bcache: fixup lock c->root error
[platform/kernel/linux-starfive.git] / drivers / md / raid10.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72                                 int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76
77 #define raid10_log(md, fmt, args...)                            \
78         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80 #include "raid1-10.c"
81
82 #define NULL_CMD
83 #define cmd_before(conf, cmd) \
84         do { \
85                 write_sequnlock_irq(&(conf)->resync_lock); \
86                 cmd; \
87         } while (0)
88 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
89
90 #define wait_event_barrier_cmd(conf, cond, cmd) \
91         wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
92                        cmd_after(conf))
93
94 #define wait_event_barrier(conf, cond) \
95         wait_event_barrier_cmd(conf, cond, NULL_CMD)
96
97 /*
98  * for resync bio, r10bio pointer can be retrieved from the per-bio
99  * 'struct resync_pages'.
100  */
101 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
102 {
103         return get_resync_pages(bio)->raid_bio;
104 }
105
106 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
107 {
108         struct r10conf *conf = data;
109         int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
110
111         /* allocate a r10bio with room for raid_disks entries in the
112          * bios array */
113         return kzalloc(size, gfp_flags);
114 }
115
116 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
117 /* amount of memory to reserve for resync requests */
118 #define RESYNC_WINDOW (1024*1024)
119 /* maximum number of concurrent requests, memory permitting */
120 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
121 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
122 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
123
124 /*
125  * When performing a resync, we need to read and compare, so
126  * we need as many pages are there are copies.
127  * When performing a recovery, we need 2 bios, one for read,
128  * one for write (we recover only one drive per r10buf)
129  *
130  */
131 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
132 {
133         struct r10conf *conf = data;
134         struct r10bio *r10_bio;
135         struct bio *bio;
136         int j;
137         int nalloc, nalloc_rp;
138         struct resync_pages *rps;
139
140         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
141         if (!r10_bio)
142                 return NULL;
143
144         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
145             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
146                 nalloc = conf->copies; /* resync */
147         else
148                 nalloc = 2; /* recovery */
149
150         /* allocate once for all bios */
151         if (!conf->have_replacement)
152                 nalloc_rp = nalloc;
153         else
154                 nalloc_rp = nalloc * 2;
155         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
156         if (!rps)
157                 goto out_free_r10bio;
158
159         /*
160          * Allocate bios.
161          */
162         for (j = nalloc ; j-- ; ) {
163                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
164                 if (!bio)
165                         goto out_free_bio;
166                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
167                 r10_bio->devs[j].bio = bio;
168                 if (!conf->have_replacement)
169                         continue;
170                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
171                 if (!bio)
172                         goto out_free_bio;
173                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
174                 r10_bio->devs[j].repl_bio = bio;
175         }
176         /*
177          * Allocate RESYNC_PAGES data pages and attach them
178          * where needed.
179          */
180         for (j = 0; j < nalloc; j++) {
181                 struct bio *rbio = r10_bio->devs[j].repl_bio;
182                 struct resync_pages *rp, *rp_repl;
183
184                 rp = &rps[j];
185                 if (rbio)
186                         rp_repl = &rps[nalloc + j];
187
188                 bio = r10_bio->devs[j].bio;
189
190                 if (!j || test_bit(MD_RECOVERY_SYNC,
191                                    &conf->mddev->recovery)) {
192                         if (resync_alloc_pages(rp, gfp_flags))
193                                 goto out_free_pages;
194                 } else {
195                         memcpy(rp, &rps[0], sizeof(*rp));
196                         resync_get_all_pages(rp);
197                 }
198
199                 rp->raid_bio = r10_bio;
200                 bio->bi_private = rp;
201                 if (rbio) {
202                         memcpy(rp_repl, rp, sizeof(*rp));
203                         rbio->bi_private = rp_repl;
204                 }
205         }
206
207         return r10_bio;
208
209 out_free_pages:
210         while (--j >= 0)
211                 resync_free_pages(&rps[j]);
212
213         j = 0;
214 out_free_bio:
215         for ( ; j < nalloc; j++) {
216                 if (r10_bio->devs[j].bio)
217                         bio_uninit(r10_bio->devs[j].bio);
218                 kfree(r10_bio->devs[j].bio);
219                 if (r10_bio->devs[j].repl_bio)
220                         bio_uninit(r10_bio->devs[j].repl_bio);
221                 kfree(r10_bio->devs[j].repl_bio);
222         }
223         kfree(rps);
224 out_free_r10bio:
225         rbio_pool_free(r10_bio, conf);
226         return NULL;
227 }
228
229 static void r10buf_pool_free(void *__r10_bio, void *data)
230 {
231         struct r10conf *conf = data;
232         struct r10bio *r10bio = __r10_bio;
233         int j;
234         struct resync_pages *rp = NULL;
235
236         for (j = conf->copies; j--; ) {
237                 struct bio *bio = r10bio->devs[j].bio;
238
239                 if (bio) {
240                         rp = get_resync_pages(bio);
241                         resync_free_pages(rp);
242                         bio_uninit(bio);
243                         kfree(bio);
244                 }
245
246                 bio = r10bio->devs[j].repl_bio;
247                 if (bio) {
248                         bio_uninit(bio);
249                         kfree(bio);
250                 }
251         }
252
253         /* resync pages array stored in the 1st bio's .bi_private */
254         kfree(rp);
255
256         rbio_pool_free(r10bio, conf);
257 }
258
259 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
260 {
261         int i;
262
263         for (i = 0; i < conf->geo.raid_disks; i++) {
264                 struct bio **bio = & r10_bio->devs[i].bio;
265                 if (!BIO_SPECIAL(*bio))
266                         bio_put(*bio);
267                 *bio = NULL;
268                 bio = &r10_bio->devs[i].repl_bio;
269                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
270                         bio_put(*bio);
271                 *bio = NULL;
272         }
273 }
274
275 static void free_r10bio(struct r10bio *r10_bio)
276 {
277         struct r10conf *conf = r10_bio->mddev->private;
278
279         put_all_bios(conf, r10_bio);
280         mempool_free(r10_bio, &conf->r10bio_pool);
281 }
282
283 static void put_buf(struct r10bio *r10_bio)
284 {
285         struct r10conf *conf = r10_bio->mddev->private;
286
287         mempool_free(r10_bio, &conf->r10buf_pool);
288
289         lower_barrier(conf);
290 }
291
292 static void wake_up_barrier(struct r10conf *conf)
293 {
294         if (wq_has_sleeper(&conf->wait_barrier))
295                 wake_up(&conf->wait_barrier);
296 }
297
298 static void reschedule_retry(struct r10bio *r10_bio)
299 {
300         unsigned long flags;
301         struct mddev *mddev = r10_bio->mddev;
302         struct r10conf *conf = mddev->private;
303
304         spin_lock_irqsave(&conf->device_lock, flags);
305         list_add(&r10_bio->retry_list, &conf->retry_list);
306         conf->nr_queued ++;
307         spin_unlock_irqrestore(&conf->device_lock, flags);
308
309         /* wake up frozen array... */
310         wake_up(&conf->wait_barrier);
311
312         md_wakeup_thread(mddev->thread);
313 }
314
315 /*
316  * raid_end_bio_io() is called when we have finished servicing a mirrored
317  * operation and are ready to return a success/failure code to the buffer
318  * cache layer.
319  */
320 static void raid_end_bio_io(struct r10bio *r10_bio)
321 {
322         struct bio *bio = r10_bio->master_bio;
323         struct r10conf *conf = r10_bio->mddev->private;
324
325         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
326                 bio->bi_status = BLK_STS_IOERR;
327
328         bio_endio(bio);
329         /*
330          * Wake up any possible resync thread that waits for the device
331          * to go idle.
332          */
333         allow_barrier(conf);
334
335         free_r10bio(r10_bio);
336 }
337
338 /*
339  * Update disk head position estimator based on IRQ completion info.
340  */
341 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
342 {
343         struct r10conf *conf = r10_bio->mddev->private;
344
345         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
346                 r10_bio->devs[slot].addr + (r10_bio->sectors);
347 }
348
349 /*
350  * Find the disk number which triggered given bio
351  */
352 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
353                          struct bio *bio, int *slotp, int *replp)
354 {
355         int slot;
356         int repl = 0;
357
358         for (slot = 0; slot < conf->geo.raid_disks; slot++) {
359                 if (r10_bio->devs[slot].bio == bio)
360                         break;
361                 if (r10_bio->devs[slot].repl_bio == bio) {
362                         repl = 1;
363                         break;
364                 }
365         }
366
367         update_head_pos(slot, r10_bio);
368
369         if (slotp)
370                 *slotp = slot;
371         if (replp)
372                 *replp = repl;
373         return r10_bio->devs[slot].devnum;
374 }
375
376 static void raid10_end_read_request(struct bio *bio)
377 {
378         int uptodate = !bio->bi_status;
379         struct r10bio *r10_bio = bio->bi_private;
380         int slot;
381         struct md_rdev *rdev;
382         struct r10conf *conf = r10_bio->mddev->private;
383
384         slot = r10_bio->read_slot;
385         rdev = r10_bio->devs[slot].rdev;
386         /*
387          * this branch is our 'one mirror IO has finished' event handler:
388          */
389         update_head_pos(slot, r10_bio);
390
391         if (uptodate) {
392                 /*
393                  * Set R10BIO_Uptodate in our master bio, so that
394                  * we will return a good error code to the higher
395                  * levels even if IO on some other mirrored buffer fails.
396                  *
397                  * The 'master' represents the composite IO operation to
398                  * user-side. So if something waits for IO, then it will
399                  * wait for the 'master' bio.
400                  */
401                 set_bit(R10BIO_Uptodate, &r10_bio->state);
402         } else {
403                 /* If all other devices that store this block have
404                  * failed, we want to return the error upwards rather
405                  * than fail the last device.  Here we redefine
406                  * "uptodate" to mean "Don't want to retry"
407                  */
408                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
409                              rdev->raid_disk))
410                         uptodate = 1;
411         }
412         if (uptodate) {
413                 raid_end_bio_io(r10_bio);
414                 rdev_dec_pending(rdev, conf->mddev);
415         } else {
416                 /*
417                  * oops, read error - keep the refcount on the rdev
418                  */
419                 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
420                                    mdname(conf->mddev),
421                                    rdev->bdev,
422                                    (unsigned long long)r10_bio->sector);
423                 set_bit(R10BIO_ReadError, &r10_bio->state);
424                 reschedule_retry(r10_bio);
425         }
426 }
427
428 static void close_write(struct r10bio *r10_bio)
429 {
430         /* clear the bitmap if all writes complete successfully */
431         md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
432                            r10_bio->sectors,
433                            !test_bit(R10BIO_Degraded, &r10_bio->state),
434                            0);
435         md_write_end(r10_bio->mddev);
436 }
437
438 static void one_write_done(struct r10bio *r10_bio)
439 {
440         if (atomic_dec_and_test(&r10_bio->remaining)) {
441                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
442                         reschedule_retry(r10_bio);
443                 else {
444                         close_write(r10_bio);
445                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
446                                 reschedule_retry(r10_bio);
447                         else
448                                 raid_end_bio_io(r10_bio);
449                 }
450         }
451 }
452
453 static void raid10_end_write_request(struct bio *bio)
454 {
455         struct r10bio *r10_bio = bio->bi_private;
456         int dev;
457         int dec_rdev = 1;
458         struct r10conf *conf = r10_bio->mddev->private;
459         int slot, repl;
460         struct md_rdev *rdev = NULL;
461         struct bio *to_put = NULL;
462         bool discard_error;
463
464         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
465
466         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
467
468         if (repl)
469                 rdev = conf->mirrors[dev].replacement;
470         if (!rdev) {
471                 smp_rmb();
472                 repl = 0;
473                 rdev = conf->mirrors[dev].rdev;
474         }
475         /*
476          * this branch is our 'one mirror IO has finished' event handler:
477          */
478         if (bio->bi_status && !discard_error) {
479                 if (repl)
480                         /* Never record new bad blocks to replacement,
481                          * just fail it.
482                          */
483                         md_error(rdev->mddev, rdev);
484                 else {
485                         set_bit(WriteErrorSeen, &rdev->flags);
486                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
487                                 set_bit(MD_RECOVERY_NEEDED,
488                                         &rdev->mddev->recovery);
489
490                         dec_rdev = 0;
491                         if (test_bit(FailFast, &rdev->flags) &&
492                             (bio->bi_opf & MD_FAILFAST)) {
493                                 md_error(rdev->mddev, rdev);
494                         }
495
496                         /*
497                          * When the device is faulty, it is not necessary to
498                          * handle write error.
499                          */
500                         if (!test_bit(Faulty, &rdev->flags))
501                                 set_bit(R10BIO_WriteError, &r10_bio->state);
502                         else {
503                                 /* Fail the request */
504                                 set_bit(R10BIO_Degraded, &r10_bio->state);
505                                 r10_bio->devs[slot].bio = NULL;
506                                 to_put = bio;
507                                 dec_rdev = 1;
508                         }
509                 }
510         } else {
511                 /*
512                  * Set R10BIO_Uptodate in our master bio, so that
513                  * we will return a good error code for to the higher
514                  * levels even if IO on some other mirrored buffer fails.
515                  *
516                  * The 'master' represents the composite IO operation to
517                  * user-side. So if something waits for IO, then it will
518                  * wait for the 'master' bio.
519                  */
520                 sector_t first_bad;
521                 int bad_sectors;
522
523                 /*
524                  * Do not set R10BIO_Uptodate if the current device is
525                  * rebuilding or Faulty. This is because we cannot use
526                  * such device for properly reading the data back (we could
527                  * potentially use it, if the current write would have felt
528                  * before rdev->recovery_offset, but for simplicity we don't
529                  * check this here.
530                  */
531                 if (test_bit(In_sync, &rdev->flags) &&
532                     !test_bit(Faulty, &rdev->flags))
533                         set_bit(R10BIO_Uptodate, &r10_bio->state);
534
535                 /* Maybe we can clear some bad blocks. */
536                 if (is_badblock(rdev,
537                                 r10_bio->devs[slot].addr,
538                                 r10_bio->sectors,
539                                 &first_bad, &bad_sectors) && !discard_error) {
540                         bio_put(bio);
541                         if (repl)
542                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
543                         else
544                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
545                         dec_rdev = 0;
546                         set_bit(R10BIO_MadeGood, &r10_bio->state);
547                 }
548         }
549
550         /*
551          *
552          * Let's see if all mirrored write operations have finished
553          * already.
554          */
555         one_write_done(r10_bio);
556         if (dec_rdev)
557                 rdev_dec_pending(rdev, conf->mddev);
558         if (to_put)
559                 bio_put(to_put);
560 }
561
562 /*
563  * RAID10 layout manager
564  * As well as the chunksize and raid_disks count, there are two
565  * parameters: near_copies and far_copies.
566  * near_copies * far_copies must be <= raid_disks.
567  * Normally one of these will be 1.
568  * If both are 1, we get raid0.
569  * If near_copies == raid_disks, we get raid1.
570  *
571  * Chunks are laid out in raid0 style with near_copies copies of the
572  * first chunk, followed by near_copies copies of the next chunk and
573  * so on.
574  * If far_copies > 1, then after 1/far_copies of the array has been assigned
575  * as described above, we start again with a device offset of near_copies.
576  * So we effectively have another copy of the whole array further down all
577  * the drives, but with blocks on different drives.
578  * With this layout, and block is never stored twice on the one device.
579  *
580  * raid10_find_phys finds the sector offset of a given virtual sector
581  * on each device that it is on.
582  *
583  * raid10_find_virt does the reverse mapping, from a device and a
584  * sector offset to a virtual address
585  */
586
587 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
588 {
589         int n,f;
590         sector_t sector;
591         sector_t chunk;
592         sector_t stripe;
593         int dev;
594         int slot = 0;
595         int last_far_set_start, last_far_set_size;
596
597         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
598         last_far_set_start *= geo->far_set_size;
599
600         last_far_set_size = geo->far_set_size;
601         last_far_set_size += (geo->raid_disks % geo->far_set_size);
602
603         /* now calculate first sector/dev */
604         chunk = r10bio->sector >> geo->chunk_shift;
605         sector = r10bio->sector & geo->chunk_mask;
606
607         chunk *= geo->near_copies;
608         stripe = chunk;
609         dev = sector_div(stripe, geo->raid_disks);
610         if (geo->far_offset)
611                 stripe *= geo->far_copies;
612
613         sector += stripe << geo->chunk_shift;
614
615         /* and calculate all the others */
616         for (n = 0; n < geo->near_copies; n++) {
617                 int d = dev;
618                 int set;
619                 sector_t s = sector;
620                 r10bio->devs[slot].devnum = d;
621                 r10bio->devs[slot].addr = s;
622                 slot++;
623
624                 for (f = 1; f < geo->far_copies; f++) {
625                         set = d / geo->far_set_size;
626                         d += geo->near_copies;
627
628                         if ((geo->raid_disks % geo->far_set_size) &&
629                             (d > last_far_set_start)) {
630                                 d -= last_far_set_start;
631                                 d %= last_far_set_size;
632                                 d += last_far_set_start;
633                         } else {
634                                 d %= geo->far_set_size;
635                                 d += geo->far_set_size * set;
636                         }
637                         s += geo->stride;
638                         r10bio->devs[slot].devnum = d;
639                         r10bio->devs[slot].addr = s;
640                         slot++;
641                 }
642                 dev++;
643                 if (dev >= geo->raid_disks) {
644                         dev = 0;
645                         sector += (geo->chunk_mask + 1);
646                 }
647         }
648 }
649
650 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
651 {
652         struct geom *geo = &conf->geo;
653
654         if (conf->reshape_progress != MaxSector &&
655             ((r10bio->sector >= conf->reshape_progress) !=
656              conf->mddev->reshape_backwards)) {
657                 set_bit(R10BIO_Previous, &r10bio->state);
658                 geo = &conf->prev;
659         } else
660                 clear_bit(R10BIO_Previous, &r10bio->state);
661
662         __raid10_find_phys(geo, r10bio);
663 }
664
665 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
666 {
667         sector_t offset, chunk, vchunk;
668         /* Never use conf->prev as this is only called during resync
669          * or recovery, so reshape isn't happening
670          */
671         struct geom *geo = &conf->geo;
672         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
673         int far_set_size = geo->far_set_size;
674         int last_far_set_start;
675
676         if (geo->raid_disks % geo->far_set_size) {
677                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
678                 last_far_set_start *= geo->far_set_size;
679
680                 if (dev >= last_far_set_start) {
681                         far_set_size = geo->far_set_size;
682                         far_set_size += (geo->raid_disks % geo->far_set_size);
683                         far_set_start = last_far_set_start;
684                 }
685         }
686
687         offset = sector & geo->chunk_mask;
688         if (geo->far_offset) {
689                 int fc;
690                 chunk = sector >> geo->chunk_shift;
691                 fc = sector_div(chunk, geo->far_copies);
692                 dev -= fc * geo->near_copies;
693                 if (dev < far_set_start)
694                         dev += far_set_size;
695         } else {
696                 while (sector >= geo->stride) {
697                         sector -= geo->stride;
698                         if (dev < (geo->near_copies + far_set_start))
699                                 dev += far_set_size - geo->near_copies;
700                         else
701                                 dev -= geo->near_copies;
702                 }
703                 chunk = sector >> geo->chunk_shift;
704         }
705         vchunk = chunk * geo->raid_disks + dev;
706         sector_div(vchunk, geo->near_copies);
707         return (vchunk << geo->chunk_shift) + offset;
708 }
709
710 /*
711  * This routine returns the disk from which the requested read should
712  * be done. There is a per-array 'next expected sequential IO' sector
713  * number - if this matches on the next IO then we use the last disk.
714  * There is also a per-disk 'last know head position' sector that is
715  * maintained from IRQ contexts, both the normal and the resync IO
716  * completion handlers update this position correctly. If there is no
717  * perfect sequential match then we pick the disk whose head is closest.
718  *
719  * If there are 2 mirrors in the same 2 devices, performance degrades
720  * because position is mirror, not device based.
721  *
722  * The rdev for the device selected will have nr_pending incremented.
723  */
724
725 /*
726  * FIXME: possibly should rethink readbalancing and do it differently
727  * depending on near_copies / far_copies geometry.
728  */
729 static struct md_rdev *read_balance(struct r10conf *conf,
730                                     struct r10bio *r10_bio,
731                                     int *max_sectors)
732 {
733         const sector_t this_sector = r10_bio->sector;
734         int disk, slot;
735         int sectors = r10_bio->sectors;
736         int best_good_sectors;
737         sector_t new_distance, best_dist;
738         struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
739         int do_balance;
740         int best_dist_slot, best_pending_slot;
741         bool has_nonrot_disk = false;
742         unsigned int min_pending;
743         struct geom *geo = &conf->geo;
744
745         raid10_find_phys(conf, r10_bio);
746         rcu_read_lock();
747         best_dist_slot = -1;
748         min_pending = UINT_MAX;
749         best_dist_rdev = NULL;
750         best_pending_rdev = NULL;
751         best_dist = MaxSector;
752         best_good_sectors = 0;
753         do_balance = 1;
754         clear_bit(R10BIO_FailFast, &r10_bio->state);
755         /*
756          * Check if we can balance. We can balance on the whole
757          * device if no resync is going on (recovery is ok), or below
758          * the resync window. We take the first readable disk when
759          * above the resync window.
760          */
761         if ((conf->mddev->recovery_cp < MaxSector
762              && (this_sector + sectors >= conf->next_resync)) ||
763             (mddev_is_clustered(conf->mddev) &&
764              md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
765                                             this_sector + sectors)))
766                 do_balance = 0;
767
768         for (slot = 0; slot < conf->copies ; slot++) {
769                 sector_t first_bad;
770                 int bad_sectors;
771                 sector_t dev_sector;
772                 unsigned int pending;
773                 bool nonrot;
774
775                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
776                         continue;
777                 disk = r10_bio->devs[slot].devnum;
778                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
779                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
780                     r10_bio->devs[slot].addr + sectors >
781                     rdev->recovery_offset) {
782                         /*
783                          * Read replacement first to prevent reading both rdev
784                          * and replacement as NULL during replacement replace
785                          * rdev.
786                          */
787                         smp_mb();
788                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
789                 }
790                 if (rdev == NULL ||
791                     test_bit(Faulty, &rdev->flags))
792                         continue;
793                 if (!test_bit(In_sync, &rdev->flags) &&
794                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
795                         continue;
796
797                 dev_sector = r10_bio->devs[slot].addr;
798                 if (is_badblock(rdev, dev_sector, sectors,
799                                 &first_bad, &bad_sectors)) {
800                         if (best_dist < MaxSector)
801                                 /* Already have a better slot */
802                                 continue;
803                         if (first_bad <= dev_sector) {
804                                 /* Cannot read here.  If this is the
805                                  * 'primary' device, then we must not read
806                                  * beyond 'bad_sectors' from another device.
807                                  */
808                                 bad_sectors -= (dev_sector - first_bad);
809                                 if (!do_balance && sectors > bad_sectors)
810                                         sectors = bad_sectors;
811                                 if (best_good_sectors > sectors)
812                                         best_good_sectors = sectors;
813                         } else {
814                                 sector_t good_sectors =
815                                         first_bad - dev_sector;
816                                 if (good_sectors > best_good_sectors) {
817                                         best_good_sectors = good_sectors;
818                                         best_dist_slot = slot;
819                                         best_dist_rdev = rdev;
820                                 }
821                                 if (!do_balance)
822                                         /* Must read from here */
823                                         break;
824                         }
825                         continue;
826                 } else
827                         best_good_sectors = sectors;
828
829                 if (!do_balance)
830                         break;
831
832                 nonrot = bdev_nonrot(rdev->bdev);
833                 has_nonrot_disk |= nonrot;
834                 pending = atomic_read(&rdev->nr_pending);
835                 if (min_pending > pending && nonrot) {
836                         min_pending = pending;
837                         best_pending_slot = slot;
838                         best_pending_rdev = rdev;
839                 }
840
841                 if (best_dist_slot >= 0)
842                         /* At least 2 disks to choose from so failfast is OK */
843                         set_bit(R10BIO_FailFast, &r10_bio->state);
844                 /* This optimisation is debatable, and completely destroys
845                  * sequential read speed for 'far copies' arrays.  So only
846                  * keep it for 'near' arrays, and review those later.
847                  */
848                 if (geo->near_copies > 1 && !pending)
849                         new_distance = 0;
850
851                 /* for far > 1 always use the lowest address */
852                 else if (geo->far_copies > 1)
853                         new_distance = r10_bio->devs[slot].addr;
854                 else
855                         new_distance = abs(r10_bio->devs[slot].addr -
856                                            conf->mirrors[disk].head_position);
857
858                 if (new_distance < best_dist) {
859                         best_dist = new_distance;
860                         best_dist_slot = slot;
861                         best_dist_rdev = rdev;
862                 }
863         }
864         if (slot >= conf->copies) {
865                 if (has_nonrot_disk) {
866                         slot = best_pending_slot;
867                         rdev = best_pending_rdev;
868                 } else {
869                         slot = best_dist_slot;
870                         rdev = best_dist_rdev;
871                 }
872         }
873
874         if (slot >= 0) {
875                 atomic_inc(&rdev->nr_pending);
876                 r10_bio->read_slot = slot;
877         } else
878                 rdev = NULL;
879         rcu_read_unlock();
880         *max_sectors = best_good_sectors;
881
882         return rdev;
883 }
884
885 static void flush_pending_writes(struct r10conf *conf)
886 {
887         /* Any writes that have been queued but are awaiting
888          * bitmap updates get flushed here.
889          */
890         spin_lock_irq(&conf->device_lock);
891
892         if (conf->pending_bio_list.head) {
893                 struct blk_plug plug;
894                 struct bio *bio;
895
896                 bio = bio_list_get(&conf->pending_bio_list);
897                 spin_unlock_irq(&conf->device_lock);
898
899                 /*
900                  * As this is called in a wait_event() loop (see freeze_array),
901                  * current->state might be TASK_UNINTERRUPTIBLE which will
902                  * cause a warning when we prepare to wait again.  As it is
903                  * rare that this path is taken, it is perfectly safe to force
904                  * us to go around the wait_event() loop again, so the warning
905                  * is a false-positive. Silence the warning by resetting
906                  * thread state
907                  */
908                 __set_current_state(TASK_RUNNING);
909
910                 blk_start_plug(&plug);
911                 raid1_prepare_flush_writes(conf->mddev->bitmap);
912                 wake_up(&conf->wait_barrier);
913
914                 while (bio) { /* submit pending writes */
915                         struct bio *next = bio->bi_next;
916
917                         raid1_submit_write(bio);
918                         bio = next;
919                         cond_resched();
920                 }
921                 blk_finish_plug(&plug);
922         } else
923                 spin_unlock_irq(&conf->device_lock);
924 }
925
926 /* Barriers....
927  * Sometimes we need to suspend IO while we do something else,
928  * either some resync/recovery, or reconfigure the array.
929  * To do this we raise a 'barrier'.
930  * The 'barrier' is a counter that can be raised multiple times
931  * to count how many activities are happening which preclude
932  * normal IO.
933  * We can only raise the barrier if there is no pending IO.
934  * i.e. if nr_pending == 0.
935  * We choose only to raise the barrier if no-one is waiting for the
936  * barrier to go down.  This means that as soon as an IO request
937  * is ready, no other operations which require a barrier will start
938  * until the IO request has had a chance.
939  *
940  * So: regular IO calls 'wait_barrier'.  When that returns there
941  *    is no backgroup IO happening,  It must arrange to call
942  *    allow_barrier when it has finished its IO.
943  * backgroup IO calls must call raise_barrier.  Once that returns
944  *    there is no normal IO happeing.  It must arrange to call
945  *    lower_barrier when the particular background IO completes.
946  */
947
948 static void raise_barrier(struct r10conf *conf, int force)
949 {
950         write_seqlock_irq(&conf->resync_lock);
951
952         if (WARN_ON_ONCE(force && !conf->barrier))
953                 force = false;
954
955         /* Wait until no block IO is waiting (unless 'force') */
956         wait_event_barrier(conf, force || !conf->nr_waiting);
957
958         /* block any new IO from starting */
959         WRITE_ONCE(conf->barrier, conf->barrier + 1);
960
961         /* Now wait for all pending IO to complete */
962         wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
963                                  conf->barrier < RESYNC_DEPTH);
964
965         write_sequnlock_irq(&conf->resync_lock);
966 }
967
968 static void lower_barrier(struct r10conf *conf)
969 {
970         unsigned long flags;
971
972         write_seqlock_irqsave(&conf->resync_lock, flags);
973         WRITE_ONCE(conf->barrier, conf->barrier - 1);
974         write_sequnlock_irqrestore(&conf->resync_lock, flags);
975         wake_up(&conf->wait_barrier);
976 }
977
978 static bool stop_waiting_barrier(struct r10conf *conf)
979 {
980         struct bio_list *bio_list = current->bio_list;
981         struct md_thread *thread;
982
983         /* barrier is dropped */
984         if (!conf->barrier)
985                 return true;
986
987         /*
988          * If there are already pending requests (preventing the barrier from
989          * rising completely), and the pre-process bio queue isn't empty, then
990          * don't wait, as we need to empty that queue to get the nr_pending
991          * count down.
992          */
993         if (atomic_read(&conf->nr_pending) && bio_list &&
994             (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
995                 return true;
996
997         /* daemon thread must exist while handling io */
998         thread = rcu_dereference_protected(conf->mddev->thread, true);
999         /*
1000          * move on if io is issued from raid10d(), nr_pending is not released
1001          * from original io(see handle_read_error()). All raise barrier is
1002          * blocked until this io is done.
1003          */
1004         if (thread->tsk == current) {
1005                 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
1006                 return true;
1007         }
1008
1009         return false;
1010 }
1011
1012 static bool wait_barrier_nolock(struct r10conf *conf)
1013 {
1014         unsigned int seq = read_seqbegin(&conf->resync_lock);
1015
1016         if (READ_ONCE(conf->barrier))
1017                 return false;
1018
1019         atomic_inc(&conf->nr_pending);
1020         if (!read_seqretry(&conf->resync_lock, seq))
1021                 return true;
1022
1023         if (atomic_dec_and_test(&conf->nr_pending))
1024                 wake_up_barrier(conf);
1025
1026         return false;
1027 }
1028
1029 static bool wait_barrier(struct r10conf *conf, bool nowait)
1030 {
1031         bool ret = true;
1032
1033         if (wait_barrier_nolock(conf))
1034                 return true;
1035
1036         write_seqlock_irq(&conf->resync_lock);
1037         if (conf->barrier) {
1038                 /* Return false when nowait flag is set */
1039                 if (nowait) {
1040                         ret = false;
1041                 } else {
1042                         conf->nr_waiting++;
1043                         raid10_log(conf->mddev, "wait barrier");
1044                         wait_event_barrier(conf, stop_waiting_barrier(conf));
1045                         conf->nr_waiting--;
1046                 }
1047                 if (!conf->nr_waiting)
1048                         wake_up(&conf->wait_barrier);
1049         }
1050         /* Only increment nr_pending when we wait */
1051         if (ret)
1052                 atomic_inc(&conf->nr_pending);
1053         write_sequnlock_irq(&conf->resync_lock);
1054         return ret;
1055 }
1056
1057 static void allow_barrier(struct r10conf *conf)
1058 {
1059         if ((atomic_dec_and_test(&conf->nr_pending)) ||
1060                         (conf->array_freeze_pending))
1061                 wake_up_barrier(conf);
1062 }
1063
1064 static void freeze_array(struct r10conf *conf, int extra)
1065 {
1066         /* stop syncio and normal IO and wait for everything to
1067          * go quiet.
1068          * We increment barrier and nr_waiting, and then
1069          * wait until nr_pending match nr_queued+extra
1070          * This is called in the context of one normal IO request
1071          * that has failed. Thus any sync request that might be pending
1072          * will be blocked by nr_pending, and we need to wait for
1073          * pending IO requests to complete or be queued for re-try.
1074          * Thus the number queued (nr_queued) plus this request (extra)
1075          * must match the number of pending IOs (nr_pending) before
1076          * we continue.
1077          */
1078         write_seqlock_irq(&conf->resync_lock);
1079         conf->array_freeze_pending++;
1080         WRITE_ONCE(conf->barrier, conf->barrier + 1);
1081         conf->nr_waiting++;
1082         wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1083                         conf->nr_queued + extra, flush_pending_writes(conf));
1084         conf->array_freeze_pending--;
1085         write_sequnlock_irq(&conf->resync_lock);
1086 }
1087
1088 static void unfreeze_array(struct r10conf *conf)
1089 {
1090         /* reverse the effect of the freeze */
1091         write_seqlock_irq(&conf->resync_lock);
1092         WRITE_ONCE(conf->barrier, conf->barrier - 1);
1093         conf->nr_waiting--;
1094         wake_up(&conf->wait_barrier);
1095         write_sequnlock_irq(&conf->resync_lock);
1096 }
1097
1098 static sector_t choose_data_offset(struct r10bio *r10_bio,
1099                                    struct md_rdev *rdev)
1100 {
1101         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1102             test_bit(R10BIO_Previous, &r10_bio->state))
1103                 return rdev->data_offset;
1104         else
1105                 return rdev->new_data_offset;
1106 }
1107
1108 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1109 {
1110         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1111         struct mddev *mddev = plug->cb.data;
1112         struct r10conf *conf = mddev->private;
1113         struct bio *bio;
1114
1115         if (from_schedule) {
1116                 spin_lock_irq(&conf->device_lock);
1117                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1118                 spin_unlock_irq(&conf->device_lock);
1119                 wake_up_barrier(conf);
1120                 md_wakeup_thread(mddev->thread);
1121                 kfree(plug);
1122                 return;
1123         }
1124
1125         /* we aren't scheduling, so we can do the write-out directly. */
1126         bio = bio_list_get(&plug->pending);
1127         raid1_prepare_flush_writes(mddev->bitmap);
1128         wake_up_barrier(conf);
1129
1130         while (bio) { /* submit pending writes */
1131                 struct bio *next = bio->bi_next;
1132
1133                 raid1_submit_write(bio);
1134                 bio = next;
1135                 cond_resched();
1136         }
1137         kfree(plug);
1138 }
1139
1140 /*
1141  * 1. Register the new request and wait if the reconstruction thread has put
1142  * up a bar for new requests. Continue immediately if no resync is active
1143  * currently.
1144  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1145  */
1146 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1147                                  struct bio *bio, sector_t sectors)
1148 {
1149         /* Bail out if REQ_NOWAIT is set for the bio */
1150         if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1151                 bio_wouldblock_error(bio);
1152                 return false;
1153         }
1154         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1155             bio->bi_iter.bi_sector < conf->reshape_progress &&
1156             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1157                 allow_barrier(conf);
1158                 if (bio->bi_opf & REQ_NOWAIT) {
1159                         bio_wouldblock_error(bio);
1160                         return false;
1161                 }
1162                 raid10_log(conf->mddev, "wait reshape");
1163                 wait_event(conf->wait_barrier,
1164                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1165                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1166                            sectors);
1167                 wait_barrier(conf, false);
1168         }
1169         return true;
1170 }
1171
1172 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1173                                 struct r10bio *r10_bio, bool io_accounting)
1174 {
1175         struct r10conf *conf = mddev->private;
1176         struct bio *read_bio;
1177         const enum req_op op = bio_op(bio);
1178         const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1179         int max_sectors;
1180         struct md_rdev *rdev;
1181         char b[BDEVNAME_SIZE];
1182         int slot = r10_bio->read_slot;
1183         struct md_rdev *err_rdev = NULL;
1184         gfp_t gfp = GFP_NOIO;
1185
1186         if (slot >= 0 && r10_bio->devs[slot].rdev) {
1187                 /*
1188                  * This is an error retry, but we cannot
1189                  * safely dereference the rdev in the r10_bio,
1190                  * we must use the one in conf.
1191                  * If it has already been disconnected (unlikely)
1192                  * we lose the device name in error messages.
1193                  */
1194                 int disk;
1195                 /*
1196                  * As we are blocking raid10, it is a little safer to
1197                  * use __GFP_HIGH.
1198                  */
1199                 gfp = GFP_NOIO | __GFP_HIGH;
1200
1201                 rcu_read_lock();
1202                 disk = r10_bio->devs[slot].devnum;
1203                 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1204                 if (err_rdev)
1205                         snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1206                 else {
1207                         strcpy(b, "???");
1208                         /* This never gets dereferenced */
1209                         err_rdev = r10_bio->devs[slot].rdev;
1210                 }
1211                 rcu_read_unlock();
1212         }
1213
1214         if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1215                 return;
1216         rdev = read_balance(conf, r10_bio, &max_sectors);
1217         if (!rdev) {
1218                 if (err_rdev) {
1219                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1220                                             mdname(mddev), b,
1221                                             (unsigned long long)r10_bio->sector);
1222                 }
1223                 raid_end_bio_io(r10_bio);
1224                 return;
1225         }
1226         if (err_rdev)
1227                 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1228                                    mdname(mddev),
1229                                    rdev->bdev,
1230                                    (unsigned long long)r10_bio->sector);
1231         if (max_sectors < bio_sectors(bio)) {
1232                 struct bio *split = bio_split(bio, max_sectors,
1233                                               gfp, &conf->bio_split);
1234                 bio_chain(split, bio);
1235                 allow_barrier(conf);
1236                 submit_bio_noacct(bio);
1237                 wait_barrier(conf, false);
1238                 bio = split;
1239                 r10_bio->master_bio = bio;
1240                 r10_bio->sectors = max_sectors;
1241         }
1242         slot = r10_bio->read_slot;
1243
1244         if (io_accounting) {
1245                 md_account_bio(mddev, &bio);
1246                 r10_bio->master_bio = bio;
1247         }
1248         read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1249
1250         r10_bio->devs[slot].bio = read_bio;
1251         r10_bio->devs[slot].rdev = rdev;
1252
1253         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1254                 choose_data_offset(r10_bio, rdev);
1255         read_bio->bi_end_io = raid10_end_read_request;
1256         read_bio->bi_opf = op | do_sync;
1257         if (test_bit(FailFast, &rdev->flags) &&
1258             test_bit(R10BIO_FailFast, &r10_bio->state))
1259                 read_bio->bi_opf |= MD_FAILFAST;
1260         read_bio->bi_private = r10_bio;
1261
1262         if (mddev->gendisk)
1263                 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1264                                       r10_bio->sector);
1265         submit_bio_noacct(read_bio);
1266         return;
1267 }
1268
1269 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1270                                   struct bio *bio, bool replacement,
1271                                   int n_copy)
1272 {
1273         const enum req_op op = bio_op(bio);
1274         const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1275         const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1276         unsigned long flags;
1277         struct r10conf *conf = mddev->private;
1278         struct md_rdev *rdev;
1279         int devnum = r10_bio->devs[n_copy].devnum;
1280         struct bio *mbio;
1281
1282         if (replacement) {
1283                 rdev = conf->mirrors[devnum].replacement;
1284                 if (rdev == NULL) {
1285                         /* Replacement just got moved to main 'rdev' */
1286                         smp_mb();
1287                         rdev = conf->mirrors[devnum].rdev;
1288                 }
1289         } else
1290                 rdev = conf->mirrors[devnum].rdev;
1291
1292         mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1293         if (replacement)
1294                 r10_bio->devs[n_copy].repl_bio = mbio;
1295         else
1296                 r10_bio->devs[n_copy].bio = mbio;
1297
1298         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1299                                    choose_data_offset(r10_bio, rdev));
1300         mbio->bi_end_io = raid10_end_write_request;
1301         mbio->bi_opf = op | do_sync | do_fua;
1302         if (!replacement && test_bit(FailFast,
1303                                      &conf->mirrors[devnum].rdev->flags)
1304                          && enough(conf, devnum))
1305                 mbio->bi_opf |= MD_FAILFAST;
1306         mbio->bi_private = r10_bio;
1307
1308         if (conf->mddev->gendisk)
1309                 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1310                                       r10_bio->sector);
1311         /* flush_pending_writes() needs access to the rdev so...*/
1312         mbio->bi_bdev = (void *)rdev;
1313
1314         atomic_inc(&r10_bio->remaining);
1315
1316         if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1317                 spin_lock_irqsave(&conf->device_lock, flags);
1318                 bio_list_add(&conf->pending_bio_list, mbio);
1319                 spin_unlock_irqrestore(&conf->device_lock, flags);
1320                 md_wakeup_thread(mddev->thread);
1321         }
1322 }
1323
1324 static struct md_rdev *dereference_rdev_and_rrdev(struct raid10_info *mirror,
1325                                                   struct md_rdev **prrdev)
1326 {
1327         struct md_rdev *rdev, *rrdev;
1328
1329         rrdev = rcu_dereference(mirror->replacement);
1330         /*
1331          * Read replacement first to prevent reading both rdev and
1332          * replacement as NULL during replacement replace rdev.
1333          */
1334         smp_mb();
1335         rdev = rcu_dereference(mirror->rdev);
1336         if (rdev == rrdev)
1337                 rrdev = NULL;
1338
1339         *prrdev = rrdev;
1340         return rdev;
1341 }
1342
1343 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1344 {
1345         int i;
1346         struct r10conf *conf = mddev->private;
1347         struct md_rdev *blocked_rdev;
1348
1349 retry_wait:
1350         blocked_rdev = NULL;
1351         rcu_read_lock();
1352         for (i = 0; i < conf->copies; i++) {
1353                 struct md_rdev *rdev, *rrdev;
1354
1355                 rdev = dereference_rdev_and_rrdev(&conf->mirrors[i], &rrdev);
1356                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1357                         atomic_inc(&rdev->nr_pending);
1358                         blocked_rdev = rdev;
1359                         break;
1360                 }
1361                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1362                         atomic_inc(&rrdev->nr_pending);
1363                         blocked_rdev = rrdev;
1364                         break;
1365                 }
1366
1367                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1368                         sector_t first_bad;
1369                         sector_t dev_sector = r10_bio->devs[i].addr;
1370                         int bad_sectors;
1371                         int is_bad;
1372
1373                         /*
1374                          * Discard request doesn't care the write result
1375                          * so it doesn't need to wait blocked disk here.
1376                          */
1377                         if (!r10_bio->sectors)
1378                                 continue;
1379
1380                         is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1381                                              &first_bad, &bad_sectors);
1382                         if (is_bad < 0) {
1383                                 /*
1384                                  * Mustn't write here until the bad block
1385                                  * is acknowledged
1386                                  */
1387                                 atomic_inc(&rdev->nr_pending);
1388                                 set_bit(BlockedBadBlocks, &rdev->flags);
1389                                 blocked_rdev = rdev;
1390                                 break;
1391                         }
1392                 }
1393         }
1394         rcu_read_unlock();
1395
1396         if (unlikely(blocked_rdev)) {
1397                 /* Have to wait for this device to get unblocked, then retry */
1398                 allow_barrier(conf);
1399                 raid10_log(conf->mddev, "%s wait rdev %d blocked",
1400                                 __func__, blocked_rdev->raid_disk);
1401                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1402                 wait_barrier(conf, false);
1403                 goto retry_wait;
1404         }
1405 }
1406
1407 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1408                                  struct r10bio *r10_bio)
1409 {
1410         struct r10conf *conf = mddev->private;
1411         int i;
1412         sector_t sectors;
1413         int max_sectors;
1414
1415         if ((mddev_is_clustered(mddev) &&
1416              md_cluster_ops->area_resyncing(mddev, WRITE,
1417                                             bio->bi_iter.bi_sector,
1418                                             bio_end_sector(bio)))) {
1419                 DEFINE_WAIT(w);
1420                 /* Bail out if REQ_NOWAIT is set for the bio */
1421                 if (bio->bi_opf & REQ_NOWAIT) {
1422                         bio_wouldblock_error(bio);
1423                         return;
1424                 }
1425                 for (;;) {
1426                         prepare_to_wait(&conf->wait_barrier,
1427                                         &w, TASK_IDLE);
1428                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1429                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1430                                 break;
1431                         schedule();
1432                 }
1433                 finish_wait(&conf->wait_barrier, &w);
1434         }
1435
1436         sectors = r10_bio->sectors;
1437         if (!regular_request_wait(mddev, conf, bio, sectors))
1438                 return;
1439         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1440             (mddev->reshape_backwards
1441              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1442                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1443              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1444                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1445                 /* Need to update reshape_position in metadata */
1446                 mddev->reshape_position = conf->reshape_progress;
1447                 set_mask_bits(&mddev->sb_flags, 0,
1448                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1449                 md_wakeup_thread(mddev->thread);
1450                 if (bio->bi_opf & REQ_NOWAIT) {
1451                         allow_barrier(conf);
1452                         bio_wouldblock_error(bio);
1453                         return;
1454                 }
1455                 raid10_log(conf->mddev, "wait reshape metadata");
1456                 wait_event(mddev->sb_wait,
1457                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1458
1459                 conf->reshape_safe = mddev->reshape_position;
1460         }
1461
1462         /* first select target devices under rcu_lock and
1463          * inc refcount on their rdev.  Record them by setting
1464          * bios[x] to bio
1465          * If there are known/acknowledged bad blocks on any device
1466          * on which we have seen a write error, we want to avoid
1467          * writing to those blocks.  This potentially requires several
1468          * writes to write around the bad blocks.  Each set of writes
1469          * gets its own r10_bio with a set of bios attached.
1470          */
1471
1472         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1473         raid10_find_phys(conf, r10_bio);
1474
1475         wait_blocked_dev(mddev, r10_bio);
1476
1477         rcu_read_lock();
1478         max_sectors = r10_bio->sectors;
1479
1480         for (i = 0;  i < conf->copies; i++) {
1481                 int d = r10_bio->devs[i].devnum;
1482                 struct md_rdev *rdev, *rrdev;
1483
1484                 rdev = dereference_rdev_and_rrdev(&conf->mirrors[d], &rrdev);
1485                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1486                         rdev = NULL;
1487                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1488                         rrdev = NULL;
1489
1490                 r10_bio->devs[i].bio = NULL;
1491                 r10_bio->devs[i].repl_bio = NULL;
1492
1493                 if (!rdev && !rrdev) {
1494                         set_bit(R10BIO_Degraded, &r10_bio->state);
1495                         continue;
1496                 }
1497                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1498                         sector_t first_bad;
1499                         sector_t dev_sector = r10_bio->devs[i].addr;
1500                         int bad_sectors;
1501                         int is_bad;
1502
1503                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1504                                              &first_bad, &bad_sectors);
1505                         if (is_bad && first_bad <= dev_sector) {
1506                                 /* Cannot write here at all */
1507                                 bad_sectors -= (dev_sector - first_bad);
1508                                 if (bad_sectors < max_sectors)
1509                                         /* Mustn't write more than bad_sectors
1510                                          * to other devices yet
1511                                          */
1512                                         max_sectors = bad_sectors;
1513                                 /* We don't set R10BIO_Degraded as that
1514                                  * only applies if the disk is missing,
1515                                  * so it might be re-added, and we want to
1516                                  * know to recover this chunk.
1517                                  * In this case the device is here, and the
1518                                  * fact that this chunk is not in-sync is
1519                                  * recorded in the bad block log.
1520                                  */
1521                                 continue;
1522                         }
1523                         if (is_bad) {
1524                                 int good_sectors = first_bad - dev_sector;
1525                                 if (good_sectors < max_sectors)
1526                                         max_sectors = good_sectors;
1527                         }
1528                 }
1529                 if (rdev) {
1530                         r10_bio->devs[i].bio = bio;
1531                         atomic_inc(&rdev->nr_pending);
1532                 }
1533                 if (rrdev) {
1534                         r10_bio->devs[i].repl_bio = bio;
1535                         atomic_inc(&rrdev->nr_pending);
1536                 }
1537         }
1538         rcu_read_unlock();
1539
1540         if (max_sectors < r10_bio->sectors)
1541                 r10_bio->sectors = max_sectors;
1542
1543         if (r10_bio->sectors < bio_sectors(bio)) {
1544                 struct bio *split = bio_split(bio, r10_bio->sectors,
1545                                               GFP_NOIO, &conf->bio_split);
1546                 bio_chain(split, bio);
1547                 allow_barrier(conf);
1548                 submit_bio_noacct(bio);
1549                 wait_barrier(conf, false);
1550                 bio = split;
1551                 r10_bio->master_bio = bio;
1552         }
1553
1554         md_account_bio(mddev, &bio);
1555         r10_bio->master_bio = bio;
1556         atomic_set(&r10_bio->remaining, 1);
1557         md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1558
1559         for (i = 0; i < conf->copies; i++) {
1560                 if (r10_bio->devs[i].bio)
1561                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1562                 if (r10_bio->devs[i].repl_bio)
1563                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1564         }
1565         one_write_done(r10_bio);
1566 }
1567
1568 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1569 {
1570         struct r10conf *conf = mddev->private;
1571         struct r10bio *r10_bio;
1572
1573         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1574
1575         r10_bio->master_bio = bio;
1576         r10_bio->sectors = sectors;
1577
1578         r10_bio->mddev = mddev;
1579         r10_bio->sector = bio->bi_iter.bi_sector;
1580         r10_bio->state = 0;
1581         r10_bio->read_slot = -1;
1582         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1583                         conf->geo.raid_disks);
1584
1585         if (bio_data_dir(bio) == READ)
1586                 raid10_read_request(mddev, bio, r10_bio, true);
1587         else
1588                 raid10_write_request(mddev, bio, r10_bio);
1589 }
1590
1591 static void raid_end_discard_bio(struct r10bio *r10bio)
1592 {
1593         struct r10conf *conf = r10bio->mddev->private;
1594         struct r10bio *first_r10bio;
1595
1596         while (atomic_dec_and_test(&r10bio->remaining)) {
1597
1598                 allow_barrier(conf);
1599
1600                 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1601                         first_r10bio = (struct r10bio *)r10bio->master_bio;
1602                         free_r10bio(r10bio);
1603                         r10bio = first_r10bio;
1604                 } else {
1605                         md_write_end(r10bio->mddev);
1606                         bio_endio(r10bio->master_bio);
1607                         free_r10bio(r10bio);
1608                         break;
1609                 }
1610         }
1611 }
1612
1613 static void raid10_end_discard_request(struct bio *bio)
1614 {
1615         struct r10bio *r10_bio = bio->bi_private;
1616         struct r10conf *conf = r10_bio->mddev->private;
1617         struct md_rdev *rdev = NULL;
1618         int dev;
1619         int slot, repl;
1620
1621         /*
1622          * We don't care the return value of discard bio
1623          */
1624         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1625                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1626
1627         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1628         if (repl)
1629                 rdev = conf->mirrors[dev].replacement;
1630         if (!rdev) {
1631                 /*
1632                  * raid10_remove_disk uses smp_mb to make sure rdev is set to
1633                  * replacement before setting replacement to NULL. It can read
1634                  * rdev first without barrier protect even replacement is NULL
1635                  */
1636                 smp_rmb();
1637                 rdev = conf->mirrors[dev].rdev;
1638         }
1639
1640         raid_end_discard_bio(r10_bio);
1641         rdev_dec_pending(rdev, conf->mddev);
1642 }
1643
1644 /*
1645  * There are some limitations to handle discard bio
1646  * 1st, the discard size is bigger than stripe_size*2.
1647  * 2st, if the discard bio spans reshape progress, we use the old way to
1648  * handle discard bio
1649  */
1650 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1651 {
1652         struct r10conf *conf = mddev->private;
1653         struct geom *geo = &conf->geo;
1654         int far_copies = geo->far_copies;
1655         bool first_copy = true;
1656         struct r10bio *r10_bio, *first_r10bio;
1657         struct bio *split;
1658         int disk;
1659         sector_t chunk;
1660         unsigned int stripe_size;
1661         unsigned int stripe_data_disks;
1662         sector_t split_size;
1663         sector_t bio_start, bio_end;
1664         sector_t first_stripe_index, last_stripe_index;
1665         sector_t start_disk_offset;
1666         unsigned int start_disk_index;
1667         sector_t end_disk_offset;
1668         unsigned int end_disk_index;
1669         unsigned int remainder;
1670
1671         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1672                 return -EAGAIN;
1673
1674         if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1675                 bio_wouldblock_error(bio);
1676                 return 0;
1677         }
1678         wait_barrier(conf, false);
1679
1680         /*
1681          * Check reshape again to avoid reshape happens after checking
1682          * MD_RECOVERY_RESHAPE and before wait_barrier
1683          */
1684         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1685                 goto out;
1686
1687         if (geo->near_copies)
1688                 stripe_data_disks = geo->raid_disks / geo->near_copies +
1689                                         geo->raid_disks % geo->near_copies;
1690         else
1691                 stripe_data_disks = geo->raid_disks;
1692
1693         stripe_size = stripe_data_disks << geo->chunk_shift;
1694
1695         bio_start = bio->bi_iter.bi_sector;
1696         bio_end = bio_end_sector(bio);
1697
1698         /*
1699          * Maybe one discard bio is smaller than strip size or across one
1700          * stripe and discard region is larger than one stripe size. For far
1701          * offset layout, if the discard region is not aligned with stripe
1702          * size, there is hole when we submit discard bio to member disk.
1703          * For simplicity, we only handle discard bio which discard region
1704          * is bigger than stripe_size * 2
1705          */
1706         if (bio_sectors(bio) < stripe_size*2)
1707                 goto out;
1708
1709         /*
1710          * Keep bio aligned with strip size.
1711          */
1712         div_u64_rem(bio_start, stripe_size, &remainder);
1713         if (remainder) {
1714                 split_size = stripe_size - remainder;
1715                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1716                 bio_chain(split, bio);
1717                 allow_barrier(conf);
1718                 /* Resend the fist split part */
1719                 submit_bio_noacct(split);
1720                 wait_barrier(conf, false);
1721         }
1722         div_u64_rem(bio_end, stripe_size, &remainder);
1723         if (remainder) {
1724                 split_size = bio_sectors(bio) - remainder;
1725                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1726                 bio_chain(split, bio);
1727                 allow_barrier(conf);
1728                 /* Resend the second split part */
1729                 submit_bio_noacct(bio);
1730                 bio = split;
1731                 wait_barrier(conf, false);
1732         }
1733
1734         bio_start = bio->bi_iter.bi_sector;
1735         bio_end = bio_end_sector(bio);
1736
1737         /*
1738          * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1739          * One stripe contains the chunks from all member disk (one chunk from
1740          * one disk at the same HBA address). For layout detail, see 'man md 4'
1741          */
1742         chunk = bio_start >> geo->chunk_shift;
1743         chunk *= geo->near_copies;
1744         first_stripe_index = chunk;
1745         start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1746         if (geo->far_offset)
1747                 first_stripe_index *= geo->far_copies;
1748         start_disk_offset = (bio_start & geo->chunk_mask) +
1749                                 (first_stripe_index << geo->chunk_shift);
1750
1751         chunk = bio_end >> geo->chunk_shift;
1752         chunk *= geo->near_copies;
1753         last_stripe_index = chunk;
1754         end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1755         if (geo->far_offset)
1756                 last_stripe_index *= geo->far_copies;
1757         end_disk_offset = (bio_end & geo->chunk_mask) +
1758                                 (last_stripe_index << geo->chunk_shift);
1759
1760 retry_discard:
1761         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1762         r10_bio->mddev = mddev;
1763         r10_bio->state = 0;
1764         r10_bio->sectors = 0;
1765         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1766         wait_blocked_dev(mddev, r10_bio);
1767
1768         /*
1769          * For far layout it needs more than one r10bio to cover all regions.
1770          * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1771          * to record the discard bio. Other r10bio->master_bio record the first
1772          * r10bio. The first r10bio only release after all other r10bios finish.
1773          * The discard bio returns only first r10bio finishes
1774          */
1775         if (first_copy) {
1776                 r10_bio->master_bio = bio;
1777                 set_bit(R10BIO_Discard, &r10_bio->state);
1778                 first_copy = false;
1779                 first_r10bio = r10_bio;
1780         } else
1781                 r10_bio->master_bio = (struct bio *)first_r10bio;
1782
1783         /*
1784          * first select target devices under rcu_lock and
1785          * inc refcount on their rdev.  Record them by setting
1786          * bios[x] to bio
1787          */
1788         rcu_read_lock();
1789         for (disk = 0; disk < geo->raid_disks; disk++) {
1790                 struct md_rdev *rdev, *rrdev;
1791
1792                 rdev = dereference_rdev_and_rrdev(&conf->mirrors[disk], &rrdev);
1793                 r10_bio->devs[disk].bio = NULL;
1794                 r10_bio->devs[disk].repl_bio = NULL;
1795
1796                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1797                         rdev = NULL;
1798                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1799                         rrdev = NULL;
1800                 if (!rdev && !rrdev)
1801                         continue;
1802
1803                 if (rdev) {
1804                         r10_bio->devs[disk].bio = bio;
1805                         atomic_inc(&rdev->nr_pending);
1806                 }
1807                 if (rrdev) {
1808                         r10_bio->devs[disk].repl_bio = bio;
1809                         atomic_inc(&rrdev->nr_pending);
1810                 }
1811         }
1812         rcu_read_unlock();
1813
1814         atomic_set(&r10_bio->remaining, 1);
1815         for (disk = 0; disk < geo->raid_disks; disk++) {
1816                 sector_t dev_start, dev_end;
1817                 struct bio *mbio, *rbio = NULL;
1818
1819                 /*
1820                  * Now start to calculate the start and end address for each disk.
1821                  * The space between dev_start and dev_end is the discard region.
1822                  *
1823                  * For dev_start, it needs to consider three conditions:
1824                  * 1st, the disk is before start_disk, you can imagine the disk in
1825                  * the next stripe. So the dev_start is the start address of next
1826                  * stripe.
1827                  * 2st, the disk is after start_disk, it means the disk is at the
1828                  * same stripe of first disk
1829                  * 3st, the first disk itself, we can use start_disk_offset directly
1830                  */
1831                 if (disk < start_disk_index)
1832                         dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1833                 else if (disk > start_disk_index)
1834                         dev_start = first_stripe_index * mddev->chunk_sectors;
1835                 else
1836                         dev_start = start_disk_offset;
1837
1838                 if (disk < end_disk_index)
1839                         dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1840                 else if (disk > end_disk_index)
1841                         dev_end = last_stripe_index * mddev->chunk_sectors;
1842                 else
1843                         dev_end = end_disk_offset;
1844
1845                 /*
1846                  * It only handles discard bio which size is >= stripe size, so
1847                  * dev_end > dev_start all the time.
1848                  * It doesn't need to use rcu lock to get rdev here. We already
1849                  * add rdev->nr_pending in the first loop.
1850                  */
1851                 if (r10_bio->devs[disk].bio) {
1852                         struct md_rdev *rdev = conf->mirrors[disk].rdev;
1853                         mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1854                                                &mddev->bio_set);
1855                         mbio->bi_end_io = raid10_end_discard_request;
1856                         mbio->bi_private = r10_bio;
1857                         r10_bio->devs[disk].bio = mbio;
1858                         r10_bio->devs[disk].devnum = disk;
1859                         atomic_inc(&r10_bio->remaining);
1860                         md_submit_discard_bio(mddev, rdev, mbio,
1861                                         dev_start + choose_data_offset(r10_bio, rdev),
1862                                         dev_end - dev_start);
1863                         bio_endio(mbio);
1864                 }
1865                 if (r10_bio->devs[disk].repl_bio) {
1866                         struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1867                         rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1868                                                &mddev->bio_set);
1869                         rbio->bi_end_io = raid10_end_discard_request;
1870                         rbio->bi_private = r10_bio;
1871                         r10_bio->devs[disk].repl_bio = rbio;
1872                         r10_bio->devs[disk].devnum = disk;
1873                         atomic_inc(&r10_bio->remaining);
1874                         md_submit_discard_bio(mddev, rrdev, rbio,
1875                                         dev_start + choose_data_offset(r10_bio, rrdev),
1876                                         dev_end - dev_start);
1877                         bio_endio(rbio);
1878                 }
1879         }
1880
1881         if (!geo->far_offset && --far_copies) {
1882                 first_stripe_index += geo->stride >> geo->chunk_shift;
1883                 start_disk_offset += geo->stride;
1884                 last_stripe_index += geo->stride >> geo->chunk_shift;
1885                 end_disk_offset += geo->stride;
1886                 atomic_inc(&first_r10bio->remaining);
1887                 raid_end_discard_bio(r10_bio);
1888                 wait_barrier(conf, false);
1889                 goto retry_discard;
1890         }
1891
1892         raid_end_discard_bio(r10_bio);
1893
1894         return 0;
1895 out:
1896         allow_barrier(conf);
1897         return -EAGAIN;
1898 }
1899
1900 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1901 {
1902         struct r10conf *conf = mddev->private;
1903         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1904         int chunk_sects = chunk_mask + 1;
1905         int sectors = bio_sectors(bio);
1906
1907         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1908             && md_flush_request(mddev, bio))
1909                 return true;
1910
1911         if (!md_write_start(mddev, bio))
1912                 return false;
1913
1914         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1915                 if (!raid10_handle_discard(mddev, bio))
1916                         return true;
1917
1918         /*
1919          * If this request crosses a chunk boundary, we need to split
1920          * it.
1921          */
1922         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1923                      sectors > chunk_sects
1924                      && (conf->geo.near_copies < conf->geo.raid_disks
1925                          || conf->prev.near_copies <
1926                          conf->prev.raid_disks)))
1927                 sectors = chunk_sects -
1928                         (bio->bi_iter.bi_sector &
1929                          (chunk_sects - 1));
1930         __make_request(mddev, bio, sectors);
1931
1932         /* In case raid10d snuck in to freeze_array */
1933         wake_up_barrier(conf);
1934         return true;
1935 }
1936
1937 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1938 {
1939         struct r10conf *conf = mddev->private;
1940         int i;
1941
1942         if (conf->geo.near_copies < conf->geo.raid_disks)
1943                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1944         if (conf->geo.near_copies > 1)
1945                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1946         if (conf->geo.far_copies > 1) {
1947                 if (conf->geo.far_offset)
1948                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1949                 else
1950                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1951                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1952                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1953         }
1954         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1955                                         conf->geo.raid_disks - mddev->degraded);
1956         rcu_read_lock();
1957         for (i = 0; i < conf->geo.raid_disks; i++) {
1958                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1959                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1960         }
1961         rcu_read_unlock();
1962         seq_printf(seq, "]");
1963 }
1964
1965 /* check if there are enough drives for
1966  * every block to appear on atleast one.
1967  * Don't consider the device numbered 'ignore'
1968  * as we might be about to remove it.
1969  */
1970 static int _enough(struct r10conf *conf, int previous, int ignore)
1971 {
1972         int first = 0;
1973         int has_enough = 0;
1974         int disks, ncopies;
1975         if (previous) {
1976                 disks = conf->prev.raid_disks;
1977                 ncopies = conf->prev.near_copies;
1978         } else {
1979                 disks = conf->geo.raid_disks;
1980                 ncopies = conf->geo.near_copies;
1981         }
1982
1983         rcu_read_lock();
1984         do {
1985                 int n = conf->copies;
1986                 int cnt = 0;
1987                 int this = first;
1988                 while (n--) {
1989                         struct md_rdev *rdev;
1990                         if (this != ignore &&
1991                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1992                             test_bit(In_sync, &rdev->flags))
1993                                 cnt++;
1994                         this = (this+1) % disks;
1995                 }
1996                 if (cnt == 0)
1997                         goto out;
1998                 first = (first + ncopies) % disks;
1999         } while (first != 0);
2000         has_enough = 1;
2001 out:
2002         rcu_read_unlock();
2003         return has_enough;
2004 }
2005
2006 static int enough(struct r10conf *conf, int ignore)
2007 {
2008         /* when calling 'enough', both 'prev' and 'geo' must
2009          * be stable.
2010          * This is ensured if ->reconfig_mutex or ->device_lock
2011          * is held.
2012          */
2013         return _enough(conf, 0, ignore) &&
2014                 _enough(conf, 1, ignore);
2015 }
2016
2017 /**
2018  * raid10_error() - RAID10 error handler.
2019  * @mddev: affected md device.
2020  * @rdev: member device to fail.
2021  *
2022  * The routine acknowledges &rdev failure and determines new @mddev state.
2023  * If it failed, then:
2024  *      - &MD_BROKEN flag is set in &mddev->flags.
2025  * Otherwise, it must be degraded:
2026  *      - recovery is interrupted.
2027  *      - &mddev->degraded is bumped.
2028  *
2029  * @rdev is marked as &Faulty excluding case when array is failed and
2030  * &mddev->fail_last_dev is off.
2031  */
2032 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
2033 {
2034         struct r10conf *conf = mddev->private;
2035         unsigned long flags;
2036
2037         spin_lock_irqsave(&conf->device_lock, flags);
2038
2039         if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
2040                 set_bit(MD_BROKEN, &mddev->flags);
2041
2042                 if (!mddev->fail_last_dev) {
2043                         spin_unlock_irqrestore(&conf->device_lock, flags);
2044                         return;
2045                 }
2046         }
2047         if (test_and_clear_bit(In_sync, &rdev->flags))
2048                 mddev->degraded++;
2049
2050         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2051         set_bit(Blocked, &rdev->flags);
2052         set_bit(Faulty, &rdev->flags);
2053         set_mask_bits(&mddev->sb_flags, 0,
2054                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2055         spin_unlock_irqrestore(&conf->device_lock, flags);
2056         pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2057                 "md/raid10:%s: Operation continuing on %d devices.\n",
2058                 mdname(mddev), rdev->bdev,
2059                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2060 }
2061
2062 static void print_conf(struct r10conf *conf)
2063 {
2064         int i;
2065         struct md_rdev *rdev;
2066
2067         pr_debug("RAID10 conf printout:\n");
2068         if (!conf) {
2069                 pr_debug("(!conf)\n");
2070                 return;
2071         }
2072         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2073                  conf->geo.raid_disks);
2074
2075         /* This is only called with ->reconfix_mutex held, so
2076          * rcu protection of rdev is not needed */
2077         for (i = 0; i < conf->geo.raid_disks; i++) {
2078                 rdev = conf->mirrors[i].rdev;
2079                 if (rdev)
2080                         pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2081                                  i, !test_bit(In_sync, &rdev->flags),
2082                                  !test_bit(Faulty, &rdev->flags),
2083                                  rdev->bdev);
2084         }
2085 }
2086
2087 static void close_sync(struct r10conf *conf)
2088 {
2089         wait_barrier(conf, false);
2090         allow_barrier(conf);
2091
2092         mempool_exit(&conf->r10buf_pool);
2093 }
2094
2095 static int raid10_spare_active(struct mddev *mddev)
2096 {
2097         int i;
2098         struct r10conf *conf = mddev->private;
2099         struct raid10_info *tmp;
2100         int count = 0;
2101         unsigned long flags;
2102
2103         /*
2104          * Find all non-in_sync disks within the RAID10 configuration
2105          * and mark them in_sync
2106          */
2107         for (i = 0; i < conf->geo.raid_disks; i++) {
2108                 tmp = conf->mirrors + i;
2109                 if (tmp->replacement
2110                     && tmp->replacement->recovery_offset == MaxSector
2111                     && !test_bit(Faulty, &tmp->replacement->flags)
2112                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2113                         /* Replacement has just become active */
2114                         if (!tmp->rdev
2115                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2116                                 count++;
2117                         if (tmp->rdev) {
2118                                 /* Replaced device not technically faulty,
2119                                  * but we need to be sure it gets removed
2120                                  * and never re-added.
2121                                  */
2122                                 set_bit(Faulty, &tmp->rdev->flags);
2123                                 sysfs_notify_dirent_safe(
2124                                         tmp->rdev->sysfs_state);
2125                         }
2126                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2127                 } else if (tmp->rdev
2128                            && tmp->rdev->recovery_offset == MaxSector
2129                            && !test_bit(Faulty, &tmp->rdev->flags)
2130                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2131                         count++;
2132                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2133                 }
2134         }
2135         spin_lock_irqsave(&conf->device_lock, flags);
2136         mddev->degraded -= count;
2137         spin_unlock_irqrestore(&conf->device_lock, flags);
2138
2139         print_conf(conf);
2140         return count;
2141 }
2142
2143 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2144 {
2145         struct r10conf *conf = mddev->private;
2146         int err = -EEXIST;
2147         int mirror, repl_slot = -1;
2148         int first = 0;
2149         int last = conf->geo.raid_disks - 1;
2150         struct raid10_info *p;
2151
2152         if (mddev->recovery_cp < MaxSector)
2153                 /* only hot-add to in-sync arrays, as recovery is
2154                  * very different from resync
2155                  */
2156                 return -EBUSY;
2157         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2158                 return -EINVAL;
2159
2160         if (md_integrity_add_rdev(rdev, mddev))
2161                 return -ENXIO;
2162
2163         if (rdev->raid_disk >= 0)
2164                 first = last = rdev->raid_disk;
2165
2166         if (rdev->saved_raid_disk >= first &&
2167             rdev->saved_raid_disk < conf->geo.raid_disks &&
2168             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2169                 mirror = rdev->saved_raid_disk;
2170         else
2171                 mirror = first;
2172         for ( ; mirror <= last ; mirror++) {
2173                 p = &conf->mirrors[mirror];
2174                 if (p->recovery_disabled == mddev->recovery_disabled)
2175                         continue;
2176                 if (p->rdev) {
2177                         if (test_bit(WantReplacement, &p->rdev->flags) &&
2178                             p->replacement == NULL && repl_slot < 0)
2179                                 repl_slot = mirror;
2180                         continue;
2181                 }
2182
2183                 if (mddev->gendisk)
2184                         disk_stack_limits(mddev->gendisk, rdev->bdev,
2185                                           rdev->data_offset << 9);
2186
2187                 p->head_position = 0;
2188                 p->recovery_disabled = mddev->recovery_disabled - 1;
2189                 rdev->raid_disk = mirror;
2190                 err = 0;
2191                 if (rdev->saved_raid_disk != mirror)
2192                         conf->fullsync = 1;
2193                 rcu_assign_pointer(p->rdev, rdev);
2194                 break;
2195         }
2196
2197         if (err && repl_slot >= 0) {
2198                 p = &conf->mirrors[repl_slot];
2199                 clear_bit(In_sync, &rdev->flags);
2200                 set_bit(Replacement, &rdev->flags);
2201                 rdev->raid_disk = repl_slot;
2202                 err = 0;
2203                 if (mddev->gendisk)
2204                         disk_stack_limits(mddev->gendisk, rdev->bdev,
2205                                           rdev->data_offset << 9);
2206                 conf->fullsync = 1;
2207                 rcu_assign_pointer(p->replacement, rdev);
2208         }
2209
2210         print_conf(conf);
2211         return err;
2212 }
2213
2214 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2215 {
2216         struct r10conf *conf = mddev->private;
2217         int err = 0;
2218         int number = rdev->raid_disk;
2219         struct md_rdev **rdevp;
2220         struct raid10_info *p;
2221
2222         print_conf(conf);
2223         if (unlikely(number >= mddev->raid_disks))
2224                 return 0;
2225         p = conf->mirrors + number;
2226         if (rdev == p->rdev)
2227                 rdevp = &p->rdev;
2228         else if (rdev == p->replacement)
2229                 rdevp = &p->replacement;
2230         else
2231                 return 0;
2232
2233         if (test_bit(In_sync, &rdev->flags) ||
2234             atomic_read(&rdev->nr_pending)) {
2235                 err = -EBUSY;
2236                 goto abort;
2237         }
2238         /* Only remove non-faulty devices if recovery
2239          * is not possible.
2240          */
2241         if (!test_bit(Faulty, &rdev->flags) &&
2242             mddev->recovery_disabled != p->recovery_disabled &&
2243             (!p->replacement || p->replacement == rdev) &&
2244             number < conf->geo.raid_disks &&
2245             enough(conf, -1)) {
2246                 err = -EBUSY;
2247                 goto abort;
2248         }
2249         *rdevp = NULL;
2250         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2251                 synchronize_rcu();
2252                 if (atomic_read(&rdev->nr_pending)) {
2253                         /* lost the race, try later */
2254                         err = -EBUSY;
2255                         *rdevp = rdev;
2256                         goto abort;
2257                 }
2258         }
2259         if (p->replacement) {
2260                 /* We must have just cleared 'rdev' */
2261                 p->rdev = p->replacement;
2262                 clear_bit(Replacement, &p->replacement->flags);
2263                 smp_mb(); /* Make sure other CPUs may see both as identical
2264                            * but will never see neither -- if they are careful.
2265                            */
2266                 p->replacement = NULL;
2267         }
2268
2269         clear_bit(WantReplacement, &rdev->flags);
2270         err = md_integrity_register(mddev);
2271
2272 abort:
2273
2274         print_conf(conf);
2275         return err;
2276 }
2277
2278 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2279 {
2280         struct r10conf *conf = r10_bio->mddev->private;
2281
2282         if (!bio->bi_status)
2283                 set_bit(R10BIO_Uptodate, &r10_bio->state);
2284         else
2285                 /* The write handler will notice the lack of
2286                  * R10BIO_Uptodate and record any errors etc
2287                  */
2288                 atomic_add(r10_bio->sectors,
2289                            &conf->mirrors[d].rdev->corrected_errors);
2290
2291         /* for reconstruct, we always reschedule after a read.
2292          * for resync, only after all reads
2293          */
2294         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2295         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2296             atomic_dec_and_test(&r10_bio->remaining)) {
2297                 /* we have read all the blocks,
2298                  * do the comparison in process context in raid10d
2299                  */
2300                 reschedule_retry(r10_bio);
2301         }
2302 }
2303
2304 static void end_sync_read(struct bio *bio)
2305 {
2306         struct r10bio *r10_bio = get_resync_r10bio(bio);
2307         struct r10conf *conf = r10_bio->mddev->private;
2308         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2309
2310         __end_sync_read(r10_bio, bio, d);
2311 }
2312
2313 static void end_reshape_read(struct bio *bio)
2314 {
2315         /* reshape read bio isn't allocated from r10buf_pool */
2316         struct r10bio *r10_bio = bio->bi_private;
2317
2318         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2319 }
2320
2321 static void end_sync_request(struct r10bio *r10_bio)
2322 {
2323         struct mddev *mddev = r10_bio->mddev;
2324
2325         while (atomic_dec_and_test(&r10_bio->remaining)) {
2326                 if (r10_bio->master_bio == NULL) {
2327                         /* the primary of several recovery bios */
2328                         sector_t s = r10_bio->sectors;
2329                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2330                             test_bit(R10BIO_WriteError, &r10_bio->state))
2331                                 reschedule_retry(r10_bio);
2332                         else
2333                                 put_buf(r10_bio);
2334                         md_done_sync(mddev, s, 1);
2335                         break;
2336                 } else {
2337                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2338                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2339                             test_bit(R10BIO_WriteError, &r10_bio->state))
2340                                 reschedule_retry(r10_bio);
2341                         else
2342                                 put_buf(r10_bio);
2343                         r10_bio = r10_bio2;
2344                 }
2345         }
2346 }
2347
2348 static void end_sync_write(struct bio *bio)
2349 {
2350         struct r10bio *r10_bio = get_resync_r10bio(bio);
2351         struct mddev *mddev = r10_bio->mddev;
2352         struct r10conf *conf = mddev->private;
2353         int d;
2354         sector_t first_bad;
2355         int bad_sectors;
2356         int slot;
2357         int repl;
2358         struct md_rdev *rdev = NULL;
2359
2360         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2361         if (repl)
2362                 rdev = conf->mirrors[d].replacement;
2363         else
2364                 rdev = conf->mirrors[d].rdev;
2365
2366         if (bio->bi_status) {
2367                 if (repl)
2368                         md_error(mddev, rdev);
2369                 else {
2370                         set_bit(WriteErrorSeen, &rdev->flags);
2371                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2372                                 set_bit(MD_RECOVERY_NEEDED,
2373                                         &rdev->mddev->recovery);
2374                         set_bit(R10BIO_WriteError, &r10_bio->state);
2375                 }
2376         } else if (is_badblock(rdev,
2377                              r10_bio->devs[slot].addr,
2378                              r10_bio->sectors,
2379                              &first_bad, &bad_sectors))
2380                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2381
2382         rdev_dec_pending(rdev, mddev);
2383
2384         end_sync_request(r10_bio);
2385 }
2386
2387 /*
2388  * Note: sync and recover and handled very differently for raid10
2389  * This code is for resync.
2390  * For resync, we read through virtual addresses and read all blocks.
2391  * If there is any error, we schedule a write.  The lowest numbered
2392  * drive is authoritative.
2393  * However requests come for physical address, so we need to map.
2394  * For every physical address there are raid_disks/copies virtual addresses,
2395  * which is always are least one, but is not necessarly an integer.
2396  * This means that a physical address can span multiple chunks, so we may
2397  * have to submit multiple io requests for a single sync request.
2398  */
2399 /*
2400  * We check if all blocks are in-sync and only write to blocks that
2401  * aren't in sync
2402  */
2403 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2404 {
2405         struct r10conf *conf = mddev->private;
2406         int i, first;
2407         struct bio *tbio, *fbio;
2408         int vcnt;
2409         struct page **tpages, **fpages;
2410
2411         atomic_set(&r10_bio->remaining, 1);
2412
2413         /* find the first device with a block */
2414         for (i=0; i<conf->copies; i++)
2415                 if (!r10_bio->devs[i].bio->bi_status)
2416                         break;
2417
2418         if (i == conf->copies)
2419                 goto done;
2420
2421         first = i;
2422         fbio = r10_bio->devs[i].bio;
2423         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2424         fbio->bi_iter.bi_idx = 0;
2425         fpages = get_resync_pages(fbio)->pages;
2426
2427         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2428         /* now find blocks with errors */
2429         for (i=0 ; i < conf->copies ; i++) {
2430                 int  j, d;
2431                 struct md_rdev *rdev;
2432                 struct resync_pages *rp;
2433
2434                 tbio = r10_bio->devs[i].bio;
2435
2436                 if (tbio->bi_end_io != end_sync_read)
2437                         continue;
2438                 if (i == first)
2439                         continue;
2440
2441                 tpages = get_resync_pages(tbio)->pages;
2442                 d = r10_bio->devs[i].devnum;
2443                 rdev = conf->mirrors[d].rdev;
2444                 if (!r10_bio->devs[i].bio->bi_status) {
2445                         /* We know that the bi_io_vec layout is the same for
2446                          * both 'first' and 'i', so we just compare them.
2447                          * All vec entries are PAGE_SIZE;
2448                          */
2449                         int sectors = r10_bio->sectors;
2450                         for (j = 0; j < vcnt; j++) {
2451                                 int len = PAGE_SIZE;
2452                                 if (sectors < (len / 512))
2453                                         len = sectors * 512;
2454                                 if (memcmp(page_address(fpages[j]),
2455                                            page_address(tpages[j]),
2456                                            len))
2457                                         break;
2458                                 sectors -= len/512;
2459                         }
2460                         if (j == vcnt)
2461                                 continue;
2462                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2463                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2464                                 /* Don't fix anything. */
2465                                 continue;
2466                 } else if (test_bit(FailFast, &rdev->flags)) {
2467                         /* Just give up on this device */
2468                         md_error(rdev->mddev, rdev);
2469                         continue;
2470                 }
2471                 /* Ok, we need to write this bio, either to correct an
2472                  * inconsistency or to correct an unreadable block.
2473                  * First we need to fixup bv_offset, bv_len and
2474                  * bi_vecs, as the read request might have corrupted these
2475                  */
2476                 rp = get_resync_pages(tbio);
2477                 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2478
2479                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2480
2481                 rp->raid_bio = r10_bio;
2482                 tbio->bi_private = rp;
2483                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2484                 tbio->bi_end_io = end_sync_write;
2485
2486                 bio_copy_data(tbio, fbio);
2487
2488                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2489                 atomic_inc(&r10_bio->remaining);
2490                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2491
2492                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2493                         tbio->bi_opf |= MD_FAILFAST;
2494                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2495                 submit_bio_noacct(tbio);
2496         }
2497
2498         /* Now write out to any replacement devices
2499          * that are active
2500          */
2501         for (i = 0; i < conf->copies; i++) {
2502                 int d;
2503
2504                 tbio = r10_bio->devs[i].repl_bio;
2505                 if (!tbio || !tbio->bi_end_io)
2506                         continue;
2507                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2508                     && r10_bio->devs[i].bio != fbio)
2509                         bio_copy_data(tbio, fbio);
2510                 d = r10_bio->devs[i].devnum;
2511                 atomic_inc(&r10_bio->remaining);
2512                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2513                              bio_sectors(tbio));
2514                 submit_bio_noacct(tbio);
2515         }
2516
2517 done:
2518         if (atomic_dec_and_test(&r10_bio->remaining)) {
2519                 md_done_sync(mddev, r10_bio->sectors, 1);
2520                 put_buf(r10_bio);
2521         }
2522 }
2523
2524 /*
2525  * Now for the recovery code.
2526  * Recovery happens across physical sectors.
2527  * We recover all non-is_sync drives by finding the virtual address of
2528  * each, and then choose a working drive that also has that virt address.
2529  * There is a separate r10_bio for each non-in_sync drive.
2530  * Only the first two slots are in use. The first for reading,
2531  * The second for writing.
2532  *
2533  */
2534 static void fix_recovery_read_error(struct r10bio *r10_bio)
2535 {
2536         /* We got a read error during recovery.
2537          * We repeat the read in smaller page-sized sections.
2538          * If a read succeeds, write it to the new device or record
2539          * a bad block if we cannot.
2540          * If a read fails, record a bad block on both old and
2541          * new devices.
2542          */
2543         struct mddev *mddev = r10_bio->mddev;
2544         struct r10conf *conf = mddev->private;
2545         struct bio *bio = r10_bio->devs[0].bio;
2546         sector_t sect = 0;
2547         int sectors = r10_bio->sectors;
2548         int idx = 0;
2549         int dr = r10_bio->devs[0].devnum;
2550         int dw = r10_bio->devs[1].devnum;
2551         struct page **pages = get_resync_pages(bio)->pages;
2552
2553         while (sectors) {
2554                 int s = sectors;
2555                 struct md_rdev *rdev;
2556                 sector_t addr;
2557                 int ok;
2558
2559                 if (s > (PAGE_SIZE>>9))
2560                         s = PAGE_SIZE >> 9;
2561
2562                 rdev = conf->mirrors[dr].rdev;
2563                 addr = r10_bio->devs[0].addr + sect,
2564                 ok = sync_page_io(rdev,
2565                                   addr,
2566                                   s << 9,
2567                                   pages[idx],
2568                                   REQ_OP_READ, false);
2569                 if (ok) {
2570                         rdev = conf->mirrors[dw].rdev;
2571                         addr = r10_bio->devs[1].addr + sect;
2572                         ok = sync_page_io(rdev,
2573                                           addr,
2574                                           s << 9,
2575                                           pages[idx],
2576                                           REQ_OP_WRITE, false);
2577                         if (!ok) {
2578                                 set_bit(WriteErrorSeen, &rdev->flags);
2579                                 if (!test_and_set_bit(WantReplacement,
2580                                                       &rdev->flags))
2581                                         set_bit(MD_RECOVERY_NEEDED,
2582                                                 &rdev->mddev->recovery);
2583                         }
2584                 }
2585                 if (!ok) {
2586                         /* We don't worry if we cannot set a bad block -
2587                          * it really is bad so there is no loss in not
2588                          * recording it yet
2589                          */
2590                         rdev_set_badblocks(rdev, addr, s, 0);
2591
2592                         if (rdev != conf->mirrors[dw].rdev) {
2593                                 /* need bad block on destination too */
2594                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2595                                 addr = r10_bio->devs[1].addr + sect;
2596                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2597                                 if (!ok) {
2598                                         /* just abort the recovery */
2599                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2600                                                   mdname(mddev));
2601
2602                                         conf->mirrors[dw].recovery_disabled
2603                                                 = mddev->recovery_disabled;
2604                                         set_bit(MD_RECOVERY_INTR,
2605                                                 &mddev->recovery);
2606                                         break;
2607                                 }
2608                         }
2609                 }
2610
2611                 sectors -= s;
2612                 sect += s;
2613                 idx++;
2614         }
2615 }
2616
2617 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2618 {
2619         struct r10conf *conf = mddev->private;
2620         int d;
2621         struct bio *wbio = r10_bio->devs[1].bio;
2622         struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2623
2624         /* Need to test wbio2->bi_end_io before we call
2625          * submit_bio_noacct as if the former is NULL,
2626          * the latter is free to free wbio2.
2627          */
2628         if (wbio2 && !wbio2->bi_end_io)
2629                 wbio2 = NULL;
2630
2631         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2632                 fix_recovery_read_error(r10_bio);
2633                 if (wbio->bi_end_io)
2634                         end_sync_request(r10_bio);
2635                 if (wbio2)
2636                         end_sync_request(r10_bio);
2637                 return;
2638         }
2639
2640         /*
2641          * share the pages with the first bio
2642          * and submit the write request
2643          */
2644         d = r10_bio->devs[1].devnum;
2645         if (wbio->bi_end_io) {
2646                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2647                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2648                 submit_bio_noacct(wbio);
2649         }
2650         if (wbio2) {
2651                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2652                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2653                              bio_sectors(wbio2));
2654                 submit_bio_noacct(wbio2);
2655         }
2656 }
2657
2658 /*
2659  * Used by fix_read_error() to decay the per rdev read_errors.
2660  * We halve the read error count for every hour that has elapsed
2661  * since the last recorded read error.
2662  *
2663  */
2664 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2665 {
2666         long cur_time_mon;
2667         unsigned long hours_since_last;
2668         unsigned int read_errors = atomic_read(&rdev->read_errors);
2669
2670         cur_time_mon = ktime_get_seconds();
2671
2672         if (rdev->last_read_error == 0) {
2673                 /* first time we've seen a read error */
2674                 rdev->last_read_error = cur_time_mon;
2675                 return;
2676         }
2677
2678         hours_since_last = (long)(cur_time_mon -
2679                             rdev->last_read_error) / 3600;
2680
2681         rdev->last_read_error = cur_time_mon;
2682
2683         /*
2684          * if hours_since_last is > the number of bits in read_errors
2685          * just set read errors to 0. We do this to avoid
2686          * overflowing the shift of read_errors by hours_since_last.
2687          */
2688         if (hours_since_last >= 8 * sizeof(read_errors))
2689                 atomic_set(&rdev->read_errors, 0);
2690         else
2691                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2692 }
2693
2694 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2695                             int sectors, struct page *page, enum req_op op)
2696 {
2697         sector_t first_bad;
2698         int bad_sectors;
2699
2700         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2701             && (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2702                 return -1;
2703         if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2704                 /* success */
2705                 return 1;
2706         if (op == REQ_OP_WRITE) {
2707                 set_bit(WriteErrorSeen, &rdev->flags);
2708                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2709                         set_bit(MD_RECOVERY_NEEDED,
2710                                 &rdev->mddev->recovery);
2711         }
2712         /* need to record an error - either for the block or the device */
2713         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2714                 md_error(rdev->mddev, rdev);
2715         return 0;
2716 }
2717
2718 /*
2719  * This is a kernel thread which:
2720  *
2721  *      1.      Retries failed read operations on working mirrors.
2722  *      2.      Updates the raid superblock when problems encounter.
2723  *      3.      Performs writes following reads for array synchronising.
2724  */
2725
2726 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2727 {
2728         int sect = 0; /* Offset from r10_bio->sector */
2729         int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2730         struct md_rdev *rdev;
2731         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2732         int d = r10_bio->devs[slot].devnum;
2733
2734         /* still own a reference to this rdev, so it cannot
2735          * have been cleared recently.
2736          */
2737         rdev = conf->mirrors[d].rdev;
2738
2739         if (test_bit(Faulty, &rdev->flags))
2740                 /* drive has already been failed, just ignore any
2741                    more fix_read_error() attempts */
2742                 return;
2743
2744         check_decay_read_errors(mddev, rdev);
2745         atomic_inc(&rdev->read_errors);
2746         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2747                 pr_notice("md/raid10:%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2748                           mdname(mddev), rdev->bdev,
2749                           atomic_read(&rdev->read_errors), max_read_errors);
2750                 pr_notice("md/raid10:%s: %pg: Failing raid device\n",
2751                           mdname(mddev), rdev->bdev);
2752                 md_error(mddev, rdev);
2753                 r10_bio->devs[slot].bio = IO_BLOCKED;
2754                 return;
2755         }
2756
2757         while(sectors) {
2758                 int s = sectors;
2759                 int sl = slot;
2760                 int success = 0;
2761                 int start;
2762
2763                 if (s > (PAGE_SIZE>>9))
2764                         s = PAGE_SIZE >> 9;
2765
2766                 rcu_read_lock();
2767                 do {
2768                         sector_t first_bad;
2769                         int bad_sectors;
2770
2771                         d = r10_bio->devs[sl].devnum;
2772                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2773                         if (rdev &&
2774                             test_bit(In_sync, &rdev->flags) &&
2775                             !test_bit(Faulty, &rdev->flags) &&
2776                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2777                                         &first_bad, &bad_sectors) == 0) {
2778                                 atomic_inc(&rdev->nr_pending);
2779                                 rcu_read_unlock();
2780                                 success = sync_page_io(rdev,
2781                                                        r10_bio->devs[sl].addr +
2782                                                        sect,
2783                                                        s<<9,
2784                                                        conf->tmppage,
2785                                                        REQ_OP_READ, false);
2786                                 rdev_dec_pending(rdev, mddev);
2787                                 rcu_read_lock();
2788                                 if (success)
2789                                         break;
2790                         }
2791                         sl++;
2792                         if (sl == conf->copies)
2793                                 sl = 0;
2794                 } while (sl != slot);
2795                 rcu_read_unlock();
2796
2797                 if (!success) {
2798                         /* Cannot read from anywhere, just mark the block
2799                          * as bad on the first device to discourage future
2800                          * reads.
2801                          */
2802                         int dn = r10_bio->devs[slot].devnum;
2803                         rdev = conf->mirrors[dn].rdev;
2804
2805                         if (!rdev_set_badblocks(
2806                                     rdev,
2807                                     r10_bio->devs[slot].addr
2808                                     + sect,
2809                                     s, 0)) {
2810                                 md_error(mddev, rdev);
2811                                 r10_bio->devs[slot].bio
2812                                         = IO_BLOCKED;
2813                         }
2814                         break;
2815                 }
2816
2817                 start = sl;
2818                 /* write it back and re-read */
2819                 rcu_read_lock();
2820                 while (sl != slot) {
2821                         if (sl==0)
2822                                 sl = conf->copies;
2823                         sl--;
2824                         d = r10_bio->devs[sl].devnum;
2825                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2826                         if (!rdev ||
2827                             test_bit(Faulty, &rdev->flags) ||
2828                             !test_bit(In_sync, &rdev->flags))
2829                                 continue;
2830
2831                         atomic_inc(&rdev->nr_pending);
2832                         rcu_read_unlock();
2833                         if (r10_sync_page_io(rdev,
2834                                              r10_bio->devs[sl].addr +
2835                                              sect,
2836                                              s, conf->tmppage, REQ_OP_WRITE)
2837                             == 0) {
2838                                 /* Well, this device is dead */
2839                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2840                                           mdname(mddev), s,
2841                                           (unsigned long long)(
2842                                                   sect +
2843                                                   choose_data_offset(r10_bio,
2844                                                                      rdev)),
2845                                           rdev->bdev);
2846                                 pr_notice("md/raid10:%s: %pg: failing drive\n",
2847                                           mdname(mddev),
2848                                           rdev->bdev);
2849                         }
2850                         rdev_dec_pending(rdev, mddev);
2851                         rcu_read_lock();
2852                 }
2853                 sl = start;
2854                 while (sl != slot) {
2855                         if (sl==0)
2856                                 sl = conf->copies;
2857                         sl--;
2858                         d = r10_bio->devs[sl].devnum;
2859                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2860                         if (!rdev ||
2861                             test_bit(Faulty, &rdev->flags) ||
2862                             !test_bit(In_sync, &rdev->flags))
2863                                 continue;
2864
2865                         atomic_inc(&rdev->nr_pending);
2866                         rcu_read_unlock();
2867                         switch (r10_sync_page_io(rdev,
2868                                              r10_bio->devs[sl].addr +
2869                                              sect,
2870                                              s, conf->tmppage, REQ_OP_READ)) {
2871                         case 0:
2872                                 /* Well, this device is dead */
2873                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2874                                        mdname(mddev), s,
2875                                        (unsigned long long)(
2876                                                sect +
2877                                                choose_data_offset(r10_bio, rdev)),
2878                                        rdev->bdev);
2879                                 pr_notice("md/raid10:%s: %pg: failing drive\n",
2880                                        mdname(mddev),
2881                                        rdev->bdev);
2882                                 break;
2883                         case 1:
2884                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2885                                        mdname(mddev), s,
2886                                        (unsigned long long)(
2887                                                sect +
2888                                                choose_data_offset(r10_bio, rdev)),
2889                                        rdev->bdev);
2890                                 atomic_add(s, &rdev->corrected_errors);
2891                         }
2892
2893                         rdev_dec_pending(rdev, mddev);
2894                         rcu_read_lock();
2895                 }
2896                 rcu_read_unlock();
2897
2898                 sectors -= s;
2899                 sect += s;
2900         }
2901 }
2902
2903 static int narrow_write_error(struct r10bio *r10_bio, int i)
2904 {
2905         struct bio *bio = r10_bio->master_bio;
2906         struct mddev *mddev = r10_bio->mddev;
2907         struct r10conf *conf = mddev->private;
2908         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2909         /* bio has the data to be written to slot 'i' where
2910          * we just recently had a write error.
2911          * We repeatedly clone the bio and trim down to one block,
2912          * then try the write.  Where the write fails we record
2913          * a bad block.
2914          * It is conceivable that the bio doesn't exactly align with
2915          * blocks.  We must handle this.
2916          *
2917          * We currently own a reference to the rdev.
2918          */
2919
2920         int block_sectors;
2921         sector_t sector;
2922         int sectors;
2923         int sect_to_write = r10_bio->sectors;
2924         int ok = 1;
2925
2926         if (rdev->badblocks.shift < 0)
2927                 return 0;
2928
2929         block_sectors = roundup(1 << rdev->badblocks.shift,
2930                                 bdev_logical_block_size(rdev->bdev) >> 9);
2931         sector = r10_bio->sector;
2932         sectors = ((r10_bio->sector + block_sectors)
2933                    & ~(sector_t)(block_sectors - 1))
2934                 - sector;
2935
2936         while (sect_to_write) {
2937                 struct bio *wbio;
2938                 sector_t wsector;
2939                 if (sectors > sect_to_write)
2940                         sectors = sect_to_write;
2941                 /* Write at 'sector' for 'sectors' */
2942                 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2943                                        &mddev->bio_set);
2944                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2945                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2946                 wbio->bi_iter.bi_sector = wsector +
2947                                    choose_data_offset(r10_bio, rdev);
2948                 wbio->bi_opf = REQ_OP_WRITE;
2949
2950                 if (submit_bio_wait(wbio) < 0)
2951                         /* Failure! */
2952                         ok = rdev_set_badblocks(rdev, wsector,
2953                                                 sectors, 0)
2954                                 && ok;
2955
2956                 bio_put(wbio);
2957                 sect_to_write -= sectors;
2958                 sector += sectors;
2959                 sectors = block_sectors;
2960         }
2961         return ok;
2962 }
2963
2964 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2965 {
2966         int slot = r10_bio->read_slot;
2967         struct bio *bio;
2968         struct r10conf *conf = mddev->private;
2969         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2970
2971         /* we got a read error. Maybe the drive is bad.  Maybe just
2972          * the block and we can fix it.
2973          * We freeze all other IO, and try reading the block from
2974          * other devices.  When we find one, we re-write
2975          * and check it that fixes the read error.
2976          * This is all done synchronously while the array is
2977          * frozen.
2978          */
2979         bio = r10_bio->devs[slot].bio;
2980         bio_put(bio);
2981         r10_bio->devs[slot].bio = NULL;
2982
2983         if (mddev->ro)
2984                 r10_bio->devs[slot].bio = IO_BLOCKED;
2985         else if (!test_bit(FailFast, &rdev->flags)) {
2986                 freeze_array(conf, 1);
2987                 fix_read_error(conf, mddev, r10_bio);
2988                 unfreeze_array(conf);
2989         } else
2990                 md_error(mddev, rdev);
2991
2992         rdev_dec_pending(rdev, mddev);
2993         r10_bio->state = 0;
2994         raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2995         /*
2996          * allow_barrier after re-submit to ensure no sync io
2997          * can be issued while regular io pending.
2998          */
2999         allow_barrier(conf);
3000 }
3001
3002 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
3003 {
3004         /* Some sort of write request has finished and it
3005          * succeeded in writing where we thought there was a
3006          * bad block.  So forget the bad block.
3007          * Or possibly if failed and we need to record
3008          * a bad block.
3009          */
3010         int m;
3011         struct md_rdev *rdev;
3012
3013         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
3014             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
3015                 for (m = 0; m < conf->copies; m++) {
3016                         int dev = r10_bio->devs[m].devnum;
3017                         rdev = conf->mirrors[dev].rdev;
3018                         if (r10_bio->devs[m].bio == NULL ||
3019                                 r10_bio->devs[m].bio->bi_end_io == NULL)
3020                                 continue;
3021                         if (!r10_bio->devs[m].bio->bi_status) {
3022                                 rdev_clear_badblocks(
3023                                         rdev,
3024                                         r10_bio->devs[m].addr,
3025                                         r10_bio->sectors, 0);
3026                         } else {
3027                                 if (!rdev_set_badblocks(
3028                                             rdev,
3029                                             r10_bio->devs[m].addr,
3030                                             r10_bio->sectors, 0))
3031                                         md_error(conf->mddev, rdev);
3032                         }
3033                         rdev = conf->mirrors[dev].replacement;
3034                         if (r10_bio->devs[m].repl_bio == NULL ||
3035                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
3036                                 continue;
3037
3038                         if (!r10_bio->devs[m].repl_bio->bi_status) {
3039                                 rdev_clear_badblocks(
3040                                         rdev,
3041                                         r10_bio->devs[m].addr,
3042                                         r10_bio->sectors, 0);
3043                         } else {
3044                                 if (!rdev_set_badblocks(
3045                                             rdev,
3046                                             r10_bio->devs[m].addr,
3047                                             r10_bio->sectors, 0))
3048                                         md_error(conf->mddev, rdev);
3049                         }
3050                 }
3051                 put_buf(r10_bio);
3052         } else {
3053                 bool fail = false;
3054                 for (m = 0; m < conf->copies; m++) {
3055                         int dev = r10_bio->devs[m].devnum;
3056                         struct bio *bio = r10_bio->devs[m].bio;
3057                         rdev = conf->mirrors[dev].rdev;
3058                         if (bio == IO_MADE_GOOD) {
3059                                 rdev_clear_badblocks(
3060                                         rdev,
3061                                         r10_bio->devs[m].addr,
3062                                         r10_bio->sectors, 0);
3063                                 rdev_dec_pending(rdev, conf->mddev);
3064                         } else if (bio != NULL && bio->bi_status) {
3065                                 fail = true;
3066                                 if (!narrow_write_error(r10_bio, m)) {
3067                                         md_error(conf->mddev, rdev);
3068                                         set_bit(R10BIO_Degraded,
3069                                                 &r10_bio->state);
3070                                 }
3071                                 rdev_dec_pending(rdev, conf->mddev);
3072                         }
3073                         bio = r10_bio->devs[m].repl_bio;
3074                         rdev = conf->mirrors[dev].replacement;
3075                         if (rdev && bio == IO_MADE_GOOD) {
3076                                 rdev_clear_badblocks(
3077                                         rdev,
3078                                         r10_bio->devs[m].addr,
3079                                         r10_bio->sectors, 0);
3080                                 rdev_dec_pending(rdev, conf->mddev);
3081                         }
3082                 }
3083                 if (fail) {
3084                         spin_lock_irq(&conf->device_lock);
3085                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3086                         conf->nr_queued++;
3087                         spin_unlock_irq(&conf->device_lock);
3088                         /*
3089                          * In case freeze_array() is waiting for condition
3090                          * nr_pending == nr_queued + extra to be true.
3091                          */
3092                         wake_up(&conf->wait_barrier);
3093                         md_wakeup_thread(conf->mddev->thread);
3094                 } else {
3095                         if (test_bit(R10BIO_WriteError,
3096                                      &r10_bio->state))
3097                                 close_write(r10_bio);
3098                         raid_end_bio_io(r10_bio);
3099                 }
3100         }
3101 }
3102
3103 static void raid10d(struct md_thread *thread)
3104 {
3105         struct mddev *mddev = thread->mddev;
3106         struct r10bio *r10_bio;
3107         unsigned long flags;
3108         struct r10conf *conf = mddev->private;
3109         struct list_head *head = &conf->retry_list;
3110         struct blk_plug plug;
3111
3112         md_check_recovery(mddev);
3113
3114         if (!list_empty_careful(&conf->bio_end_io_list) &&
3115             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3116                 LIST_HEAD(tmp);
3117                 spin_lock_irqsave(&conf->device_lock, flags);
3118                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3119                         while (!list_empty(&conf->bio_end_io_list)) {
3120                                 list_move(conf->bio_end_io_list.prev, &tmp);
3121                                 conf->nr_queued--;
3122                         }
3123                 }
3124                 spin_unlock_irqrestore(&conf->device_lock, flags);
3125                 while (!list_empty(&tmp)) {
3126                         r10_bio = list_first_entry(&tmp, struct r10bio,
3127                                                    retry_list);
3128                         list_del(&r10_bio->retry_list);
3129                         if (mddev->degraded)
3130                                 set_bit(R10BIO_Degraded, &r10_bio->state);
3131
3132                         if (test_bit(R10BIO_WriteError,
3133                                      &r10_bio->state))
3134                                 close_write(r10_bio);
3135                         raid_end_bio_io(r10_bio);
3136                 }
3137         }
3138
3139         blk_start_plug(&plug);
3140         for (;;) {
3141
3142                 flush_pending_writes(conf);
3143
3144                 spin_lock_irqsave(&conf->device_lock, flags);
3145                 if (list_empty(head)) {
3146                         spin_unlock_irqrestore(&conf->device_lock, flags);
3147                         break;
3148                 }
3149                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3150                 list_del(head->prev);
3151                 conf->nr_queued--;
3152                 spin_unlock_irqrestore(&conf->device_lock, flags);
3153
3154                 mddev = r10_bio->mddev;
3155                 conf = mddev->private;
3156                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3157                     test_bit(R10BIO_WriteError, &r10_bio->state))
3158                         handle_write_completed(conf, r10_bio);
3159                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3160                         reshape_request_write(mddev, r10_bio);
3161                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3162                         sync_request_write(mddev, r10_bio);
3163                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3164                         recovery_request_write(mddev, r10_bio);
3165                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3166                         handle_read_error(mddev, r10_bio);
3167                 else
3168                         WARN_ON_ONCE(1);
3169
3170                 cond_resched();
3171                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3172                         md_check_recovery(mddev);
3173         }
3174         blk_finish_plug(&plug);
3175 }
3176
3177 static int init_resync(struct r10conf *conf)
3178 {
3179         int ret, buffs, i;
3180
3181         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3182         BUG_ON(mempool_initialized(&conf->r10buf_pool));
3183         conf->have_replacement = 0;
3184         for (i = 0; i < conf->geo.raid_disks; i++)
3185                 if (conf->mirrors[i].replacement)
3186                         conf->have_replacement = 1;
3187         ret = mempool_init(&conf->r10buf_pool, buffs,
3188                            r10buf_pool_alloc, r10buf_pool_free, conf);
3189         if (ret)
3190                 return ret;
3191         conf->next_resync = 0;
3192         return 0;
3193 }
3194
3195 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3196 {
3197         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3198         struct rsync_pages *rp;
3199         struct bio *bio;
3200         int nalloc;
3201         int i;
3202
3203         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3204             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3205                 nalloc = conf->copies; /* resync */
3206         else
3207                 nalloc = 2; /* recovery */
3208
3209         for (i = 0; i < nalloc; i++) {
3210                 bio = r10bio->devs[i].bio;
3211                 rp = bio->bi_private;
3212                 bio_reset(bio, NULL, 0);
3213                 bio->bi_private = rp;
3214                 bio = r10bio->devs[i].repl_bio;
3215                 if (bio) {
3216                         rp = bio->bi_private;
3217                         bio_reset(bio, NULL, 0);
3218                         bio->bi_private = rp;
3219                 }
3220         }
3221         return r10bio;
3222 }
3223
3224 /*
3225  * Set cluster_sync_high since we need other nodes to add the
3226  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3227  */
3228 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3229 {
3230         sector_t window_size;
3231         int extra_chunk, chunks;
3232
3233         /*
3234          * First, here we define "stripe" as a unit which across
3235          * all member devices one time, so we get chunks by use
3236          * raid_disks / near_copies. Otherwise, if near_copies is
3237          * close to raid_disks, then resync window could increases
3238          * linearly with the increase of raid_disks, which means
3239          * we will suspend a really large IO window while it is not
3240          * necessary. If raid_disks is not divisible by near_copies,
3241          * an extra chunk is needed to ensure the whole "stripe" is
3242          * covered.
3243          */
3244
3245         chunks = conf->geo.raid_disks / conf->geo.near_copies;
3246         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3247                 extra_chunk = 0;
3248         else
3249                 extra_chunk = 1;
3250         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3251
3252         /*
3253          * At least use a 32M window to align with raid1's resync window
3254          */
3255         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3256                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3257
3258         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3259 }
3260
3261 /*
3262  * perform a "sync" on one "block"
3263  *
3264  * We need to make sure that no normal I/O request - particularly write
3265  * requests - conflict with active sync requests.
3266  *
3267  * This is achieved by tracking pending requests and a 'barrier' concept
3268  * that can be installed to exclude normal IO requests.
3269  *
3270  * Resync and recovery are handled very differently.
3271  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3272  *
3273  * For resync, we iterate over virtual addresses, read all copies,
3274  * and update if there are differences.  If only one copy is live,
3275  * skip it.
3276  * For recovery, we iterate over physical addresses, read a good
3277  * value for each non-in_sync drive, and over-write.
3278  *
3279  * So, for recovery we may have several outstanding complex requests for a
3280  * given address, one for each out-of-sync device.  We model this by allocating
3281  * a number of r10_bio structures, one for each out-of-sync device.
3282  * As we setup these structures, we collect all bio's together into a list
3283  * which we then process collectively to add pages, and then process again
3284  * to pass to submit_bio_noacct.
3285  *
3286  * The r10_bio structures are linked using a borrowed master_bio pointer.
3287  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3288  * has its remaining count decremented to 0, the whole complex operation
3289  * is complete.
3290  *
3291  */
3292
3293 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3294                              int *skipped)
3295 {
3296         struct r10conf *conf = mddev->private;
3297         struct r10bio *r10_bio;
3298         struct bio *biolist = NULL, *bio;
3299         sector_t max_sector, nr_sectors;
3300         int i;
3301         int max_sync;
3302         sector_t sync_blocks;
3303         sector_t sectors_skipped = 0;
3304         int chunks_skipped = 0;
3305         sector_t chunk_mask = conf->geo.chunk_mask;
3306         int page_idx = 0;
3307         int error_disk = -1;
3308
3309         /*
3310          * Allow skipping a full rebuild for incremental assembly
3311          * of a clean array, like RAID1 does.
3312          */
3313         if (mddev->bitmap == NULL &&
3314             mddev->recovery_cp == MaxSector &&
3315             mddev->reshape_position == MaxSector &&
3316             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3317             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3318             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3319             conf->fullsync == 0) {
3320                 *skipped = 1;
3321                 return mddev->dev_sectors - sector_nr;
3322         }
3323
3324         if (!mempool_initialized(&conf->r10buf_pool))
3325                 if (init_resync(conf))
3326                         return 0;
3327
3328  skipped:
3329         max_sector = mddev->dev_sectors;
3330         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3331             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3332                 max_sector = mddev->resync_max_sectors;
3333         if (sector_nr >= max_sector) {
3334                 conf->cluster_sync_low = 0;
3335                 conf->cluster_sync_high = 0;
3336
3337                 /* If we aborted, we need to abort the
3338                  * sync on the 'current' bitmap chucks (there can
3339                  * be several when recovering multiple devices).
3340                  * as we may have started syncing it but not finished.
3341                  * We can find the current address in
3342                  * mddev->curr_resync, but for recovery,
3343                  * we need to convert that to several
3344                  * virtual addresses.
3345                  */
3346                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3347                         end_reshape(conf);
3348                         close_sync(conf);
3349                         return 0;
3350                 }
3351
3352                 if (mddev->curr_resync < max_sector) { /* aborted */
3353                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3354                                 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3355                                                    &sync_blocks, 1);
3356                         else for (i = 0; i < conf->geo.raid_disks; i++) {
3357                                 sector_t sect =
3358                                         raid10_find_virt(conf, mddev->curr_resync, i);
3359                                 md_bitmap_end_sync(mddev->bitmap, sect,
3360                                                    &sync_blocks, 1);
3361                         }
3362                 } else {
3363                         /* completed sync */
3364                         if ((!mddev->bitmap || conf->fullsync)
3365                             && conf->have_replacement
3366                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3367                                 /* Completed a full sync so the replacements
3368                                  * are now fully recovered.
3369                                  */
3370                                 rcu_read_lock();
3371                                 for (i = 0; i < conf->geo.raid_disks; i++) {
3372                                         struct md_rdev *rdev =
3373                                                 rcu_dereference(conf->mirrors[i].replacement);
3374                                         if (rdev)
3375                                                 rdev->recovery_offset = MaxSector;
3376                                 }
3377                                 rcu_read_unlock();
3378                         }
3379                         conf->fullsync = 0;
3380                 }
3381                 md_bitmap_close_sync(mddev->bitmap);
3382                 close_sync(conf);
3383                 *skipped = 1;
3384                 return sectors_skipped;
3385         }
3386
3387         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3388                 return reshape_request(mddev, sector_nr, skipped);
3389
3390         if (chunks_skipped >= conf->geo.raid_disks) {
3391                 pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3392                         test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?  "resync" : "recovery");
3393                 if (error_disk >= 0 &&
3394                     !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3395                         /*
3396                          * recovery fails, set mirrors.recovery_disabled,
3397                          * device shouldn't be added to there.
3398                          */
3399                         conf->mirrors[error_disk].recovery_disabled =
3400                                                 mddev->recovery_disabled;
3401                         return 0;
3402                 }
3403                 /*
3404                  * if there has been nothing to do on any drive,
3405                  * then there is nothing to do at all.
3406                  */
3407                 *skipped = 1;
3408                 return (max_sector - sector_nr) + sectors_skipped;
3409         }
3410
3411         if (max_sector > mddev->resync_max)
3412                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3413
3414         /* make sure whole request will fit in a chunk - if chunks
3415          * are meaningful
3416          */
3417         if (conf->geo.near_copies < conf->geo.raid_disks &&
3418             max_sector > (sector_nr | chunk_mask))
3419                 max_sector = (sector_nr | chunk_mask) + 1;
3420
3421         /*
3422          * If there is non-resync activity waiting for a turn, then let it
3423          * though before starting on this new sync request.
3424          */
3425         if (conf->nr_waiting)
3426                 schedule_timeout_uninterruptible(1);
3427
3428         /* Again, very different code for resync and recovery.
3429          * Both must result in an r10bio with a list of bios that
3430          * have bi_end_io, bi_sector, bi_bdev set,
3431          * and bi_private set to the r10bio.
3432          * For recovery, we may actually create several r10bios
3433          * with 2 bios in each, that correspond to the bios in the main one.
3434          * In this case, the subordinate r10bios link back through a
3435          * borrowed master_bio pointer, and the counter in the master
3436          * includes a ref from each subordinate.
3437          */
3438         /* First, we decide what to do and set ->bi_end_io
3439          * To end_sync_read if we want to read, and
3440          * end_sync_write if we will want to write.
3441          */
3442
3443         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3444         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3445                 /* recovery... the complicated one */
3446                 int j;
3447                 r10_bio = NULL;
3448
3449                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3450                         int still_degraded;
3451                         struct r10bio *rb2;
3452                         sector_t sect;
3453                         int must_sync;
3454                         int any_working;
3455                         struct raid10_info *mirror = &conf->mirrors[i];
3456                         struct md_rdev *mrdev, *mreplace;
3457
3458                         rcu_read_lock();
3459                         mrdev = rcu_dereference(mirror->rdev);
3460                         mreplace = rcu_dereference(mirror->replacement);
3461
3462                         if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3463                             test_bit(In_sync, &mrdev->flags)))
3464                                 mrdev = NULL;
3465                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3466                                 mreplace = NULL;
3467
3468                         if (!mrdev && !mreplace) {
3469                                 rcu_read_unlock();
3470                                 continue;
3471                         }
3472
3473                         still_degraded = 0;
3474                         /* want to reconstruct this device */
3475                         rb2 = r10_bio;
3476                         sect = raid10_find_virt(conf, sector_nr, i);
3477                         if (sect >= mddev->resync_max_sectors) {
3478                                 /* last stripe is not complete - don't
3479                                  * try to recover this sector.
3480                                  */
3481                                 rcu_read_unlock();
3482                                 continue;
3483                         }
3484                         /* Unless we are doing a full sync, or a replacement
3485                          * we only need to recover the block if it is set in
3486                          * the bitmap
3487                          */
3488                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3489                                                          &sync_blocks, 1);
3490                         if (sync_blocks < max_sync)
3491                                 max_sync = sync_blocks;
3492                         if (!must_sync &&
3493                             mreplace == NULL &&
3494                             !conf->fullsync) {
3495                                 /* yep, skip the sync_blocks here, but don't assume
3496                                  * that there will never be anything to do here
3497                                  */
3498                                 chunks_skipped = -1;
3499                                 rcu_read_unlock();
3500                                 continue;
3501                         }
3502                         if (mrdev)
3503                                 atomic_inc(&mrdev->nr_pending);
3504                         if (mreplace)
3505                                 atomic_inc(&mreplace->nr_pending);
3506                         rcu_read_unlock();
3507
3508                         r10_bio = raid10_alloc_init_r10buf(conf);
3509                         r10_bio->state = 0;
3510                         raise_barrier(conf, rb2 != NULL);
3511                         atomic_set(&r10_bio->remaining, 0);
3512
3513                         r10_bio->master_bio = (struct bio*)rb2;
3514                         if (rb2)
3515                                 atomic_inc(&rb2->remaining);
3516                         r10_bio->mddev = mddev;
3517                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3518                         r10_bio->sector = sect;
3519
3520                         raid10_find_phys(conf, r10_bio);
3521
3522                         /* Need to check if the array will still be
3523                          * degraded
3524                          */
3525                         rcu_read_lock();
3526                         for (j = 0; j < conf->geo.raid_disks; j++) {
3527                                 struct md_rdev *rdev = rcu_dereference(
3528                                         conf->mirrors[j].rdev);
3529                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3530                                         still_degraded = 1;
3531                                         break;
3532                                 }
3533                         }
3534
3535                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3536                                                          &sync_blocks, still_degraded);
3537
3538                         any_working = 0;
3539                         for (j=0; j<conf->copies;j++) {
3540                                 int k;
3541                                 int d = r10_bio->devs[j].devnum;
3542                                 sector_t from_addr, to_addr;
3543                                 struct md_rdev *rdev =
3544                                         rcu_dereference(conf->mirrors[d].rdev);
3545                                 sector_t sector, first_bad;
3546                                 int bad_sectors;
3547                                 if (!rdev ||
3548                                     !test_bit(In_sync, &rdev->flags))
3549                                         continue;
3550                                 /* This is where we read from */
3551                                 any_working = 1;
3552                                 sector = r10_bio->devs[j].addr;
3553
3554                                 if (is_badblock(rdev, sector, max_sync,
3555                                                 &first_bad, &bad_sectors)) {
3556                                         if (first_bad > sector)
3557                                                 max_sync = first_bad - sector;
3558                                         else {
3559                                                 bad_sectors -= (sector
3560                                                                 - first_bad);
3561                                                 if (max_sync > bad_sectors)
3562                                                         max_sync = bad_sectors;
3563                                                 continue;
3564                                         }
3565                                 }
3566                                 bio = r10_bio->devs[0].bio;
3567                                 bio->bi_next = biolist;
3568                                 biolist = bio;
3569                                 bio->bi_end_io = end_sync_read;
3570                                 bio->bi_opf = REQ_OP_READ;
3571                                 if (test_bit(FailFast, &rdev->flags))
3572                                         bio->bi_opf |= MD_FAILFAST;
3573                                 from_addr = r10_bio->devs[j].addr;
3574                                 bio->bi_iter.bi_sector = from_addr +
3575                                         rdev->data_offset;
3576                                 bio_set_dev(bio, rdev->bdev);
3577                                 atomic_inc(&rdev->nr_pending);
3578                                 /* and we write to 'i' (if not in_sync) */
3579
3580                                 for (k=0; k<conf->copies; k++)
3581                                         if (r10_bio->devs[k].devnum == i)
3582                                                 break;
3583                                 BUG_ON(k == conf->copies);
3584                                 to_addr = r10_bio->devs[k].addr;
3585                                 r10_bio->devs[0].devnum = d;
3586                                 r10_bio->devs[0].addr = from_addr;
3587                                 r10_bio->devs[1].devnum = i;
3588                                 r10_bio->devs[1].addr = to_addr;
3589
3590                                 if (mrdev) {
3591                                         bio = r10_bio->devs[1].bio;
3592                                         bio->bi_next = biolist;
3593                                         biolist = bio;
3594                                         bio->bi_end_io = end_sync_write;
3595                                         bio->bi_opf = REQ_OP_WRITE;
3596                                         bio->bi_iter.bi_sector = to_addr
3597                                                 + mrdev->data_offset;
3598                                         bio_set_dev(bio, mrdev->bdev);
3599                                         atomic_inc(&r10_bio->remaining);
3600                                 } else
3601                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3602
3603                                 /* and maybe write to replacement */
3604                                 bio = r10_bio->devs[1].repl_bio;
3605                                 if (bio)
3606                                         bio->bi_end_io = NULL;
3607                                 /* Note: if replace is not NULL, then bio
3608                                  * cannot be NULL as r10buf_pool_alloc will
3609                                  * have allocated it.
3610                                  */
3611                                 if (!mreplace)
3612                                         break;
3613                                 bio->bi_next = biolist;
3614                                 biolist = bio;
3615                                 bio->bi_end_io = end_sync_write;
3616                                 bio->bi_opf = REQ_OP_WRITE;
3617                                 bio->bi_iter.bi_sector = to_addr +
3618                                         mreplace->data_offset;
3619                                 bio_set_dev(bio, mreplace->bdev);
3620                                 atomic_inc(&r10_bio->remaining);
3621                                 break;
3622                         }
3623                         rcu_read_unlock();
3624                         if (j == conf->copies) {
3625                                 /* Cannot recover, so abort the recovery or
3626                                  * record a bad block */
3627                                 if (any_working) {
3628                                         /* problem is that there are bad blocks
3629                                          * on other device(s)
3630                                          */
3631                                         int k;
3632                                         for (k = 0; k < conf->copies; k++)
3633                                                 if (r10_bio->devs[k].devnum == i)
3634                                                         break;
3635                                         if (mrdev && !test_bit(In_sync,
3636                                                       &mrdev->flags)
3637                                             && !rdev_set_badblocks(
3638                                                     mrdev,
3639                                                     r10_bio->devs[k].addr,
3640                                                     max_sync, 0))
3641                                                 any_working = 0;
3642                                         if (mreplace &&
3643                                             !rdev_set_badblocks(
3644                                                     mreplace,
3645                                                     r10_bio->devs[k].addr,
3646                                                     max_sync, 0))
3647                                                 any_working = 0;
3648                                 }
3649                                 if (!any_working)  {
3650                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3651                                                               &mddev->recovery))
3652                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3653                                                        mdname(mddev));
3654                                         mirror->recovery_disabled
3655                                                 = mddev->recovery_disabled;
3656                                 } else {
3657                                         error_disk = i;
3658                                 }
3659                                 put_buf(r10_bio);
3660                                 if (rb2)
3661                                         atomic_dec(&rb2->remaining);
3662                                 r10_bio = rb2;
3663                                 if (mrdev)
3664                                         rdev_dec_pending(mrdev, mddev);
3665                                 if (mreplace)
3666                                         rdev_dec_pending(mreplace, mddev);
3667                                 break;
3668                         }
3669                         if (mrdev)
3670                                 rdev_dec_pending(mrdev, mddev);
3671                         if (mreplace)
3672                                 rdev_dec_pending(mreplace, mddev);
3673                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3674                                 /* Only want this if there is elsewhere to
3675                                  * read from. 'j' is currently the first
3676                                  * readable copy.
3677                                  */
3678                                 int targets = 1;
3679                                 for (; j < conf->copies; j++) {
3680                                         int d = r10_bio->devs[j].devnum;
3681                                         if (conf->mirrors[d].rdev &&
3682                                             test_bit(In_sync,
3683                                                       &conf->mirrors[d].rdev->flags))
3684                                                 targets++;
3685                                 }
3686                                 if (targets == 1)
3687                                         r10_bio->devs[0].bio->bi_opf
3688                                                 &= ~MD_FAILFAST;
3689                         }
3690                 }
3691                 if (biolist == NULL) {
3692                         while (r10_bio) {
3693                                 struct r10bio *rb2 = r10_bio;
3694                                 r10_bio = (struct r10bio*) rb2->master_bio;
3695                                 rb2->master_bio = NULL;
3696                                 put_buf(rb2);
3697                         }
3698                         goto giveup;
3699                 }
3700         } else {
3701                 /* resync. Schedule a read for every block at this virt offset */
3702                 int count = 0;
3703
3704                 /*
3705                  * Since curr_resync_completed could probably not update in
3706                  * time, and we will set cluster_sync_low based on it.
3707                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3708                  * safety reason, which ensures curr_resync_completed is
3709                  * updated in bitmap_cond_end_sync.
3710                  */
3711                 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3712                                         mddev_is_clustered(mddev) &&
3713                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3714
3715                 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3716                                           &sync_blocks, mddev->degraded) &&
3717                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3718                                                  &mddev->recovery)) {
3719                         /* We can skip this block */
3720                         *skipped = 1;
3721                         return sync_blocks + sectors_skipped;
3722                 }
3723                 if (sync_blocks < max_sync)
3724                         max_sync = sync_blocks;
3725                 r10_bio = raid10_alloc_init_r10buf(conf);
3726                 r10_bio->state = 0;
3727
3728                 r10_bio->mddev = mddev;
3729                 atomic_set(&r10_bio->remaining, 0);
3730                 raise_barrier(conf, 0);
3731                 conf->next_resync = sector_nr;
3732
3733                 r10_bio->master_bio = NULL;
3734                 r10_bio->sector = sector_nr;
3735                 set_bit(R10BIO_IsSync, &r10_bio->state);
3736                 raid10_find_phys(conf, r10_bio);
3737                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3738
3739                 for (i = 0; i < conf->copies; i++) {
3740                         int d = r10_bio->devs[i].devnum;
3741                         sector_t first_bad, sector;
3742                         int bad_sectors;
3743                         struct md_rdev *rdev;
3744
3745                         if (r10_bio->devs[i].repl_bio)
3746                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3747
3748                         bio = r10_bio->devs[i].bio;
3749                         bio->bi_status = BLK_STS_IOERR;
3750                         rcu_read_lock();
3751                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3752                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3753                                 rcu_read_unlock();
3754                                 continue;
3755                         }
3756                         sector = r10_bio->devs[i].addr;
3757                         if (is_badblock(rdev, sector, max_sync,
3758                                         &first_bad, &bad_sectors)) {
3759                                 if (first_bad > sector)
3760                                         max_sync = first_bad - sector;
3761                                 else {
3762                                         bad_sectors -= (sector - first_bad);
3763                                         if (max_sync > bad_sectors)
3764                                                 max_sync = bad_sectors;
3765                                         rcu_read_unlock();
3766                                         continue;
3767                                 }
3768                         }
3769                         atomic_inc(&rdev->nr_pending);
3770                         atomic_inc(&r10_bio->remaining);
3771                         bio->bi_next = biolist;
3772                         biolist = bio;
3773                         bio->bi_end_io = end_sync_read;
3774                         bio->bi_opf = REQ_OP_READ;
3775                         if (test_bit(FailFast, &rdev->flags))
3776                                 bio->bi_opf |= MD_FAILFAST;
3777                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3778                         bio_set_dev(bio, rdev->bdev);
3779                         count++;
3780
3781                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3782                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3783                                 rcu_read_unlock();
3784                                 continue;
3785                         }
3786                         atomic_inc(&rdev->nr_pending);
3787
3788                         /* Need to set up for writing to the replacement */
3789                         bio = r10_bio->devs[i].repl_bio;
3790                         bio->bi_status = BLK_STS_IOERR;
3791
3792                         sector = r10_bio->devs[i].addr;
3793                         bio->bi_next = biolist;
3794                         biolist = bio;
3795                         bio->bi_end_io = end_sync_write;
3796                         bio->bi_opf = REQ_OP_WRITE;
3797                         if (test_bit(FailFast, &rdev->flags))
3798                                 bio->bi_opf |= MD_FAILFAST;
3799                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3800                         bio_set_dev(bio, rdev->bdev);
3801                         count++;
3802                         rcu_read_unlock();
3803                 }
3804
3805                 if (count < 2) {
3806                         for (i=0; i<conf->copies; i++) {
3807                                 int d = r10_bio->devs[i].devnum;
3808                                 if (r10_bio->devs[i].bio->bi_end_io)
3809                                         rdev_dec_pending(conf->mirrors[d].rdev,
3810                                                          mddev);
3811                                 if (r10_bio->devs[i].repl_bio &&
3812                                     r10_bio->devs[i].repl_bio->bi_end_io)
3813                                         rdev_dec_pending(
3814                                                 conf->mirrors[d].replacement,
3815                                                 mddev);
3816                         }
3817                         put_buf(r10_bio);
3818                         biolist = NULL;
3819                         goto giveup;
3820                 }
3821         }
3822
3823         nr_sectors = 0;
3824         if (sector_nr + max_sync < max_sector)
3825                 max_sector = sector_nr + max_sync;
3826         do {
3827                 struct page *page;
3828                 int len = PAGE_SIZE;
3829                 if (sector_nr + (len>>9) > max_sector)
3830                         len = (max_sector - sector_nr) << 9;
3831                 if (len == 0)
3832                         break;
3833                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3834                         struct resync_pages *rp = get_resync_pages(bio);
3835                         page = resync_fetch_page(rp, page_idx);
3836                         if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3837                                 bio->bi_status = BLK_STS_RESOURCE;
3838                                 bio_endio(bio);
3839                                 goto giveup;
3840                         }
3841                 }
3842                 nr_sectors += len>>9;
3843                 sector_nr += len>>9;
3844         } while (++page_idx < RESYNC_PAGES);
3845         r10_bio->sectors = nr_sectors;
3846
3847         if (mddev_is_clustered(mddev) &&
3848             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3849                 /* It is resync not recovery */
3850                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3851                         conf->cluster_sync_low = mddev->curr_resync_completed;
3852                         raid10_set_cluster_sync_high(conf);
3853                         /* Send resync message */
3854                         md_cluster_ops->resync_info_update(mddev,
3855                                                 conf->cluster_sync_low,
3856                                                 conf->cluster_sync_high);
3857                 }
3858         } else if (mddev_is_clustered(mddev)) {
3859                 /* This is recovery not resync */
3860                 sector_t sect_va1, sect_va2;
3861                 bool broadcast_msg = false;
3862
3863                 for (i = 0; i < conf->geo.raid_disks; i++) {
3864                         /*
3865                          * sector_nr is a device address for recovery, so we
3866                          * need translate it to array address before compare
3867                          * with cluster_sync_high.
3868                          */
3869                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3870
3871                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3872                                 broadcast_msg = true;
3873                                 /*
3874                                  * curr_resync_completed is similar as
3875                                  * sector_nr, so make the translation too.
3876                                  */
3877                                 sect_va2 = raid10_find_virt(conf,
3878                                         mddev->curr_resync_completed, i);
3879
3880                                 if (conf->cluster_sync_low == 0 ||
3881                                     conf->cluster_sync_low > sect_va2)
3882                                         conf->cluster_sync_low = sect_va2;
3883                         }
3884                 }
3885                 if (broadcast_msg) {
3886                         raid10_set_cluster_sync_high(conf);
3887                         md_cluster_ops->resync_info_update(mddev,
3888                                                 conf->cluster_sync_low,
3889                                                 conf->cluster_sync_high);
3890                 }
3891         }
3892
3893         while (biolist) {
3894                 bio = biolist;
3895                 biolist = biolist->bi_next;
3896
3897                 bio->bi_next = NULL;
3898                 r10_bio = get_resync_r10bio(bio);
3899                 r10_bio->sectors = nr_sectors;
3900
3901                 if (bio->bi_end_io == end_sync_read) {
3902                         md_sync_acct_bio(bio, nr_sectors);
3903                         bio->bi_status = 0;
3904                         submit_bio_noacct(bio);
3905                 }
3906         }
3907
3908         if (sectors_skipped)
3909                 /* pretend they weren't skipped, it makes
3910                  * no important difference in this case
3911                  */
3912                 md_done_sync(mddev, sectors_skipped, 1);
3913
3914         return sectors_skipped + nr_sectors;
3915  giveup:
3916         /* There is nowhere to write, so all non-sync
3917          * drives must be failed or in resync, all drives
3918          * have a bad block, so try the next chunk...
3919          */
3920         if (sector_nr + max_sync < max_sector)
3921                 max_sector = sector_nr + max_sync;
3922
3923         sectors_skipped += (max_sector - sector_nr);
3924         chunks_skipped ++;
3925         sector_nr = max_sector;
3926         goto skipped;
3927 }
3928
3929 static sector_t
3930 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3931 {
3932         sector_t size;
3933         struct r10conf *conf = mddev->private;
3934
3935         if (!raid_disks)
3936                 raid_disks = min(conf->geo.raid_disks,
3937                                  conf->prev.raid_disks);
3938         if (!sectors)
3939                 sectors = conf->dev_sectors;
3940
3941         size = sectors >> conf->geo.chunk_shift;
3942         sector_div(size, conf->geo.far_copies);
3943         size = size * raid_disks;
3944         sector_div(size, conf->geo.near_copies);
3945
3946         return size << conf->geo.chunk_shift;
3947 }
3948
3949 static void calc_sectors(struct r10conf *conf, sector_t size)
3950 {
3951         /* Calculate the number of sectors-per-device that will
3952          * actually be used, and set conf->dev_sectors and
3953          * conf->stride
3954          */
3955
3956         size = size >> conf->geo.chunk_shift;
3957         sector_div(size, conf->geo.far_copies);
3958         size = size * conf->geo.raid_disks;
3959         sector_div(size, conf->geo.near_copies);
3960         /* 'size' is now the number of chunks in the array */
3961         /* calculate "used chunks per device" */
3962         size = size * conf->copies;
3963
3964         /* We need to round up when dividing by raid_disks to
3965          * get the stride size.
3966          */
3967         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3968
3969         conf->dev_sectors = size << conf->geo.chunk_shift;
3970
3971         if (conf->geo.far_offset)
3972                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3973         else {
3974                 sector_div(size, conf->geo.far_copies);
3975                 conf->geo.stride = size << conf->geo.chunk_shift;
3976         }
3977 }
3978
3979 enum geo_type {geo_new, geo_old, geo_start};
3980 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3981 {
3982         int nc, fc, fo;
3983         int layout, chunk, disks;
3984         switch (new) {
3985         case geo_old:
3986                 layout = mddev->layout;
3987                 chunk = mddev->chunk_sectors;
3988                 disks = mddev->raid_disks - mddev->delta_disks;
3989                 break;
3990         case geo_new:
3991                 layout = mddev->new_layout;
3992                 chunk = mddev->new_chunk_sectors;
3993                 disks = mddev->raid_disks;
3994                 break;
3995         default: /* avoid 'may be unused' warnings */
3996         case geo_start: /* new when starting reshape - raid_disks not
3997                          * updated yet. */
3998                 layout = mddev->new_layout;
3999                 chunk = mddev->new_chunk_sectors;
4000                 disks = mddev->raid_disks + mddev->delta_disks;
4001                 break;
4002         }
4003         if (layout >> 19)
4004                 return -1;
4005         if (chunk < (PAGE_SIZE >> 9) ||
4006             !is_power_of_2(chunk))
4007                 return -2;
4008         nc = layout & 255;
4009         fc = (layout >> 8) & 255;
4010         fo = layout & (1<<16);
4011         geo->raid_disks = disks;
4012         geo->near_copies = nc;
4013         geo->far_copies = fc;
4014         geo->far_offset = fo;
4015         switch (layout >> 17) {
4016         case 0: /* original layout.  simple but not always optimal */
4017                 geo->far_set_size = disks;
4018                 break;
4019         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
4020                  * actually using this, but leave code here just in case.*/
4021                 geo->far_set_size = disks/fc;
4022                 WARN(geo->far_set_size < fc,
4023                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
4024                 break;
4025         case 2: /* "improved" layout fixed to match documentation */
4026                 geo->far_set_size = fc * nc;
4027                 break;
4028         default: /* Not a valid layout */
4029                 return -1;
4030         }
4031         geo->chunk_mask = chunk - 1;
4032         geo->chunk_shift = ffz(~chunk);
4033         return nc*fc;
4034 }
4035
4036 static void raid10_free_conf(struct r10conf *conf)
4037 {
4038         if (!conf)
4039                 return;
4040
4041         mempool_exit(&conf->r10bio_pool);
4042         kfree(conf->mirrors);
4043         kfree(conf->mirrors_old);
4044         kfree(conf->mirrors_new);
4045         safe_put_page(conf->tmppage);
4046         bioset_exit(&conf->bio_split);
4047         kfree(conf);
4048 }
4049
4050 static struct r10conf *setup_conf(struct mddev *mddev)
4051 {
4052         struct r10conf *conf = NULL;
4053         int err = -EINVAL;
4054         struct geom geo;
4055         int copies;
4056
4057         copies = setup_geo(&geo, mddev, geo_new);
4058
4059         if (copies == -2) {
4060                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
4061                         mdname(mddev), PAGE_SIZE);
4062                 goto out;
4063         }
4064
4065         if (copies < 2 || copies > mddev->raid_disks) {
4066                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
4067                         mdname(mddev), mddev->new_layout);
4068                 goto out;
4069         }
4070
4071         err = -ENOMEM;
4072         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
4073         if (!conf)
4074                 goto out;
4075
4076         /* FIXME calc properly */
4077         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
4078                                 sizeof(struct raid10_info),
4079                                 GFP_KERNEL);
4080         if (!conf->mirrors)
4081                 goto out;
4082
4083         conf->tmppage = alloc_page(GFP_KERNEL);
4084         if (!conf->tmppage)
4085                 goto out;
4086
4087         conf->geo = geo;
4088         conf->copies = copies;
4089         err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
4090                            rbio_pool_free, conf);
4091         if (err)
4092                 goto out;
4093
4094         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
4095         if (err)
4096                 goto out;
4097
4098         calc_sectors(conf, mddev->dev_sectors);
4099         if (mddev->reshape_position == MaxSector) {
4100                 conf->prev = conf->geo;
4101                 conf->reshape_progress = MaxSector;
4102         } else {
4103                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
4104                         err = -EINVAL;
4105                         goto out;
4106                 }
4107                 conf->reshape_progress = mddev->reshape_position;
4108                 if (conf->prev.far_offset)
4109                         conf->prev.stride = 1 << conf->prev.chunk_shift;
4110                 else
4111                         /* far_copies must be 1 */
4112                         conf->prev.stride = conf->dev_sectors;
4113         }
4114         conf->reshape_safe = conf->reshape_progress;
4115         spin_lock_init(&conf->device_lock);
4116         INIT_LIST_HEAD(&conf->retry_list);
4117         INIT_LIST_HEAD(&conf->bio_end_io_list);
4118
4119         seqlock_init(&conf->resync_lock);
4120         init_waitqueue_head(&conf->wait_barrier);
4121         atomic_set(&conf->nr_pending, 0);
4122
4123         err = -ENOMEM;
4124         rcu_assign_pointer(conf->thread,
4125                            md_register_thread(raid10d, mddev, "raid10"));
4126         if (!conf->thread)
4127                 goto out;
4128
4129         conf->mddev = mddev;
4130         return conf;
4131
4132  out:
4133         raid10_free_conf(conf);
4134         return ERR_PTR(err);
4135 }
4136
4137 static void raid10_set_io_opt(struct r10conf *conf)
4138 {
4139         int raid_disks = conf->geo.raid_disks;
4140
4141         if (!(conf->geo.raid_disks % conf->geo.near_copies))
4142                 raid_disks /= conf->geo.near_copies;
4143         blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4144                          raid_disks);
4145 }
4146
4147 static int raid10_run(struct mddev *mddev)
4148 {
4149         struct r10conf *conf;
4150         int i, disk_idx;
4151         struct raid10_info *disk;
4152         struct md_rdev *rdev;
4153         sector_t size;
4154         sector_t min_offset_diff = 0;
4155         int first = 1;
4156
4157         if (mddev_init_writes_pending(mddev) < 0)
4158                 return -ENOMEM;
4159
4160         if (mddev->private == NULL) {
4161                 conf = setup_conf(mddev);
4162                 if (IS_ERR(conf))
4163                         return PTR_ERR(conf);
4164                 mddev->private = conf;
4165         }
4166         conf = mddev->private;
4167         if (!conf)
4168                 goto out;
4169
4170         rcu_assign_pointer(mddev->thread, conf->thread);
4171         rcu_assign_pointer(conf->thread, NULL);
4172
4173         if (mddev_is_clustered(conf->mddev)) {
4174                 int fc, fo;
4175
4176                 fc = (mddev->layout >> 8) & 255;
4177                 fo = mddev->layout & (1<<16);
4178                 if (fc > 1 || fo > 0) {
4179                         pr_err("only near layout is supported by clustered"
4180                                 " raid10\n");
4181                         goto out_free_conf;
4182                 }
4183         }
4184
4185         if (mddev->queue) {
4186                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4187                 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4188                 raid10_set_io_opt(conf);
4189         }
4190
4191         rdev_for_each(rdev, mddev) {
4192                 long long diff;
4193
4194                 disk_idx = rdev->raid_disk;
4195                 if (disk_idx < 0)
4196                         continue;
4197                 if (disk_idx >= conf->geo.raid_disks &&
4198                     disk_idx >= conf->prev.raid_disks)
4199                         continue;
4200                 disk = conf->mirrors + disk_idx;
4201
4202                 if (test_bit(Replacement, &rdev->flags)) {
4203                         if (disk->replacement)
4204                                 goto out_free_conf;
4205                         disk->replacement = rdev;
4206                 } else {
4207                         if (disk->rdev)
4208                                 goto out_free_conf;
4209                         disk->rdev = rdev;
4210                 }
4211                 diff = (rdev->new_data_offset - rdev->data_offset);
4212                 if (!mddev->reshape_backwards)
4213                         diff = -diff;
4214                 if (diff < 0)
4215                         diff = 0;
4216                 if (first || diff < min_offset_diff)
4217                         min_offset_diff = diff;
4218
4219                 if (mddev->gendisk)
4220                         disk_stack_limits(mddev->gendisk, rdev->bdev,
4221                                           rdev->data_offset << 9);
4222
4223                 disk->head_position = 0;
4224                 first = 0;
4225         }
4226
4227         /* need to check that every block has at least one working mirror */
4228         if (!enough(conf, -1)) {
4229                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4230                        mdname(mddev));
4231                 goto out_free_conf;
4232         }
4233
4234         if (conf->reshape_progress != MaxSector) {
4235                 /* must ensure that shape change is supported */
4236                 if (conf->geo.far_copies != 1 &&
4237                     conf->geo.far_offset == 0)
4238                         goto out_free_conf;
4239                 if (conf->prev.far_copies != 1 &&
4240                     conf->prev.far_offset == 0)
4241                         goto out_free_conf;
4242         }
4243
4244         mddev->degraded = 0;
4245         for (i = 0;
4246              i < conf->geo.raid_disks
4247                      || i < conf->prev.raid_disks;
4248              i++) {
4249
4250                 disk = conf->mirrors + i;
4251
4252                 if (!disk->rdev && disk->replacement) {
4253                         /* The replacement is all we have - use it */
4254                         disk->rdev = disk->replacement;
4255                         disk->replacement = NULL;
4256                         clear_bit(Replacement, &disk->rdev->flags);
4257                 }
4258
4259                 if (!disk->rdev ||
4260                     !test_bit(In_sync, &disk->rdev->flags)) {
4261                         disk->head_position = 0;
4262                         mddev->degraded++;
4263                         if (disk->rdev &&
4264                             disk->rdev->saved_raid_disk < 0)
4265                                 conf->fullsync = 1;
4266                 }
4267
4268                 if (disk->replacement &&
4269                     !test_bit(In_sync, &disk->replacement->flags) &&
4270                     disk->replacement->saved_raid_disk < 0) {
4271                         conf->fullsync = 1;
4272                 }
4273
4274                 disk->recovery_disabled = mddev->recovery_disabled - 1;
4275         }
4276
4277         if (mddev->recovery_cp != MaxSector)
4278                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4279                           mdname(mddev));
4280         pr_info("md/raid10:%s: active with %d out of %d devices\n",
4281                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4282                 conf->geo.raid_disks);
4283         /*
4284          * Ok, everything is just fine now
4285          */
4286         mddev->dev_sectors = conf->dev_sectors;
4287         size = raid10_size(mddev, 0, 0);
4288         md_set_array_sectors(mddev, size);
4289         mddev->resync_max_sectors = size;
4290         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4291
4292         if (md_integrity_register(mddev))
4293                 goto out_free_conf;
4294
4295         if (conf->reshape_progress != MaxSector) {
4296                 unsigned long before_length, after_length;
4297
4298                 before_length = ((1 << conf->prev.chunk_shift) *
4299                                  conf->prev.far_copies);
4300                 after_length = ((1 << conf->geo.chunk_shift) *
4301                                 conf->geo.far_copies);
4302
4303                 if (max(before_length, after_length) > min_offset_diff) {
4304                         /* This cannot work */
4305                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4306                         goto out_free_conf;
4307                 }
4308                 conf->offset_diff = min_offset_diff;
4309
4310                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4311                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4312                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4313                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4314                 rcu_assign_pointer(mddev->sync_thread,
4315                         md_register_thread(md_do_sync, mddev, "reshape"));
4316                 if (!mddev->sync_thread)
4317                         goto out_free_conf;
4318         }
4319
4320         return 0;
4321
4322 out_free_conf:
4323         md_unregister_thread(mddev, &mddev->thread);
4324         raid10_free_conf(conf);
4325         mddev->private = NULL;
4326 out:
4327         return -EIO;
4328 }
4329
4330 static void raid10_free(struct mddev *mddev, void *priv)
4331 {
4332         raid10_free_conf(priv);
4333 }
4334
4335 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4336 {
4337         struct r10conf *conf = mddev->private;
4338
4339         if (quiesce)
4340                 raise_barrier(conf, 0);
4341         else
4342                 lower_barrier(conf);
4343 }
4344
4345 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4346 {
4347         /* Resize of 'far' arrays is not supported.
4348          * For 'near' and 'offset' arrays we can set the
4349          * number of sectors used to be an appropriate multiple
4350          * of the chunk size.
4351          * For 'offset', this is far_copies*chunksize.
4352          * For 'near' the multiplier is the LCM of
4353          * near_copies and raid_disks.
4354          * So if far_copies > 1 && !far_offset, fail.
4355          * Else find LCM(raid_disks, near_copy)*far_copies and
4356          * multiply by chunk_size.  Then round to this number.
4357          * This is mostly done by raid10_size()
4358          */
4359         struct r10conf *conf = mddev->private;
4360         sector_t oldsize, size;
4361
4362         if (mddev->reshape_position != MaxSector)
4363                 return -EBUSY;
4364
4365         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4366                 return -EINVAL;
4367
4368         oldsize = raid10_size(mddev, 0, 0);
4369         size = raid10_size(mddev, sectors, 0);
4370         if (mddev->external_size &&
4371             mddev->array_sectors > size)
4372                 return -EINVAL;
4373         if (mddev->bitmap) {
4374                 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4375                 if (ret)
4376                         return ret;
4377         }
4378         md_set_array_sectors(mddev, size);
4379         if (sectors > mddev->dev_sectors &&
4380             mddev->recovery_cp > oldsize) {
4381                 mddev->recovery_cp = oldsize;
4382                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4383         }
4384         calc_sectors(conf, sectors);
4385         mddev->dev_sectors = conf->dev_sectors;
4386         mddev->resync_max_sectors = size;
4387         return 0;
4388 }
4389
4390 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4391 {
4392         struct md_rdev *rdev;
4393         struct r10conf *conf;
4394
4395         if (mddev->degraded > 0) {
4396                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4397                         mdname(mddev));
4398                 return ERR_PTR(-EINVAL);
4399         }
4400         sector_div(size, devs);
4401
4402         /* Set new parameters */
4403         mddev->new_level = 10;
4404         /* new layout: far_copies = 1, near_copies = 2 */
4405         mddev->new_layout = (1<<8) + 2;
4406         mddev->new_chunk_sectors = mddev->chunk_sectors;
4407         mddev->delta_disks = mddev->raid_disks;
4408         mddev->raid_disks *= 2;
4409         /* make sure it will be not marked as dirty */
4410         mddev->recovery_cp = MaxSector;
4411         mddev->dev_sectors = size;
4412
4413         conf = setup_conf(mddev);
4414         if (!IS_ERR(conf)) {
4415                 rdev_for_each(rdev, mddev)
4416                         if (rdev->raid_disk >= 0) {
4417                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4418                                 rdev->sectors = size;
4419                         }
4420         }
4421
4422         return conf;
4423 }
4424
4425 static void *raid10_takeover(struct mddev *mddev)
4426 {
4427         struct r0conf *raid0_conf;
4428
4429         /* raid10 can take over:
4430          *  raid0 - providing it has only two drives
4431          */
4432         if (mddev->level == 0) {
4433                 /* for raid0 takeover only one zone is supported */
4434                 raid0_conf = mddev->private;
4435                 if (raid0_conf->nr_strip_zones > 1) {
4436                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4437                                 mdname(mddev));
4438                         return ERR_PTR(-EINVAL);
4439                 }
4440                 return raid10_takeover_raid0(mddev,
4441                         raid0_conf->strip_zone->zone_end,
4442                         raid0_conf->strip_zone->nb_dev);
4443         }
4444         return ERR_PTR(-EINVAL);
4445 }
4446
4447 static int raid10_check_reshape(struct mddev *mddev)
4448 {
4449         /* Called when there is a request to change
4450          * - layout (to ->new_layout)
4451          * - chunk size (to ->new_chunk_sectors)
4452          * - raid_disks (by delta_disks)
4453          * or when trying to restart a reshape that was ongoing.
4454          *
4455          * We need to validate the request and possibly allocate
4456          * space if that might be an issue later.
4457          *
4458          * Currently we reject any reshape of a 'far' mode array,
4459          * allow chunk size to change if new is generally acceptable,
4460          * allow raid_disks to increase, and allow
4461          * a switch between 'near' mode and 'offset' mode.
4462          */
4463         struct r10conf *conf = mddev->private;
4464         struct geom geo;
4465
4466         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4467                 return -EINVAL;
4468
4469         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4470                 /* mustn't change number of copies */
4471                 return -EINVAL;
4472         if (geo.far_copies > 1 && !geo.far_offset)
4473                 /* Cannot switch to 'far' mode */
4474                 return -EINVAL;
4475
4476         if (mddev->array_sectors & geo.chunk_mask)
4477                         /* not factor of array size */
4478                         return -EINVAL;
4479
4480         if (!enough(conf, -1))
4481                 return -EINVAL;
4482
4483         kfree(conf->mirrors_new);
4484         conf->mirrors_new = NULL;
4485         if (mddev->delta_disks > 0) {
4486                 /* allocate new 'mirrors' list */
4487                 conf->mirrors_new =
4488                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4489                                 sizeof(struct raid10_info),
4490                                 GFP_KERNEL);
4491                 if (!conf->mirrors_new)
4492                         return -ENOMEM;
4493         }
4494         return 0;
4495 }
4496
4497 /*
4498  * Need to check if array has failed when deciding whether to:
4499  *  - start an array
4500  *  - remove non-faulty devices
4501  *  - add a spare
4502  *  - allow a reshape
4503  * This determination is simple when no reshape is happening.
4504  * However if there is a reshape, we need to carefully check
4505  * both the before and after sections.
4506  * This is because some failed devices may only affect one
4507  * of the two sections, and some non-in_sync devices may
4508  * be insync in the section most affected by failed devices.
4509  */
4510 static int calc_degraded(struct r10conf *conf)
4511 {
4512         int degraded, degraded2;
4513         int i;
4514
4515         rcu_read_lock();
4516         degraded = 0;
4517         /* 'prev' section first */
4518         for (i = 0; i < conf->prev.raid_disks; i++) {
4519                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4520                 if (!rdev || test_bit(Faulty, &rdev->flags))
4521                         degraded++;
4522                 else if (!test_bit(In_sync, &rdev->flags))
4523                         /* When we can reduce the number of devices in
4524                          * an array, this might not contribute to
4525                          * 'degraded'.  It does now.
4526                          */
4527                         degraded++;
4528         }
4529         rcu_read_unlock();
4530         if (conf->geo.raid_disks == conf->prev.raid_disks)
4531                 return degraded;
4532         rcu_read_lock();
4533         degraded2 = 0;
4534         for (i = 0; i < conf->geo.raid_disks; i++) {
4535                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4536                 if (!rdev || test_bit(Faulty, &rdev->flags))
4537                         degraded2++;
4538                 else if (!test_bit(In_sync, &rdev->flags)) {
4539                         /* If reshape is increasing the number of devices,
4540                          * this section has already been recovered, so
4541                          * it doesn't contribute to degraded.
4542                          * else it does.
4543                          */
4544                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4545                                 degraded2++;
4546                 }
4547         }
4548         rcu_read_unlock();
4549         if (degraded2 > degraded)
4550                 return degraded2;
4551         return degraded;
4552 }
4553
4554 static int raid10_start_reshape(struct mddev *mddev)
4555 {
4556         /* A 'reshape' has been requested. This commits
4557          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4558          * This also checks if there are enough spares and adds them
4559          * to the array.
4560          * We currently require enough spares to make the final
4561          * array non-degraded.  We also require that the difference
4562          * between old and new data_offset - on each device - is
4563          * enough that we never risk over-writing.
4564          */
4565
4566         unsigned long before_length, after_length;
4567         sector_t min_offset_diff = 0;
4568         int first = 1;
4569         struct geom new;
4570         struct r10conf *conf = mddev->private;
4571         struct md_rdev *rdev;
4572         int spares = 0;
4573         int ret;
4574
4575         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4576                 return -EBUSY;
4577
4578         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4579                 return -EINVAL;
4580
4581         before_length = ((1 << conf->prev.chunk_shift) *
4582                          conf->prev.far_copies);
4583         after_length = ((1 << conf->geo.chunk_shift) *
4584                         conf->geo.far_copies);
4585
4586         rdev_for_each(rdev, mddev) {
4587                 if (!test_bit(In_sync, &rdev->flags)
4588                     && !test_bit(Faulty, &rdev->flags))
4589                         spares++;
4590                 if (rdev->raid_disk >= 0) {
4591                         long long diff = (rdev->new_data_offset
4592                                           - rdev->data_offset);
4593                         if (!mddev->reshape_backwards)
4594                                 diff = -diff;
4595                         if (diff < 0)
4596                                 diff = 0;
4597                         if (first || diff < min_offset_diff)
4598                                 min_offset_diff = diff;
4599                         first = 0;
4600                 }
4601         }
4602
4603         if (max(before_length, after_length) > min_offset_diff)
4604                 return -EINVAL;
4605
4606         if (spares < mddev->delta_disks)
4607                 return -EINVAL;
4608
4609         conf->offset_diff = min_offset_diff;
4610         spin_lock_irq(&conf->device_lock);
4611         if (conf->mirrors_new) {
4612                 memcpy(conf->mirrors_new, conf->mirrors,
4613                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4614                 smp_mb();
4615                 kfree(conf->mirrors_old);
4616                 conf->mirrors_old = conf->mirrors;
4617                 conf->mirrors = conf->mirrors_new;
4618                 conf->mirrors_new = NULL;
4619         }
4620         setup_geo(&conf->geo, mddev, geo_start);
4621         smp_mb();
4622         if (mddev->reshape_backwards) {
4623                 sector_t size = raid10_size(mddev, 0, 0);
4624                 if (size < mddev->array_sectors) {
4625                         spin_unlock_irq(&conf->device_lock);
4626                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4627                                 mdname(mddev));
4628                         return -EINVAL;
4629                 }
4630                 mddev->resync_max_sectors = size;
4631                 conf->reshape_progress = size;
4632         } else
4633                 conf->reshape_progress = 0;
4634         conf->reshape_safe = conf->reshape_progress;
4635         spin_unlock_irq(&conf->device_lock);
4636
4637         if (mddev->delta_disks && mddev->bitmap) {
4638                 struct mdp_superblock_1 *sb = NULL;
4639                 sector_t oldsize, newsize;
4640
4641                 oldsize = raid10_size(mddev, 0, 0);
4642                 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4643
4644                 if (!mddev_is_clustered(mddev)) {
4645                         ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4646                         if (ret)
4647                                 goto abort;
4648                         else
4649                                 goto out;
4650                 }
4651
4652                 rdev_for_each(rdev, mddev) {
4653                         if (rdev->raid_disk > -1 &&
4654                             !test_bit(Faulty, &rdev->flags))
4655                                 sb = page_address(rdev->sb_page);
4656                 }
4657
4658                 /*
4659                  * some node is already performing reshape, and no need to
4660                  * call md_bitmap_resize again since it should be called when
4661                  * receiving BITMAP_RESIZE msg
4662                  */
4663                 if ((sb && (le32_to_cpu(sb->feature_map) &
4664                             MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4665                         goto out;
4666
4667                 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4668                 if (ret)
4669                         goto abort;
4670
4671                 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4672                 if (ret) {
4673                         md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4674                         goto abort;
4675                 }
4676         }
4677 out:
4678         if (mddev->delta_disks > 0) {
4679                 rdev_for_each(rdev, mddev)
4680                         if (rdev->raid_disk < 0 &&
4681                             !test_bit(Faulty, &rdev->flags)) {
4682                                 if (raid10_add_disk(mddev, rdev) == 0) {
4683                                         if (rdev->raid_disk >=
4684                                             conf->prev.raid_disks)
4685                                                 set_bit(In_sync, &rdev->flags);
4686                                         else
4687                                                 rdev->recovery_offset = 0;
4688
4689                                         /* Failure here is OK */
4690                                         sysfs_link_rdev(mddev, rdev);
4691                                 }
4692                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4693                                    && !test_bit(Faulty, &rdev->flags)) {
4694                                 /* This is a spare that was manually added */
4695                                 set_bit(In_sync, &rdev->flags);
4696                         }
4697         }
4698         /* When a reshape changes the number of devices,
4699          * ->degraded is measured against the larger of the
4700          * pre and  post numbers.
4701          */
4702         spin_lock_irq(&conf->device_lock);
4703         mddev->degraded = calc_degraded(conf);
4704         spin_unlock_irq(&conf->device_lock);
4705         mddev->raid_disks = conf->geo.raid_disks;
4706         mddev->reshape_position = conf->reshape_progress;
4707         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4708
4709         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4710         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4711         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4712         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4713         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4714
4715         rcu_assign_pointer(mddev->sync_thread,
4716                            md_register_thread(md_do_sync, mddev, "reshape"));
4717         if (!mddev->sync_thread) {
4718                 ret = -EAGAIN;
4719                 goto abort;
4720         }
4721         conf->reshape_checkpoint = jiffies;
4722         md_wakeup_thread(mddev->sync_thread);
4723         md_new_event();
4724         return 0;
4725
4726 abort:
4727         mddev->recovery = 0;
4728         spin_lock_irq(&conf->device_lock);
4729         conf->geo = conf->prev;
4730         mddev->raid_disks = conf->geo.raid_disks;
4731         rdev_for_each(rdev, mddev)
4732                 rdev->new_data_offset = rdev->data_offset;
4733         smp_wmb();
4734         conf->reshape_progress = MaxSector;
4735         conf->reshape_safe = MaxSector;
4736         mddev->reshape_position = MaxSector;
4737         spin_unlock_irq(&conf->device_lock);
4738         return ret;
4739 }
4740
4741 /* Calculate the last device-address that could contain
4742  * any block from the chunk that includes the array-address 's'
4743  * and report the next address.
4744  * i.e. the address returned will be chunk-aligned and after
4745  * any data that is in the chunk containing 's'.
4746  */
4747 static sector_t last_dev_address(sector_t s, struct geom *geo)
4748 {
4749         s = (s | geo->chunk_mask) + 1;
4750         s >>= geo->chunk_shift;
4751         s *= geo->near_copies;
4752         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4753         s *= geo->far_copies;
4754         s <<= geo->chunk_shift;
4755         return s;
4756 }
4757
4758 /* Calculate the first device-address that could contain
4759  * any block from the chunk that includes the array-address 's'.
4760  * This too will be the start of a chunk
4761  */
4762 static sector_t first_dev_address(sector_t s, struct geom *geo)
4763 {
4764         s >>= geo->chunk_shift;
4765         s *= geo->near_copies;
4766         sector_div(s, geo->raid_disks);
4767         s *= geo->far_copies;
4768         s <<= geo->chunk_shift;
4769         return s;
4770 }
4771
4772 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4773                                 int *skipped)
4774 {
4775         /* We simply copy at most one chunk (smallest of old and new)
4776          * at a time, possibly less if that exceeds RESYNC_PAGES,
4777          * or we hit a bad block or something.
4778          * This might mean we pause for normal IO in the middle of
4779          * a chunk, but that is not a problem as mddev->reshape_position
4780          * can record any location.
4781          *
4782          * If we will want to write to a location that isn't
4783          * yet recorded as 'safe' (i.e. in metadata on disk) then
4784          * we need to flush all reshape requests and update the metadata.
4785          *
4786          * When reshaping forwards (e.g. to more devices), we interpret
4787          * 'safe' as the earliest block which might not have been copied
4788          * down yet.  We divide this by previous stripe size and multiply
4789          * by previous stripe length to get lowest device offset that we
4790          * cannot write to yet.
4791          * We interpret 'sector_nr' as an address that we want to write to.
4792          * From this we use last_device_address() to find where we might
4793          * write to, and first_device_address on the  'safe' position.
4794          * If this 'next' write position is after the 'safe' position,
4795          * we must update the metadata to increase the 'safe' position.
4796          *
4797          * When reshaping backwards, we round in the opposite direction
4798          * and perform the reverse test:  next write position must not be
4799          * less than current safe position.
4800          *
4801          * In all this the minimum difference in data offsets
4802          * (conf->offset_diff - always positive) allows a bit of slack,
4803          * so next can be after 'safe', but not by more than offset_diff
4804          *
4805          * We need to prepare all the bios here before we start any IO
4806          * to ensure the size we choose is acceptable to all devices.
4807          * The means one for each copy for write-out and an extra one for
4808          * read-in.
4809          * We store the read-in bio in ->master_bio and the others in
4810          * ->devs[x].bio and ->devs[x].repl_bio.
4811          */
4812         struct r10conf *conf = mddev->private;
4813         struct r10bio *r10_bio;
4814         sector_t next, safe, last;
4815         int max_sectors;
4816         int nr_sectors;
4817         int s;
4818         struct md_rdev *rdev;
4819         int need_flush = 0;
4820         struct bio *blist;
4821         struct bio *bio, *read_bio;
4822         int sectors_done = 0;
4823         struct page **pages;
4824
4825         if (sector_nr == 0) {
4826                 /* If restarting in the middle, skip the initial sectors */
4827                 if (mddev->reshape_backwards &&
4828                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4829                         sector_nr = (raid10_size(mddev, 0, 0)
4830                                      - conf->reshape_progress);
4831                 } else if (!mddev->reshape_backwards &&
4832                            conf->reshape_progress > 0)
4833                         sector_nr = conf->reshape_progress;
4834                 if (sector_nr) {
4835                         mddev->curr_resync_completed = sector_nr;
4836                         sysfs_notify_dirent_safe(mddev->sysfs_completed);
4837                         *skipped = 1;
4838                         return sector_nr;
4839                 }
4840         }
4841
4842         /* We don't use sector_nr to track where we are up to
4843          * as that doesn't work well for ->reshape_backwards.
4844          * So just use ->reshape_progress.
4845          */
4846         if (mddev->reshape_backwards) {
4847                 /* 'next' is the earliest device address that we might
4848                  * write to for this chunk in the new layout
4849                  */
4850                 next = first_dev_address(conf->reshape_progress - 1,
4851                                          &conf->geo);
4852
4853                 /* 'safe' is the last device address that we might read from
4854                  * in the old layout after a restart
4855                  */
4856                 safe = last_dev_address(conf->reshape_safe - 1,
4857                                         &conf->prev);
4858
4859                 if (next + conf->offset_diff < safe)
4860                         need_flush = 1;
4861
4862                 last = conf->reshape_progress - 1;
4863                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4864                                                & conf->prev.chunk_mask);
4865                 if (sector_nr + RESYNC_SECTORS < last)
4866                         sector_nr = last + 1 - RESYNC_SECTORS;
4867         } else {
4868                 /* 'next' is after the last device address that we
4869                  * might write to for this chunk in the new layout
4870                  */
4871                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4872
4873                 /* 'safe' is the earliest device address that we might
4874                  * read from in the old layout after a restart
4875                  */
4876                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4877
4878                 /* Need to update metadata if 'next' might be beyond 'safe'
4879                  * as that would possibly corrupt data
4880                  */
4881                 if (next > safe + conf->offset_diff)
4882                         need_flush = 1;
4883
4884                 sector_nr = conf->reshape_progress;
4885                 last  = sector_nr | (conf->geo.chunk_mask
4886                                      & conf->prev.chunk_mask);
4887
4888                 if (sector_nr + RESYNC_SECTORS <= last)
4889                         last = sector_nr + RESYNC_SECTORS - 1;
4890         }
4891
4892         if (need_flush ||
4893             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4894                 /* Need to update reshape_position in metadata */
4895                 wait_barrier(conf, false);
4896                 mddev->reshape_position = conf->reshape_progress;
4897                 if (mddev->reshape_backwards)
4898                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4899                                 - conf->reshape_progress;
4900                 else
4901                         mddev->curr_resync_completed = conf->reshape_progress;
4902                 conf->reshape_checkpoint = jiffies;
4903                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4904                 md_wakeup_thread(mddev->thread);
4905                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4906                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4907                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4908                         allow_barrier(conf);
4909                         return sectors_done;
4910                 }
4911                 conf->reshape_safe = mddev->reshape_position;
4912                 allow_barrier(conf);
4913         }
4914
4915         raise_barrier(conf, 0);
4916 read_more:
4917         /* Now schedule reads for blocks from sector_nr to last */
4918         r10_bio = raid10_alloc_init_r10buf(conf);
4919         r10_bio->state = 0;
4920         raise_barrier(conf, 1);
4921         atomic_set(&r10_bio->remaining, 0);
4922         r10_bio->mddev = mddev;
4923         r10_bio->sector = sector_nr;
4924         set_bit(R10BIO_IsReshape, &r10_bio->state);
4925         r10_bio->sectors = last - sector_nr + 1;
4926         rdev = read_balance(conf, r10_bio, &max_sectors);
4927         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4928
4929         if (!rdev) {
4930                 /* Cannot read from here, so need to record bad blocks
4931                  * on all the target devices.
4932                  */
4933                 // FIXME
4934                 mempool_free(r10_bio, &conf->r10buf_pool);
4935                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4936                 return sectors_done;
4937         }
4938
4939         read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4940                                     GFP_KERNEL, &mddev->bio_set);
4941         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4942                                + rdev->data_offset);
4943         read_bio->bi_private = r10_bio;
4944         read_bio->bi_end_io = end_reshape_read;
4945         r10_bio->master_bio = read_bio;
4946         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4947
4948         /*
4949          * Broadcast RESYNC message to other nodes, so all nodes would not
4950          * write to the region to avoid conflict.
4951         */
4952         if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4953                 struct mdp_superblock_1 *sb = NULL;
4954                 int sb_reshape_pos = 0;
4955
4956                 conf->cluster_sync_low = sector_nr;
4957                 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4958                 sb = page_address(rdev->sb_page);
4959                 if (sb) {
4960                         sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4961                         /*
4962                          * Set cluster_sync_low again if next address for array
4963                          * reshape is less than cluster_sync_low. Since we can't
4964                          * update cluster_sync_low until it has finished reshape.
4965                          */
4966                         if (sb_reshape_pos < conf->cluster_sync_low)
4967                                 conf->cluster_sync_low = sb_reshape_pos;
4968                 }
4969
4970                 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4971                                                           conf->cluster_sync_high);
4972         }
4973
4974         /* Now find the locations in the new layout */
4975         __raid10_find_phys(&conf->geo, r10_bio);
4976
4977         blist = read_bio;
4978         read_bio->bi_next = NULL;
4979
4980         rcu_read_lock();
4981         for (s = 0; s < conf->copies*2; s++) {
4982                 struct bio *b;
4983                 int d = r10_bio->devs[s/2].devnum;
4984                 struct md_rdev *rdev2;
4985                 if (s&1) {
4986                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4987                         b = r10_bio->devs[s/2].repl_bio;
4988                 } else {
4989                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4990                         b = r10_bio->devs[s/2].bio;
4991                 }
4992                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4993                         continue;
4994
4995                 bio_set_dev(b, rdev2->bdev);
4996                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4997                         rdev2->new_data_offset;
4998                 b->bi_end_io = end_reshape_write;
4999                 b->bi_opf = REQ_OP_WRITE;
5000                 b->bi_next = blist;
5001                 blist = b;
5002         }
5003
5004         /* Now add as many pages as possible to all of these bios. */
5005
5006         nr_sectors = 0;
5007         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5008         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
5009                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
5010                 int len = (max_sectors - s) << 9;
5011                 if (len > PAGE_SIZE)
5012                         len = PAGE_SIZE;
5013                 for (bio = blist; bio ; bio = bio->bi_next) {
5014                         if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
5015                                 bio->bi_status = BLK_STS_RESOURCE;
5016                                 bio_endio(bio);
5017                                 return sectors_done;
5018                         }
5019                 }
5020                 sector_nr += len >> 9;
5021                 nr_sectors += len >> 9;
5022         }
5023         rcu_read_unlock();
5024         r10_bio->sectors = nr_sectors;
5025
5026         /* Now submit the read */
5027         md_sync_acct_bio(read_bio, r10_bio->sectors);
5028         atomic_inc(&r10_bio->remaining);
5029         read_bio->bi_next = NULL;
5030         submit_bio_noacct(read_bio);
5031         sectors_done += nr_sectors;
5032         if (sector_nr <= last)
5033                 goto read_more;
5034
5035         lower_barrier(conf);
5036
5037         /* Now that we have done the whole section we can
5038          * update reshape_progress
5039          */
5040         if (mddev->reshape_backwards)
5041                 conf->reshape_progress -= sectors_done;
5042         else
5043                 conf->reshape_progress += sectors_done;
5044
5045         return sectors_done;
5046 }
5047
5048 static void end_reshape_request(struct r10bio *r10_bio);
5049 static int handle_reshape_read_error(struct mddev *mddev,
5050                                      struct r10bio *r10_bio);
5051 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
5052 {
5053         /* Reshape read completed.  Hopefully we have a block
5054          * to write out.
5055          * If we got a read error then we do sync 1-page reads from
5056          * elsewhere until we find the data - or give up.
5057          */
5058         struct r10conf *conf = mddev->private;
5059         int s;
5060
5061         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
5062                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
5063                         /* Reshape has been aborted */
5064                         md_done_sync(mddev, r10_bio->sectors, 0);
5065                         return;
5066                 }
5067
5068         /* We definitely have the data in the pages, schedule the
5069          * writes.
5070          */
5071         atomic_set(&r10_bio->remaining, 1);
5072         for (s = 0; s < conf->copies*2; s++) {
5073                 struct bio *b;
5074                 int d = r10_bio->devs[s/2].devnum;
5075                 struct md_rdev *rdev;
5076                 rcu_read_lock();
5077                 if (s&1) {
5078                         rdev = rcu_dereference(conf->mirrors[d].replacement);
5079                         b = r10_bio->devs[s/2].repl_bio;
5080                 } else {
5081                         rdev = rcu_dereference(conf->mirrors[d].rdev);
5082                         b = r10_bio->devs[s/2].bio;
5083                 }
5084                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
5085                         rcu_read_unlock();
5086                         continue;
5087                 }
5088                 atomic_inc(&rdev->nr_pending);
5089                 rcu_read_unlock();
5090                 md_sync_acct_bio(b, r10_bio->sectors);
5091                 atomic_inc(&r10_bio->remaining);
5092                 b->bi_next = NULL;
5093                 submit_bio_noacct(b);
5094         }
5095         end_reshape_request(r10_bio);
5096 }
5097
5098 static void end_reshape(struct r10conf *conf)
5099 {
5100         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5101                 return;
5102
5103         spin_lock_irq(&conf->device_lock);
5104         conf->prev = conf->geo;
5105         md_finish_reshape(conf->mddev);
5106         smp_wmb();
5107         conf->reshape_progress = MaxSector;
5108         conf->reshape_safe = MaxSector;
5109         spin_unlock_irq(&conf->device_lock);
5110
5111         if (conf->mddev->queue)
5112                 raid10_set_io_opt(conf);
5113         conf->fullsync = 0;
5114 }
5115
5116 static void raid10_update_reshape_pos(struct mddev *mddev)
5117 {
5118         struct r10conf *conf = mddev->private;
5119         sector_t lo, hi;
5120
5121         md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5122         if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5123             || mddev->reshape_position == MaxSector)
5124                 conf->reshape_progress = mddev->reshape_position;
5125         else
5126                 WARN_ON_ONCE(1);
5127 }
5128
5129 static int handle_reshape_read_error(struct mddev *mddev,
5130                                      struct r10bio *r10_bio)
5131 {
5132         /* Use sync reads to get the blocks from somewhere else */
5133         int sectors = r10_bio->sectors;
5134         struct r10conf *conf = mddev->private;
5135         struct r10bio *r10b;
5136         int slot = 0;
5137         int idx = 0;
5138         struct page **pages;
5139
5140         r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5141         if (!r10b) {
5142                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5143                 return -ENOMEM;
5144         }
5145
5146         /* reshape IOs share pages from .devs[0].bio */
5147         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5148
5149         r10b->sector = r10_bio->sector;
5150         __raid10_find_phys(&conf->prev, r10b);
5151
5152         while (sectors) {
5153                 int s = sectors;
5154                 int success = 0;
5155                 int first_slot = slot;
5156
5157                 if (s > (PAGE_SIZE >> 9))
5158                         s = PAGE_SIZE >> 9;
5159
5160                 rcu_read_lock();
5161                 while (!success) {
5162                         int d = r10b->devs[slot].devnum;
5163                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5164                         sector_t addr;
5165                         if (rdev == NULL ||
5166                             test_bit(Faulty, &rdev->flags) ||
5167                             !test_bit(In_sync, &rdev->flags))
5168                                 goto failed;
5169
5170                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5171                         atomic_inc(&rdev->nr_pending);
5172                         rcu_read_unlock();
5173                         success = sync_page_io(rdev,
5174                                                addr,
5175                                                s << 9,
5176                                                pages[idx],
5177                                                REQ_OP_READ, false);
5178                         rdev_dec_pending(rdev, mddev);
5179                         rcu_read_lock();
5180                         if (success)
5181                                 break;
5182                 failed:
5183                         slot++;
5184                         if (slot >= conf->copies)
5185                                 slot = 0;
5186                         if (slot == first_slot)
5187                                 break;
5188                 }
5189                 rcu_read_unlock();
5190                 if (!success) {
5191                         /* couldn't read this block, must give up */
5192                         set_bit(MD_RECOVERY_INTR,
5193                                 &mddev->recovery);
5194                         kfree(r10b);
5195                         return -EIO;
5196                 }
5197                 sectors -= s;
5198                 idx++;
5199         }
5200         kfree(r10b);
5201         return 0;
5202 }
5203
5204 static void end_reshape_write(struct bio *bio)
5205 {
5206         struct r10bio *r10_bio = get_resync_r10bio(bio);
5207         struct mddev *mddev = r10_bio->mddev;
5208         struct r10conf *conf = mddev->private;
5209         int d;
5210         int slot;
5211         int repl;
5212         struct md_rdev *rdev = NULL;
5213
5214         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5215         if (repl)
5216                 rdev = conf->mirrors[d].replacement;
5217         if (!rdev) {
5218                 smp_mb();
5219                 rdev = conf->mirrors[d].rdev;
5220         }
5221
5222         if (bio->bi_status) {
5223                 /* FIXME should record badblock */
5224                 md_error(mddev, rdev);
5225         }
5226
5227         rdev_dec_pending(rdev, mddev);
5228         end_reshape_request(r10_bio);
5229 }
5230
5231 static void end_reshape_request(struct r10bio *r10_bio)
5232 {
5233         if (!atomic_dec_and_test(&r10_bio->remaining))
5234                 return;
5235         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5236         bio_put(r10_bio->master_bio);
5237         put_buf(r10_bio);
5238 }
5239
5240 static void raid10_finish_reshape(struct mddev *mddev)
5241 {
5242         struct r10conf *conf = mddev->private;
5243
5244         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5245                 return;
5246
5247         if (mddev->delta_disks > 0) {
5248                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5249                         mddev->recovery_cp = mddev->resync_max_sectors;
5250                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5251                 }
5252                 mddev->resync_max_sectors = mddev->array_sectors;
5253         } else {
5254                 int d;
5255                 rcu_read_lock();
5256                 for (d = conf->geo.raid_disks ;
5257                      d < conf->geo.raid_disks - mddev->delta_disks;
5258                      d++) {
5259                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5260                         if (rdev)
5261                                 clear_bit(In_sync, &rdev->flags);
5262                         rdev = rcu_dereference(conf->mirrors[d].replacement);
5263                         if (rdev)
5264                                 clear_bit(In_sync, &rdev->flags);
5265                 }
5266                 rcu_read_unlock();
5267         }
5268         mddev->layout = mddev->new_layout;
5269         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5270         mddev->reshape_position = MaxSector;
5271         mddev->delta_disks = 0;
5272         mddev->reshape_backwards = 0;
5273 }
5274
5275 static struct md_personality raid10_personality =
5276 {
5277         .name           = "raid10",
5278         .level          = 10,
5279         .owner          = THIS_MODULE,
5280         .make_request   = raid10_make_request,
5281         .run            = raid10_run,
5282         .free           = raid10_free,
5283         .status         = raid10_status,
5284         .error_handler  = raid10_error,
5285         .hot_add_disk   = raid10_add_disk,
5286         .hot_remove_disk= raid10_remove_disk,
5287         .spare_active   = raid10_spare_active,
5288         .sync_request   = raid10_sync_request,
5289         .quiesce        = raid10_quiesce,
5290         .size           = raid10_size,
5291         .resize         = raid10_resize,
5292         .takeover       = raid10_takeover,
5293         .check_reshape  = raid10_check_reshape,
5294         .start_reshape  = raid10_start_reshape,
5295         .finish_reshape = raid10_finish_reshape,
5296         .update_reshape_pos = raid10_update_reshape_pos,
5297 };
5298
5299 static int __init raid_init(void)
5300 {
5301         return register_md_personality(&raid10_personality);
5302 }
5303
5304 static void raid_exit(void)
5305 {
5306         unregister_md_personality(&raid10_personality);
5307 }
5308
5309 module_init(raid_init);
5310 module_exit(raid_exit);
5311 MODULE_LICENSE("GPL");
5312 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5313 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5314 MODULE_ALIAS("md-raid10");
5315 MODULE_ALIAS("md-level-10");