Merge tag 'timers-v5.4-rc6' of https://git.linaro.org/people/daniel.lezcano/linux...
[platform/kernel/linux-rpi.git] / drivers / md / raid10.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72                                 int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76
77 #define raid10_log(md, fmt, args...)                            \
78         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80 #include "raid1-10.c"
81
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88         return get_resync_pages(bio)->raid_bio;
89 }
90
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93         struct r10conf *conf = data;
94         int size = offsetof(struct r10bio, devs[conf->copies]);
95
96         /* allocate a r10bio with room for raid_disks entries in the
97          * bios array */
98         return kzalloc(size, gfp_flags);
99 }
100
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118         struct r10conf *conf = data;
119         struct r10bio *r10_bio;
120         struct bio *bio;
121         int j;
122         int nalloc, nalloc_rp;
123         struct resync_pages *rps;
124
125         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126         if (!r10_bio)
127                 return NULL;
128
129         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131                 nalloc = conf->copies; /* resync */
132         else
133                 nalloc = 2; /* recovery */
134
135         /* allocate once for all bios */
136         if (!conf->have_replacement)
137                 nalloc_rp = nalloc;
138         else
139                 nalloc_rp = nalloc * 2;
140         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141         if (!rps)
142                 goto out_free_r10bio;
143
144         /*
145          * Allocate bios.
146          */
147         for (j = nalloc ; j-- ; ) {
148                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149                 if (!bio)
150                         goto out_free_bio;
151                 r10_bio->devs[j].bio = bio;
152                 if (!conf->have_replacement)
153                         continue;
154                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155                 if (!bio)
156                         goto out_free_bio;
157                 r10_bio->devs[j].repl_bio = bio;
158         }
159         /*
160          * Allocate RESYNC_PAGES data pages and attach them
161          * where needed.
162          */
163         for (j = 0; j < nalloc; j++) {
164                 struct bio *rbio = r10_bio->devs[j].repl_bio;
165                 struct resync_pages *rp, *rp_repl;
166
167                 rp = &rps[j];
168                 if (rbio)
169                         rp_repl = &rps[nalloc + j];
170
171                 bio = r10_bio->devs[j].bio;
172
173                 if (!j || test_bit(MD_RECOVERY_SYNC,
174                                    &conf->mddev->recovery)) {
175                         if (resync_alloc_pages(rp, gfp_flags))
176                                 goto out_free_pages;
177                 } else {
178                         memcpy(rp, &rps[0], sizeof(*rp));
179                         resync_get_all_pages(rp);
180                 }
181
182                 rp->raid_bio = r10_bio;
183                 bio->bi_private = rp;
184                 if (rbio) {
185                         memcpy(rp_repl, rp, sizeof(*rp));
186                         rbio->bi_private = rp_repl;
187                 }
188         }
189
190         return r10_bio;
191
192 out_free_pages:
193         while (--j >= 0)
194                 resync_free_pages(&rps[j * 2]);
195
196         j = 0;
197 out_free_bio:
198         for ( ; j < nalloc; j++) {
199                 if (r10_bio->devs[j].bio)
200                         bio_put(r10_bio->devs[j].bio);
201                 if (r10_bio->devs[j].repl_bio)
202                         bio_put(r10_bio->devs[j].repl_bio);
203         }
204         kfree(rps);
205 out_free_r10bio:
206         rbio_pool_free(r10_bio, conf);
207         return NULL;
208 }
209
210 static void r10buf_pool_free(void *__r10_bio, void *data)
211 {
212         struct r10conf *conf = data;
213         struct r10bio *r10bio = __r10_bio;
214         int j;
215         struct resync_pages *rp = NULL;
216
217         for (j = conf->copies; j--; ) {
218                 struct bio *bio = r10bio->devs[j].bio;
219
220                 if (bio) {
221                         rp = get_resync_pages(bio);
222                         resync_free_pages(rp);
223                         bio_put(bio);
224                 }
225
226                 bio = r10bio->devs[j].repl_bio;
227                 if (bio)
228                         bio_put(bio);
229         }
230
231         /* resync pages array stored in the 1st bio's .bi_private */
232         kfree(rp);
233
234         rbio_pool_free(r10bio, conf);
235 }
236
237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238 {
239         int i;
240
241         for (i = 0; i < conf->copies; i++) {
242                 struct bio **bio = & r10_bio->devs[i].bio;
243                 if (!BIO_SPECIAL(*bio))
244                         bio_put(*bio);
245                 *bio = NULL;
246                 bio = &r10_bio->devs[i].repl_bio;
247                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248                         bio_put(*bio);
249                 *bio = NULL;
250         }
251 }
252
253 static void free_r10bio(struct r10bio *r10_bio)
254 {
255         struct r10conf *conf = r10_bio->mddev->private;
256
257         put_all_bios(conf, r10_bio);
258         mempool_free(r10_bio, &conf->r10bio_pool);
259 }
260
261 static void put_buf(struct r10bio *r10_bio)
262 {
263         struct r10conf *conf = r10_bio->mddev->private;
264
265         mempool_free(r10_bio, &conf->r10buf_pool);
266
267         lower_barrier(conf);
268 }
269
270 static void reschedule_retry(struct r10bio *r10_bio)
271 {
272         unsigned long flags;
273         struct mddev *mddev = r10_bio->mddev;
274         struct r10conf *conf = mddev->private;
275
276         spin_lock_irqsave(&conf->device_lock, flags);
277         list_add(&r10_bio->retry_list, &conf->retry_list);
278         conf->nr_queued ++;
279         spin_unlock_irqrestore(&conf->device_lock, flags);
280
281         /* wake up frozen array... */
282         wake_up(&conf->wait_barrier);
283
284         md_wakeup_thread(mddev->thread);
285 }
286
287 /*
288  * raid_end_bio_io() is called when we have finished servicing a mirrored
289  * operation and are ready to return a success/failure code to the buffer
290  * cache layer.
291  */
292 static void raid_end_bio_io(struct r10bio *r10_bio)
293 {
294         struct bio *bio = r10_bio->master_bio;
295         struct r10conf *conf = r10_bio->mddev->private;
296
297         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298                 bio->bi_status = BLK_STS_IOERR;
299
300         bio_endio(bio);
301         /*
302          * Wake up any possible resync thread that waits for the device
303          * to go idle.
304          */
305         allow_barrier(conf);
306
307         free_r10bio(r10_bio);
308 }
309
310 /*
311  * Update disk head position estimator based on IRQ completion info.
312  */
313 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
314 {
315         struct r10conf *conf = r10_bio->mddev->private;
316
317         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
318                 r10_bio->devs[slot].addr + (r10_bio->sectors);
319 }
320
321 /*
322  * Find the disk number which triggered given bio
323  */
324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
325                          struct bio *bio, int *slotp, int *replp)
326 {
327         int slot;
328         int repl = 0;
329
330         for (slot = 0; slot < conf->copies; slot++) {
331                 if (r10_bio->devs[slot].bio == bio)
332                         break;
333                 if (r10_bio->devs[slot].repl_bio == bio) {
334                         repl = 1;
335                         break;
336                 }
337         }
338
339         BUG_ON(slot == conf->copies);
340         update_head_pos(slot, r10_bio);
341
342         if (slotp)
343                 *slotp = slot;
344         if (replp)
345                 *replp = repl;
346         return r10_bio->devs[slot].devnum;
347 }
348
349 static void raid10_end_read_request(struct bio *bio)
350 {
351         int uptodate = !bio->bi_status;
352         struct r10bio *r10_bio = bio->bi_private;
353         int slot;
354         struct md_rdev *rdev;
355         struct r10conf *conf = r10_bio->mddev->private;
356
357         slot = r10_bio->read_slot;
358         rdev = r10_bio->devs[slot].rdev;
359         /*
360          * this branch is our 'one mirror IO has finished' event handler:
361          */
362         update_head_pos(slot, r10_bio);
363
364         if (uptodate) {
365                 /*
366                  * Set R10BIO_Uptodate in our master bio, so that
367                  * we will return a good error code to the higher
368                  * levels even if IO on some other mirrored buffer fails.
369                  *
370                  * The 'master' represents the composite IO operation to
371                  * user-side. So if something waits for IO, then it will
372                  * wait for the 'master' bio.
373                  */
374                 set_bit(R10BIO_Uptodate, &r10_bio->state);
375         } else {
376                 /* If all other devices that store this block have
377                  * failed, we want to return the error upwards rather
378                  * than fail the last device.  Here we redefine
379                  * "uptodate" to mean "Don't want to retry"
380                  */
381                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
382                              rdev->raid_disk))
383                         uptodate = 1;
384         }
385         if (uptodate) {
386                 raid_end_bio_io(r10_bio);
387                 rdev_dec_pending(rdev, conf->mddev);
388         } else {
389                 /*
390                  * oops, read error - keep the refcount on the rdev
391                  */
392                 char b[BDEVNAME_SIZE];
393                 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
394                                    mdname(conf->mddev),
395                                    bdevname(rdev->bdev, b),
396                                    (unsigned long long)r10_bio->sector);
397                 set_bit(R10BIO_ReadError, &r10_bio->state);
398                 reschedule_retry(r10_bio);
399         }
400 }
401
402 static void close_write(struct r10bio *r10_bio)
403 {
404         /* clear the bitmap if all writes complete successfully */
405         md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
406                            r10_bio->sectors,
407                            !test_bit(R10BIO_Degraded, &r10_bio->state),
408                            0);
409         md_write_end(r10_bio->mddev);
410 }
411
412 static void one_write_done(struct r10bio *r10_bio)
413 {
414         if (atomic_dec_and_test(&r10_bio->remaining)) {
415                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
416                         reschedule_retry(r10_bio);
417                 else {
418                         close_write(r10_bio);
419                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
420                                 reschedule_retry(r10_bio);
421                         else
422                                 raid_end_bio_io(r10_bio);
423                 }
424         }
425 }
426
427 static void raid10_end_write_request(struct bio *bio)
428 {
429         struct r10bio *r10_bio = bio->bi_private;
430         int dev;
431         int dec_rdev = 1;
432         struct r10conf *conf = r10_bio->mddev->private;
433         int slot, repl;
434         struct md_rdev *rdev = NULL;
435         struct bio *to_put = NULL;
436         bool discard_error;
437
438         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
439
440         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
441
442         if (repl)
443                 rdev = conf->mirrors[dev].replacement;
444         if (!rdev) {
445                 smp_rmb();
446                 repl = 0;
447                 rdev = conf->mirrors[dev].rdev;
448         }
449         /*
450          * this branch is our 'one mirror IO has finished' event handler:
451          */
452         if (bio->bi_status && !discard_error) {
453                 if (repl)
454                         /* Never record new bad blocks to replacement,
455                          * just fail it.
456                          */
457                         md_error(rdev->mddev, rdev);
458                 else {
459                         set_bit(WriteErrorSeen, &rdev->flags);
460                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
461                                 set_bit(MD_RECOVERY_NEEDED,
462                                         &rdev->mddev->recovery);
463
464                         dec_rdev = 0;
465                         if (test_bit(FailFast, &rdev->flags) &&
466                             (bio->bi_opf & MD_FAILFAST)) {
467                                 md_error(rdev->mddev, rdev);
468                         }
469
470                         /*
471                          * When the device is faulty, it is not necessary to
472                          * handle write error.
473                          * For failfast, this is the only remaining device,
474                          * We need to retry the write without FailFast.
475                          */
476                         if (!test_bit(Faulty, &rdev->flags))
477                                 set_bit(R10BIO_WriteError, &r10_bio->state);
478                         else {
479                                 r10_bio->devs[slot].bio = NULL;
480                                 to_put = bio;
481                                 dec_rdev = 1;
482                         }
483                 }
484         } else {
485                 /*
486                  * Set R10BIO_Uptodate in our master bio, so that
487                  * we will return a good error code for to the higher
488                  * levels even if IO on some other mirrored buffer fails.
489                  *
490                  * The 'master' represents the composite IO operation to
491                  * user-side. So if something waits for IO, then it will
492                  * wait for the 'master' bio.
493                  */
494                 sector_t first_bad;
495                 int bad_sectors;
496
497                 /*
498                  * Do not set R10BIO_Uptodate if the current device is
499                  * rebuilding or Faulty. This is because we cannot use
500                  * such device for properly reading the data back (we could
501                  * potentially use it, if the current write would have felt
502                  * before rdev->recovery_offset, but for simplicity we don't
503                  * check this here.
504                  */
505                 if (test_bit(In_sync, &rdev->flags) &&
506                     !test_bit(Faulty, &rdev->flags))
507                         set_bit(R10BIO_Uptodate, &r10_bio->state);
508
509                 /* Maybe we can clear some bad blocks. */
510                 if (is_badblock(rdev,
511                                 r10_bio->devs[slot].addr,
512                                 r10_bio->sectors,
513                                 &first_bad, &bad_sectors) && !discard_error) {
514                         bio_put(bio);
515                         if (repl)
516                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
517                         else
518                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
519                         dec_rdev = 0;
520                         set_bit(R10BIO_MadeGood, &r10_bio->state);
521                 }
522         }
523
524         /*
525          *
526          * Let's see if all mirrored write operations have finished
527          * already.
528          */
529         one_write_done(r10_bio);
530         if (dec_rdev)
531                 rdev_dec_pending(rdev, conf->mddev);
532         if (to_put)
533                 bio_put(to_put);
534 }
535
536 /*
537  * RAID10 layout manager
538  * As well as the chunksize and raid_disks count, there are two
539  * parameters: near_copies and far_copies.
540  * near_copies * far_copies must be <= raid_disks.
541  * Normally one of these will be 1.
542  * If both are 1, we get raid0.
543  * If near_copies == raid_disks, we get raid1.
544  *
545  * Chunks are laid out in raid0 style with near_copies copies of the
546  * first chunk, followed by near_copies copies of the next chunk and
547  * so on.
548  * If far_copies > 1, then after 1/far_copies of the array has been assigned
549  * as described above, we start again with a device offset of near_copies.
550  * So we effectively have another copy of the whole array further down all
551  * the drives, but with blocks on different drives.
552  * With this layout, and block is never stored twice on the one device.
553  *
554  * raid10_find_phys finds the sector offset of a given virtual sector
555  * on each device that it is on.
556  *
557  * raid10_find_virt does the reverse mapping, from a device and a
558  * sector offset to a virtual address
559  */
560
561 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
562 {
563         int n,f;
564         sector_t sector;
565         sector_t chunk;
566         sector_t stripe;
567         int dev;
568         int slot = 0;
569         int last_far_set_start, last_far_set_size;
570
571         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
572         last_far_set_start *= geo->far_set_size;
573
574         last_far_set_size = geo->far_set_size;
575         last_far_set_size += (geo->raid_disks % geo->far_set_size);
576
577         /* now calculate first sector/dev */
578         chunk = r10bio->sector >> geo->chunk_shift;
579         sector = r10bio->sector & geo->chunk_mask;
580
581         chunk *= geo->near_copies;
582         stripe = chunk;
583         dev = sector_div(stripe, geo->raid_disks);
584         if (geo->far_offset)
585                 stripe *= geo->far_copies;
586
587         sector += stripe << geo->chunk_shift;
588
589         /* and calculate all the others */
590         for (n = 0; n < geo->near_copies; n++) {
591                 int d = dev;
592                 int set;
593                 sector_t s = sector;
594                 r10bio->devs[slot].devnum = d;
595                 r10bio->devs[slot].addr = s;
596                 slot++;
597
598                 for (f = 1; f < geo->far_copies; f++) {
599                         set = d / geo->far_set_size;
600                         d += geo->near_copies;
601
602                         if ((geo->raid_disks % geo->far_set_size) &&
603                             (d > last_far_set_start)) {
604                                 d -= last_far_set_start;
605                                 d %= last_far_set_size;
606                                 d += last_far_set_start;
607                         } else {
608                                 d %= geo->far_set_size;
609                                 d += geo->far_set_size * set;
610                         }
611                         s += geo->stride;
612                         r10bio->devs[slot].devnum = d;
613                         r10bio->devs[slot].addr = s;
614                         slot++;
615                 }
616                 dev++;
617                 if (dev >= geo->raid_disks) {
618                         dev = 0;
619                         sector += (geo->chunk_mask + 1);
620                 }
621         }
622 }
623
624 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
625 {
626         struct geom *geo = &conf->geo;
627
628         if (conf->reshape_progress != MaxSector &&
629             ((r10bio->sector >= conf->reshape_progress) !=
630              conf->mddev->reshape_backwards)) {
631                 set_bit(R10BIO_Previous, &r10bio->state);
632                 geo = &conf->prev;
633         } else
634                 clear_bit(R10BIO_Previous, &r10bio->state);
635
636         __raid10_find_phys(geo, r10bio);
637 }
638
639 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
640 {
641         sector_t offset, chunk, vchunk;
642         /* Never use conf->prev as this is only called during resync
643          * or recovery, so reshape isn't happening
644          */
645         struct geom *geo = &conf->geo;
646         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
647         int far_set_size = geo->far_set_size;
648         int last_far_set_start;
649
650         if (geo->raid_disks % geo->far_set_size) {
651                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
652                 last_far_set_start *= geo->far_set_size;
653
654                 if (dev >= last_far_set_start) {
655                         far_set_size = geo->far_set_size;
656                         far_set_size += (geo->raid_disks % geo->far_set_size);
657                         far_set_start = last_far_set_start;
658                 }
659         }
660
661         offset = sector & geo->chunk_mask;
662         if (geo->far_offset) {
663                 int fc;
664                 chunk = sector >> geo->chunk_shift;
665                 fc = sector_div(chunk, geo->far_copies);
666                 dev -= fc * geo->near_copies;
667                 if (dev < far_set_start)
668                         dev += far_set_size;
669         } else {
670                 while (sector >= geo->stride) {
671                         sector -= geo->stride;
672                         if (dev < (geo->near_copies + far_set_start))
673                                 dev += far_set_size - geo->near_copies;
674                         else
675                                 dev -= geo->near_copies;
676                 }
677                 chunk = sector >> geo->chunk_shift;
678         }
679         vchunk = chunk * geo->raid_disks + dev;
680         sector_div(vchunk, geo->near_copies);
681         return (vchunk << geo->chunk_shift) + offset;
682 }
683
684 /*
685  * This routine returns the disk from which the requested read should
686  * be done. There is a per-array 'next expected sequential IO' sector
687  * number - if this matches on the next IO then we use the last disk.
688  * There is also a per-disk 'last know head position' sector that is
689  * maintained from IRQ contexts, both the normal and the resync IO
690  * completion handlers update this position correctly. If there is no
691  * perfect sequential match then we pick the disk whose head is closest.
692  *
693  * If there are 2 mirrors in the same 2 devices, performance degrades
694  * because position is mirror, not device based.
695  *
696  * The rdev for the device selected will have nr_pending incremented.
697  */
698
699 /*
700  * FIXME: possibly should rethink readbalancing and do it differently
701  * depending on near_copies / far_copies geometry.
702  */
703 static struct md_rdev *read_balance(struct r10conf *conf,
704                                     struct r10bio *r10_bio,
705                                     int *max_sectors)
706 {
707         const sector_t this_sector = r10_bio->sector;
708         int disk, slot;
709         int sectors = r10_bio->sectors;
710         int best_good_sectors;
711         sector_t new_distance, best_dist;
712         struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
713         int do_balance;
714         int best_dist_slot, best_pending_slot;
715         bool has_nonrot_disk = false;
716         unsigned int min_pending;
717         struct geom *geo = &conf->geo;
718
719         raid10_find_phys(conf, r10_bio);
720         rcu_read_lock();
721         best_dist_slot = -1;
722         min_pending = UINT_MAX;
723         best_dist_rdev = NULL;
724         best_pending_rdev = NULL;
725         best_dist = MaxSector;
726         best_good_sectors = 0;
727         do_balance = 1;
728         clear_bit(R10BIO_FailFast, &r10_bio->state);
729         /*
730          * Check if we can balance. We can balance on the whole
731          * device if no resync is going on (recovery is ok), or below
732          * the resync window. We take the first readable disk when
733          * above the resync window.
734          */
735         if ((conf->mddev->recovery_cp < MaxSector
736              && (this_sector + sectors >= conf->next_resync)) ||
737             (mddev_is_clustered(conf->mddev) &&
738              md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
739                                             this_sector + sectors)))
740                 do_balance = 0;
741
742         for (slot = 0; slot < conf->copies ; slot++) {
743                 sector_t first_bad;
744                 int bad_sectors;
745                 sector_t dev_sector;
746                 unsigned int pending;
747                 bool nonrot;
748
749                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
750                         continue;
751                 disk = r10_bio->devs[slot].devnum;
752                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
753                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
754                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
755                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
756                 if (rdev == NULL ||
757                     test_bit(Faulty, &rdev->flags))
758                         continue;
759                 if (!test_bit(In_sync, &rdev->flags) &&
760                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
761                         continue;
762
763                 dev_sector = r10_bio->devs[slot].addr;
764                 if (is_badblock(rdev, dev_sector, sectors,
765                                 &first_bad, &bad_sectors)) {
766                         if (best_dist < MaxSector)
767                                 /* Already have a better slot */
768                                 continue;
769                         if (first_bad <= dev_sector) {
770                                 /* Cannot read here.  If this is the
771                                  * 'primary' device, then we must not read
772                                  * beyond 'bad_sectors' from another device.
773                                  */
774                                 bad_sectors -= (dev_sector - first_bad);
775                                 if (!do_balance && sectors > bad_sectors)
776                                         sectors = bad_sectors;
777                                 if (best_good_sectors > sectors)
778                                         best_good_sectors = sectors;
779                         } else {
780                                 sector_t good_sectors =
781                                         first_bad - dev_sector;
782                                 if (good_sectors > best_good_sectors) {
783                                         best_good_sectors = good_sectors;
784                                         best_dist_slot = slot;
785                                         best_dist_rdev = rdev;
786                                 }
787                                 if (!do_balance)
788                                         /* Must read from here */
789                                         break;
790                         }
791                         continue;
792                 } else
793                         best_good_sectors = sectors;
794
795                 if (!do_balance)
796                         break;
797
798                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
799                 has_nonrot_disk |= nonrot;
800                 pending = atomic_read(&rdev->nr_pending);
801                 if (min_pending > pending && nonrot) {
802                         min_pending = pending;
803                         best_pending_slot = slot;
804                         best_pending_rdev = rdev;
805                 }
806
807                 if (best_dist_slot >= 0)
808                         /* At least 2 disks to choose from so failfast is OK */
809                         set_bit(R10BIO_FailFast, &r10_bio->state);
810                 /* This optimisation is debatable, and completely destroys
811                  * sequential read speed for 'far copies' arrays.  So only
812                  * keep it for 'near' arrays, and review those later.
813                  */
814                 if (geo->near_copies > 1 && !pending)
815                         new_distance = 0;
816
817                 /* for far > 1 always use the lowest address */
818                 else if (geo->far_copies > 1)
819                         new_distance = r10_bio->devs[slot].addr;
820                 else
821                         new_distance = abs(r10_bio->devs[slot].addr -
822                                            conf->mirrors[disk].head_position);
823
824                 if (new_distance < best_dist) {
825                         best_dist = new_distance;
826                         best_dist_slot = slot;
827                         best_dist_rdev = rdev;
828                 }
829         }
830         if (slot >= conf->copies) {
831                 if (has_nonrot_disk) {
832                         slot = best_pending_slot;
833                         rdev = best_pending_rdev;
834                 } else {
835                         slot = best_dist_slot;
836                         rdev = best_dist_rdev;
837                 }
838         }
839
840         if (slot >= 0) {
841                 atomic_inc(&rdev->nr_pending);
842                 r10_bio->read_slot = slot;
843         } else
844                 rdev = NULL;
845         rcu_read_unlock();
846         *max_sectors = best_good_sectors;
847
848         return rdev;
849 }
850
851 static int raid10_congested(struct mddev *mddev, int bits)
852 {
853         struct r10conf *conf = mddev->private;
854         int i, ret = 0;
855
856         if ((bits & (1 << WB_async_congested)) &&
857             conf->pending_count >= max_queued_requests)
858                 return 1;
859
860         rcu_read_lock();
861         for (i = 0;
862              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
863                      && ret == 0;
864              i++) {
865                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
866                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
867                         struct request_queue *q = bdev_get_queue(rdev->bdev);
868
869                         ret |= bdi_congested(q->backing_dev_info, bits);
870                 }
871         }
872         rcu_read_unlock();
873         return ret;
874 }
875
876 static void flush_pending_writes(struct r10conf *conf)
877 {
878         /* Any writes that have been queued but are awaiting
879          * bitmap updates get flushed here.
880          */
881         spin_lock_irq(&conf->device_lock);
882
883         if (conf->pending_bio_list.head) {
884                 struct blk_plug plug;
885                 struct bio *bio;
886
887                 bio = bio_list_get(&conf->pending_bio_list);
888                 conf->pending_count = 0;
889                 spin_unlock_irq(&conf->device_lock);
890
891                 /*
892                  * As this is called in a wait_event() loop (see freeze_array),
893                  * current->state might be TASK_UNINTERRUPTIBLE which will
894                  * cause a warning when we prepare to wait again.  As it is
895                  * rare that this path is taken, it is perfectly safe to force
896                  * us to go around the wait_event() loop again, so the warning
897                  * is a false-positive. Silence the warning by resetting
898                  * thread state
899                  */
900                 __set_current_state(TASK_RUNNING);
901
902                 blk_start_plug(&plug);
903                 /* flush any pending bitmap writes to disk
904                  * before proceeding w/ I/O */
905                 md_bitmap_unplug(conf->mddev->bitmap);
906                 wake_up(&conf->wait_barrier);
907
908                 while (bio) { /* submit pending writes */
909                         struct bio *next = bio->bi_next;
910                         struct md_rdev *rdev = (void*)bio->bi_disk;
911                         bio->bi_next = NULL;
912                         bio_set_dev(bio, rdev->bdev);
913                         if (test_bit(Faulty, &rdev->flags)) {
914                                 bio_io_error(bio);
915                         } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
916                                             !blk_queue_discard(bio->bi_disk->queue)))
917                                 /* Just ignore it */
918                                 bio_endio(bio);
919                         else
920                                 generic_make_request(bio);
921                         bio = next;
922                 }
923                 blk_finish_plug(&plug);
924         } else
925                 spin_unlock_irq(&conf->device_lock);
926 }
927
928 /* Barriers....
929  * Sometimes we need to suspend IO while we do something else,
930  * either some resync/recovery, or reconfigure the array.
931  * To do this we raise a 'barrier'.
932  * The 'barrier' is a counter that can be raised multiple times
933  * to count how many activities are happening which preclude
934  * normal IO.
935  * We can only raise the barrier if there is no pending IO.
936  * i.e. if nr_pending == 0.
937  * We choose only to raise the barrier if no-one is waiting for the
938  * barrier to go down.  This means that as soon as an IO request
939  * is ready, no other operations which require a barrier will start
940  * until the IO request has had a chance.
941  *
942  * So: regular IO calls 'wait_barrier'.  When that returns there
943  *    is no backgroup IO happening,  It must arrange to call
944  *    allow_barrier when it has finished its IO.
945  * backgroup IO calls must call raise_barrier.  Once that returns
946  *    there is no normal IO happeing.  It must arrange to call
947  *    lower_barrier when the particular background IO completes.
948  */
949
950 static void raise_barrier(struct r10conf *conf, int force)
951 {
952         BUG_ON(force && !conf->barrier);
953         spin_lock_irq(&conf->resync_lock);
954
955         /* Wait until no block IO is waiting (unless 'force') */
956         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
957                             conf->resync_lock);
958
959         /* block any new IO from starting */
960         conf->barrier++;
961
962         /* Now wait for all pending IO to complete */
963         wait_event_lock_irq(conf->wait_barrier,
964                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
965                             conf->resync_lock);
966
967         spin_unlock_irq(&conf->resync_lock);
968 }
969
970 static void lower_barrier(struct r10conf *conf)
971 {
972         unsigned long flags;
973         spin_lock_irqsave(&conf->resync_lock, flags);
974         conf->barrier--;
975         spin_unlock_irqrestore(&conf->resync_lock, flags);
976         wake_up(&conf->wait_barrier);
977 }
978
979 static void wait_barrier(struct r10conf *conf)
980 {
981         spin_lock_irq(&conf->resync_lock);
982         if (conf->barrier) {
983                 conf->nr_waiting++;
984                 /* Wait for the barrier to drop.
985                  * However if there are already pending
986                  * requests (preventing the barrier from
987                  * rising completely), and the
988                  * pre-process bio queue isn't empty,
989                  * then don't wait, as we need to empty
990                  * that queue to get the nr_pending
991                  * count down.
992                  */
993                 raid10_log(conf->mddev, "wait barrier");
994                 wait_event_lock_irq(conf->wait_barrier,
995                                     !conf->barrier ||
996                                     (atomic_read(&conf->nr_pending) &&
997                                      current->bio_list &&
998                                      (!bio_list_empty(&current->bio_list[0]) ||
999                                       !bio_list_empty(&current->bio_list[1]))),
1000                                     conf->resync_lock);
1001                 conf->nr_waiting--;
1002                 if (!conf->nr_waiting)
1003                         wake_up(&conf->wait_barrier);
1004         }
1005         atomic_inc(&conf->nr_pending);
1006         spin_unlock_irq(&conf->resync_lock);
1007 }
1008
1009 static void allow_barrier(struct r10conf *conf)
1010 {
1011         if ((atomic_dec_and_test(&conf->nr_pending)) ||
1012                         (conf->array_freeze_pending))
1013                 wake_up(&conf->wait_barrier);
1014 }
1015
1016 static void freeze_array(struct r10conf *conf, int extra)
1017 {
1018         /* stop syncio and normal IO and wait for everything to
1019          * go quiet.
1020          * We increment barrier and nr_waiting, and then
1021          * wait until nr_pending match nr_queued+extra
1022          * This is called in the context of one normal IO request
1023          * that has failed. Thus any sync request that might be pending
1024          * will be blocked by nr_pending, and we need to wait for
1025          * pending IO requests to complete or be queued for re-try.
1026          * Thus the number queued (nr_queued) plus this request (extra)
1027          * must match the number of pending IOs (nr_pending) before
1028          * we continue.
1029          */
1030         spin_lock_irq(&conf->resync_lock);
1031         conf->array_freeze_pending++;
1032         conf->barrier++;
1033         conf->nr_waiting++;
1034         wait_event_lock_irq_cmd(conf->wait_barrier,
1035                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1036                                 conf->resync_lock,
1037                                 flush_pending_writes(conf));
1038
1039         conf->array_freeze_pending--;
1040         spin_unlock_irq(&conf->resync_lock);
1041 }
1042
1043 static void unfreeze_array(struct r10conf *conf)
1044 {
1045         /* reverse the effect of the freeze */
1046         spin_lock_irq(&conf->resync_lock);
1047         conf->barrier--;
1048         conf->nr_waiting--;
1049         wake_up(&conf->wait_barrier);
1050         spin_unlock_irq(&conf->resync_lock);
1051 }
1052
1053 static sector_t choose_data_offset(struct r10bio *r10_bio,
1054                                    struct md_rdev *rdev)
1055 {
1056         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1057             test_bit(R10BIO_Previous, &r10_bio->state))
1058                 return rdev->data_offset;
1059         else
1060                 return rdev->new_data_offset;
1061 }
1062
1063 struct raid10_plug_cb {
1064         struct blk_plug_cb      cb;
1065         struct bio_list         pending;
1066         int                     pending_cnt;
1067 };
1068
1069 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1070 {
1071         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1072                                                    cb);
1073         struct mddev *mddev = plug->cb.data;
1074         struct r10conf *conf = mddev->private;
1075         struct bio *bio;
1076
1077         if (from_schedule || current->bio_list) {
1078                 spin_lock_irq(&conf->device_lock);
1079                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1080                 conf->pending_count += plug->pending_cnt;
1081                 spin_unlock_irq(&conf->device_lock);
1082                 wake_up(&conf->wait_barrier);
1083                 md_wakeup_thread(mddev->thread);
1084                 kfree(plug);
1085                 return;
1086         }
1087
1088         /* we aren't scheduling, so we can do the write-out directly. */
1089         bio = bio_list_get(&plug->pending);
1090         md_bitmap_unplug(mddev->bitmap);
1091         wake_up(&conf->wait_barrier);
1092
1093         while (bio) { /* submit pending writes */
1094                 struct bio *next = bio->bi_next;
1095                 struct md_rdev *rdev = (void*)bio->bi_disk;
1096                 bio->bi_next = NULL;
1097                 bio_set_dev(bio, rdev->bdev);
1098                 if (test_bit(Faulty, &rdev->flags)) {
1099                         bio_io_error(bio);
1100                 } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1101                                     !blk_queue_discard(bio->bi_disk->queue)))
1102                         /* Just ignore it */
1103                         bio_endio(bio);
1104                 else
1105                         generic_make_request(bio);
1106                 bio = next;
1107         }
1108         kfree(plug);
1109 }
1110
1111 /*
1112  * 1. Register the new request and wait if the reconstruction thread has put
1113  * up a bar for new requests. Continue immediately if no resync is active
1114  * currently.
1115  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1116  */
1117 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1118                                  struct bio *bio, sector_t sectors)
1119 {
1120         wait_barrier(conf);
1121         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1122             bio->bi_iter.bi_sector < conf->reshape_progress &&
1123             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1124                 raid10_log(conf->mddev, "wait reshape");
1125                 allow_barrier(conf);
1126                 wait_event(conf->wait_barrier,
1127                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1128                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1129                            sectors);
1130                 wait_barrier(conf);
1131         }
1132 }
1133
1134 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1135                                 struct r10bio *r10_bio)
1136 {
1137         struct r10conf *conf = mddev->private;
1138         struct bio *read_bio;
1139         const int op = bio_op(bio);
1140         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1141         int max_sectors;
1142         struct md_rdev *rdev;
1143         char b[BDEVNAME_SIZE];
1144         int slot = r10_bio->read_slot;
1145         struct md_rdev *err_rdev = NULL;
1146         gfp_t gfp = GFP_NOIO;
1147
1148         if (r10_bio->devs[slot].rdev) {
1149                 /*
1150                  * This is an error retry, but we cannot
1151                  * safely dereference the rdev in the r10_bio,
1152                  * we must use the one in conf.
1153                  * If it has already been disconnected (unlikely)
1154                  * we lose the device name in error messages.
1155                  */
1156                 int disk;
1157                 /*
1158                  * As we are blocking raid10, it is a little safer to
1159                  * use __GFP_HIGH.
1160                  */
1161                 gfp = GFP_NOIO | __GFP_HIGH;
1162
1163                 rcu_read_lock();
1164                 disk = r10_bio->devs[slot].devnum;
1165                 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1166                 if (err_rdev)
1167                         bdevname(err_rdev->bdev, b);
1168                 else {
1169                         strcpy(b, "???");
1170                         /* This never gets dereferenced */
1171                         err_rdev = r10_bio->devs[slot].rdev;
1172                 }
1173                 rcu_read_unlock();
1174         }
1175
1176         regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1177         rdev = read_balance(conf, r10_bio, &max_sectors);
1178         if (!rdev) {
1179                 if (err_rdev) {
1180                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1181                                             mdname(mddev), b,
1182                                             (unsigned long long)r10_bio->sector);
1183                 }
1184                 raid_end_bio_io(r10_bio);
1185                 return;
1186         }
1187         if (err_rdev)
1188                 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1189                                    mdname(mddev),
1190                                    bdevname(rdev->bdev, b),
1191                                    (unsigned long long)r10_bio->sector);
1192         if (max_sectors < bio_sectors(bio)) {
1193                 struct bio *split = bio_split(bio, max_sectors,
1194                                               gfp, &conf->bio_split);
1195                 bio_chain(split, bio);
1196                 allow_barrier(conf);
1197                 generic_make_request(bio);
1198                 wait_barrier(conf);
1199                 bio = split;
1200                 r10_bio->master_bio = bio;
1201                 r10_bio->sectors = max_sectors;
1202         }
1203         slot = r10_bio->read_slot;
1204
1205         read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1206
1207         r10_bio->devs[slot].bio = read_bio;
1208         r10_bio->devs[slot].rdev = rdev;
1209
1210         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1211                 choose_data_offset(r10_bio, rdev);
1212         bio_set_dev(read_bio, rdev->bdev);
1213         read_bio->bi_end_io = raid10_end_read_request;
1214         bio_set_op_attrs(read_bio, op, do_sync);
1215         if (test_bit(FailFast, &rdev->flags) &&
1216             test_bit(R10BIO_FailFast, &r10_bio->state))
1217                 read_bio->bi_opf |= MD_FAILFAST;
1218         read_bio->bi_private = r10_bio;
1219
1220         if (mddev->gendisk)
1221                 trace_block_bio_remap(read_bio->bi_disk->queue,
1222                                       read_bio, disk_devt(mddev->gendisk),
1223                                       r10_bio->sector);
1224         generic_make_request(read_bio);
1225         return;
1226 }
1227
1228 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1229                                   struct bio *bio, bool replacement,
1230                                   int n_copy)
1231 {
1232         const int op = bio_op(bio);
1233         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1234         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1235         unsigned long flags;
1236         struct blk_plug_cb *cb;
1237         struct raid10_plug_cb *plug = NULL;
1238         struct r10conf *conf = mddev->private;
1239         struct md_rdev *rdev;
1240         int devnum = r10_bio->devs[n_copy].devnum;
1241         struct bio *mbio;
1242
1243         if (replacement) {
1244                 rdev = conf->mirrors[devnum].replacement;
1245                 if (rdev == NULL) {
1246                         /* Replacement just got moved to main 'rdev' */
1247                         smp_mb();
1248                         rdev = conf->mirrors[devnum].rdev;
1249                 }
1250         } else
1251                 rdev = conf->mirrors[devnum].rdev;
1252
1253         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1254         if (replacement)
1255                 r10_bio->devs[n_copy].repl_bio = mbio;
1256         else
1257                 r10_bio->devs[n_copy].bio = mbio;
1258
1259         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1260                                    choose_data_offset(r10_bio, rdev));
1261         bio_set_dev(mbio, rdev->bdev);
1262         mbio->bi_end_io = raid10_end_write_request;
1263         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1264         if (!replacement && test_bit(FailFast,
1265                                      &conf->mirrors[devnum].rdev->flags)
1266                          && enough(conf, devnum))
1267                 mbio->bi_opf |= MD_FAILFAST;
1268         mbio->bi_private = r10_bio;
1269
1270         if (conf->mddev->gendisk)
1271                 trace_block_bio_remap(mbio->bi_disk->queue,
1272                                       mbio, disk_devt(conf->mddev->gendisk),
1273                                       r10_bio->sector);
1274         /* flush_pending_writes() needs access to the rdev so...*/
1275         mbio->bi_disk = (void *)rdev;
1276
1277         atomic_inc(&r10_bio->remaining);
1278
1279         cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1280         if (cb)
1281                 plug = container_of(cb, struct raid10_plug_cb, cb);
1282         else
1283                 plug = NULL;
1284         if (plug) {
1285                 bio_list_add(&plug->pending, mbio);
1286                 plug->pending_cnt++;
1287         } else {
1288                 spin_lock_irqsave(&conf->device_lock, flags);
1289                 bio_list_add(&conf->pending_bio_list, mbio);
1290                 conf->pending_count++;
1291                 spin_unlock_irqrestore(&conf->device_lock, flags);
1292                 md_wakeup_thread(mddev->thread);
1293         }
1294 }
1295
1296 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1297                                  struct r10bio *r10_bio)
1298 {
1299         struct r10conf *conf = mddev->private;
1300         int i;
1301         struct md_rdev *blocked_rdev;
1302         sector_t sectors;
1303         int max_sectors;
1304
1305         if ((mddev_is_clustered(mddev) &&
1306              md_cluster_ops->area_resyncing(mddev, WRITE,
1307                                             bio->bi_iter.bi_sector,
1308                                             bio_end_sector(bio)))) {
1309                 DEFINE_WAIT(w);
1310                 for (;;) {
1311                         prepare_to_wait(&conf->wait_barrier,
1312                                         &w, TASK_IDLE);
1313                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1314                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1315                                 break;
1316                         schedule();
1317                 }
1318                 finish_wait(&conf->wait_barrier, &w);
1319         }
1320
1321         sectors = r10_bio->sectors;
1322         regular_request_wait(mddev, conf, bio, sectors);
1323         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1324             (mddev->reshape_backwards
1325              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1326                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1327              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1328                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1329                 /* Need to update reshape_position in metadata */
1330                 mddev->reshape_position = conf->reshape_progress;
1331                 set_mask_bits(&mddev->sb_flags, 0,
1332                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1333                 md_wakeup_thread(mddev->thread);
1334                 raid10_log(conf->mddev, "wait reshape metadata");
1335                 wait_event(mddev->sb_wait,
1336                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1337
1338                 conf->reshape_safe = mddev->reshape_position;
1339         }
1340
1341         if (conf->pending_count >= max_queued_requests) {
1342                 md_wakeup_thread(mddev->thread);
1343                 raid10_log(mddev, "wait queued");
1344                 wait_event(conf->wait_barrier,
1345                            conf->pending_count < max_queued_requests);
1346         }
1347         /* first select target devices under rcu_lock and
1348          * inc refcount on their rdev.  Record them by setting
1349          * bios[x] to bio
1350          * If there are known/acknowledged bad blocks on any device
1351          * on which we have seen a write error, we want to avoid
1352          * writing to those blocks.  This potentially requires several
1353          * writes to write around the bad blocks.  Each set of writes
1354          * gets its own r10_bio with a set of bios attached.
1355          */
1356
1357         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1358         raid10_find_phys(conf, r10_bio);
1359 retry_write:
1360         blocked_rdev = NULL;
1361         rcu_read_lock();
1362         max_sectors = r10_bio->sectors;
1363
1364         for (i = 0;  i < conf->copies; i++) {
1365                 int d = r10_bio->devs[i].devnum;
1366                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1367                 struct md_rdev *rrdev = rcu_dereference(
1368                         conf->mirrors[d].replacement);
1369                 if (rdev == rrdev)
1370                         rrdev = NULL;
1371                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1372                         atomic_inc(&rdev->nr_pending);
1373                         blocked_rdev = rdev;
1374                         break;
1375                 }
1376                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1377                         atomic_inc(&rrdev->nr_pending);
1378                         blocked_rdev = rrdev;
1379                         break;
1380                 }
1381                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1382                         rdev = NULL;
1383                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1384                         rrdev = NULL;
1385
1386                 r10_bio->devs[i].bio = NULL;
1387                 r10_bio->devs[i].repl_bio = NULL;
1388
1389                 if (!rdev && !rrdev) {
1390                         set_bit(R10BIO_Degraded, &r10_bio->state);
1391                         continue;
1392                 }
1393                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1394                         sector_t first_bad;
1395                         sector_t dev_sector = r10_bio->devs[i].addr;
1396                         int bad_sectors;
1397                         int is_bad;
1398
1399                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1400                                              &first_bad, &bad_sectors);
1401                         if (is_bad < 0) {
1402                                 /* Mustn't write here until the bad block
1403                                  * is acknowledged
1404                                  */
1405                                 atomic_inc(&rdev->nr_pending);
1406                                 set_bit(BlockedBadBlocks, &rdev->flags);
1407                                 blocked_rdev = rdev;
1408                                 break;
1409                         }
1410                         if (is_bad && first_bad <= dev_sector) {
1411                                 /* Cannot write here at all */
1412                                 bad_sectors -= (dev_sector - first_bad);
1413                                 if (bad_sectors < max_sectors)
1414                                         /* Mustn't write more than bad_sectors
1415                                          * to other devices yet
1416                                          */
1417                                         max_sectors = bad_sectors;
1418                                 /* We don't set R10BIO_Degraded as that
1419                                  * only applies if the disk is missing,
1420                                  * so it might be re-added, and we want to
1421                                  * know to recover this chunk.
1422                                  * In this case the device is here, and the
1423                                  * fact that this chunk is not in-sync is
1424                                  * recorded in the bad block log.
1425                                  */
1426                                 continue;
1427                         }
1428                         if (is_bad) {
1429                                 int good_sectors = first_bad - dev_sector;
1430                                 if (good_sectors < max_sectors)
1431                                         max_sectors = good_sectors;
1432                         }
1433                 }
1434                 if (rdev) {
1435                         r10_bio->devs[i].bio = bio;
1436                         atomic_inc(&rdev->nr_pending);
1437                 }
1438                 if (rrdev) {
1439                         r10_bio->devs[i].repl_bio = bio;
1440                         atomic_inc(&rrdev->nr_pending);
1441                 }
1442         }
1443         rcu_read_unlock();
1444
1445         if (unlikely(blocked_rdev)) {
1446                 /* Have to wait for this device to get unblocked, then retry */
1447                 int j;
1448                 int d;
1449
1450                 for (j = 0; j < i; j++) {
1451                         if (r10_bio->devs[j].bio) {
1452                                 d = r10_bio->devs[j].devnum;
1453                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1454                         }
1455                         if (r10_bio->devs[j].repl_bio) {
1456                                 struct md_rdev *rdev;
1457                                 d = r10_bio->devs[j].devnum;
1458                                 rdev = conf->mirrors[d].replacement;
1459                                 if (!rdev) {
1460                                         /* Race with remove_disk */
1461                                         smp_mb();
1462                                         rdev = conf->mirrors[d].rdev;
1463                                 }
1464                                 rdev_dec_pending(rdev, mddev);
1465                         }
1466                 }
1467                 allow_barrier(conf);
1468                 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1469                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1470                 wait_barrier(conf);
1471                 goto retry_write;
1472         }
1473
1474         if (max_sectors < r10_bio->sectors)
1475                 r10_bio->sectors = max_sectors;
1476
1477         if (r10_bio->sectors < bio_sectors(bio)) {
1478                 struct bio *split = bio_split(bio, r10_bio->sectors,
1479                                               GFP_NOIO, &conf->bio_split);
1480                 bio_chain(split, bio);
1481                 allow_barrier(conf);
1482                 generic_make_request(bio);
1483                 wait_barrier(conf);
1484                 bio = split;
1485                 r10_bio->master_bio = bio;
1486         }
1487
1488         atomic_set(&r10_bio->remaining, 1);
1489         md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1490
1491         for (i = 0; i < conf->copies; i++) {
1492                 if (r10_bio->devs[i].bio)
1493                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1494                 if (r10_bio->devs[i].repl_bio)
1495                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1496         }
1497         one_write_done(r10_bio);
1498 }
1499
1500 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1501 {
1502         struct r10conf *conf = mddev->private;
1503         struct r10bio *r10_bio;
1504
1505         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1506
1507         r10_bio->master_bio = bio;
1508         r10_bio->sectors = sectors;
1509
1510         r10_bio->mddev = mddev;
1511         r10_bio->sector = bio->bi_iter.bi_sector;
1512         r10_bio->state = 0;
1513         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1514
1515         if (bio_data_dir(bio) == READ)
1516                 raid10_read_request(mddev, bio, r10_bio);
1517         else
1518                 raid10_write_request(mddev, bio, r10_bio);
1519 }
1520
1521 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1522 {
1523         struct r10conf *conf = mddev->private;
1524         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1525         int chunk_sects = chunk_mask + 1;
1526         int sectors = bio_sectors(bio);
1527
1528         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1529                 md_flush_request(mddev, bio);
1530                 return true;
1531         }
1532
1533         if (!md_write_start(mddev, bio))
1534                 return false;
1535
1536         /*
1537          * If this request crosses a chunk boundary, we need to split
1538          * it.
1539          */
1540         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1541                      sectors > chunk_sects
1542                      && (conf->geo.near_copies < conf->geo.raid_disks
1543                          || conf->prev.near_copies <
1544                          conf->prev.raid_disks)))
1545                 sectors = chunk_sects -
1546                         (bio->bi_iter.bi_sector &
1547                          (chunk_sects - 1));
1548         __make_request(mddev, bio, sectors);
1549
1550         /* In case raid10d snuck in to freeze_array */
1551         wake_up(&conf->wait_barrier);
1552         return true;
1553 }
1554
1555 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1556 {
1557         struct r10conf *conf = mddev->private;
1558         int i;
1559
1560         if (conf->geo.near_copies < conf->geo.raid_disks)
1561                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1562         if (conf->geo.near_copies > 1)
1563                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1564         if (conf->geo.far_copies > 1) {
1565                 if (conf->geo.far_offset)
1566                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1567                 else
1568                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1569                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1570                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1571         }
1572         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1573                                         conf->geo.raid_disks - mddev->degraded);
1574         rcu_read_lock();
1575         for (i = 0; i < conf->geo.raid_disks; i++) {
1576                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1577                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1578         }
1579         rcu_read_unlock();
1580         seq_printf(seq, "]");
1581 }
1582
1583 /* check if there are enough drives for
1584  * every block to appear on atleast one.
1585  * Don't consider the device numbered 'ignore'
1586  * as we might be about to remove it.
1587  */
1588 static int _enough(struct r10conf *conf, int previous, int ignore)
1589 {
1590         int first = 0;
1591         int has_enough = 0;
1592         int disks, ncopies;
1593         if (previous) {
1594                 disks = conf->prev.raid_disks;
1595                 ncopies = conf->prev.near_copies;
1596         } else {
1597                 disks = conf->geo.raid_disks;
1598                 ncopies = conf->geo.near_copies;
1599         }
1600
1601         rcu_read_lock();
1602         do {
1603                 int n = conf->copies;
1604                 int cnt = 0;
1605                 int this = first;
1606                 while (n--) {
1607                         struct md_rdev *rdev;
1608                         if (this != ignore &&
1609                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1610                             test_bit(In_sync, &rdev->flags))
1611                                 cnt++;
1612                         this = (this+1) % disks;
1613                 }
1614                 if (cnt == 0)
1615                         goto out;
1616                 first = (first + ncopies) % disks;
1617         } while (first != 0);
1618         has_enough = 1;
1619 out:
1620         rcu_read_unlock();
1621         return has_enough;
1622 }
1623
1624 static int enough(struct r10conf *conf, int ignore)
1625 {
1626         /* when calling 'enough', both 'prev' and 'geo' must
1627          * be stable.
1628          * This is ensured if ->reconfig_mutex or ->device_lock
1629          * is held.
1630          */
1631         return _enough(conf, 0, ignore) &&
1632                 _enough(conf, 1, ignore);
1633 }
1634
1635 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1636 {
1637         char b[BDEVNAME_SIZE];
1638         struct r10conf *conf = mddev->private;
1639         unsigned long flags;
1640
1641         /*
1642          * If it is not operational, then we have already marked it as dead
1643          * else if it is the last working disks with "fail_last_dev == false",
1644          * ignore the error, let the next level up know.
1645          * else mark the drive as failed
1646          */
1647         spin_lock_irqsave(&conf->device_lock, flags);
1648         if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1649             && !enough(conf, rdev->raid_disk)) {
1650                 /*
1651                  * Don't fail the drive, just return an IO error.
1652                  */
1653                 spin_unlock_irqrestore(&conf->device_lock, flags);
1654                 return;
1655         }
1656         if (test_and_clear_bit(In_sync, &rdev->flags))
1657                 mddev->degraded++;
1658         /*
1659          * If recovery is running, make sure it aborts.
1660          */
1661         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1662         set_bit(Blocked, &rdev->flags);
1663         set_bit(Faulty, &rdev->flags);
1664         set_mask_bits(&mddev->sb_flags, 0,
1665                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1666         spin_unlock_irqrestore(&conf->device_lock, flags);
1667         pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1668                 "md/raid10:%s: Operation continuing on %d devices.\n",
1669                 mdname(mddev), bdevname(rdev->bdev, b),
1670                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1671 }
1672
1673 static void print_conf(struct r10conf *conf)
1674 {
1675         int i;
1676         struct md_rdev *rdev;
1677
1678         pr_debug("RAID10 conf printout:\n");
1679         if (!conf) {
1680                 pr_debug("(!conf)\n");
1681                 return;
1682         }
1683         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1684                  conf->geo.raid_disks);
1685
1686         /* This is only called with ->reconfix_mutex held, so
1687          * rcu protection of rdev is not needed */
1688         for (i = 0; i < conf->geo.raid_disks; i++) {
1689                 char b[BDEVNAME_SIZE];
1690                 rdev = conf->mirrors[i].rdev;
1691                 if (rdev)
1692                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1693                                  i, !test_bit(In_sync, &rdev->flags),
1694                                  !test_bit(Faulty, &rdev->flags),
1695                                  bdevname(rdev->bdev,b));
1696         }
1697 }
1698
1699 static void close_sync(struct r10conf *conf)
1700 {
1701         wait_barrier(conf);
1702         allow_barrier(conf);
1703
1704         mempool_exit(&conf->r10buf_pool);
1705 }
1706
1707 static int raid10_spare_active(struct mddev *mddev)
1708 {
1709         int i;
1710         struct r10conf *conf = mddev->private;
1711         struct raid10_info *tmp;
1712         int count = 0;
1713         unsigned long flags;
1714
1715         /*
1716          * Find all non-in_sync disks within the RAID10 configuration
1717          * and mark them in_sync
1718          */
1719         for (i = 0; i < conf->geo.raid_disks; i++) {
1720                 tmp = conf->mirrors + i;
1721                 if (tmp->replacement
1722                     && tmp->replacement->recovery_offset == MaxSector
1723                     && !test_bit(Faulty, &tmp->replacement->flags)
1724                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1725                         /* Replacement has just become active */
1726                         if (!tmp->rdev
1727                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1728                                 count++;
1729                         if (tmp->rdev) {
1730                                 /* Replaced device not technically faulty,
1731                                  * but we need to be sure it gets removed
1732                                  * and never re-added.
1733                                  */
1734                                 set_bit(Faulty, &tmp->rdev->flags);
1735                                 sysfs_notify_dirent_safe(
1736                                         tmp->rdev->sysfs_state);
1737                         }
1738                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1739                 } else if (tmp->rdev
1740                            && tmp->rdev->recovery_offset == MaxSector
1741                            && !test_bit(Faulty, &tmp->rdev->flags)
1742                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1743                         count++;
1744                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1745                 }
1746         }
1747         spin_lock_irqsave(&conf->device_lock, flags);
1748         mddev->degraded -= count;
1749         spin_unlock_irqrestore(&conf->device_lock, flags);
1750
1751         print_conf(conf);
1752         return count;
1753 }
1754
1755 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1756 {
1757         struct r10conf *conf = mddev->private;
1758         int err = -EEXIST;
1759         int mirror;
1760         int first = 0;
1761         int last = conf->geo.raid_disks - 1;
1762
1763         if (mddev->recovery_cp < MaxSector)
1764                 /* only hot-add to in-sync arrays, as recovery is
1765                  * very different from resync
1766                  */
1767                 return -EBUSY;
1768         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1769                 return -EINVAL;
1770
1771         if (md_integrity_add_rdev(rdev, mddev))
1772                 return -ENXIO;
1773
1774         if (rdev->raid_disk >= 0)
1775                 first = last = rdev->raid_disk;
1776
1777         if (rdev->saved_raid_disk >= first &&
1778             rdev->saved_raid_disk < conf->geo.raid_disks &&
1779             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1780                 mirror = rdev->saved_raid_disk;
1781         else
1782                 mirror = first;
1783         for ( ; mirror <= last ; mirror++) {
1784                 struct raid10_info *p = &conf->mirrors[mirror];
1785                 if (p->recovery_disabled == mddev->recovery_disabled)
1786                         continue;
1787                 if (p->rdev) {
1788                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1789                             p->replacement != NULL)
1790                                 continue;
1791                         clear_bit(In_sync, &rdev->flags);
1792                         set_bit(Replacement, &rdev->flags);
1793                         rdev->raid_disk = mirror;
1794                         err = 0;
1795                         if (mddev->gendisk)
1796                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1797                                                   rdev->data_offset << 9);
1798                         conf->fullsync = 1;
1799                         rcu_assign_pointer(p->replacement, rdev);
1800                         break;
1801                 }
1802
1803                 if (mddev->gendisk)
1804                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1805                                           rdev->data_offset << 9);
1806
1807                 p->head_position = 0;
1808                 p->recovery_disabled = mddev->recovery_disabled - 1;
1809                 rdev->raid_disk = mirror;
1810                 err = 0;
1811                 if (rdev->saved_raid_disk != mirror)
1812                         conf->fullsync = 1;
1813                 rcu_assign_pointer(p->rdev, rdev);
1814                 break;
1815         }
1816         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1817                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1818
1819         print_conf(conf);
1820         return err;
1821 }
1822
1823 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1824 {
1825         struct r10conf *conf = mddev->private;
1826         int err = 0;
1827         int number = rdev->raid_disk;
1828         struct md_rdev **rdevp;
1829         struct raid10_info *p = conf->mirrors + number;
1830
1831         print_conf(conf);
1832         if (rdev == p->rdev)
1833                 rdevp = &p->rdev;
1834         else if (rdev == p->replacement)
1835                 rdevp = &p->replacement;
1836         else
1837                 return 0;
1838
1839         if (test_bit(In_sync, &rdev->flags) ||
1840             atomic_read(&rdev->nr_pending)) {
1841                 err = -EBUSY;
1842                 goto abort;
1843         }
1844         /* Only remove non-faulty devices if recovery
1845          * is not possible.
1846          */
1847         if (!test_bit(Faulty, &rdev->flags) &&
1848             mddev->recovery_disabled != p->recovery_disabled &&
1849             (!p->replacement || p->replacement == rdev) &&
1850             number < conf->geo.raid_disks &&
1851             enough(conf, -1)) {
1852                 err = -EBUSY;
1853                 goto abort;
1854         }
1855         *rdevp = NULL;
1856         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1857                 synchronize_rcu();
1858                 if (atomic_read(&rdev->nr_pending)) {
1859                         /* lost the race, try later */
1860                         err = -EBUSY;
1861                         *rdevp = rdev;
1862                         goto abort;
1863                 }
1864         }
1865         if (p->replacement) {
1866                 /* We must have just cleared 'rdev' */
1867                 p->rdev = p->replacement;
1868                 clear_bit(Replacement, &p->replacement->flags);
1869                 smp_mb(); /* Make sure other CPUs may see both as identical
1870                            * but will never see neither -- if they are careful.
1871                            */
1872                 p->replacement = NULL;
1873         }
1874
1875         clear_bit(WantReplacement, &rdev->flags);
1876         err = md_integrity_register(mddev);
1877
1878 abort:
1879
1880         print_conf(conf);
1881         return err;
1882 }
1883
1884 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1885 {
1886         struct r10conf *conf = r10_bio->mddev->private;
1887
1888         if (!bio->bi_status)
1889                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1890         else
1891                 /* The write handler will notice the lack of
1892                  * R10BIO_Uptodate and record any errors etc
1893                  */
1894                 atomic_add(r10_bio->sectors,
1895                            &conf->mirrors[d].rdev->corrected_errors);
1896
1897         /* for reconstruct, we always reschedule after a read.
1898          * for resync, only after all reads
1899          */
1900         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1901         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1902             atomic_dec_and_test(&r10_bio->remaining)) {
1903                 /* we have read all the blocks,
1904                  * do the comparison in process context in raid10d
1905                  */
1906                 reschedule_retry(r10_bio);
1907         }
1908 }
1909
1910 static void end_sync_read(struct bio *bio)
1911 {
1912         struct r10bio *r10_bio = get_resync_r10bio(bio);
1913         struct r10conf *conf = r10_bio->mddev->private;
1914         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1915
1916         __end_sync_read(r10_bio, bio, d);
1917 }
1918
1919 static void end_reshape_read(struct bio *bio)
1920 {
1921         /* reshape read bio isn't allocated from r10buf_pool */
1922         struct r10bio *r10_bio = bio->bi_private;
1923
1924         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1925 }
1926
1927 static void end_sync_request(struct r10bio *r10_bio)
1928 {
1929         struct mddev *mddev = r10_bio->mddev;
1930
1931         while (atomic_dec_and_test(&r10_bio->remaining)) {
1932                 if (r10_bio->master_bio == NULL) {
1933                         /* the primary of several recovery bios */
1934                         sector_t s = r10_bio->sectors;
1935                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1936                             test_bit(R10BIO_WriteError, &r10_bio->state))
1937                                 reschedule_retry(r10_bio);
1938                         else
1939                                 put_buf(r10_bio);
1940                         md_done_sync(mddev, s, 1);
1941                         break;
1942                 } else {
1943                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1944                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1945                             test_bit(R10BIO_WriteError, &r10_bio->state))
1946                                 reschedule_retry(r10_bio);
1947                         else
1948                                 put_buf(r10_bio);
1949                         r10_bio = r10_bio2;
1950                 }
1951         }
1952 }
1953
1954 static void end_sync_write(struct bio *bio)
1955 {
1956         struct r10bio *r10_bio = get_resync_r10bio(bio);
1957         struct mddev *mddev = r10_bio->mddev;
1958         struct r10conf *conf = mddev->private;
1959         int d;
1960         sector_t first_bad;
1961         int bad_sectors;
1962         int slot;
1963         int repl;
1964         struct md_rdev *rdev = NULL;
1965
1966         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1967         if (repl)
1968                 rdev = conf->mirrors[d].replacement;
1969         else
1970                 rdev = conf->mirrors[d].rdev;
1971
1972         if (bio->bi_status) {
1973                 if (repl)
1974                         md_error(mddev, rdev);
1975                 else {
1976                         set_bit(WriteErrorSeen, &rdev->flags);
1977                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1978                                 set_bit(MD_RECOVERY_NEEDED,
1979                                         &rdev->mddev->recovery);
1980                         set_bit(R10BIO_WriteError, &r10_bio->state);
1981                 }
1982         } else if (is_badblock(rdev,
1983                              r10_bio->devs[slot].addr,
1984                              r10_bio->sectors,
1985                              &first_bad, &bad_sectors))
1986                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1987
1988         rdev_dec_pending(rdev, mddev);
1989
1990         end_sync_request(r10_bio);
1991 }
1992
1993 /*
1994  * Note: sync and recover and handled very differently for raid10
1995  * This code is for resync.
1996  * For resync, we read through virtual addresses and read all blocks.
1997  * If there is any error, we schedule a write.  The lowest numbered
1998  * drive is authoritative.
1999  * However requests come for physical address, so we need to map.
2000  * For every physical address there are raid_disks/copies virtual addresses,
2001  * which is always are least one, but is not necessarly an integer.
2002  * This means that a physical address can span multiple chunks, so we may
2003  * have to submit multiple io requests for a single sync request.
2004  */
2005 /*
2006  * We check if all blocks are in-sync and only write to blocks that
2007  * aren't in sync
2008  */
2009 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2010 {
2011         struct r10conf *conf = mddev->private;
2012         int i, first;
2013         struct bio *tbio, *fbio;
2014         int vcnt;
2015         struct page **tpages, **fpages;
2016
2017         atomic_set(&r10_bio->remaining, 1);
2018
2019         /* find the first device with a block */
2020         for (i=0; i<conf->copies; i++)
2021                 if (!r10_bio->devs[i].bio->bi_status)
2022                         break;
2023
2024         if (i == conf->copies)
2025                 goto done;
2026
2027         first = i;
2028         fbio = r10_bio->devs[i].bio;
2029         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2030         fbio->bi_iter.bi_idx = 0;
2031         fpages = get_resync_pages(fbio)->pages;
2032
2033         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2034         /* now find blocks with errors */
2035         for (i=0 ; i < conf->copies ; i++) {
2036                 int  j, d;
2037                 struct md_rdev *rdev;
2038                 struct resync_pages *rp;
2039
2040                 tbio = r10_bio->devs[i].bio;
2041
2042                 if (tbio->bi_end_io != end_sync_read)
2043                         continue;
2044                 if (i == first)
2045                         continue;
2046
2047                 tpages = get_resync_pages(tbio)->pages;
2048                 d = r10_bio->devs[i].devnum;
2049                 rdev = conf->mirrors[d].rdev;
2050                 if (!r10_bio->devs[i].bio->bi_status) {
2051                         /* We know that the bi_io_vec layout is the same for
2052                          * both 'first' and 'i', so we just compare them.
2053                          * All vec entries are PAGE_SIZE;
2054                          */
2055                         int sectors = r10_bio->sectors;
2056                         for (j = 0; j < vcnt; j++) {
2057                                 int len = PAGE_SIZE;
2058                                 if (sectors < (len / 512))
2059                                         len = sectors * 512;
2060                                 if (memcmp(page_address(fpages[j]),
2061                                            page_address(tpages[j]),
2062                                            len))
2063                                         break;
2064                                 sectors -= len/512;
2065                         }
2066                         if (j == vcnt)
2067                                 continue;
2068                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2069                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2070                                 /* Don't fix anything. */
2071                                 continue;
2072                 } else if (test_bit(FailFast, &rdev->flags)) {
2073                         /* Just give up on this device */
2074                         md_error(rdev->mddev, rdev);
2075                         continue;
2076                 }
2077                 /* Ok, we need to write this bio, either to correct an
2078                  * inconsistency or to correct an unreadable block.
2079                  * First we need to fixup bv_offset, bv_len and
2080                  * bi_vecs, as the read request might have corrupted these
2081                  */
2082                 rp = get_resync_pages(tbio);
2083                 bio_reset(tbio);
2084
2085                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2086
2087                 rp->raid_bio = r10_bio;
2088                 tbio->bi_private = rp;
2089                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2090                 tbio->bi_end_io = end_sync_write;
2091                 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2092
2093                 bio_copy_data(tbio, fbio);
2094
2095                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2096                 atomic_inc(&r10_bio->remaining);
2097                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2098
2099                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2100                         tbio->bi_opf |= MD_FAILFAST;
2101                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2102                 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2103                 generic_make_request(tbio);
2104         }
2105
2106         /* Now write out to any replacement devices
2107          * that are active
2108          */
2109         for (i = 0; i < conf->copies; i++) {
2110                 int d;
2111
2112                 tbio = r10_bio->devs[i].repl_bio;
2113                 if (!tbio || !tbio->bi_end_io)
2114                         continue;
2115                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2116                     && r10_bio->devs[i].bio != fbio)
2117                         bio_copy_data(tbio, fbio);
2118                 d = r10_bio->devs[i].devnum;
2119                 atomic_inc(&r10_bio->remaining);
2120                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2121                              bio_sectors(tbio));
2122                 generic_make_request(tbio);
2123         }
2124
2125 done:
2126         if (atomic_dec_and_test(&r10_bio->remaining)) {
2127                 md_done_sync(mddev, r10_bio->sectors, 1);
2128                 put_buf(r10_bio);
2129         }
2130 }
2131
2132 /*
2133  * Now for the recovery code.
2134  * Recovery happens across physical sectors.
2135  * We recover all non-is_sync drives by finding the virtual address of
2136  * each, and then choose a working drive that also has that virt address.
2137  * There is a separate r10_bio for each non-in_sync drive.
2138  * Only the first two slots are in use. The first for reading,
2139  * The second for writing.
2140  *
2141  */
2142 static void fix_recovery_read_error(struct r10bio *r10_bio)
2143 {
2144         /* We got a read error during recovery.
2145          * We repeat the read in smaller page-sized sections.
2146          * If a read succeeds, write it to the new device or record
2147          * a bad block if we cannot.
2148          * If a read fails, record a bad block on both old and
2149          * new devices.
2150          */
2151         struct mddev *mddev = r10_bio->mddev;
2152         struct r10conf *conf = mddev->private;
2153         struct bio *bio = r10_bio->devs[0].bio;
2154         sector_t sect = 0;
2155         int sectors = r10_bio->sectors;
2156         int idx = 0;
2157         int dr = r10_bio->devs[0].devnum;
2158         int dw = r10_bio->devs[1].devnum;
2159         struct page **pages = get_resync_pages(bio)->pages;
2160
2161         while (sectors) {
2162                 int s = sectors;
2163                 struct md_rdev *rdev;
2164                 sector_t addr;
2165                 int ok;
2166
2167                 if (s > (PAGE_SIZE>>9))
2168                         s = PAGE_SIZE >> 9;
2169
2170                 rdev = conf->mirrors[dr].rdev;
2171                 addr = r10_bio->devs[0].addr + sect,
2172                 ok = sync_page_io(rdev,
2173                                   addr,
2174                                   s << 9,
2175                                   pages[idx],
2176                                   REQ_OP_READ, 0, false);
2177                 if (ok) {
2178                         rdev = conf->mirrors[dw].rdev;
2179                         addr = r10_bio->devs[1].addr + sect;
2180                         ok = sync_page_io(rdev,
2181                                           addr,
2182                                           s << 9,
2183                                           pages[idx],
2184                                           REQ_OP_WRITE, 0, false);
2185                         if (!ok) {
2186                                 set_bit(WriteErrorSeen, &rdev->flags);
2187                                 if (!test_and_set_bit(WantReplacement,
2188                                                       &rdev->flags))
2189                                         set_bit(MD_RECOVERY_NEEDED,
2190                                                 &rdev->mddev->recovery);
2191                         }
2192                 }
2193                 if (!ok) {
2194                         /* We don't worry if we cannot set a bad block -
2195                          * it really is bad so there is no loss in not
2196                          * recording it yet
2197                          */
2198                         rdev_set_badblocks(rdev, addr, s, 0);
2199
2200                         if (rdev != conf->mirrors[dw].rdev) {
2201                                 /* need bad block on destination too */
2202                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2203                                 addr = r10_bio->devs[1].addr + sect;
2204                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2205                                 if (!ok) {
2206                                         /* just abort the recovery */
2207                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2208                                                   mdname(mddev));
2209
2210                                         conf->mirrors[dw].recovery_disabled
2211                                                 = mddev->recovery_disabled;
2212                                         set_bit(MD_RECOVERY_INTR,
2213                                                 &mddev->recovery);
2214                                         break;
2215                                 }
2216                         }
2217                 }
2218
2219                 sectors -= s;
2220                 sect += s;
2221                 idx++;
2222         }
2223 }
2224
2225 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2226 {
2227         struct r10conf *conf = mddev->private;
2228         int d;
2229         struct bio *wbio, *wbio2;
2230
2231         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2232                 fix_recovery_read_error(r10_bio);
2233                 end_sync_request(r10_bio);
2234                 return;
2235         }
2236
2237         /*
2238          * share the pages with the first bio
2239          * and submit the write request
2240          */
2241         d = r10_bio->devs[1].devnum;
2242         wbio = r10_bio->devs[1].bio;
2243         wbio2 = r10_bio->devs[1].repl_bio;
2244         /* Need to test wbio2->bi_end_io before we call
2245          * generic_make_request as if the former is NULL,
2246          * the latter is free to free wbio2.
2247          */
2248         if (wbio2 && !wbio2->bi_end_io)
2249                 wbio2 = NULL;
2250         if (wbio->bi_end_io) {
2251                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2252                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2253                 generic_make_request(wbio);
2254         }
2255         if (wbio2) {
2256                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2257                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2258                              bio_sectors(wbio2));
2259                 generic_make_request(wbio2);
2260         }
2261 }
2262
2263 /*
2264  * Used by fix_read_error() to decay the per rdev read_errors.
2265  * We halve the read error count for every hour that has elapsed
2266  * since the last recorded read error.
2267  *
2268  */
2269 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2270 {
2271         long cur_time_mon;
2272         unsigned long hours_since_last;
2273         unsigned int read_errors = atomic_read(&rdev->read_errors);
2274
2275         cur_time_mon = ktime_get_seconds();
2276
2277         if (rdev->last_read_error == 0) {
2278                 /* first time we've seen a read error */
2279                 rdev->last_read_error = cur_time_mon;
2280                 return;
2281         }
2282
2283         hours_since_last = (long)(cur_time_mon -
2284                             rdev->last_read_error) / 3600;
2285
2286         rdev->last_read_error = cur_time_mon;
2287
2288         /*
2289          * if hours_since_last is > the number of bits in read_errors
2290          * just set read errors to 0. We do this to avoid
2291          * overflowing the shift of read_errors by hours_since_last.
2292          */
2293         if (hours_since_last >= 8 * sizeof(read_errors))
2294                 atomic_set(&rdev->read_errors, 0);
2295         else
2296                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2297 }
2298
2299 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2300                             int sectors, struct page *page, int rw)
2301 {
2302         sector_t first_bad;
2303         int bad_sectors;
2304
2305         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2306             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2307                 return -1;
2308         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2309                 /* success */
2310                 return 1;
2311         if (rw == WRITE) {
2312                 set_bit(WriteErrorSeen, &rdev->flags);
2313                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2314                         set_bit(MD_RECOVERY_NEEDED,
2315                                 &rdev->mddev->recovery);
2316         }
2317         /* need to record an error - either for the block or the device */
2318         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2319                 md_error(rdev->mddev, rdev);
2320         return 0;
2321 }
2322
2323 /*
2324  * This is a kernel thread which:
2325  *
2326  *      1.      Retries failed read operations on working mirrors.
2327  *      2.      Updates the raid superblock when problems encounter.
2328  *      3.      Performs writes following reads for array synchronising.
2329  */
2330
2331 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2332 {
2333         int sect = 0; /* Offset from r10_bio->sector */
2334         int sectors = r10_bio->sectors;
2335         struct md_rdev *rdev;
2336         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2337         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2338
2339         /* still own a reference to this rdev, so it cannot
2340          * have been cleared recently.
2341          */
2342         rdev = conf->mirrors[d].rdev;
2343
2344         if (test_bit(Faulty, &rdev->flags))
2345                 /* drive has already been failed, just ignore any
2346                    more fix_read_error() attempts */
2347                 return;
2348
2349         check_decay_read_errors(mddev, rdev);
2350         atomic_inc(&rdev->read_errors);
2351         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2352                 char b[BDEVNAME_SIZE];
2353                 bdevname(rdev->bdev, b);
2354
2355                 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2356                           mdname(mddev), b,
2357                           atomic_read(&rdev->read_errors), max_read_errors);
2358                 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2359                           mdname(mddev), b);
2360                 md_error(mddev, rdev);
2361                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2362                 return;
2363         }
2364
2365         while(sectors) {
2366                 int s = sectors;
2367                 int sl = r10_bio->read_slot;
2368                 int success = 0;
2369                 int start;
2370
2371                 if (s > (PAGE_SIZE>>9))
2372                         s = PAGE_SIZE >> 9;
2373
2374                 rcu_read_lock();
2375                 do {
2376                         sector_t first_bad;
2377                         int bad_sectors;
2378
2379                         d = r10_bio->devs[sl].devnum;
2380                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2381                         if (rdev &&
2382                             test_bit(In_sync, &rdev->flags) &&
2383                             !test_bit(Faulty, &rdev->flags) &&
2384                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2385                                         &first_bad, &bad_sectors) == 0) {
2386                                 atomic_inc(&rdev->nr_pending);
2387                                 rcu_read_unlock();
2388                                 success = sync_page_io(rdev,
2389                                                        r10_bio->devs[sl].addr +
2390                                                        sect,
2391                                                        s<<9,
2392                                                        conf->tmppage,
2393                                                        REQ_OP_READ, 0, false);
2394                                 rdev_dec_pending(rdev, mddev);
2395                                 rcu_read_lock();
2396                                 if (success)
2397                                         break;
2398                         }
2399                         sl++;
2400                         if (sl == conf->copies)
2401                                 sl = 0;
2402                 } while (!success && sl != r10_bio->read_slot);
2403                 rcu_read_unlock();
2404
2405                 if (!success) {
2406                         /* Cannot read from anywhere, just mark the block
2407                          * as bad on the first device to discourage future
2408                          * reads.
2409                          */
2410                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2411                         rdev = conf->mirrors[dn].rdev;
2412
2413                         if (!rdev_set_badblocks(
2414                                     rdev,
2415                                     r10_bio->devs[r10_bio->read_slot].addr
2416                                     + sect,
2417                                     s, 0)) {
2418                                 md_error(mddev, rdev);
2419                                 r10_bio->devs[r10_bio->read_slot].bio
2420                                         = IO_BLOCKED;
2421                         }
2422                         break;
2423                 }
2424
2425                 start = sl;
2426                 /* write it back and re-read */
2427                 rcu_read_lock();
2428                 while (sl != r10_bio->read_slot) {
2429                         char b[BDEVNAME_SIZE];
2430
2431                         if (sl==0)
2432                                 sl = conf->copies;
2433                         sl--;
2434                         d = r10_bio->devs[sl].devnum;
2435                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2436                         if (!rdev ||
2437                             test_bit(Faulty, &rdev->flags) ||
2438                             !test_bit(In_sync, &rdev->flags))
2439                                 continue;
2440
2441                         atomic_inc(&rdev->nr_pending);
2442                         rcu_read_unlock();
2443                         if (r10_sync_page_io(rdev,
2444                                              r10_bio->devs[sl].addr +
2445                                              sect,
2446                                              s, conf->tmppage, WRITE)
2447                             == 0) {
2448                                 /* Well, this device is dead */
2449                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2450                                           mdname(mddev), s,
2451                                           (unsigned long long)(
2452                                                   sect +
2453                                                   choose_data_offset(r10_bio,
2454                                                                      rdev)),
2455                                           bdevname(rdev->bdev, b));
2456                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2457                                           mdname(mddev),
2458                                           bdevname(rdev->bdev, b));
2459                         }
2460                         rdev_dec_pending(rdev, mddev);
2461                         rcu_read_lock();
2462                 }
2463                 sl = start;
2464                 while (sl != r10_bio->read_slot) {
2465                         char b[BDEVNAME_SIZE];
2466
2467                         if (sl==0)
2468                                 sl = conf->copies;
2469                         sl--;
2470                         d = r10_bio->devs[sl].devnum;
2471                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2472                         if (!rdev ||
2473                             test_bit(Faulty, &rdev->flags) ||
2474                             !test_bit(In_sync, &rdev->flags))
2475                                 continue;
2476
2477                         atomic_inc(&rdev->nr_pending);
2478                         rcu_read_unlock();
2479                         switch (r10_sync_page_io(rdev,
2480                                              r10_bio->devs[sl].addr +
2481                                              sect,
2482                                              s, conf->tmppage,
2483                                                  READ)) {
2484                         case 0:
2485                                 /* Well, this device is dead */
2486                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2487                                        mdname(mddev), s,
2488                                        (unsigned long long)(
2489                                                sect +
2490                                                choose_data_offset(r10_bio, rdev)),
2491                                        bdevname(rdev->bdev, b));
2492                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2493                                        mdname(mddev),
2494                                        bdevname(rdev->bdev, b));
2495                                 break;
2496                         case 1:
2497                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2498                                        mdname(mddev), s,
2499                                        (unsigned long long)(
2500                                                sect +
2501                                                choose_data_offset(r10_bio, rdev)),
2502                                        bdevname(rdev->bdev, b));
2503                                 atomic_add(s, &rdev->corrected_errors);
2504                         }
2505
2506                         rdev_dec_pending(rdev, mddev);
2507                         rcu_read_lock();
2508                 }
2509                 rcu_read_unlock();
2510
2511                 sectors -= s;
2512                 sect += s;
2513         }
2514 }
2515
2516 static int narrow_write_error(struct r10bio *r10_bio, int i)
2517 {
2518         struct bio *bio = r10_bio->master_bio;
2519         struct mddev *mddev = r10_bio->mddev;
2520         struct r10conf *conf = mddev->private;
2521         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2522         /* bio has the data to be written to slot 'i' where
2523          * we just recently had a write error.
2524          * We repeatedly clone the bio and trim down to one block,
2525          * then try the write.  Where the write fails we record
2526          * a bad block.
2527          * It is conceivable that the bio doesn't exactly align with
2528          * blocks.  We must handle this.
2529          *
2530          * We currently own a reference to the rdev.
2531          */
2532
2533         int block_sectors;
2534         sector_t sector;
2535         int sectors;
2536         int sect_to_write = r10_bio->sectors;
2537         int ok = 1;
2538
2539         if (rdev->badblocks.shift < 0)
2540                 return 0;
2541
2542         block_sectors = roundup(1 << rdev->badblocks.shift,
2543                                 bdev_logical_block_size(rdev->bdev) >> 9);
2544         sector = r10_bio->sector;
2545         sectors = ((r10_bio->sector + block_sectors)
2546                    & ~(sector_t)(block_sectors - 1))
2547                 - sector;
2548
2549         while (sect_to_write) {
2550                 struct bio *wbio;
2551                 sector_t wsector;
2552                 if (sectors > sect_to_write)
2553                         sectors = sect_to_write;
2554                 /* Write at 'sector' for 'sectors' */
2555                 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2556                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2557                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2558                 wbio->bi_iter.bi_sector = wsector +
2559                                    choose_data_offset(r10_bio, rdev);
2560                 bio_set_dev(wbio, rdev->bdev);
2561                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2562
2563                 if (submit_bio_wait(wbio) < 0)
2564                         /* Failure! */
2565                         ok = rdev_set_badblocks(rdev, wsector,
2566                                                 sectors, 0)
2567                                 && ok;
2568
2569                 bio_put(wbio);
2570                 sect_to_write -= sectors;
2571                 sector += sectors;
2572                 sectors = block_sectors;
2573         }
2574         return ok;
2575 }
2576
2577 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2578 {
2579         int slot = r10_bio->read_slot;
2580         struct bio *bio;
2581         struct r10conf *conf = mddev->private;
2582         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2583
2584         /* we got a read error. Maybe the drive is bad.  Maybe just
2585          * the block and we can fix it.
2586          * We freeze all other IO, and try reading the block from
2587          * other devices.  When we find one, we re-write
2588          * and check it that fixes the read error.
2589          * This is all done synchronously while the array is
2590          * frozen.
2591          */
2592         bio = r10_bio->devs[slot].bio;
2593         bio_put(bio);
2594         r10_bio->devs[slot].bio = NULL;
2595
2596         if (mddev->ro)
2597                 r10_bio->devs[slot].bio = IO_BLOCKED;
2598         else if (!test_bit(FailFast, &rdev->flags)) {
2599                 freeze_array(conf, 1);
2600                 fix_read_error(conf, mddev, r10_bio);
2601                 unfreeze_array(conf);
2602         } else
2603                 md_error(mddev, rdev);
2604
2605         rdev_dec_pending(rdev, mddev);
2606         allow_barrier(conf);
2607         r10_bio->state = 0;
2608         raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2609 }
2610
2611 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2612 {
2613         /* Some sort of write request has finished and it
2614          * succeeded in writing where we thought there was a
2615          * bad block.  So forget the bad block.
2616          * Or possibly if failed and we need to record
2617          * a bad block.
2618          */
2619         int m;
2620         struct md_rdev *rdev;
2621
2622         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2623             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2624                 for (m = 0; m < conf->copies; m++) {
2625                         int dev = r10_bio->devs[m].devnum;
2626                         rdev = conf->mirrors[dev].rdev;
2627                         if (r10_bio->devs[m].bio == NULL ||
2628                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2629                                 continue;
2630                         if (!r10_bio->devs[m].bio->bi_status) {
2631                                 rdev_clear_badblocks(
2632                                         rdev,
2633                                         r10_bio->devs[m].addr,
2634                                         r10_bio->sectors, 0);
2635                         } else {
2636                                 if (!rdev_set_badblocks(
2637                                             rdev,
2638                                             r10_bio->devs[m].addr,
2639                                             r10_bio->sectors, 0))
2640                                         md_error(conf->mddev, rdev);
2641                         }
2642                         rdev = conf->mirrors[dev].replacement;
2643                         if (r10_bio->devs[m].repl_bio == NULL ||
2644                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2645                                 continue;
2646
2647                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2648                                 rdev_clear_badblocks(
2649                                         rdev,
2650                                         r10_bio->devs[m].addr,
2651                                         r10_bio->sectors, 0);
2652                         } else {
2653                                 if (!rdev_set_badblocks(
2654                                             rdev,
2655                                             r10_bio->devs[m].addr,
2656                                             r10_bio->sectors, 0))
2657                                         md_error(conf->mddev, rdev);
2658                         }
2659                 }
2660                 put_buf(r10_bio);
2661         } else {
2662                 bool fail = false;
2663                 for (m = 0; m < conf->copies; m++) {
2664                         int dev = r10_bio->devs[m].devnum;
2665                         struct bio *bio = r10_bio->devs[m].bio;
2666                         rdev = conf->mirrors[dev].rdev;
2667                         if (bio == IO_MADE_GOOD) {
2668                                 rdev_clear_badblocks(
2669                                         rdev,
2670                                         r10_bio->devs[m].addr,
2671                                         r10_bio->sectors, 0);
2672                                 rdev_dec_pending(rdev, conf->mddev);
2673                         } else if (bio != NULL && bio->bi_status) {
2674                                 fail = true;
2675                                 if (!narrow_write_error(r10_bio, m)) {
2676                                         md_error(conf->mddev, rdev);
2677                                         set_bit(R10BIO_Degraded,
2678                                                 &r10_bio->state);
2679                                 }
2680                                 rdev_dec_pending(rdev, conf->mddev);
2681                         }
2682                         bio = r10_bio->devs[m].repl_bio;
2683                         rdev = conf->mirrors[dev].replacement;
2684                         if (rdev && bio == IO_MADE_GOOD) {
2685                                 rdev_clear_badblocks(
2686                                         rdev,
2687                                         r10_bio->devs[m].addr,
2688                                         r10_bio->sectors, 0);
2689                                 rdev_dec_pending(rdev, conf->mddev);
2690                         }
2691                 }
2692                 if (fail) {
2693                         spin_lock_irq(&conf->device_lock);
2694                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2695                         conf->nr_queued++;
2696                         spin_unlock_irq(&conf->device_lock);
2697                         /*
2698                          * In case freeze_array() is waiting for condition
2699                          * nr_pending == nr_queued + extra to be true.
2700                          */
2701                         wake_up(&conf->wait_barrier);
2702                         md_wakeup_thread(conf->mddev->thread);
2703                 } else {
2704                         if (test_bit(R10BIO_WriteError,
2705                                      &r10_bio->state))
2706                                 close_write(r10_bio);
2707                         raid_end_bio_io(r10_bio);
2708                 }
2709         }
2710 }
2711
2712 static void raid10d(struct md_thread *thread)
2713 {
2714         struct mddev *mddev = thread->mddev;
2715         struct r10bio *r10_bio;
2716         unsigned long flags;
2717         struct r10conf *conf = mddev->private;
2718         struct list_head *head = &conf->retry_list;
2719         struct blk_plug plug;
2720
2721         md_check_recovery(mddev);
2722
2723         if (!list_empty_careful(&conf->bio_end_io_list) &&
2724             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2725                 LIST_HEAD(tmp);
2726                 spin_lock_irqsave(&conf->device_lock, flags);
2727                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2728                         while (!list_empty(&conf->bio_end_io_list)) {
2729                                 list_move(conf->bio_end_io_list.prev, &tmp);
2730                                 conf->nr_queued--;
2731                         }
2732                 }
2733                 spin_unlock_irqrestore(&conf->device_lock, flags);
2734                 while (!list_empty(&tmp)) {
2735                         r10_bio = list_first_entry(&tmp, struct r10bio,
2736                                                    retry_list);
2737                         list_del(&r10_bio->retry_list);
2738                         if (mddev->degraded)
2739                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2740
2741                         if (test_bit(R10BIO_WriteError,
2742                                      &r10_bio->state))
2743                                 close_write(r10_bio);
2744                         raid_end_bio_io(r10_bio);
2745                 }
2746         }
2747
2748         blk_start_plug(&plug);
2749         for (;;) {
2750
2751                 flush_pending_writes(conf);
2752
2753                 spin_lock_irqsave(&conf->device_lock, flags);
2754                 if (list_empty(head)) {
2755                         spin_unlock_irqrestore(&conf->device_lock, flags);
2756                         break;
2757                 }
2758                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2759                 list_del(head->prev);
2760                 conf->nr_queued--;
2761                 spin_unlock_irqrestore(&conf->device_lock, flags);
2762
2763                 mddev = r10_bio->mddev;
2764                 conf = mddev->private;
2765                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2766                     test_bit(R10BIO_WriteError, &r10_bio->state))
2767                         handle_write_completed(conf, r10_bio);
2768                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2769                         reshape_request_write(mddev, r10_bio);
2770                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2771                         sync_request_write(mddev, r10_bio);
2772                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2773                         recovery_request_write(mddev, r10_bio);
2774                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2775                         handle_read_error(mddev, r10_bio);
2776                 else
2777                         WARN_ON_ONCE(1);
2778
2779                 cond_resched();
2780                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2781                         md_check_recovery(mddev);
2782         }
2783         blk_finish_plug(&plug);
2784 }
2785
2786 static int init_resync(struct r10conf *conf)
2787 {
2788         int ret, buffs, i;
2789
2790         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2791         BUG_ON(mempool_initialized(&conf->r10buf_pool));
2792         conf->have_replacement = 0;
2793         for (i = 0; i < conf->geo.raid_disks; i++)
2794                 if (conf->mirrors[i].replacement)
2795                         conf->have_replacement = 1;
2796         ret = mempool_init(&conf->r10buf_pool, buffs,
2797                            r10buf_pool_alloc, r10buf_pool_free, conf);
2798         if (ret)
2799                 return ret;
2800         conf->next_resync = 0;
2801         return 0;
2802 }
2803
2804 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2805 {
2806         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2807         struct rsync_pages *rp;
2808         struct bio *bio;
2809         int nalloc;
2810         int i;
2811
2812         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2813             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2814                 nalloc = conf->copies; /* resync */
2815         else
2816                 nalloc = 2; /* recovery */
2817
2818         for (i = 0; i < nalloc; i++) {
2819                 bio = r10bio->devs[i].bio;
2820                 rp = bio->bi_private;
2821                 bio_reset(bio);
2822                 bio->bi_private = rp;
2823                 bio = r10bio->devs[i].repl_bio;
2824                 if (bio) {
2825                         rp = bio->bi_private;
2826                         bio_reset(bio);
2827                         bio->bi_private = rp;
2828                 }
2829         }
2830         return r10bio;
2831 }
2832
2833 /*
2834  * Set cluster_sync_high since we need other nodes to add the
2835  * range [cluster_sync_low, cluster_sync_high] to suspend list.
2836  */
2837 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2838 {
2839         sector_t window_size;
2840         int extra_chunk, chunks;
2841
2842         /*
2843          * First, here we define "stripe" as a unit which across
2844          * all member devices one time, so we get chunks by use
2845          * raid_disks / near_copies. Otherwise, if near_copies is
2846          * close to raid_disks, then resync window could increases
2847          * linearly with the increase of raid_disks, which means
2848          * we will suspend a really large IO window while it is not
2849          * necessary. If raid_disks is not divisible by near_copies,
2850          * an extra chunk is needed to ensure the whole "stripe" is
2851          * covered.
2852          */
2853
2854         chunks = conf->geo.raid_disks / conf->geo.near_copies;
2855         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2856                 extra_chunk = 0;
2857         else
2858                 extra_chunk = 1;
2859         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2860
2861         /*
2862          * At least use a 32M window to align with raid1's resync window
2863          */
2864         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2865                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2866
2867         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2868 }
2869
2870 /*
2871  * perform a "sync" on one "block"
2872  *
2873  * We need to make sure that no normal I/O request - particularly write
2874  * requests - conflict with active sync requests.
2875  *
2876  * This is achieved by tracking pending requests and a 'barrier' concept
2877  * that can be installed to exclude normal IO requests.
2878  *
2879  * Resync and recovery are handled very differently.
2880  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2881  *
2882  * For resync, we iterate over virtual addresses, read all copies,
2883  * and update if there are differences.  If only one copy is live,
2884  * skip it.
2885  * For recovery, we iterate over physical addresses, read a good
2886  * value for each non-in_sync drive, and over-write.
2887  *
2888  * So, for recovery we may have several outstanding complex requests for a
2889  * given address, one for each out-of-sync device.  We model this by allocating
2890  * a number of r10_bio structures, one for each out-of-sync device.
2891  * As we setup these structures, we collect all bio's together into a list
2892  * which we then process collectively to add pages, and then process again
2893  * to pass to generic_make_request.
2894  *
2895  * The r10_bio structures are linked using a borrowed master_bio pointer.
2896  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2897  * has its remaining count decremented to 0, the whole complex operation
2898  * is complete.
2899  *
2900  */
2901
2902 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2903                              int *skipped)
2904 {
2905         struct r10conf *conf = mddev->private;
2906         struct r10bio *r10_bio;
2907         struct bio *biolist = NULL, *bio;
2908         sector_t max_sector, nr_sectors;
2909         int i;
2910         int max_sync;
2911         sector_t sync_blocks;
2912         sector_t sectors_skipped = 0;
2913         int chunks_skipped = 0;
2914         sector_t chunk_mask = conf->geo.chunk_mask;
2915         int page_idx = 0;
2916
2917         if (!mempool_initialized(&conf->r10buf_pool))
2918                 if (init_resync(conf))
2919                         return 0;
2920
2921         /*
2922          * Allow skipping a full rebuild for incremental assembly
2923          * of a clean array, like RAID1 does.
2924          */
2925         if (mddev->bitmap == NULL &&
2926             mddev->recovery_cp == MaxSector &&
2927             mddev->reshape_position == MaxSector &&
2928             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2929             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2930             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2931             conf->fullsync == 0) {
2932                 *skipped = 1;
2933                 return mddev->dev_sectors - sector_nr;
2934         }
2935
2936  skipped:
2937         max_sector = mddev->dev_sectors;
2938         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2939             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2940                 max_sector = mddev->resync_max_sectors;
2941         if (sector_nr >= max_sector) {
2942                 conf->cluster_sync_low = 0;
2943                 conf->cluster_sync_high = 0;
2944
2945                 /* If we aborted, we need to abort the
2946                  * sync on the 'current' bitmap chucks (there can
2947                  * be several when recovering multiple devices).
2948                  * as we may have started syncing it but not finished.
2949                  * We can find the current address in
2950                  * mddev->curr_resync, but for recovery,
2951                  * we need to convert that to several
2952                  * virtual addresses.
2953                  */
2954                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2955                         end_reshape(conf);
2956                         close_sync(conf);
2957                         return 0;
2958                 }
2959
2960                 if (mddev->curr_resync < max_sector) { /* aborted */
2961                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2962                                 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2963                                                    &sync_blocks, 1);
2964                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2965                                 sector_t sect =
2966                                         raid10_find_virt(conf, mddev->curr_resync, i);
2967                                 md_bitmap_end_sync(mddev->bitmap, sect,
2968                                                    &sync_blocks, 1);
2969                         }
2970                 } else {
2971                         /* completed sync */
2972                         if ((!mddev->bitmap || conf->fullsync)
2973                             && conf->have_replacement
2974                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2975                                 /* Completed a full sync so the replacements
2976                                  * are now fully recovered.
2977                                  */
2978                                 rcu_read_lock();
2979                                 for (i = 0; i < conf->geo.raid_disks; i++) {
2980                                         struct md_rdev *rdev =
2981                                                 rcu_dereference(conf->mirrors[i].replacement);
2982                                         if (rdev)
2983                                                 rdev->recovery_offset = MaxSector;
2984                                 }
2985                                 rcu_read_unlock();
2986                         }
2987                         conf->fullsync = 0;
2988                 }
2989                 md_bitmap_close_sync(mddev->bitmap);
2990                 close_sync(conf);
2991                 *skipped = 1;
2992                 return sectors_skipped;
2993         }
2994
2995         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2996                 return reshape_request(mddev, sector_nr, skipped);
2997
2998         if (chunks_skipped >= conf->geo.raid_disks) {
2999                 /* if there has been nothing to do on any drive,
3000                  * then there is nothing to do at all..
3001                  */
3002                 *skipped = 1;
3003                 return (max_sector - sector_nr) + sectors_skipped;
3004         }
3005
3006         if (max_sector > mddev->resync_max)
3007                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3008
3009         /* make sure whole request will fit in a chunk - if chunks
3010          * are meaningful
3011          */
3012         if (conf->geo.near_copies < conf->geo.raid_disks &&
3013             max_sector > (sector_nr | chunk_mask))
3014                 max_sector = (sector_nr | chunk_mask) + 1;
3015
3016         /*
3017          * If there is non-resync activity waiting for a turn, then let it
3018          * though before starting on this new sync request.
3019          */
3020         if (conf->nr_waiting)
3021                 schedule_timeout_uninterruptible(1);
3022
3023         /* Again, very different code for resync and recovery.
3024          * Both must result in an r10bio with a list of bios that
3025          * have bi_end_io, bi_sector, bi_disk set,
3026          * and bi_private set to the r10bio.
3027          * For recovery, we may actually create several r10bios
3028          * with 2 bios in each, that correspond to the bios in the main one.
3029          * In this case, the subordinate r10bios link back through a
3030          * borrowed master_bio pointer, and the counter in the master
3031          * includes a ref from each subordinate.
3032          */
3033         /* First, we decide what to do and set ->bi_end_io
3034          * To end_sync_read if we want to read, and
3035          * end_sync_write if we will want to write.
3036          */
3037
3038         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3039         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3040                 /* recovery... the complicated one */
3041                 int j;
3042                 r10_bio = NULL;
3043
3044                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3045                         int still_degraded;
3046                         struct r10bio *rb2;
3047                         sector_t sect;
3048                         int must_sync;
3049                         int any_working;
3050                         int need_recover = 0;
3051                         int need_replace = 0;
3052                         struct raid10_info *mirror = &conf->mirrors[i];
3053                         struct md_rdev *mrdev, *mreplace;
3054
3055                         rcu_read_lock();
3056                         mrdev = rcu_dereference(mirror->rdev);
3057                         mreplace = rcu_dereference(mirror->replacement);
3058
3059                         if (mrdev != NULL &&
3060                             !test_bit(Faulty, &mrdev->flags) &&
3061                             !test_bit(In_sync, &mrdev->flags))
3062                                 need_recover = 1;
3063                         if (mreplace != NULL &&
3064                             !test_bit(Faulty, &mreplace->flags))
3065                                 need_replace = 1;
3066
3067                         if (!need_recover && !need_replace) {
3068                                 rcu_read_unlock();
3069                                 continue;
3070                         }
3071
3072                         still_degraded = 0;
3073                         /* want to reconstruct this device */
3074                         rb2 = r10_bio;
3075                         sect = raid10_find_virt(conf, sector_nr, i);
3076                         if (sect >= mddev->resync_max_sectors) {
3077                                 /* last stripe is not complete - don't
3078                                  * try to recover this sector.
3079                                  */
3080                                 rcu_read_unlock();
3081                                 continue;
3082                         }
3083                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3084                                 mreplace = NULL;
3085                         /* Unless we are doing a full sync, or a replacement
3086                          * we only need to recover the block if it is set in
3087                          * the bitmap
3088                          */
3089                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3090                                                          &sync_blocks, 1);
3091                         if (sync_blocks < max_sync)
3092                                 max_sync = sync_blocks;
3093                         if (!must_sync &&
3094                             mreplace == NULL &&
3095                             !conf->fullsync) {
3096                                 /* yep, skip the sync_blocks here, but don't assume
3097                                  * that there will never be anything to do here
3098                                  */
3099                                 chunks_skipped = -1;
3100                                 rcu_read_unlock();
3101                                 continue;
3102                         }
3103                         atomic_inc(&mrdev->nr_pending);
3104                         if (mreplace)
3105                                 atomic_inc(&mreplace->nr_pending);
3106                         rcu_read_unlock();
3107
3108                         r10_bio = raid10_alloc_init_r10buf(conf);
3109                         r10_bio->state = 0;
3110                         raise_barrier(conf, rb2 != NULL);
3111                         atomic_set(&r10_bio->remaining, 0);
3112
3113                         r10_bio->master_bio = (struct bio*)rb2;
3114                         if (rb2)
3115                                 atomic_inc(&rb2->remaining);
3116                         r10_bio->mddev = mddev;
3117                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3118                         r10_bio->sector = sect;
3119
3120                         raid10_find_phys(conf, r10_bio);
3121
3122                         /* Need to check if the array will still be
3123                          * degraded
3124                          */
3125                         rcu_read_lock();
3126                         for (j = 0; j < conf->geo.raid_disks; j++) {
3127                                 struct md_rdev *rdev = rcu_dereference(
3128                                         conf->mirrors[j].rdev);
3129                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3130                                         still_degraded = 1;
3131                                         break;
3132                                 }
3133                         }
3134
3135                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3136                                                          &sync_blocks, still_degraded);
3137
3138                         any_working = 0;
3139                         for (j=0; j<conf->copies;j++) {
3140                                 int k;
3141                                 int d = r10_bio->devs[j].devnum;
3142                                 sector_t from_addr, to_addr;
3143                                 struct md_rdev *rdev =
3144                                         rcu_dereference(conf->mirrors[d].rdev);
3145                                 sector_t sector, first_bad;
3146                                 int bad_sectors;
3147                                 if (!rdev ||
3148                                     !test_bit(In_sync, &rdev->flags))
3149                                         continue;
3150                                 /* This is where we read from */
3151                                 any_working = 1;
3152                                 sector = r10_bio->devs[j].addr;
3153
3154                                 if (is_badblock(rdev, sector, max_sync,
3155                                                 &first_bad, &bad_sectors)) {
3156                                         if (first_bad > sector)
3157                                                 max_sync = first_bad - sector;
3158                                         else {
3159                                                 bad_sectors -= (sector
3160                                                                 - first_bad);
3161                                                 if (max_sync > bad_sectors)
3162                                                         max_sync = bad_sectors;
3163                                                 continue;
3164                                         }
3165                                 }
3166                                 bio = r10_bio->devs[0].bio;
3167                                 bio->bi_next = biolist;
3168                                 biolist = bio;
3169                                 bio->bi_end_io = end_sync_read;
3170                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3171                                 if (test_bit(FailFast, &rdev->flags))
3172                                         bio->bi_opf |= MD_FAILFAST;
3173                                 from_addr = r10_bio->devs[j].addr;
3174                                 bio->bi_iter.bi_sector = from_addr +
3175                                         rdev->data_offset;
3176                                 bio_set_dev(bio, rdev->bdev);
3177                                 atomic_inc(&rdev->nr_pending);
3178                                 /* and we write to 'i' (if not in_sync) */
3179
3180                                 for (k=0; k<conf->copies; k++)
3181                                         if (r10_bio->devs[k].devnum == i)
3182                                                 break;
3183                                 BUG_ON(k == conf->copies);
3184                                 to_addr = r10_bio->devs[k].addr;
3185                                 r10_bio->devs[0].devnum = d;
3186                                 r10_bio->devs[0].addr = from_addr;
3187                                 r10_bio->devs[1].devnum = i;
3188                                 r10_bio->devs[1].addr = to_addr;
3189
3190                                 if (need_recover) {
3191                                         bio = r10_bio->devs[1].bio;
3192                                         bio->bi_next = biolist;
3193                                         biolist = bio;
3194                                         bio->bi_end_io = end_sync_write;
3195                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3196                                         bio->bi_iter.bi_sector = to_addr
3197                                                 + mrdev->data_offset;
3198                                         bio_set_dev(bio, mrdev->bdev);
3199                                         atomic_inc(&r10_bio->remaining);
3200                                 } else
3201                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3202
3203                                 /* and maybe write to replacement */
3204                                 bio = r10_bio->devs[1].repl_bio;
3205                                 if (bio)
3206                                         bio->bi_end_io = NULL;
3207                                 /* Note: if need_replace, then bio
3208                                  * cannot be NULL as r10buf_pool_alloc will
3209                                  * have allocated it.
3210                                  */
3211                                 if (!need_replace)
3212                                         break;
3213                                 bio->bi_next = biolist;
3214                                 biolist = bio;
3215                                 bio->bi_end_io = end_sync_write;
3216                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3217                                 bio->bi_iter.bi_sector = to_addr +
3218                                         mreplace->data_offset;
3219                                 bio_set_dev(bio, mreplace->bdev);
3220                                 atomic_inc(&r10_bio->remaining);
3221                                 break;
3222                         }
3223                         rcu_read_unlock();
3224                         if (j == conf->copies) {
3225                                 /* Cannot recover, so abort the recovery or
3226                                  * record a bad block */
3227                                 if (any_working) {
3228                                         /* problem is that there are bad blocks
3229                                          * on other device(s)
3230                                          */
3231                                         int k;
3232                                         for (k = 0; k < conf->copies; k++)
3233                                                 if (r10_bio->devs[k].devnum == i)
3234                                                         break;
3235                                         if (!test_bit(In_sync,
3236                                                       &mrdev->flags)
3237                                             && !rdev_set_badblocks(
3238                                                     mrdev,
3239                                                     r10_bio->devs[k].addr,
3240                                                     max_sync, 0))
3241                                                 any_working = 0;
3242                                         if (mreplace &&
3243                                             !rdev_set_badblocks(
3244                                                     mreplace,
3245                                                     r10_bio->devs[k].addr,
3246                                                     max_sync, 0))
3247                                                 any_working = 0;
3248                                 }
3249                                 if (!any_working)  {
3250                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3251                                                               &mddev->recovery))
3252                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3253                                                        mdname(mddev));
3254                                         mirror->recovery_disabled
3255                                                 = mddev->recovery_disabled;
3256                                 }
3257                                 put_buf(r10_bio);
3258                                 if (rb2)
3259                                         atomic_dec(&rb2->remaining);
3260                                 r10_bio = rb2;
3261                                 rdev_dec_pending(mrdev, mddev);
3262                                 if (mreplace)
3263                                         rdev_dec_pending(mreplace, mddev);
3264                                 break;
3265                         }
3266                         rdev_dec_pending(mrdev, mddev);
3267                         if (mreplace)
3268                                 rdev_dec_pending(mreplace, mddev);
3269                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3270                                 /* Only want this if there is elsewhere to
3271                                  * read from. 'j' is currently the first
3272                                  * readable copy.
3273                                  */
3274                                 int targets = 1;
3275                                 for (; j < conf->copies; j++) {
3276                                         int d = r10_bio->devs[j].devnum;
3277                                         if (conf->mirrors[d].rdev &&
3278                                             test_bit(In_sync,
3279                                                       &conf->mirrors[d].rdev->flags))
3280                                                 targets++;
3281                                 }
3282                                 if (targets == 1)
3283                                         r10_bio->devs[0].bio->bi_opf
3284                                                 &= ~MD_FAILFAST;
3285                         }
3286                 }
3287                 if (biolist == NULL) {
3288                         while (r10_bio) {
3289                                 struct r10bio *rb2 = r10_bio;
3290                                 r10_bio = (struct r10bio*) rb2->master_bio;
3291                                 rb2->master_bio = NULL;
3292                                 put_buf(rb2);
3293                         }
3294                         goto giveup;
3295                 }
3296         } else {
3297                 /* resync. Schedule a read for every block at this virt offset */
3298                 int count = 0;
3299
3300                 /*
3301                  * Since curr_resync_completed could probably not update in
3302                  * time, and we will set cluster_sync_low based on it.
3303                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3304                  * safety reason, which ensures curr_resync_completed is
3305                  * updated in bitmap_cond_end_sync.
3306                  */
3307                 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3308                                         mddev_is_clustered(mddev) &&
3309                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3310
3311                 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3312                                           &sync_blocks, mddev->degraded) &&
3313                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3314                                                  &mddev->recovery)) {
3315                         /* We can skip this block */
3316                         *skipped = 1;
3317                         return sync_blocks + sectors_skipped;
3318                 }
3319                 if (sync_blocks < max_sync)
3320                         max_sync = sync_blocks;
3321                 r10_bio = raid10_alloc_init_r10buf(conf);
3322                 r10_bio->state = 0;
3323
3324                 r10_bio->mddev = mddev;
3325                 atomic_set(&r10_bio->remaining, 0);
3326                 raise_barrier(conf, 0);
3327                 conf->next_resync = sector_nr;
3328
3329                 r10_bio->master_bio = NULL;
3330                 r10_bio->sector = sector_nr;
3331                 set_bit(R10BIO_IsSync, &r10_bio->state);
3332                 raid10_find_phys(conf, r10_bio);
3333                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3334
3335                 for (i = 0; i < conf->copies; i++) {
3336                         int d = r10_bio->devs[i].devnum;
3337                         sector_t first_bad, sector;
3338                         int bad_sectors;
3339                         struct md_rdev *rdev;
3340
3341                         if (r10_bio->devs[i].repl_bio)
3342                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3343
3344                         bio = r10_bio->devs[i].bio;
3345                         bio->bi_status = BLK_STS_IOERR;
3346                         rcu_read_lock();
3347                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3348                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3349                                 rcu_read_unlock();
3350                                 continue;
3351                         }
3352                         sector = r10_bio->devs[i].addr;
3353                         if (is_badblock(rdev, sector, max_sync,
3354                                         &first_bad, &bad_sectors)) {
3355                                 if (first_bad > sector)
3356                                         max_sync = first_bad - sector;
3357                                 else {
3358                                         bad_sectors -= (sector - first_bad);
3359                                         if (max_sync > bad_sectors)
3360                                                 max_sync = bad_sectors;
3361                                         rcu_read_unlock();
3362                                         continue;
3363                                 }
3364                         }
3365                         atomic_inc(&rdev->nr_pending);
3366                         atomic_inc(&r10_bio->remaining);
3367                         bio->bi_next = biolist;
3368                         biolist = bio;
3369                         bio->bi_end_io = end_sync_read;
3370                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3371                         if (test_bit(FailFast, &rdev->flags))
3372                                 bio->bi_opf |= MD_FAILFAST;
3373                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3374                         bio_set_dev(bio, rdev->bdev);
3375                         count++;
3376
3377                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3378                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3379                                 rcu_read_unlock();
3380                                 continue;
3381                         }
3382                         atomic_inc(&rdev->nr_pending);
3383
3384                         /* Need to set up for writing to the replacement */
3385                         bio = r10_bio->devs[i].repl_bio;
3386                         bio->bi_status = BLK_STS_IOERR;
3387
3388                         sector = r10_bio->devs[i].addr;
3389                         bio->bi_next = biolist;
3390                         biolist = bio;
3391                         bio->bi_end_io = end_sync_write;
3392                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3393                         if (test_bit(FailFast, &rdev->flags))
3394                                 bio->bi_opf |= MD_FAILFAST;
3395                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3396                         bio_set_dev(bio, rdev->bdev);
3397                         count++;
3398                         rcu_read_unlock();
3399                 }
3400
3401                 if (count < 2) {
3402                         for (i=0; i<conf->copies; i++) {
3403                                 int d = r10_bio->devs[i].devnum;
3404                                 if (r10_bio->devs[i].bio->bi_end_io)
3405                                         rdev_dec_pending(conf->mirrors[d].rdev,
3406                                                          mddev);
3407                                 if (r10_bio->devs[i].repl_bio &&
3408                                     r10_bio->devs[i].repl_bio->bi_end_io)
3409                                         rdev_dec_pending(
3410                                                 conf->mirrors[d].replacement,
3411                                                 mddev);
3412                         }
3413                         put_buf(r10_bio);
3414                         biolist = NULL;
3415                         goto giveup;
3416                 }
3417         }
3418
3419         nr_sectors = 0;
3420         if (sector_nr + max_sync < max_sector)
3421                 max_sector = sector_nr + max_sync;
3422         do {
3423                 struct page *page;
3424                 int len = PAGE_SIZE;
3425                 if (sector_nr + (len>>9) > max_sector)
3426                         len = (max_sector - sector_nr) << 9;
3427                 if (len == 0)
3428                         break;
3429                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3430                         struct resync_pages *rp = get_resync_pages(bio);
3431                         page = resync_fetch_page(rp, page_idx);
3432                         /*
3433                          * won't fail because the vec table is big enough
3434                          * to hold all these pages
3435                          */
3436                         bio_add_page(bio, page, len, 0);
3437                 }
3438                 nr_sectors += len>>9;
3439                 sector_nr += len>>9;
3440         } while (++page_idx < RESYNC_PAGES);
3441         r10_bio->sectors = nr_sectors;
3442
3443         if (mddev_is_clustered(mddev) &&
3444             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3445                 /* It is resync not recovery */
3446                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3447                         conf->cluster_sync_low = mddev->curr_resync_completed;
3448                         raid10_set_cluster_sync_high(conf);
3449                         /* Send resync message */
3450                         md_cluster_ops->resync_info_update(mddev,
3451                                                 conf->cluster_sync_low,
3452                                                 conf->cluster_sync_high);
3453                 }
3454         } else if (mddev_is_clustered(mddev)) {
3455                 /* This is recovery not resync */
3456                 sector_t sect_va1, sect_va2;
3457                 bool broadcast_msg = false;
3458
3459                 for (i = 0; i < conf->geo.raid_disks; i++) {
3460                         /*
3461                          * sector_nr is a device address for recovery, so we
3462                          * need translate it to array address before compare
3463                          * with cluster_sync_high.
3464                          */
3465                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3466
3467                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3468                                 broadcast_msg = true;
3469                                 /*
3470                                  * curr_resync_completed is similar as
3471                                  * sector_nr, so make the translation too.
3472                                  */
3473                                 sect_va2 = raid10_find_virt(conf,
3474                                         mddev->curr_resync_completed, i);
3475
3476                                 if (conf->cluster_sync_low == 0 ||
3477                                     conf->cluster_sync_low > sect_va2)
3478                                         conf->cluster_sync_low = sect_va2;
3479                         }
3480                 }
3481                 if (broadcast_msg) {
3482                         raid10_set_cluster_sync_high(conf);
3483                         md_cluster_ops->resync_info_update(mddev,
3484                                                 conf->cluster_sync_low,
3485                                                 conf->cluster_sync_high);
3486                 }
3487         }
3488
3489         while (biolist) {
3490                 bio = biolist;
3491                 biolist = biolist->bi_next;
3492
3493                 bio->bi_next = NULL;
3494                 r10_bio = get_resync_r10bio(bio);
3495                 r10_bio->sectors = nr_sectors;
3496
3497                 if (bio->bi_end_io == end_sync_read) {
3498                         md_sync_acct_bio(bio, nr_sectors);
3499                         bio->bi_status = 0;
3500                         generic_make_request(bio);
3501                 }
3502         }
3503
3504         if (sectors_skipped)
3505                 /* pretend they weren't skipped, it makes
3506                  * no important difference in this case
3507                  */
3508                 md_done_sync(mddev, sectors_skipped, 1);
3509
3510         return sectors_skipped + nr_sectors;
3511  giveup:
3512         /* There is nowhere to write, so all non-sync
3513          * drives must be failed or in resync, all drives
3514          * have a bad block, so try the next chunk...
3515          */
3516         if (sector_nr + max_sync < max_sector)
3517                 max_sector = sector_nr + max_sync;
3518
3519         sectors_skipped += (max_sector - sector_nr);
3520         chunks_skipped ++;
3521         sector_nr = max_sector;
3522         goto skipped;
3523 }
3524
3525 static sector_t
3526 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3527 {
3528         sector_t size;
3529         struct r10conf *conf = mddev->private;
3530
3531         if (!raid_disks)
3532                 raid_disks = min(conf->geo.raid_disks,
3533                                  conf->prev.raid_disks);
3534         if (!sectors)
3535                 sectors = conf->dev_sectors;
3536
3537         size = sectors >> conf->geo.chunk_shift;
3538         sector_div(size, conf->geo.far_copies);
3539         size = size * raid_disks;
3540         sector_div(size, conf->geo.near_copies);
3541
3542         return size << conf->geo.chunk_shift;
3543 }
3544
3545 static void calc_sectors(struct r10conf *conf, sector_t size)
3546 {
3547         /* Calculate the number of sectors-per-device that will
3548          * actually be used, and set conf->dev_sectors and
3549          * conf->stride
3550          */
3551
3552         size = size >> conf->geo.chunk_shift;
3553         sector_div(size, conf->geo.far_copies);
3554         size = size * conf->geo.raid_disks;
3555         sector_div(size, conf->geo.near_copies);
3556         /* 'size' is now the number of chunks in the array */
3557         /* calculate "used chunks per device" */
3558         size = size * conf->copies;
3559
3560         /* We need to round up when dividing by raid_disks to
3561          * get the stride size.
3562          */
3563         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3564
3565         conf->dev_sectors = size << conf->geo.chunk_shift;
3566
3567         if (conf->geo.far_offset)
3568                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3569         else {
3570                 sector_div(size, conf->geo.far_copies);
3571                 conf->geo.stride = size << conf->geo.chunk_shift;
3572         }
3573 }
3574
3575 enum geo_type {geo_new, geo_old, geo_start};
3576 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3577 {
3578         int nc, fc, fo;
3579         int layout, chunk, disks;
3580         switch (new) {
3581         case geo_old:
3582                 layout = mddev->layout;
3583                 chunk = mddev->chunk_sectors;
3584                 disks = mddev->raid_disks - mddev->delta_disks;
3585                 break;
3586         case geo_new:
3587                 layout = mddev->new_layout;
3588                 chunk = mddev->new_chunk_sectors;
3589                 disks = mddev->raid_disks;
3590                 break;
3591         default: /* avoid 'may be unused' warnings */
3592         case geo_start: /* new when starting reshape - raid_disks not
3593                          * updated yet. */
3594                 layout = mddev->new_layout;
3595                 chunk = mddev->new_chunk_sectors;
3596                 disks = mddev->raid_disks + mddev->delta_disks;
3597                 break;
3598         }
3599         if (layout >> 19)
3600                 return -1;
3601         if (chunk < (PAGE_SIZE >> 9) ||
3602             !is_power_of_2(chunk))
3603                 return -2;
3604         nc = layout & 255;
3605         fc = (layout >> 8) & 255;
3606         fo = layout & (1<<16);
3607         geo->raid_disks = disks;
3608         geo->near_copies = nc;
3609         geo->far_copies = fc;
3610         geo->far_offset = fo;
3611         switch (layout >> 17) {
3612         case 0: /* original layout.  simple but not always optimal */
3613                 geo->far_set_size = disks;
3614                 break;
3615         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3616                  * actually using this, but leave code here just in case.*/
3617                 geo->far_set_size = disks/fc;
3618                 WARN(geo->far_set_size < fc,
3619                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3620                 break;
3621         case 2: /* "improved" layout fixed to match documentation */
3622                 geo->far_set_size = fc * nc;
3623                 break;
3624         default: /* Not a valid layout */
3625                 return -1;
3626         }
3627         geo->chunk_mask = chunk - 1;
3628         geo->chunk_shift = ffz(~chunk);
3629         return nc*fc;
3630 }
3631
3632 static struct r10conf *setup_conf(struct mddev *mddev)
3633 {
3634         struct r10conf *conf = NULL;
3635         int err = -EINVAL;
3636         struct geom geo;
3637         int copies;
3638
3639         copies = setup_geo(&geo, mddev, geo_new);
3640
3641         if (copies == -2) {
3642                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3643                         mdname(mddev), PAGE_SIZE);
3644                 goto out;
3645         }
3646
3647         if (copies < 2 || copies > mddev->raid_disks) {
3648                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3649                         mdname(mddev), mddev->new_layout);
3650                 goto out;
3651         }
3652
3653         err = -ENOMEM;
3654         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3655         if (!conf)
3656                 goto out;
3657
3658         /* FIXME calc properly */
3659         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3660                                 sizeof(struct raid10_info),
3661                                 GFP_KERNEL);
3662         if (!conf->mirrors)
3663                 goto out;
3664
3665         conf->tmppage = alloc_page(GFP_KERNEL);
3666         if (!conf->tmppage)
3667                 goto out;
3668
3669         conf->geo = geo;
3670         conf->copies = copies;
3671         err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3672                            rbio_pool_free, conf);
3673         if (err)
3674                 goto out;
3675
3676         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3677         if (err)
3678                 goto out;
3679
3680         calc_sectors(conf, mddev->dev_sectors);
3681         if (mddev->reshape_position == MaxSector) {
3682                 conf->prev = conf->geo;
3683                 conf->reshape_progress = MaxSector;
3684         } else {
3685                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3686                         err = -EINVAL;
3687                         goto out;
3688                 }
3689                 conf->reshape_progress = mddev->reshape_position;
3690                 if (conf->prev.far_offset)
3691                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3692                 else
3693                         /* far_copies must be 1 */
3694                         conf->prev.stride = conf->dev_sectors;
3695         }
3696         conf->reshape_safe = conf->reshape_progress;
3697         spin_lock_init(&conf->device_lock);
3698         INIT_LIST_HEAD(&conf->retry_list);
3699         INIT_LIST_HEAD(&conf->bio_end_io_list);
3700
3701         spin_lock_init(&conf->resync_lock);
3702         init_waitqueue_head(&conf->wait_barrier);
3703         atomic_set(&conf->nr_pending, 0);
3704
3705         err = -ENOMEM;
3706         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3707         if (!conf->thread)
3708                 goto out;
3709
3710         conf->mddev = mddev;
3711         return conf;
3712
3713  out:
3714         if (conf) {
3715                 mempool_exit(&conf->r10bio_pool);
3716                 kfree(conf->mirrors);
3717                 safe_put_page(conf->tmppage);
3718                 bioset_exit(&conf->bio_split);
3719                 kfree(conf);
3720         }
3721         return ERR_PTR(err);
3722 }
3723
3724 static int raid10_run(struct mddev *mddev)
3725 {
3726         struct r10conf *conf;
3727         int i, disk_idx, chunk_size;
3728         struct raid10_info *disk;
3729         struct md_rdev *rdev;
3730         sector_t size;
3731         sector_t min_offset_diff = 0;
3732         int first = 1;
3733         bool discard_supported = false;
3734
3735         if (mddev_init_writes_pending(mddev) < 0)
3736                 return -ENOMEM;
3737
3738         if (mddev->private == NULL) {
3739                 conf = setup_conf(mddev);
3740                 if (IS_ERR(conf))
3741                         return PTR_ERR(conf);
3742                 mddev->private = conf;
3743         }
3744         conf = mddev->private;
3745         if (!conf)
3746                 goto out;
3747
3748         if (mddev_is_clustered(conf->mddev)) {
3749                 int fc, fo;
3750
3751                 fc = (mddev->layout >> 8) & 255;
3752                 fo = mddev->layout & (1<<16);
3753                 if (fc > 1 || fo > 0) {
3754                         pr_err("only near layout is supported by clustered"
3755                                 " raid10\n");
3756                         goto out_free_conf;
3757                 }
3758         }
3759
3760         mddev->thread = conf->thread;
3761         conf->thread = NULL;
3762
3763         chunk_size = mddev->chunk_sectors << 9;
3764         if (mddev->queue) {
3765                 blk_queue_max_discard_sectors(mddev->queue,
3766                                               mddev->chunk_sectors);
3767                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3768                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3769                 blk_queue_io_min(mddev->queue, chunk_size);
3770                 if (conf->geo.raid_disks % conf->geo.near_copies)
3771                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3772                 else
3773                         blk_queue_io_opt(mddev->queue, chunk_size *
3774                                          (conf->geo.raid_disks / conf->geo.near_copies));
3775         }
3776
3777         rdev_for_each(rdev, mddev) {
3778                 long long diff;
3779
3780                 disk_idx = rdev->raid_disk;
3781                 if (disk_idx < 0)
3782                         continue;
3783                 if (disk_idx >= conf->geo.raid_disks &&
3784                     disk_idx >= conf->prev.raid_disks)
3785                         continue;
3786                 disk = conf->mirrors + disk_idx;
3787
3788                 if (test_bit(Replacement, &rdev->flags)) {
3789                         if (disk->replacement)
3790                                 goto out_free_conf;
3791                         disk->replacement = rdev;
3792                 } else {
3793                         if (disk->rdev)
3794                                 goto out_free_conf;
3795                         disk->rdev = rdev;
3796                 }
3797                 diff = (rdev->new_data_offset - rdev->data_offset);
3798                 if (!mddev->reshape_backwards)
3799                         diff = -diff;
3800                 if (diff < 0)
3801                         diff = 0;
3802                 if (first || diff < min_offset_diff)
3803                         min_offset_diff = diff;
3804
3805                 if (mddev->gendisk)
3806                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3807                                           rdev->data_offset << 9);
3808
3809                 disk->head_position = 0;
3810
3811                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3812                         discard_supported = true;
3813                 first = 0;
3814         }
3815
3816         if (mddev->queue) {
3817                 if (discard_supported)
3818                         blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3819                                                 mddev->queue);
3820                 else
3821                         blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3822                                                   mddev->queue);
3823         }
3824         /* need to check that every block has at least one working mirror */
3825         if (!enough(conf, -1)) {
3826                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3827                        mdname(mddev));
3828                 goto out_free_conf;
3829         }
3830
3831         if (conf->reshape_progress != MaxSector) {
3832                 /* must ensure that shape change is supported */
3833                 if (conf->geo.far_copies != 1 &&
3834                     conf->geo.far_offset == 0)
3835                         goto out_free_conf;
3836                 if (conf->prev.far_copies != 1 &&
3837                     conf->prev.far_offset == 0)
3838                         goto out_free_conf;
3839         }
3840
3841         mddev->degraded = 0;
3842         for (i = 0;
3843              i < conf->geo.raid_disks
3844                      || i < conf->prev.raid_disks;
3845              i++) {
3846
3847                 disk = conf->mirrors + i;
3848
3849                 if (!disk->rdev && disk->replacement) {
3850                         /* The replacement is all we have - use it */
3851                         disk->rdev = disk->replacement;
3852                         disk->replacement = NULL;
3853                         clear_bit(Replacement, &disk->rdev->flags);
3854                 }
3855
3856                 if (!disk->rdev ||
3857                     !test_bit(In_sync, &disk->rdev->flags)) {
3858                         disk->head_position = 0;
3859                         mddev->degraded++;
3860                         if (disk->rdev &&
3861                             disk->rdev->saved_raid_disk < 0)
3862                                 conf->fullsync = 1;
3863                 }
3864
3865                 if (disk->replacement &&
3866                     !test_bit(In_sync, &disk->replacement->flags) &&
3867                     disk->replacement->saved_raid_disk < 0) {
3868                         conf->fullsync = 1;
3869                 }
3870
3871                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3872         }
3873
3874         if (mddev->recovery_cp != MaxSector)
3875                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3876                           mdname(mddev));
3877         pr_info("md/raid10:%s: active with %d out of %d devices\n",
3878                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3879                 conf->geo.raid_disks);
3880         /*
3881          * Ok, everything is just fine now
3882          */
3883         mddev->dev_sectors = conf->dev_sectors;
3884         size = raid10_size(mddev, 0, 0);
3885         md_set_array_sectors(mddev, size);
3886         mddev->resync_max_sectors = size;
3887         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3888
3889         if (mddev->queue) {
3890                 int stripe = conf->geo.raid_disks *
3891                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3892
3893                 /* Calculate max read-ahead size.
3894                  * We need to readahead at least twice a whole stripe....
3895                  * maybe...
3896                  */
3897                 stripe /= conf->geo.near_copies;
3898                 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3899                         mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3900         }
3901
3902         if (md_integrity_register(mddev))
3903                 goto out_free_conf;
3904
3905         if (conf->reshape_progress != MaxSector) {
3906                 unsigned long before_length, after_length;
3907
3908                 before_length = ((1 << conf->prev.chunk_shift) *
3909                                  conf->prev.far_copies);
3910                 after_length = ((1 << conf->geo.chunk_shift) *
3911                                 conf->geo.far_copies);
3912
3913                 if (max(before_length, after_length) > min_offset_diff) {
3914                         /* This cannot work */
3915                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3916                         goto out_free_conf;
3917                 }
3918                 conf->offset_diff = min_offset_diff;
3919
3920                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3921                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3922                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3923                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3924                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3925                                                         "reshape");
3926                 if (!mddev->sync_thread)
3927                         goto out_free_conf;
3928         }
3929
3930         return 0;
3931
3932 out_free_conf:
3933         md_unregister_thread(&mddev->thread);
3934         mempool_exit(&conf->r10bio_pool);
3935         safe_put_page(conf->tmppage);
3936         kfree(conf->mirrors);
3937         kfree(conf);
3938         mddev->private = NULL;
3939 out:
3940         return -EIO;
3941 }
3942
3943 static void raid10_free(struct mddev *mddev, void *priv)
3944 {
3945         struct r10conf *conf = priv;
3946
3947         mempool_exit(&conf->r10bio_pool);
3948         safe_put_page(conf->tmppage);
3949         kfree(conf->mirrors);
3950         kfree(conf->mirrors_old);
3951         kfree(conf->mirrors_new);
3952         bioset_exit(&conf->bio_split);
3953         kfree(conf);
3954 }
3955
3956 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3957 {
3958         struct r10conf *conf = mddev->private;
3959
3960         if (quiesce)
3961                 raise_barrier(conf, 0);
3962         else
3963                 lower_barrier(conf);
3964 }
3965
3966 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3967 {
3968         /* Resize of 'far' arrays is not supported.
3969          * For 'near' and 'offset' arrays we can set the
3970          * number of sectors used to be an appropriate multiple
3971          * of the chunk size.
3972          * For 'offset', this is far_copies*chunksize.
3973          * For 'near' the multiplier is the LCM of
3974          * near_copies and raid_disks.
3975          * So if far_copies > 1 && !far_offset, fail.
3976          * Else find LCM(raid_disks, near_copy)*far_copies and
3977          * multiply by chunk_size.  Then round to this number.
3978          * This is mostly done by raid10_size()
3979          */
3980         struct r10conf *conf = mddev->private;
3981         sector_t oldsize, size;
3982
3983         if (mddev->reshape_position != MaxSector)
3984                 return -EBUSY;
3985
3986         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3987                 return -EINVAL;
3988
3989         oldsize = raid10_size(mddev, 0, 0);
3990         size = raid10_size(mddev, sectors, 0);
3991         if (mddev->external_size &&
3992             mddev->array_sectors > size)
3993                 return -EINVAL;
3994         if (mddev->bitmap) {
3995                 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3996                 if (ret)
3997                         return ret;
3998         }
3999         md_set_array_sectors(mddev, size);
4000         if (sectors > mddev->dev_sectors &&
4001             mddev->recovery_cp > oldsize) {
4002                 mddev->recovery_cp = oldsize;
4003                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4004         }
4005         calc_sectors(conf, sectors);
4006         mddev->dev_sectors = conf->dev_sectors;
4007         mddev->resync_max_sectors = size;
4008         return 0;
4009 }
4010
4011 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4012 {
4013         struct md_rdev *rdev;
4014         struct r10conf *conf;
4015
4016         if (mddev->degraded > 0) {
4017                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4018                         mdname(mddev));
4019                 return ERR_PTR(-EINVAL);
4020         }
4021         sector_div(size, devs);
4022
4023         /* Set new parameters */
4024         mddev->new_level = 10;
4025         /* new layout: far_copies = 1, near_copies = 2 */
4026         mddev->new_layout = (1<<8) + 2;
4027         mddev->new_chunk_sectors = mddev->chunk_sectors;
4028         mddev->delta_disks = mddev->raid_disks;
4029         mddev->raid_disks *= 2;
4030         /* make sure it will be not marked as dirty */
4031         mddev->recovery_cp = MaxSector;
4032         mddev->dev_sectors = size;
4033
4034         conf = setup_conf(mddev);
4035         if (!IS_ERR(conf)) {
4036                 rdev_for_each(rdev, mddev)
4037                         if (rdev->raid_disk >= 0) {
4038                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4039                                 rdev->sectors = size;
4040                         }
4041                 conf->barrier = 1;
4042         }
4043
4044         return conf;
4045 }
4046
4047 static void *raid10_takeover(struct mddev *mddev)
4048 {
4049         struct r0conf *raid0_conf;
4050
4051         /* raid10 can take over:
4052          *  raid0 - providing it has only two drives
4053          */
4054         if (mddev->level == 0) {
4055                 /* for raid0 takeover only one zone is supported */
4056                 raid0_conf = mddev->private;
4057                 if (raid0_conf->nr_strip_zones > 1) {
4058                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4059                                 mdname(mddev));
4060                         return ERR_PTR(-EINVAL);
4061                 }
4062                 return raid10_takeover_raid0(mddev,
4063                         raid0_conf->strip_zone->zone_end,
4064                         raid0_conf->strip_zone->nb_dev);
4065         }
4066         return ERR_PTR(-EINVAL);
4067 }
4068
4069 static int raid10_check_reshape(struct mddev *mddev)
4070 {
4071         /* Called when there is a request to change
4072          * - layout (to ->new_layout)
4073          * - chunk size (to ->new_chunk_sectors)
4074          * - raid_disks (by delta_disks)
4075          * or when trying to restart a reshape that was ongoing.
4076          *
4077          * We need to validate the request and possibly allocate
4078          * space if that might be an issue later.
4079          *
4080          * Currently we reject any reshape of a 'far' mode array,
4081          * allow chunk size to change if new is generally acceptable,
4082          * allow raid_disks to increase, and allow
4083          * a switch between 'near' mode and 'offset' mode.
4084          */
4085         struct r10conf *conf = mddev->private;
4086         struct geom geo;
4087
4088         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4089                 return -EINVAL;
4090
4091         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4092                 /* mustn't change number of copies */
4093                 return -EINVAL;
4094         if (geo.far_copies > 1 && !geo.far_offset)
4095                 /* Cannot switch to 'far' mode */
4096                 return -EINVAL;
4097
4098         if (mddev->array_sectors & geo.chunk_mask)
4099                         /* not factor of array size */
4100                         return -EINVAL;
4101
4102         if (!enough(conf, -1))
4103                 return -EINVAL;
4104
4105         kfree(conf->mirrors_new);
4106         conf->mirrors_new = NULL;
4107         if (mddev->delta_disks > 0) {
4108                 /* allocate new 'mirrors' list */
4109                 conf->mirrors_new =
4110                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4111                                 sizeof(struct raid10_info),
4112                                 GFP_KERNEL);
4113                 if (!conf->mirrors_new)
4114                         return -ENOMEM;
4115         }
4116         return 0;
4117 }
4118
4119 /*
4120  * Need to check if array has failed when deciding whether to:
4121  *  - start an array
4122  *  - remove non-faulty devices
4123  *  - add a spare
4124  *  - allow a reshape
4125  * This determination is simple when no reshape is happening.
4126  * However if there is a reshape, we need to carefully check
4127  * both the before and after sections.
4128  * This is because some failed devices may only affect one
4129  * of the two sections, and some non-in_sync devices may
4130  * be insync in the section most affected by failed devices.
4131  */
4132 static int calc_degraded(struct r10conf *conf)
4133 {
4134         int degraded, degraded2;
4135         int i;
4136
4137         rcu_read_lock();
4138         degraded = 0;
4139         /* 'prev' section first */
4140         for (i = 0; i < conf->prev.raid_disks; i++) {
4141                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4142                 if (!rdev || test_bit(Faulty, &rdev->flags))
4143                         degraded++;
4144                 else if (!test_bit(In_sync, &rdev->flags))
4145                         /* When we can reduce the number of devices in
4146                          * an array, this might not contribute to
4147                          * 'degraded'.  It does now.
4148                          */
4149                         degraded++;
4150         }
4151         rcu_read_unlock();
4152         if (conf->geo.raid_disks == conf->prev.raid_disks)
4153                 return degraded;
4154         rcu_read_lock();
4155         degraded2 = 0;
4156         for (i = 0; i < conf->geo.raid_disks; i++) {
4157                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4158                 if (!rdev || test_bit(Faulty, &rdev->flags))
4159                         degraded2++;
4160                 else if (!test_bit(In_sync, &rdev->flags)) {
4161                         /* If reshape is increasing the number of devices,
4162                          * this section has already been recovered, so
4163                          * it doesn't contribute to degraded.
4164                          * else it does.
4165                          */
4166                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4167                                 degraded2++;
4168                 }
4169         }
4170         rcu_read_unlock();
4171         if (degraded2 > degraded)
4172                 return degraded2;
4173         return degraded;
4174 }
4175
4176 static int raid10_start_reshape(struct mddev *mddev)
4177 {
4178         /* A 'reshape' has been requested. This commits
4179          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4180          * This also checks if there are enough spares and adds them
4181          * to the array.
4182          * We currently require enough spares to make the final
4183          * array non-degraded.  We also require that the difference
4184          * between old and new data_offset - on each device - is
4185          * enough that we never risk over-writing.
4186          */
4187
4188         unsigned long before_length, after_length;
4189         sector_t min_offset_diff = 0;
4190         int first = 1;
4191         struct geom new;
4192         struct r10conf *conf = mddev->private;
4193         struct md_rdev *rdev;
4194         int spares = 0;
4195         int ret;
4196
4197         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4198                 return -EBUSY;
4199
4200         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4201                 return -EINVAL;
4202
4203         before_length = ((1 << conf->prev.chunk_shift) *
4204                          conf->prev.far_copies);
4205         after_length = ((1 << conf->geo.chunk_shift) *
4206                         conf->geo.far_copies);
4207
4208         rdev_for_each(rdev, mddev) {
4209                 if (!test_bit(In_sync, &rdev->flags)
4210                     && !test_bit(Faulty, &rdev->flags))
4211                         spares++;
4212                 if (rdev->raid_disk >= 0) {
4213                         long long diff = (rdev->new_data_offset
4214                                           - rdev->data_offset);
4215                         if (!mddev->reshape_backwards)
4216                                 diff = -diff;
4217                         if (diff < 0)
4218                                 diff = 0;
4219                         if (first || diff < min_offset_diff)
4220                                 min_offset_diff = diff;
4221                         first = 0;
4222                 }
4223         }
4224
4225         if (max(before_length, after_length) > min_offset_diff)
4226                 return -EINVAL;
4227
4228         if (spares < mddev->delta_disks)
4229                 return -EINVAL;
4230
4231         conf->offset_diff = min_offset_diff;
4232         spin_lock_irq(&conf->device_lock);
4233         if (conf->mirrors_new) {
4234                 memcpy(conf->mirrors_new, conf->mirrors,
4235                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4236                 smp_mb();
4237                 kfree(conf->mirrors_old);
4238                 conf->mirrors_old = conf->mirrors;
4239                 conf->mirrors = conf->mirrors_new;
4240                 conf->mirrors_new = NULL;
4241         }
4242         setup_geo(&conf->geo, mddev, geo_start);
4243         smp_mb();
4244         if (mddev->reshape_backwards) {
4245                 sector_t size = raid10_size(mddev, 0, 0);
4246                 if (size < mddev->array_sectors) {
4247                         spin_unlock_irq(&conf->device_lock);
4248                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4249                                 mdname(mddev));
4250                         return -EINVAL;
4251                 }
4252                 mddev->resync_max_sectors = size;
4253                 conf->reshape_progress = size;
4254         } else
4255                 conf->reshape_progress = 0;
4256         conf->reshape_safe = conf->reshape_progress;
4257         spin_unlock_irq(&conf->device_lock);
4258
4259         if (mddev->delta_disks && mddev->bitmap) {
4260                 struct mdp_superblock_1 *sb = NULL;
4261                 sector_t oldsize, newsize;
4262
4263                 oldsize = raid10_size(mddev, 0, 0);
4264                 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4265
4266                 if (!mddev_is_clustered(mddev)) {
4267                         ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4268                         if (ret)
4269                                 goto abort;
4270                         else
4271                                 goto out;
4272                 }
4273
4274                 rdev_for_each(rdev, mddev) {
4275                         if (rdev->raid_disk > -1 &&
4276                             !test_bit(Faulty, &rdev->flags))
4277                                 sb = page_address(rdev->sb_page);
4278                 }
4279
4280                 /*
4281                  * some node is already performing reshape, and no need to
4282                  * call md_bitmap_resize again since it should be called when
4283                  * receiving BITMAP_RESIZE msg
4284                  */
4285                 if ((sb && (le32_to_cpu(sb->feature_map) &
4286                             MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4287                         goto out;
4288
4289                 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4290                 if (ret)
4291                         goto abort;
4292
4293                 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4294                 if (ret) {
4295                         md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4296                         goto abort;
4297                 }
4298         }
4299 out:
4300         if (mddev->delta_disks > 0) {
4301                 rdev_for_each(rdev, mddev)
4302                         if (rdev->raid_disk < 0 &&
4303                             !test_bit(Faulty, &rdev->flags)) {
4304                                 if (raid10_add_disk(mddev, rdev) == 0) {
4305                                         if (rdev->raid_disk >=
4306                                             conf->prev.raid_disks)
4307                                                 set_bit(In_sync, &rdev->flags);
4308                                         else
4309                                                 rdev->recovery_offset = 0;
4310
4311                                         if (sysfs_link_rdev(mddev, rdev))
4312                                                 /* Failure here  is OK */;
4313                                 }
4314                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4315                                    && !test_bit(Faulty, &rdev->flags)) {
4316                                 /* This is a spare that was manually added */
4317                                 set_bit(In_sync, &rdev->flags);
4318                         }
4319         }
4320         /* When a reshape changes the number of devices,
4321          * ->degraded is measured against the larger of the
4322          * pre and  post numbers.
4323          */
4324         spin_lock_irq(&conf->device_lock);
4325         mddev->degraded = calc_degraded(conf);
4326         spin_unlock_irq(&conf->device_lock);
4327         mddev->raid_disks = conf->geo.raid_disks;
4328         mddev->reshape_position = conf->reshape_progress;
4329         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4330
4331         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4332         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4333         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4334         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4335         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4336
4337         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4338                                                 "reshape");
4339         if (!mddev->sync_thread) {
4340                 ret = -EAGAIN;
4341                 goto abort;
4342         }
4343         conf->reshape_checkpoint = jiffies;
4344         md_wakeup_thread(mddev->sync_thread);
4345         md_new_event(mddev);
4346         return 0;
4347
4348 abort:
4349         mddev->recovery = 0;
4350         spin_lock_irq(&conf->device_lock);
4351         conf->geo = conf->prev;
4352         mddev->raid_disks = conf->geo.raid_disks;
4353         rdev_for_each(rdev, mddev)
4354                 rdev->new_data_offset = rdev->data_offset;
4355         smp_wmb();
4356         conf->reshape_progress = MaxSector;
4357         conf->reshape_safe = MaxSector;
4358         mddev->reshape_position = MaxSector;
4359         spin_unlock_irq(&conf->device_lock);
4360         return ret;
4361 }
4362
4363 /* Calculate the last device-address that could contain
4364  * any block from the chunk that includes the array-address 's'
4365  * and report the next address.
4366  * i.e. the address returned will be chunk-aligned and after
4367  * any data that is in the chunk containing 's'.
4368  */
4369 static sector_t last_dev_address(sector_t s, struct geom *geo)
4370 {
4371         s = (s | geo->chunk_mask) + 1;
4372         s >>= geo->chunk_shift;
4373         s *= geo->near_copies;
4374         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4375         s *= geo->far_copies;
4376         s <<= geo->chunk_shift;
4377         return s;
4378 }
4379
4380 /* Calculate the first device-address that could contain
4381  * any block from the chunk that includes the array-address 's'.
4382  * This too will be the start of a chunk
4383  */
4384 static sector_t first_dev_address(sector_t s, struct geom *geo)
4385 {
4386         s >>= geo->chunk_shift;
4387         s *= geo->near_copies;
4388         sector_div(s, geo->raid_disks);
4389         s *= geo->far_copies;
4390         s <<= geo->chunk_shift;
4391         return s;
4392 }
4393
4394 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4395                                 int *skipped)
4396 {
4397         /* We simply copy at most one chunk (smallest of old and new)
4398          * at a time, possibly less if that exceeds RESYNC_PAGES,
4399          * or we hit a bad block or something.
4400          * This might mean we pause for normal IO in the middle of
4401          * a chunk, but that is not a problem as mddev->reshape_position
4402          * can record any location.
4403          *
4404          * If we will want to write to a location that isn't
4405          * yet recorded as 'safe' (i.e. in metadata on disk) then
4406          * we need to flush all reshape requests and update the metadata.
4407          *
4408          * When reshaping forwards (e.g. to more devices), we interpret
4409          * 'safe' as the earliest block which might not have been copied
4410          * down yet.  We divide this by previous stripe size and multiply
4411          * by previous stripe length to get lowest device offset that we
4412          * cannot write to yet.
4413          * We interpret 'sector_nr' as an address that we want to write to.
4414          * From this we use last_device_address() to find where we might
4415          * write to, and first_device_address on the  'safe' position.
4416          * If this 'next' write position is after the 'safe' position,
4417          * we must update the metadata to increase the 'safe' position.
4418          *
4419          * When reshaping backwards, we round in the opposite direction
4420          * and perform the reverse test:  next write position must not be
4421          * less than current safe position.
4422          *
4423          * In all this the minimum difference in data offsets
4424          * (conf->offset_diff - always positive) allows a bit of slack,
4425          * so next can be after 'safe', but not by more than offset_diff
4426          *
4427          * We need to prepare all the bios here before we start any IO
4428          * to ensure the size we choose is acceptable to all devices.
4429          * The means one for each copy for write-out and an extra one for
4430          * read-in.
4431          * We store the read-in bio in ->master_bio and the others in
4432          * ->devs[x].bio and ->devs[x].repl_bio.
4433          */
4434         struct r10conf *conf = mddev->private;
4435         struct r10bio *r10_bio;
4436         sector_t next, safe, last;
4437         int max_sectors;
4438         int nr_sectors;
4439         int s;
4440         struct md_rdev *rdev;
4441         int need_flush = 0;
4442         struct bio *blist;
4443         struct bio *bio, *read_bio;
4444         int sectors_done = 0;
4445         struct page **pages;
4446
4447         if (sector_nr == 0) {
4448                 /* If restarting in the middle, skip the initial sectors */
4449                 if (mddev->reshape_backwards &&
4450                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4451                         sector_nr = (raid10_size(mddev, 0, 0)
4452                                      - conf->reshape_progress);
4453                 } else if (!mddev->reshape_backwards &&
4454                            conf->reshape_progress > 0)
4455                         sector_nr = conf->reshape_progress;
4456                 if (sector_nr) {
4457                         mddev->curr_resync_completed = sector_nr;
4458                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4459                         *skipped = 1;
4460                         return sector_nr;
4461                 }
4462         }
4463
4464         /* We don't use sector_nr to track where we are up to
4465          * as that doesn't work well for ->reshape_backwards.
4466          * So just use ->reshape_progress.
4467          */
4468         if (mddev->reshape_backwards) {
4469                 /* 'next' is the earliest device address that we might
4470                  * write to for this chunk in the new layout
4471                  */
4472                 next = first_dev_address(conf->reshape_progress - 1,
4473                                          &conf->geo);
4474
4475                 /* 'safe' is the last device address that we might read from
4476                  * in the old layout after a restart
4477                  */
4478                 safe = last_dev_address(conf->reshape_safe - 1,
4479                                         &conf->prev);
4480
4481                 if (next + conf->offset_diff < safe)
4482                         need_flush = 1;
4483
4484                 last = conf->reshape_progress - 1;
4485                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4486                                                & conf->prev.chunk_mask);
4487                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4488                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4489         } else {
4490                 /* 'next' is after the last device address that we
4491                  * might write to for this chunk in the new layout
4492                  */
4493                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4494
4495                 /* 'safe' is the earliest device address that we might
4496                  * read from in the old layout after a restart
4497                  */
4498                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4499
4500                 /* Need to update metadata if 'next' might be beyond 'safe'
4501                  * as that would possibly corrupt data
4502                  */
4503                 if (next > safe + conf->offset_diff)
4504                         need_flush = 1;
4505
4506                 sector_nr = conf->reshape_progress;
4507                 last  = sector_nr | (conf->geo.chunk_mask
4508                                      & conf->prev.chunk_mask);
4509
4510                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4511                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4512         }
4513
4514         if (need_flush ||
4515             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4516                 /* Need to update reshape_position in metadata */
4517                 wait_barrier(conf);
4518                 mddev->reshape_position = conf->reshape_progress;
4519                 if (mddev->reshape_backwards)
4520                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4521                                 - conf->reshape_progress;
4522                 else
4523                         mddev->curr_resync_completed = conf->reshape_progress;
4524                 conf->reshape_checkpoint = jiffies;
4525                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4526                 md_wakeup_thread(mddev->thread);
4527                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4528                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4529                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4530                         allow_barrier(conf);
4531                         return sectors_done;
4532                 }
4533                 conf->reshape_safe = mddev->reshape_position;
4534                 allow_barrier(conf);
4535         }
4536
4537         raise_barrier(conf, 0);
4538 read_more:
4539         /* Now schedule reads for blocks from sector_nr to last */
4540         r10_bio = raid10_alloc_init_r10buf(conf);
4541         r10_bio->state = 0;
4542         raise_barrier(conf, 1);
4543         atomic_set(&r10_bio->remaining, 0);
4544         r10_bio->mddev = mddev;
4545         r10_bio->sector = sector_nr;
4546         set_bit(R10BIO_IsReshape, &r10_bio->state);
4547         r10_bio->sectors = last - sector_nr + 1;
4548         rdev = read_balance(conf, r10_bio, &max_sectors);
4549         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4550
4551         if (!rdev) {
4552                 /* Cannot read from here, so need to record bad blocks
4553                  * on all the target devices.
4554                  */
4555                 // FIXME
4556                 mempool_free(r10_bio, &conf->r10buf_pool);
4557                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4558                 return sectors_done;
4559         }
4560
4561         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4562
4563         bio_set_dev(read_bio, rdev->bdev);
4564         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4565                                + rdev->data_offset);
4566         read_bio->bi_private = r10_bio;
4567         read_bio->bi_end_io = end_reshape_read;
4568         bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4569         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4570         read_bio->bi_status = 0;
4571         read_bio->bi_vcnt = 0;
4572         read_bio->bi_iter.bi_size = 0;
4573         r10_bio->master_bio = read_bio;
4574         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4575
4576         /*
4577          * Broadcast RESYNC message to other nodes, so all nodes would not
4578          * write to the region to avoid conflict.
4579         */
4580         if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4581                 struct mdp_superblock_1 *sb = NULL;
4582                 int sb_reshape_pos = 0;
4583
4584                 conf->cluster_sync_low = sector_nr;
4585                 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4586                 sb = page_address(rdev->sb_page);
4587                 if (sb) {
4588                         sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4589                         /*
4590                          * Set cluster_sync_low again if next address for array
4591                          * reshape is less than cluster_sync_low. Since we can't
4592                          * update cluster_sync_low until it has finished reshape.
4593                          */
4594                         if (sb_reshape_pos < conf->cluster_sync_low)
4595                                 conf->cluster_sync_low = sb_reshape_pos;
4596                 }
4597
4598                 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4599                                                           conf->cluster_sync_high);
4600         }
4601
4602         /* Now find the locations in the new layout */
4603         __raid10_find_phys(&conf->geo, r10_bio);
4604
4605         blist = read_bio;
4606         read_bio->bi_next = NULL;
4607
4608         rcu_read_lock();
4609         for (s = 0; s < conf->copies*2; s++) {
4610                 struct bio *b;
4611                 int d = r10_bio->devs[s/2].devnum;
4612                 struct md_rdev *rdev2;
4613                 if (s&1) {
4614                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4615                         b = r10_bio->devs[s/2].repl_bio;
4616                 } else {
4617                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4618                         b = r10_bio->devs[s/2].bio;
4619                 }
4620                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4621                         continue;
4622
4623                 bio_set_dev(b, rdev2->bdev);
4624                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4625                         rdev2->new_data_offset;
4626                 b->bi_end_io = end_reshape_write;
4627                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4628                 b->bi_next = blist;
4629                 blist = b;
4630         }
4631
4632         /* Now add as many pages as possible to all of these bios. */
4633
4634         nr_sectors = 0;
4635         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4636         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4637                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4638                 int len = (max_sectors - s) << 9;
4639                 if (len > PAGE_SIZE)
4640                         len = PAGE_SIZE;
4641                 for (bio = blist; bio ; bio = bio->bi_next) {
4642                         /*
4643                          * won't fail because the vec table is big enough
4644                          * to hold all these pages
4645                          */
4646                         bio_add_page(bio, page, len, 0);
4647                 }
4648                 sector_nr += len >> 9;
4649                 nr_sectors += len >> 9;
4650         }
4651         rcu_read_unlock();
4652         r10_bio->sectors = nr_sectors;
4653
4654         /* Now submit the read */
4655         md_sync_acct_bio(read_bio, r10_bio->sectors);
4656         atomic_inc(&r10_bio->remaining);
4657         read_bio->bi_next = NULL;
4658         generic_make_request(read_bio);
4659         sectors_done += nr_sectors;
4660         if (sector_nr <= last)
4661                 goto read_more;
4662
4663         lower_barrier(conf);
4664
4665         /* Now that we have done the whole section we can
4666          * update reshape_progress
4667          */
4668         if (mddev->reshape_backwards)
4669                 conf->reshape_progress -= sectors_done;
4670         else
4671                 conf->reshape_progress += sectors_done;
4672
4673         return sectors_done;
4674 }
4675
4676 static void end_reshape_request(struct r10bio *r10_bio);
4677 static int handle_reshape_read_error(struct mddev *mddev,
4678                                      struct r10bio *r10_bio);
4679 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4680 {
4681         /* Reshape read completed.  Hopefully we have a block
4682          * to write out.
4683          * If we got a read error then we do sync 1-page reads from
4684          * elsewhere until we find the data - or give up.
4685          */
4686         struct r10conf *conf = mddev->private;
4687         int s;
4688
4689         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4690                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4691                         /* Reshape has been aborted */
4692                         md_done_sync(mddev, r10_bio->sectors, 0);
4693                         return;
4694                 }
4695
4696         /* We definitely have the data in the pages, schedule the
4697          * writes.
4698          */
4699         atomic_set(&r10_bio->remaining, 1);
4700         for (s = 0; s < conf->copies*2; s++) {
4701                 struct bio *b;
4702                 int d = r10_bio->devs[s/2].devnum;
4703                 struct md_rdev *rdev;
4704                 rcu_read_lock();
4705                 if (s&1) {
4706                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4707                         b = r10_bio->devs[s/2].repl_bio;
4708                 } else {
4709                         rdev = rcu_dereference(conf->mirrors[d].rdev);
4710                         b = r10_bio->devs[s/2].bio;
4711                 }
4712                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4713                         rcu_read_unlock();
4714                         continue;
4715                 }
4716                 atomic_inc(&rdev->nr_pending);
4717                 rcu_read_unlock();
4718                 md_sync_acct_bio(b, r10_bio->sectors);
4719                 atomic_inc(&r10_bio->remaining);
4720                 b->bi_next = NULL;
4721                 generic_make_request(b);
4722         }
4723         end_reshape_request(r10_bio);
4724 }
4725
4726 static void end_reshape(struct r10conf *conf)
4727 {
4728         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4729                 return;
4730
4731         spin_lock_irq(&conf->device_lock);
4732         conf->prev = conf->geo;
4733         md_finish_reshape(conf->mddev);
4734         smp_wmb();
4735         conf->reshape_progress = MaxSector;
4736         conf->reshape_safe = MaxSector;
4737         spin_unlock_irq(&conf->device_lock);
4738
4739         /* read-ahead size must cover two whole stripes, which is
4740          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4741          */
4742         if (conf->mddev->queue) {
4743                 int stripe = conf->geo.raid_disks *
4744                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4745                 stripe /= conf->geo.near_copies;
4746                 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4747                         conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4748         }
4749         conf->fullsync = 0;
4750 }
4751
4752 static void raid10_update_reshape_pos(struct mddev *mddev)
4753 {
4754         struct r10conf *conf = mddev->private;
4755         sector_t lo, hi;
4756
4757         md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4758         if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4759             || mddev->reshape_position == MaxSector)
4760                 conf->reshape_progress = mddev->reshape_position;
4761         else
4762                 WARN_ON_ONCE(1);
4763 }
4764
4765 static int handle_reshape_read_error(struct mddev *mddev,
4766                                      struct r10bio *r10_bio)
4767 {
4768         /* Use sync reads to get the blocks from somewhere else */
4769         int sectors = r10_bio->sectors;
4770         struct r10conf *conf = mddev->private;
4771         struct r10bio *r10b;
4772         int slot = 0;
4773         int idx = 0;
4774         struct page **pages;
4775
4776         r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4777         if (!r10b) {
4778                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4779                 return -ENOMEM;
4780         }
4781
4782         /* reshape IOs share pages from .devs[0].bio */
4783         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4784
4785         r10b->sector = r10_bio->sector;
4786         __raid10_find_phys(&conf->prev, r10b);
4787
4788         while (sectors) {
4789                 int s = sectors;
4790                 int success = 0;
4791                 int first_slot = slot;
4792
4793                 if (s > (PAGE_SIZE >> 9))
4794                         s = PAGE_SIZE >> 9;
4795
4796                 rcu_read_lock();
4797                 while (!success) {
4798                         int d = r10b->devs[slot].devnum;
4799                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4800                         sector_t addr;
4801                         if (rdev == NULL ||
4802                             test_bit(Faulty, &rdev->flags) ||
4803                             !test_bit(In_sync, &rdev->flags))
4804                                 goto failed;
4805
4806                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4807                         atomic_inc(&rdev->nr_pending);
4808                         rcu_read_unlock();
4809                         success = sync_page_io(rdev,
4810                                                addr,
4811                                                s << 9,
4812                                                pages[idx],
4813                                                REQ_OP_READ, 0, false);
4814                         rdev_dec_pending(rdev, mddev);
4815                         rcu_read_lock();
4816                         if (success)
4817                                 break;
4818                 failed:
4819                         slot++;
4820                         if (slot >= conf->copies)
4821                                 slot = 0;
4822                         if (slot == first_slot)
4823                                 break;
4824                 }
4825                 rcu_read_unlock();
4826                 if (!success) {
4827                         /* couldn't read this block, must give up */
4828                         set_bit(MD_RECOVERY_INTR,
4829                                 &mddev->recovery);
4830                         kfree(r10b);
4831                         return -EIO;
4832                 }
4833                 sectors -= s;
4834                 idx++;
4835         }
4836         kfree(r10b);
4837         return 0;
4838 }
4839
4840 static void end_reshape_write(struct bio *bio)
4841 {
4842         struct r10bio *r10_bio = get_resync_r10bio(bio);
4843         struct mddev *mddev = r10_bio->mddev;
4844         struct r10conf *conf = mddev->private;
4845         int d;
4846         int slot;
4847         int repl;
4848         struct md_rdev *rdev = NULL;
4849
4850         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4851         if (repl)
4852                 rdev = conf->mirrors[d].replacement;
4853         if (!rdev) {
4854                 smp_mb();
4855                 rdev = conf->mirrors[d].rdev;
4856         }
4857
4858         if (bio->bi_status) {
4859                 /* FIXME should record badblock */
4860                 md_error(mddev, rdev);
4861         }
4862
4863         rdev_dec_pending(rdev, mddev);
4864         end_reshape_request(r10_bio);
4865 }
4866
4867 static void end_reshape_request(struct r10bio *r10_bio)
4868 {
4869         if (!atomic_dec_and_test(&r10_bio->remaining))
4870                 return;
4871         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4872         bio_put(r10_bio->master_bio);
4873         put_buf(r10_bio);
4874 }
4875
4876 static void raid10_finish_reshape(struct mddev *mddev)
4877 {
4878         struct r10conf *conf = mddev->private;
4879
4880         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4881                 return;
4882
4883         if (mddev->delta_disks > 0) {
4884                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4885                         mddev->recovery_cp = mddev->resync_max_sectors;
4886                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4887                 }
4888                 mddev->resync_max_sectors = mddev->array_sectors;
4889         } else {
4890                 int d;
4891                 rcu_read_lock();
4892                 for (d = conf->geo.raid_disks ;
4893                      d < conf->geo.raid_disks - mddev->delta_disks;
4894                      d++) {
4895                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4896                         if (rdev)
4897                                 clear_bit(In_sync, &rdev->flags);
4898                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4899                         if (rdev)
4900                                 clear_bit(In_sync, &rdev->flags);
4901                 }
4902                 rcu_read_unlock();
4903         }
4904         mddev->layout = mddev->new_layout;
4905         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4906         mddev->reshape_position = MaxSector;
4907         mddev->delta_disks = 0;
4908         mddev->reshape_backwards = 0;
4909 }
4910
4911 static struct md_personality raid10_personality =
4912 {
4913         .name           = "raid10",
4914         .level          = 10,
4915         .owner          = THIS_MODULE,
4916         .make_request   = raid10_make_request,
4917         .run            = raid10_run,
4918         .free           = raid10_free,
4919         .status         = raid10_status,
4920         .error_handler  = raid10_error,
4921         .hot_add_disk   = raid10_add_disk,
4922         .hot_remove_disk= raid10_remove_disk,
4923         .spare_active   = raid10_spare_active,
4924         .sync_request   = raid10_sync_request,
4925         .quiesce        = raid10_quiesce,
4926         .size           = raid10_size,
4927         .resize         = raid10_resize,
4928         .takeover       = raid10_takeover,
4929         .check_reshape  = raid10_check_reshape,
4930         .start_reshape  = raid10_start_reshape,
4931         .finish_reshape = raid10_finish_reshape,
4932         .update_reshape_pos = raid10_update_reshape_pos,
4933         .congested      = raid10_congested,
4934 };
4935
4936 static int __init raid_init(void)
4937 {
4938         return register_md_personality(&raid10_personality);
4939 }
4940
4941 static void raid_exit(void)
4942 {
4943         unregister_md_personality(&raid10_personality);
4944 }
4945
4946 module_init(raid_init);
4947 module_exit(raid_exit);
4948 MODULE_LICENSE("GPL");
4949 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4950 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4951 MODULE_ALIAS("md-raid10");
4952 MODULE_ALIAS("md-level-10");
4953
4954 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);