4648                 if (ret) {
4649                         md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4650                         goto abort;
4651                 }
4652         }
4653 out:
4654         if (mddev->delta_disks > 0) {
4655                 rdev_for_each(rdev, mddev)
4656                         if (rdev->raid_disk < 0 &&
4657                             !test_bit(Faulty, &rdev->flags)) {
4658                                 if (raid10_add_disk(mddev, rdev) == 0) {
4659                                         if (rdev->raid_disk >=
4660                                             conf->prev.raid_disks)
4661                                                 set_bit(In_sync, &rdev->flags);
4662                                         else
4663                                                 rdev->recovery_offset = 0;
4664
4665                                         /* Failure here is OK */
4666                                         sysfs_link_rdev(mddev, rdev);
4667                                 }
4668                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4669                                    && !test_bit(Faulty, &rdev->flags)) {
4670                                 /* This is a spare that was manually added */
4671                                 set_bit(In_sync, &rdev->flags);
4672                         }
4673         }
4674         /* When a reshape changes the number of devices,
4675          * ->degraded is measured against the larger of the
4676          * pre and  post numbers.
4677          */
4678         spin_lock_irq(&conf->device_lock);
4679         mddev->degraded = calc_degraded(conf);
4680         spin_unlock_irq(&conf->device_lock);
4681         mddev->raid_disks = conf->geo.raid_disks;
4682         mddev->reshape_position = conf->reshape_progress;
4683         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4684
4685         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4686         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4687         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4688         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4689         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4690
4691         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4692                                                 "reshape");
4693         if (!mddev->sync_thread) {
4694                 ret = -EAGAIN;
4695                 goto abort;
4696         }
4697         conf->reshape_checkpoint = jiffies;
4698         md_wakeup_thread(mddev->sync_thread);
4699         md_new_event();
4700         return 0;
4701
4702 abort:
4703         mddev->recovery = 0;
4704         spin_lock_irq(&conf->device_lock);
4705         conf->geo = conf->prev;
4706         mddev->raid_disks = conf->geo.raid_disks;
4707         rdev_for_each(rdev, mddev)
4708                 rdev->new_data_offset = rdev->data_offset;
4709         smp_wmb();
4710         conf->reshape_progress = MaxSector;
4711         conf->reshape_safe = MaxSector;
4712         mddev->reshape_position = MaxSector;
4713         spin_unlock_irq(&conf->device_lock);
4714         return ret;
4715 }
4716
4717 /* Calculate the last device-address that could contain
4718  * any block from the chunk that includes the array-address 's'
4719  * and report the next address.
4720  * i.e. the address returned will be chunk-aligned and after
4721  * any data that is in the chunk containing 's'.
4722  */
4723 static sector_t last_dev_address(sector_t s, struct geom *geo)
4724 {
4725         s = (s | geo->chunk_mask) + 1;
4726         s >>= geo->chunk_shift;
4727         s *= geo->near_copies;
4728         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4729         s *= geo->far_copies;
4730         s <<= geo->chunk_shift;
4731         return s;
4732 }
4733
4734 /* Calculate the first device-address that could contain
4735  * any block from the chunk that includes the array-address 's'.
4736  * This too will be the start of a chunk
4737  */
4738 static sector_t first_dev_address(sector_t s, struct geom *geo)
4739 {
4740         s >>= geo->chunk_shift;
4741         s *= geo->near_copies;
4742         sector_div(s, geo->raid_disks);
4743         s *= geo->far_copies;
4744         s <<= geo->chunk_shift;
4745         return s;
4746 }
4747
4748 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4749                                 int *skipped)
4750 {
4751         /* We simply copy at most one chunk (smallest of old and new)
4752          * at a time, possibly less if that exceeds RESYNC_PAGES,
4753          * or we hit a bad block or something.
4754          * This might mean we pause for normal IO in the middle of
4755          * a chunk, but that is not a problem as mddev->reshape_position
4756          * can record any location.
4757          *
4758          * If we will want to write to a location that isn't
4759          * yet recorded as 'safe' (i.e. in metadata on disk) then
4760          * we need to flush all reshape requests and update the metadata.
4761          *
4762          * When reshaping forwards (e.g. to more devices), we interpret
4763          * 'safe' as the earliest block which might not have been copied
4764          * down yet.  We divide this by previous stripe size and multiply
4765          * by previous stripe length to get lowest device offset that we
4766          * cannot write to yet.
4767          * We interpret 'sector_nr' as an address that we want to write to.
4768          * From this we use last_device_address() to find where we might
4769          * write to, and first_device_address on the  'safe' position.
4770          * If this 'next' write position is after the 'safe' position,
4771          * we must update the metadata to increase the 'safe' position.
4772          *
4773          * When reshaping backwards, we round in the opposite direction
4774          * and perform the reverse test:  next write position must not be
4775          * less than current safe position.
4776          *
4777          * In all this the minimum difference in data offsets
4778          * (conf->offset_diff - always positive) allows a bit of slack,
4779          * so next can be after 'safe', but not by more than offset_diff
4780          *
4781          * We need to prepare all the bios here before we start any IO
4782          * to ensure the size we choose is acceptable to all devices.
4783          * The means one for each copy for write-out and an extra one for
4784          * read-in.
4785          * We store the read-in bio in ->master_bio and the others in
4786          * ->devs[x].bio and ->devs[x].repl_bio.
4787          */
4788         struct r10conf *conf = mddev->private;
4789         struct r10bio *r10_bio;
4790         sector_t next, safe, last;
4791         int max_sectors;
4792         int nr_sectors;
4793         int s;
4794         struct md_rdev *rdev;
4795         int need_flush = 0;
4796         struct bio *blist;
4797         struct bio *bio, *read_bio;
4798         int sectors_done = 0;
4799         struct page **pages;
4800
4801         if (sector_nr == 0) {
4802                 /* If restarting in the middle, skip the initial sectors */
4803                 if (mddev->reshape_backwards &&
4804                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4805                         sector_nr = (raid10_size(mddev, 0, 0)
4806                                      - conf->reshape_progress);
4807                 } else if (!mddev->reshape_backwards &&
4808                            conf->reshape_progress > 0)
4809                         sector_nr = conf->reshape_progress;
4810                 if (sector_nr) {
4811                         mddev->curr_resync_completed = sector_nr;
4812                         sysfs_notify_dirent_safe(mddev->sysfs_completed);
4813                         *skipped = 1;
4814                         return sector_nr;
4815                 }
4816         }
4817
4818         /* We don't use sector_nr to track where we are up to
4819          * as that doesn't work well for ->reshape_backwards.
4820          * So just use ->reshape_progress.
4821          */
4822         if (mddev->reshape_backwards) {
4823                 /* 'next' is the earliest device address that we might
4824                  * write to for this chunk in the new layout
4825                  */
4826                 next = first_dev_address(conf->reshape_progress - 1,
4827                                          &conf->geo);
4828
4829                 /* 'safe' is the last device address that we might read from
4830                  * in the old layout after a restart
4831                  */
4832                 safe = last_dev_address(conf->reshape_safe - 1,
4833                                         &conf->prev);
4834
4835                 if (next + conf->offset_diff < safe)
4836                         need_flush = 1;
4837
4838                 last = conf->reshape_progress - 1;
4839                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4840                                                & conf->prev.chunk_mask);
4841                 if (sector_nr + RESYNC_SECTORS < last)
4842                         sector_nr = last + 1 - RESYNC_SECTORS;
4843         } else {
4844                 /* 'next' is after the last device address that we
4845                  * might write to for this chunk in the new layout
4846                  */
4847                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4848
4849                 /* 'safe' is the earliest device address that we might
4850                  * read from in the old layout after a restart
4851                  */
4852                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4853
4854                 /* Need to update metadata if 'next' might be beyond 'safe'
4855                  * as that would possibly corrupt data
4856                  */
4857                 if (next > safe + conf->offset_diff)
4858                         need_flush = 1;
4859
4860                 sector_nr = conf->reshape_progress;
4861                 last  = sector_nr | (conf->geo.chunk_mask
4862                                      & conf->prev.chunk_mask);
4863
4864                 if (sector_nr + RESYNC_SECTORS <= last)
4865                         last = sector_nr + RESYNC_SECTORS - 1;
4866         }
4867
4868         if (need_flush ||
4869             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4870                 /* Need to update reshape_position in metadata */
4871                 wait_barrier(conf, false);
4872                 mddev->reshape_position = conf->reshape_progress;
4873                 if (mddev->reshape_backwards)
4874                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4875                                 - conf->reshape_progress;
4876                 else
4877                         mddev->curr_resync_completed = conf->reshape_progress;
4878                 conf->reshape_checkpoint = jiffies;
4879                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4880                 md_wakeup_thread(mddev->thread);
4881                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4882                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4883                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4884                         allow_barrier(conf);
4885                         return sectors_done;
4886                 }
4887                 conf->reshape_safe = mddev->reshape_position;
4888                 allow_barrier(conf);
4889         }
4890
4891         raise_barrier(conf, 0);
4892 read_more:
4893         /* Now schedule reads for blocks from sector_nr to last */
4894         r10_bio = raid10_alloc_init_r10buf(conf);
4895         r10_bio->state = 0;
4896         raise_barrier(conf, 1);
4897         atomic_set(&r10_bio->remaining, 0);
4898         r10_bio->mddev = mddev;
4899         r10_bio->sector = sector_nr;
4900         set_bit(R10BIO_IsReshape, &r10_bio->state);
4901         r10_bio->sectors = last - sector_nr + 1;
4902         rdev = read_balance(conf, r10_bio, &max_sectors);
4903         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4904
4905         if (!rdev) {
4906                 /* Cannot read from here, so need to record bad blocks
4907                  * on all the target devices.
4908                  */
4909                 // FIXME
4910                 mempool_free(r10_bio, &conf->r10buf_pool);
4911                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4912                 return sectors_done;
4913         }
4914
4915         read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4916                                     GFP_KERNEL, &mddev->bio_set);
4917         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4918                                + rdev->data_offset);
4919         read_bio->bi_private = r10_bio;
4920         read_bio->bi_end_io = end_reshape_read;
4921         r10_bio->master_bio = read_bio;
4922         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4923
4924         /*
4925          * Broadcast RESYNC message to other nodes, so all nodes would not
4926          * write to the region to avoid conflict.
4927         */
4928         if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4929                 struct mdp_superblock_1 *sb = NULL;
4930                 int sb_reshape_pos = 0;
4931
4932                 conf->cluster_sync_low = sector_nr;
4933                 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4934                 sb = page_address(rdev->sb_page);
4935                 if (sb) {
4936                         sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4937                         /*
4938                          * Set cluster_sync_low again if next address for array
4939                          * reshape is less than cluster_sync_low. Since we can't
4940                          * update cluster_sync_low until it has finished reshape.
4941                          */
4942                         if (sb_reshape_pos < conf->cluster_sync_low)
4943                                 conf->cluster_sync_low = sb_reshape_pos;
4944                 }
4945
4946                 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4947                                                           conf->cluster_sync_high);
4948         }
4949
4950         /* Now find the locations in the new layout */
4951         __raid10_find_phys(&conf->geo, r10_bio);
4952
4953         blist = read_bio;
4954         read_bio->bi_next = NULL;
4955
4956         rcu_read_lock();
4957         for (s = 0; s < conf->copies*2; s++) {
4958                 struct bio *b;
4959                 int d = r10_bio->devs[s/2].devnum;
4960                 struct md_rdev *rdev2;
4961                 if (s&1) {
4962                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4963                         b = r10_bio->devs[s/2].repl_bio;
4964                 } else {
4965                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4966                         b = r10_bio->devs[s/2].bio;
4967                 }
4968                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4969                         continue;
4970
4971                 bio_set_dev(b, rdev2->bdev);
4972                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4973                         rdev2->new_data_offset;
4974                 b->bi_end_io = end_reshape_write;
4975                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4976                 b->bi_next = blist;
4977                 blist = b;
4978         }
4979
4980         /* Now add as many pages as possible to all of these bios. */
4981
4982         nr_sectors = 0;
4983         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4984         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4985                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4986                 int len = (max_sectors - s) << 9;
4987                 if (len > PAGE_SIZE)
4988                         len = PAGE_SIZE;
4989                 for (bio = blist; bio ; bio = bio->bi_next) {
4990                         /*
4991                          * won't fail because the vec table is big enough
4992                          * to hold all these pages
4993                          */
4994                         bio_add_page(bio, page, len, 0);
4995                 }
4996                 sector_nr += len >> 9;
4997                 nr_sectors += len >> 9;
4998         }
4999         rcu_read_unlock();
5000         r10_bio->sectors = nr_sectors;
5001
5002         /* Now submit the read */
5003         md_sync_acct_bio(read_bio, r10_bio->sectors);
5004         atomic_inc(&r10_bio->remaining);
5005         read_bio->bi_next = NULL;
5006         submit_bio_noacct(read_bio);
5007         sectors_done += nr_sectors;
5008         if (sector_nr <= last)
5009                 goto read_more;
5010
5011         lower_barrier(conf);
5012
5013         /* Now that we have done the whole section we can
5014          * update reshape_progress
5015          */
5016         if (mddev->reshape_backwards)
5017                 conf->reshape_progress -= sectors_done;
5018         else
5019                 conf->reshape_progress += sectors_done;
5020
5021         return sectors_done;
5022 }
5023
5024 static void end_reshape_request(struct r10bio *r10_bio);
5025 static int handle_reshape_read_error(struct mddev *mddev,
5026                                      struct r10bio *r10_bio);
5027 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
5028 {
5029         /* Reshape read completed.  Hopefully we have a block
5030          * to write out.
5031          * If we got a read error then we do sync 1-page reads from
5032          * elsewhere until we find the data - or give up.
5033          */
5034         struct r10conf *conf = mddev->private;
5035         int s;
5036
5037         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
5038                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
5039                         /* Reshape has been aborted */
5040                         md_done_sync(mddev, r10_bio->sectors, 0);
5041                         return;
5042                 }
5043
5044         /* We definitely have the data in the pages, schedule the
5045          * writes.
5046          */
5047         atomic_set(&r10_bio->remaining, 1);
5048         for (s = 0; s < conf->copies*2; s++) {
5049                 struct bio *b;
5050                 int d = r10_bio->devs[s/2].devnum;
5051                 struct md_rdev *rdev;
5052                 rcu_read_lock();
5053                 if (s&1) {
5054                         rdev = rcu_dereference(conf->mirrors[d].replacement);
5055                         b = r10_bio->devs[s/2].repl_bio;
5056                 } else {
5057                         rdev = rcu_dereference(conf->mirrors[d].rdev);
5058                         b = r10_bio->devs[s/2].bio;
5059                 }
5060                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
5061                         rcu_read_unlock();
5062                         continue;
5063                 }
5064                 atomic_inc(&rdev->nr_pending);
5065                 rcu_read_unlock();
5066                 md_sync_acct_bio(b, r10_bio->sectors);
5067                 atomic_inc(&r10_bio->remaining);
5068                 b->bi_next = NULL;
5069                 submit_bio_noacct(b);
5070         }
5071         end_reshape_request(r10_bio);
5072 }
5073
5074 static void end_reshape(struct r10conf *conf)
5075 {
5076         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5077                 return;
5078
5079         spin_lock_irq(&conf->device_lock);
5080         conf->prev = conf->geo;
5081         md_finish_reshape(conf->mddev);
5082         smp_wmb();
5083         conf->reshape_progress = MaxSector;
5084         conf->reshape_safe = MaxSector;
5085         spin_unlock_irq(&conf->device_lock);
5086
5087         if (conf->mddev->queue)
5088                 raid10_set_io_opt(conf);
5089         conf->fullsync = 0;
5090 }
5091
5092 static void raid10_update_reshape_pos(struct mddev *mddev)
5093 {
5094         struct r10conf *conf = mddev->private;
5095         sector_t lo, hi;
5096
5097         md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5098         if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5099             || mddev->reshape_position == MaxSector)
5100                 conf->reshape_progress = mddev->reshape_position;
5101         else
5102                 WARN_ON_ONCE(1);
5103 }
5104
5105 static int handle_reshape_read_error(struct mddev *mddev,
5106                                      struct r10bio *r10_bio)
5107 {
5108         /* Use sync reads to get the blocks from somewhere else */
5109         int sectors = r10_bio->sectors;
5110         struct r10conf *conf = mddev->private;
5111         struct r10bio *r10b;
5112         int slot = 0;
5113         int idx = 0;
5114         struct page **pages;
5115
5116         r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5117         if (!r10b) {
5118                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5119                 return -ENOMEM;
5120         }
5121
5122         /* reshape IOs share pages from .devs[0].bio */
5123         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5124
5125         r10b->sector = r10_bio->sector;
5126         __raid10_find_phys(&conf->prev, r10b);
5127
5128         while (sectors) {
5129                 int s = sectors;
5130                 int success = 0;
5131                 int first_slot = slot;
5132
5133                 if (s > (PAGE_SIZE >> 9))
5134                         s = PAGE_SIZE >> 9;
5135
5136                 rcu_read_lock();
5137                 while (!success) {
5138                         int d = r10b->devs[slot].devnum;
5139                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5140                         sector_t addr;
5141                         if (rdev == NULL ||
5142                             test_bit(Faulty, &rdev->flags) ||
5143                             !test_bit(In_sync, &rdev->flags))
5144                                 goto failed;
5145
5146                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5147                         atomic_inc(&rdev->nr_pending);
5148                         rcu_read_unlock();
5149                         success = sync_page_io(rdev,
5150                                                addr,
5151                                                s << 9,
5152                                                pages[idx],
5153                                                REQ_OP_READ, false);
5154                         rdev_dec_pending(rdev, mddev);
5155                         rcu_read_lock();
5156                         if (success)
5157                                 break;
5158                 failed:
5159                         slot++;
5160                         if (slot >= conf->copies)
5161                                 slot = 0;
5162                         if (slot == first_slot)
5163                                 break;
5164                 }
5165                 rcu_read_unlock();
5166                 if (!success) {
5167                         /* couldn't read this block, must give up */
5168                         set_bit(MD_RECOVERY_INTR,
5169                                 &mddev->recovery);
5170                         kfree(r10b);
5171                         return -EIO;
5172                 }
5173                 sectors -= s;
5174                 idx++;
5175         }
5176         kfree(r10b);
5177         return 0;
5178 }
5179
5180 static void end_reshape_write(struct bio *bio)
5181 {
5182         struct r10bio *r10_bio = get_resync_r10bio(bio);
5183         struct mddev *mddev = r10_bio->mddev;
5184         struct r10conf *conf = mddev->private;
5185         int d;
5186         int slot;
5187         int repl;
5188         struct md_rdev *rdev = NULL;
5189
5190         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5191         if (repl)
5192                 rdev = conf->mirrors[d].replacement;
5193         if (!rdev) {
5194                 smp_mb();
5195                 rdev = conf->mirrors[d].rdev;
5196         }
5197
5198         if (bio->bi_status) {
5199                 /* FIXME should record badblock */
5200                 md_error(mddev, rdev);
5201         }
5202
5203         rdev_dec_pending(rdev, mddev);
5204         end_reshape_request(r10_bio);
5205 }
5206
5207 static void end_reshape_request(struct r10bio *r10_bio)
5208 {
5209         if (!atomic_dec_and_test(&r10_bio->remaining))
5210                 return;
5211         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5212         bio_put(r10_bio->master_bio);
5213         put_buf(r10_bio);
5214 }
5215
5216 static void raid10_finish_reshape(struct mddev *mddev)
5217 {
5218         struct r10conf *conf = mddev->private;
5219
5220         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5221                 return;
5222
5223         if (mddev->delta_disks > 0) {
5224                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5225                         mddev->recovery_cp = mddev->resync_max_sectors;
5226                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5227                 }
5228                 mddev->resync_max_sectors = mddev->array_sectors;
5229         } else {
5230                 int d;
5231                 rcu_read_lock();
5232                 for (d = conf->geo.raid_disks ;
5233                      d < conf->geo.raid_disks - mddev->delta_disks;
5234                      d++) {
5235                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5236                         if (rdev)
5237                                 clear_bit(In_sync, &rdev->flags);
5238                         rdev = rcu_dereference(conf->mirrors[d].replacement);
5239                         if (rdev)
5240                                 clear_bit(In_sync, &rdev->flags);
5241                 }
5242                 rcu_read_unlock();
5243         }
5244         mddev->layout = mddev->new_layout;
5245         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5246         mddev->reshape_position = MaxSector;
5247         mddev->delta_disks = 0;
5248         mddev->reshape_backwards = 0;
5249 }
5250
5251 static struct md_personality raid10_personality =
5252 {
5253         .name           = "raid10",
5254         .level          = 10,
5255         .owner          = THIS_MODULE,
5256         .make_request   = raid10_make_request,
5257         .run            = raid10_run,
5258         .free           = raid10_free,
5259         .status         = raid10_status,
5260         .error_handler  = raid10_error,
5261         .hot_add_disk   = raid10_add_disk,
5262         .hot_remove_disk= raid10_remove_disk,
5263         .spare_active   = raid10_spare_active,
5264         .sync_request   = raid10_sync_request,
5265         .quiesce        = raid10_quiesce,
5266         .size           = raid10_size,
5267         .resize         = raid10_resize,
5268         .takeover       = raid10_takeover,
5269         .check_reshape  = raid10_check_reshape,
5270         .start_reshape  = raid10_start_reshape,
5271         .finish_reshape = raid10_finish_reshape,
5272         .update_reshape_pos = raid10_update_reshape_pos,
5273 };
5274
5275 static int __init raid_init(void)
5276 {
5277         return register_md_personality(&raid10_personality);
5278 }
5279
5280 static void raid_exit(void)
5281 {
5282         unregister_md_personality(&raid10_personality);
5283 }
5284
5285 module_init(raid_init);
5286 module_exit(raid_exit);
5287 MODULE_LICENSE("GPL");
5288 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5289 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5290 MODULE_ALIAS("md-raid10");
5291 MODULE_ALIAS("md-level-10");