Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[platform/kernel/linux-rpi.git] / drivers / md / raid1.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33
34 #include <trace/events/block.h>
35
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39
40 #define UNSUPPORTED_MDDEV_FLAGS         \
41         ((1L << MD_HAS_JOURNAL) |       \
42          (1L << MD_JOURNAL_CLEAN) |     \
43          (1L << MD_HAS_PPL) |           \
44          (1L << MD_HAS_MULTIPLE_PPLS))
45
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48
49 #define raid1_log(md, fmt, args...)                             \
50         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51
52 #include "raid1-10.c"
53
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57                      START, LAST, static inline, raid1_rb);
58
59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60                                 struct serial_info *si, int idx)
61 {
62         unsigned long flags;
63         int ret = 0;
64         sector_t lo = r1_bio->sector;
65         sector_t hi = lo + r1_bio->sectors;
66         struct serial_in_rdev *serial = &rdev->serial[idx];
67
68         spin_lock_irqsave(&serial->serial_lock, flags);
69         /* collision happened */
70         if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71                 ret = -EBUSY;
72         else {
73                 si->start = lo;
74                 si->last = hi;
75                 raid1_rb_insert(si, &serial->serial_rb);
76         }
77         spin_unlock_irqrestore(&serial->serial_lock, flags);
78
79         return ret;
80 }
81
82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83 {
84         struct mddev *mddev = rdev->mddev;
85         struct serial_info *si;
86         int idx = sector_to_idx(r1_bio->sector);
87         struct serial_in_rdev *serial = &rdev->serial[idx];
88
89         if (WARN_ON(!mddev->serial_info_pool))
90                 return;
91         si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92         wait_event(serial->serial_io_wait,
93                    check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94 }
95
96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97 {
98         struct serial_info *si;
99         unsigned long flags;
100         int found = 0;
101         struct mddev *mddev = rdev->mddev;
102         int idx = sector_to_idx(lo);
103         struct serial_in_rdev *serial = &rdev->serial[idx];
104
105         spin_lock_irqsave(&serial->serial_lock, flags);
106         for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107              si; si = raid1_rb_iter_next(si, lo, hi)) {
108                 if (si->start == lo && si->last == hi) {
109                         raid1_rb_remove(si, &serial->serial_rb);
110                         mempool_free(si, mddev->serial_info_pool);
111                         found = 1;
112                         break;
113                 }
114         }
115         if (!found)
116                 WARN(1, "The write IO is not recorded for serialization\n");
117         spin_unlock_irqrestore(&serial->serial_lock, flags);
118         wake_up(&serial->serial_io_wait);
119 }
120
121 /*
122  * for resync bio, r1bio pointer can be retrieved from the per-bio
123  * 'struct resync_pages'.
124  */
125 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126 {
127         return get_resync_pages(bio)->raid_bio;
128 }
129
130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132         struct pool_info *pi = data;
133         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134
135         /* allocate a r1bio with room for raid_disks entries in the bios array */
136         return kzalloc(size, gfp_flags);
137 }
138
139 #define RESYNC_DEPTH 32
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145
146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147 {
148         struct pool_info *pi = data;
149         struct r1bio *r1_bio;
150         struct bio *bio;
151         int need_pages;
152         int j;
153         struct resync_pages *rps;
154
155         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156         if (!r1_bio)
157                 return NULL;
158
159         rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160                             gfp_flags);
161         if (!rps)
162                 goto out_free_r1bio;
163
164         /*
165          * Allocate bios : 1 for reading, n-1 for writing
166          */
167         for (j = pi->raid_disks ; j-- ; ) {
168                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
169                 if (!bio)
170                         goto out_free_bio;
171                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
172                 r1_bio->bios[j] = bio;
173         }
174         /*
175          * Allocate RESYNC_PAGES data pages and attach them to
176          * the first bio.
177          * If this is a user-requested check/repair, allocate
178          * RESYNC_PAGES for each bio.
179          */
180         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
181                 need_pages = pi->raid_disks;
182         else
183                 need_pages = 1;
184         for (j = 0; j < pi->raid_disks; j++) {
185                 struct resync_pages *rp = &rps[j];
186
187                 bio = r1_bio->bios[j];
188
189                 if (j < need_pages) {
190                         if (resync_alloc_pages(rp, gfp_flags))
191                                 goto out_free_pages;
192                 } else {
193                         memcpy(rp, &rps[0], sizeof(*rp));
194                         resync_get_all_pages(rp);
195                 }
196
197                 rp->raid_bio = r1_bio;
198                 bio->bi_private = rp;
199         }
200
201         r1_bio->master_bio = NULL;
202
203         return r1_bio;
204
205 out_free_pages:
206         while (--j >= 0)
207                 resync_free_pages(&rps[j]);
208
209 out_free_bio:
210         while (++j < pi->raid_disks) {
211                 bio_uninit(r1_bio->bios[j]);
212                 kfree(r1_bio->bios[j]);
213         }
214         kfree(rps);
215
216 out_free_r1bio:
217         rbio_pool_free(r1_bio, data);
218         return NULL;
219 }
220
221 static void r1buf_pool_free(void *__r1_bio, void *data)
222 {
223         struct pool_info *pi = data;
224         int i;
225         struct r1bio *r1bio = __r1_bio;
226         struct resync_pages *rp = NULL;
227
228         for (i = pi->raid_disks; i--; ) {
229                 rp = get_resync_pages(r1bio->bios[i]);
230                 resync_free_pages(rp);
231                 bio_uninit(r1bio->bios[i]);
232                 kfree(r1bio->bios[i]);
233         }
234
235         /* resync pages array stored in the 1st bio's .bi_private */
236         kfree(rp);
237
238         rbio_pool_free(r1bio, data);
239 }
240
241 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
242 {
243         int i;
244
245         for (i = 0; i < conf->raid_disks * 2; i++) {
246                 struct bio **bio = r1_bio->bios + i;
247                 if (!BIO_SPECIAL(*bio))
248                         bio_put(*bio);
249                 *bio = NULL;
250         }
251 }
252
253 static void free_r1bio(struct r1bio *r1_bio)
254 {
255         struct r1conf *conf = r1_bio->mddev->private;
256
257         put_all_bios(conf, r1_bio);
258         mempool_free(r1_bio, &conf->r1bio_pool);
259 }
260
261 static void put_buf(struct r1bio *r1_bio)
262 {
263         struct r1conf *conf = r1_bio->mddev->private;
264         sector_t sect = r1_bio->sector;
265         int i;
266
267         for (i = 0; i < conf->raid_disks * 2; i++) {
268                 struct bio *bio = r1_bio->bios[i];
269                 if (bio->bi_end_io)
270                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
271         }
272
273         mempool_free(r1_bio, &conf->r1buf_pool);
274
275         lower_barrier(conf, sect);
276 }
277
278 static void reschedule_retry(struct r1bio *r1_bio)
279 {
280         unsigned long flags;
281         struct mddev *mddev = r1_bio->mddev;
282         struct r1conf *conf = mddev->private;
283         int idx;
284
285         idx = sector_to_idx(r1_bio->sector);
286         spin_lock_irqsave(&conf->device_lock, flags);
287         list_add(&r1_bio->retry_list, &conf->retry_list);
288         atomic_inc(&conf->nr_queued[idx]);
289         spin_unlock_irqrestore(&conf->device_lock, flags);
290
291         wake_up(&conf->wait_barrier);
292         md_wakeup_thread(mddev->thread);
293 }
294
295 /*
296  * raid_end_bio_io() is called when we have finished servicing a mirrored
297  * operation and are ready to return a success/failure code to the buffer
298  * cache layer.
299  */
300 static void call_bio_endio(struct r1bio *r1_bio)
301 {
302         struct bio *bio = r1_bio->master_bio;
303
304         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
305                 bio->bi_status = BLK_STS_IOERR;
306
307         bio_endio(bio);
308 }
309
310 static void raid_end_bio_io(struct r1bio *r1_bio)
311 {
312         struct bio *bio = r1_bio->master_bio;
313         struct r1conf *conf = r1_bio->mddev->private;
314         sector_t sector = r1_bio->sector;
315
316         /* if nobody has done the final endio yet, do it now */
317         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
318                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
319                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
320                          (unsigned long long) bio->bi_iter.bi_sector,
321                          (unsigned long long) bio_end_sector(bio) - 1);
322
323                 call_bio_endio(r1_bio);
324         }
325
326         free_r1bio(r1_bio);
327         /*
328          * Wake up any possible resync thread that waits for the device
329          * to go idle.  All I/Os, even write-behind writes, are done.
330          */
331         allow_barrier(conf, sector);
332 }
333
334 /*
335  * Update disk head position estimator based on IRQ completion info.
336  */
337 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
338 {
339         struct r1conf *conf = r1_bio->mddev->private;
340
341         conf->mirrors[disk].head_position =
342                 r1_bio->sector + (r1_bio->sectors);
343 }
344
345 /*
346  * Find the disk number which triggered given bio
347  */
348 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
349 {
350         int mirror;
351         struct r1conf *conf = r1_bio->mddev->private;
352         int raid_disks = conf->raid_disks;
353
354         for (mirror = 0; mirror < raid_disks * 2; mirror++)
355                 if (r1_bio->bios[mirror] == bio)
356                         break;
357
358         BUG_ON(mirror == raid_disks * 2);
359         update_head_pos(mirror, r1_bio);
360
361         return mirror;
362 }
363
364 static void raid1_end_read_request(struct bio *bio)
365 {
366         int uptodate = !bio->bi_status;
367         struct r1bio *r1_bio = bio->bi_private;
368         struct r1conf *conf = r1_bio->mddev->private;
369         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
370
371         /*
372          * this branch is our 'one mirror IO has finished' event handler:
373          */
374         update_head_pos(r1_bio->read_disk, r1_bio);
375
376         if (uptodate)
377                 set_bit(R1BIO_Uptodate, &r1_bio->state);
378         else if (test_bit(FailFast, &rdev->flags) &&
379                  test_bit(R1BIO_FailFast, &r1_bio->state))
380                 /* This was a fail-fast read so we definitely
381                  * want to retry */
382                 ;
383         else {
384                 /* If all other devices have failed, we want to return
385                  * the error upwards rather than fail the last device.
386                  * Here we redefine "uptodate" to mean "Don't want to retry"
387                  */
388                 unsigned long flags;
389                 spin_lock_irqsave(&conf->device_lock, flags);
390                 if (r1_bio->mddev->degraded == conf->raid_disks ||
391                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
392                      test_bit(In_sync, &rdev->flags)))
393                         uptodate = 1;
394                 spin_unlock_irqrestore(&conf->device_lock, flags);
395         }
396
397         if (uptodate) {
398                 raid_end_bio_io(r1_bio);
399                 rdev_dec_pending(rdev, conf->mddev);
400         } else {
401                 /*
402                  * oops, read error:
403                  */
404                 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
405                                    mdname(conf->mddev),
406                                    rdev->bdev,
407                                    (unsigned long long)r1_bio->sector);
408                 set_bit(R1BIO_ReadError, &r1_bio->state);
409                 reschedule_retry(r1_bio);
410                 /* don't drop the reference on read_disk yet */
411         }
412 }
413
414 static void close_write(struct r1bio *r1_bio)
415 {
416         /* it really is the end of this request */
417         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
418                 bio_free_pages(r1_bio->behind_master_bio);
419                 bio_put(r1_bio->behind_master_bio);
420                 r1_bio->behind_master_bio = NULL;
421         }
422         /* clear the bitmap if all writes complete successfully */
423         md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
424                            r1_bio->sectors,
425                            !test_bit(R1BIO_Degraded, &r1_bio->state),
426                            test_bit(R1BIO_BehindIO, &r1_bio->state));
427         md_write_end(r1_bio->mddev);
428 }
429
430 static void r1_bio_write_done(struct r1bio *r1_bio)
431 {
432         if (!atomic_dec_and_test(&r1_bio->remaining))
433                 return;
434
435         if (test_bit(R1BIO_WriteError, &r1_bio->state))
436                 reschedule_retry(r1_bio);
437         else {
438                 close_write(r1_bio);
439                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
440                         reschedule_retry(r1_bio);
441                 else
442                         raid_end_bio_io(r1_bio);
443         }
444 }
445
446 static void raid1_end_write_request(struct bio *bio)
447 {
448         struct r1bio *r1_bio = bio->bi_private;
449         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
450         struct r1conf *conf = r1_bio->mddev->private;
451         struct bio *to_put = NULL;
452         int mirror = find_bio_disk(r1_bio, bio);
453         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
454         bool discard_error;
455         sector_t lo = r1_bio->sector;
456         sector_t hi = r1_bio->sector + r1_bio->sectors;
457
458         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
459
460         /*
461          * 'one mirror IO has finished' event handler:
462          */
463         if (bio->bi_status && !discard_error) {
464                 set_bit(WriteErrorSeen, &rdev->flags);
465                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
466                         set_bit(MD_RECOVERY_NEEDED, &
467                                 conf->mddev->recovery);
468
469                 if (test_bit(FailFast, &rdev->flags) &&
470                     (bio->bi_opf & MD_FAILFAST) &&
471                     /* We never try FailFast to WriteMostly devices */
472                     !test_bit(WriteMostly, &rdev->flags)) {
473                         md_error(r1_bio->mddev, rdev);
474                 }
475
476                 /*
477                  * When the device is faulty, it is not necessary to
478                  * handle write error.
479                  */
480                 if (!test_bit(Faulty, &rdev->flags))
481                         set_bit(R1BIO_WriteError, &r1_bio->state);
482                 else {
483                         /* Fail the request */
484                         set_bit(R1BIO_Degraded, &r1_bio->state);
485                         /* Finished with this branch */
486                         r1_bio->bios[mirror] = NULL;
487                         to_put = bio;
488                 }
489         } else {
490                 /*
491                  * Set R1BIO_Uptodate in our master bio, so that we
492                  * will return a good error code for to the higher
493                  * levels even if IO on some other mirrored buffer
494                  * fails.
495                  *
496                  * The 'master' represents the composite IO operation
497                  * to user-side. So if something waits for IO, then it
498                  * will wait for the 'master' bio.
499                  */
500                 sector_t first_bad;
501                 int bad_sectors;
502
503                 r1_bio->bios[mirror] = NULL;
504                 to_put = bio;
505                 /*
506                  * Do not set R1BIO_Uptodate if the current device is
507                  * rebuilding or Faulty. This is because we cannot use
508                  * such device for properly reading the data back (we could
509                  * potentially use it, if the current write would have felt
510                  * before rdev->recovery_offset, but for simplicity we don't
511                  * check this here.
512                  */
513                 if (test_bit(In_sync, &rdev->flags) &&
514                     !test_bit(Faulty, &rdev->flags))
515                         set_bit(R1BIO_Uptodate, &r1_bio->state);
516
517                 /* Maybe we can clear some bad blocks. */
518                 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
519                                 &first_bad, &bad_sectors) && !discard_error) {
520                         r1_bio->bios[mirror] = IO_MADE_GOOD;
521                         set_bit(R1BIO_MadeGood, &r1_bio->state);
522                 }
523         }
524
525         if (behind) {
526                 if (test_bit(CollisionCheck, &rdev->flags))
527                         remove_serial(rdev, lo, hi);
528                 if (test_bit(WriteMostly, &rdev->flags))
529                         atomic_dec(&r1_bio->behind_remaining);
530
531                 /*
532                  * In behind mode, we ACK the master bio once the I/O
533                  * has safely reached all non-writemostly
534                  * disks. Setting the Returned bit ensures that this
535                  * gets done only once -- we don't ever want to return
536                  * -EIO here, instead we'll wait
537                  */
538                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
539                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
540                         /* Maybe we can return now */
541                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
542                                 struct bio *mbio = r1_bio->master_bio;
543                                 pr_debug("raid1: behind end write sectors"
544                                          " %llu-%llu\n",
545                                          (unsigned long long) mbio->bi_iter.bi_sector,
546                                          (unsigned long long) bio_end_sector(mbio) - 1);
547                                 call_bio_endio(r1_bio);
548                         }
549                 }
550         } else if (rdev->mddev->serialize_policy)
551                 remove_serial(rdev, lo, hi);
552         if (r1_bio->bios[mirror] == NULL)
553                 rdev_dec_pending(rdev, conf->mddev);
554
555         /*
556          * Let's see if all mirrored write operations have finished
557          * already.
558          */
559         r1_bio_write_done(r1_bio);
560
561         if (to_put)
562                 bio_put(to_put);
563 }
564
565 static sector_t align_to_barrier_unit_end(sector_t start_sector,
566                                           sector_t sectors)
567 {
568         sector_t len;
569
570         WARN_ON(sectors == 0);
571         /*
572          * len is the number of sectors from start_sector to end of the
573          * barrier unit which start_sector belongs to.
574          */
575         len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
576               start_sector;
577
578         if (len > sectors)
579                 len = sectors;
580
581         return len;
582 }
583
584 /*
585  * This routine returns the disk from which the requested read should
586  * be done. There is a per-array 'next expected sequential IO' sector
587  * number - if this matches on the next IO then we use the last disk.
588  * There is also a per-disk 'last know head position' sector that is
589  * maintained from IRQ contexts, both the normal and the resync IO
590  * completion handlers update this position correctly. If there is no
591  * perfect sequential match then we pick the disk whose head is closest.
592  *
593  * If there are 2 mirrors in the same 2 devices, performance degrades
594  * because position is mirror, not device based.
595  *
596  * The rdev for the device selected will have nr_pending incremented.
597  */
598 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
599 {
600         const sector_t this_sector = r1_bio->sector;
601         int sectors;
602         int best_good_sectors;
603         int best_disk, best_dist_disk, best_pending_disk;
604         int has_nonrot_disk;
605         int disk;
606         sector_t best_dist;
607         unsigned int min_pending;
608         struct md_rdev *rdev;
609         int choose_first;
610         int choose_next_idle;
611
612         rcu_read_lock();
613         /*
614          * Check if we can balance. We can balance on the whole
615          * device if no resync is going on, or below the resync window.
616          * We take the first readable disk when above the resync window.
617          */
618  retry:
619         sectors = r1_bio->sectors;
620         best_disk = -1;
621         best_dist_disk = -1;
622         best_dist = MaxSector;
623         best_pending_disk = -1;
624         min_pending = UINT_MAX;
625         best_good_sectors = 0;
626         has_nonrot_disk = 0;
627         choose_next_idle = 0;
628         clear_bit(R1BIO_FailFast, &r1_bio->state);
629
630         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
631             (mddev_is_clustered(conf->mddev) &&
632             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
633                     this_sector + sectors)))
634                 choose_first = 1;
635         else
636                 choose_first = 0;
637
638         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
639                 sector_t dist;
640                 sector_t first_bad;
641                 int bad_sectors;
642                 unsigned int pending;
643                 bool nonrot;
644
645                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
646                 if (r1_bio->bios[disk] == IO_BLOCKED
647                     || rdev == NULL
648                     || test_bit(Faulty, &rdev->flags))
649                         continue;
650                 if (!test_bit(In_sync, &rdev->flags) &&
651                     rdev->recovery_offset < this_sector + sectors)
652                         continue;
653                 if (test_bit(WriteMostly, &rdev->flags)) {
654                         /* Don't balance among write-mostly, just
655                          * use the first as a last resort */
656                         if (best_dist_disk < 0) {
657                                 if (is_badblock(rdev, this_sector, sectors,
658                                                 &first_bad, &bad_sectors)) {
659                                         if (first_bad <= this_sector)
660                                                 /* Cannot use this */
661                                                 continue;
662                                         best_good_sectors = first_bad - this_sector;
663                                 } else
664                                         best_good_sectors = sectors;
665                                 best_dist_disk = disk;
666                                 best_pending_disk = disk;
667                         }
668                         continue;
669                 }
670                 /* This is a reasonable device to use.  It might
671                  * even be best.
672                  */
673                 if (is_badblock(rdev, this_sector, sectors,
674                                 &first_bad, &bad_sectors)) {
675                         if (best_dist < MaxSector)
676                                 /* already have a better device */
677                                 continue;
678                         if (first_bad <= this_sector) {
679                                 /* cannot read here. If this is the 'primary'
680                                  * device, then we must not read beyond
681                                  * bad_sectors from another device..
682                                  */
683                                 bad_sectors -= (this_sector - first_bad);
684                                 if (choose_first && sectors > bad_sectors)
685                                         sectors = bad_sectors;
686                                 if (best_good_sectors > sectors)
687                                         best_good_sectors = sectors;
688
689                         } else {
690                                 sector_t good_sectors = first_bad - this_sector;
691                                 if (good_sectors > best_good_sectors) {
692                                         best_good_sectors = good_sectors;
693                                         best_disk = disk;
694                                 }
695                                 if (choose_first)
696                                         break;
697                         }
698                         continue;
699                 } else {
700                         if ((sectors > best_good_sectors) && (best_disk >= 0))
701                                 best_disk = -1;
702                         best_good_sectors = sectors;
703                 }
704
705                 if (best_disk >= 0)
706                         /* At least two disks to choose from so failfast is OK */
707                         set_bit(R1BIO_FailFast, &r1_bio->state);
708
709                 nonrot = bdev_nonrot(rdev->bdev);
710                 has_nonrot_disk |= nonrot;
711                 pending = atomic_read(&rdev->nr_pending);
712                 dist = abs(this_sector - conf->mirrors[disk].head_position);
713                 if (choose_first) {
714                         best_disk = disk;
715                         break;
716                 }
717                 /* Don't change to another disk for sequential reads */
718                 if (conf->mirrors[disk].next_seq_sect == this_sector
719                     || dist == 0) {
720                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
721                         struct raid1_info *mirror = &conf->mirrors[disk];
722
723                         best_disk = disk;
724                         /*
725                          * If buffered sequential IO size exceeds optimal
726                          * iosize, check if there is idle disk. If yes, choose
727                          * the idle disk. read_balance could already choose an
728                          * idle disk before noticing it's a sequential IO in
729                          * this disk. This doesn't matter because this disk
730                          * will idle, next time it will be utilized after the
731                          * first disk has IO size exceeds optimal iosize. In
732                          * this way, iosize of the first disk will be optimal
733                          * iosize at least. iosize of the second disk might be
734                          * small, but not a big deal since when the second disk
735                          * starts IO, the first disk is likely still busy.
736                          */
737                         if (nonrot && opt_iosize > 0 &&
738                             mirror->seq_start != MaxSector &&
739                             mirror->next_seq_sect > opt_iosize &&
740                             mirror->next_seq_sect - opt_iosize >=
741                             mirror->seq_start) {
742                                 choose_next_idle = 1;
743                                 continue;
744                         }
745                         break;
746                 }
747
748                 if (choose_next_idle)
749                         continue;
750
751                 if (min_pending > pending) {
752                         min_pending = pending;
753                         best_pending_disk = disk;
754                 }
755
756                 if (dist < best_dist) {
757                         best_dist = dist;
758                         best_dist_disk = disk;
759                 }
760         }
761
762         /*
763          * If all disks are rotational, choose the closest disk. If any disk is
764          * non-rotational, choose the disk with less pending request even the
765          * disk is rotational, which might/might not be optimal for raids with
766          * mixed ratation/non-rotational disks depending on workload.
767          */
768         if (best_disk == -1) {
769                 if (has_nonrot_disk || min_pending == 0)
770                         best_disk = best_pending_disk;
771                 else
772                         best_disk = best_dist_disk;
773         }
774
775         if (best_disk >= 0) {
776                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
777                 if (!rdev)
778                         goto retry;
779                 atomic_inc(&rdev->nr_pending);
780                 sectors = best_good_sectors;
781
782                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
783                         conf->mirrors[best_disk].seq_start = this_sector;
784
785                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
786         }
787         rcu_read_unlock();
788         *max_sectors = sectors;
789
790         return best_disk;
791 }
792
793 static void wake_up_barrier(struct r1conf *conf)
794 {
795         if (wq_has_sleeper(&conf->wait_barrier))
796                 wake_up(&conf->wait_barrier);
797 }
798
799 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
800 {
801         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
802         raid1_prepare_flush_writes(conf->mddev->bitmap);
803         wake_up_barrier(conf);
804
805         while (bio) { /* submit pending writes */
806                 struct bio *next = bio->bi_next;
807
808                 raid1_submit_write(bio);
809                 bio = next;
810                 cond_resched();
811         }
812 }
813
814 static void flush_pending_writes(struct r1conf *conf)
815 {
816         /* Any writes that have been queued but are awaiting
817          * bitmap updates get flushed here.
818          */
819         spin_lock_irq(&conf->device_lock);
820
821         if (conf->pending_bio_list.head) {
822                 struct blk_plug plug;
823                 struct bio *bio;
824
825                 bio = bio_list_get(&conf->pending_bio_list);
826                 spin_unlock_irq(&conf->device_lock);
827
828                 /*
829                  * As this is called in a wait_event() loop (see freeze_array),
830                  * current->state might be TASK_UNINTERRUPTIBLE which will
831                  * cause a warning when we prepare to wait again.  As it is
832                  * rare that this path is taken, it is perfectly safe to force
833                  * us to go around the wait_event() loop again, so the warning
834                  * is a false-positive.  Silence the warning by resetting
835                  * thread state
836                  */
837                 __set_current_state(TASK_RUNNING);
838                 blk_start_plug(&plug);
839                 flush_bio_list(conf, bio);
840                 blk_finish_plug(&plug);
841         } else
842                 spin_unlock_irq(&conf->device_lock);
843 }
844
845 /* Barriers....
846  * Sometimes we need to suspend IO while we do something else,
847  * either some resync/recovery, or reconfigure the array.
848  * To do this we raise a 'barrier'.
849  * The 'barrier' is a counter that can be raised multiple times
850  * to count how many activities are happening which preclude
851  * normal IO.
852  * We can only raise the barrier if there is no pending IO.
853  * i.e. if nr_pending == 0.
854  * We choose only to raise the barrier if no-one is waiting for the
855  * barrier to go down.  This means that as soon as an IO request
856  * is ready, no other operations which require a barrier will start
857  * until the IO request has had a chance.
858  *
859  * So: regular IO calls 'wait_barrier'.  When that returns there
860  *    is no backgroup IO happening,  It must arrange to call
861  *    allow_barrier when it has finished its IO.
862  * backgroup IO calls must call raise_barrier.  Once that returns
863  *    there is no normal IO happeing.  It must arrange to call
864  *    lower_barrier when the particular background IO completes.
865  *
866  * If resync/recovery is interrupted, returns -EINTR;
867  * Otherwise, returns 0.
868  */
869 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
870 {
871         int idx = sector_to_idx(sector_nr);
872
873         spin_lock_irq(&conf->resync_lock);
874
875         /* Wait until no block IO is waiting */
876         wait_event_lock_irq(conf->wait_barrier,
877                             !atomic_read(&conf->nr_waiting[idx]),
878                             conf->resync_lock);
879
880         /* block any new IO from starting */
881         atomic_inc(&conf->barrier[idx]);
882         /*
883          * In raise_barrier() we firstly increase conf->barrier[idx] then
884          * check conf->nr_pending[idx]. In _wait_barrier() we firstly
885          * increase conf->nr_pending[idx] then check conf->barrier[idx].
886          * A memory barrier here to make sure conf->nr_pending[idx] won't
887          * be fetched before conf->barrier[idx] is increased. Otherwise
888          * there will be a race between raise_barrier() and _wait_barrier().
889          */
890         smp_mb__after_atomic();
891
892         /* For these conditions we must wait:
893          * A: while the array is in frozen state
894          * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
895          *    existing in corresponding I/O barrier bucket.
896          * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
897          *    max resync count which allowed on current I/O barrier bucket.
898          */
899         wait_event_lock_irq(conf->wait_barrier,
900                             (!conf->array_frozen &&
901                              !atomic_read(&conf->nr_pending[idx]) &&
902                              atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
903                                 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
904                             conf->resync_lock);
905
906         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
907                 atomic_dec(&conf->barrier[idx]);
908                 spin_unlock_irq(&conf->resync_lock);
909                 wake_up(&conf->wait_barrier);
910                 return -EINTR;
911         }
912
913         atomic_inc(&conf->nr_sync_pending);
914         spin_unlock_irq(&conf->resync_lock);
915
916         return 0;
917 }
918
919 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
920 {
921         int idx = sector_to_idx(sector_nr);
922
923         BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
924
925         atomic_dec(&conf->barrier[idx]);
926         atomic_dec(&conf->nr_sync_pending);
927         wake_up(&conf->wait_barrier);
928 }
929
930 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
931 {
932         bool ret = true;
933
934         /*
935          * We need to increase conf->nr_pending[idx] very early here,
936          * then raise_barrier() can be blocked when it waits for
937          * conf->nr_pending[idx] to be 0. Then we can avoid holding
938          * conf->resync_lock when there is no barrier raised in same
939          * barrier unit bucket. Also if the array is frozen, I/O
940          * should be blocked until array is unfrozen.
941          */
942         atomic_inc(&conf->nr_pending[idx]);
943         /*
944          * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
945          * check conf->barrier[idx]. In raise_barrier() we firstly increase
946          * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
947          * barrier is necessary here to make sure conf->barrier[idx] won't be
948          * fetched before conf->nr_pending[idx] is increased. Otherwise there
949          * will be a race between _wait_barrier() and raise_barrier().
950          */
951         smp_mb__after_atomic();
952
953         /*
954          * Don't worry about checking two atomic_t variables at same time
955          * here. If during we check conf->barrier[idx], the array is
956          * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
957          * 0, it is safe to return and make the I/O continue. Because the
958          * array is frozen, all I/O returned here will eventually complete
959          * or be queued, no race will happen. See code comment in
960          * frozen_array().
961          */
962         if (!READ_ONCE(conf->array_frozen) &&
963             !atomic_read(&conf->barrier[idx]))
964                 return ret;
965
966         /*
967          * After holding conf->resync_lock, conf->nr_pending[idx]
968          * should be decreased before waiting for barrier to drop.
969          * Otherwise, we may encounter a race condition because
970          * raise_barrer() might be waiting for conf->nr_pending[idx]
971          * to be 0 at same time.
972          */
973         spin_lock_irq(&conf->resync_lock);
974         atomic_inc(&conf->nr_waiting[idx]);
975         atomic_dec(&conf->nr_pending[idx]);
976         /*
977          * In case freeze_array() is waiting for
978          * get_unqueued_pending() == extra
979          */
980         wake_up_barrier(conf);
981         /* Wait for the barrier in same barrier unit bucket to drop. */
982
983         /* Return false when nowait flag is set */
984         if (nowait) {
985                 ret = false;
986         } else {
987                 wait_event_lock_irq(conf->wait_barrier,
988                                 !conf->array_frozen &&
989                                 !atomic_read(&conf->barrier[idx]),
990                                 conf->resync_lock);
991                 atomic_inc(&conf->nr_pending[idx]);
992         }
993
994         atomic_dec(&conf->nr_waiting[idx]);
995         spin_unlock_irq(&conf->resync_lock);
996         return ret;
997 }
998
999 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1000 {
1001         int idx = sector_to_idx(sector_nr);
1002         bool ret = true;
1003
1004         /*
1005          * Very similar to _wait_barrier(). The difference is, for read
1006          * I/O we don't need wait for sync I/O, but if the whole array
1007          * is frozen, the read I/O still has to wait until the array is
1008          * unfrozen. Since there is no ordering requirement with
1009          * conf->barrier[idx] here, memory barrier is unnecessary as well.
1010          */
1011         atomic_inc(&conf->nr_pending[idx]);
1012
1013         if (!READ_ONCE(conf->array_frozen))
1014                 return ret;
1015
1016         spin_lock_irq(&conf->resync_lock);
1017         atomic_inc(&conf->nr_waiting[idx]);
1018         atomic_dec(&conf->nr_pending[idx]);
1019         /*
1020          * In case freeze_array() is waiting for
1021          * get_unqueued_pending() == extra
1022          */
1023         wake_up_barrier(conf);
1024         /* Wait for array to be unfrozen */
1025
1026         /* Return false when nowait flag is set */
1027         if (nowait) {
1028                 /* Return false when nowait flag is set */
1029                 ret = false;
1030         } else {
1031                 wait_event_lock_irq(conf->wait_barrier,
1032                                 !conf->array_frozen,
1033                                 conf->resync_lock);
1034                 atomic_inc(&conf->nr_pending[idx]);
1035         }
1036
1037         atomic_dec(&conf->nr_waiting[idx]);
1038         spin_unlock_irq(&conf->resync_lock);
1039         return ret;
1040 }
1041
1042 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1043 {
1044         int idx = sector_to_idx(sector_nr);
1045
1046         return _wait_barrier(conf, idx, nowait);
1047 }
1048
1049 static void _allow_barrier(struct r1conf *conf, int idx)
1050 {
1051         atomic_dec(&conf->nr_pending[idx]);
1052         wake_up_barrier(conf);
1053 }
1054
1055 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1056 {
1057         int idx = sector_to_idx(sector_nr);
1058
1059         _allow_barrier(conf, idx);
1060 }
1061
1062 /* conf->resync_lock should be held */
1063 static int get_unqueued_pending(struct r1conf *conf)
1064 {
1065         int idx, ret;
1066
1067         ret = atomic_read(&conf->nr_sync_pending);
1068         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1069                 ret += atomic_read(&conf->nr_pending[idx]) -
1070                         atomic_read(&conf->nr_queued[idx]);
1071
1072         return ret;
1073 }
1074
1075 static void freeze_array(struct r1conf *conf, int extra)
1076 {
1077         /* Stop sync I/O and normal I/O and wait for everything to
1078          * go quiet.
1079          * This is called in two situations:
1080          * 1) management command handlers (reshape, remove disk, quiesce).
1081          * 2) one normal I/O request failed.
1082
1083          * After array_frozen is set to 1, new sync IO will be blocked at
1084          * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1085          * or wait_read_barrier(). The flying I/Os will either complete or be
1086          * queued. When everything goes quite, there are only queued I/Os left.
1087
1088          * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1089          * barrier bucket index which this I/O request hits. When all sync and
1090          * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1091          * of all conf->nr_queued[]. But normal I/O failure is an exception,
1092          * in handle_read_error(), we may call freeze_array() before trying to
1093          * fix the read error. In this case, the error read I/O is not queued,
1094          * so get_unqueued_pending() == 1.
1095          *
1096          * Therefore before this function returns, we need to wait until
1097          * get_unqueued_pendings(conf) gets equal to extra. For
1098          * normal I/O context, extra is 1, in rested situations extra is 0.
1099          */
1100         spin_lock_irq(&conf->resync_lock);
1101         conf->array_frozen = 1;
1102         raid1_log(conf->mddev, "wait freeze");
1103         wait_event_lock_irq_cmd(
1104                 conf->wait_barrier,
1105                 get_unqueued_pending(conf) == extra,
1106                 conf->resync_lock,
1107                 flush_pending_writes(conf));
1108         spin_unlock_irq(&conf->resync_lock);
1109 }
1110 static void unfreeze_array(struct r1conf *conf)
1111 {
1112         /* reverse the effect of the freeze */
1113         spin_lock_irq(&conf->resync_lock);
1114         conf->array_frozen = 0;
1115         spin_unlock_irq(&conf->resync_lock);
1116         wake_up(&conf->wait_barrier);
1117 }
1118
1119 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1120                                            struct bio *bio)
1121 {
1122         int size = bio->bi_iter.bi_size;
1123         unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1124         int i = 0;
1125         struct bio *behind_bio = NULL;
1126
1127         behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1128                                       &r1_bio->mddev->bio_set);
1129         if (!behind_bio)
1130                 return;
1131
1132         /* discard op, we don't support writezero/writesame yet */
1133         if (!bio_has_data(bio)) {
1134                 behind_bio->bi_iter.bi_size = size;
1135                 goto skip_copy;
1136         }
1137
1138         while (i < vcnt && size) {
1139                 struct page *page;
1140                 int len = min_t(int, PAGE_SIZE, size);
1141
1142                 page = alloc_page(GFP_NOIO);
1143                 if (unlikely(!page))
1144                         goto free_pages;
1145
1146                 if (!bio_add_page(behind_bio, page, len, 0)) {
1147                         put_page(page);
1148                         goto free_pages;
1149                 }
1150
1151                 size -= len;
1152                 i++;
1153         }
1154
1155         bio_copy_data(behind_bio, bio);
1156 skip_copy:
1157         r1_bio->behind_master_bio = behind_bio;
1158         set_bit(R1BIO_BehindIO, &r1_bio->state);
1159
1160         return;
1161
1162 free_pages:
1163         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1164                  bio->bi_iter.bi_size);
1165         bio_free_pages(behind_bio);
1166         bio_put(behind_bio);
1167 }
1168
1169 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1170 {
1171         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1172                                                   cb);
1173         struct mddev *mddev = plug->cb.data;
1174         struct r1conf *conf = mddev->private;
1175         struct bio *bio;
1176
1177         if (from_schedule) {
1178                 spin_lock_irq(&conf->device_lock);
1179                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1180                 spin_unlock_irq(&conf->device_lock);
1181                 wake_up_barrier(conf);
1182                 md_wakeup_thread(mddev->thread);
1183                 kfree(plug);
1184                 return;
1185         }
1186
1187         /* we aren't scheduling, so we can do the write-out directly. */
1188         bio = bio_list_get(&plug->pending);
1189         flush_bio_list(conf, bio);
1190         kfree(plug);
1191 }
1192
1193 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1194 {
1195         r1_bio->master_bio = bio;
1196         r1_bio->sectors = bio_sectors(bio);
1197         r1_bio->state = 0;
1198         r1_bio->mddev = mddev;
1199         r1_bio->sector = bio->bi_iter.bi_sector;
1200 }
1201
1202 static inline struct r1bio *
1203 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1204 {
1205         struct r1conf *conf = mddev->private;
1206         struct r1bio *r1_bio;
1207
1208         r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1209         /* Ensure no bio records IO_BLOCKED */
1210         memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1211         init_r1bio(r1_bio, mddev, bio);
1212         return r1_bio;
1213 }
1214
1215 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1216                                int max_read_sectors, struct r1bio *r1_bio)
1217 {
1218         struct r1conf *conf = mddev->private;
1219         struct raid1_info *mirror;
1220         struct bio *read_bio;
1221         struct bitmap *bitmap = mddev->bitmap;
1222         const enum req_op op = bio_op(bio);
1223         const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1224         int max_sectors;
1225         int rdisk;
1226         bool r1bio_existed = !!r1_bio;
1227         char b[BDEVNAME_SIZE];
1228
1229         /*
1230          * If r1_bio is set, we are blocking the raid1d thread
1231          * so there is a tiny risk of deadlock.  So ask for
1232          * emergency memory if needed.
1233          */
1234         gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1235
1236         if (r1bio_existed) {
1237                 /* Need to get the block device name carefully */
1238                 struct md_rdev *rdev;
1239                 rcu_read_lock();
1240                 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1241                 if (rdev)
1242                         snprintf(b, sizeof(b), "%pg", rdev->bdev);
1243                 else
1244                         strcpy(b, "???");
1245                 rcu_read_unlock();
1246         }
1247
1248         /*
1249          * Still need barrier for READ in case that whole
1250          * array is frozen.
1251          */
1252         if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1253                                 bio->bi_opf & REQ_NOWAIT)) {
1254                 bio_wouldblock_error(bio);
1255                 return;
1256         }
1257
1258         if (!r1_bio)
1259                 r1_bio = alloc_r1bio(mddev, bio);
1260         else
1261                 init_r1bio(r1_bio, mddev, bio);
1262         r1_bio->sectors = max_read_sectors;
1263
1264         /*
1265          * make_request() can abort the operation when read-ahead is being
1266          * used and no empty request is available.
1267          */
1268         rdisk = read_balance(conf, r1_bio, &max_sectors);
1269
1270         if (rdisk < 0) {
1271                 /* couldn't find anywhere to read from */
1272                 if (r1bio_existed) {
1273                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1274                                             mdname(mddev),
1275                                             b,
1276                                             (unsigned long long)r1_bio->sector);
1277                 }
1278                 raid_end_bio_io(r1_bio);
1279                 return;
1280         }
1281         mirror = conf->mirrors + rdisk;
1282
1283         if (r1bio_existed)
1284                 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1285                                     mdname(mddev),
1286                                     (unsigned long long)r1_bio->sector,
1287                                     mirror->rdev->bdev);
1288
1289         if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1290             bitmap) {
1291                 /*
1292                  * Reading from a write-mostly device must take care not to
1293                  * over-take any writes that are 'behind'
1294                  */
1295                 raid1_log(mddev, "wait behind writes");
1296                 wait_event(bitmap->behind_wait,
1297                            atomic_read(&bitmap->behind_writes) == 0);
1298         }
1299
1300         if (max_sectors < bio_sectors(bio)) {
1301                 struct bio *split = bio_split(bio, max_sectors,
1302                                               gfp, &conf->bio_split);
1303                 bio_chain(split, bio);
1304                 submit_bio_noacct(bio);
1305                 bio = split;
1306                 r1_bio->master_bio = bio;
1307                 r1_bio->sectors = max_sectors;
1308         }
1309
1310         r1_bio->read_disk = rdisk;
1311         if (!r1bio_existed) {
1312                 md_account_bio(mddev, &bio);
1313                 r1_bio->master_bio = bio;
1314         }
1315         read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1316                                    &mddev->bio_set);
1317
1318         r1_bio->bios[rdisk] = read_bio;
1319
1320         read_bio->bi_iter.bi_sector = r1_bio->sector +
1321                 mirror->rdev->data_offset;
1322         read_bio->bi_end_io = raid1_end_read_request;
1323         read_bio->bi_opf = op | do_sync;
1324         if (test_bit(FailFast, &mirror->rdev->flags) &&
1325             test_bit(R1BIO_FailFast, &r1_bio->state))
1326                 read_bio->bi_opf |= MD_FAILFAST;
1327         read_bio->bi_private = r1_bio;
1328
1329         if (mddev->gendisk)
1330                 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1331                                       r1_bio->sector);
1332
1333         submit_bio_noacct(read_bio);
1334 }
1335
1336 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1337                                 int max_write_sectors)
1338 {
1339         struct r1conf *conf = mddev->private;
1340         struct r1bio *r1_bio;
1341         int i, disks;
1342         struct bitmap *bitmap = mddev->bitmap;
1343         unsigned long flags;
1344         struct md_rdev *blocked_rdev;
1345         int first_clone;
1346         int max_sectors;
1347         bool write_behind = false;
1348
1349         if (mddev_is_clustered(mddev) &&
1350              md_cluster_ops->area_resyncing(mddev, WRITE,
1351                      bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1352
1353                 DEFINE_WAIT(w);
1354                 if (bio->bi_opf & REQ_NOWAIT) {
1355                         bio_wouldblock_error(bio);
1356                         return;
1357                 }
1358                 for (;;) {
1359                         prepare_to_wait(&conf->wait_barrier,
1360                                         &w, TASK_IDLE);
1361                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1362                                                         bio->bi_iter.bi_sector,
1363                                                         bio_end_sector(bio)))
1364                                 break;
1365                         schedule();
1366                 }
1367                 finish_wait(&conf->wait_barrier, &w);
1368         }
1369
1370         /*
1371          * Register the new request and wait if the reconstruction
1372          * thread has put up a bar for new requests.
1373          * Continue immediately if no resync is active currently.
1374          */
1375         if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1376                                 bio->bi_opf & REQ_NOWAIT)) {
1377                 bio_wouldblock_error(bio);
1378                 return;
1379         }
1380
1381  retry_write:
1382         r1_bio = alloc_r1bio(mddev, bio);
1383         r1_bio->sectors = max_write_sectors;
1384
1385         /* first select target devices under rcu_lock and
1386          * inc refcount on their rdev.  Record them by setting
1387          * bios[x] to bio
1388          * If there are known/acknowledged bad blocks on any device on
1389          * which we have seen a write error, we want to avoid writing those
1390          * blocks.
1391          * This potentially requires several writes to write around
1392          * the bad blocks.  Each set of writes gets it's own r1bio
1393          * with a set of bios attached.
1394          */
1395
1396         disks = conf->raid_disks * 2;
1397         blocked_rdev = NULL;
1398         rcu_read_lock();
1399         max_sectors = r1_bio->sectors;
1400         for (i = 0;  i < disks; i++) {
1401                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1402
1403                 /*
1404                  * The write-behind io is only attempted on drives marked as
1405                  * write-mostly, which means we could allocate write behind
1406                  * bio later.
1407                  */
1408                 if (rdev && test_bit(WriteMostly, &rdev->flags))
1409                         write_behind = true;
1410
1411                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1412                         atomic_inc(&rdev->nr_pending);
1413                         blocked_rdev = rdev;
1414                         break;
1415                 }
1416                 r1_bio->bios[i] = NULL;
1417                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1418                         if (i < conf->raid_disks)
1419                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1420                         continue;
1421                 }
1422
1423                 atomic_inc(&rdev->nr_pending);
1424                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1425                         sector_t first_bad;
1426                         int bad_sectors;
1427                         int is_bad;
1428
1429                         is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1430                                              &first_bad, &bad_sectors);
1431                         if (is_bad < 0) {
1432                                 /* mustn't write here until the bad block is
1433                                  * acknowledged*/
1434                                 set_bit(BlockedBadBlocks, &rdev->flags);
1435                                 blocked_rdev = rdev;
1436                                 break;
1437                         }
1438                         if (is_bad && first_bad <= r1_bio->sector) {
1439                                 /* Cannot write here at all */
1440                                 bad_sectors -= (r1_bio->sector - first_bad);
1441                                 if (bad_sectors < max_sectors)
1442                                         /* mustn't write more than bad_sectors
1443                                          * to other devices yet
1444                                          */
1445                                         max_sectors = bad_sectors;
1446                                 rdev_dec_pending(rdev, mddev);
1447                                 /* We don't set R1BIO_Degraded as that
1448                                  * only applies if the disk is
1449                                  * missing, so it might be re-added,
1450                                  * and we want to know to recover this
1451                                  * chunk.
1452                                  * In this case the device is here,
1453                                  * and the fact that this chunk is not
1454                                  * in-sync is recorded in the bad
1455                                  * block log
1456                                  */
1457                                 continue;
1458                         }
1459                         if (is_bad) {
1460                                 int good_sectors = first_bad - r1_bio->sector;
1461                                 if (good_sectors < max_sectors)
1462                                         max_sectors = good_sectors;
1463                         }
1464                 }
1465                 r1_bio->bios[i] = bio;
1466         }
1467         rcu_read_unlock();
1468
1469         if (unlikely(blocked_rdev)) {
1470                 /* Wait for this device to become unblocked */
1471                 int j;
1472
1473                 for (j = 0; j < i; j++)
1474                         if (r1_bio->bios[j])
1475                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1476                 free_r1bio(r1_bio);
1477                 allow_barrier(conf, bio->bi_iter.bi_sector);
1478
1479                 if (bio->bi_opf & REQ_NOWAIT) {
1480                         bio_wouldblock_error(bio);
1481                         return;
1482                 }
1483                 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1484                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1485                 wait_barrier(conf, bio->bi_iter.bi_sector, false);
1486                 goto retry_write;
1487         }
1488
1489         /*
1490          * When using a bitmap, we may call alloc_behind_master_bio below.
1491          * alloc_behind_master_bio allocates a copy of the data payload a page
1492          * at a time and thus needs a new bio that can fit the whole payload
1493          * this bio in page sized chunks.
1494          */
1495         if (write_behind && bitmap)
1496                 max_sectors = min_t(int, max_sectors,
1497                                     BIO_MAX_VECS * (PAGE_SIZE >> 9));
1498         if (max_sectors < bio_sectors(bio)) {
1499                 struct bio *split = bio_split(bio, max_sectors,
1500                                               GFP_NOIO, &conf->bio_split);
1501                 bio_chain(split, bio);
1502                 submit_bio_noacct(bio);
1503                 bio = split;
1504                 r1_bio->master_bio = bio;
1505                 r1_bio->sectors = max_sectors;
1506         }
1507
1508         md_account_bio(mddev, &bio);
1509         r1_bio->master_bio = bio;
1510         atomic_set(&r1_bio->remaining, 1);
1511         atomic_set(&r1_bio->behind_remaining, 0);
1512
1513         first_clone = 1;
1514
1515         for (i = 0; i < disks; i++) {
1516                 struct bio *mbio = NULL;
1517                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1518                 if (!r1_bio->bios[i])
1519                         continue;
1520
1521                 if (first_clone) {
1522                         /* do behind I/O ?
1523                          * Not if there are too many, or cannot
1524                          * allocate memory, or a reader on WriteMostly
1525                          * is waiting for behind writes to flush */
1526                         if (bitmap && write_behind &&
1527                             (atomic_read(&bitmap->behind_writes)
1528                              < mddev->bitmap_info.max_write_behind) &&
1529                             !waitqueue_active(&bitmap->behind_wait)) {
1530                                 alloc_behind_master_bio(r1_bio, bio);
1531                         }
1532
1533                         md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1534                                              test_bit(R1BIO_BehindIO, &r1_bio->state));
1535                         first_clone = 0;
1536                 }
1537
1538                 if (r1_bio->behind_master_bio) {
1539                         mbio = bio_alloc_clone(rdev->bdev,
1540                                                r1_bio->behind_master_bio,
1541                                                GFP_NOIO, &mddev->bio_set);
1542                         if (test_bit(CollisionCheck, &rdev->flags))
1543                                 wait_for_serialization(rdev, r1_bio);
1544                         if (test_bit(WriteMostly, &rdev->flags))
1545                                 atomic_inc(&r1_bio->behind_remaining);
1546                 } else {
1547                         mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1548                                                &mddev->bio_set);
1549
1550                         if (mddev->serialize_policy)
1551                                 wait_for_serialization(rdev, r1_bio);
1552                 }
1553
1554                 r1_bio->bios[i] = mbio;
1555
1556                 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset);
1557                 mbio->bi_end_io = raid1_end_write_request;
1558                 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1559                 if (test_bit(FailFast, &rdev->flags) &&
1560                     !test_bit(WriteMostly, &rdev->flags) &&
1561                     conf->raid_disks - mddev->degraded > 1)
1562                         mbio->bi_opf |= MD_FAILFAST;
1563                 mbio->bi_private = r1_bio;
1564
1565                 atomic_inc(&r1_bio->remaining);
1566
1567                 if (mddev->gendisk)
1568                         trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1569                                               r1_bio->sector);
1570                 /* flush_pending_writes() needs access to the rdev so...*/
1571                 mbio->bi_bdev = (void *)rdev;
1572                 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1573                         spin_lock_irqsave(&conf->device_lock, flags);
1574                         bio_list_add(&conf->pending_bio_list, mbio);
1575                         spin_unlock_irqrestore(&conf->device_lock, flags);
1576                         md_wakeup_thread(mddev->thread);
1577                 }
1578         }
1579
1580         r1_bio_write_done(r1_bio);
1581
1582         /* In case raid1d snuck in to freeze_array */
1583         wake_up_barrier(conf);
1584 }
1585
1586 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1587 {
1588         sector_t sectors;
1589
1590         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1591             && md_flush_request(mddev, bio))
1592                 return true;
1593
1594         /*
1595          * There is a limit to the maximum size, but
1596          * the read/write handler might find a lower limit
1597          * due to bad blocks.  To avoid multiple splits,
1598          * we pass the maximum number of sectors down
1599          * and let the lower level perform the split.
1600          */
1601         sectors = align_to_barrier_unit_end(
1602                 bio->bi_iter.bi_sector, bio_sectors(bio));
1603
1604         if (bio_data_dir(bio) == READ)
1605                 raid1_read_request(mddev, bio, sectors, NULL);
1606         else {
1607                 if (!md_write_start(mddev,bio))
1608                         return false;
1609                 raid1_write_request(mddev, bio, sectors);
1610         }
1611         return true;
1612 }
1613
1614 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1615 {
1616         struct r1conf *conf = mddev->private;
1617         int i;
1618
1619         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1620                    conf->raid_disks - mddev->degraded);
1621         rcu_read_lock();
1622         for (i = 0; i < conf->raid_disks; i++) {
1623                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1624                 seq_printf(seq, "%s",
1625                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1626         }
1627         rcu_read_unlock();
1628         seq_printf(seq, "]");
1629 }
1630
1631 /**
1632  * raid1_error() - RAID1 error handler.
1633  * @mddev: affected md device.
1634  * @rdev: member device to fail.
1635  *
1636  * The routine acknowledges &rdev failure and determines new @mddev state.
1637  * If it failed, then:
1638  *      - &MD_BROKEN flag is set in &mddev->flags.
1639  *      - recovery is disabled.
1640  * Otherwise, it must be degraded:
1641  *      - recovery is interrupted.
1642  *      - &mddev->degraded is bumped.
1643  *
1644  * @rdev is marked as &Faulty excluding case when array is failed and
1645  * &mddev->fail_last_dev is off.
1646  */
1647 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1648 {
1649         struct r1conf *conf = mddev->private;
1650         unsigned long flags;
1651
1652         spin_lock_irqsave(&conf->device_lock, flags);
1653
1654         if (test_bit(In_sync, &rdev->flags) &&
1655             (conf->raid_disks - mddev->degraded) == 1) {
1656                 set_bit(MD_BROKEN, &mddev->flags);
1657
1658                 if (!mddev->fail_last_dev) {
1659                         conf->recovery_disabled = mddev->recovery_disabled;
1660                         spin_unlock_irqrestore(&conf->device_lock, flags);
1661                         return;
1662                 }
1663         }
1664         set_bit(Blocked, &rdev->flags);
1665         if (test_and_clear_bit(In_sync, &rdev->flags))
1666                 mddev->degraded++;
1667         set_bit(Faulty, &rdev->flags);
1668         spin_unlock_irqrestore(&conf->device_lock, flags);
1669         /*
1670          * if recovery is running, make sure it aborts.
1671          */
1672         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1673         set_mask_bits(&mddev->sb_flags, 0,
1674                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1675         pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1676                 "md/raid1:%s: Operation continuing on %d devices.\n",
1677                 mdname(mddev), rdev->bdev,
1678                 mdname(mddev), conf->raid_disks - mddev->degraded);
1679 }
1680
1681 static void print_conf(struct r1conf *conf)
1682 {
1683         int i;
1684
1685         pr_debug("RAID1 conf printout:\n");
1686         if (!conf) {
1687                 pr_debug("(!conf)\n");
1688                 return;
1689         }
1690         pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1691                  conf->raid_disks);
1692
1693         rcu_read_lock();
1694         for (i = 0; i < conf->raid_disks; i++) {
1695                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1696                 if (rdev)
1697                         pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1698                                  i, !test_bit(In_sync, &rdev->flags),
1699                                  !test_bit(Faulty, &rdev->flags),
1700                                  rdev->bdev);
1701         }
1702         rcu_read_unlock();
1703 }
1704
1705 static void close_sync(struct r1conf *conf)
1706 {
1707         int idx;
1708
1709         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1710                 _wait_barrier(conf, idx, false);
1711                 _allow_barrier(conf, idx);
1712         }
1713
1714         mempool_exit(&conf->r1buf_pool);
1715 }
1716
1717 static int raid1_spare_active(struct mddev *mddev)
1718 {
1719         int i;
1720         struct r1conf *conf = mddev->private;
1721         int count = 0;
1722         unsigned long flags;
1723
1724         /*
1725          * Find all failed disks within the RAID1 configuration
1726          * and mark them readable.
1727          * Called under mddev lock, so rcu protection not needed.
1728          * device_lock used to avoid races with raid1_end_read_request
1729          * which expects 'In_sync' flags and ->degraded to be consistent.
1730          */
1731         spin_lock_irqsave(&conf->device_lock, flags);
1732         for (i = 0; i < conf->raid_disks; i++) {
1733                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1734                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1735                 if (repl
1736                     && !test_bit(Candidate, &repl->flags)
1737                     && repl->recovery_offset == MaxSector
1738                     && !test_bit(Faulty, &repl->flags)
1739                     && !test_and_set_bit(In_sync, &repl->flags)) {
1740                         /* replacement has just become active */
1741                         if (!rdev ||
1742                             !test_and_clear_bit(In_sync, &rdev->flags))
1743                                 count++;
1744                         if (rdev) {
1745                                 /* Replaced device not technically
1746                                  * faulty, but we need to be sure
1747                                  * it gets removed and never re-added
1748                                  */
1749                                 set_bit(Faulty, &rdev->flags);
1750                                 sysfs_notify_dirent_safe(
1751                                         rdev->sysfs_state);
1752                         }
1753                 }
1754                 if (rdev
1755                     && rdev->recovery_offset == MaxSector
1756                     && !test_bit(Faulty, &rdev->flags)
1757                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1758                         count++;
1759                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1760                 }
1761         }
1762         mddev->degraded -= count;
1763         spin_unlock_irqrestore(&conf->device_lock, flags);
1764
1765         print_conf(conf);
1766         return count;
1767 }
1768
1769 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1770 {
1771         struct r1conf *conf = mddev->private;
1772         int err = -EEXIST;
1773         int mirror = 0, repl_slot = -1;
1774         struct raid1_info *p;
1775         int first = 0;
1776         int last = conf->raid_disks - 1;
1777
1778         if (mddev->recovery_disabled == conf->recovery_disabled)
1779                 return -EBUSY;
1780
1781         if (md_integrity_add_rdev(rdev, mddev))
1782                 return -ENXIO;
1783
1784         if (rdev->raid_disk >= 0)
1785                 first = last = rdev->raid_disk;
1786
1787         /*
1788          * find the disk ... but prefer rdev->saved_raid_disk
1789          * if possible.
1790          */
1791         if (rdev->saved_raid_disk >= 0 &&
1792             rdev->saved_raid_disk >= first &&
1793             rdev->saved_raid_disk < conf->raid_disks &&
1794             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1795                 first = last = rdev->saved_raid_disk;
1796
1797         for (mirror = first; mirror <= last; mirror++) {
1798                 p = conf->mirrors + mirror;
1799                 if (!p->rdev) {
1800                         if (mddev->gendisk)
1801                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1802                                                   rdev->data_offset << 9);
1803
1804                         p->head_position = 0;
1805                         rdev->raid_disk = mirror;
1806                         err = 0;
1807                         /* As all devices are equivalent, we don't need a full recovery
1808                          * if this was recently any drive of the array
1809                          */
1810                         if (rdev->saved_raid_disk < 0)
1811                                 conf->fullsync = 1;
1812                         rcu_assign_pointer(p->rdev, rdev);
1813                         break;
1814                 }
1815                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1816                     p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1817                         repl_slot = mirror;
1818         }
1819
1820         if (err && repl_slot >= 0) {
1821                 /* Add this device as a replacement */
1822                 p = conf->mirrors + repl_slot;
1823                 clear_bit(In_sync, &rdev->flags);
1824                 set_bit(Replacement, &rdev->flags);
1825                 rdev->raid_disk = repl_slot;
1826                 err = 0;
1827                 conf->fullsync = 1;
1828                 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1829         }
1830
1831         print_conf(conf);
1832         return err;
1833 }
1834
1835 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1836 {
1837         struct r1conf *conf = mddev->private;
1838         int err = 0;
1839         int number = rdev->raid_disk;
1840         struct raid1_info *p = conf->mirrors + number;
1841
1842         if (unlikely(number >= conf->raid_disks))
1843                 goto abort;
1844
1845         if (rdev != p->rdev)
1846                 p = conf->mirrors + conf->raid_disks + number;
1847
1848         print_conf(conf);
1849         if (rdev == p->rdev) {
1850                 if (test_bit(In_sync, &rdev->flags) ||
1851                     atomic_read(&rdev->nr_pending)) {
1852                         err = -EBUSY;
1853                         goto abort;
1854                 }
1855                 /* Only remove non-faulty devices if recovery
1856                  * is not possible.
1857                  */
1858                 if (!test_bit(Faulty, &rdev->flags) &&
1859                     mddev->recovery_disabled != conf->recovery_disabled &&
1860                     mddev->degraded < conf->raid_disks) {
1861                         err = -EBUSY;
1862                         goto abort;
1863                 }
1864                 p->rdev = NULL;
1865                 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1866                         synchronize_rcu();
1867                         if (atomic_read(&rdev->nr_pending)) {
1868                                 /* lost the race, try later */
1869                                 err = -EBUSY;
1870                                 p->rdev = rdev;
1871                                 goto abort;
1872                         }
1873                 }
1874                 if (conf->mirrors[conf->raid_disks + number].rdev) {
1875                         /* We just removed a device that is being replaced.
1876                          * Move down the replacement.  We drain all IO before
1877                          * doing this to avoid confusion.
1878                          */
1879                         struct md_rdev *repl =
1880                                 conf->mirrors[conf->raid_disks + number].rdev;
1881                         freeze_array(conf, 0);
1882                         if (atomic_read(&repl->nr_pending)) {
1883                                 /* It means that some queued IO of retry_list
1884                                  * hold repl. Thus, we cannot set replacement
1885                                  * as NULL, avoiding rdev NULL pointer
1886                                  * dereference in sync_request_write and
1887                                  * handle_write_finished.
1888                                  */
1889                                 err = -EBUSY;
1890                                 unfreeze_array(conf);
1891                                 goto abort;
1892                         }
1893                         clear_bit(Replacement, &repl->flags);
1894                         p->rdev = repl;
1895                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1896                         unfreeze_array(conf);
1897                 }
1898
1899                 clear_bit(WantReplacement, &rdev->flags);
1900                 err = md_integrity_register(mddev);
1901         }
1902 abort:
1903
1904         print_conf(conf);
1905         return err;
1906 }
1907
1908 static void end_sync_read(struct bio *bio)
1909 {
1910         struct r1bio *r1_bio = get_resync_r1bio(bio);
1911
1912         update_head_pos(r1_bio->read_disk, r1_bio);
1913
1914         /*
1915          * we have read a block, now it needs to be re-written,
1916          * or re-read if the read failed.
1917          * We don't do much here, just schedule handling by raid1d
1918          */
1919         if (!bio->bi_status)
1920                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1921
1922         if (atomic_dec_and_test(&r1_bio->remaining))
1923                 reschedule_retry(r1_bio);
1924 }
1925
1926 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1927 {
1928         sector_t sync_blocks = 0;
1929         sector_t s = r1_bio->sector;
1930         long sectors_to_go = r1_bio->sectors;
1931
1932         /* make sure these bits don't get cleared. */
1933         do {
1934                 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1935                 s += sync_blocks;
1936                 sectors_to_go -= sync_blocks;
1937         } while (sectors_to_go > 0);
1938 }
1939
1940 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1941 {
1942         if (atomic_dec_and_test(&r1_bio->remaining)) {
1943                 struct mddev *mddev = r1_bio->mddev;
1944                 int s = r1_bio->sectors;
1945
1946                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1947                     test_bit(R1BIO_WriteError, &r1_bio->state))
1948                         reschedule_retry(r1_bio);
1949                 else {
1950                         put_buf(r1_bio);
1951                         md_done_sync(mddev, s, uptodate);
1952                 }
1953         }
1954 }
1955
1956 static void end_sync_write(struct bio *bio)
1957 {
1958         int uptodate = !bio->bi_status;
1959         struct r1bio *r1_bio = get_resync_r1bio(bio);
1960         struct mddev *mddev = r1_bio->mddev;
1961         struct r1conf *conf = mddev->private;
1962         sector_t first_bad;
1963         int bad_sectors;
1964         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1965
1966         if (!uptodate) {
1967                 abort_sync_write(mddev, r1_bio);
1968                 set_bit(WriteErrorSeen, &rdev->flags);
1969                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1970                         set_bit(MD_RECOVERY_NEEDED, &
1971                                 mddev->recovery);
1972                 set_bit(R1BIO_WriteError, &r1_bio->state);
1973         } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1974                                &first_bad, &bad_sectors) &&
1975                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1976                                 r1_bio->sector,
1977                                 r1_bio->sectors,
1978                                 &first_bad, &bad_sectors)
1979                 )
1980                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1981
1982         put_sync_write_buf(r1_bio, uptodate);
1983 }
1984
1985 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1986                            int sectors, struct page *page, int rw)
1987 {
1988         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1989                 /* success */
1990                 return 1;
1991         if (rw == WRITE) {
1992                 set_bit(WriteErrorSeen, &rdev->flags);
1993                 if (!test_and_set_bit(WantReplacement,
1994                                       &rdev->flags))
1995                         set_bit(MD_RECOVERY_NEEDED, &
1996                                 rdev->mddev->recovery);
1997         }
1998         /* need to record an error - either for the block or the device */
1999         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2000                 md_error(rdev->mddev, rdev);
2001         return 0;
2002 }
2003
2004 static int fix_sync_read_error(struct r1bio *r1_bio)
2005 {
2006         /* Try some synchronous reads of other devices to get
2007          * good data, much like with normal read errors.  Only
2008          * read into the pages we already have so we don't
2009          * need to re-issue the read request.
2010          * We don't need to freeze the array, because being in an
2011          * active sync request, there is no normal IO, and
2012          * no overlapping syncs.
2013          * We don't need to check is_badblock() again as we
2014          * made sure that anything with a bad block in range
2015          * will have bi_end_io clear.
2016          */
2017         struct mddev *mddev = r1_bio->mddev;
2018         struct r1conf *conf = mddev->private;
2019         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2020         struct page **pages = get_resync_pages(bio)->pages;
2021         sector_t sect = r1_bio->sector;
2022         int sectors = r1_bio->sectors;
2023         int idx = 0;
2024         struct md_rdev *rdev;
2025
2026         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2027         if (test_bit(FailFast, &rdev->flags)) {
2028                 /* Don't try recovering from here - just fail it
2029                  * ... unless it is the last working device of course */
2030                 md_error(mddev, rdev);
2031                 if (test_bit(Faulty, &rdev->flags))
2032                         /* Don't try to read from here, but make sure
2033                          * put_buf does it's thing
2034                          */
2035                         bio->bi_end_io = end_sync_write;
2036         }
2037
2038         while(sectors) {
2039                 int s = sectors;
2040                 int d = r1_bio->read_disk;
2041                 int success = 0;
2042                 int start;
2043
2044                 if (s > (PAGE_SIZE>>9))
2045                         s = PAGE_SIZE >> 9;
2046                 do {
2047                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2048                                 /* No rcu protection needed here devices
2049                                  * can only be removed when no resync is
2050                                  * active, and resync is currently active
2051                                  */
2052                                 rdev = conf->mirrors[d].rdev;
2053                                 if (sync_page_io(rdev, sect, s<<9,
2054                                                  pages[idx],
2055                                                  REQ_OP_READ, false)) {
2056                                         success = 1;
2057                                         break;
2058                                 }
2059                         }
2060                         d++;
2061                         if (d == conf->raid_disks * 2)
2062                                 d = 0;
2063                 } while (!success && d != r1_bio->read_disk);
2064
2065                 if (!success) {
2066                         int abort = 0;
2067                         /* Cannot read from anywhere, this block is lost.
2068                          * Record a bad block on each device.  If that doesn't
2069                          * work just disable and interrupt the recovery.
2070                          * Don't fail devices as that won't really help.
2071                          */
2072                         pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2073                                             mdname(mddev), bio->bi_bdev,
2074                                             (unsigned long long)r1_bio->sector);
2075                         for (d = 0; d < conf->raid_disks * 2; d++) {
2076                                 rdev = conf->mirrors[d].rdev;
2077                                 if (!rdev || test_bit(Faulty, &rdev->flags))
2078                                         continue;
2079                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
2080                                         abort = 1;
2081                         }
2082                         if (abort) {
2083                                 conf->recovery_disabled =
2084                                         mddev->recovery_disabled;
2085                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2086                                 md_done_sync(mddev, r1_bio->sectors, 0);
2087                                 put_buf(r1_bio);
2088                                 return 0;
2089                         }
2090                         /* Try next page */
2091                         sectors -= s;
2092                         sect += s;
2093                         idx++;
2094                         continue;
2095                 }
2096
2097                 start = d;
2098                 /* write it back and re-read */
2099                 while (d != r1_bio->read_disk) {
2100                         if (d == 0)
2101                                 d = conf->raid_disks * 2;
2102                         d--;
2103                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2104                                 continue;
2105                         rdev = conf->mirrors[d].rdev;
2106                         if (r1_sync_page_io(rdev, sect, s,
2107                                             pages[idx],
2108                                             WRITE) == 0) {
2109                                 r1_bio->bios[d]->bi_end_io = NULL;
2110                                 rdev_dec_pending(rdev, mddev);
2111                         }
2112                 }
2113                 d = start;
2114                 while (d != r1_bio->read_disk) {
2115                         if (d == 0)
2116                                 d = conf->raid_disks * 2;
2117                         d--;
2118                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2119                                 continue;
2120                         rdev = conf->mirrors[d].rdev;
2121                         if (r1_sync_page_io(rdev, sect, s,
2122                                             pages[idx],
2123                                             READ) != 0)
2124                                 atomic_add(s, &rdev->corrected_errors);
2125                 }
2126                 sectors -= s;
2127                 sect += s;
2128                 idx ++;
2129         }
2130         set_bit(R1BIO_Uptodate, &r1_bio->state);
2131         bio->bi_status = 0;
2132         return 1;
2133 }
2134
2135 static void process_checks(struct r1bio *r1_bio)
2136 {
2137         /* We have read all readable devices.  If we haven't
2138          * got the block, then there is no hope left.
2139          * If we have, then we want to do a comparison
2140          * and skip the write if everything is the same.
2141          * If any blocks failed to read, then we need to
2142          * attempt an over-write
2143          */
2144         struct mddev *mddev = r1_bio->mddev;
2145         struct r1conf *conf = mddev->private;
2146         int primary;
2147         int i;
2148         int vcnt;
2149
2150         /* Fix variable parts of all bios */
2151         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2152         for (i = 0; i < conf->raid_disks * 2; i++) {
2153                 blk_status_t status;
2154                 struct bio *b = r1_bio->bios[i];
2155                 struct resync_pages *rp = get_resync_pages(b);
2156                 if (b->bi_end_io != end_sync_read)
2157                         continue;
2158                 /* fixup the bio for reuse, but preserve errno */
2159                 status = b->bi_status;
2160                 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2161                 b->bi_status = status;
2162                 b->bi_iter.bi_sector = r1_bio->sector +
2163                         conf->mirrors[i].rdev->data_offset;
2164                 b->bi_end_io = end_sync_read;
2165                 rp->raid_bio = r1_bio;
2166                 b->bi_private = rp;
2167
2168                 /* initialize bvec table again */
2169                 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2170         }
2171         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2172                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2173                     !r1_bio->bios[primary]->bi_status) {
2174                         r1_bio->bios[primary]->bi_end_io = NULL;
2175                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2176                         break;
2177                 }
2178         r1_bio->read_disk = primary;
2179         for (i = 0; i < conf->raid_disks * 2; i++) {
2180                 int j = 0;
2181                 struct bio *pbio = r1_bio->bios[primary];
2182                 struct bio *sbio = r1_bio->bios[i];
2183                 blk_status_t status = sbio->bi_status;
2184                 struct page **ppages = get_resync_pages(pbio)->pages;
2185                 struct page **spages = get_resync_pages(sbio)->pages;
2186                 struct bio_vec *bi;
2187                 int page_len[RESYNC_PAGES] = { 0 };
2188                 struct bvec_iter_all iter_all;
2189
2190                 if (sbio->bi_end_io != end_sync_read)
2191                         continue;
2192                 /* Now we can 'fixup' the error value */
2193                 sbio->bi_status = 0;
2194
2195                 bio_for_each_segment_all(bi, sbio, iter_all)
2196                         page_len[j++] = bi->bv_len;
2197
2198                 if (!status) {
2199                         for (j = vcnt; j-- ; ) {
2200                                 if (memcmp(page_address(ppages[j]),
2201                                            page_address(spages[j]),
2202                                            page_len[j]))
2203                                         break;
2204                         }
2205                 } else
2206                         j = 0;
2207                 if (j >= 0)
2208                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2209                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2210                               && !status)) {
2211                         /* No need to write to this device. */
2212                         sbio->bi_end_io = NULL;
2213                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2214                         continue;
2215                 }
2216
2217                 bio_copy_data(sbio, pbio);
2218         }
2219 }
2220
2221 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2222 {
2223         struct r1conf *conf = mddev->private;
2224         int i;
2225         int disks = conf->raid_disks * 2;
2226         struct bio *wbio;
2227
2228         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2229                 /* ouch - failed to read all of that. */
2230                 if (!fix_sync_read_error(r1_bio))
2231                         return;
2232
2233         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2234                 process_checks(r1_bio);
2235
2236         /*
2237          * schedule writes
2238          */
2239         atomic_set(&r1_bio->remaining, 1);
2240         for (i = 0; i < disks ; i++) {
2241                 wbio = r1_bio->bios[i];
2242                 if (wbio->bi_end_io == NULL ||
2243                     (wbio->bi_end_io == end_sync_read &&
2244                      (i == r1_bio->read_disk ||
2245                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2246                         continue;
2247                 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2248                         abort_sync_write(mddev, r1_bio);
2249                         continue;
2250                 }
2251
2252                 wbio->bi_opf = REQ_OP_WRITE;
2253                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2254                         wbio->bi_opf |= MD_FAILFAST;
2255
2256                 wbio->bi_end_io = end_sync_write;
2257                 atomic_inc(&r1_bio->remaining);
2258                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2259
2260                 submit_bio_noacct(wbio);
2261         }
2262
2263         put_sync_write_buf(r1_bio, 1);
2264 }
2265
2266 /*
2267  * This is a kernel thread which:
2268  *
2269  *      1.      Retries failed read operations on working mirrors.
2270  *      2.      Updates the raid superblock when problems encounter.
2271  *      3.      Performs writes following reads for array synchronising.
2272  */
2273
2274 static void fix_read_error(struct r1conf *conf, int read_disk,
2275                            sector_t sect, int sectors)
2276 {
2277         struct mddev *mddev = conf->mddev;
2278         while(sectors) {
2279                 int s = sectors;
2280                 int d = read_disk;
2281                 int success = 0;
2282                 int start;
2283                 struct md_rdev *rdev;
2284
2285                 if (s > (PAGE_SIZE>>9))
2286                         s = PAGE_SIZE >> 9;
2287
2288                 do {
2289                         sector_t first_bad;
2290                         int bad_sectors;
2291
2292                         rcu_read_lock();
2293                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2294                         if (rdev &&
2295                             (test_bit(In_sync, &rdev->flags) ||
2296                              (!test_bit(Faulty, &rdev->flags) &&
2297                               rdev->recovery_offset >= sect + s)) &&
2298                             is_badblock(rdev, sect, s,
2299                                         &first_bad, &bad_sectors) == 0) {
2300                                 atomic_inc(&rdev->nr_pending);
2301                                 rcu_read_unlock();
2302                                 if (sync_page_io(rdev, sect, s<<9,
2303                                          conf->tmppage, REQ_OP_READ, false))
2304                                         success = 1;
2305                                 rdev_dec_pending(rdev, mddev);
2306                                 if (success)
2307                                         break;
2308                         } else
2309                                 rcu_read_unlock();
2310                         d++;
2311                         if (d == conf->raid_disks * 2)
2312                                 d = 0;
2313                 } while (d != read_disk);
2314
2315                 if (!success) {
2316                         /* Cannot read from anywhere - mark it bad */
2317                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2318                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2319                                 md_error(mddev, rdev);
2320                         break;
2321                 }
2322                 /* write it back and re-read */
2323                 start = d;
2324                 while (d != read_disk) {
2325                         if (d==0)
2326                                 d = conf->raid_disks * 2;
2327                         d--;
2328                         rcu_read_lock();
2329                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2330                         if (rdev &&
2331                             !test_bit(Faulty, &rdev->flags)) {
2332                                 atomic_inc(&rdev->nr_pending);
2333                                 rcu_read_unlock();
2334                                 r1_sync_page_io(rdev, sect, s,
2335                                                 conf->tmppage, WRITE);
2336                                 rdev_dec_pending(rdev, mddev);
2337                         } else
2338                                 rcu_read_unlock();
2339                 }
2340                 d = start;
2341                 while (d != read_disk) {
2342                         if (d==0)
2343                                 d = conf->raid_disks * 2;
2344                         d--;
2345                         rcu_read_lock();
2346                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2347                         if (rdev &&
2348                             !test_bit(Faulty, &rdev->flags)) {
2349                                 atomic_inc(&rdev->nr_pending);
2350                                 rcu_read_unlock();
2351                                 if (r1_sync_page_io(rdev, sect, s,
2352                                                     conf->tmppage, READ)) {
2353                                         atomic_add(s, &rdev->corrected_errors);
2354                                         pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2355                                                 mdname(mddev), s,
2356                                                 (unsigned long long)(sect +
2357                                                                      rdev->data_offset),
2358                                                 rdev->bdev);
2359                                 }
2360                                 rdev_dec_pending(rdev, mddev);
2361                         } else
2362                                 rcu_read_unlock();
2363                 }
2364                 sectors -= s;
2365                 sect += s;
2366         }
2367 }
2368
2369 static int narrow_write_error(struct r1bio *r1_bio, int i)
2370 {
2371         struct mddev *mddev = r1_bio->mddev;
2372         struct r1conf *conf = mddev->private;
2373         struct md_rdev *rdev = conf->mirrors[i].rdev;
2374
2375         /* bio has the data to be written to device 'i' where
2376          * we just recently had a write error.
2377          * We repeatedly clone the bio and trim down to one block,
2378          * then try the write.  Where the write fails we record
2379          * a bad block.
2380          * It is conceivable that the bio doesn't exactly align with
2381          * blocks.  We must handle this somehow.
2382          *
2383          * We currently own a reference on the rdev.
2384          */
2385
2386         int block_sectors;
2387         sector_t sector;
2388         int sectors;
2389         int sect_to_write = r1_bio->sectors;
2390         int ok = 1;
2391
2392         if (rdev->badblocks.shift < 0)
2393                 return 0;
2394
2395         block_sectors = roundup(1 << rdev->badblocks.shift,
2396                                 bdev_logical_block_size(rdev->bdev) >> 9);
2397         sector = r1_bio->sector;
2398         sectors = ((sector + block_sectors)
2399                    & ~(sector_t)(block_sectors - 1))
2400                 - sector;
2401
2402         while (sect_to_write) {
2403                 struct bio *wbio;
2404                 if (sectors > sect_to_write)
2405                         sectors = sect_to_write;
2406                 /* Write at 'sector' for 'sectors'*/
2407
2408                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2409                         wbio = bio_alloc_clone(rdev->bdev,
2410                                                r1_bio->behind_master_bio,
2411                                                GFP_NOIO, &mddev->bio_set);
2412                 } else {
2413                         wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2414                                                GFP_NOIO, &mddev->bio_set);
2415                 }
2416
2417                 wbio->bi_opf = REQ_OP_WRITE;
2418                 wbio->bi_iter.bi_sector = r1_bio->sector;
2419                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2420
2421                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2422                 wbio->bi_iter.bi_sector += rdev->data_offset;
2423
2424                 if (submit_bio_wait(wbio) < 0)
2425                         /* failure! */
2426                         ok = rdev_set_badblocks(rdev, sector,
2427                                                 sectors, 0)
2428                                 && ok;
2429
2430                 bio_put(wbio);
2431                 sect_to_write -= sectors;
2432                 sector += sectors;
2433                 sectors = block_sectors;
2434         }
2435         return ok;
2436 }
2437
2438 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2439 {
2440         int m;
2441         int s = r1_bio->sectors;
2442         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2443                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2444                 struct bio *bio = r1_bio->bios[m];
2445                 if (bio->bi_end_io == NULL)
2446                         continue;
2447                 if (!bio->bi_status &&
2448                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2449                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2450                 }
2451                 if (bio->bi_status &&
2452                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2453                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2454                                 md_error(conf->mddev, rdev);
2455                 }
2456         }
2457         put_buf(r1_bio);
2458         md_done_sync(conf->mddev, s, 1);
2459 }
2460
2461 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2462 {
2463         int m, idx;
2464         bool fail = false;
2465
2466         for (m = 0; m < conf->raid_disks * 2 ; m++)
2467                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2468                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2469                         rdev_clear_badblocks(rdev,
2470                                              r1_bio->sector,
2471                                              r1_bio->sectors, 0);
2472                         rdev_dec_pending(rdev, conf->mddev);
2473                 } else if (r1_bio->bios[m] != NULL) {
2474                         /* This drive got a write error.  We need to
2475                          * narrow down and record precise write
2476                          * errors.
2477                          */
2478                         fail = true;
2479                         if (!narrow_write_error(r1_bio, m)) {
2480                                 md_error(conf->mddev,
2481                                          conf->mirrors[m].rdev);
2482                                 /* an I/O failed, we can't clear the bitmap */
2483                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2484                         }
2485                         rdev_dec_pending(conf->mirrors[m].rdev,
2486                                          conf->mddev);
2487                 }
2488         if (fail) {
2489                 spin_lock_irq(&conf->device_lock);
2490                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2491                 idx = sector_to_idx(r1_bio->sector);
2492                 atomic_inc(&conf->nr_queued[idx]);
2493                 spin_unlock_irq(&conf->device_lock);
2494                 /*
2495                  * In case freeze_array() is waiting for condition
2496                  * get_unqueued_pending() == extra to be true.
2497                  */
2498                 wake_up(&conf->wait_barrier);
2499                 md_wakeup_thread(conf->mddev->thread);
2500         } else {
2501                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2502                         close_write(r1_bio);
2503                 raid_end_bio_io(r1_bio);
2504         }
2505 }
2506
2507 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2508 {
2509         struct mddev *mddev = conf->mddev;
2510         struct bio *bio;
2511         struct md_rdev *rdev;
2512         sector_t sector;
2513
2514         clear_bit(R1BIO_ReadError, &r1_bio->state);
2515         /* we got a read error. Maybe the drive is bad.  Maybe just
2516          * the block and we can fix it.
2517          * We freeze all other IO, and try reading the block from
2518          * other devices.  When we find one, we re-write
2519          * and check it that fixes the read error.
2520          * This is all done synchronously while the array is
2521          * frozen
2522          */
2523
2524         bio = r1_bio->bios[r1_bio->read_disk];
2525         bio_put(bio);
2526         r1_bio->bios[r1_bio->read_disk] = NULL;
2527
2528         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2529         if (mddev->ro == 0
2530             && !test_bit(FailFast, &rdev->flags)) {
2531                 freeze_array(conf, 1);
2532                 fix_read_error(conf, r1_bio->read_disk,
2533                                r1_bio->sector, r1_bio->sectors);
2534                 unfreeze_array(conf);
2535         } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2536                 md_error(mddev, rdev);
2537         } else {
2538                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2539         }
2540
2541         rdev_dec_pending(rdev, conf->mddev);
2542         sector = r1_bio->sector;
2543         bio = r1_bio->master_bio;
2544
2545         /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2546         r1_bio->state = 0;
2547         raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2548         allow_barrier(conf, sector);
2549 }
2550
2551 static void raid1d(struct md_thread *thread)
2552 {
2553         struct mddev *mddev = thread->mddev;
2554         struct r1bio *r1_bio;
2555         unsigned long flags;
2556         struct r1conf *conf = mddev->private;
2557         struct list_head *head = &conf->retry_list;
2558         struct blk_plug plug;
2559         int idx;
2560
2561         md_check_recovery(mddev);
2562
2563         if (!list_empty_careful(&conf->bio_end_io_list) &&
2564             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2565                 LIST_HEAD(tmp);
2566                 spin_lock_irqsave(&conf->device_lock, flags);
2567                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2568                         list_splice_init(&conf->bio_end_io_list, &tmp);
2569                 spin_unlock_irqrestore(&conf->device_lock, flags);
2570                 while (!list_empty(&tmp)) {
2571                         r1_bio = list_first_entry(&tmp, struct r1bio,
2572                                                   retry_list);
2573                         list_del(&r1_bio->retry_list);
2574                         idx = sector_to_idx(r1_bio->sector);
2575                         atomic_dec(&conf->nr_queued[idx]);
2576                         if (mddev->degraded)
2577                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2578                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2579                                 close_write(r1_bio);
2580                         raid_end_bio_io(r1_bio);
2581                 }
2582         }
2583
2584         blk_start_plug(&plug);
2585         for (;;) {
2586
2587                 flush_pending_writes(conf);
2588
2589                 spin_lock_irqsave(&conf->device_lock, flags);
2590                 if (list_empty(head)) {
2591                         spin_unlock_irqrestore(&conf->device_lock, flags);
2592                         break;
2593                 }
2594                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2595                 list_del(head->prev);
2596                 idx = sector_to_idx(r1_bio->sector);
2597                 atomic_dec(&conf->nr_queued[idx]);
2598                 spin_unlock_irqrestore(&conf->device_lock, flags);
2599
2600                 mddev = r1_bio->mddev;
2601                 conf = mddev->private;
2602                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2603                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2604                             test_bit(R1BIO_WriteError, &r1_bio->state))
2605                                 handle_sync_write_finished(conf, r1_bio);
2606                         else
2607                                 sync_request_write(mddev, r1_bio);
2608                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2609                            test_bit(R1BIO_WriteError, &r1_bio->state))
2610                         handle_write_finished(conf, r1_bio);
2611                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2612                         handle_read_error(conf, r1_bio);
2613                 else
2614                         WARN_ON_ONCE(1);
2615
2616                 cond_resched();
2617                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2618                         md_check_recovery(mddev);
2619         }
2620         blk_finish_plug(&plug);
2621 }
2622
2623 static int init_resync(struct r1conf *conf)
2624 {
2625         int buffs;
2626
2627         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2628         BUG_ON(mempool_initialized(&conf->r1buf_pool));
2629
2630         return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2631                             r1buf_pool_free, conf->poolinfo);
2632 }
2633
2634 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2635 {
2636         struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2637         struct resync_pages *rps;
2638         struct bio *bio;
2639         int i;
2640
2641         for (i = conf->poolinfo->raid_disks; i--; ) {
2642                 bio = r1bio->bios[i];
2643                 rps = bio->bi_private;
2644                 bio_reset(bio, NULL, 0);
2645                 bio->bi_private = rps;
2646         }
2647         r1bio->master_bio = NULL;
2648         return r1bio;
2649 }
2650
2651 /*
2652  * perform a "sync" on one "block"
2653  *
2654  * We need to make sure that no normal I/O request - particularly write
2655  * requests - conflict with active sync requests.
2656  *
2657  * This is achieved by tracking pending requests and a 'barrier' concept
2658  * that can be installed to exclude normal IO requests.
2659  */
2660
2661 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2662                                    int *skipped)
2663 {
2664         struct r1conf *conf = mddev->private;
2665         struct r1bio *r1_bio;
2666         struct bio *bio;
2667         sector_t max_sector, nr_sectors;
2668         int disk = -1;
2669         int i;
2670         int wonly = -1;
2671         int write_targets = 0, read_targets = 0;
2672         sector_t sync_blocks;
2673         int still_degraded = 0;
2674         int good_sectors = RESYNC_SECTORS;
2675         int min_bad = 0; /* number of sectors that are bad in all devices */
2676         int idx = sector_to_idx(sector_nr);
2677         int page_idx = 0;
2678
2679         if (!mempool_initialized(&conf->r1buf_pool))
2680                 if (init_resync(conf))
2681                         return 0;
2682
2683         max_sector = mddev->dev_sectors;
2684         if (sector_nr >= max_sector) {
2685                 /* If we aborted, we need to abort the
2686                  * sync on the 'current' bitmap chunk (there will
2687                  * only be one in raid1 resync.
2688                  * We can find the current addess in mddev->curr_resync
2689                  */
2690                 if (mddev->curr_resync < max_sector) /* aborted */
2691                         md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2692                                            &sync_blocks, 1);
2693                 else /* completed sync */
2694                         conf->fullsync = 0;
2695
2696                 md_bitmap_close_sync(mddev->bitmap);
2697                 close_sync(conf);
2698
2699                 if (mddev_is_clustered(mddev)) {
2700                         conf->cluster_sync_low = 0;
2701                         conf->cluster_sync_high = 0;
2702                 }
2703                 return 0;
2704         }
2705
2706         if (mddev->bitmap == NULL &&
2707             mddev->recovery_cp == MaxSector &&
2708             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2709             conf->fullsync == 0) {
2710                 *skipped = 1;
2711                 return max_sector - sector_nr;
2712         }
2713         /* before building a request, check if we can skip these blocks..
2714          * This call the bitmap_start_sync doesn't actually record anything
2715          */
2716         if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2717             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2718                 /* We can skip this block, and probably several more */
2719                 *skipped = 1;
2720                 return sync_blocks;
2721         }
2722
2723         /*
2724          * If there is non-resync activity waiting for a turn, then let it
2725          * though before starting on this new sync request.
2726          */
2727         if (atomic_read(&conf->nr_waiting[idx]))
2728                 schedule_timeout_uninterruptible(1);
2729
2730         /* we are incrementing sector_nr below. To be safe, we check against
2731          * sector_nr + two times RESYNC_SECTORS
2732          */
2733
2734         md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2735                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2736
2737
2738         if (raise_barrier(conf, sector_nr))
2739                 return 0;
2740
2741         r1_bio = raid1_alloc_init_r1buf(conf);
2742
2743         rcu_read_lock();
2744         /*
2745          * If we get a correctably read error during resync or recovery,
2746          * we might want to read from a different device.  So we
2747          * flag all drives that could conceivably be read from for READ,
2748          * and any others (which will be non-In_sync devices) for WRITE.
2749          * If a read fails, we try reading from something else for which READ
2750          * is OK.
2751          */
2752
2753         r1_bio->mddev = mddev;
2754         r1_bio->sector = sector_nr;
2755         r1_bio->state = 0;
2756         set_bit(R1BIO_IsSync, &r1_bio->state);
2757         /* make sure good_sectors won't go across barrier unit boundary */
2758         good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2759
2760         for (i = 0; i < conf->raid_disks * 2; i++) {
2761                 struct md_rdev *rdev;
2762                 bio = r1_bio->bios[i];
2763
2764                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2765                 if (rdev == NULL ||
2766                     test_bit(Faulty, &rdev->flags)) {
2767                         if (i < conf->raid_disks)
2768                                 still_degraded = 1;
2769                 } else if (!test_bit(In_sync, &rdev->flags)) {
2770                         bio->bi_opf = REQ_OP_WRITE;
2771                         bio->bi_end_io = end_sync_write;
2772                         write_targets ++;
2773                 } else {
2774                         /* may need to read from here */
2775                         sector_t first_bad = MaxSector;
2776                         int bad_sectors;
2777
2778                         if (is_badblock(rdev, sector_nr, good_sectors,
2779                                         &first_bad, &bad_sectors)) {
2780                                 if (first_bad > sector_nr)
2781                                         good_sectors = first_bad - sector_nr;
2782                                 else {
2783                                         bad_sectors -= (sector_nr - first_bad);
2784                                         if (min_bad == 0 ||
2785                                             min_bad > bad_sectors)
2786                                                 min_bad = bad_sectors;
2787                                 }
2788                         }
2789                         if (sector_nr < first_bad) {
2790                                 if (test_bit(WriteMostly, &rdev->flags)) {
2791                                         if (wonly < 0)
2792                                                 wonly = i;
2793                                 } else {
2794                                         if (disk < 0)
2795                                                 disk = i;
2796                                 }
2797                                 bio->bi_opf = REQ_OP_READ;
2798                                 bio->bi_end_io = end_sync_read;
2799                                 read_targets++;
2800                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2801                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2802                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2803                                 /*
2804                                  * The device is suitable for reading (InSync),
2805                                  * but has bad block(s) here. Let's try to correct them,
2806                                  * if we are doing resync or repair. Otherwise, leave
2807                                  * this device alone for this sync request.
2808                                  */
2809                                 bio->bi_opf = REQ_OP_WRITE;
2810                                 bio->bi_end_io = end_sync_write;
2811                                 write_targets++;
2812                         }
2813                 }
2814                 if (rdev && bio->bi_end_io) {
2815                         atomic_inc(&rdev->nr_pending);
2816                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2817                         bio_set_dev(bio, rdev->bdev);
2818                         if (test_bit(FailFast, &rdev->flags))
2819                                 bio->bi_opf |= MD_FAILFAST;
2820                 }
2821         }
2822         rcu_read_unlock();
2823         if (disk < 0)
2824                 disk = wonly;
2825         r1_bio->read_disk = disk;
2826
2827         if (read_targets == 0 && min_bad > 0) {
2828                 /* These sectors are bad on all InSync devices, so we
2829                  * need to mark them bad on all write targets
2830                  */
2831                 int ok = 1;
2832                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2833                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2834                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2835                                 ok = rdev_set_badblocks(rdev, sector_nr,
2836                                                         min_bad, 0
2837                                         ) && ok;
2838                         }
2839                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2840                 *skipped = 1;
2841                 put_buf(r1_bio);
2842
2843                 if (!ok) {
2844                         /* Cannot record the badblocks, so need to
2845                          * abort the resync.
2846                          * If there are multiple read targets, could just
2847                          * fail the really bad ones ???
2848                          */
2849                         conf->recovery_disabled = mddev->recovery_disabled;
2850                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2851                         return 0;
2852                 } else
2853                         return min_bad;
2854
2855         }
2856         if (min_bad > 0 && min_bad < good_sectors) {
2857                 /* only resync enough to reach the next bad->good
2858                  * transition */
2859                 good_sectors = min_bad;
2860         }
2861
2862         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2863                 /* extra read targets are also write targets */
2864                 write_targets += read_targets-1;
2865
2866         if (write_targets == 0 || read_targets == 0) {
2867                 /* There is nowhere to write, so all non-sync
2868                  * drives must be failed - so we are finished
2869                  */
2870                 sector_t rv;
2871                 if (min_bad > 0)
2872                         max_sector = sector_nr + min_bad;
2873                 rv = max_sector - sector_nr;
2874                 *skipped = 1;
2875                 put_buf(r1_bio);
2876                 return rv;
2877         }
2878
2879         if (max_sector > mddev->resync_max)
2880                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2881         if (max_sector > sector_nr + good_sectors)
2882                 max_sector = sector_nr + good_sectors;
2883         nr_sectors = 0;
2884         sync_blocks = 0;
2885         do {
2886                 struct page *page;
2887                 int len = PAGE_SIZE;
2888                 if (sector_nr + (len>>9) > max_sector)
2889                         len = (max_sector - sector_nr) << 9;
2890                 if (len == 0)
2891                         break;
2892                 if (sync_blocks == 0) {
2893                         if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2894                                                   &sync_blocks, still_degraded) &&
2895                             !conf->fullsync &&
2896                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2897                                 break;
2898                         if ((len >> 9) > sync_blocks)
2899                                 len = sync_blocks<<9;
2900                 }
2901
2902                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2903                         struct resync_pages *rp;
2904
2905                         bio = r1_bio->bios[i];
2906                         rp = get_resync_pages(bio);
2907                         if (bio->bi_end_io) {
2908                                 page = resync_fetch_page(rp, page_idx);
2909
2910                                 /*
2911                                  * won't fail because the vec table is big
2912                                  * enough to hold all these pages
2913                                  */
2914                                 __bio_add_page(bio, page, len, 0);
2915                         }
2916                 }
2917                 nr_sectors += len>>9;
2918                 sector_nr += len>>9;
2919                 sync_blocks -= (len>>9);
2920         } while (++page_idx < RESYNC_PAGES);
2921
2922         r1_bio->sectors = nr_sectors;
2923
2924         if (mddev_is_clustered(mddev) &&
2925                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2926                 conf->cluster_sync_low = mddev->curr_resync_completed;
2927                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2928                 /* Send resync message */
2929                 md_cluster_ops->resync_info_update(mddev,
2930                                 conf->cluster_sync_low,
2931                                 conf->cluster_sync_high);
2932         }
2933
2934         /* For a user-requested sync, we read all readable devices and do a
2935          * compare
2936          */
2937         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2938                 atomic_set(&r1_bio->remaining, read_targets);
2939                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2940                         bio = r1_bio->bios[i];
2941                         if (bio->bi_end_io == end_sync_read) {
2942                                 read_targets--;
2943                                 md_sync_acct_bio(bio, nr_sectors);
2944                                 if (read_targets == 1)
2945                                         bio->bi_opf &= ~MD_FAILFAST;
2946                                 submit_bio_noacct(bio);
2947                         }
2948                 }
2949         } else {
2950                 atomic_set(&r1_bio->remaining, 1);
2951                 bio = r1_bio->bios[r1_bio->read_disk];
2952                 md_sync_acct_bio(bio, nr_sectors);
2953                 if (read_targets == 1)
2954                         bio->bi_opf &= ~MD_FAILFAST;
2955                 submit_bio_noacct(bio);
2956         }
2957         return nr_sectors;
2958 }
2959
2960 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2961 {
2962         if (sectors)
2963                 return sectors;
2964
2965         return mddev->dev_sectors;
2966 }
2967
2968 static struct r1conf *setup_conf(struct mddev *mddev)
2969 {
2970         struct r1conf *conf;
2971         int i;
2972         struct raid1_info *disk;
2973         struct md_rdev *rdev;
2974         int err = -ENOMEM;
2975
2976         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2977         if (!conf)
2978                 goto abort;
2979
2980         conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2981                                    sizeof(atomic_t), GFP_KERNEL);
2982         if (!conf->nr_pending)
2983                 goto abort;
2984
2985         conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2986                                    sizeof(atomic_t), GFP_KERNEL);
2987         if (!conf->nr_waiting)
2988                 goto abort;
2989
2990         conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2991                                   sizeof(atomic_t), GFP_KERNEL);
2992         if (!conf->nr_queued)
2993                 goto abort;
2994
2995         conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2996                                 sizeof(atomic_t), GFP_KERNEL);
2997         if (!conf->barrier)
2998                 goto abort;
2999
3000         conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3001                                             mddev->raid_disks, 2),
3002                                 GFP_KERNEL);
3003         if (!conf->mirrors)
3004                 goto abort;
3005
3006         conf->tmppage = alloc_page(GFP_KERNEL);
3007         if (!conf->tmppage)
3008                 goto abort;
3009
3010         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3011         if (!conf->poolinfo)
3012                 goto abort;
3013         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3014         err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3015                            rbio_pool_free, conf->poolinfo);
3016         if (err)
3017                 goto abort;
3018
3019         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3020         if (err)
3021                 goto abort;
3022
3023         conf->poolinfo->mddev = mddev;
3024
3025         err = -EINVAL;
3026         spin_lock_init(&conf->device_lock);
3027         rdev_for_each(rdev, mddev) {
3028                 int disk_idx = rdev->raid_disk;
3029                 if (disk_idx >= mddev->raid_disks
3030                     || disk_idx < 0)
3031                         continue;
3032                 if (test_bit(Replacement, &rdev->flags))
3033                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
3034                 else
3035                         disk = conf->mirrors + disk_idx;
3036
3037                 if (disk->rdev)
3038                         goto abort;
3039                 disk->rdev = rdev;
3040                 disk->head_position = 0;
3041                 disk->seq_start = MaxSector;
3042         }
3043         conf->raid_disks = mddev->raid_disks;
3044         conf->mddev = mddev;
3045         INIT_LIST_HEAD(&conf->retry_list);
3046         INIT_LIST_HEAD(&conf->bio_end_io_list);
3047
3048         spin_lock_init(&conf->resync_lock);
3049         init_waitqueue_head(&conf->wait_barrier);
3050
3051         bio_list_init(&conf->pending_bio_list);
3052         conf->recovery_disabled = mddev->recovery_disabled - 1;
3053
3054         err = -EIO;
3055         for (i = 0; i < conf->raid_disks * 2; i++) {
3056
3057                 disk = conf->mirrors + i;
3058
3059                 if (i < conf->raid_disks &&
3060                     disk[conf->raid_disks].rdev) {
3061                         /* This slot has a replacement. */
3062                         if (!disk->rdev) {
3063                                 /* No original, just make the replacement
3064                                  * a recovering spare
3065                                  */
3066                                 disk->rdev =
3067                                         disk[conf->raid_disks].rdev;
3068                                 disk[conf->raid_disks].rdev = NULL;
3069                         } else if (!test_bit(In_sync, &disk->rdev->flags))
3070                                 /* Original is not in_sync - bad */
3071                                 goto abort;
3072                 }
3073
3074                 if (!disk->rdev ||
3075                     !test_bit(In_sync, &disk->rdev->flags)) {
3076                         disk->head_position = 0;
3077                         if (disk->rdev &&
3078                             (disk->rdev->saved_raid_disk < 0))
3079                                 conf->fullsync = 1;
3080                 }
3081         }
3082
3083         err = -ENOMEM;
3084         rcu_assign_pointer(conf->thread,
3085                            md_register_thread(raid1d, mddev, "raid1"));
3086         if (!conf->thread)
3087                 goto abort;
3088
3089         return conf;
3090
3091  abort:
3092         if (conf) {
3093                 mempool_exit(&conf->r1bio_pool);
3094                 kfree(conf->mirrors);
3095                 safe_put_page(conf->tmppage);
3096                 kfree(conf->poolinfo);
3097                 kfree(conf->nr_pending);
3098                 kfree(conf->nr_waiting);
3099                 kfree(conf->nr_queued);
3100                 kfree(conf->barrier);
3101                 bioset_exit(&conf->bio_split);
3102                 kfree(conf);
3103         }
3104         return ERR_PTR(err);
3105 }
3106
3107 static void raid1_free(struct mddev *mddev, void *priv);
3108 static int raid1_run(struct mddev *mddev)
3109 {
3110         struct r1conf *conf;
3111         int i;
3112         struct md_rdev *rdev;
3113         int ret;
3114
3115         if (mddev->level != 1) {
3116                 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3117                         mdname(mddev), mddev->level);
3118                 return -EIO;
3119         }
3120         if (mddev->reshape_position != MaxSector) {
3121                 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3122                         mdname(mddev));
3123                 return -EIO;
3124         }
3125         if (mddev_init_writes_pending(mddev) < 0)
3126                 return -ENOMEM;
3127         /*
3128          * copy the already verified devices into our private RAID1
3129          * bookkeeping area. [whatever we allocate in run(),
3130          * should be freed in raid1_free()]
3131          */
3132         if (mddev->private == NULL)
3133                 conf = setup_conf(mddev);
3134         else
3135                 conf = mddev->private;
3136
3137         if (IS_ERR(conf))
3138                 return PTR_ERR(conf);
3139
3140         if (mddev->queue)
3141                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3142
3143         rdev_for_each(rdev, mddev) {
3144                 if (!mddev->gendisk)
3145                         continue;
3146                 disk_stack_limits(mddev->gendisk, rdev->bdev,
3147                                   rdev->data_offset << 9);
3148         }
3149
3150         mddev->degraded = 0;
3151         for (i = 0; i < conf->raid_disks; i++)
3152                 if (conf->mirrors[i].rdev == NULL ||
3153                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3154                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3155                         mddev->degraded++;
3156         /*
3157          * RAID1 needs at least one disk in active
3158          */
3159         if (conf->raid_disks - mddev->degraded < 1) {
3160                 md_unregister_thread(mddev, &conf->thread);
3161                 ret = -EINVAL;
3162                 goto abort;
3163         }
3164
3165         if (conf->raid_disks - mddev->degraded == 1)
3166                 mddev->recovery_cp = MaxSector;
3167
3168         if (mddev->recovery_cp != MaxSector)
3169                 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3170                         mdname(mddev));
3171         pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3172                 mdname(mddev), mddev->raid_disks - mddev->degraded,
3173                 mddev->raid_disks);
3174
3175         /*
3176          * Ok, everything is just fine now
3177          */
3178         rcu_assign_pointer(mddev->thread, conf->thread);
3179         rcu_assign_pointer(conf->thread, NULL);
3180         mddev->private = conf;
3181         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3182
3183         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3184
3185         ret = md_integrity_register(mddev);
3186         if (ret) {
3187                 md_unregister_thread(mddev, &mddev->thread);
3188                 goto abort;
3189         }
3190         return 0;
3191
3192 abort:
3193         raid1_free(mddev, conf);
3194         return ret;
3195 }
3196
3197 static void raid1_free(struct mddev *mddev, void *priv)
3198 {
3199         struct r1conf *conf = priv;
3200
3201         mempool_exit(&conf->r1bio_pool);
3202         kfree(conf->mirrors);
3203         safe_put_page(conf->tmppage);
3204         kfree(conf->poolinfo);
3205         kfree(conf->nr_pending);
3206         kfree(conf->nr_waiting);
3207         kfree(conf->nr_queued);
3208         kfree(conf->barrier);
3209         bioset_exit(&conf->bio_split);
3210         kfree(conf);
3211 }
3212
3213 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3214 {
3215         /* no resync is happening, and there is enough space
3216          * on all devices, so we can resize.
3217          * We need to make sure resync covers any new space.
3218          * If the array is shrinking we should possibly wait until
3219          * any io in the removed space completes, but it hardly seems
3220          * worth it.
3221          */
3222         sector_t newsize = raid1_size(mddev, sectors, 0);
3223         if (mddev->external_size &&
3224             mddev->array_sectors > newsize)
3225                 return -EINVAL;
3226         if (mddev->bitmap) {
3227                 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3228                 if (ret)
3229                         return ret;
3230         }
3231         md_set_array_sectors(mddev, newsize);
3232         if (sectors > mddev->dev_sectors &&
3233             mddev->recovery_cp > mddev->dev_sectors) {
3234                 mddev->recovery_cp = mddev->dev_sectors;
3235                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3236         }
3237         mddev->dev_sectors = sectors;
3238         mddev->resync_max_sectors = sectors;
3239         return 0;
3240 }
3241
3242 static int raid1_reshape(struct mddev *mddev)
3243 {
3244         /* We need to:
3245          * 1/ resize the r1bio_pool
3246          * 2/ resize conf->mirrors
3247          *
3248          * We allocate a new r1bio_pool if we can.
3249          * Then raise a device barrier and wait until all IO stops.
3250          * Then resize conf->mirrors and swap in the new r1bio pool.
3251          *
3252          * At the same time, we "pack" the devices so that all the missing
3253          * devices have the higher raid_disk numbers.
3254          */
3255         mempool_t newpool, oldpool;
3256         struct pool_info *newpoolinfo;
3257         struct raid1_info *newmirrors;
3258         struct r1conf *conf = mddev->private;
3259         int cnt, raid_disks;
3260         unsigned long flags;
3261         int d, d2;
3262         int ret;
3263
3264         memset(&newpool, 0, sizeof(newpool));
3265         memset(&oldpool, 0, sizeof(oldpool));
3266
3267         /* Cannot change chunk_size, layout, or level */
3268         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3269             mddev->layout != mddev->new_layout ||
3270             mddev->level != mddev->new_level) {
3271                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3272                 mddev->new_layout = mddev->layout;
3273                 mddev->new_level = mddev->level;
3274                 return -EINVAL;
3275         }
3276
3277         if (!mddev_is_clustered(mddev))
3278                 md_allow_write(mddev);
3279
3280         raid_disks = mddev->raid_disks + mddev->delta_disks;
3281
3282         if (raid_disks < conf->raid_disks) {
3283                 cnt=0;
3284                 for (d= 0; d < conf->raid_disks; d++)
3285                         if (conf->mirrors[d].rdev)
3286                                 cnt++;
3287                 if (cnt > raid_disks)
3288                         return -EBUSY;
3289         }
3290
3291         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3292         if (!newpoolinfo)
3293                 return -ENOMEM;
3294         newpoolinfo->mddev = mddev;
3295         newpoolinfo->raid_disks = raid_disks * 2;
3296
3297         ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3298                            rbio_pool_free, newpoolinfo);
3299         if (ret) {
3300                 kfree(newpoolinfo);
3301                 return ret;
3302         }
3303         newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3304                                          raid_disks, 2),
3305                              GFP_KERNEL);
3306         if (!newmirrors) {
3307                 kfree(newpoolinfo);
3308                 mempool_exit(&newpool);
3309                 return -ENOMEM;
3310         }
3311
3312         freeze_array(conf, 0);
3313
3314         /* ok, everything is stopped */
3315         oldpool = conf->r1bio_pool;
3316         conf->r1bio_pool = newpool;
3317
3318         for (d = d2 = 0; d < conf->raid_disks; d++) {
3319                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3320                 if (rdev && rdev->raid_disk != d2) {
3321                         sysfs_unlink_rdev(mddev, rdev);
3322                         rdev->raid_disk = d2;
3323                         sysfs_unlink_rdev(mddev, rdev);
3324                         if (sysfs_link_rdev(mddev, rdev))
3325                                 pr_warn("md/raid1:%s: cannot register rd%d\n",
3326                                         mdname(mddev), rdev->raid_disk);
3327                 }
3328                 if (rdev)
3329                         newmirrors[d2++].rdev = rdev;
3330         }
3331         kfree(conf->mirrors);
3332         conf->mirrors = newmirrors;
3333         kfree(conf->poolinfo);
3334         conf->poolinfo = newpoolinfo;
3335
3336         spin_lock_irqsave(&conf->device_lock, flags);
3337         mddev->degraded += (raid_disks - conf->raid_disks);
3338         spin_unlock_irqrestore(&conf->device_lock, flags);
3339         conf->raid_disks = mddev->raid_disks = raid_disks;
3340         mddev->delta_disks = 0;
3341
3342         unfreeze_array(conf);
3343
3344         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3345         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3346         md_wakeup_thread(mddev->thread);
3347
3348         mempool_exit(&oldpool);
3349         return 0;
3350 }
3351
3352 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3353 {
3354         struct r1conf *conf = mddev->private;
3355
3356         if (quiesce)
3357                 freeze_array(conf, 0);
3358         else
3359                 unfreeze_array(conf);
3360 }
3361
3362 static void *raid1_takeover(struct mddev *mddev)
3363 {
3364         /* raid1 can take over:
3365          *  raid5 with 2 devices, any layout or chunk size
3366          */
3367         if (mddev->level == 5 && mddev->raid_disks == 2) {
3368                 struct r1conf *conf;
3369                 mddev->new_level = 1;
3370                 mddev->new_layout = 0;
3371                 mddev->new_chunk_sectors = 0;
3372                 conf = setup_conf(mddev);
3373                 if (!IS_ERR(conf)) {
3374                         /* Array must appear to be quiesced */
3375                         conf->array_frozen = 1;
3376                         mddev_clear_unsupported_flags(mddev,
3377                                 UNSUPPORTED_MDDEV_FLAGS);
3378                 }
3379                 return conf;
3380         }
3381         return ERR_PTR(-EINVAL);
3382 }
3383
3384 static struct md_personality raid1_personality =
3385 {
3386         .name           = "raid1",
3387         .level          = 1,
3388         .owner          = THIS_MODULE,
3389         .make_request   = raid1_make_request,
3390         .run            = raid1_run,
3391         .free           = raid1_free,
3392         .status         = raid1_status,
3393         .error_handler  = raid1_error,
3394         .hot_add_disk   = raid1_add_disk,
3395         .hot_remove_disk= raid1_remove_disk,
3396         .spare_active   = raid1_spare_active,
3397         .sync_request   = raid1_sync_request,
3398         .resize         = raid1_resize,
3399         .size           = raid1_size,
3400         .check_reshape  = raid1_reshape,
3401         .quiesce        = raid1_quiesce,
3402         .takeover       = raid1_takeover,
3403 };
3404
3405 static int __init raid_init(void)
3406 {
3407         return register_md_personality(&raid1_personality);
3408 }
3409
3410 static void raid_exit(void)
3411 {
3412         unregister_md_personality(&raid1_personality);
3413 }
3414
3415 module_init(raid_init);
3416 module_exit(raid_exit);
3417 MODULE_LICENSE("GPL");
3418 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3419 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3420 MODULE_ALIAS("md-raid1");
3421 MODULE_ALIAS("md-level-1");