2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
59 #define IO_MADE_GOOD ((struct bio *)2)
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
67 static int max_queued_requests = 1024;
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
71 static void lower_barrier(struct r1conf *conf);
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
75 struct pool_info *pi = data;
76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size, gfp_flags);
82 static void r1bio_pool_free(void *r1_bio, void *data)
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
97 struct pool_info *pi = data;
102 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
107 * Allocate bios : 1 for reading, n-1 for writing
109 for (j = pi->raid_disks ; j-- ; ) {
110 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
113 r1_bio->bios[j] = bio;
116 * Allocate RESYNC_PAGES data pages and attach them to
118 * If this is a user-requested check/repair, allocate
119 * RESYNC_PAGES for each bio.
121 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
126 bio = r1_bio->bios[j];
127 bio->bi_vcnt = RESYNC_PAGES;
129 if (bio_alloc_pages(bio, gfp_flags))
132 /* If not user-requests, copy the page pointers to all bios */
133 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
134 for (i=0; i<RESYNC_PAGES ; i++)
135 for (j=1; j<pi->raid_disks; j++)
136 r1_bio->bios[j]->bi_io_vec[i].bv_page =
137 r1_bio->bios[0]->bi_io_vec[i].bv_page;
140 r1_bio->master_bio = NULL;
145 while (++j < pi->raid_disks)
146 bio_put(r1_bio->bios[j]);
147 r1bio_pool_free(r1_bio, data);
151 static void r1buf_pool_free(void *__r1_bio, void *data)
153 struct pool_info *pi = data;
155 struct r1bio *r1bio = __r1_bio;
157 for (i = 0; i < RESYNC_PAGES; i++)
158 for (j = pi->raid_disks; j-- ;) {
160 r1bio->bios[j]->bi_io_vec[i].bv_page !=
161 r1bio->bios[0]->bi_io_vec[i].bv_page)
162 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
164 for (i=0 ; i < pi->raid_disks; i++)
165 bio_put(r1bio->bios[i]);
167 r1bio_pool_free(r1bio, data);
170 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
174 for (i = 0; i < conf->raid_disks * 2; i++) {
175 struct bio **bio = r1_bio->bios + i;
176 if (!BIO_SPECIAL(*bio))
182 static void free_r1bio(struct r1bio *r1_bio)
184 struct r1conf *conf = r1_bio->mddev->private;
186 put_all_bios(conf, r1_bio);
187 mempool_free(r1_bio, conf->r1bio_pool);
190 static void put_buf(struct r1bio *r1_bio)
192 struct r1conf *conf = r1_bio->mddev->private;
195 for (i = 0; i < conf->raid_disks * 2; i++) {
196 struct bio *bio = r1_bio->bios[i];
198 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
201 mempool_free(r1_bio, conf->r1buf_pool);
206 static void reschedule_retry(struct r1bio *r1_bio)
209 struct mddev *mddev = r1_bio->mddev;
210 struct r1conf *conf = mddev->private;
212 spin_lock_irqsave(&conf->device_lock, flags);
213 list_add(&r1_bio->retry_list, &conf->retry_list);
215 spin_unlock_irqrestore(&conf->device_lock, flags);
217 wake_up(&conf->wait_barrier);
218 md_wakeup_thread(mddev->thread);
222 * raid_end_bio_io() is called when we have finished servicing a mirrored
223 * operation and are ready to return a success/failure code to the buffer
226 static void call_bio_endio(struct r1bio *r1_bio)
228 struct bio *bio = r1_bio->master_bio;
230 struct r1conf *conf = r1_bio->mddev->private;
231 sector_t start_next_window = r1_bio->start_next_window;
232 sector_t bi_sector = bio->bi_iter.bi_sector;
234 if (bio->bi_phys_segments) {
236 spin_lock_irqsave(&conf->device_lock, flags);
237 bio->bi_phys_segments--;
238 done = (bio->bi_phys_segments == 0);
239 spin_unlock_irqrestore(&conf->device_lock, flags);
241 * make_request() might be waiting for
242 * bi_phys_segments to decrease
244 wake_up(&conf->wait_barrier);
248 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249 clear_bit(BIO_UPTODATE, &bio->bi_flags);
253 * Wake up any possible resync thread that waits for the device
256 allow_barrier(conf, start_next_window, bi_sector);
260 static void raid_end_bio_io(struct r1bio *r1_bio)
262 struct bio *bio = r1_bio->master_bio;
264 /* if nobody has done the final endio yet, do it now */
265 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267 (bio_data_dir(bio) == WRITE) ? "write" : "read",
268 (unsigned long long) bio->bi_iter.bi_sector,
269 (unsigned long long) bio_end_sector(bio) - 1);
271 call_bio_endio(r1_bio);
277 * Update disk head position estimator based on IRQ completion info.
279 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
281 struct r1conf *conf = r1_bio->mddev->private;
283 conf->mirrors[disk].head_position =
284 r1_bio->sector + (r1_bio->sectors);
288 * Find the disk number which triggered given bio
290 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
293 struct r1conf *conf = r1_bio->mddev->private;
294 int raid_disks = conf->raid_disks;
296 for (mirror = 0; mirror < raid_disks * 2; mirror++)
297 if (r1_bio->bios[mirror] == bio)
300 BUG_ON(mirror == raid_disks * 2);
301 update_head_pos(mirror, r1_bio);
306 static void raid1_end_read_request(struct bio *bio, int error)
308 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
309 struct r1bio *r1_bio = bio->bi_private;
311 struct r1conf *conf = r1_bio->mddev->private;
313 mirror = r1_bio->read_disk;
315 * this branch is our 'one mirror IO has finished' event handler:
317 update_head_pos(mirror, r1_bio);
320 set_bit(R1BIO_Uptodate, &r1_bio->state);
322 /* If all other devices have failed, we want to return
323 * the error upwards rather than fail the last device.
324 * Here we redefine "uptodate" to mean "Don't want to retry"
327 spin_lock_irqsave(&conf->device_lock, flags);
328 if (r1_bio->mddev->degraded == conf->raid_disks ||
329 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
330 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
332 spin_unlock_irqrestore(&conf->device_lock, flags);
336 raid_end_bio_io(r1_bio);
337 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
342 char b[BDEVNAME_SIZE];
344 KERN_ERR "md/raid1:%s: %s: "
345 "rescheduling sector %llu\n",
347 bdevname(conf->mirrors[mirror].rdev->bdev,
349 (unsigned long long)r1_bio->sector);
350 set_bit(R1BIO_ReadError, &r1_bio->state);
351 reschedule_retry(r1_bio);
352 /* don't drop the reference on read_disk yet */
356 static void close_write(struct r1bio *r1_bio)
358 /* it really is the end of this request */
359 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
360 /* free extra copy of the data pages */
361 int i = r1_bio->behind_page_count;
363 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
364 kfree(r1_bio->behind_bvecs);
365 r1_bio->behind_bvecs = NULL;
367 /* clear the bitmap if all writes complete successfully */
368 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
370 !test_bit(R1BIO_Degraded, &r1_bio->state),
371 test_bit(R1BIO_BehindIO, &r1_bio->state));
372 md_write_end(r1_bio->mddev);
375 static void r1_bio_write_done(struct r1bio *r1_bio)
377 if (!atomic_dec_and_test(&r1_bio->remaining))
380 if (test_bit(R1BIO_WriteError, &r1_bio->state))
381 reschedule_retry(r1_bio);
384 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
385 reschedule_retry(r1_bio);
387 raid_end_bio_io(r1_bio);
391 static void raid1_end_write_request(struct bio *bio, int error)
393 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
394 struct r1bio *r1_bio = bio->bi_private;
395 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
396 struct r1conf *conf = r1_bio->mddev->private;
397 struct bio *to_put = NULL;
399 mirror = find_bio_disk(r1_bio, bio);
402 * 'one mirror IO has finished' event handler:
405 set_bit(WriteErrorSeen,
406 &conf->mirrors[mirror].rdev->flags);
407 if (!test_and_set_bit(WantReplacement,
408 &conf->mirrors[mirror].rdev->flags))
409 set_bit(MD_RECOVERY_NEEDED, &
410 conf->mddev->recovery);
412 set_bit(R1BIO_WriteError, &r1_bio->state);
415 * Set R1BIO_Uptodate in our master bio, so that we
416 * will return a good error code for to the higher
417 * levels even if IO on some other mirrored buffer
420 * The 'master' represents the composite IO operation
421 * to user-side. So if something waits for IO, then it
422 * will wait for the 'master' bio.
427 r1_bio->bios[mirror] = NULL;
430 * Do not set R1BIO_Uptodate if the current device is
431 * rebuilding or Faulty. This is because we cannot use
432 * such device for properly reading the data back (we could
433 * potentially use it, if the current write would have felt
434 * before rdev->recovery_offset, but for simplicity we don't
437 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
438 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
439 set_bit(R1BIO_Uptodate, &r1_bio->state);
441 /* Maybe we can clear some bad blocks. */
442 if (is_badblock(conf->mirrors[mirror].rdev,
443 r1_bio->sector, r1_bio->sectors,
444 &first_bad, &bad_sectors)) {
445 r1_bio->bios[mirror] = IO_MADE_GOOD;
446 set_bit(R1BIO_MadeGood, &r1_bio->state);
451 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
452 atomic_dec(&r1_bio->behind_remaining);
455 * In behind mode, we ACK the master bio once the I/O
456 * has safely reached all non-writemostly
457 * disks. Setting the Returned bit ensures that this
458 * gets done only once -- we don't ever want to return
459 * -EIO here, instead we'll wait
461 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
462 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
463 /* Maybe we can return now */
464 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
465 struct bio *mbio = r1_bio->master_bio;
466 pr_debug("raid1: behind end write sectors"
468 (unsigned long long) mbio->bi_iter.bi_sector,
469 (unsigned long long) bio_end_sector(mbio) - 1);
470 call_bio_endio(r1_bio);
474 if (r1_bio->bios[mirror] == NULL)
475 rdev_dec_pending(conf->mirrors[mirror].rdev,
479 * Let's see if all mirrored write operations have finished
482 r1_bio_write_done(r1_bio);
490 * This routine returns the disk from which the requested read should
491 * be done. There is a per-array 'next expected sequential IO' sector
492 * number - if this matches on the next IO then we use the last disk.
493 * There is also a per-disk 'last know head position' sector that is
494 * maintained from IRQ contexts, both the normal and the resync IO
495 * completion handlers update this position correctly. If there is no
496 * perfect sequential match then we pick the disk whose head is closest.
498 * If there are 2 mirrors in the same 2 devices, performance degrades
499 * because position is mirror, not device based.
501 * The rdev for the device selected will have nr_pending incremented.
503 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
505 const sector_t this_sector = r1_bio->sector;
507 int best_good_sectors;
508 int best_disk, best_dist_disk, best_pending_disk;
512 unsigned int min_pending;
513 struct md_rdev *rdev;
515 int choose_next_idle;
519 * Check if we can balance. We can balance on the whole
520 * device if no resync is going on, or below the resync window.
521 * We take the first readable disk when above the resync window.
524 sectors = r1_bio->sectors;
527 best_dist = MaxSector;
528 best_pending_disk = -1;
529 min_pending = UINT_MAX;
530 best_good_sectors = 0;
532 choose_next_idle = 0;
534 if (conf->mddev->recovery_cp < MaxSector &&
535 (this_sector + sectors >= conf->next_resync))
540 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
544 unsigned int pending;
547 rdev = rcu_dereference(conf->mirrors[disk].rdev);
548 if (r1_bio->bios[disk] == IO_BLOCKED
550 || test_bit(Unmerged, &rdev->flags)
551 || test_bit(Faulty, &rdev->flags))
553 if (!test_bit(In_sync, &rdev->flags) &&
554 rdev->recovery_offset < this_sector + sectors)
556 if (test_bit(WriteMostly, &rdev->flags)) {
557 /* Don't balance among write-mostly, just
558 * use the first as a last resort */
560 if (is_badblock(rdev, this_sector, sectors,
561 &first_bad, &bad_sectors)) {
562 if (first_bad < this_sector)
563 /* Cannot use this */
565 best_good_sectors = first_bad - this_sector;
567 best_good_sectors = sectors;
572 /* This is a reasonable device to use. It might
575 if (is_badblock(rdev, this_sector, sectors,
576 &first_bad, &bad_sectors)) {
577 if (best_dist < MaxSector)
578 /* already have a better device */
580 if (first_bad <= this_sector) {
581 /* cannot read here. If this is the 'primary'
582 * device, then we must not read beyond
583 * bad_sectors from another device..
585 bad_sectors -= (this_sector - first_bad);
586 if (choose_first && sectors > bad_sectors)
587 sectors = bad_sectors;
588 if (best_good_sectors > sectors)
589 best_good_sectors = sectors;
592 sector_t good_sectors = first_bad - this_sector;
593 if (good_sectors > best_good_sectors) {
594 best_good_sectors = good_sectors;
602 best_good_sectors = sectors;
604 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
605 has_nonrot_disk |= nonrot;
606 pending = atomic_read(&rdev->nr_pending);
607 dist = abs(this_sector - conf->mirrors[disk].head_position);
612 /* Don't change to another disk for sequential reads */
613 if (conf->mirrors[disk].next_seq_sect == this_sector
615 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
616 struct raid1_info *mirror = &conf->mirrors[disk];
620 * If buffered sequential IO size exceeds optimal
621 * iosize, check if there is idle disk. If yes, choose
622 * the idle disk. read_balance could already choose an
623 * idle disk before noticing it's a sequential IO in
624 * this disk. This doesn't matter because this disk
625 * will idle, next time it will be utilized after the
626 * first disk has IO size exceeds optimal iosize. In
627 * this way, iosize of the first disk will be optimal
628 * iosize at least. iosize of the second disk might be
629 * small, but not a big deal since when the second disk
630 * starts IO, the first disk is likely still busy.
632 if (nonrot && opt_iosize > 0 &&
633 mirror->seq_start != MaxSector &&
634 mirror->next_seq_sect > opt_iosize &&
635 mirror->next_seq_sect - opt_iosize >=
637 choose_next_idle = 1;
642 /* If device is idle, use it */
648 if (choose_next_idle)
651 if (min_pending > pending) {
652 min_pending = pending;
653 best_pending_disk = disk;
656 if (dist < best_dist) {
658 best_dist_disk = disk;
663 * If all disks are rotational, choose the closest disk. If any disk is
664 * non-rotational, choose the disk with less pending request even the
665 * disk is rotational, which might/might not be optimal for raids with
666 * mixed ratation/non-rotational disks depending on workload.
668 if (best_disk == -1) {
670 best_disk = best_pending_disk;
672 best_disk = best_dist_disk;
675 if (best_disk >= 0) {
676 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
679 atomic_inc(&rdev->nr_pending);
680 if (test_bit(Faulty, &rdev->flags)) {
681 /* cannot risk returning a device that failed
682 * before we inc'ed nr_pending
684 rdev_dec_pending(rdev, conf->mddev);
687 sectors = best_good_sectors;
689 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
690 conf->mirrors[best_disk].seq_start = this_sector;
692 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
695 *max_sectors = sectors;
700 static int raid1_mergeable_bvec(struct request_queue *q,
701 struct bvec_merge_data *bvm,
702 struct bio_vec *biovec)
704 struct mddev *mddev = q->queuedata;
705 struct r1conf *conf = mddev->private;
706 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
707 int max = biovec->bv_len;
709 if (mddev->merge_check_needed) {
712 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
713 struct md_rdev *rdev = rcu_dereference(
714 conf->mirrors[disk].rdev);
715 if (rdev && !test_bit(Faulty, &rdev->flags)) {
716 struct request_queue *q =
717 bdev_get_queue(rdev->bdev);
718 if (q->merge_bvec_fn) {
719 bvm->bi_sector = sector +
721 bvm->bi_bdev = rdev->bdev;
722 max = min(max, q->merge_bvec_fn(
733 int md_raid1_congested(struct mddev *mddev, int bits)
735 struct r1conf *conf = mddev->private;
738 if ((bits & (1 << BDI_async_congested)) &&
739 conf->pending_count >= max_queued_requests)
743 for (i = 0; i < conf->raid_disks * 2; i++) {
744 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
745 if (rdev && !test_bit(Faulty, &rdev->flags)) {
746 struct request_queue *q = bdev_get_queue(rdev->bdev);
750 /* Note the '|| 1' - when read_balance prefers
751 * non-congested targets, it can be removed
753 if ((bits & (1<<BDI_async_congested)) || 1)
754 ret |= bdi_congested(&q->backing_dev_info, bits);
756 ret &= bdi_congested(&q->backing_dev_info, bits);
762 EXPORT_SYMBOL_GPL(md_raid1_congested);
764 static int raid1_congested(void *data, int bits)
766 struct mddev *mddev = data;
768 return mddev_congested(mddev, bits) ||
769 md_raid1_congested(mddev, bits);
772 static void flush_pending_writes(struct r1conf *conf)
774 /* Any writes that have been queued but are awaiting
775 * bitmap updates get flushed here.
777 spin_lock_irq(&conf->device_lock);
779 if (conf->pending_bio_list.head) {
781 bio = bio_list_get(&conf->pending_bio_list);
782 conf->pending_count = 0;
783 spin_unlock_irq(&conf->device_lock);
784 /* flush any pending bitmap writes to
785 * disk before proceeding w/ I/O */
786 bitmap_unplug(conf->mddev->bitmap);
787 wake_up(&conf->wait_barrier);
789 while (bio) { /* submit pending writes */
790 struct bio *next = bio->bi_next;
792 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
793 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
797 generic_make_request(bio);
801 spin_unlock_irq(&conf->device_lock);
805 * Sometimes we need to suspend IO while we do something else,
806 * either some resync/recovery, or reconfigure the array.
807 * To do this we raise a 'barrier'.
808 * The 'barrier' is a counter that can be raised multiple times
809 * to count how many activities are happening which preclude
811 * We can only raise the barrier if there is no pending IO.
812 * i.e. if nr_pending == 0.
813 * We choose only to raise the barrier if no-one is waiting for the
814 * barrier to go down. This means that as soon as an IO request
815 * is ready, no other operations which require a barrier will start
816 * until the IO request has had a chance.
818 * So: regular IO calls 'wait_barrier'. When that returns there
819 * is no backgroup IO happening, It must arrange to call
820 * allow_barrier when it has finished its IO.
821 * backgroup IO calls must call raise_barrier. Once that returns
822 * there is no normal IO happeing. It must arrange to call
823 * lower_barrier when the particular background IO completes.
825 static void raise_barrier(struct r1conf *conf)
827 spin_lock_irq(&conf->resync_lock);
829 /* Wait until no block IO is waiting */
830 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
833 /* block any new IO from starting */
836 /* For these conditions we must wait:
837 * A: while the array is in frozen state
838 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
839 * the max count which allowed.
840 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
841 * next resync will reach to the window which normal bios are
844 wait_event_lock_irq(conf->wait_barrier,
845 !conf->array_frozen &&
846 conf->barrier < RESYNC_DEPTH &&
847 (conf->start_next_window >=
848 conf->next_resync + RESYNC_SECTORS),
851 spin_unlock_irq(&conf->resync_lock);
854 static void lower_barrier(struct r1conf *conf)
857 BUG_ON(conf->barrier <= 0);
858 spin_lock_irqsave(&conf->resync_lock, flags);
860 spin_unlock_irqrestore(&conf->resync_lock, flags);
861 wake_up(&conf->wait_barrier);
864 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
868 if (conf->array_frozen || !bio)
870 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
871 if (conf->next_resync < RESYNC_WINDOW_SECTORS)
873 else if ((conf->next_resync - RESYNC_WINDOW_SECTORS
874 >= bio_end_sector(bio)) ||
875 (conf->next_resync + NEXT_NORMALIO_DISTANCE
876 <= bio->bi_iter.bi_sector))
885 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
889 spin_lock_irq(&conf->resync_lock);
890 if (need_to_wait_for_sync(conf, bio)) {
892 /* Wait for the barrier to drop.
893 * However if there are already pending
894 * requests (preventing the barrier from
895 * rising completely), and the
896 * pre-process bio queue isn't empty,
897 * then don't wait, as we need to empty
898 * that queue to get the nr_pending
901 wait_event_lock_irq(conf->wait_barrier,
902 !conf->array_frozen &&
904 ((conf->start_next_window <
905 conf->next_resync + RESYNC_SECTORS) &&
907 !bio_list_empty(current->bio_list))),
912 if (bio && bio_data_dir(bio) == WRITE) {
913 if (conf->next_resync + NEXT_NORMALIO_DISTANCE
914 <= bio->bi_iter.bi_sector) {
915 if (conf->start_next_window == MaxSector)
916 conf->start_next_window =
918 NEXT_NORMALIO_DISTANCE;
920 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
921 <= bio->bi_iter.bi_sector)
922 conf->next_window_requests++;
924 conf->current_window_requests++;
925 sector = conf->start_next_window;
930 spin_unlock_irq(&conf->resync_lock);
934 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
939 spin_lock_irqsave(&conf->resync_lock, flags);
941 if (start_next_window) {
942 if (start_next_window == conf->start_next_window) {
943 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
945 conf->next_window_requests--;
947 conf->current_window_requests--;
949 conf->current_window_requests--;
951 if (!conf->current_window_requests) {
952 if (conf->next_window_requests) {
953 conf->current_window_requests =
954 conf->next_window_requests;
955 conf->next_window_requests = 0;
956 conf->start_next_window +=
957 NEXT_NORMALIO_DISTANCE;
959 conf->start_next_window = MaxSector;
962 spin_unlock_irqrestore(&conf->resync_lock, flags);
963 wake_up(&conf->wait_barrier);
966 static void freeze_array(struct r1conf *conf, int extra)
968 /* stop syncio and normal IO and wait for everything to
970 * We wait until nr_pending match nr_queued+extra
971 * This is called in the context of one normal IO request
972 * that has failed. Thus any sync request that might be pending
973 * will be blocked by nr_pending, and we need to wait for
974 * pending IO requests to complete or be queued for re-try.
975 * Thus the number queued (nr_queued) plus this request (extra)
976 * must match the number of pending IOs (nr_pending) before
979 spin_lock_irq(&conf->resync_lock);
980 conf->array_frozen = 1;
981 wait_event_lock_irq_cmd(conf->wait_barrier,
982 conf->nr_pending == conf->nr_queued+extra,
984 flush_pending_writes(conf));
985 spin_unlock_irq(&conf->resync_lock);
987 static void unfreeze_array(struct r1conf *conf)
989 /* reverse the effect of the freeze */
990 spin_lock_irq(&conf->resync_lock);
991 conf->array_frozen = 0;
992 wake_up(&conf->wait_barrier);
993 spin_unlock_irq(&conf->resync_lock);
997 /* duplicate the data pages for behind I/O
999 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1002 struct bio_vec *bvec;
1003 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1005 if (unlikely(!bvecs))
1008 bio_for_each_segment_all(bvec, bio, i) {
1010 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1011 if (unlikely(!bvecs[i].bv_page))
1013 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1014 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1015 kunmap(bvecs[i].bv_page);
1016 kunmap(bvec->bv_page);
1018 r1_bio->behind_bvecs = bvecs;
1019 r1_bio->behind_page_count = bio->bi_vcnt;
1020 set_bit(R1BIO_BehindIO, &r1_bio->state);
1024 for (i = 0; i < bio->bi_vcnt; i++)
1025 if (bvecs[i].bv_page)
1026 put_page(bvecs[i].bv_page);
1028 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1029 bio->bi_iter.bi_size);
1032 struct raid1_plug_cb {
1033 struct blk_plug_cb cb;
1034 struct bio_list pending;
1038 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1040 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1042 struct mddev *mddev = plug->cb.data;
1043 struct r1conf *conf = mddev->private;
1046 if (from_schedule || current->bio_list) {
1047 spin_lock_irq(&conf->device_lock);
1048 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1049 conf->pending_count += plug->pending_cnt;
1050 spin_unlock_irq(&conf->device_lock);
1051 wake_up(&conf->wait_barrier);
1052 md_wakeup_thread(mddev->thread);
1057 /* we aren't scheduling, so we can do the write-out directly. */
1058 bio = bio_list_get(&plug->pending);
1059 bitmap_unplug(mddev->bitmap);
1060 wake_up(&conf->wait_barrier);
1062 while (bio) { /* submit pending writes */
1063 struct bio *next = bio->bi_next;
1064 bio->bi_next = NULL;
1065 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1066 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1067 /* Just ignore it */
1070 generic_make_request(bio);
1076 static void make_request(struct mddev *mddev, struct bio * bio)
1078 struct r1conf *conf = mddev->private;
1079 struct raid1_info *mirror;
1080 struct r1bio *r1_bio;
1081 struct bio *read_bio;
1083 struct bitmap *bitmap;
1084 unsigned long flags;
1085 const int rw = bio_data_dir(bio);
1086 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1087 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1088 const unsigned long do_discard = (bio->bi_rw
1089 & (REQ_DISCARD | REQ_SECURE));
1090 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1091 struct md_rdev *blocked_rdev;
1092 struct blk_plug_cb *cb;
1093 struct raid1_plug_cb *plug = NULL;
1095 int sectors_handled;
1097 sector_t start_next_window;
1100 * Register the new request and wait if the reconstruction
1101 * thread has put up a bar for new requests.
1102 * Continue immediately if no resync is active currently.
1105 md_write_start(mddev, bio); /* wait on superblock update early */
1107 if (bio_data_dir(bio) == WRITE &&
1108 bio_end_sector(bio) > mddev->suspend_lo &&
1109 bio->bi_iter.bi_sector < mddev->suspend_hi) {
1110 /* As the suspend_* range is controlled by
1111 * userspace, we want an interruptible
1116 flush_signals(current);
1117 prepare_to_wait(&conf->wait_barrier,
1118 &w, TASK_INTERRUPTIBLE);
1119 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1120 bio->bi_iter.bi_sector >= mddev->suspend_hi)
1124 finish_wait(&conf->wait_barrier, &w);
1127 start_next_window = wait_barrier(conf, bio);
1129 bitmap = mddev->bitmap;
1132 * make_request() can abort the operation when READA is being
1133 * used and no empty request is available.
1136 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1138 r1_bio->master_bio = bio;
1139 r1_bio->sectors = bio_sectors(bio);
1141 r1_bio->mddev = mddev;
1142 r1_bio->sector = bio->bi_iter.bi_sector;
1144 /* We might need to issue multiple reads to different
1145 * devices if there are bad blocks around, so we keep
1146 * track of the number of reads in bio->bi_phys_segments.
1147 * If this is 0, there is only one r1_bio and no locking
1148 * will be needed when requests complete. If it is
1149 * non-zero, then it is the number of not-completed requests.
1151 bio->bi_phys_segments = 0;
1152 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1156 * read balancing logic:
1161 rdisk = read_balance(conf, r1_bio, &max_sectors);
1164 /* couldn't find anywhere to read from */
1165 raid_end_bio_io(r1_bio);
1168 mirror = conf->mirrors + rdisk;
1170 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1172 /* Reading from a write-mostly device must
1173 * take care not to over-take any writes
1176 wait_event(bitmap->behind_wait,
1177 atomic_read(&bitmap->behind_writes) == 0);
1179 r1_bio->read_disk = rdisk;
1181 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1182 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1185 r1_bio->bios[rdisk] = read_bio;
1187 read_bio->bi_iter.bi_sector = r1_bio->sector +
1188 mirror->rdev->data_offset;
1189 read_bio->bi_bdev = mirror->rdev->bdev;
1190 read_bio->bi_end_io = raid1_end_read_request;
1191 read_bio->bi_rw = READ | do_sync;
1192 read_bio->bi_private = r1_bio;
1194 if (max_sectors < r1_bio->sectors) {
1195 /* could not read all from this device, so we will
1196 * need another r1_bio.
1199 sectors_handled = (r1_bio->sector + max_sectors
1200 - bio->bi_iter.bi_sector);
1201 r1_bio->sectors = max_sectors;
1202 spin_lock_irq(&conf->device_lock);
1203 if (bio->bi_phys_segments == 0)
1204 bio->bi_phys_segments = 2;
1206 bio->bi_phys_segments++;
1207 spin_unlock_irq(&conf->device_lock);
1208 /* Cannot call generic_make_request directly
1209 * as that will be queued in __make_request
1210 * and subsequent mempool_alloc might block waiting
1211 * for it. So hand bio over to raid1d.
1213 reschedule_retry(r1_bio);
1215 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1217 r1_bio->master_bio = bio;
1218 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1220 r1_bio->mddev = mddev;
1221 r1_bio->sector = bio->bi_iter.bi_sector +
1225 generic_make_request(read_bio);
1232 if (conf->pending_count >= max_queued_requests) {
1233 md_wakeup_thread(mddev->thread);
1234 wait_event(conf->wait_barrier,
1235 conf->pending_count < max_queued_requests);
1237 /* first select target devices under rcu_lock and
1238 * inc refcount on their rdev. Record them by setting
1240 * If there are known/acknowledged bad blocks on any device on
1241 * which we have seen a write error, we want to avoid writing those
1243 * This potentially requires several writes to write around
1244 * the bad blocks. Each set of writes gets it's own r1bio
1245 * with a set of bios attached.
1248 disks = conf->raid_disks * 2;
1250 r1_bio->start_next_window = start_next_window;
1251 blocked_rdev = NULL;
1253 max_sectors = r1_bio->sectors;
1254 for (i = 0; i < disks; i++) {
1255 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1256 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1257 atomic_inc(&rdev->nr_pending);
1258 blocked_rdev = rdev;
1261 r1_bio->bios[i] = NULL;
1262 if (!rdev || test_bit(Faulty, &rdev->flags)
1263 || test_bit(Unmerged, &rdev->flags)) {
1264 if (i < conf->raid_disks)
1265 set_bit(R1BIO_Degraded, &r1_bio->state);
1269 atomic_inc(&rdev->nr_pending);
1270 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1275 is_bad = is_badblock(rdev, r1_bio->sector,
1277 &first_bad, &bad_sectors);
1279 /* mustn't write here until the bad block is
1281 set_bit(BlockedBadBlocks, &rdev->flags);
1282 blocked_rdev = rdev;
1285 if (is_bad && first_bad <= r1_bio->sector) {
1286 /* Cannot write here at all */
1287 bad_sectors -= (r1_bio->sector - first_bad);
1288 if (bad_sectors < max_sectors)
1289 /* mustn't write more than bad_sectors
1290 * to other devices yet
1292 max_sectors = bad_sectors;
1293 rdev_dec_pending(rdev, mddev);
1294 /* We don't set R1BIO_Degraded as that
1295 * only applies if the disk is
1296 * missing, so it might be re-added,
1297 * and we want to know to recover this
1299 * In this case the device is here,
1300 * and the fact that this chunk is not
1301 * in-sync is recorded in the bad
1307 int good_sectors = first_bad - r1_bio->sector;
1308 if (good_sectors < max_sectors)
1309 max_sectors = good_sectors;
1312 r1_bio->bios[i] = bio;
1316 if (unlikely(blocked_rdev)) {
1317 /* Wait for this device to become unblocked */
1319 sector_t old = start_next_window;
1321 for (j = 0; j < i; j++)
1322 if (r1_bio->bios[j])
1323 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1325 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1326 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1327 start_next_window = wait_barrier(conf, bio);
1329 * We must make sure the multi r1bios of bio have
1330 * the same value of bi_phys_segments
1332 if (bio->bi_phys_segments && old &&
1333 old != start_next_window)
1334 /* Wait for the former r1bio(s) to complete */
1335 wait_event(conf->wait_barrier,
1336 bio->bi_phys_segments == 1);
1340 if (max_sectors < r1_bio->sectors) {
1341 /* We are splitting this write into multiple parts, so
1342 * we need to prepare for allocating another r1_bio.
1344 r1_bio->sectors = max_sectors;
1345 spin_lock_irq(&conf->device_lock);
1346 if (bio->bi_phys_segments == 0)
1347 bio->bi_phys_segments = 2;
1349 bio->bi_phys_segments++;
1350 spin_unlock_irq(&conf->device_lock);
1352 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1354 atomic_set(&r1_bio->remaining, 1);
1355 atomic_set(&r1_bio->behind_remaining, 0);
1358 for (i = 0; i < disks; i++) {
1360 if (!r1_bio->bios[i])
1363 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1364 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1368 * Not if there are too many, or cannot
1369 * allocate memory, or a reader on WriteMostly
1370 * is waiting for behind writes to flush */
1372 (atomic_read(&bitmap->behind_writes)
1373 < mddev->bitmap_info.max_write_behind) &&
1374 !waitqueue_active(&bitmap->behind_wait))
1375 alloc_behind_pages(mbio, r1_bio);
1377 bitmap_startwrite(bitmap, r1_bio->sector,
1379 test_bit(R1BIO_BehindIO,
1383 if (r1_bio->behind_bvecs) {
1384 struct bio_vec *bvec;
1388 * We trimmed the bio, so _all is legit
1390 bio_for_each_segment_all(bvec, mbio, j)
1391 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1392 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1393 atomic_inc(&r1_bio->behind_remaining);
1396 r1_bio->bios[i] = mbio;
1398 mbio->bi_iter.bi_sector = (r1_bio->sector +
1399 conf->mirrors[i].rdev->data_offset);
1400 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1401 mbio->bi_end_io = raid1_end_write_request;
1403 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1404 mbio->bi_private = r1_bio;
1406 atomic_inc(&r1_bio->remaining);
1408 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1410 plug = container_of(cb, struct raid1_plug_cb, cb);
1413 spin_lock_irqsave(&conf->device_lock, flags);
1415 bio_list_add(&plug->pending, mbio);
1416 plug->pending_cnt++;
1418 bio_list_add(&conf->pending_bio_list, mbio);
1419 conf->pending_count++;
1421 spin_unlock_irqrestore(&conf->device_lock, flags);
1423 md_wakeup_thread(mddev->thread);
1425 /* Mustn't call r1_bio_write_done before this next test,
1426 * as it could result in the bio being freed.
1428 if (sectors_handled < bio_sectors(bio)) {
1429 r1_bio_write_done(r1_bio);
1430 /* We need another r1_bio. It has already been counted
1431 * in bio->bi_phys_segments
1433 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1434 r1_bio->master_bio = bio;
1435 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1437 r1_bio->mddev = mddev;
1438 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1442 r1_bio_write_done(r1_bio);
1444 /* In case raid1d snuck in to freeze_array */
1445 wake_up(&conf->wait_barrier);
1448 static void status(struct seq_file *seq, struct mddev *mddev)
1450 struct r1conf *conf = mddev->private;
1453 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1454 conf->raid_disks - mddev->degraded);
1456 for (i = 0; i < conf->raid_disks; i++) {
1457 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1458 seq_printf(seq, "%s",
1459 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1462 seq_printf(seq, "]");
1466 static void error(struct mddev *mddev, struct md_rdev *rdev)
1468 char b[BDEVNAME_SIZE];
1469 struct r1conf *conf = mddev->private;
1472 * If it is not operational, then we have already marked it as dead
1473 * else if it is the last working disks, ignore the error, let the
1474 * next level up know.
1475 * else mark the drive as failed
1477 if (test_bit(In_sync, &rdev->flags)
1478 && (conf->raid_disks - mddev->degraded) == 1) {
1480 * Don't fail the drive, act as though we were just a
1481 * normal single drive.
1482 * However don't try a recovery from this drive as
1483 * it is very likely to fail.
1485 conf->recovery_disabled = mddev->recovery_disabled;
1488 set_bit(Blocked, &rdev->flags);
1489 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1490 unsigned long flags;
1491 spin_lock_irqsave(&conf->device_lock, flags);
1493 set_bit(Faulty, &rdev->flags);
1494 spin_unlock_irqrestore(&conf->device_lock, flags);
1496 * if recovery is running, make sure it aborts.
1498 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1500 set_bit(Faulty, &rdev->flags);
1501 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1503 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1504 "md/raid1:%s: Operation continuing on %d devices.\n",
1505 mdname(mddev), bdevname(rdev->bdev, b),
1506 mdname(mddev), conf->raid_disks - mddev->degraded);
1509 static void print_conf(struct r1conf *conf)
1513 printk(KERN_DEBUG "RAID1 conf printout:\n");
1515 printk(KERN_DEBUG "(!conf)\n");
1518 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1522 for (i = 0; i < conf->raid_disks; i++) {
1523 char b[BDEVNAME_SIZE];
1524 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1526 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1527 i, !test_bit(In_sync, &rdev->flags),
1528 !test_bit(Faulty, &rdev->flags),
1529 bdevname(rdev->bdev,b));
1534 static void close_sync(struct r1conf *conf)
1536 wait_barrier(conf, NULL);
1537 allow_barrier(conf, 0, 0);
1539 mempool_destroy(conf->r1buf_pool);
1540 conf->r1buf_pool = NULL;
1542 conf->next_resync = 0;
1543 conf->start_next_window = MaxSector;
1546 static int raid1_spare_active(struct mddev *mddev)
1549 struct r1conf *conf = mddev->private;
1551 unsigned long flags;
1554 * Find all failed disks within the RAID1 configuration
1555 * and mark them readable.
1556 * Called under mddev lock, so rcu protection not needed.
1558 for (i = 0; i < conf->raid_disks; i++) {
1559 struct md_rdev *rdev = conf->mirrors[i].rdev;
1560 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1562 && repl->recovery_offset == MaxSector
1563 && !test_bit(Faulty, &repl->flags)
1564 && !test_and_set_bit(In_sync, &repl->flags)) {
1565 /* replacement has just become active */
1567 !test_and_clear_bit(In_sync, &rdev->flags))
1570 /* Replaced device not technically
1571 * faulty, but we need to be sure
1572 * it gets removed and never re-added
1574 set_bit(Faulty, &rdev->flags);
1575 sysfs_notify_dirent_safe(
1580 && rdev->recovery_offset == MaxSector
1581 && !test_bit(Faulty, &rdev->flags)
1582 && !test_and_set_bit(In_sync, &rdev->flags)) {
1584 sysfs_notify_dirent_safe(rdev->sysfs_state);
1587 spin_lock_irqsave(&conf->device_lock, flags);
1588 mddev->degraded -= count;
1589 spin_unlock_irqrestore(&conf->device_lock, flags);
1596 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1598 struct r1conf *conf = mddev->private;
1601 struct raid1_info *p;
1603 int last = conf->raid_disks - 1;
1604 struct request_queue *q = bdev_get_queue(rdev->bdev);
1606 if (mddev->recovery_disabled == conf->recovery_disabled)
1609 if (rdev->raid_disk >= 0)
1610 first = last = rdev->raid_disk;
1612 if (q->merge_bvec_fn) {
1613 set_bit(Unmerged, &rdev->flags);
1614 mddev->merge_check_needed = 1;
1617 for (mirror = first; mirror <= last; mirror++) {
1618 p = conf->mirrors+mirror;
1622 disk_stack_limits(mddev->gendisk, rdev->bdev,
1623 rdev->data_offset << 9);
1625 p->head_position = 0;
1626 rdev->raid_disk = mirror;
1628 /* As all devices are equivalent, we don't need a full recovery
1629 * if this was recently any drive of the array
1631 if (rdev->saved_raid_disk < 0)
1633 rcu_assign_pointer(p->rdev, rdev);
1636 if (test_bit(WantReplacement, &p->rdev->flags) &&
1637 p[conf->raid_disks].rdev == NULL) {
1638 /* Add this device as a replacement */
1639 clear_bit(In_sync, &rdev->flags);
1640 set_bit(Replacement, &rdev->flags);
1641 rdev->raid_disk = mirror;
1644 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1648 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1649 /* Some requests might not have seen this new
1650 * merge_bvec_fn. We must wait for them to complete
1651 * before merging the device fully.
1652 * First we make sure any code which has tested
1653 * our function has submitted the request, then
1654 * we wait for all outstanding requests to complete.
1656 synchronize_sched();
1657 freeze_array(conf, 0);
1658 unfreeze_array(conf);
1659 clear_bit(Unmerged, &rdev->flags);
1661 md_integrity_add_rdev(rdev, mddev);
1662 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1663 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1668 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1670 struct r1conf *conf = mddev->private;
1672 int number = rdev->raid_disk;
1673 struct raid1_info *p = conf->mirrors + number;
1675 if (rdev != p->rdev)
1676 p = conf->mirrors + conf->raid_disks + number;
1679 if (rdev == p->rdev) {
1680 if (test_bit(In_sync, &rdev->flags) ||
1681 atomic_read(&rdev->nr_pending)) {
1685 /* Only remove non-faulty devices if recovery
1688 if (!test_bit(Faulty, &rdev->flags) &&
1689 mddev->recovery_disabled != conf->recovery_disabled &&
1690 mddev->degraded < conf->raid_disks) {
1696 if (atomic_read(&rdev->nr_pending)) {
1697 /* lost the race, try later */
1701 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1702 /* We just removed a device that is being replaced.
1703 * Move down the replacement. We drain all IO before
1704 * doing this to avoid confusion.
1706 struct md_rdev *repl =
1707 conf->mirrors[conf->raid_disks + number].rdev;
1708 freeze_array(conf, 0);
1709 clear_bit(Replacement, &repl->flags);
1711 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1712 unfreeze_array(conf);
1713 clear_bit(WantReplacement, &rdev->flags);
1715 clear_bit(WantReplacement, &rdev->flags);
1716 err = md_integrity_register(mddev);
1725 static void end_sync_read(struct bio *bio, int error)
1727 struct r1bio *r1_bio = bio->bi_private;
1729 update_head_pos(r1_bio->read_disk, r1_bio);
1732 * we have read a block, now it needs to be re-written,
1733 * or re-read if the read failed.
1734 * We don't do much here, just schedule handling by raid1d
1736 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1737 set_bit(R1BIO_Uptodate, &r1_bio->state);
1739 if (atomic_dec_and_test(&r1_bio->remaining))
1740 reschedule_retry(r1_bio);
1743 static void end_sync_write(struct bio *bio, int error)
1745 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1746 struct r1bio *r1_bio = bio->bi_private;
1747 struct mddev *mddev = r1_bio->mddev;
1748 struct r1conf *conf = mddev->private;
1753 mirror = find_bio_disk(r1_bio, bio);
1756 sector_t sync_blocks = 0;
1757 sector_t s = r1_bio->sector;
1758 long sectors_to_go = r1_bio->sectors;
1759 /* make sure these bits doesn't get cleared. */
1761 bitmap_end_sync(mddev->bitmap, s,
1764 sectors_to_go -= sync_blocks;
1765 } while (sectors_to_go > 0);
1766 set_bit(WriteErrorSeen,
1767 &conf->mirrors[mirror].rdev->flags);
1768 if (!test_and_set_bit(WantReplacement,
1769 &conf->mirrors[mirror].rdev->flags))
1770 set_bit(MD_RECOVERY_NEEDED, &
1772 set_bit(R1BIO_WriteError, &r1_bio->state);
1773 } else if (is_badblock(conf->mirrors[mirror].rdev,
1776 &first_bad, &bad_sectors) &&
1777 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1780 &first_bad, &bad_sectors)
1782 set_bit(R1BIO_MadeGood, &r1_bio->state);
1784 if (atomic_dec_and_test(&r1_bio->remaining)) {
1785 int s = r1_bio->sectors;
1786 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1787 test_bit(R1BIO_WriteError, &r1_bio->state))
1788 reschedule_retry(r1_bio);
1791 md_done_sync(mddev, s, uptodate);
1796 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1797 int sectors, struct page *page, int rw)
1799 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1803 set_bit(WriteErrorSeen, &rdev->flags);
1804 if (!test_and_set_bit(WantReplacement,
1806 set_bit(MD_RECOVERY_NEEDED, &
1807 rdev->mddev->recovery);
1809 /* need to record an error - either for the block or the device */
1810 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1811 md_error(rdev->mddev, rdev);
1815 static int fix_sync_read_error(struct r1bio *r1_bio)
1817 /* Try some synchronous reads of other devices to get
1818 * good data, much like with normal read errors. Only
1819 * read into the pages we already have so we don't
1820 * need to re-issue the read request.
1821 * We don't need to freeze the array, because being in an
1822 * active sync request, there is no normal IO, and
1823 * no overlapping syncs.
1824 * We don't need to check is_badblock() again as we
1825 * made sure that anything with a bad block in range
1826 * will have bi_end_io clear.
1828 struct mddev *mddev = r1_bio->mddev;
1829 struct r1conf *conf = mddev->private;
1830 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1831 sector_t sect = r1_bio->sector;
1832 int sectors = r1_bio->sectors;
1837 int d = r1_bio->read_disk;
1839 struct md_rdev *rdev;
1842 if (s > (PAGE_SIZE>>9))
1845 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1846 /* No rcu protection needed here devices
1847 * can only be removed when no resync is
1848 * active, and resync is currently active
1850 rdev = conf->mirrors[d].rdev;
1851 if (sync_page_io(rdev, sect, s<<9,
1852 bio->bi_io_vec[idx].bv_page,
1859 if (d == conf->raid_disks * 2)
1861 } while (!success && d != r1_bio->read_disk);
1864 char b[BDEVNAME_SIZE];
1866 /* Cannot read from anywhere, this block is lost.
1867 * Record a bad block on each device. If that doesn't
1868 * work just disable and interrupt the recovery.
1869 * Don't fail devices as that won't really help.
1871 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1872 " for block %llu\n",
1874 bdevname(bio->bi_bdev, b),
1875 (unsigned long long)r1_bio->sector);
1876 for (d = 0; d < conf->raid_disks * 2; d++) {
1877 rdev = conf->mirrors[d].rdev;
1878 if (!rdev || test_bit(Faulty, &rdev->flags))
1880 if (!rdev_set_badblocks(rdev, sect, s, 0))
1884 conf->recovery_disabled =
1885 mddev->recovery_disabled;
1886 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1887 md_done_sync(mddev, r1_bio->sectors, 0);
1899 /* write it back and re-read */
1900 while (d != r1_bio->read_disk) {
1902 d = conf->raid_disks * 2;
1904 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1906 rdev = conf->mirrors[d].rdev;
1907 if (r1_sync_page_io(rdev, sect, s,
1908 bio->bi_io_vec[idx].bv_page,
1910 r1_bio->bios[d]->bi_end_io = NULL;
1911 rdev_dec_pending(rdev, mddev);
1915 while (d != r1_bio->read_disk) {
1917 d = conf->raid_disks * 2;
1919 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1921 rdev = conf->mirrors[d].rdev;
1922 if (r1_sync_page_io(rdev, sect, s,
1923 bio->bi_io_vec[idx].bv_page,
1925 atomic_add(s, &rdev->corrected_errors);
1931 set_bit(R1BIO_Uptodate, &r1_bio->state);
1932 set_bit(BIO_UPTODATE, &bio->bi_flags);
1936 static int process_checks(struct r1bio *r1_bio)
1938 /* We have read all readable devices. If we haven't
1939 * got the block, then there is no hope left.
1940 * If we have, then we want to do a comparison
1941 * and skip the write if everything is the same.
1942 * If any blocks failed to read, then we need to
1943 * attempt an over-write
1945 struct mddev *mddev = r1_bio->mddev;
1946 struct r1conf *conf = mddev->private;
1951 /* Fix variable parts of all bios */
1952 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1953 for (i = 0; i < conf->raid_disks * 2; i++) {
1957 struct bio *b = r1_bio->bios[i];
1958 if (b->bi_end_io != end_sync_read)
1960 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1961 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1964 clear_bit(BIO_UPTODATE, &b->bi_flags);
1966 b->bi_iter.bi_size = r1_bio->sectors << 9;
1967 b->bi_iter.bi_sector = r1_bio->sector +
1968 conf->mirrors[i].rdev->data_offset;
1969 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1970 b->bi_end_io = end_sync_read;
1971 b->bi_private = r1_bio;
1973 size = b->bi_iter.bi_size;
1974 for (j = 0; j < vcnt ; j++) {
1976 bi = &b->bi_io_vec[j];
1978 if (size > PAGE_SIZE)
1979 bi->bv_len = PAGE_SIZE;
1985 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1986 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1987 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1988 r1_bio->bios[primary]->bi_end_io = NULL;
1989 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1992 r1_bio->read_disk = primary;
1993 for (i = 0; i < conf->raid_disks * 2; i++) {
1995 struct bio *pbio = r1_bio->bios[primary];
1996 struct bio *sbio = r1_bio->bios[i];
1997 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
1999 if (sbio->bi_end_io != end_sync_read)
2001 /* Now we can 'fixup' the BIO_UPTODATE flag */
2002 set_bit(BIO_UPTODATE, &sbio->bi_flags);
2005 for (j = vcnt; j-- ; ) {
2007 p = pbio->bi_io_vec[j].bv_page;
2008 s = sbio->bi_io_vec[j].bv_page;
2009 if (memcmp(page_address(p),
2011 sbio->bi_io_vec[j].bv_len))
2017 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2018 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2020 /* No need to write to this device. */
2021 sbio->bi_end_io = NULL;
2022 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2026 bio_copy_data(sbio, pbio);
2031 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2033 struct r1conf *conf = mddev->private;
2035 int disks = conf->raid_disks * 2;
2036 struct bio *bio, *wbio;
2038 bio = r1_bio->bios[r1_bio->read_disk];
2040 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2041 /* ouch - failed to read all of that. */
2042 if (!fix_sync_read_error(r1_bio))
2045 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2046 if (process_checks(r1_bio) < 0)
2051 atomic_set(&r1_bio->remaining, 1);
2052 for (i = 0; i < disks ; i++) {
2053 wbio = r1_bio->bios[i];
2054 if (wbio->bi_end_io == NULL ||
2055 (wbio->bi_end_io == end_sync_read &&
2056 (i == r1_bio->read_disk ||
2057 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2060 wbio->bi_rw = WRITE;
2061 wbio->bi_end_io = end_sync_write;
2062 atomic_inc(&r1_bio->remaining);
2063 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2065 generic_make_request(wbio);
2068 if (atomic_dec_and_test(&r1_bio->remaining)) {
2069 /* if we're here, all write(s) have completed, so clean up */
2070 int s = r1_bio->sectors;
2071 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2072 test_bit(R1BIO_WriteError, &r1_bio->state))
2073 reschedule_retry(r1_bio);
2076 md_done_sync(mddev, s, 1);
2082 * This is a kernel thread which:
2084 * 1. Retries failed read operations on working mirrors.
2085 * 2. Updates the raid superblock when problems encounter.
2086 * 3. Performs writes following reads for array synchronising.
2089 static void fix_read_error(struct r1conf *conf, int read_disk,
2090 sector_t sect, int sectors)
2092 struct mddev *mddev = conf->mddev;
2098 struct md_rdev *rdev;
2100 if (s > (PAGE_SIZE>>9))
2104 /* Note: no rcu protection needed here
2105 * as this is synchronous in the raid1d thread
2106 * which is the thread that might remove
2107 * a device. If raid1d ever becomes multi-threaded....
2112 rdev = conf->mirrors[d].rdev;
2114 (test_bit(In_sync, &rdev->flags) ||
2115 (!test_bit(Faulty, &rdev->flags) &&
2116 rdev->recovery_offset >= sect + s)) &&
2117 is_badblock(rdev, sect, s,
2118 &first_bad, &bad_sectors) == 0 &&
2119 sync_page_io(rdev, sect, s<<9,
2120 conf->tmppage, READ, false))
2124 if (d == conf->raid_disks * 2)
2127 } while (!success && d != read_disk);
2130 /* Cannot read from anywhere - mark it bad */
2131 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2132 if (!rdev_set_badblocks(rdev, sect, s, 0))
2133 md_error(mddev, rdev);
2136 /* write it back and re-read */
2138 while (d != read_disk) {
2140 d = conf->raid_disks * 2;
2142 rdev = conf->mirrors[d].rdev;
2144 test_bit(In_sync, &rdev->flags))
2145 r1_sync_page_io(rdev, sect, s,
2146 conf->tmppage, WRITE);
2149 while (d != read_disk) {
2150 char b[BDEVNAME_SIZE];
2152 d = conf->raid_disks * 2;
2154 rdev = conf->mirrors[d].rdev;
2156 test_bit(In_sync, &rdev->flags)) {
2157 if (r1_sync_page_io(rdev, sect, s,
2158 conf->tmppage, READ)) {
2159 atomic_add(s, &rdev->corrected_errors);
2161 "md/raid1:%s: read error corrected "
2162 "(%d sectors at %llu on %s)\n",
2164 (unsigned long long)(sect +
2166 bdevname(rdev->bdev, b));
2175 static int narrow_write_error(struct r1bio *r1_bio, int i)
2177 struct mddev *mddev = r1_bio->mddev;
2178 struct r1conf *conf = mddev->private;
2179 struct md_rdev *rdev = conf->mirrors[i].rdev;
2181 /* bio has the data to be written to device 'i' where
2182 * we just recently had a write error.
2183 * We repeatedly clone the bio and trim down to one block,
2184 * then try the write. Where the write fails we record
2186 * It is conceivable that the bio doesn't exactly align with
2187 * blocks. We must handle this somehow.
2189 * We currently own a reference on the rdev.
2195 int sect_to_write = r1_bio->sectors;
2198 if (rdev->badblocks.shift < 0)
2201 block_sectors = 1 << rdev->badblocks.shift;
2202 sector = r1_bio->sector;
2203 sectors = ((sector + block_sectors)
2204 & ~(sector_t)(block_sectors - 1))
2207 while (sect_to_write) {
2209 if (sectors > sect_to_write)
2210 sectors = sect_to_write;
2211 /* Write at 'sector' for 'sectors'*/
2213 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2214 unsigned vcnt = r1_bio->behind_page_count;
2215 struct bio_vec *vec = r1_bio->behind_bvecs;
2217 while (!vec->bv_page) {
2222 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2223 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2225 wbio->bi_vcnt = vcnt;
2227 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2230 wbio->bi_rw = WRITE;
2231 wbio->bi_iter.bi_sector = r1_bio->sector;
2232 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2234 bio_trim(wbio, sector - r1_bio->sector, sectors);
2235 wbio->bi_iter.bi_sector += rdev->data_offset;
2236 wbio->bi_bdev = rdev->bdev;
2237 if (submit_bio_wait(WRITE, wbio) == 0)
2239 ok = rdev_set_badblocks(rdev, sector,
2244 sect_to_write -= sectors;
2246 sectors = block_sectors;
2251 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2254 int s = r1_bio->sectors;
2255 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2256 struct md_rdev *rdev = conf->mirrors[m].rdev;
2257 struct bio *bio = r1_bio->bios[m];
2258 if (bio->bi_end_io == NULL)
2260 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2261 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2262 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2264 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2265 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2266 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2267 md_error(conf->mddev, rdev);
2271 md_done_sync(conf->mddev, s, 1);
2274 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2277 for (m = 0; m < conf->raid_disks * 2 ; m++)
2278 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2279 struct md_rdev *rdev = conf->mirrors[m].rdev;
2280 rdev_clear_badblocks(rdev,
2282 r1_bio->sectors, 0);
2283 rdev_dec_pending(rdev, conf->mddev);
2284 } else if (r1_bio->bios[m] != NULL) {
2285 /* This drive got a write error. We need to
2286 * narrow down and record precise write
2289 if (!narrow_write_error(r1_bio, m)) {
2290 md_error(conf->mddev,
2291 conf->mirrors[m].rdev);
2292 /* an I/O failed, we can't clear the bitmap */
2293 set_bit(R1BIO_Degraded, &r1_bio->state);
2295 rdev_dec_pending(conf->mirrors[m].rdev,
2298 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2299 close_write(r1_bio);
2300 raid_end_bio_io(r1_bio);
2303 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2307 struct mddev *mddev = conf->mddev;
2309 char b[BDEVNAME_SIZE];
2310 struct md_rdev *rdev;
2312 clear_bit(R1BIO_ReadError, &r1_bio->state);
2313 /* we got a read error. Maybe the drive is bad. Maybe just
2314 * the block and we can fix it.
2315 * We freeze all other IO, and try reading the block from
2316 * other devices. When we find one, we re-write
2317 * and check it that fixes the read error.
2318 * This is all done synchronously while the array is
2321 if (mddev->ro == 0) {
2322 freeze_array(conf, 1);
2323 fix_read_error(conf, r1_bio->read_disk,
2324 r1_bio->sector, r1_bio->sectors);
2325 unfreeze_array(conf);
2327 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2328 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2330 bio = r1_bio->bios[r1_bio->read_disk];
2331 bdevname(bio->bi_bdev, b);
2333 disk = read_balance(conf, r1_bio, &max_sectors);
2335 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2336 " read error for block %llu\n",
2337 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2338 raid_end_bio_io(r1_bio);
2340 const unsigned long do_sync
2341 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2343 r1_bio->bios[r1_bio->read_disk] =
2344 mddev->ro ? IO_BLOCKED : NULL;
2347 r1_bio->read_disk = disk;
2348 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2349 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2351 r1_bio->bios[r1_bio->read_disk] = bio;
2352 rdev = conf->mirrors[disk].rdev;
2353 printk_ratelimited(KERN_ERR
2354 "md/raid1:%s: redirecting sector %llu"
2355 " to other mirror: %s\n",
2357 (unsigned long long)r1_bio->sector,
2358 bdevname(rdev->bdev, b));
2359 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2360 bio->bi_bdev = rdev->bdev;
2361 bio->bi_end_io = raid1_end_read_request;
2362 bio->bi_rw = READ | do_sync;
2363 bio->bi_private = r1_bio;
2364 if (max_sectors < r1_bio->sectors) {
2365 /* Drat - have to split this up more */
2366 struct bio *mbio = r1_bio->master_bio;
2367 int sectors_handled = (r1_bio->sector + max_sectors
2368 - mbio->bi_iter.bi_sector);
2369 r1_bio->sectors = max_sectors;
2370 spin_lock_irq(&conf->device_lock);
2371 if (mbio->bi_phys_segments == 0)
2372 mbio->bi_phys_segments = 2;
2374 mbio->bi_phys_segments++;
2375 spin_unlock_irq(&conf->device_lock);
2376 generic_make_request(bio);
2379 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2381 r1_bio->master_bio = mbio;
2382 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2384 set_bit(R1BIO_ReadError, &r1_bio->state);
2385 r1_bio->mddev = mddev;
2386 r1_bio->sector = mbio->bi_iter.bi_sector +
2391 generic_make_request(bio);
2395 static void raid1d(struct md_thread *thread)
2397 struct mddev *mddev = thread->mddev;
2398 struct r1bio *r1_bio;
2399 unsigned long flags;
2400 struct r1conf *conf = mddev->private;
2401 struct list_head *head = &conf->retry_list;
2402 struct blk_plug plug;
2404 md_check_recovery(mddev);
2406 blk_start_plug(&plug);
2409 flush_pending_writes(conf);
2411 spin_lock_irqsave(&conf->device_lock, flags);
2412 if (list_empty(head)) {
2413 spin_unlock_irqrestore(&conf->device_lock, flags);
2416 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2417 list_del(head->prev);
2419 spin_unlock_irqrestore(&conf->device_lock, flags);
2421 mddev = r1_bio->mddev;
2422 conf = mddev->private;
2423 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2424 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2425 test_bit(R1BIO_WriteError, &r1_bio->state))
2426 handle_sync_write_finished(conf, r1_bio);
2428 sync_request_write(mddev, r1_bio);
2429 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2430 test_bit(R1BIO_WriteError, &r1_bio->state))
2431 handle_write_finished(conf, r1_bio);
2432 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2433 handle_read_error(conf, r1_bio);
2435 /* just a partial read to be scheduled from separate
2438 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2441 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2442 md_check_recovery(mddev);
2444 blk_finish_plug(&plug);
2448 static int init_resync(struct r1conf *conf)
2452 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2453 BUG_ON(conf->r1buf_pool);
2454 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2456 if (!conf->r1buf_pool)
2458 conf->next_resync = 0;
2463 * perform a "sync" on one "block"
2465 * We need to make sure that no normal I/O request - particularly write
2466 * requests - conflict with active sync requests.
2468 * This is achieved by tracking pending requests and a 'barrier' concept
2469 * that can be installed to exclude normal IO requests.
2472 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2474 struct r1conf *conf = mddev->private;
2475 struct r1bio *r1_bio;
2477 sector_t max_sector, nr_sectors;
2481 int write_targets = 0, read_targets = 0;
2482 sector_t sync_blocks;
2483 int still_degraded = 0;
2484 int good_sectors = RESYNC_SECTORS;
2485 int min_bad = 0; /* number of sectors that are bad in all devices */
2487 if (!conf->r1buf_pool)
2488 if (init_resync(conf))
2491 max_sector = mddev->dev_sectors;
2492 if (sector_nr >= max_sector) {
2493 /* If we aborted, we need to abort the
2494 * sync on the 'current' bitmap chunk (there will
2495 * only be one in raid1 resync.
2496 * We can find the current addess in mddev->curr_resync
2498 if (mddev->curr_resync < max_sector) /* aborted */
2499 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2501 else /* completed sync */
2504 bitmap_close_sync(mddev->bitmap);
2509 if (mddev->bitmap == NULL &&
2510 mddev->recovery_cp == MaxSector &&
2511 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2512 conf->fullsync == 0) {
2514 return max_sector - sector_nr;
2516 /* before building a request, check if we can skip these blocks..
2517 * This call the bitmap_start_sync doesn't actually record anything
2519 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2520 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2521 /* We can skip this block, and probably several more */
2526 * If there is non-resync activity waiting for a turn,
2527 * and resync is going fast enough,
2528 * then let it though before starting on this new sync request.
2530 if (!go_faster && conf->nr_waiting)
2531 msleep_interruptible(1000);
2533 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2534 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2535 raise_barrier(conf);
2537 conf->next_resync = sector_nr;
2541 * If we get a correctably read error during resync or recovery,
2542 * we might want to read from a different device. So we
2543 * flag all drives that could conceivably be read from for READ,
2544 * and any others (which will be non-In_sync devices) for WRITE.
2545 * If a read fails, we try reading from something else for which READ
2549 r1_bio->mddev = mddev;
2550 r1_bio->sector = sector_nr;
2552 set_bit(R1BIO_IsSync, &r1_bio->state);
2554 for (i = 0; i < conf->raid_disks * 2; i++) {
2555 struct md_rdev *rdev;
2556 bio = r1_bio->bios[i];
2559 rdev = rcu_dereference(conf->mirrors[i].rdev);
2561 test_bit(Faulty, &rdev->flags)) {
2562 if (i < conf->raid_disks)
2564 } else if (!test_bit(In_sync, &rdev->flags)) {
2566 bio->bi_end_io = end_sync_write;
2569 /* may need to read from here */
2570 sector_t first_bad = MaxSector;
2573 if (is_badblock(rdev, sector_nr, good_sectors,
2574 &first_bad, &bad_sectors)) {
2575 if (first_bad > sector_nr)
2576 good_sectors = first_bad - sector_nr;
2578 bad_sectors -= (sector_nr - first_bad);
2580 min_bad > bad_sectors)
2581 min_bad = bad_sectors;
2584 if (sector_nr < first_bad) {
2585 if (test_bit(WriteMostly, &rdev->flags)) {
2593 bio->bi_end_io = end_sync_read;
2595 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2596 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2597 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2599 * The device is suitable for reading (InSync),
2600 * but has bad block(s) here. Let's try to correct them,
2601 * if we are doing resync or repair. Otherwise, leave
2602 * this device alone for this sync request.
2605 bio->bi_end_io = end_sync_write;
2609 if (bio->bi_end_io) {
2610 atomic_inc(&rdev->nr_pending);
2611 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2612 bio->bi_bdev = rdev->bdev;
2613 bio->bi_private = r1_bio;
2619 r1_bio->read_disk = disk;
2621 if (read_targets == 0 && min_bad > 0) {
2622 /* These sectors are bad on all InSync devices, so we
2623 * need to mark them bad on all write targets
2626 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2627 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2628 struct md_rdev *rdev = conf->mirrors[i].rdev;
2629 ok = rdev_set_badblocks(rdev, sector_nr,
2633 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2638 /* Cannot record the badblocks, so need to
2640 * If there are multiple read targets, could just
2641 * fail the really bad ones ???
2643 conf->recovery_disabled = mddev->recovery_disabled;
2644 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2650 if (min_bad > 0 && min_bad < good_sectors) {
2651 /* only resync enough to reach the next bad->good
2653 good_sectors = min_bad;
2656 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2657 /* extra read targets are also write targets */
2658 write_targets += read_targets-1;
2660 if (write_targets == 0 || read_targets == 0) {
2661 /* There is nowhere to write, so all non-sync
2662 * drives must be failed - so we are finished
2666 max_sector = sector_nr + min_bad;
2667 rv = max_sector - sector_nr;
2673 if (max_sector > mddev->resync_max)
2674 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2675 if (max_sector > sector_nr + good_sectors)
2676 max_sector = sector_nr + good_sectors;
2681 int len = PAGE_SIZE;
2682 if (sector_nr + (len>>9) > max_sector)
2683 len = (max_sector - sector_nr) << 9;
2686 if (sync_blocks == 0) {
2687 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2688 &sync_blocks, still_degraded) &&
2690 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2692 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2693 if ((len >> 9) > sync_blocks)
2694 len = sync_blocks<<9;
2697 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2698 bio = r1_bio->bios[i];
2699 if (bio->bi_end_io) {
2700 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2701 if (bio_add_page(bio, page, len, 0) == 0) {
2703 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2706 bio = r1_bio->bios[i];
2707 if (bio->bi_end_io==NULL)
2709 /* remove last page from this bio */
2711 bio->bi_iter.bi_size -= len;
2712 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2718 nr_sectors += len>>9;
2719 sector_nr += len>>9;
2720 sync_blocks -= (len>>9);
2721 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2723 r1_bio->sectors = nr_sectors;
2725 /* For a user-requested sync, we read all readable devices and do a
2728 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2729 atomic_set(&r1_bio->remaining, read_targets);
2730 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2731 bio = r1_bio->bios[i];
2732 if (bio->bi_end_io == end_sync_read) {
2734 md_sync_acct(bio->bi_bdev, nr_sectors);
2735 generic_make_request(bio);
2739 atomic_set(&r1_bio->remaining, 1);
2740 bio = r1_bio->bios[r1_bio->read_disk];
2741 md_sync_acct(bio->bi_bdev, nr_sectors);
2742 generic_make_request(bio);
2748 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2753 return mddev->dev_sectors;
2756 static struct r1conf *setup_conf(struct mddev *mddev)
2758 struct r1conf *conf;
2760 struct raid1_info *disk;
2761 struct md_rdev *rdev;
2764 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2768 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2769 * mddev->raid_disks * 2,
2774 conf->tmppage = alloc_page(GFP_KERNEL);
2778 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2779 if (!conf->poolinfo)
2781 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2782 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2785 if (!conf->r1bio_pool)
2788 conf->poolinfo->mddev = mddev;
2791 spin_lock_init(&conf->device_lock);
2792 rdev_for_each(rdev, mddev) {
2793 struct request_queue *q;
2794 int disk_idx = rdev->raid_disk;
2795 if (disk_idx >= mddev->raid_disks
2798 if (test_bit(Replacement, &rdev->flags))
2799 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2801 disk = conf->mirrors + disk_idx;
2806 q = bdev_get_queue(rdev->bdev);
2807 if (q->merge_bvec_fn)
2808 mddev->merge_check_needed = 1;
2810 disk->head_position = 0;
2811 disk->seq_start = MaxSector;
2813 conf->raid_disks = mddev->raid_disks;
2814 conf->mddev = mddev;
2815 INIT_LIST_HEAD(&conf->retry_list);
2817 spin_lock_init(&conf->resync_lock);
2818 init_waitqueue_head(&conf->wait_barrier);
2820 bio_list_init(&conf->pending_bio_list);
2821 conf->pending_count = 0;
2822 conf->recovery_disabled = mddev->recovery_disabled - 1;
2824 conf->start_next_window = MaxSector;
2825 conf->current_window_requests = conf->next_window_requests = 0;
2828 for (i = 0; i < conf->raid_disks * 2; i++) {
2830 disk = conf->mirrors + i;
2832 if (i < conf->raid_disks &&
2833 disk[conf->raid_disks].rdev) {
2834 /* This slot has a replacement. */
2836 /* No original, just make the replacement
2837 * a recovering spare
2840 disk[conf->raid_disks].rdev;
2841 disk[conf->raid_disks].rdev = NULL;
2842 } else if (!test_bit(In_sync, &disk->rdev->flags))
2843 /* Original is not in_sync - bad */
2848 !test_bit(In_sync, &disk->rdev->flags)) {
2849 disk->head_position = 0;
2851 (disk->rdev->saved_raid_disk < 0))
2857 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2858 if (!conf->thread) {
2860 "md/raid1:%s: couldn't allocate thread\n",
2869 if (conf->r1bio_pool)
2870 mempool_destroy(conf->r1bio_pool);
2871 kfree(conf->mirrors);
2872 safe_put_page(conf->tmppage);
2873 kfree(conf->poolinfo);
2876 return ERR_PTR(err);
2879 static int stop(struct mddev *mddev);
2880 static int run(struct mddev *mddev)
2882 struct r1conf *conf;
2884 struct md_rdev *rdev;
2886 bool discard_supported = false;
2888 if (mddev->level != 1) {
2889 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2890 mdname(mddev), mddev->level);
2893 if (mddev->reshape_position != MaxSector) {
2894 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2899 * copy the already verified devices into our private RAID1
2900 * bookkeeping area. [whatever we allocate in run(),
2901 * should be freed in stop()]
2903 if (mddev->private == NULL)
2904 conf = setup_conf(mddev);
2906 conf = mddev->private;
2909 return PTR_ERR(conf);
2912 blk_queue_max_write_same_sectors(mddev->queue, 0);
2914 rdev_for_each(rdev, mddev) {
2915 if (!mddev->gendisk)
2917 disk_stack_limits(mddev->gendisk, rdev->bdev,
2918 rdev->data_offset << 9);
2919 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2920 discard_supported = true;
2923 mddev->degraded = 0;
2924 for (i=0; i < conf->raid_disks; i++)
2925 if (conf->mirrors[i].rdev == NULL ||
2926 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2927 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2930 if (conf->raid_disks - mddev->degraded == 1)
2931 mddev->recovery_cp = MaxSector;
2933 if (mddev->recovery_cp != MaxSector)
2934 printk(KERN_NOTICE "md/raid1:%s: not clean"
2935 " -- starting background reconstruction\n",
2938 "md/raid1:%s: active with %d out of %d mirrors\n",
2939 mdname(mddev), mddev->raid_disks - mddev->degraded,
2943 * Ok, everything is just fine now
2945 mddev->thread = conf->thread;
2946 conf->thread = NULL;
2947 mddev->private = conf;
2949 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2952 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2953 mddev->queue->backing_dev_info.congested_data = mddev;
2954 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2956 if (discard_supported)
2957 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2960 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2964 ret = md_integrity_register(mddev);
2970 static int stop(struct mddev *mddev)
2972 struct r1conf *conf = mddev->private;
2973 struct bitmap *bitmap = mddev->bitmap;
2975 /* wait for behind writes to complete */
2976 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2977 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2979 /* need to kick something here to make sure I/O goes? */
2980 wait_event(bitmap->behind_wait,
2981 atomic_read(&bitmap->behind_writes) == 0);
2984 freeze_array(conf, 0);
2985 unfreeze_array(conf);
2987 md_unregister_thread(&mddev->thread);
2988 if (conf->r1bio_pool)
2989 mempool_destroy(conf->r1bio_pool);
2990 kfree(conf->mirrors);
2991 safe_put_page(conf->tmppage);
2992 kfree(conf->poolinfo);
2994 mddev->private = NULL;
2998 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3000 /* no resync is happening, and there is enough space
3001 * on all devices, so we can resize.
3002 * We need to make sure resync covers any new space.
3003 * If the array is shrinking we should possibly wait until
3004 * any io in the removed space completes, but it hardly seems
3007 sector_t newsize = raid1_size(mddev, sectors, 0);
3008 if (mddev->external_size &&
3009 mddev->array_sectors > newsize)
3011 if (mddev->bitmap) {
3012 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3016 md_set_array_sectors(mddev, newsize);
3017 set_capacity(mddev->gendisk, mddev->array_sectors);
3018 revalidate_disk(mddev->gendisk);
3019 if (sectors > mddev->dev_sectors &&
3020 mddev->recovery_cp > mddev->dev_sectors) {
3021 mddev->recovery_cp = mddev->dev_sectors;
3022 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3024 mddev->dev_sectors = sectors;
3025 mddev->resync_max_sectors = sectors;
3029 static int raid1_reshape(struct mddev *mddev)
3032 * 1/ resize the r1bio_pool
3033 * 2/ resize conf->mirrors
3035 * We allocate a new r1bio_pool if we can.
3036 * Then raise a device barrier and wait until all IO stops.
3037 * Then resize conf->mirrors and swap in the new r1bio pool.
3039 * At the same time, we "pack" the devices so that all the missing
3040 * devices have the higher raid_disk numbers.
3042 mempool_t *newpool, *oldpool;
3043 struct pool_info *newpoolinfo;
3044 struct raid1_info *newmirrors;
3045 struct r1conf *conf = mddev->private;
3046 int cnt, raid_disks;
3047 unsigned long flags;
3050 /* Cannot change chunk_size, layout, or level */
3051 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3052 mddev->layout != mddev->new_layout ||
3053 mddev->level != mddev->new_level) {
3054 mddev->new_chunk_sectors = mddev->chunk_sectors;
3055 mddev->new_layout = mddev->layout;
3056 mddev->new_level = mddev->level;
3060 err = md_allow_write(mddev);
3064 raid_disks = mddev->raid_disks + mddev->delta_disks;
3066 if (raid_disks < conf->raid_disks) {
3068 for (d= 0; d < conf->raid_disks; d++)
3069 if (conf->mirrors[d].rdev)
3071 if (cnt > raid_disks)
3075 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3078 newpoolinfo->mddev = mddev;
3079 newpoolinfo->raid_disks = raid_disks * 2;
3081 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3082 r1bio_pool_free, newpoolinfo);
3087 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3091 mempool_destroy(newpool);
3095 freeze_array(conf, 0);
3097 /* ok, everything is stopped */
3098 oldpool = conf->r1bio_pool;
3099 conf->r1bio_pool = newpool;
3101 for (d = d2 = 0; d < conf->raid_disks; d++) {
3102 struct md_rdev *rdev = conf->mirrors[d].rdev;
3103 if (rdev && rdev->raid_disk != d2) {
3104 sysfs_unlink_rdev(mddev, rdev);
3105 rdev->raid_disk = d2;
3106 sysfs_unlink_rdev(mddev, rdev);
3107 if (sysfs_link_rdev(mddev, rdev))
3109 "md/raid1:%s: cannot register rd%d\n",
3110 mdname(mddev), rdev->raid_disk);
3113 newmirrors[d2++].rdev = rdev;
3115 kfree(conf->mirrors);
3116 conf->mirrors = newmirrors;
3117 kfree(conf->poolinfo);
3118 conf->poolinfo = newpoolinfo;
3120 spin_lock_irqsave(&conf->device_lock, flags);
3121 mddev->degraded += (raid_disks - conf->raid_disks);
3122 spin_unlock_irqrestore(&conf->device_lock, flags);
3123 conf->raid_disks = mddev->raid_disks = raid_disks;
3124 mddev->delta_disks = 0;
3126 unfreeze_array(conf);
3128 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3129 md_wakeup_thread(mddev->thread);
3131 mempool_destroy(oldpool);
3135 static void raid1_quiesce(struct mddev *mddev, int state)
3137 struct r1conf *conf = mddev->private;
3140 case 2: /* wake for suspend */
3141 wake_up(&conf->wait_barrier);
3144 freeze_array(conf, 0);
3147 unfreeze_array(conf);
3152 static void *raid1_takeover(struct mddev *mddev)
3154 /* raid1 can take over:
3155 * raid5 with 2 devices, any layout or chunk size
3157 if (mddev->level == 5 && mddev->raid_disks == 2) {
3158 struct r1conf *conf;
3159 mddev->new_level = 1;
3160 mddev->new_layout = 0;
3161 mddev->new_chunk_sectors = 0;
3162 conf = setup_conf(mddev);
3164 /* Array must appear to be quiesced */
3165 conf->array_frozen = 1;
3168 return ERR_PTR(-EINVAL);
3171 static struct md_personality raid1_personality =
3175 .owner = THIS_MODULE,
3176 .make_request = make_request,
3180 .error_handler = error,
3181 .hot_add_disk = raid1_add_disk,
3182 .hot_remove_disk= raid1_remove_disk,
3183 .spare_active = raid1_spare_active,
3184 .sync_request = sync_request,
3185 .resize = raid1_resize,
3187 .check_reshape = raid1_reshape,
3188 .quiesce = raid1_quiesce,
3189 .takeover = raid1_takeover,
3192 static int __init raid_init(void)
3194 return register_md_personality(&raid1_personality);
3197 static void raid_exit(void)
3199 unregister_md_personality(&raid1_personality);
3202 module_init(raid_init);
3203 module_exit(raid_exit);
3204 MODULE_LICENSE("GPL");
3205 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3206 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3207 MODULE_ALIAS("md-raid1");
3208 MODULE_ALIAS("md-level-1");
3210 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);