Merge tag 'pwm/for-3.14-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70                           sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75         struct pool_info *pi = data;
76         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78         /* allocate a r1bio with room for raid_disks entries in the bios array */
79         return kzalloc(size, gfp_flags);
80 }
81
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84         kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97         struct pool_info *pi = data;
98         struct r1bio *r1_bio;
99         struct bio *bio;
100         int i, j;
101
102         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
103         if (!r1_bio)
104                 return NULL;
105
106         /*
107          * Allocate bios : 1 for reading, n-1 for writing
108          */
109         for (j = pi->raid_disks ; j-- ; ) {
110                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
111                 if (!bio)
112                         goto out_free_bio;
113                 r1_bio->bios[j] = bio;
114         }
115         /*
116          * Allocate RESYNC_PAGES data pages and attach them to
117          * the first bio.
118          * If this is a user-requested check/repair, allocate
119          * RESYNC_PAGES for each bio.
120          */
121         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
122                 j = pi->raid_disks;
123         else
124                 j = 1;
125         while(j--) {
126                 bio = r1_bio->bios[j];
127                 bio->bi_vcnt = RESYNC_PAGES;
128
129                 if (bio_alloc_pages(bio, gfp_flags))
130                         goto out_free_bio;
131         }
132         /* If not user-requests, copy the page pointers to all bios */
133         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
134                 for (i=0; i<RESYNC_PAGES ; i++)
135                         for (j=1; j<pi->raid_disks; j++)
136                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
137                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
138         }
139
140         r1_bio->master_bio = NULL;
141
142         return r1_bio;
143
144 out_free_bio:
145         while (++j < pi->raid_disks)
146                 bio_put(r1_bio->bios[j]);
147         r1bio_pool_free(r1_bio, data);
148         return NULL;
149 }
150
151 static void r1buf_pool_free(void *__r1_bio, void *data)
152 {
153         struct pool_info *pi = data;
154         int i,j;
155         struct r1bio *r1bio = __r1_bio;
156
157         for (i = 0; i < RESYNC_PAGES; i++)
158                 for (j = pi->raid_disks; j-- ;) {
159                         if (j == 0 ||
160                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
161                             r1bio->bios[0]->bi_io_vec[i].bv_page)
162                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
163                 }
164         for (i=0 ; i < pi->raid_disks; i++)
165                 bio_put(r1bio->bios[i]);
166
167         r1bio_pool_free(r1bio, data);
168 }
169
170 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
171 {
172         int i;
173
174         for (i = 0; i < conf->raid_disks * 2; i++) {
175                 struct bio **bio = r1_bio->bios + i;
176                 if (!BIO_SPECIAL(*bio))
177                         bio_put(*bio);
178                 *bio = NULL;
179         }
180 }
181
182 static void free_r1bio(struct r1bio *r1_bio)
183 {
184         struct r1conf *conf = r1_bio->mddev->private;
185
186         put_all_bios(conf, r1_bio);
187         mempool_free(r1_bio, conf->r1bio_pool);
188 }
189
190 static void put_buf(struct r1bio *r1_bio)
191 {
192         struct r1conf *conf = r1_bio->mddev->private;
193         int i;
194
195         for (i = 0; i < conf->raid_disks * 2; i++) {
196                 struct bio *bio = r1_bio->bios[i];
197                 if (bio->bi_end_io)
198                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
199         }
200
201         mempool_free(r1_bio, conf->r1buf_pool);
202
203         lower_barrier(conf);
204 }
205
206 static void reschedule_retry(struct r1bio *r1_bio)
207 {
208         unsigned long flags;
209         struct mddev *mddev = r1_bio->mddev;
210         struct r1conf *conf = mddev->private;
211
212         spin_lock_irqsave(&conf->device_lock, flags);
213         list_add(&r1_bio->retry_list, &conf->retry_list);
214         conf->nr_queued ++;
215         spin_unlock_irqrestore(&conf->device_lock, flags);
216
217         wake_up(&conf->wait_barrier);
218         md_wakeup_thread(mddev->thread);
219 }
220
221 /*
222  * raid_end_bio_io() is called when we have finished servicing a mirrored
223  * operation and are ready to return a success/failure code to the buffer
224  * cache layer.
225  */
226 static void call_bio_endio(struct r1bio *r1_bio)
227 {
228         struct bio *bio = r1_bio->master_bio;
229         int done;
230         struct r1conf *conf = r1_bio->mddev->private;
231         sector_t start_next_window = r1_bio->start_next_window;
232         sector_t bi_sector = bio->bi_iter.bi_sector;
233
234         if (bio->bi_phys_segments) {
235                 unsigned long flags;
236                 spin_lock_irqsave(&conf->device_lock, flags);
237                 bio->bi_phys_segments--;
238                 done = (bio->bi_phys_segments == 0);
239                 spin_unlock_irqrestore(&conf->device_lock, flags);
240                 /*
241                  * make_request() might be waiting for
242                  * bi_phys_segments to decrease
243                  */
244                 wake_up(&conf->wait_barrier);
245         } else
246                 done = 1;
247
248         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
250         if (done) {
251                 bio_endio(bio, 0);
252                 /*
253                  * Wake up any possible resync thread that waits for the device
254                  * to go idle.
255                  */
256                 allow_barrier(conf, start_next_window, bi_sector);
257         }
258 }
259
260 static void raid_end_bio_io(struct r1bio *r1_bio)
261 {
262         struct bio *bio = r1_bio->master_bio;
263
264         /* if nobody has done the final endio yet, do it now */
265         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
266                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
268                          (unsigned long long) bio->bi_iter.bi_sector,
269                          (unsigned long long) bio_end_sector(bio) - 1);
270
271                 call_bio_endio(r1_bio);
272         }
273         free_r1bio(r1_bio);
274 }
275
276 /*
277  * Update disk head position estimator based on IRQ completion info.
278  */
279 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
280 {
281         struct r1conf *conf = r1_bio->mddev->private;
282
283         conf->mirrors[disk].head_position =
284                 r1_bio->sector + (r1_bio->sectors);
285 }
286
287 /*
288  * Find the disk number which triggered given bio
289  */
290 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
291 {
292         int mirror;
293         struct r1conf *conf = r1_bio->mddev->private;
294         int raid_disks = conf->raid_disks;
295
296         for (mirror = 0; mirror < raid_disks * 2; mirror++)
297                 if (r1_bio->bios[mirror] == bio)
298                         break;
299
300         BUG_ON(mirror == raid_disks * 2);
301         update_head_pos(mirror, r1_bio);
302
303         return mirror;
304 }
305
306 static void raid1_end_read_request(struct bio *bio, int error)
307 {
308         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
309         struct r1bio *r1_bio = bio->bi_private;
310         int mirror;
311         struct r1conf *conf = r1_bio->mddev->private;
312
313         mirror = r1_bio->read_disk;
314         /*
315          * this branch is our 'one mirror IO has finished' event handler:
316          */
317         update_head_pos(mirror, r1_bio);
318
319         if (uptodate)
320                 set_bit(R1BIO_Uptodate, &r1_bio->state);
321         else {
322                 /* If all other devices have failed, we want to return
323                  * the error upwards rather than fail the last device.
324                  * Here we redefine "uptodate" to mean "Don't want to retry"
325                  */
326                 unsigned long flags;
327                 spin_lock_irqsave(&conf->device_lock, flags);
328                 if (r1_bio->mddev->degraded == conf->raid_disks ||
329                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
330                      !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
331                         uptodate = 1;
332                 spin_unlock_irqrestore(&conf->device_lock, flags);
333         }
334
335         if (uptodate) {
336                 raid_end_bio_io(r1_bio);
337                 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
338         } else {
339                 /*
340                  * oops, read error:
341                  */
342                 char b[BDEVNAME_SIZE];
343                 printk_ratelimited(
344                         KERN_ERR "md/raid1:%s: %s: "
345                         "rescheduling sector %llu\n",
346                         mdname(conf->mddev),
347                         bdevname(conf->mirrors[mirror].rdev->bdev,
348                                  b),
349                         (unsigned long long)r1_bio->sector);
350                 set_bit(R1BIO_ReadError, &r1_bio->state);
351                 reschedule_retry(r1_bio);
352                 /* don't drop the reference on read_disk yet */
353         }
354 }
355
356 static void close_write(struct r1bio *r1_bio)
357 {
358         /* it really is the end of this request */
359         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
360                 /* free extra copy of the data pages */
361                 int i = r1_bio->behind_page_count;
362                 while (i--)
363                         safe_put_page(r1_bio->behind_bvecs[i].bv_page);
364                 kfree(r1_bio->behind_bvecs);
365                 r1_bio->behind_bvecs = NULL;
366         }
367         /* clear the bitmap if all writes complete successfully */
368         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
369                         r1_bio->sectors,
370                         !test_bit(R1BIO_Degraded, &r1_bio->state),
371                         test_bit(R1BIO_BehindIO, &r1_bio->state));
372         md_write_end(r1_bio->mddev);
373 }
374
375 static void r1_bio_write_done(struct r1bio *r1_bio)
376 {
377         if (!atomic_dec_and_test(&r1_bio->remaining))
378                 return;
379
380         if (test_bit(R1BIO_WriteError, &r1_bio->state))
381                 reschedule_retry(r1_bio);
382         else {
383                 close_write(r1_bio);
384                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
385                         reschedule_retry(r1_bio);
386                 else
387                         raid_end_bio_io(r1_bio);
388         }
389 }
390
391 static void raid1_end_write_request(struct bio *bio, int error)
392 {
393         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
394         struct r1bio *r1_bio = bio->bi_private;
395         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
396         struct r1conf *conf = r1_bio->mddev->private;
397         struct bio *to_put = NULL;
398
399         mirror = find_bio_disk(r1_bio, bio);
400
401         /*
402          * 'one mirror IO has finished' event handler:
403          */
404         if (!uptodate) {
405                 set_bit(WriteErrorSeen,
406                         &conf->mirrors[mirror].rdev->flags);
407                 if (!test_and_set_bit(WantReplacement,
408                                       &conf->mirrors[mirror].rdev->flags))
409                         set_bit(MD_RECOVERY_NEEDED, &
410                                 conf->mddev->recovery);
411
412                 set_bit(R1BIO_WriteError, &r1_bio->state);
413         } else {
414                 /*
415                  * Set R1BIO_Uptodate in our master bio, so that we
416                  * will return a good error code for to the higher
417                  * levels even if IO on some other mirrored buffer
418                  * fails.
419                  *
420                  * The 'master' represents the composite IO operation
421                  * to user-side. So if something waits for IO, then it
422                  * will wait for the 'master' bio.
423                  */
424                 sector_t first_bad;
425                 int bad_sectors;
426
427                 r1_bio->bios[mirror] = NULL;
428                 to_put = bio;
429                 /*
430                  * Do not set R1BIO_Uptodate if the current device is
431                  * rebuilding or Faulty. This is because we cannot use
432                  * such device for properly reading the data back (we could
433                  * potentially use it, if the current write would have felt
434                  * before rdev->recovery_offset, but for simplicity we don't
435                  * check this here.
436                  */
437                 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
438                     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
439                         set_bit(R1BIO_Uptodate, &r1_bio->state);
440
441                 /* Maybe we can clear some bad blocks. */
442                 if (is_badblock(conf->mirrors[mirror].rdev,
443                                 r1_bio->sector, r1_bio->sectors,
444                                 &first_bad, &bad_sectors)) {
445                         r1_bio->bios[mirror] = IO_MADE_GOOD;
446                         set_bit(R1BIO_MadeGood, &r1_bio->state);
447                 }
448         }
449
450         if (behind) {
451                 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
452                         atomic_dec(&r1_bio->behind_remaining);
453
454                 /*
455                  * In behind mode, we ACK the master bio once the I/O
456                  * has safely reached all non-writemostly
457                  * disks. Setting the Returned bit ensures that this
458                  * gets done only once -- we don't ever want to return
459                  * -EIO here, instead we'll wait
460                  */
461                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
462                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
463                         /* Maybe we can return now */
464                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
465                                 struct bio *mbio = r1_bio->master_bio;
466                                 pr_debug("raid1: behind end write sectors"
467                                          " %llu-%llu\n",
468                                          (unsigned long long) mbio->bi_iter.bi_sector,
469                                          (unsigned long long) bio_end_sector(mbio) - 1);
470                                 call_bio_endio(r1_bio);
471                         }
472                 }
473         }
474         if (r1_bio->bios[mirror] == NULL)
475                 rdev_dec_pending(conf->mirrors[mirror].rdev,
476                                  conf->mddev);
477
478         /*
479          * Let's see if all mirrored write operations have finished
480          * already.
481          */
482         r1_bio_write_done(r1_bio);
483
484         if (to_put)
485                 bio_put(to_put);
486 }
487
488
489 /*
490  * This routine returns the disk from which the requested read should
491  * be done. There is a per-array 'next expected sequential IO' sector
492  * number - if this matches on the next IO then we use the last disk.
493  * There is also a per-disk 'last know head position' sector that is
494  * maintained from IRQ contexts, both the normal and the resync IO
495  * completion handlers update this position correctly. If there is no
496  * perfect sequential match then we pick the disk whose head is closest.
497  *
498  * If there are 2 mirrors in the same 2 devices, performance degrades
499  * because position is mirror, not device based.
500  *
501  * The rdev for the device selected will have nr_pending incremented.
502  */
503 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
504 {
505         const sector_t this_sector = r1_bio->sector;
506         int sectors;
507         int best_good_sectors;
508         int best_disk, best_dist_disk, best_pending_disk;
509         int has_nonrot_disk;
510         int disk;
511         sector_t best_dist;
512         unsigned int min_pending;
513         struct md_rdev *rdev;
514         int choose_first;
515         int choose_next_idle;
516
517         rcu_read_lock();
518         /*
519          * Check if we can balance. We can balance on the whole
520          * device if no resync is going on, or below the resync window.
521          * We take the first readable disk when above the resync window.
522          */
523  retry:
524         sectors = r1_bio->sectors;
525         best_disk = -1;
526         best_dist_disk = -1;
527         best_dist = MaxSector;
528         best_pending_disk = -1;
529         min_pending = UINT_MAX;
530         best_good_sectors = 0;
531         has_nonrot_disk = 0;
532         choose_next_idle = 0;
533
534         if (conf->mddev->recovery_cp < MaxSector &&
535             (this_sector + sectors >= conf->next_resync))
536                 choose_first = 1;
537         else
538                 choose_first = 0;
539
540         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
541                 sector_t dist;
542                 sector_t first_bad;
543                 int bad_sectors;
544                 unsigned int pending;
545                 bool nonrot;
546
547                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
548                 if (r1_bio->bios[disk] == IO_BLOCKED
549                     || rdev == NULL
550                     || test_bit(Unmerged, &rdev->flags)
551                     || test_bit(Faulty, &rdev->flags))
552                         continue;
553                 if (!test_bit(In_sync, &rdev->flags) &&
554                     rdev->recovery_offset < this_sector + sectors)
555                         continue;
556                 if (test_bit(WriteMostly, &rdev->flags)) {
557                         /* Don't balance among write-mostly, just
558                          * use the first as a last resort */
559                         if (best_disk < 0) {
560                                 if (is_badblock(rdev, this_sector, sectors,
561                                                 &first_bad, &bad_sectors)) {
562                                         if (first_bad < this_sector)
563                                                 /* Cannot use this */
564                                                 continue;
565                                         best_good_sectors = first_bad - this_sector;
566                                 } else
567                                         best_good_sectors = sectors;
568                                 best_disk = disk;
569                         }
570                         continue;
571                 }
572                 /* This is a reasonable device to use.  It might
573                  * even be best.
574                  */
575                 if (is_badblock(rdev, this_sector, sectors,
576                                 &first_bad, &bad_sectors)) {
577                         if (best_dist < MaxSector)
578                                 /* already have a better device */
579                                 continue;
580                         if (first_bad <= this_sector) {
581                                 /* cannot read here. If this is the 'primary'
582                                  * device, then we must not read beyond
583                                  * bad_sectors from another device..
584                                  */
585                                 bad_sectors -= (this_sector - first_bad);
586                                 if (choose_first && sectors > bad_sectors)
587                                         sectors = bad_sectors;
588                                 if (best_good_sectors > sectors)
589                                         best_good_sectors = sectors;
590
591                         } else {
592                                 sector_t good_sectors = first_bad - this_sector;
593                                 if (good_sectors > best_good_sectors) {
594                                         best_good_sectors = good_sectors;
595                                         best_disk = disk;
596                                 }
597                                 if (choose_first)
598                                         break;
599                         }
600                         continue;
601                 } else
602                         best_good_sectors = sectors;
603
604                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
605                 has_nonrot_disk |= nonrot;
606                 pending = atomic_read(&rdev->nr_pending);
607                 dist = abs(this_sector - conf->mirrors[disk].head_position);
608                 if (choose_first) {
609                         best_disk = disk;
610                         break;
611                 }
612                 /* Don't change to another disk for sequential reads */
613                 if (conf->mirrors[disk].next_seq_sect == this_sector
614                     || dist == 0) {
615                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
616                         struct raid1_info *mirror = &conf->mirrors[disk];
617
618                         best_disk = disk;
619                         /*
620                          * If buffered sequential IO size exceeds optimal
621                          * iosize, check if there is idle disk. If yes, choose
622                          * the idle disk. read_balance could already choose an
623                          * idle disk before noticing it's a sequential IO in
624                          * this disk. This doesn't matter because this disk
625                          * will idle, next time it will be utilized after the
626                          * first disk has IO size exceeds optimal iosize. In
627                          * this way, iosize of the first disk will be optimal
628                          * iosize at least. iosize of the second disk might be
629                          * small, but not a big deal since when the second disk
630                          * starts IO, the first disk is likely still busy.
631                          */
632                         if (nonrot && opt_iosize > 0 &&
633                             mirror->seq_start != MaxSector &&
634                             mirror->next_seq_sect > opt_iosize &&
635                             mirror->next_seq_sect - opt_iosize >=
636                             mirror->seq_start) {
637                                 choose_next_idle = 1;
638                                 continue;
639                         }
640                         break;
641                 }
642                 /* If device is idle, use it */
643                 if (pending == 0) {
644                         best_disk = disk;
645                         break;
646                 }
647
648                 if (choose_next_idle)
649                         continue;
650
651                 if (min_pending > pending) {
652                         min_pending = pending;
653                         best_pending_disk = disk;
654                 }
655
656                 if (dist < best_dist) {
657                         best_dist = dist;
658                         best_dist_disk = disk;
659                 }
660         }
661
662         /*
663          * If all disks are rotational, choose the closest disk. If any disk is
664          * non-rotational, choose the disk with less pending request even the
665          * disk is rotational, which might/might not be optimal for raids with
666          * mixed ratation/non-rotational disks depending on workload.
667          */
668         if (best_disk == -1) {
669                 if (has_nonrot_disk)
670                         best_disk = best_pending_disk;
671                 else
672                         best_disk = best_dist_disk;
673         }
674
675         if (best_disk >= 0) {
676                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
677                 if (!rdev)
678                         goto retry;
679                 atomic_inc(&rdev->nr_pending);
680                 if (test_bit(Faulty, &rdev->flags)) {
681                         /* cannot risk returning a device that failed
682                          * before we inc'ed nr_pending
683                          */
684                         rdev_dec_pending(rdev, conf->mddev);
685                         goto retry;
686                 }
687                 sectors = best_good_sectors;
688
689                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
690                         conf->mirrors[best_disk].seq_start = this_sector;
691
692                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
693         }
694         rcu_read_unlock();
695         *max_sectors = sectors;
696
697         return best_disk;
698 }
699
700 static int raid1_mergeable_bvec(struct request_queue *q,
701                                 struct bvec_merge_data *bvm,
702                                 struct bio_vec *biovec)
703 {
704         struct mddev *mddev = q->queuedata;
705         struct r1conf *conf = mddev->private;
706         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
707         int max = biovec->bv_len;
708
709         if (mddev->merge_check_needed) {
710                 int disk;
711                 rcu_read_lock();
712                 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
713                         struct md_rdev *rdev = rcu_dereference(
714                                 conf->mirrors[disk].rdev);
715                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
716                                 struct request_queue *q =
717                                         bdev_get_queue(rdev->bdev);
718                                 if (q->merge_bvec_fn) {
719                                         bvm->bi_sector = sector +
720                                                 rdev->data_offset;
721                                         bvm->bi_bdev = rdev->bdev;
722                                         max = min(max, q->merge_bvec_fn(
723                                                           q, bvm, biovec));
724                                 }
725                         }
726                 }
727                 rcu_read_unlock();
728         }
729         return max;
730
731 }
732
733 int md_raid1_congested(struct mddev *mddev, int bits)
734 {
735         struct r1conf *conf = mddev->private;
736         int i, ret = 0;
737
738         if ((bits & (1 << BDI_async_congested)) &&
739             conf->pending_count >= max_queued_requests)
740                 return 1;
741
742         rcu_read_lock();
743         for (i = 0; i < conf->raid_disks * 2; i++) {
744                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
745                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
746                         struct request_queue *q = bdev_get_queue(rdev->bdev);
747
748                         BUG_ON(!q);
749
750                         /* Note the '|| 1' - when read_balance prefers
751                          * non-congested targets, it can be removed
752                          */
753                         if ((bits & (1<<BDI_async_congested)) || 1)
754                                 ret |= bdi_congested(&q->backing_dev_info, bits);
755                         else
756                                 ret &= bdi_congested(&q->backing_dev_info, bits);
757                 }
758         }
759         rcu_read_unlock();
760         return ret;
761 }
762 EXPORT_SYMBOL_GPL(md_raid1_congested);
763
764 static int raid1_congested(void *data, int bits)
765 {
766         struct mddev *mddev = data;
767
768         return mddev_congested(mddev, bits) ||
769                 md_raid1_congested(mddev, bits);
770 }
771
772 static void flush_pending_writes(struct r1conf *conf)
773 {
774         /* Any writes that have been queued but are awaiting
775          * bitmap updates get flushed here.
776          */
777         spin_lock_irq(&conf->device_lock);
778
779         if (conf->pending_bio_list.head) {
780                 struct bio *bio;
781                 bio = bio_list_get(&conf->pending_bio_list);
782                 conf->pending_count = 0;
783                 spin_unlock_irq(&conf->device_lock);
784                 /* flush any pending bitmap writes to
785                  * disk before proceeding w/ I/O */
786                 bitmap_unplug(conf->mddev->bitmap);
787                 wake_up(&conf->wait_barrier);
788
789                 while (bio) { /* submit pending writes */
790                         struct bio *next = bio->bi_next;
791                         bio->bi_next = NULL;
792                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
793                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
794                                 /* Just ignore it */
795                                 bio_endio(bio, 0);
796                         else
797                                 generic_make_request(bio);
798                         bio = next;
799                 }
800         } else
801                 spin_unlock_irq(&conf->device_lock);
802 }
803
804 /* Barriers....
805  * Sometimes we need to suspend IO while we do something else,
806  * either some resync/recovery, or reconfigure the array.
807  * To do this we raise a 'barrier'.
808  * The 'barrier' is a counter that can be raised multiple times
809  * to count how many activities are happening which preclude
810  * normal IO.
811  * We can only raise the barrier if there is no pending IO.
812  * i.e. if nr_pending == 0.
813  * We choose only to raise the barrier if no-one is waiting for the
814  * barrier to go down.  This means that as soon as an IO request
815  * is ready, no other operations which require a barrier will start
816  * until the IO request has had a chance.
817  *
818  * So: regular IO calls 'wait_barrier'.  When that returns there
819  *    is no backgroup IO happening,  It must arrange to call
820  *    allow_barrier when it has finished its IO.
821  * backgroup IO calls must call raise_barrier.  Once that returns
822  *    there is no normal IO happeing.  It must arrange to call
823  *    lower_barrier when the particular background IO completes.
824  */
825 static void raise_barrier(struct r1conf *conf)
826 {
827         spin_lock_irq(&conf->resync_lock);
828
829         /* Wait until no block IO is waiting */
830         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
831                             conf->resync_lock);
832
833         /* block any new IO from starting */
834         conf->barrier++;
835
836         /* For these conditions we must wait:
837          * A: while the array is in frozen state
838          * B: while barrier >= RESYNC_DEPTH, meaning resync reach
839          *    the max count which allowed.
840          * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
841          *    next resync will reach to the window which normal bios are
842          *    handling.
843          */
844         wait_event_lock_irq(conf->wait_barrier,
845                             !conf->array_frozen &&
846                             conf->barrier < RESYNC_DEPTH &&
847                             (conf->start_next_window >=
848                              conf->next_resync + RESYNC_SECTORS),
849                             conf->resync_lock);
850
851         spin_unlock_irq(&conf->resync_lock);
852 }
853
854 static void lower_barrier(struct r1conf *conf)
855 {
856         unsigned long flags;
857         BUG_ON(conf->barrier <= 0);
858         spin_lock_irqsave(&conf->resync_lock, flags);
859         conf->barrier--;
860         spin_unlock_irqrestore(&conf->resync_lock, flags);
861         wake_up(&conf->wait_barrier);
862 }
863
864 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
865 {
866         bool wait = false;
867
868         if (conf->array_frozen || !bio)
869                 wait = true;
870         else if (conf->barrier && bio_data_dir(bio) == WRITE) {
871                 if (conf->next_resync < RESYNC_WINDOW_SECTORS)
872                         wait = true;
873                 else if ((conf->next_resync - RESYNC_WINDOW_SECTORS
874                                 >= bio_end_sector(bio)) ||
875                          (conf->next_resync + NEXT_NORMALIO_DISTANCE
876                                 <= bio->bi_iter.bi_sector))
877                         wait = false;
878                 else
879                         wait = true;
880         }
881
882         return wait;
883 }
884
885 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
886 {
887         sector_t sector = 0;
888
889         spin_lock_irq(&conf->resync_lock);
890         if (need_to_wait_for_sync(conf, bio)) {
891                 conf->nr_waiting++;
892                 /* Wait for the barrier to drop.
893                  * However if there are already pending
894                  * requests (preventing the barrier from
895                  * rising completely), and the
896                  * pre-process bio queue isn't empty,
897                  * then don't wait, as we need to empty
898                  * that queue to get the nr_pending
899                  * count down.
900                  */
901                 wait_event_lock_irq(conf->wait_barrier,
902                                     !conf->array_frozen &&
903                                     (!conf->barrier ||
904                                     ((conf->start_next_window <
905                                       conf->next_resync + RESYNC_SECTORS) &&
906                                      current->bio_list &&
907                                      !bio_list_empty(current->bio_list))),
908                                     conf->resync_lock);
909                 conf->nr_waiting--;
910         }
911
912         if (bio && bio_data_dir(bio) == WRITE) {
913                 if (conf->next_resync + NEXT_NORMALIO_DISTANCE
914                     <= bio->bi_iter.bi_sector) {
915                         if (conf->start_next_window == MaxSector)
916                                 conf->start_next_window =
917                                         conf->next_resync +
918                                         NEXT_NORMALIO_DISTANCE;
919
920                         if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
921                             <= bio->bi_iter.bi_sector)
922                                 conf->next_window_requests++;
923                         else
924                                 conf->current_window_requests++;
925                         sector = conf->start_next_window;
926                 }
927         }
928
929         conf->nr_pending++;
930         spin_unlock_irq(&conf->resync_lock);
931         return sector;
932 }
933
934 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
935                           sector_t bi_sector)
936 {
937         unsigned long flags;
938
939         spin_lock_irqsave(&conf->resync_lock, flags);
940         conf->nr_pending--;
941         if (start_next_window) {
942                 if (start_next_window == conf->start_next_window) {
943                         if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
944                             <= bi_sector)
945                                 conf->next_window_requests--;
946                         else
947                                 conf->current_window_requests--;
948                 } else
949                         conf->current_window_requests--;
950
951                 if (!conf->current_window_requests) {
952                         if (conf->next_window_requests) {
953                                 conf->current_window_requests =
954                                         conf->next_window_requests;
955                                 conf->next_window_requests = 0;
956                                 conf->start_next_window +=
957                                         NEXT_NORMALIO_DISTANCE;
958                         } else
959                                 conf->start_next_window = MaxSector;
960                 }
961         }
962         spin_unlock_irqrestore(&conf->resync_lock, flags);
963         wake_up(&conf->wait_barrier);
964 }
965
966 static void freeze_array(struct r1conf *conf, int extra)
967 {
968         /* stop syncio and normal IO and wait for everything to
969          * go quite.
970          * We wait until nr_pending match nr_queued+extra
971          * This is called in the context of one normal IO request
972          * that has failed. Thus any sync request that might be pending
973          * will be blocked by nr_pending, and we need to wait for
974          * pending IO requests to complete or be queued for re-try.
975          * Thus the number queued (nr_queued) plus this request (extra)
976          * must match the number of pending IOs (nr_pending) before
977          * we continue.
978          */
979         spin_lock_irq(&conf->resync_lock);
980         conf->array_frozen = 1;
981         wait_event_lock_irq_cmd(conf->wait_barrier,
982                                 conf->nr_pending == conf->nr_queued+extra,
983                                 conf->resync_lock,
984                                 flush_pending_writes(conf));
985         spin_unlock_irq(&conf->resync_lock);
986 }
987 static void unfreeze_array(struct r1conf *conf)
988 {
989         /* reverse the effect of the freeze */
990         spin_lock_irq(&conf->resync_lock);
991         conf->array_frozen = 0;
992         wake_up(&conf->wait_barrier);
993         spin_unlock_irq(&conf->resync_lock);
994 }
995
996
997 /* duplicate the data pages for behind I/O 
998  */
999 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1000 {
1001         int i;
1002         struct bio_vec *bvec;
1003         struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1004                                         GFP_NOIO);
1005         if (unlikely(!bvecs))
1006                 return;
1007
1008         bio_for_each_segment_all(bvec, bio, i) {
1009                 bvecs[i] = *bvec;
1010                 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1011                 if (unlikely(!bvecs[i].bv_page))
1012                         goto do_sync_io;
1013                 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1014                        kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1015                 kunmap(bvecs[i].bv_page);
1016                 kunmap(bvec->bv_page);
1017         }
1018         r1_bio->behind_bvecs = bvecs;
1019         r1_bio->behind_page_count = bio->bi_vcnt;
1020         set_bit(R1BIO_BehindIO, &r1_bio->state);
1021         return;
1022
1023 do_sync_io:
1024         for (i = 0; i < bio->bi_vcnt; i++)
1025                 if (bvecs[i].bv_page)
1026                         put_page(bvecs[i].bv_page);
1027         kfree(bvecs);
1028         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1029                  bio->bi_iter.bi_size);
1030 }
1031
1032 struct raid1_plug_cb {
1033         struct blk_plug_cb      cb;
1034         struct bio_list         pending;
1035         int                     pending_cnt;
1036 };
1037
1038 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1039 {
1040         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1041                                                   cb);
1042         struct mddev *mddev = plug->cb.data;
1043         struct r1conf *conf = mddev->private;
1044         struct bio *bio;
1045
1046         if (from_schedule || current->bio_list) {
1047                 spin_lock_irq(&conf->device_lock);
1048                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1049                 conf->pending_count += plug->pending_cnt;
1050                 spin_unlock_irq(&conf->device_lock);
1051                 wake_up(&conf->wait_barrier);
1052                 md_wakeup_thread(mddev->thread);
1053                 kfree(plug);
1054                 return;
1055         }
1056
1057         /* we aren't scheduling, so we can do the write-out directly. */
1058         bio = bio_list_get(&plug->pending);
1059         bitmap_unplug(mddev->bitmap);
1060         wake_up(&conf->wait_barrier);
1061
1062         while (bio) { /* submit pending writes */
1063                 struct bio *next = bio->bi_next;
1064                 bio->bi_next = NULL;
1065                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1066                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1067                         /* Just ignore it */
1068                         bio_endio(bio, 0);
1069                 else
1070                         generic_make_request(bio);
1071                 bio = next;
1072         }
1073         kfree(plug);
1074 }
1075
1076 static void make_request(struct mddev *mddev, struct bio * bio)
1077 {
1078         struct r1conf *conf = mddev->private;
1079         struct raid1_info *mirror;
1080         struct r1bio *r1_bio;
1081         struct bio *read_bio;
1082         int i, disks;
1083         struct bitmap *bitmap;
1084         unsigned long flags;
1085         const int rw = bio_data_dir(bio);
1086         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1087         const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1088         const unsigned long do_discard = (bio->bi_rw
1089                                           & (REQ_DISCARD | REQ_SECURE));
1090         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1091         struct md_rdev *blocked_rdev;
1092         struct blk_plug_cb *cb;
1093         struct raid1_plug_cb *plug = NULL;
1094         int first_clone;
1095         int sectors_handled;
1096         int max_sectors;
1097         sector_t start_next_window;
1098
1099         /*
1100          * Register the new request and wait if the reconstruction
1101          * thread has put up a bar for new requests.
1102          * Continue immediately if no resync is active currently.
1103          */
1104
1105         md_write_start(mddev, bio); /* wait on superblock update early */
1106
1107         if (bio_data_dir(bio) == WRITE &&
1108             bio_end_sector(bio) > mddev->suspend_lo &&
1109             bio->bi_iter.bi_sector < mddev->suspend_hi) {
1110                 /* As the suspend_* range is controlled by
1111                  * userspace, we want an interruptible
1112                  * wait.
1113                  */
1114                 DEFINE_WAIT(w);
1115                 for (;;) {
1116                         flush_signals(current);
1117                         prepare_to_wait(&conf->wait_barrier,
1118                                         &w, TASK_INTERRUPTIBLE);
1119                         if (bio_end_sector(bio) <= mddev->suspend_lo ||
1120                             bio->bi_iter.bi_sector >= mddev->suspend_hi)
1121                                 break;
1122                         schedule();
1123                 }
1124                 finish_wait(&conf->wait_barrier, &w);
1125         }
1126
1127         start_next_window = wait_barrier(conf, bio);
1128
1129         bitmap = mddev->bitmap;
1130
1131         /*
1132          * make_request() can abort the operation when READA is being
1133          * used and no empty request is available.
1134          *
1135          */
1136         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1137
1138         r1_bio->master_bio = bio;
1139         r1_bio->sectors = bio_sectors(bio);
1140         r1_bio->state = 0;
1141         r1_bio->mddev = mddev;
1142         r1_bio->sector = bio->bi_iter.bi_sector;
1143
1144         /* We might need to issue multiple reads to different
1145          * devices if there are bad blocks around, so we keep
1146          * track of the number of reads in bio->bi_phys_segments.
1147          * If this is 0, there is only one r1_bio and no locking
1148          * will be needed when requests complete.  If it is
1149          * non-zero, then it is the number of not-completed requests.
1150          */
1151         bio->bi_phys_segments = 0;
1152         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1153
1154         if (rw == READ) {
1155                 /*
1156                  * read balancing logic:
1157                  */
1158                 int rdisk;
1159
1160 read_again:
1161                 rdisk = read_balance(conf, r1_bio, &max_sectors);
1162
1163                 if (rdisk < 0) {
1164                         /* couldn't find anywhere to read from */
1165                         raid_end_bio_io(r1_bio);
1166                         return;
1167                 }
1168                 mirror = conf->mirrors + rdisk;
1169
1170                 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1171                     bitmap) {
1172                         /* Reading from a write-mostly device must
1173                          * take care not to over-take any writes
1174                          * that are 'behind'
1175                          */
1176                         wait_event(bitmap->behind_wait,
1177                                    atomic_read(&bitmap->behind_writes) == 0);
1178                 }
1179                 r1_bio->read_disk = rdisk;
1180
1181                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1182                 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1183                          max_sectors);
1184
1185                 r1_bio->bios[rdisk] = read_bio;
1186
1187                 read_bio->bi_iter.bi_sector = r1_bio->sector +
1188                         mirror->rdev->data_offset;
1189                 read_bio->bi_bdev = mirror->rdev->bdev;
1190                 read_bio->bi_end_io = raid1_end_read_request;
1191                 read_bio->bi_rw = READ | do_sync;
1192                 read_bio->bi_private = r1_bio;
1193
1194                 if (max_sectors < r1_bio->sectors) {
1195                         /* could not read all from this device, so we will
1196                          * need another r1_bio.
1197                          */
1198
1199                         sectors_handled = (r1_bio->sector + max_sectors
1200                                            - bio->bi_iter.bi_sector);
1201                         r1_bio->sectors = max_sectors;
1202                         spin_lock_irq(&conf->device_lock);
1203                         if (bio->bi_phys_segments == 0)
1204                                 bio->bi_phys_segments = 2;
1205                         else
1206                                 bio->bi_phys_segments++;
1207                         spin_unlock_irq(&conf->device_lock);
1208                         /* Cannot call generic_make_request directly
1209                          * as that will be queued in __make_request
1210                          * and subsequent mempool_alloc might block waiting
1211                          * for it.  So hand bio over to raid1d.
1212                          */
1213                         reschedule_retry(r1_bio);
1214
1215                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1216
1217                         r1_bio->master_bio = bio;
1218                         r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1219                         r1_bio->state = 0;
1220                         r1_bio->mddev = mddev;
1221                         r1_bio->sector = bio->bi_iter.bi_sector +
1222                                 sectors_handled;
1223                         goto read_again;
1224                 } else
1225                         generic_make_request(read_bio);
1226                 return;
1227         }
1228
1229         /*
1230          * WRITE:
1231          */
1232         if (conf->pending_count >= max_queued_requests) {
1233                 md_wakeup_thread(mddev->thread);
1234                 wait_event(conf->wait_barrier,
1235                            conf->pending_count < max_queued_requests);
1236         }
1237         /* first select target devices under rcu_lock and
1238          * inc refcount on their rdev.  Record them by setting
1239          * bios[x] to bio
1240          * If there are known/acknowledged bad blocks on any device on
1241          * which we have seen a write error, we want to avoid writing those
1242          * blocks.
1243          * This potentially requires several writes to write around
1244          * the bad blocks.  Each set of writes gets it's own r1bio
1245          * with a set of bios attached.
1246          */
1247
1248         disks = conf->raid_disks * 2;
1249  retry_write:
1250         r1_bio->start_next_window = start_next_window;
1251         blocked_rdev = NULL;
1252         rcu_read_lock();
1253         max_sectors = r1_bio->sectors;
1254         for (i = 0;  i < disks; i++) {
1255                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1256                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1257                         atomic_inc(&rdev->nr_pending);
1258                         blocked_rdev = rdev;
1259                         break;
1260                 }
1261                 r1_bio->bios[i] = NULL;
1262                 if (!rdev || test_bit(Faulty, &rdev->flags)
1263                     || test_bit(Unmerged, &rdev->flags)) {
1264                         if (i < conf->raid_disks)
1265                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1266                         continue;
1267                 }
1268
1269                 atomic_inc(&rdev->nr_pending);
1270                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1271                         sector_t first_bad;
1272                         int bad_sectors;
1273                         int is_bad;
1274
1275                         is_bad = is_badblock(rdev, r1_bio->sector,
1276                                              max_sectors,
1277                                              &first_bad, &bad_sectors);
1278                         if (is_bad < 0) {
1279                                 /* mustn't write here until the bad block is
1280                                  * acknowledged*/
1281                                 set_bit(BlockedBadBlocks, &rdev->flags);
1282                                 blocked_rdev = rdev;
1283                                 break;
1284                         }
1285                         if (is_bad && first_bad <= r1_bio->sector) {
1286                                 /* Cannot write here at all */
1287                                 bad_sectors -= (r1_bio->sector - first_bad);
1288                                 if (bad_sectors < max_sectors)
1289                                         /* mustn't write more than bad_sectors
1290                                          * to other devices yet
1291                                          */
1292                                         max_sectors = bad_sectors;
1293                                 rdev_dec_pending(rdev, mddev);
1294                                 /* We don't set R1BIO_Degraded as that
1295                                  * only applies if the disk is
1296                                  * missing, so it might be re-added,
1297                                  * and we want to know to recover this
1298                                  * chunk.
1299                                  * In this case the device is here,
1300                                  * and the fact that this chunk is not
1301                                  * in-sync is recorded in the bad
1302                                  * block log
1303                                  */
1304                                 continue;
1305                         }
1306                         if (is_bad) {
1307                                 int good_sectors = first_bad - r1_bio->sector;
1308                                 if (good_sectors < max_sectors)
1309                                         max_sectors = good_sectors;
1310                         }
1311                 }
1312                 r1_bio->bios[i] = bio;
1313         }
1314         rcu_read_unlock();
1315
1316         if (unlikely(blocked_rdev)) {
1317                 /* Wait for this device to become unblocked */
1318                 int j;
1319                 sector_t old = start_next_window;
1320
1321                 for (j = 0; j < i; j++)
1322                         if (r1_bio->bios[j])
1323                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1324                 r1_bio->state = 0;
1325                 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1326                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1327                 start_next_window = wait_barrier(conf, bio);
1328                 /*
1329                  * We must make sure the multi r1bios of bio have
1330                  * the same value of bi_phys_segments
1331                  */
1332                 if (bio->bi_phys_segments && old &&
1333                     old != start_next_window)
1334                         /* Wait for the former r1bio(s) to complete */
1335                         wait_event(conf->wait_barrier,
1336                                    bio->bi_phys_segments == 1);
1337                 goto retry_write;
1338         }
1339
1340         if (max_sectors < r1_bio->sectors) {
1341                 /* We are splitting this write into multiple parts, so
1342                  * we need to prepare for allocating another r1_bio.
1343                  */
1344                 r1_bio->sectors = max_sectors;
1345                 spin_lock_irq(&conf->device_lock);
1346                 if (bio->bi_phys_segments == 0)
1347                         bio->bi_phys_segments = 2;
1348                 else
1349                         bio->bi_phys_segments++;
1350                 spin_unlock_irq(&conf->device_lock);
1351         }
1352         sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1353
1354         atomic_set(&r1_bio->remaining, 1);
1355         atomic_set(&r1_bio->behind_remaining, 0);
1356
1357         first_clone = 1;
1358         for (i = 0; i < disks; i++) {
1359                 struct bio *mbio;
1360                 if (!r1_bio->bios[i])
1361                         continue;
1362
1363                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1364                 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1365
1366                 if (first_clone) {
1367                         /* do behind I/O ?
1368                          * Not if there are too many, or cannot
1369                          * allocate memory, or a reader on WriteMostly
1370                          * is waiting for behind writes to flush */
1371                         if (bitmap &&
1372                             (atomic_read(&bitmap->behind_writes)
1373                              < mddev->bitmap_info.max_write_behind) &&
1374                             !waitqueue_active(&bitmap->behind_wait))
1375                                 alloc_behind_pages(mbio, r1_bio);
1376
1377                         bitmap_startwrite(bitmap, r1_bio->sector,
1378                                           r1_bio->sectors,
1379                                           test_bit(R1BIO_BehindIO,
1380                                                    &r1_bio->state));
1381                         first_clone = 0;
1382                 }
1383                 if (r1_bio->behind_bvecs) {
1384                         struct bio_vec *bvec;
1385                         int j;
1386
1387                         /*
1388                          * We trimmed the bio, so _all is legit
1389                          */
1390                         bio_for_each_segment_all(bvec, mbio, j)
1391                                 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1392                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1393                                 atomic_inc(&r1_bio->behind_remaining);
1394                 }
1395
1396                 r1_bio->bios[i] = mbio;
1397
1398                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1399                                    conf->mirrors[i].rdev->data_offset);
1400                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1401                 mbio->bi_end_io = raid1_end_write_request;
1402                 mbio->bi_rw =
1403                         WRITE | do_flush_fua | do_sync | do_discard | do_same;
1404                 mbio->bi_private = r1_bio;
1405
1406                 atomic_inc(&r1_bio->remaining);
1407
1408                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1409                 if (cb)
1410                         plug = container_of(cb, struct raid1_plug_cb, cb);
1411                 else
1412                         plug = NULL;
1413                 spin_lock_irqsave(&conf->device_lock, flags);
1414                 if (plug) {
1415                         bio_list_add(&plug->pending, mbio);
1416                         plug->pending_cnt++;
1417                 } else {
1418                         bio_list_add(&conf->pending_bio_list, mbio);
1419                         conf->pending_count++;
1420                 }
1421                 spin_unlock_irqrestore(&conf->device_lock, flags);
1422                 if (!plug)
1423                         md_wakeup_thread(mddev->thread);
1424         }
1425         /* Mustn't call r1_bio_write_done before this next test,
1426          * as it could result in the bio being freed.
1427          */
1428         if (sectors_handled < bio_sectors(bio)) {
1429                 r1_bio_write_done(r1_bio);
1430                 /* We need another r1_bio.  It has already been counted
1431                  * in bio->bi_phys_segments
1432                  */
1433                 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1434                 r1_bio->master_bio = bio;
1435                 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1436                 r1_bio->state = 0;
1437                 r1_bio->mddev = mddev;
1438                 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1439                 goto retry_write;
1440         }
1441
1442         r1_bio_write_done(r1_bio);
1443
1444         /* In case raid1d snuck in to freeze_array */
1445         wake_up(&conf->wait_barrier);
1446 }
1447
1448 static void status(struct seq_file *seq, struct mddev *mddev)
1449 {
1450         struct r1conf *conf = mddev->private;
1451         int i;
1452
1453         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1454                    conf->raid_disks - mddev->degraded);
1455         rcu_read_lock();
1456         for (i = 0; i < conf->raid_disks; i++) {
1457                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1458                 seq_printf(seq, "%s",
1459                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1460         }
1461         rcu_read_unlock();
1462         seq_printf(seq, "]");
1463 }
1464
1465
1466 static void error(struct mddev *mddev, struct md_rdev *rdev)
1467 {
1468         char b[BDEVNAME_SIZE];
1469         struct r1conf *conf = mddev->private;
1470
1471         /*
1472          * If it is not operational, then we have already marked it as dead
1473          * else if it is the last working disks, ignore the error, let the
1474          * next level up know.
1475          * else mark the drive as failed
1476          */
1477         if (test_bit(In_sync, &rdev->flags)
1478             && (conf->raid_disks - mddev->degraded) == 1) {
1479                 /*
1480                  * Don't fail the drive, act as though we were just a
1481                  * normal single drive.
1482                  * However don't try a recovery from this drive as
1483                  * it is very likely to fail.
1484                  */
1485                 conf->recovery_disabled = mddev->recovery_disabled;
1486                 return;
1487         }
1488         set_bit(Blocked, &rdev->flags);
1489         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1490                 unsigned long flags;
1491                 spin_lock_irqsave(&conf->device_lock, flags);
1492                 mddev->degraded++;
1493                 set_bit(Faulty, &rdev->flags);
1494                 spin_unlock_irqrestore(&conf->device_lock, flags);
1495                 /*
1496                  * if recovery is running, make sure it aborts.
1497                  */
1498                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1499         } else
1500                 set_bit(Faulty, &rdev->flags);
1501         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1502         printk(KERN_ALERT
1503                "md/raid1:%s: Disk failure on %s, disabling device.\n"
1504                "md/raid1:%s: Operation continuing on %d devices.\n",
1505                mdname(mddev), bdevname(rdev->bdev, b),
1506                mdname(mddev), conf->raid_disks - mddev->degraded);
1507 }
1508
1509 static void print_conf(struct r1conf *conf)
1510 {
1511         int i;
1512
1513         printk(KERN_DEBUG "RAID1 conf printout:\n");
1514         if (!conf) {
1515                 printk(KERN_DEBUG "(!conf)\n");
1516                 return;
1517         }
1518         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1519                 conf->raid_disks);
1520
1521         rcu_read_lock();
1522         for (i = 0; i < conf->raid_disks; i++) {
1523                 char b[BDEVNAME_SIZE];
1524                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1525                 if (rdev)
1526                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1527                                i, !test_bit(In_sync, &rdev->flags),
1528                                !test_bit(Faulty, &rdev->flags),
1529                                bdevname(rdev->bdev,b));
1530         }
1531         rcu_read_unlock();
1532 }
1533
1534 static void close_sync(struct r1conf *conf)
1535 {
1536         wait_barrier(conf, NULL);
1537         allow_barrier(conf, 0, 0);
1538
1539         mempool_destroy(conf->r1buf_pool);
1540         conf->r1buf_pool = NULL;
1541
1542         conf->next_resync = 0;
1543         conf->start_next_window = MaxSector;
1544 }
1545
1546 static int raid1_spare_active(struct mddev *mddev)
1547 {
1548         int i;
1549         struct r1conf *conf = mddev->private;
1550         int count = 0;
1551         unsigned long flags;
1552
1553         /*
1554          * Find all failed disks within the RAID1 configuration 
1555          * and mark them readable.
1556          * Called under mddev lock, so rcu protection not needed.
1557          */
1558         for (i = 0; i < conf->raid_disks; i++) {
1559                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1560                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1561                 if (repl
1562                     && repl->recovery_offset == MaxSector
1563                     && !test_bit(Faulty, &repl->flags)
1564                     && !test_and_set_bit(In_sync, &repl->flags)) {
1565                         /* replacement has just become active */
1566                         if (!rdev ||
1567                             !test_and_clear_bit(In_sync, &rdev->flags))
1568                                 count++;
1569                         if (rdev) {
1570                                 /* Replaced device not technically
1571                                  * faulty, but we need to be sure
1572                                  * it gets removed and never re-added
1573                                  */
1574                                 set_bit(Faulty, &rdev->flags);
1575                                 sysfs_notify_dirent_safe(
1576                                         rdev->sysfs_state);
1577                         }
1578                 }
1579                 if (rdev
1580                     && rdev->recovery_offset == MaxSector
1581                     && !test_bit(Faulty, &rdev->flags)
1582                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1583                         count++;
1584                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1585                 }
1586         }
1587         spin_lock_irqsave(&conf->device_lock, flags);
1588         mddev->degraded -= count;
1589         spin_unlock_irqrestore(&conf->device_lock, flags);
1590
1591         print_conf(conf);
1592         return count;
1593 }
1594
1595
1596 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1597 {
1598         struct r1conf *conf = mddev->private;
1599         int err = -EEXIST;
1600         int mirror = 0;
1601         struct raid1_info *p;
1602         int first = 0;
1603         int last = conf->raid_disks - 1;
1604         struct request_queue *q = bdev_get_queue(rdev->bdev);
1605
1606         if (mddev->recovery_disabled == conf->recovery_disabled)
1607                 return -EBUSY;
1608
1609         if (rdev->raid_disk >= 0)
1610                 first = last = rdev->raid_disk;
1611
1612         if (q->merge_bvec_fn) {
1613                 set_bit(Unmerged, &rdev->flags);
1614                 mddev->merge_check_needed = 1;
1615         }
1616
1617         for (mirror = first; mirror <= last; mirror++) {
1618                 p = conf->mirrors+mirror;
1619                 if (!p->rdev) {
1620
1621                         if (mddev->gendisk)
1622                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1623                                                   rdev->data_offset << 9);
1624
1625                         p->head_position = 0;
1626                         rdev->raid_disk = mirror;
1627                         err = 0;
1628                         /* As all devices are equivalent, we don't need a full recovery
1629                          * if this was recently any drive of the array
1630                          */
1631                         if (rdev->saved_raid_disk < 0)
1632                                 conf->fullsync = 1;
1633                         rcu_assign_pointer(p->rdev, rdev);
1634                         break;
1635                 }
1636                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1637                     p[conf->raid_disks].rdev == NULL) {
1638                         /* Add this device as a replacement */
1639                         clear_bit(In_sync, &rdev->flags);
1640                         set_bit(Replacement, &rdev->flags);
1641                         rdev->raid_disk = mirror;
1642                         err = 0;
1643                         conf->fullsync = 1;
1644                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1645                         break;
1646                 }
1647         }
1648         if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1649                 /* Some requests might not have seen this new
1650                  * merge_bvec_fn.  We must wait for them to complete
1651                  * before merging the device fully.
1652                  * First we make sure any code which has tested
1653                  * our function has submitted the request, then
1654                  * we wait for all outstanding requests to complete.
1655                  */
1656                 synchronize_sched();
1657                 freeze_array(conf, 0);
1658                 unfreeze_array(conf);
1659                 clear_bit(Unmerged, &rdev->flags);
1660         }
1661         md_integrity_add_rdev(rdev, mddev);
1662         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1663                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1664         print_conf(conf);
1665         return err;
1666 }
1667
1668 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1669 {
1670         struct r1conf *conf = mddev->private;
1671         int err = 0;
1672         int number = rdev->raid_disk;
1673         struct raid1_info *p = conf->mirrors + number;
1674
1675         if (rdev != p->rdev)
1676                 p = conf->mirrors + conf->raid_disks + number;
1677
1678         print_conf(conf);
1679         if (rdev == p->rdev) {
1680                 if (test_bit(In_sync, &rdev->flags) ||
1681                     atomic_read(&rdev->nr_pending)) {
1682                         err = -EBUSY;
1683                         goto abort;
1684                 }
1685                 /* Only remove non-faulty devices if recovery
1686                  * is not possible.
1687                  */
1688                 if (!test_bit(Faulty, &rdev->flags) &&
1689                     mddev->recovery_disabled != conf->recovery_disabled &&
1690                     mddev->degraded < conf->raid_disks) {
1691                         err = -EBUSY;
1692                         goto abort;
1693                 }
1694                 p->rdev = NULL;
1695                 synchronize_rcu();
1696                 if (atomic_read(&rdev->nr_pending)) {
1697                         /* lost the race, try later */
1698                         err = -EBUSY;
1699                         p->rdev = rdev;
1700                         goto abort;
1701                 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1702                         /* We just removed a device that is being replaced.
1703                          * Move down the replacement.  We drain all IO before
1704                          * doing this to avoid confusion.
1705                          */
1706                         struct md_rdev *repl =
1707                                 conf->mirrors[conf->raid_disks + number].rdev;
1708                         freeze_array(conf, 0);
1709                         clear_bit(Replacement, &repl->flags);
1710                         p->rdev = repl;
1711                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1712                         unfreeze_array(conf);
1713                         clear_bit(WantReplacement, &rdev->flags);
1714                 } else
1715                         clear_bit(WantReplacement, &rdev->flags);
1716                 err = md_integrity_register(mddev);
1717         }
1718 abort:
1719
1720         print_conf(conf);
1721         return err;
1722 }
1723
1724
1725 static void end_sync_read(struct bio *bio, int error)
1726 {
1727         struct r1bio *r1_bio = bio->bi_private;
1728
1729         update_head_pos(r1_bio->read_disk, r1_bio);
1730
1731         /*
1732          * we have read a block, now it needs to be re-written,
1733          * or re-read if the read failed.
1734          * We don't do much here, just schedule handling by raid1d
1735          */
1736         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1737                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1738
1739         if (atomic_dec_and_test(&r1_bio->remaining))
1740                 reschedule_retry(r1_bio);
1741 }
1742
1743 static void end_sync_write(struct bio *bio, int error)
1744 {
1745         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1746         struct r1bio *r1_bio = bio->bi_private;
1747         struct mddev *mddev = r1_bio->mddev;
1748         struct r1conf *conf = mddev->private;
1749         int mirror=0;
1750         sector_t first_bad;
1751         int bad_sectors;
1752
1753         mirror = find_bio_disk(r1_bio, bio);
1754
1755         if (!uptodate) {
1756                 sector_t sync_blocks = 0;
1757                 sector_t s = r1_bio->sector;
1758                 long sectors_to_go = r1_bio->sectors;
1759                 /* make sure these bits doesn't get cleared. */
1760                 do {
1761                         bitmap_end_sync(mddev->bitmap, s,
1762                                         &sync_blocks, 1);
1763                         s += sync_blocks;
1764                         sectors_to_go -= sync_blocks;
1765                 } while (sectors_to_go > 0);
1766                 set_bit(WriteErrorSeen,
1767                         &conf->mirrors[mirror].rdev->flags);
1768                 if (!test_and_set_bit(WantReplacement,
1769                                       &conf->mirrors[mirror].rdev->flags))
1770                         set_bit(MD_RECOVERY_NEEDED, &
1771                                 mddev->recovery);
1772                 set_bit(R1BIO_WriteError, &r1_bio->state);
1773         } else if (is_badblock(conf->mirrors[mirror].rdev,
1774                                r1_bio->sector,
1775                                r1_bio->sectors,
1776                                &first_bad, &bad_sectors) &&
1777                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1778                                 r1_bio->sector,
1779                                 r1_bio->sectors,
1780                                 &first_bad, &bad_sectors)
1781                 )
1782                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1783
1784         if (atomic_dec_and_test(&r1_bio->remaining)) {
1785                 int s = r1_bio->sectors;
1786                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1787                     test_bit(R1BIO_WriteError, &r1_bio->state))
1788                         reschedule_retry(r1_bio);
1789                 else {
1790                         put_buf(r1_bio);
1791                         md_done_sync(mddev, s, uptodate);
1792                 }
1793         }
1794 }
1795
1796 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1797                             int sectors, struct page *page, int rw)
1798 {
1799         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1800                 /* success */
1801                 return 1;
1802         if (rw == WRITE) {
1803                 set_bit(WriteErrorSeen, &rdev->flags);
1804                 if (!test_and_set_bit(WantReplacement,
1805                                       &rdev->flags))
1806                         set_bit(MD_RECOVERY_NEEDED, &
1807                                 rdev->mddev->recovery);
1808         }
1809         /* need to record an error - either for the block or the device */
1810         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1811                 md_error(rdev->mddev, rdev);
1812         return 0;
1813 }
1814
1815 static int fix_sync_read_error(struct r1bio *r1_bio)
1816 {
1817         /* Try some synchronous reads of other devices to get
1818          * good data, much like with normal read errors.  Only
1819          * read into the pages we already have so we don't
1820          * need to re-issue the read request.
1821          * We don't need to freeze the array, because being in an
1822          * active sync request, there is no normal IO, and
1823          * no overlapping syncs.
1824          * We don't need to check is_badblock() again as we
1825          * made sure that anything with a bad block in range
1826          * will have bi_end_io clear.
1827          */
1828         struct mddev *mddev = r1_bio->mddev;
1829         struct r1conf *conf = mddev->private;
1830         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1831         sector_t sect = r1_bio->sector;
1832         int sectors = r1_bio->sectors;
1833         int idx = 0;
1834
1835         while(sectors) {
1836                 int s = sectors;
1837                 int d = r1_bio->read_disk;
1838                 int success = 0;
1839                 struct md_rdev *rdev;
1840                 int start;
1841
1842                 if (s > (PAGE_SIZE>>9))
1843                         s = PAGE_SIZE >> 9;
1844                 do {
1845                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1846                                 /* No rcu protection needed here devices
1847                                  * can only be removed when no resync is
1848                                  * active, and resync is currently active
1849                                  */
1850                                 rdev = conf->mirrors[d].rdev;
1851                                 if (sync_page_io(rdev, sect, s<<9,
1852                                                  bio->bi_io_vec[idx].bv_page,
1853                                                  READ, false)) {
1854                                         success = 1;
1855                                         break;
1856                                 }
1857                         }
1858                         d++;
1859                         if (d == conf->raid_disks * 2)
1860                                 d = 0;
1861                 } while (!success && d != r1_bio->read_disk);
1862
1863                 if (!success) {
1864                         char b[BDEVNAME_SIZE];
1865                         int abort = 0;
1866                         /* Cannot read from anywhere, this block is lost.
1867                          * Record a bad block on each device.  If that doesn't
1868                          * work just disable and interrupt the recovery.
1869                          * Don't fail devices as that won't really help.
1870                          */
1871                         printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1872                                " for block %llu\n",
1873                                mdname(mddev),
1874                                bdevname(bio->bi_bdev, b),
1875                                (unsigned long long)r1_bio->sector);
1876                         for (d = 0; d < conf->raid_disks * 2; d++) {
1877                                 rdev = conf->mirrors[d].rdev;
1878                                 if (!rdev || test_bit(Faulty, &rdev->flags))
1879                                         continue;
1880                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
1881                                         abort = 1;
1882                         }
1883                         if (abort) {
1884                                 conf->recovery_disabled =
1885                                         mddev->recovery_disabled;
1886                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1887                                 md_done_sync(mddev, r1_bio->sectors, 0);
1888                                 put_buf(r1_bio);
1889                                 return 0;
1890                         }
1891                         /* Try next page */
1892                         sectors -= s;
1893                         sect += s;
1894                         idx++;
1895                         continue;
1896                 }
1897
1898                 start = d;
1899                 /* write it back and re-read */
1900                 while (d != r1_bio->read_disk) {
1901                         if (d == 0)
1902                                 d = conf->raid_disks * 2;
1903                         d--;
1904                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1905                                 continue;
1906                         rdev = conf->mirrors[d].rdev;
1907                         if (r1_sync_page_io(rdev, sect, s,
1908                                             bio->bi_io_vec[idx].bv_page,
1909                                             WRITE) == 0) {
1910                                 r1_bio->bios[d]->bi_end_io = NULL;
1911                                 rdev_dec_pending(rdev, mddev);
1912                         }
1913                 }
1914                 d = start;
1915                 while (d != r1_bio->read_disk) {
1916                         if (d == 0)
1917                                 d = conf->raid_disks * 2;
1918                         d--;
1919                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1920                                 continue;
1921                         rdev = conf->mirrors[d].rdev;
1922                         if (r1_sync_page_io(rdev, sect, s,
1923                                             bio->bi_io_vec[idx].bv_page,
1924                                             READ) != 0)
1925                                 atomic_add(s, &rdev->corrected_errors);
1926                 }
1927                 sectors -= s;
1928                 sect += s;
1929                 idx ++;
1930         }
1931         set_bit(R1BIO_Uptodate, &r1_bio->state);
1932         set_bit(BIO_UPTODATE, &bio->bi_flags);
1933         return 1;
1934 }
1935
1936 static int process_checks(struct r1bio *r1_bio)
1937 {
1938         /* We have read all readable devices.  If we haven't
1939          * got the block, then there is no hope left.
1940          * If we have, then we want to do a comparison
1941          * and skip the write if everything is the same.
1942          * If any blocks failed to read, then we need to
1943          * attempt an over-write
1944          */
1945         struct mddev *mddev = r1_bio->mddev;
1946         struct r1conf *conf = mddev->private;
1947         int primary;
1948         int i;
1949         int vcnt;
1950
1951         /* Fix variable parts of all bios */
1952         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1953         for (i = 0; i < conf->raid_disks * 2; i++) {
1954                 int j;
1955                 int size;
1956                 int uptodate;
1957                 struct bio *b = r1_bio->bios[i];
1958                 if (b->bi_end_io != end_sync_read)
1959                         continue;
1960                 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1961                 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1962                 bio_reset(b);
1963                 if (!uptodate)
1964                         clear_bit(BIO_UPTODATE, &b->bi_flags);
1965                 b->bi_vcnt = vcnt;
1966                 b->bi_iter.bi_size = r1_bio->sectors << 9;
1967                 b->bi_iter.bi_sector = r1_bio->sector +
1968                         conf->mirrors[i].rdev->data_offset;
1969                 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1970                 b->bi_end_io = end_sync_read;
1971                 b->bi_private = r1_bio;
1972
1973                 size = b->bi_iter.bi_size;
1974                 for (j = 0; j < vcnt ; j++) {
1975                         struct bio_vec *bi;
1976                         bi = &b->bi_io_vec[j];
1977                         bi->bv_offset = 0;
1978                         if (size > PAGE_SIZE)
1979                                 bi->bv_len = PAGE_SIZE;
1980                         else
1981                                 bi->bv_len = size;
1982                         size -= PAGE_SIZE;
1983                 }
1984         }
1985         for (primary = 0; primary < conf->raid_disks * 2; primary++)
1986                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1987                     test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1988                         r1_bio->bios[primary]->bi_end_io = NULL;
1989                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1990                         break;
1991                 }
1992         r1_bio->read_disk = primary;
1993         for (i = 0; i < conf->raid_disks * 2; i++) {
1994                 int j;
1995                 struct bio *pbio = r1_bio->bios[primary];
1996                 struct bio *sbio = r1_bio->bios[i];
1997                 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
1998
1999                 if (sbio->bi_end_io != end_sync_read)
2000                         continue;
2001                 /* Now we can 'fixup' the BIO_UPTODATE flag */
2002                 set_bit(BIO_UPTODATE, &sbio->bi_flags);
2003
2004                 if (uptodate) {
2005                         for (j = vcnt; j-- ; ) {
2006                                 struct page *p, *s;
2007                                 p = pbio->bi_io_vec[j].bv_page;
2008                                 s = sbio->bi_io_vec[j].bv_page;
2009                                 if (memcmp(page_address(p),
2010                                            page_address(s),
2011                                            sbio->bi_io_vec[j].bv_len))
2012                                         break;
2013                         }
2014                 } else
2015                         j = 0;
2016                 if (j >= 0)
2017                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2018                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2019                               && uptodate)) {
2020                         /* No need to write to this device. */
2021                         sbio->bi_end_io = NULL;
2022                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2023                         continue;
2024                 }
2025
2026                 bio_copy_data(sbio, pbio);
2027         }
2028         return 0;
2029 }
2030
2031 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2032 {
2033         struct r1conf *conf = mddev->private;
2034         int i;
2035         int disks = conf->raid_disks * 2;
2036         struct bio *bio, *wbio;
2037
2038         bio = r1_bio->bios[r1_bio->read_disk];
2039
2040         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2041                 /* ouch - failed to read all of that. */
2042                 if (!fix_sync_read_error(r1_bio))
2043                         return;
2044
2045         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2046                 if (process_checks(r1_bio) < 0)
2047                         return;
2048         /*
2049          * schedule writes
2050          */
2051         atomic_set(&r1_bio->remaining, 1);
2052         for (i = 0; i < disks ; i++) {
2053                 wbio = r1_bio->bios[i];
2054                 if (wbio->bi_end_io == NULL ||
2055                     (wbio->bi_end_io == end_sync_read &&
2056                      (i == r1_bio->read_disk ||
2057                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2058                         continue;
2059
2060                 wbio->bi_rw = WRITE;
2061                 wbio->bi_end_io = end_sync_write;
2062                 atomic_inc(&r1_bio->remaining);
2063                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2064
2065                 generic_make_request(wbio);
2066         }
2067
2068         if (atomic_dec_and_test(&r1_bio->remaining)) {
2069                 /* if we're here, all write(s) have completed, so clean up */
2070                 int s = r1_bio->sectors;
2071                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2072                     test_bit(R1BIO_WriteError, &r1_bio->state))
2073                         reschedule_retry(r1_bio);
2074                 else {
2075                         put_buf(r1_bio);
2076                         md_done_sync(mddev, s, 1);
2077                 }
2078         }
2079 }
2080
2081 /*
2082  * This is a kernel thread which:
2083  *
2084  *      1.      Retries failed read operations on working mirrors.
2085  *      2.      Updates the raid superblock when problems encounter.
2086  *      3.      Performs writes following reads for array synchronising.
2087  */
2088
2089 static void fix_read_error(struct r1conf *conf, int read_disk,
2090                            sector_t sect, int sectors)
2091 {
2092         struct mddev *mddev = conf->mddev;
2093         while(sectors) {
2094                 int s = sectors;
2095                 int d = read_disk;
2096                 int success = 0;
2097                 int start;
2098                 struct md_rdev *rdev;
2099
2100                 if (s > (PAGE_SIZE>>9))
2101                         s = PAGE_SIZE >> 9;
2102
2103                 do {
2104                         /* Note: no rcu protection needed here
2105                          * as this is synchronous in the raid1d thread
2106                          * which is the thread that might remove
2107                          * a device.  If raid1d ever becomes multi-threaded....
2108                          */
2109                         sector_t first_bad;
2110                         int bad_sectors;
2111
2112                         rdev = conf->mirrors[d].rdev;
2113                         if (rdev &&
2114                             (test_bit(In_sync, &rdev->flags) ||
2115                              (!test_bit(Faulty, &rdev->flags) &&
2116                               rdev->recovery_offset >= sect + s)) &&
2117                             is_badblock(rdev, sect, s,
2118                                         &first_bad, &bad_sectors) == 0 &&
2119                             sync_page_io(rdev, sect, s<<9,
2120                                          conf->tmppage, READ, false))
2121                                 success = 1;
2122                         else {
2123                                 d++;
2124                                 if (d == conf->raid_disks * 2)
2125                                         d = 0;
2126                         }
2127                 } while (!success && d != read_disk);
2128
2129                 if (!success) {
2130                         /* Cannot read from anywhere - mark it bad */
2131                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2132                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2133                                 md_error(mddev, rdev);
2134                         break;
2135                 }
2136                 /* write it back and re-read */
2137                 start = d;
2138                 while (d != read_disk) {
2139                         if (d==0)
2140                                 d = conf->raid_disks * 2;
2141                         d--;
2142                         rdev = conf->mirrors[d].rdev;
2143                         if (rdev &&
2144                             test_bit(In_sync, &rdev->flags))
2145                                 r1_sync_page_io(rdev, sect, s,
2146                                                 conf->tmppage, WRITE);
2147                 }
2148                 d = start;
2149                 while (d != read_disk) {
2150                         char b[BDEVNAME_SIZE];
2151                         if (d==0)
2152                                 d = conf->raid_disks * 2;
2153                         d--;
2154                         rdev = conf->mirrors[d].rdev;
2155                         if (rdev &&
2156                             test_bit(In_sync, &rdev->flags)) {
2157                                 if (r1_sync_page_io(rdev, sect, s,
2158                                                     conf->tmppage, READ)) {
2159                                         atomic_add(s, &rdev->corrected_errors);
2160                                         printk(KERN_INFO
2161                                                "md/raid1:%s: read error corrected "
2162                                                "(%d sectors at %llu on %s)\n",
2163                                                mdname(mddev), s,
2164                                                (unsigned long long)(sect +
2165                                                    rdev->data_offset),
2166                                                bdevname(rdev->bdev, b));
2167                                 }
2168                         }
2169                 }
2170                 sectors -= s;
2171                 sect += s;
2172         }
2173 }
2174
2175 static int narrow_write_error(struct r1bio *r1_bio, int i)
2176 {
2177         struct mddev *mddev = r1_bio->mddev;
2178         struct r1conf *conf = mddev->private;
2179         struct md_rdev *rdev = conf->mirrors[i].rdev;
2180
2181         /* bio has the data to be written to device 'i' where
2182          * we just recently had a write error.
2183          * We repeatedly clone the bio and trim down to one block,
2184          * then try the write.  Where the write fails we record
2185          * a bad block.
2186          * It is conceivable that the bio doesn't exactly align with
2187          * blocks.  We must handle this somehow.
2188          *
2189          * We currently own a reference on the rdev.
2190          */
2191
2192         int block_sectors;
2193         sector_t sector;
2194         int sectors;
2195         int sect_to_write = r1_bio->sectors;
2196         int ok = 1;
2197
2198         if (rdev->badblocks.shift < 0)
2199                 return 0;
2200
2201         block_sectors = 1 << rdev->badblocks.shift;
2202         sector = r1_bio->sector;
2203         sectors = ((sector + block_sectors)
2204                    & ~(sector_t)(block_sectors - 1))
2205                 - sector;
2206
2207         while (sect_to_write) {
2208                 struct bio *wbio;
2209                 if (sectors > sect_to_write)
2210                         sectors = sect_to_write;
2211                 /* Write at 'sector' for 'sectors'*/
2212
2213                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2214                         unsigned vcnt = r1_bio->behind_page_count;
2215                         struct bio_vec *vec = r1_bio->behind_bvecs;
2216
2217                         while (!vec->bv_page) {
2218                                 vec++;
2219                                 vcnt--;
2220                         }
2221
2222                         wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2223                         memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2224
2225                         wbio->bi_vcnt = vcnt;
2226                 } else {
2227                         wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2228                 }
2229
2230                 wbio->bi_rw = WRITE;
2231                 wbio->bi_iter.bi_sector = r1_bio->sector;
2232                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2233
2234                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2235                 wbio->bi_iter.bi_sector += rdev->data_offset;
2236                 wbio->bi_bdev = rdev->bdev;
2237                 if (submit_bio_wait(WRITE, wbio) == 0)
2238                         /* failure! */
2239                         ok = rdev_set_badblocks(rdev, sector,
2240                                                 sectors, 0)
2241                                 && ok;
2242
2243                 bio_put(wbio);
2244                 sect_to_write -= sectors;
2245                 sector += sectors;
2246                 sectors = block_sectors;
2247         }
2248         return ok;
2249 }
2250
2251 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2252 {
2253         int m;
2254         int s = r1_bio->sectors;
2255         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2256                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2257                 struct bio *bio = r1_bio->bios[m];
2258                 if (bio->bi_end_io == NULL)
2259                         continue;
2260                 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2261                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2262                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2263                 }
2264                 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2265                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2266                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2267                                 md_error(conf->mddev, rdev);
2268                 }
2269         }
2270         put_buf(r1_bio);
2271         md_done_sync(conf->mddev, s, 1);
2272 }
2273
2274 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2275 {
2276         int m;
2277         for (m = 0; m < conf->raid_disks * 2 ; m++)
2278                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2279                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2280                         rdev_clear_badblocks(rdev,
2281                                              r1_bio->sector,
2282                                              r1_bio->sectors, 0);
2283                         rdev_dec_pending(rdev, conf->mddev);
2284                 } else if (r1_bio->bios[m] != NULL) {
2285                         /* This drive got a write error.  We need to
2286                          * narrow down and record precise write
2287                          * errors.
2288                          */
2289                         if (!narrow_write_error(r1_bio, m)) {
2290                                 md_error(conf->mddev,
2291                                          conf->mirrors[m].rdev);
2292                                 /* an I/O failed, we can't clear the bitmap */
2293                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2294                         }
2295                         rdev_dec_pending(conf->mirrors[m].rdev,
2296                                          conf->mddev);
2297                 }
2298         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2299                 close_write(r1_bio);
2300         raid_end_bio_io(r1_bio);
2301 }
2302
2303 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2304 {
2305         int disk;
2306         int max_sectors;
2307         struct mddev *mddev = conf->mddev;
2308         struct bio *bio;
2309         char b[BDEVNAME_SIZE];
2310         struct md_rdev *rdev;
2311
2312         clear_bit(R1BIO_ReadError, &r1_bio->state);
2313         /* we got a read error. Maybe the drive is bad.  Maybe just
2314          * the block and we can fix it.
2315          * We freeze all other IO, and try reading the block from
2316          * other devices.  When we find one, we re-write
2317          * and check it that fixes the read error.
2318          * This is all done synchronously while the array is
2319          * frozen
2320          */
2321         if (mddev->ro == 0) {
2322                 freeze_array(conf, 1);
2323                 fix_read_error(conf, r1_bio->read_disk,
2324                                r1_bio->sector, r1_bio->sectors);
2325                 unfreeze_array(conf);
2326         } else
2327                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2328         rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2329
2330         bio = r1_bio->bios[r1_bio->read_disk];
2331         bdevname(bio->bi_bdev, b);
2332 read_more:
2333         disk = read_balance(conf, r1_bio, &max_sectors);
2334         if (disk == -1) {
2335                 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2336                        " read error for block %llu\n",
2337                        mdname(mddev), b, (unsigned long long)r1_bio->sector);
2338                 raid_end_bio_io(r1_bio);
2339         } else {
2340                 const unsigned long do_sync
2341                         = r1_bio->master_bio->bi_rw & REQ_SYNC;
2342                 if (bio) {
2343                         r1_bio->bios[r1_bio->read_disk] =
2344                                 mddev->ro ? IO_BLOCKED : NULL;
2345                         bio_put(bio);
2346                 }
2347                 r1_bio->read_disk = disk;
2348                 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2349                 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2350                          max_sectors);
2351                 r1_bio->bios[r1_bio->read_disk] = bio;
2352                 rdev = conf->mirrors[disk].rdev;
2353                 printk_ratelimited(KERN_ERR
2354                                    "md/raid1:%s: redirecting sector %llu"
2355                                    " to other mirror: %s\n",
2356                                    mdname(mddev),
2357                                    (unsigned long long)r1_bio->sector,
2358                                    bdevname(rdev->bdev, b));
2359                 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2360                 bio->bi_bdev = rdev->bdev;
2361                 bio->bi_end_io = raid1_end_read_request;
2362                 bio->bi_rw = READ | do_sync;
2363                 bio->bi_private = r1_bio;
2364                 if (max_sectors < r1_bio->sectors) {
2365                         /* Drat - have to split this up more */
2366                         struct bio *mbio = r1_bio->master_bio;
2367                         int sectors_handled = (r1_bio->sector + max_sectors
2368                                                - mbio->bi_iter.bi_sector);
2369                         r1_bio->sectors = max_sectors;
2370                         spin_lock_irq(&conf->device_lock);
2371                         if (mbio->bi_phys_segments == 0)
2372                                 mbio->bi_phys_segments = 2;
2373                         else
2374                                 mbio->bi_phys_segments++;
2375                         spin_unlock_irq(&conf->device_lock);
2376                         generic_make_request(bio);
2377                         bio = NULL;
2378
2379                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2380
2381                         r1_bio->master_bio = mbio;
2382                         r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2383                         r1_bio->state = 0;
2384                         set_bit(R1BIO_ReadError, &r1_bio->state);
2385                         r1_bio->mddev = mddev;
2386                         r1_bio->sector = mbio->bi_iter.bi_sector +
2387                                 sectors_handled;
2388
2389                         goto read_more;
2390                 } else
2391                         generic_make_request(bio);
2392         }
2393 }
2394
2395 static void raid1d(struct md_thread *thread)
2396 {
2397         struct mddev *mddev = thread->mddev;
2398         struct r1bio *r1_bio;
2399         unsigned long flags;
2400         struct r1conf *conf = mddev->private;
2401         struct list_head *head = &conf->retry_list;
2402         struct blk_plug plug;
2403
2404         md_check_recovery(mddev);
2405
2406         blk_start_plug(&plug);
2407         for (;;) {
2408
2409                 flush_pending_writes(conf);
2410
2411                 spin_lock_irqsave(&conf->device_lock, flags);
2412                 if (list_empty(head)) {
2413                         spin_unlock_irqrestore(&conf->device_lock, flags);
2414                         break;
2415                 }
2416                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2417                 list_del(head->prev);
2418                 conf->nr_queued--;
2419                 spin_unlock_irqrestore(&conf->device_lock, flags);
2420
2421                 mddev = r1_bio->mddev;
2422                 conf = mddev->private;
2423                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2424                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2425                             test_bit(R1BIO_WriteError, &r1_bio->state))
2426                                 handle_sync_write_finished(conf, r1_bio);
2427                         else
2428                                 sync_request_write(mddev, r1_bio);
2429                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2430                            test_bit(R1BIO_WriteError, &r1_bio->state))
2431                         handle_write_finished(conf, r1_bio);
2432                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2433                         handle_read_error(conf, r1_bio);
2434                 else
2435                         /* just a partial read to be scheduled from separate
2436                          * context
2437                          */
2438                         generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2439
2440                 cond_resched();
2441                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2442                         md_check_recovery(mddev);
2443         }
2444         blk_finish_plug(&plug);
2445 }
2446
2447
2448 static int init_resync(struct r1conf *conf)
2449 {
2450         int buffs;
2451
2452         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2453         BUG_ON(conf->r1buf_pool);
2454         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2455                                           conf->poolinfo);
2456         if (!conf->r1buf_pool)
2457                 return -ENOMEM;
2458         conf->next_resync = 0;
2459         return 0;
2460 }
2461
2462 /*
2463  * perform a "sync" on one "block"
2464  *
2465  * We need to make sure that no normal I/O request - particularly write
2466  * requests - conflict with active sync requests.
2467  *
2468  * This is achieved by tracking pending requests and a 'barrier' concept
2469  * that can be installed to exclude normal IO requests.
2470  */
2471
2472 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2473 {
2474         struct r1conf *conf = mddev->private;
2475         struct r1bio *r1_bio;
2476         struct bio *bio;
2477         sector_t max_sector, nr_sectors;
2478         int disk = -1;
2479         int i;
2480         int wonly = -1;
2481         int write_targets = 0, read_targets = 0;
2482         sector_t sync_blocks;
2483         int still_degraded = 0;
2484         int good_sectors = RESYNC_SECTORS;
2485         int min_bad = 0; /* number of sectors that are bad in all devices */
2486
2487         if (!conf->r1buf_pool)
2488                 if (init_resync(conf))
2489                         return 0;
2490
2491         max_sector = mddev->dev_sectors;
2492         if (sector_nr >= max_sector) {
2493                 /* If we aborted, we need to abort the
2494                  * sync on the 'current' bitmap chunk (there will
2495                  * only be one in raid1 resync.
2496                  * We can find the current addess in mddev->curr_resync
2497                  */
2498                 if (mddev->curr_resync < max_sector) /* aborted */
2499                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2500                                                 &sync_blocks, 1);
2501                 else /* completed sync */
2502                         conf->fullsync = 0;
2503
2504                 bitmap_close_sync(mddev->bitmap);
2505                 close_sync(conf);
2506                 return 0;
2507         }
2508
2509         if (mddev->bitmap == NULL &&
2510             mddev->recovery_cp == MaxSector &&
2511             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2512             conf->fullsync == 0) {
2513                 *skipped = 1;
2514                 return max_sector - sector_nr;
2515         }
2516         /* before building a request, check if we can skip these blocks..
2517          * This call the bitmap_start_sync doesn't actually record anything
2518          */
2519         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2520             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2521                 /* We can skip this block, and probably several more */
2522                 *skipped = 1;
2523                 return sync_blocks;
2524         }
2525         /*
2526          * If there is non-resync activity waiting for a turn,
2527          * and resync is going fast enough,
2528          * then let it though before starting on this new sync request.
2529          */
2530         if (!go_faster && conf->nr_waiting)
2531                 msleep_interruptible(1000);
2532
2533         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2534         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2535         raise_barrier(conf);
2536
2537         conf->next_resync = sector_nr;
2538
2539         rcu_read_lock();
2540         /*
2541          * If we get a correctably read error during resync or recovery,
2542          * we might want to read from a different device.  So we
2543          * flag all drives that could conceivably be read from for READ,
2544          * and any others (which will be non-In_sync devices) for WRITE.
2545          * If a read fails, we try reading from something else for which READ
2546          * is OK.
2547          */
2548
2549         r1_bio->mddev = mddev;
2550         r1_bio->sector = sector_nr;
2551         r1_bio->state = 0;
2552         set_bit(R1BIO_IsSync, &r1_bio->state);
2553
2554         for (i = 0; i < conf->raid_disks * 2; i++) {
2555                 struct md_rdev *rdev;
2556                 bio = r1_bio->bios[i];
2557                 bio_reset(bio);
2558
2559                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2560                 if (rdev == NULL ||
2561                     test_bit(Faulty, &rdev->flags)) {
2562                         if (i < conf->raid_disks)
2563                                 still_degraded = 1;
2564                 } else if (!test_bit(In_sync, &rdev->flags)) {
2565                         bio->bi_rw = WRITE;
2566                         bio->bi_end_io = end_sync_write;
2567                         write_targets ++;
2568                 } else {
2569                         /* may need to read from here */
2570                         sector_t first_bad = MaxSector;
2571                         int bad_sectors;
2572
2573                         if (is_badblock(rdev, sector_nr, good_sectors,
2574                                         &first_bad, &bad_sectors)) {
2575                                 if (first_bad > sector_nr)
2576                                         good_sectors = first_bad - sector_nr;
2577                                 else {
2578                                         bad_sectors -= (sector_nr - first_bad);
2579                                         if (min_bad == 0 ||
2580                                             min_bad > bad_sectors)
2581                                                 min_bad = bad_sectors;
2582                                 }
2583                         }
2584                         if (sector_nr < first_bad) {
2585                                 if (test_bit(WriteMostly, &rdev->flags)) {
2586                                         if (wonly < 0)
2587                                                 wonly = i;
2588                                 } else {
2589                                         if (disk < 0)
2590                                                 disk = i;
2591                                 }
2592                                 bio->bi_rw = READ;
2593                                 bio->bi_end_io = end_sync_read;
2594                                 read_targets++;
2595                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2596                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2597                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2598                                 /*
2599                                  * The device is suitable for reading (InSync),
2600                                  * but has bad block(s) here. Let's try to correct them,
2601                                  * if we are doing resync or repair. Otherwise, leave
2602                                  * this device alone for this sync request.
2603                                  */
2604                                 bio->bi_rw = WRITE;
2605                                 bio->bi_end_io = end_sync_write;
2606                                 write_targets++;
2607                         }
2608                 }
2609                 if (bio->bi_end_io) {
2610                         atomic_inc(&rdev->nr_pending);
2611                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2612                         bio->bi_bdev = rdev->bdev;
2613                         bio->bi_private = r1_bio;
2614                 }
2615         }
2616         rcu_read_unlock();
2617         if (disk < 0)
2618                 disk = wonly;
2619         r1_bio->read_disk = disk;
2620
2621         if (read_targets == 0 && min_bad > 0) {
2622                 /* These sectors are bad on all InSync devices, so we
2623                  * need to mark them bad on all write targets
2624                  */
2625                 int ok = 1;
2626                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2627                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2628                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2629                                 ok = rdev_set_badblocks(rdev, sector_nr,
2630                                                         min_bad, 0
2631                                         ) && ok;
2632                         }
2633                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2634                 *skipped = 1;
2635                 put_buf(r1_bio);
2636
2637                 if (!ok) {
2638                         /* Cannot record the badblocks, so need to
2639                          * abort the resync.
2640                          * If there are multiple read targets, could just
2641                          * fail the really bad ones ???
2642                          */
2643                         conf->recovery_disabled = mddev->recovery_disabled;
2644                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2645                         return 0;
2646                 } else
2647                         return min_bad;
2648
2649         }
2650         if (min_bad > 0 && min_bad < good_sectors) {
2651                 /* only resync enough to reach the next bad->good
2652                  * transition */
2653                 good_sectors = min_bad;
2654         }
2655
2656         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2657                 /* extra read targets are also write targets */
2658                 write_targets += read_targets-1;
2659
2660         if (write_targets == 0 || read_targets == 0) {
2661                 /* There is nowhere to write, so all non-sync
2662                  * drives must be failed - so we are finished
2663                  */
2664                 sector_t rv;
2665                 if (min_bad > 0)
2666                         max_sector = sector_nr + min_bad;
2667                 rv = max_sector - sector_nr;
2668                 *skipped = 1;
2669                 put_buf(r1_bio);
2670                 return rv;
2671         }
2672
2673         if (max_sector > mddev->resync_max)
2674                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2675         if (max_sector > sector_nr + good_sectors)
2676                 max_sector = sector_nr + good_sectors;
2677         nr_sectors = 0;
2678         sync_blocks = 0;
2679         do {
2680                 struct page *page;
2681                 int len = PAGE_SIZE;
2682                 if (sector_nr + (len>>9) > max_sector)
2683                         len = (max_sector - sector_nr) << 9;
2684                 if (len == 0)
2685                         break;
2686                 if (sync_blocks == 0) {
2687                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2688                                                &sync_blocks, still_degraded) &&
2689                             !conf->fullsync &&
2690                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2691                                 break;
2692                         BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2693                         if ((len >> 9) > sync_blocks)
2694                                 len = sync_blocks<<9;
2695                 }
2696
2697                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2698                         bio = r1_bio->bios[i];
2699                         if (bio->bi_end_io) {
2700                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2701                                 if (bio_add_page(bio, page, len, 0) == 0) {
2702                                         /* stop here */
2703                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2704                                         while (i > 0) {
2705                                                 i--;
2706                                                 bio = r1_bio->bios[i];
2707                                                 if (bio->bi_end_io==NULL)
2708                                                         continue;
2709                                                 /* remove last page from this bio */
2710                                                 bio->bi_vcnt--;
2711                                                 bio->bi_iter.bi_size -= len;
2712                                                 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2713                                         }
2714                                         goto bio_full;
2715                                 }
2716                         }
2717                 }
2718                 nr_sectors += len>>9;
2719                 sector_nr += len>>9;
2720                 sync_blocks -= (len>>9);
2721         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2722  bio_full:
2723         r1_bio->sectors = nr_sectors;
2724
2725         /* For a user-requested sync, we read all readable devices and do a
2726          * compare
2727          */
2728         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2729                 atomic_set(&r1_bio->remaining, read_targets);
2730                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2731                         bio = r1_bio->bios[i];
2732                         if (bio->bi_end_io == end_sync_read) {
2733                                 read_targets--;
2734                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2735                                 generic_make_request(bio);
2736                         }
2737                 }
2738         } else {
2739                 atomic_set(&r1_bio->remaining, 1);
2740                 bio = r1_bio->bios[r1_bio->read_disk];
2741                 md_sync_acct(bio->bi_bdev, nr_sectors);
2742                 generic_make_request(bio);
2743
2744         }
2745         return nr_sectors;
2746 }
2747
2748 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2749 {
2750         if (sectors)
2751                 return sectors;
2752
2753         return mddev->dev_sectors;
2754 }
2755
2756 static struct r1conf *setup_conf(struct mddev *mddev)
2757 {
2758         struct r1conf *conf;
2759         int i;
2760         struct raid1_info *disk;
2761         struct md_rdev *rdev;
2762         int err = -ENOMEM;
2763
2764         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2765         if (!conf)
2766                 goto abort;
2767
2768         conf->mirrors = kzalloc(sizeof(struct raid1_info)
2769                                 * mddev->raid_disks * 2,
2770                                  GFP_KERNEL);
2771         if (!conf->mirrors)
2772                 goto abort;
2773
2774         conf->tmppage = alloc_page(GFP_KERNEL);
2775         if (!conf->tmppage)
2776                 goto abort;
2777
2778         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2779         if (!conf->poolinfo)
2780                 goto abort;
2781         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2782         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2783                                           r1bio_pool_free,
2784                                           conf->poolinfo);
2785         if (!conf->r1bio_pool)
2786                 goto abort;
2787
2788         conf->poolinfo->mddev = mddev;
2789
2790         err = -EINVAL;
2791         spin_lock_init(&conf->device_lock);
2792         rdev_for_each(rdev, mddev) {
2793                 struct request_queue *q;
2794                 int disk_idx = rdev->raid_disk;
2795                 if (disk_idx >= mddev->raid_disks
2796                     || disk_idx < 0)
2797                         continue;
2798                 if (test_bit(Replacement, &rdev->flags))
2799                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2800                 else
2801                         disk = conf->mirrors + disk_idx;
2802
2803                 if (disk->rdev)
2804                         goto abort;
2805                 disk->rdev = rdev;
2806                 q = bdev_get_queue(rdev->bdev);
2807                 if (q->merge_bvec_fn)
2808                         mddev->merge_check_needed = 1;
2809
2810                 disk->head_position = 0;
2811                 disk->seq_start = MaxSector;
2812         }
2813         conf->raid_disks = mddev->raid_disks;
2814         conf->mddev = mddev;
2815         INIT_LIST_HEAD(&conf->retry_list);
2816
2817         spin_lock_init(&conf->resync_lock);
2818         init_waitqueue_head(&conf->wait_barrier);
2819
2820         bio_list_init(&conf->pending_bio_list);
2821         conf->pending_count = 0;
2822         conf->recovery_disabled = mddev->recovery_disabled - 1;
2823
2824         conf->start_next_window = MaxSector;
2825         conf->current_window_requests = conf->next_window_requests = 0;
2826
2827         err = -EIO;
2828         for (i = 0; i < conf->raid_disks * 2; i++) {
2829
2830                 disk = conf->mirrors + i;
2831
2832                 if (i < conf->raid_disks &&
2833                     disk[conf->raid_disks].rdev) {
2834                         /* This slot has a replacement. */
2835                         if (!disk->rdev) {
2836                                 /* No original, just make the replacement
2837                                  * a recovering spare
2838                                  */
2839                                 disk->rdev =
2840                                         disk[conf->raid_disks].rdev;
2841                                 disk[conf->raid_disks].rdev = NULL;
2842                         } else if (!test_bit(In_sync, &disk->rdev->flags))
2843                                 /* Original is not in_sync - bad */
2844                                 goto abort;
2845                 }
2846
2847                 if (!disk->rdev ||
2848                     !test_bit(In_sync, &disk->rdev->flags)) {
2849                         disk->head_position = 0;
2850                         if (disk->rdev &&
2851                             (disk->rdev->saved_raid_disk < 0))
2852                                 conf->fullsync = 1;
2853                 }
2854         }
2855
2856         err = -ENOMEM;
2857         conf->thread = md_register_thread(raid1d, mddev, "raid1");
2858         if (!conf->thread) {
2859                 printk(KERN_ERR
2860                        "md/raid1:%s: couldn't allocate thread\n",
2861                        mdname(mddev));
2862                 goto abort;
2863         }
2864
2865         return conf;
2866
2867  abort:
2868         if (conf) {
2869                 if (conf->r1bio_pool)
2870                         mempool_destroy(conf->r1bio_pool);
2871                 kfree(conf->mirrors);
2872                 safe_put_page(conf->tmppage);
2873                 kfree(conf->poolinfo);
2874                 kfree(conf);
2875         }
2876         return ERR_PTR(err);
2877 }
2878
2879 static int stop(struct mddev *mddev);
2880 static int run(struct mddev *mddev)
2881 {
2882         struct r1conf *conf;
2883         int i;
2884         struct md_rdev *rdev;
2885         int ret;
2886         bool discard_supported = false;
2887
2888         if (mddev->level != 1) {
2889                 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2890                        mdname(mddev), mddev->level);
2891                 return -EIO;
2892         }
2893         if (mddev->reshape_position != MaxSector) {
2894                 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2895                        mdname(mddev));
2896                 return -EIO;
2897         }
2898         /*
2899          * copy the already verified devices into our private RAID1
2900          * bookkeeping area. [whatever we allocate in run(),
2901          * should be freed in stop()]
2902          */
2903         if (mddev->private == NULL)
2904                 conf = setup_conf(mddev);
2905         else
2906                 conf = mddev->private;
2907
2908         if (IS_ERR(conf))
2909                 return PTR_ERR(conf);
2910
2911         if (mddev->queue)
2912                 blk_queue_max_write_same_sectors(mddev->queue, 0);
2913
2914         rdev_for_each(rdev, mddev) {
2915                 if (!mddev->gendisk)
2916                         continue;
2917                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2918                                   rdev->data_offset << 9);
2919                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2920                         discard_supported = true;
2921         }
2922
2923         mddev->degraded = 0;
2924         for (i=0; i < conf->raid_disks; i++)
2925                 if (conf->mirrors[i].rdev == NULL ||
2926                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2927                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2928                         mddev->degraded++;
2929
2930         if (conf->raid_disks - mddev->degraded == 1)
2931                 mddev->recovery_cp = MaxSector;
2932
2933         if (mddev->recovery_cp != MaxSector)
2934                 printk(KERN_NOTICE "md/raid1:%s: not clean"
2935                        " -- starting background reconstruction\n",
2936                        mdname(mddev));
2937         printk(KERN_INFO 
2938                 "md/raid1:%s: active with %d out of %d mirrors\n",
2939                 mdname(mddev), mddev->raid_disks - mddev->degraded, 
2940                 mddev->raid_disks);
2941
2942         /*
2943          * Ok, everything is just fine now
2944          */
2945         mddev->thread = conf->thread;
2946         conf->thread = NULL;
2947         mddev->private = conf;
2948
2949         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2950
2951         if (mddev->queue) {
2952                 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2953                 mddev->queue->backing_dev_info.congested_data = mddev;
2954                 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2955
2956                 if (discard_supported)
2957                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2958                                                 mddev->queue);
2959                 else
2960                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2961                                                   mddev->queue);
2962         }
2963
2964         ret =  md_integrity_register(mddev);
2965         if (ret)
2966                 stop(mddev);
2967         return ret;
2968 }
2969
2970 static int stop(struct mddev *mddev)
2971 {
2972         struct r1conf *conf = mddev->private;
2973         struct bitmap *bitmap = mddev->bitmap;
2974
2975         /* wait for behind writes to complete */
2976         if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2977                 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2978                        mdname(mddev));
2979                 /* need to kick something here to make sure I/O goes? */
2980                 wait_event(bitmap->behind_wait,
2981                            atomic_read(&bitmap->behind_writes) == 0);
2982         }
2983
2984         freeze_array(conf, 0);
2985         unfreeze_array(conf);
2986
2987         md_unregister_thread(&mddev->thread);
2988         if (conf->r1bio_pool)
2989                 mempool_destroy(conf->r1bio_pool);
2990         kfree(conf->mirrors);
2991         safe_put_page(conf->tmppage);
2992         kfree(conf->poolinfo);
2993         kfree(conf);
2994         mddev->private = NULL;
2995         return 0;
2996 }
2997
2998 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2999 {
3000         /* no resync is happening, and there is enough space
3001          * on all devices, so we can resize.
3002          * We need to make sure resync covers any new space.
3003          * If the array is shrinking we should possibly wait until
3004          * any io in the removed space completes, but it hardly seems
3005          * worth it.
3006          */
3007         sector_t newsize = raid1_size(mddev, sectors, 0);
3008         if (mddev->external_size &&
3009             mddev->array_sectors > newsize)
3010                 return -EINVAL;
3011         if (mddev->bitmap) {
3012                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3013                 if (ret)
3014                         return ret;
3015         }
3016         md_set_array_sectors(mddev, newsize);
3017         set_capacity(mddev->gendisk, mddev->array_sectors);
3018         revalidate_disk(mddev->gendisk);
3019         if (sectors > mddev->dev_sectors &&
3020             mddev->recovery_cp > mddev->dev_sectors) {
3021                 mddev->recovery_cp = mddev->dev_sectors;
3022                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3023         }
3024         mddev->dev_sectors = sectors;
3025         mddev->resync_max_sectors = sectors;
3026         return 0;
3027 }
3028
3029 static int raid1_reshape(struct mddev *mddev)
3030 {
3031         /* We need to:
3032          * 1/ resize the r1bio_pool
3033          * 2/ resize conf->mirrors
3034          *
3035          * We allocate a new r1bio_pool if we can.
3036          * Then raise a device barrier and wait until all IO stops.
3037          * Then resize conf->mirrors and swap in the new r1bio pool.
3038          *
3039          * At the same time, we "pack" the devices so that all the missing
3040          * devices have the higher raid_disk numbers.
3041          */
3042         mempool_t *newpool, *oldpool;
3043         struct pool_info *newpoolinfo;
3044         struct raid1_info *newmirrors;
3045         struct r1conf *conf = mddev->private;
3046         int cnt, raid_disks;
3047         unsigned long flags;
3048         int d, d2, err;
3049
3050         /* Cannot change chunk_size, layout, or level */
3051         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3052             mddev->layout != mddev->new_layout ||
3053             mddev->level != mddev->new_level) {
3054                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3055                 mddev->new_layout = mddev->layout;
3056                 mddev->new_level = mddev->level;
3057                 return -EINVAL;
3058         }
3059
3060         err = md_allow_write(mddev);
3061         if (err)
3062                 return err;
3063
3064         raid_disks = mddev->raid_disks + mddev->delta_disks;
3065
3066         if (raid_disks < conf->raid_disks) {
3067                 cnt=0;
3068                 for (d= 0; d < conf->raid_disks; d++)
3069                         if (conf->mirrors[d].rdev)
3070                                 cnt++;
3071                 if (cnt > raid_disks)
3072                         return -EBUSY;
3073         }
3074
3075         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3076         if (!newpoolinfo)
3077                 return -ENOMEM;
3078         newpoolinfo->mddev = mddev;
3079         newpoolinfo->raid_disks = raid_disks * 2;
3080
3081         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3082                                  r1bio_pool_free, newpoolinfo);
3083         if (!newpool) {
3084                 kfree(newpoolinfo);
3085                 return -ENOMEM;
3086         }
3087         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3088                              GFP_KERNEL);
3089         if (!newmirrors) {
3090                 kfree(newpoolinfo);
3091                 mempool_destroy(newpool);
3092                 return -ENOMEM;
3093         }
3094
3095         freeze_array(conf, 0);
3096
3097         /* ok, everything is stopped */
3098         oldpool = conf->r1bio_pool;
3099         conf->r1bio_pool = newpool;
3100
3101         for (d = d2 = 0; d < conf->raid_disks; d++) {
3102                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3103                 if (rdev && rdev->raid_disk != d2) {
3104                         sysfs_unlink_rdev(mddev, rdev);
3105                         rdev->raid_disk = d2;
3106                         sysfs_unlink_rdev(mddev, rdev);
3107                         if (sysfs_link_rdev(mddev, rdev))
3108                                 printk(KERN_WARNING
3109                                        "md/raid1:%s: cannot register rd%d\n",
3110                                        mdname(mddev), rdev->raid_disk);
3111                 }
3112                 if (rdev)
3113                         newmirrors[d2++].rdev = rdev;
3114         }
3115         kfree(conf->mirrors);
3116         conf->mirrors = newmirrors;
3117         kfree(conf->poolinfo);
3118         conf->poolinfo = newpoolinfo;
3119
3120         spin_lock_irqsave(&conf->device_lock, flags);
3121         mddev->degraded += (raid_disks - conf->raid_disks);
3122         spin_unlock_irqrestore(&conf->device_lock, flags);
3123         conf->raid_disks = mddev->raid_disks = raid_disks;
3124         mddev->delta_disks = 0;
3125
3126         unfreeze_array(conf);
3127
3128         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3129         md_wakeup_thread(mddev->thread);
3130
3131         mempool_destroy(oldpool);
3132         return 0;
3133 }
3134
3135 static void raid1_quiesce(struct mddev *mddev, int state)
3136 {
3137         struct r1conf *conf = mddev->private;
3138
3139         switch(state) {
3140         case 2: /* wake for suspend */
3141                 wake_up(&conf->wait_barrier);
3142                 break;
3143         case 1:
3144                 freeze_array(conf, 0);
3145                 break;
3146         case 0:
3147                 unfreeze_array(conf);
3148                 break;
3149         }
3150 }
3151
3152 static void *raid1_takeover(struct mddev *mddev)
3153 {
3154         /* raid1 can take over:
3155          *  raid5 with 2 devices, any layout or chunk size
3156          */
3157         if (mddev->level == 5 && mddev->raid_disks == 2) {
3158                 struct r1conf *conf;
3159                 mddev->new_level = 1;
3160                 mddev->new_layout = 0;
3161                 mddev->new_chunk_sectors = 0;
3162                 conf = setup_conf(mddev);
3163                 if (!IS_ERR(conf))
3164                         /* Array must appear to be quiesced */
3165                         conf->array_frozen = 1;
3166                 return conf;
3167         }
3168         return ERR_PTR(-EINVAL);
3169 }
3170
3171 static struct md_personality raid1_personality =
3172 {
3173         .name           = "raid1",
3174         .level          = 1,
3175         .owner          = THIS_MODULE,
3176         .make_request   = make_request,
3177         .run            = run,
3178         .stop           = stop,
3179         .status         = status,
3180         .error_handler  = error,
3181         .hot_add_disk   = raid1_add_disk,
3182         .hot_remove_disk= raid1_remove_disk,
3183         .spare_active   = raid1_spare_active,
3184         .sync_request   = sync_request,
3185         .resize         = raid1_resize,
3186         .size           = raid1_size,
3187         .check_reshape  = raid1_reshape,
3188         .quiesce        = raid1_quiesce,
3189         .takeover       = raid1_takeover,
3190 };
3191
3192 static int __init raid_init(void)
3193 {
3194         return register_md_personality(&raid1_personality);
3195 }
3196
3197 static void raid_exit(void)
3198 {
3199         unregister_md_personality(&raid1_personality);
3200 }
3201
3202 module_init(raid_init);
3203 module_exit(raid_exit);
3204 MODULE_LICENSE("GPL");
3205 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3206 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3207 MODULE_ALIAS("md-raid1");
3208 MODULE_ALIAS("md-level-1");
3209
3210 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);