1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * raid1.c : Multiple Devices driver for Linux
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
9 * RAID-1 management functions.
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
34 #include <trace/events/block.h>
38 #include "md-bitmap.h"
40 #define UNSUPPORTED_MDDEV_FLAGS \
41 ((1L << MD_HAS_JOURNAL) | \
42 (1L << MD_JOURNAL_CLEAN) | \
43 (1L << MD_HAS_PPL) | \
44 (1L << MD_HAS_MULTIPLE_PPLS))
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
49 #define raid1_log(md, fmt, args...) \
50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 START, LAST, static inline, raid1_rb);
59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 struct serial_info *si, int idx)
64 sector_t lo = r1_bio->sector;
65 sector_t hi = lo + r1_bio->sectors;
66 struct serial_in_rdev *serial = &rdev->serial[idx];
68 spin_lock_irqsave(&serial->serial_lock, flags);
69 /* collision happened */
70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
75 raid1_rb_insert(si, &serial->serial_rb);
77 spin_unlock_irqrestore(&serial->serial_lock, flags);
82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
84 struct mddev *mddev = rdev->mddev;
85 struct serial_info *si;
86 int idx = sector_to_idx(r1_bio->sector);
87 struct serial_in_rdev *serial = &rdev->serial[idx];
89 if (WARN_ON(!mddev->serial_info_pool))
91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 wait_event(serial->serial_io_wait,
93 check_and_add_serial(rdev, r1_bio, si, idx) == 0);
96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
98 struct serial_info *si;
101 struct mddev *mddev = rdev->mddev;
102 int idx = sector_to_idx(lo);
103 struct serial_in_rdev *serial = &rdev->serial[idx];
105 spin_lock_irqsave(&serial->serial_lock, flags);
106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 si; si = raid1_rb_iter_next(si, lo, hi)) {
108 if (si->start == lo && si->last == hi) {
109 raid1_rb_remove(si, &serial->serial_rb);
110 mempool_free(si, mddev->serial_info_pool);
116 WARN(1, "The write IO is not recorded for serialization\n");
117 spin_unlock_irqrestore(&serial->serial_lock, flags);
118 wake_up(&serial->serial_io_wait);
122 * for resync bio, r1bio pointer can be retrieved from the per-bio
123 * 'struct resync_pages'.
125 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
127 return get_resync_pages(bio)->raid_bio;
130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
132 struct pool_info *pi = data;
133 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
135 /* allocate a r1bio with room for raid_disks entries in the bios array */
136 return kzalloc(size, gfp_flags);
139 #define RESYNC_DEPTH 32
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
148 struct pool_info *pi = data;
149 struct r1bio *r1_bio;
153 struct resync_pages *rps;
155 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
165 * Allocate bios : 1 for reading, n-1 for writing
167 for (j = pi->raid_disks ; j-- ; ) {
168 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
171 r1_bio->bios[j] = bio;
174 * Allocate RESYNC_PAGES data pages and attach them to
176 * If this is a user-requested check/repair, allocate
177 * RESYNC_PAGES for each bio.
179 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
180 need_pages = pi->raid_disks;
183 for (j = 0; j < pi->raid_disks; j++) {
184 struct resync_pages *rp = &rps[j];
186 bio = r1_bio->bios[j];
188 if (j < need_pages) {
189 if (resync_alloc_pages(rp, gfp_flags))
192 memcpy(rp, &rps[0], sizeof(*rp));
193 resync_get_all_pages(rp);
196 rp->raid_bio = r1_bio;
197 bio->bi_private = rp;
200 r1_bio->master_bio = NULL;
206 resync_free_pages(&rps[j]);
209 while (++j < pi->raid_disks)
210 bio_put(r1_bio->bios[j]);
214 rbio_pool_free(r1_bio, data);
218 static void r1buf_pool_free(void *__r1_bio, void *data)
220 struct pool_info *pi = data;
222 struct r1bio *r1bio = __r1_bio;
223 struct resync_pages *rp = NULL;
225 for (i = pi->raid_disks; i--; ) {
226 rp = get_resync_pages(r1bio->bios[i]);
227 resync_free_pages(rp);
228 bio_put(r1bio->bios[i]);
231 /* resync pages array stored in the 1st bio's .bi_private */
234 rbio_pool_free(r1bio, data);
237 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
241 for (i = 0; i < conf->raid_disks * 2; i++) {
242 struct bio **bio = r1_bio->bios + i;
243 if (!BIO_SPECIAL(*bio))
249 static void free_r1bio(struct r1bio *r1_bio)
251 struct r1conf *conf = r1_bio->mddev->private;
253 put_all_bios(conf, r1_bio);
254 mempool_free(r1_bio, &conf->r1bio_pool);
257 static void put_buf(struct r1bio *r1_bio)
259 struct r1conf *conf = r1_bio->mddev->private;
260 sector_t sect = r1_bio->sector;
263 for (i = 0; i < conf->raid_disks * 2; i++) {
264 struct bio *bio = r1_bio->bios[i];
266 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
269 mempool_free(r1_bio, &conf->r1buf_pool);
271 lower_barrier(conf, sect);
274 static void reschedule_retry(struct r1bio *r1_bio)
277 struct mddev *mddev = r1_bio->mddev;
278 struct r1conf *conf = mddev->private;
281 idx = sector_to_idx(r1_bio->sector);
282 spin_lock_irqsave(&conf->device_lock, flags);
283 list_add(&r1_bio->retry_list, &conf->retry_list);
284 atomic_inc(&conf->nr_queued[idx]);
285 spin_unlock_irqrestore(&conf->device_lock, flags);
287 wake_up(&conf->wait_barrier);
288 md_wakeup_thread(mddev->thread);
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
296 static void call_bio_endio(struct r1bio *r1_bio)
298 struct bio *bio = r1_bio->master_bio;
300 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
301 bio->bi_status = BLK_STS_IOERR;
303 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
304 bio_end_io_acct(bio, r1_bio->start_time);
308 static void raid_end_bio_io(struct r1bio *r1_bio)
310 struct bio *bio = r1_bio->master_bio;
311 struct r1conf *conf = r1_bio->mddev->private;
313 /* if nobody has done the final endio yet, do it now */
314 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
315 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
316 (bio_data_dir(bio) == WRITE) ? "write" : "read",
317 (unsigned long long) bio->bi_iter.bi_sector,
318 (unsigned long long) bio_end_sector(bio) - 1);
320 call_bio_endio(r1_bio);
323 * Wake up any possible resync thread that waits for the device
324 * to go idle. All I/Os, even write-behind writes, are done.
326 allow_barrier(conf, r1_bio->sector);
332 * Update disk head position estimator based on IRQ completion info.
334 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
336 struct r1conf *conf = r1_bio->mddev->private;
338 conf->mirrors[disk].head_position =
339 r1_bio->sector + (r1_bio->sectors);
343 * Find the disk number which triggered given bio
345 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
348 struct r1conf *conf = r1_bio->mddev->private;
349 int raid_disks = conf->raid_disks;
351 for (mirror = 0; mirror < raid_disks * 2; mirror++)
352 if (r1_bio->bios[mirror] == bio)
355 BUG_ON(mirror == raid_disks * 2);
356 update_head_pos(mirror, r1_bio);
361 static void raid1_end_read_request(struct bio *bio)
363 int uptodate = !bio->bi_status;
364 struct r1bio *r1_bio = bio->bi_private;
365 struct r1conf *conf = r1_bio->mddev->private;
366 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
369 * this branch is our 'one mirror IO has finished' event handler:
371 update_head_pos(r1_bio->read_disk, r1_bio);
374 set_bit(R1BIO_Uptodate, &r1_bio->state);
375 else if (test_bit(FailFast, &rdev->flags) &&
376 test_bit(R1BIO_FailFast, &r1_bio->state))
377 /* This was a fail-fast read so we definitely
381 /* If all other devices have failed, we want to return
382 * the error upwards rather than fail the last device.
383 * Here we redefine "uptodate" to mean "Don't want to retry"
386 spin_lock_irqsave(&conf->device_lock, flags);
387 if (r1_bio->mddev->degraded == conf->raid_disks ||
388 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
389 test_bit(In_sync, &rdev->flags)))
391 spin_unlock_irqrestore(&conf->device_lock, flags);
395 raid_end_bio_io(r1_bio);
396 rdev_dec_pending(rdev, conf->mddev);
401 char b[BDEVNAME_SIZE];
402 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
404 bdevname(rdev->bdev, b),
405 (unsigned long long)r1_bio->sector);
406 set_bit(R1BIO_ReadError, &r1_bio->state);
407 reschedule_retry(r1_bio);
408 /* don't drop the reference on read_disk yet */
412 static void close_write(struct r1bio *r1_bio)
414 /* it really is the end of this request */
415 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
416 bio_free_pages(r1_bio->behind_master_bio);
417 bio_put(r1_bio->behind_master_bio);
418 r1_bio->behind_master_bio = NULL;
420 /* clear the bitmap if all writes complete successfully */
421 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
423 !test_bit(R1BIO_Degraded, &r1_bio->state),
424 test_bit(R1BIO_BehindIO, &r1_bio->state));
425 md_write_end(r1_bio->mddev);
428 static void r1_bio_write_done(struct r1bio *r1_bio)
430 if (!atomic_dec_and_test(&r1_bio->remaining))
433 if (test_bit(R1BIO_WriteError, &r1_bio->state))
434 reschedule_retry(r1_bio);
437 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
438 reschedule_retry(r1_bio);
440 raid_end_bio_io(r1_bio);
444 static void raid1_end_write_request(struct bio *bio)
446 struct r1bio *r1_bio = bio->bi_private;
447 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
448 struct r1conf *conf = r1_bio->mddev->private;
449 struct bio *to_put = NULL;
450 int mirror = find_bio_disk(r1_bio, bio);
451 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
453 sector_t lo = r1_bio->sector;
454 sector_t hi = r1_bio->sector + r1_bio->sectors;
456 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
459 * 'one mirror IO has finished' event handler:
461 if (bio->bi_status && !discard_error) {
462 set_bit(WriteErrorSeen, &rdev->flags);
463 if (!test_and_set_bit(WantReplacement, &rdev->flags))
464 set_bit(MD_RECOVERY_NEEDED, &
465 conf->mddev->recovery);
467 if (test_bit(FailFast, &rdev->flags) &&
468 (bio->bi_opf & MD_FAILFAST) &&
469 /* We never try FailFast to WriteMostly devices */
470 !test_bit(WriteMostly, &rdev->flags)) {
471 md_error(r1_bio->mddev, rdev);
475 * When the device is faulty, it is not necessary to
476 * handle write error.
478 if (!test_bit(Faulty, &rdev->flags))
479 set_bit(R1BIO_WriteError, &r1_bio->state);
481 /* Fail the request */
482 set_bit(R1BIO_Degraded, &r1_bio->state);
483 /* Finished with this branch */
484 r1_bio->bios[mirror] = NULL;
489 * Set R1BIO_Uptodate in our master bio, so that we
490 * will return a good error code for to the higher
491 * levels even if IO on some other mirrored buffer
494 * The 'master' represents the composite IO operation
495 * to user-side. So if something waits for IO, then it
496 * will wait for the 'master' bio.
501 r1_bio->bios[mirror] = NULL;
504 * Do not set R1BIO_Uptodate if the current device is
505 * rebuilding or Faulty. This is because we cannot use
506 * such device for properly reading the data back (we could
507 * potentially use it, if the current write would have felt
508 * before rdev->recovery_offset, but for simplicity we don't
511 if (test_bit(In_sync, &rdev->flags) &&
512 !test_bit(Faulty, &rdev->flags))
513 set_bit(R1BIO_Uptodate, &r1_bio->state);
515 /* Maybe we can clear some bad blocks. */
516 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
517 &first_bad, &bad_sectors) && !discard_error) {
518 r1_bio->bios[mirror] = IO_MADE_GOOD;
519 set_bit(R1BIO_MadeGood, &r1_bio->state);
524 if (test_bit(CollisionCheck, &rdev->flags))
525 remove_serial(rdev, lo, hi);
526 if (test_bit(WriteMostly, &rdev->flags))
527 atomic_dec(&r1_bio->behind_remaining);
530 * In behind mode, we ACK the master bio once the I/O
531 * has safely reached all non-writemostly
532 * disks. Setting the Returned bit ensures that this
533 * gets done only once -- we don't ever want to return
534 * -EIO here, instead we'll wait
536 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
537 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
538 /* Maybe we can return now */
539 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
540 struct bio *mbio = r1_bio->master_bio;
541 pr_debug("raid1: behind end write sectors"
543 (unsigned long long) mbio->bi_iter.bi_sector,
544 (unsigned long long) bio_end_sector(mbio) - 1);
545 call_bio_endio(r1_bio);
548 } else if (rdev->mddev->serialize_policy)
549 remove_serial(rdev, lo, hi);
550 if (r1_bio->bios[mirror] == NULL)
551 rdev_dec_pending(rdev, conf->mddev);
554 * Let's see if all mirrored write operations have finished
557 r1_bio_write_done(r1_bio);
563 static sector_t align_to_barrier_unit_end(sector_t start_sector,
568 WARN_ON(sectors == 0);
570 * len is the number of sectors from start_sector to end of the
571 * barrier unit which start_sector belongs to.
573 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
583 * This routine returns the disk from which the requested read should
584 * be done. There is a per-array 'next expected sequential IO' sector
585 * number - if this matches on the next IO then we use the last disk.
586 * There is also a per-disk 'last know head position' sector that is
587 * maintained from IRQ contexts, both the normal and the resync IO
588 * completion handlers update this position correctly. If there is no
589 * perfect sequential match then we pick the disk whose head is closest.
591 * If there are 2 mirrors in the same 2 devices, performance degrades
592 * because position is mirror, not device based.
594 * The rdev for the device selected will have nr_pending incremented.
596 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
598 const sector_t this_sector = r1_bio->sector;
600 int best_good_sectors;
601 int best_disk, best_dist_disk, best_pending_disk;
605 unsigned int min_pending;
606 struct md_rdev *rdev;
608 int choose_next_idle;
612 * Check if we can balance. We can balance on the whole
613 * device if no resync is going on, or below the resync window.
614 * We take the first readable disk when above the resync window.
617 sectors = r1_bio->sectors;
620 best_dist = MaxSector;
621 best_pending_disk = -1;
622 min_pending = UINT_MAX;
623 best_good_sectors = 0;
625 choose_next_idle = 0;
626 clear_bit(R1BIO_FailFast, &r1_bio->state);
628 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
629 (mddev_is_clustered(conf->mddev) &&
630 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
631 this_sector + sectors)))
636 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
640 unsigned int pending;
643 rdev = rcu_dereference(conf->mirrors[disk].rdev);
644 if (r1_bio->bios[disk] == IO_BLOCKED
646 || test_bit(Faulty, &rdev->flags))
648 if (!test_bit(In_sync, &rdev->flags) &&
649 rdev->recovery_offset < this_sector + sectors)
651 if (test_bit(WriteMostly, &rdev->flags)) {
652 /* Don't balance among write-mostly, just
653 * use the first as a last resort */
654 if (best_dist_disk < 0) {
655 if (is_badblock(rdev, this_sector, sectors,
656 &first_bad, &bad_sectors)) {
657 if (first_bad <= this_sector)
658 /* Cannot use this */
660 best_good_sectors = first_bad - this_sector;
662 best_good_sectors = sectors;
663 best_dist_disk = disk;
664 best_pending_disk = disk;
668 /* This is a reasonable device to use. It might
671 if (is_badblock(rdev, this_sector, sectors,
672 &first_bad, &bad_sectors)) {
673 if (best_dist < MaxSector)
674 /* already have a better device */
676 if (first_bad <= this_sector) {
677 /* cannot read here. If this is the 'primary'
678 * device, then we must not read beyond
679 * bad_sectors from another device..
681 bad_sectors -= (this_sector - first_bad);
682 if (choose_first && sectors > bad_sectors)
683 sectors = bad_sectors;
684 if (best_good_sectors > sectors)
685 best_good_sectors = sectors;
688 sector_t good_sectors = first_bad - this_sector;
689 if (good_sectors > best_good_sectors) {
690 best_good_sectors = good_sectors;
698 if ((sectors > best_good_sectors) && (best_disk >= 0))
700 best_good_sectors = sectors;
704 /* At least two disks to choose from so failfast is OK */
705 set_bit(R1BIO_FailFast, &r1_bio->state);
707 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
708 has_nonrot_disk |= nonrot;
709 pending = atomic_read(&rdev->nr_pending);
710 dist = abs(this_sector - conf->mirrors[disk].head_position);
715 /* Don't change to another disk for sequential reads */
716 if (conf->mirrors[disk].next_seq_sect == this_sector
718 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
719 struct raid1_info *mirror = &conf->mirrors[disk];
723 * If buffered sequential IO size exceeds optimal
724 * iosize, check if there is idle disk. If yes, choose
725 * the idle disk. read_balance could already choose an
726 * idle disk before noticing it's a sequential IO in
727 * this disk. This doesn't matter because this disk
728 * will idle, next time it will be utilized after the
729 * first disk has IO size exceeds optimal iosize. In
730 * this way, iosize of the first disk will be optimal
731 * iosize at least. iosize of the second disk might be
732 * small, but not a big deal since when the second disk
733 * starts IO, the first disk is likely still busy.
735 if (nonrot && opt_iosize > 0 &&
736 mirror->seq_start != MaxSector &&
737 mirror->next_seq_sect > opt_iosize &&
738 mirror->next_seq_sect - opt_iosize >=
740 choose_next_idle = 1;
746 if (choose_next_idle)
749 if (min_pending > pending) {
750 min_pending = pending;
751 best_pending_disk = disk;
754 if (dist < best_dist) {
756 best_dist_disk = disk;
761 * If all disks are rotational, choose the closest disk. If any disk is
762 * non-rotational, choose the disk with less pending request even the
763 * disk is rotational, which might/might not be optimal for raids with
764 * mixed ratation/non-rotational disks depending on workload.
766 if (best_disk == -1) {
767 if (has_nonrot_disk || min_pending == 0)
768 best_disk = best_pending_disk;
770 best_disk = best_dist_disk;
773 if (best_disk >= 0) {
774 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
777 atomic_inc(&rdev->nr_pending);
778 sectors = best_good_sectors;
780 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
781 conf->mirrors[best_disk].seq_start = this_sector;
783 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
786 *max_sectors = sectors;
791 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
793 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
794 md_bitmap_unplug(conf->mddev->bitmap);
795 wake_up(&conf->wait_barrier);
797 while (bio) { /* submit pending writes */
798 struct bio *next = bio->bi_next;
799 struct md_rdev *rdev = (void *)bio->bi_bdev;
801 bio_set_dev(bio, rdev->bdev);
802 if (test_bit(Faulty, &rdev->flags)) {
804 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
805 !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
809 submit_bio_noacct(bio);
815 static void flush_pending_writes(struct r1conf *conf)
817 /* Any writes that have been queued but are awaiting
818 * bitmap updates get flushed here.
820 spin_lock_irq(&conf->device_lock);
822 if (conf->pending_bio_list.head) {
823 struct blk_plug plug;
826 bio = bio_list_get(&conf->pending_bio_list);
827 conf->pending_count = 0;
828 spin_unlock_irq(&conf->device_lock);
831 * As this is called in a wait_event() loop (see freeze_array),
832 * current->state might be TASK_UNINTERRUPTIBLE which will
833 * cause a warning when we prepare to wait again. As it is
834 * rare that this path is taken, it is perfectly safe to force
835 * us to go around the wait_event() loop again, so the warning
836 * is a false-positive. Silence the warning by resetting
839 __set_current_state(TASK_RUNNING);
840 blk_start_plug(&plug);
841 flush_bio_list(conf, bio);
842 blk_finish_plug(&plug);
844 spin_unlock_irq(&conf->device_lock);
848 * Sometimes we need to suspend IO while we do something else,
849 * either some resync/recovery, or reconfigure the array.
850 * To do this we raise a 'barrier'.
851 * The 'barrier' is a counter that can be raised multiple times
852 * to count how many activities are happening which preclude
854 * We can only raise the barrier if there is no pending IO.
855 * i.e. if nr_pending == 0.
856 * We choose only to raise the barrier if no-one is waiting for the
857 * barrier to go down. This means that as soon as an IO request
858 * is ready, no other operations which require a barrier will start
859 * until the IO request has had a chance.
861 * So: regular IO calls 'wait_barrier'. When that returns there
862 * is no backgroup IO happening, It must arrange to call
863 * allow_barrier when it has finished its IO.
864 * backgroup IO calls must call raise_barrier. Once that returns
865 * there is no normal IO happeing. It must arrange to call
866 * lower_barrier when the particular background IO completes.
868 * If resync/recovery is interrupted, returns -EINTR;
869 * Otherwise, returns 0.
871 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
873 int idx = sector_to_idx(sector_nr);
875 spin_lock_irq(&conf->resync_lock);
877 /* Wait until no block IO is waiting */
878 wait_event_lock_irq(conf->wait_barrier,
879 !atomic_read(&conf->nr_waiting[idx]),
882 /* block any new IO from starting */
883 atomic_inc(&conf->barrier[idx]);
885 * In raise_barrier() we firstly increase conf->barrier[idx] then
886 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
887 * increase conf->nr_pending[idx] then check conf->barrier[idx].
888 * A memory barrier here to make sure conf->nr_pending[idx] won't
889 * be fetched before conf->barrier[idx] is increased. Otherwise
890 * there will be a race between raise_barrier() and _wait_barrier().
892 smp_mb__after_atomic();
894 /* For these conditions we must wait:
895 * A: while the array is in frozen state
896 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
897 * existing in corresponding I/O barrier bucket.
898 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
899 * max resync count which allowed on current I/O barrier bucket.
901 wait_event_lock_irq(conf->wait_barrier,
902 (!conf->array_frozen &&
903 !atomic_read(&conf->nr_pending[idx]) &&
904 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
905 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
908 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
909 atomic_dec(&conf->barrier[idx]);
910 spin_unlock_irq(&conf->resync_lock);
911 wake_up(&conf->wait_barrier);
915 atomic_inc(&conf->nr_sync_pending);
916 spin_unlock_irq(&conf->resync_lock);
921 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
923 int idx = sector_to_idx(sector_nr);
925 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
927 atomic_dec(&conf->barrier[idx]);
928 atomic_dec(&conf->nr_sync_pending);
929 wake_up(&conf->wait_barrier);
932 static void _wait_barrier(struct r1conf *conf, int idx)
935 * We need to increase conf->nr_pending[idx] very early here,
936 * then raise_barrier() can be blocked when it waits for
937 * conf->nr_pending[idx] to be 0. Then we can avoid holding
938 * conf->resync_lock when there is no barrier raised in same
939 * barrier unit bucket. Also if the array is frozen, I/O
940 * should be blocked until array is unfrozen.
942 atomic_inc(&conf->nr_pending[idx]);
944 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
945 * check conf->barrier[idx]. In raise_barrier() we firstly increase
946 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
947 * barrier is necessary here to make sure conf->barrier[idx] won't be
948 * fetched before conf->nr_pending[idx] is increased. Otherwise there
949 * will be a race between _wait_barrier() and raise_barrier().
951 smp_mb__after_atomic();
954 * Don't worry about checking two atomic_t variables at same time
955 * here. If during we check conf->barrier[idx], the array is
956 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
957 * 0, it is safe to return and make the I/O continue. Because the
958 * array is frozen, all I/O returned here will eventually complete
959 * or be queued, no race will happen. See code comment in
962 if (!READ_ONCE(conf->array_frozen) &&
963 !atomic_read(&conf->barrier[idx]))
967 * After holding conf->resync_lock, conf->nr_pending[idx]
968 * should be decreased before waiting for barrier to drop.
969 * Otherwise, we may encounter a race condition because
970 * raise_barrer() might be waiting for conf->nr_pending[idx]
971 * to be 0 at same time.
973 spin_lock_irq(&conf->resync_lock);
974 atomic_inc(&conf->nr_waiting[idx]);
975 atomic_dec(&conf->nr_pending[idx]);
977 * In case freeze_array() is waiting for
978 * get_unqueued_pending() == extra
980 wake_up(&conf->wait_barrier);
981 /* Wait for the barrier in same barrier unit bucket to drop. */
982 wait_event_lock_irq(conf->wait_barrier,
983 !conf->array_frozen &&
984 !atomic_read(&conf->barrier[idx]),
986 atomic_inc(&conf->nr_pending[idx]);
987 atomic_dec(&conf->nr_waiting[idx]);
988 spin_unlock_irq(&conf->resync_lock);
991 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
993 int idx = sector_to_idx(sector_nr);
996 * Very similar to _wait_barrier(). The difference is, for read
997 * I/O we don't need wait for sync I/O, but if the whole array
998 * is frozen, the read I/O still has to wait until the array is
999 * unfrozen. Since there is no ordering requirement with
1000 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1002 atomic_inc(&conf->nr_pending[idx]);
1004 if (!READ_ONCE(conf->array_frozen))
1007 spin_lock_irq(&conf->resync_lock);
1008 atomic_inc(&conf->nr_waiting[idx]);
1009 atomic_dec(&conf->nr_pending[idx]);
1011 * In case freeze_array() is waiting for
1012 * get_unqueued_pending() == extra
1014 wake_up(&conf->wait_barrier);
1015 /* Wait for array to be unfrozen */
1016 wait_event_lock_irq(conf->wait_barrier,
1017 !conf->array_frozen,
1019 atomic_inc(&conf->nr_pending[idx]);
1020 atomic_dec(&conf->nr_waiting[idx]);
1021 spin_unlock_irq(&conf->resync_lock);
1024 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1026 int idx = sector_to_idx(sector_nr);
1028 _wait_barrier(conf, idx);
1031 static void _allow_barrier(struct r1conf *conf, int idx)
1033 atomic_dec(&conf->nr_pending[idx]);
1034 wake_up(&conf->wait_barrier);
1037 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1039 int idx = sector_to_idx(sector_nr);
1041 _allow_barrier(conf, idx);
1044 /* conf->resync_lock should be held */
1045 static int get_unqueued_pending(struct r1conf *conf)
1049 ret = atomic_read(&conf->nr_sync_pending);
1050 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1051 ret += atomic_read(&conf->nr_pending[idx]) -
1052 atomic_read(&conf->nr_queued[idx]);
1057 static void freeze_array(struct r1conf *conf, int extra)
1059 /* Stop sync I/O and normal I/O and wait for everything to
1061 * This is called in two situations:
1062 * 1) management command handlers (reshape, remove disk, quiesce).
1063 * 2) one normal I/O request failed.
1065 * After array_frozen is set to 1, new sync IO will be blocked at
1066 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1067 * or wait_read_barrier(). The flying I/Os will either complete or be
1068 * queued. When everything goes quite, there are only queued I/Os left.
1070 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1071 * barrier bucket index which this I/O request hits. When all sync and
1072 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1073 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1074 * in handle_read_error(), we may call freeze_array() before trying to
1075 * fix the read error. In this case, the error read I/O is not queued,
1076 * so get_unqueued_pending() == 1.
1078 * Therefore before this function returns, we need to wait until
1079 * get_unqueued_pendings(conf) gets equal to extra. For
1080 * normal I/O context, extra is 1, in rested situations extra is 0.
1082 spin_lock_irq(&conf->resync_lock);
1083 conf->array_frozen = 1;
1084 raid1_log(conf->mddev, "wait freeze");
1085 wait_event_lock_irq_cmd(
1087 get_unqueued_pending(conf) == extra,
1089 flush_pending_writes(conf));
1090 spin_unlock_irq(&conf->resync_lock);
1092 static void unfreeze_array(struct r1conf *conf)
1094 /* reverse the effect of the freeze */
1095 spin_lock_irq(&conf->resync_lock);
1096 conf->array_frozen = 0;
1097 spin_unlock_irq(&conf->resync_lock);
1098 wake_up(&conf->wait_barrier);
1101 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1104 int size = bio->bi_iter.bi_size;
1105 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1107 struct bio *behind_bio = NULL;
1109 behind_bio = bio_alloc_bioset(GFP_NOIO, vcnt, &r1_bio->mddev->bio_set);
1113 /* discard op, we don't support writezero/writesame yet */
1114 if (!bio_has_data(bio)) {
1115 behind_bio->bi_iter.bi_size = size;
1119 behind_bio->bi_write_hint = bio->bi_write_hint;
1121 while (i < vcnt && size) {
1123 int len = min_t(int, PAGE_SIZE, size);
1125 page = alloc_page(GFP_NOIO);
1126 if (unlikely(!page))
1129 bio_add_page(behind_bio, page, len, 0);
1135 bio_copy_data(behind_bio, bio);
1137 r1_bio->behind_master_bio = behind_bio;
1138 set_bit(R1BIO_BehindIO, &r1_bio->state);
1143 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1144 bio->bi_iter.bi_size);
1145 bio_free_pages(behind_bio);
1146 bio_put(behind_bio);
1149 struct raid1_plug_cb {
1150 struct blk_plug_cb cb;
1151 struct bio_list pending;
1155 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1157 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1159 struct mddev *mddev = plug->cb.data;
1160 struct r1conf *conf = mddev->private;
1163 if (from_schedule || current->bio_list) {
1164 spin_lock_irq(&conf->device_lock);
1165 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1166 conf->pending_count += plug->pending_cnt;
1167 spin_unlock_irq(&conf->device_lock);
1168 wake_up(&conf->wait_barrier);
1169 md_wakeup_thread(mddev->thread);
1174 /* we aren't scheduling, so we can do the write-out directly. */
1175 bio = bio_list_get(&plug->pending);
1176 flush_bio_list(conf, bio);
1180 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1182 r1_bio->master_bio = bio;
1183 r1_bio->sectors = bio_sectors(bio);
1185 r1_bio->mddev = mddev;
1186 r1_bio->sector = bio->bi_iter.bi_sector;
1189 static inline struct r1bio *
1190 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1192 struct r1conf *conf = mddev->private;
1193 struct r1bio *r1_bio;
1195 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1196 /* Ensure no bio records IO_BLOCKED */
1197 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1198 init_r1bio(r1_bio, mddev, bio);
1202 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1203 int max_read_sectors, struct r1bio *r1_bio)
1205 struct r1conf *conf = mddev->private;
1206 struct raid1_info *mirror;
1207 struct bio *read_bio;
1208 struct bitmap *bitmap = mddev->bitmap;
1209 const int op = bio_op(bio);
1210 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1213 bool r1bio_existed = !!r1_bio;
1214 char b[BDEVNAME_SIZE];
1217 * If r1_bio is set, we are blocking the raid1d thread
1218 * so there is a tiny risk of deadlock. So ask for
1219 * emergency memory if needed.
1221 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1223 if (r1bio_existed) {
1224 /* Need to get the block device name carefully */
1225 struct md_rdev *rdev;
1227 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1229 bdevname(rdev->bdev, b);
1236 * Still need barrier for READ in case that whole
1239 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1242 r1_bio = alloc_r1bio(mddev, bio);
1244 init_r1bio(r1_bio, mddev, bio);
1245 r1_bio->sectors = max_read_sectors;
1248 * make_request() can abort the operation when read-ahead is being
1249 * used and no empty request is available.
1251 rdisk = read_balance(conf, r1_bio, &max_sectors);
1254 /* couldn't find anywhere to read from */
1255 if (r1bio_existed) {
1256 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1259 (unsigned long long)r1_bio->sector);
1261 raid_end_bio_io(r1_bio);
1264 mirror = conf->mirrors + rdisk;
1267 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1269 (unsigned long long)r1_bio->sector,
1270 bdevname(mirror->rdev->bdev, b));
1272 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1275 * Reading from a write-mostly device must take care not to
1276 * over-take any writes that are 'behind'
1278 raid1_log(mddev, "wait behind writes");
1279 wait_event(bitmap->behind_wait,
1280 atomic_read(&bitmap->behind_writes) == 0);
1283 if (max_sectors < bio_sectors(bio)) {
1284 struct bio *split = bio_split(bio, max_sectors,
1285 gfp, &conf->bio_split);
1286 bio_chain(split, bio);
1287 submit_bio_noacct(bio);
1289 r1_bio->master_bio = bio;
1290 r1_bio->sectors = max_sectors;
1293 r1_bio->read_disk = rdisk;
1295 if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1296 r1_bio->start_time = bio_start_io_acct(bio);
1298 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1300 r1_bio->bios[rdisk] = read_bio;
1302 read_bio->bi_iter.bi_sector = r1_bio->sector +
1303 mirror->rdev->data_offset;
1304 bio_set_dev(read_bio, mirror->rdev->bdev);
1305 read_bio->bi_end_io = raid1_end_read_request;
1306 bio_set_op_attrs(read_bio, op, do_sync);
1307 if (test_bit(FailFast, &mirror->rdev->flags) &&
1308 test_bit(R1BIO_FailFast, &r1_bio->state))
1309 read_bio->bi_opf |= MD_FAILFAST;
1310 read_bio->bi_private = r1_bio;
1313 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1316 submit_bio_noacct(read_bio);
1319 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1320 int max_write_sectors)
1322 struct r1conf *conf = mddev->private;
1323 struct r1bio *r1_bio;
1325 struct bitmap *bitmap = mddev->bitmap;
1326 unsigned long flags;
1327 struct md_rdev *blocked_rdev;
1328 struct blk_plug_cb *cb;
1329 struct raid1_plug_cb *plug = NULL;
1332 bool write_behind = false;
1334 if (mddev_is_clustered(mddev) &&
1335 md_cluster_ops->area_resyncing(mddev, WRITE,
1336 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1340 prepare_to_wait(&conf->wait_barrier,
1342 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1343 bio->bi_iter.bi_sector,
1344 bio_end_sector(bio)))
1348 finish_wait(&conf->wait_barrier, &w);
1352 * Register the new request and wait if the reconstruction
1353 * thread has put up a bar for new requests.
1354 * Continue immediately if no resync is active currently.
1356 wait_barrier(conf, bio->bi_iter.bi_sector);
1358 r1_bio = alloc_r1bio(mddev, bio);
1359 r1_bio->sectors = max_write_sectors;
1361 if (conf->pending_count >= max_queued_requests) {
1362 md_wakeup_thread(mddev->thread);
1363 raid1_log(mddev, "wait queued");
1364 wait_event(conf->wait_barrier,
1365 conf->pending_count < max_queued_requests);
1367 /* first select target devices under rcu_lock and
1368 * inc refcount on their rdev. Record them by setting
1370 * If there are known/acknowledged bad blocks on any device on
1371 * which we have seen a write error, we want to avoid writing those
1373 * This potentially requires several writes to write around
1374 * the bad blocks. Each set of writes gets it's own r1bio
1375 * with a set of bios attached.
1378 disks = conf->raid_disks * 2;
1380 blocked_rdev = NULL;
1382 max_sectors = r1_bio->sectors;
1383 for (i = 0; i < disks; i++) {
1384 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1387 * The write-behind io is only attempted on drives marked as
1388 * write-mostly, which means we could allocate write behind
1391 if (rdev && test_bit(WriteMostly, &rdev->flags))
1392 write_behind = true;
1394 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1395 atomic_inc(&rdev->nr_pending);
1396 blocked_rdev = rdev;
1399 r1_bio->bios[i] = NULL;
1400 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1401 if (i < conf->raid_disks)
1402 set_bit(R1BIO_Degraded, &r1_bio->state);
1406 atomic_inc(&rdev->nr_pending);
1407 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1412 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1413 &first_bad, &bad_sectors);
1415 /* mustn't write here until the bad block is
1417 set_bit(BlockedBadBlocks, &rdev->flags);
1418 blocked_rdev = rdev;
1421 if (is_bad && first_bad <= r1_bio->sector) {
1422 /* Cannot write here at all */
1423 bad_sectors -= (r1_bio->sector - first_bad);
1424 if (bad_sectors < max_sectors)
1425 /* mustn't write more than bad_sectors
1426 * to other devices yet
1428 max_sectors = bad_sectors;
1429 rdev_dec_pending(rdev, mddev);
1430 /* We don't set R1BIO_Degraded as that
1431 * only applies if the disk is
1432 * missing, so it might be re-added,
1433 * and we want to know to recover this
1435 * In this case the device is here,
1436 * and the fact that this chunk is not
1437 * in-sync is recorded in the bad
1443 int good_sectors = first_bad - r1_bio->sector;
1444 if (good_sectors < max_sectors)
1445 max_sectors = good_sectors;
1448 r1_bio->bios[i] = bio;
1452 if (unlikely(blocked_rdev)) {
1453 /* Wait for this device to become unblocked */
1456 for (j = 0; j < i; j++)
1457 if (r1_bio->bios[j])
1458 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1460 allow_barrier(conf, bio->bi_iter.bi_sector);
1461 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1462 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1463 wait_barrier(conf, bio->bi_iter.bi_sector);
1468 * When using a bitmap, we may call alloc_behind_master_bio below.
1469 * alloc_behind_master_bio allocates a copy of the data payload a page
1470 * at a time and thus needs a new bio that can fit the whole payload
1471 * this bio in page sized chunks.
1473 if (write_behind && bitmap)
1474 max_sectors = min_t(int, max_sectors,
1475 BIO_MAX_VECS * (PAGE_SIZE >> 9));
1476 if (max_sectors < bio_sectors(bio)) {
1477 struct bio *split = bio_split(bio, max_sectors,
1478 GFP_NOIO, &conf->bio_split);
1479 bio_chain(split, bio);
1480 submit_bio_noacct(bio);
1482 r1_bio->master_bio = bio;
1483 r1_bio->sectors = max_sectors;
1486 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1487 r1_bio->start_time = bio_start_io_acct(bio);
1488 atomic_set(&r1_bio->remaining, 1);
1489 atomic_set(&r1_bio->behind_remaining, 0);
1493 for (i = 0; i < disks; i++) {
1494 struct bio *mbio = NULL;
1495 struct md_rdev *rdev = conf->mirrors[i].rdev;
1496 if (!r1_bio->bios[i])
1501 * Not if there are too many, or cannot
1502 * allocate memory, or a reader on WriteMostly
1503 * is waiting for behind writes to flush */
1505 test_bit(WriteMostly, &rdev->flags) &&
1506 (atomic_read(&bitmap->behind_writes)
1507 < mddev->bitmap_info.max_write_behind) &&
1508 !waitqueue_active(&bitmap->behind_wait)) {
1509 alloc_behind_master_bio(r1_bio, bio);
1512 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1513 test_bit(R1BIO_BehindIO, &r1_bio->state));
1517 if (r1_bio->behind_master_bio)
1518 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1519 GFP_NOIO, &mddev->bio_set);
1521 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1523 if (r1_bio->behind_master_bio) {
1524 if (test_bit(CollisionCheck, &rdev->flags))
1525 wait_for_serialization(rdev, r1_bio);
1526 if (test_bit(WriteMostly, &rdev->flags))
1527 atomic_inc(&r1_bio->behind_remaining);
1528 } else if (mddev->serialize_policy)
1529 wait_for_serialization(rdev, r1_bio);
1531 r1_bio->bios[i] = mbio;
1533 mbio->bi_iter.bi_sector = (r1_bio->sector +
1534 conf->mirrors[i].rdev->data_offset);
1535 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1536 mbio->bi_end_io = raid1_end_write_request;
1537 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1538 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1539 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1540 conf->raid_disks - mddev->degraded > 1)
1541 mbio->bi_opf |= MD_FAILFAST;
1542 mbio->bi_private = r1_bio;
1544 atomic_inc(&r1_bio->remaining);
1547 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1549 /* flush_pending_writes() needs access to the rdev so...*/
1550 mbio->bi_bdev = (void *)conf->mirrors[i].rdev;
1552 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1554 plug = container_of(cb, struct raid1_plug_cb, cb);
1558 bio_list_add(&plug->pending, mbio);
1559 plug->pending_cnt++;
1561 spin_lock_irqsave(&conf->device_lock, flags);
1562 bio_list_add(&conf->pending_bio_list, mbio);
1563 conf->pending_count++;
1564 spin_unlock_irqrestore(&conf->device_lock, flags);
1565 md_wakeup_thread(mddev->thread);
1569 r1_bio_write_done(r1_bio);
1571 /* In case raid1d snuck in to freeze_array */
1572 wake_up(&conf->wait_barrier);
1575 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1579 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1580 && md_flush_request(mddev, bio))
1584 * There is a limit to the maximum size, but
1585 * the read/write handler might find a lower limit
1586 * due to bad blocks. To avoid multiple splits,
1587 * we pass the maximum number of sectors down
1588 * and let the lower level perform the split.
1590 sectors = align_to_barrier_unit_end(
1591 bio->bi_iter.bi_sector, bio_sectors(bio));
1593 if (bio_data_dir(bio) == READ)
1594 raid1_read_request(mddev, bio, sectors, NULL);
1596 if (!md_write_start(mddev,bio))
1598 raid1_write_request(mddev, bio, sectors);
1603 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1605 struct r1conf *conf = mddev->private;
1608 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1609 conf->raid_disks - mddev->degraded);
1611 for (i = 0; i < conf->raid_disks; i++) {
1612 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1613 seq_printf(seq, "%s",
1614 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1617 seq_printf(seq, "]");
1620 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1622 char b[BDEVNAME_SIZE];
1623 struct r1conf *conf = mddev->private;
1624 unsigned long flags;
1627 * If it is not operational, then we have already marked it as dead
1628 * else if it is the last working disks with "fail_last_dev == false",
1629 * ignore the error, let the next level up know.
1630 * else mark the drive as failed
1632 spin_lock_irqsave(&conf->device_lock, flags);
1633 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1634 && (conf->raid_disks - mddev->degraded) == 1) {
1636 * Don't fail the drive, act as though we were just a
1637 * normal single drive.
1638 * However don't try a recovery from this drive as
1639 * it is very likely to fail.
1641 conf->recovery_disabled = mddev->recovery_disabled;
1642 spin_unlock_irqrestore(&conf->device_lock, flags);
1645 set_bit(Blocked, &rdev->flags);
1646 if (test_and_clear_bit(In_sync, &rdev->flags))
1648 set_bit(Faulty, &rdev->flags);
1649 spin_unlock_irqrestore(&conf->device_lock, flags);
1651 * if recovery is running, make sure it aborts.
1653 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1654 set_mask_bits(&mddev->sb_flags, 0,
1655 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1656 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1657 "md/raid1:%s: Operation continuing on %d devices.\n",
1658 mdname(mddev), bdevname(rdev->bdev, b),
1659 mdname(mddev), conf->raid_disks - mddev->degraded);
1662 static void print_conf(struct r1conf *conf)
1666 pr_debug("RAID1 conf printout:\n");
1668 pr_debug("(!conf)\n");
1671 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1675 for (i = 0; i < conf->raid_disks; i++) {
1676 char b[BDEVNAME_SIZE];
1677 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1679 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1680 i, !test_bit(In_sync, &rdev->flags),
1681 !test_bit(Faulty, &rdev->flags),
1682 bdevname(rdev->bdev,b));
1687 static void close_sync(struct r1conf *conf)
1691 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1692 _wait_barrier(conf, idx);
1693 _allow_barrier(conf, idx);
1696 mempool_exit(&conf->r1buf_pool);
1699 static int raid1_spare_active(struct mddev *mddev)
1702 struct r1conf *conf = mddev->private;
1704 unsigned long flags;
1707 * Find all failed disks within the RAID1 configuration
1708 * and mark them readable.
1709 * Called under mddev lock, so rcu protection not needed.
1710 * device_lock used to avoid races with raid1_end_read_request
1711 * which expects 'In_sync' flags and ->degraded to be consistent.
1713 spin_lock_irqsave(&conf->device_lock, flags);
1714 for (i = 0; i < conf->raid_disks; i++) {
1715 struct md_rdev *rdev = conf->mirrors[i].rdev;
1716 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1718 && !test_bit(Candidate, &repl->flags)
1719 && repl->recovery_offset == MaxSector
1720 && !test_bit(Faulty, &repl->flags)
1721 && !test_and_set_bit(In_sync, &repl->flags)) {
1722 /* replacement has just become active */
1724 !test_and_clear_bit(In_sync, &rdev->flags))
1727 /* Replaced device not technically
1728 * faulty, but we need to be sure
1729 * it gets removed and never re-added
1731 set_bit(Faulty, &rdev->flags);
1732 sysfs_notify_dirent_safe(
1737 && rdev->recovery_offset == MaxSector
1738 && !test_bit(Faulty, &rdev->flags)
1739 && !test_and_set_bit(In_sync, &rdev->flags)) {
1741 sysfs_notify_dirent_safe(rdev->sysfs_state);
1744 mddev->degraded -= count;
1745 spin_unlock_irqrestore(&conf->device_lock, flags);
1751 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1753 struct r1conf *conf = mddev->private;
1756 struct raid1_info *p;
1758 int last = conf->raid_disks - 1;
1760 if (mddev->recovery_disabled == conf->recovery_disabled)
1763 if (md_integrity_add_rdev(rdev, mddev))
1766 if (rdev->raid_disk >= 0)
1767 first = last = rdev->raid_disk;
1770 * find the disk ... but prefer rdev->saved_raid_disk
1773 if (rdev->saved_raid_disk >= 0 &&
1774 rdev->saved_raid_disk >= first &&
1775 rdev->saved_raid_disk < conf->raid_disks &&
1776 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1777 first = last = rdev->saved_raid_disk;
1779 for (mirror = first; mirror <= last; mirror++) {
1780 p = conf->mirrors + mirror;
1783 disk_stack_limits(mddev->gendisk, rdev->bdev,
1784 rdev->data_offset << 9);
1786 p->head_position = 0;
1787 rdev->raid_disk = mirror;
1789 /* As all devices are equivalent, we don't need a full recovery
1790 * if this was recently any drive of the array
1792 if (rdev->saved_raid_disk < 0)
1794 rcu_assign_pointer(p->rdev, rdev);
1797 if (test_bit(WantReplacement, &p->rdev->flags) &&
1798 p[conf->raid_disks].rdev == NULL) {
1799 /* Add this device as a replacement */
1800 clear_bit(In_sync, &rdev->flags);
1801 set_bit(Replacement, &rdev->flags);
1802 rdev->raid_disk = mirror;
1805 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1809 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1810 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1815 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1817 struct r1conf *conf = mddev->private;
1819 int number = rdev->raid_disk;
1820 struct raid1_info *p = conf->mirrors + number;
1822 if (rdev != p->rdev)
1823 p = conf->mirrors + conf->raid_disks + number;
1826 if (rdev == p->rdev) {
1827 if (test_bit(In_sync, &rdev->flags) ||
1828 atomic_read(&rdev->nr_pending)) {
1832 /* Only remove non-faulty devices if recovery
1835 if (!test_bit(Faulty, &rdev->flags) &&
1836 mddev->recovery_disabled != conf->recovery_disabled &&
1837 mddev->degraded < conf->raid_disks) {
1842 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1844 if (atomic_read(&rdev->nr_pending)) {
1845 /* lost the race, try later */
1851 if (conf->mirrors[conf->raid_disks + number].rdev) {
1852 /* We just removed a device that is being replaced.
1853 * Move down the replacement. We drain all IO before
1854 * doing this to avoid confusion.
1856 struct md_rdev *repl =
1857 conf->mirrors[conf->raid_disks + number].rdev;
1858 freeze_array(conf, 0);
1859 if (atomic_read(&repl->nr_pending)) {
1860 /* It means that some queued IO of retry_list
1861 * hold repl. Thus, we cannot set replacement
1862 * as NULL, avoiding rdev NULL pointer
1863 * dereference in sync_request_write and
1864 * handle_write_finished.
1867 unfreeze_array(conf);
1870 clear_bit(Replacement, &repl->flags);
1872 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1873 unfreeze_array(conf);
1876 clear_bit(WantReplacement, &rdev->flags);
1877 err = md_integrity_register(mddev);
1885 static void end_sync_read(struct bio *bio)
1887 struct r1bio *r1_bio = get_resync_r1bio(bio);
1889 update_head_pos(r1_bio->read_disk, r1_bio);
1892 * we have read a block, now it needs to be re-written,
1893 * or re-read if the read failed.
1894 * We don't do much here, just schedule handling by raid1d
1896 if (!bio->bi_status)
1897 set_bit(R1BIO_Uptodate, &r1_bio->state);
1899 if (atomic_dec_and_test(&r1_bio->remaining))
1900 reschedule_retry(r1_bio);
1903 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1905 sector_t sync_blocks = 0;
1906 sector_t s = r1_bio->sector;
1907 long sectors_to_go = r1_bio->sectors;
1909 /* make sure these bits don't get cleared. */
1911 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1913 sectors_to_go -= sync_blocks;
1914 } while (sectors_to_go > 0);
1917 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1919 if (atomic_dec_and_test(&r1_bio->remaining)) {
1920 struct mddev *mddev = r1_bio->mddev;
1921 int s = r1_bio->sectors;
1923 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1924 test_bit(R1BIO_WriteError, &r1_bio->state))
1925 reschedule_retry(r1_bio);
1928 md_done_sync(mddev, s, uptodate);
1933 static void end_sync_write(struct bio *bio)
1935 int uptodate = !bio->bi_status;
1936 struct r1bio *r1_bio = get_resync_r1bio(bio);
1937 struct mddev *mddev = r1_bio->mddev;
1938 struct r1conf *conf = mddev->private;
1941 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1944 abort_sync_write(mddev, r1_bio);
1945 set_bit(WriteErrorSeen, &rdev->flags);
1946 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1947 set_bit(MD_RECOVERY_NEEDED, &
1949 set_bit(R1BIO_WriteError, &r1_bio->state);
1950 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1951 &first_bad, &bad_sectors) &&
1952 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1955 &first_bad, &bad_sectors)
1957 set_bit(R1BIO_MadeGood, &r1_bio->state);
1959 put_sync_write_buf(r1_bio, uptodate);
1962 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1963 int sectors, struct page *page, int rw)
1965 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1969 set_bit(WriteErrorSeen, &rdev->flags);
1970 if (!test_and_set_bit(WantReplacement,
1972 set_bit(MD_RECOVERY_NEEDED, &
1973 rdev->mddev->recovery);
1975 /* need to record an error - either for the block or the device */
1976 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1977 md_error(rdev->mddev, rdev);
1981 static int fix_sync_read_error(struct r1bio *r1_bio)
1983 /* Try some synchronous reads of other devices to get
1984 * good data, much like with normal read errors. Only
1985 * read into the pages we already have so we don't
1986 * need to re-issue the read request.
1987 * We don't need to freeze the array, because being in an
1988 * active sync request, there is no normal IO, and
1989 * no overlapping syncs.
1990 * We don't need to check is_badblock() again as we
1991 * made sure that anything with a bad block in range
1992 * will have bi_end_io clear.
1994 struct mddev *mddev = r1_bio->mddev;
1995 struct r1conf *conf = mddev->private;
1996 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1997 struct page **pages = get_resync_pages(bio)->pages;
1998 sector_t sect = r1_bio->sector;
1999 int sectors = r1_bio->sectors;
2001 struct md_rdev *rdev;
2003 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2004 if (test_bit(FailFast, &rdev->flags)) {
2005 /* Don't try recovering from here - just fail it
2006 * ... unless it is the last working device of course */
2007 md_error(mddev, rdev);
2008 if (test_bit(Faulty, &rdev->flags))
2009 /* Don't try to read from here, but make sure
2010 * put_buf does it's thing
2012 bio->bi_end_io = end_sync_write;
2017 int d = r1_bio->read_disk;
2021 if (s > (PAGE_SIZE>>9))
2024 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2025 /* No rcu protection needed here devices
2026 * can only be removed when no resync is
2027 * active, and resync is currently active
2029 rdev = conf->mirrors[d].rdev;
2030 if (sync_page_io(rdev, sect, s<<9,
2032 REQ_OP_READ, 0, false)) {
2038 if (d == conf->raid_disks * 2)
2040 } while (!success && d != r1_bio->read_disk);
2043 char b[BDEVNAME_SIZE];
2045 /* Cannot read from anywhere, this block is lost.
2046 * Record a bad block on each device. If that doesn't
2047 * work just disable and interrupt the recovery.
2048 * Don't fail devices as that won't really help.
2050 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2051 mdname(mddev), bio_devname(bio, b),
2052 (unsigned long long)r1_bio->sector);
2053 for (d = 0; d < conf->raid_disks * 2; d++) {
2054 rdev = conf->mirrors[d].rdev;
2055 if (!rdev || test_bit(Faulty, &rdev->flags))
2057 if (!rdev_set_badblocks(rdev, sect, s, 0))
2061 conf->recovery_disabled =
2062 mddev->recovery_disabled;
2063 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2064 md_done_sync(mddev, r1_bio->sectors, 0);
2076 /* write it back and re-read */
2077 while (d != r1_bio->read_disk) {
2079 d = conf->raid_disks * 2;
2081 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2083 rdev = conf->mirrors[d].rdev;
2084 if (r1_sync_page_io(rdev, sect, s,
2087 r1_bio->bios[d]->bi_end_io = NULL;
2088 rdev_dec_pending(rdev, mddev);
2092 while (d != r1_bio->read_disk) {
2094 d = conf->raid_disks * 2;
2096 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2098 rdev = conf->mirrors[d].rdev;
2099 if (r1_sync_page_io(rdev, sect, s,
2102 atomic_add(s, &rdev->corrected_errors);
2108 set_bit(R1BIO_Uptodate, &r1_bio->state);
2113 static void process_checks(struct r1bio *r1_bio)
2115 /* We have read all readable devices. If we haven't
2116 * got the block, then there is no hope left.
2117 * If we have, then we want to do a comparison
2118 * and skip the write if everything is the same.
2119 * If any blocks failed to read, then we need to
2120 * attempt an over-write
2122 struct mddev *mddev = r1_bio->mddev;
2123 struct r1conf *conf = mddev->private;
2128 /* Fix variable parts of all bios */
2129 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2130 for (i = 0; i < conf->raid_disks * 2; i++) {
2131 blk_status_t status;
2132 struct bio *b = r1_bio->bios[i];
2133 struct resync_pages *rp = get_resync_pages(b);
2134 if (b->bi_end_io != end_sync_read)
2136 /* fixup the bio for reuse, but preserve errno */
2137 status = b->bi_status;
2139 b->bi_status = status;
2140 b->bi_iter.bi_sector = r1_bio->sector +
2141 conf->mirrors[i].rdev->data_offset;
2142 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2143 b->bi_end_io = end_sync_read;
2144 rp->raid_bio = r1_bio;
2147 /* initialize bvec table again */
2148 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2150 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2151 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2152 !r1_bio->bios[primary]->bi_status) {
2153 r1_bio->bios[primary]->bi_end_io = NULL;
2154 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2157 r1_bio->read_disk = primary;
2158 for (i = 0; i < conf->raid_disks * 2; i++) {
2160 struct bio *pbio = r1_bio->bios[primary];
2161 struct bio *sbio = r1_bio->bios[i];
2162 blk_status_t status = sbio->bi_status;
2163 struct page **ppages = get_resync_pages(pbio)->pages;
2164 struct page **spages = get_resync_pages(sbio)->pages;
2166 int page_len[RESYNC_PAGES] = { 0 };
2167 struct bvec_iter_all iter_all;
2169 if (sbio->bi_end_io != end_sync_read)
2171 /* Now we can 'fixup' the error value */
2172 sbio->bi_status = 0;
2174 bio_for_each_segment_all(bi, sbio, iter_all)
2175 page_len[j++] = bi->bv_len;
2178 for (j = vcnt; j-- ; ) {
2179 if (memcmp(page_address(ppages[j]),
2180 page_address(spages[j]),
2187 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2188 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2190 /* No need to write to this device. */
2191 sbio->bi_end_io = NULL;
2192 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2196 bio_copy_data(sbio, pbio);
2200 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2202 struct r1conf *conf = mddev->private;
2204 int disks = conf->raid_disks * 2;
2207 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2208 /* ouch - failed to read all of that. */
2209 if (!fix_sync_read_error(r1_bio))
2212 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2213 process_checks(r1_bio);
2218 atomic_set(&r1_bio->remaining, 1);
2219 for (i = 0; i < disks ; i++) {
2220 wbio = r1_bio->bios[i];
2221 if (wbio->bi_end_io == NULL ||
2222 (wbio->bi_end_io == end_sync_read &&
2223 (i == r1_bio->read_disk ||
2224 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2226 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2227 abort_sync_write(mddev, r1_bio);
2231 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2232 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2233 wbio->bi_opf |= MD_FAILFAST;
2235 wbio->bi_end_io = end_sync_write;
2236 atomic_inc(&r1_bio->remaining);
2237 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2239 submit_bio_noacct(wbio);
2242 put_sync_write_buf(r1_bio, 1);
2246 * This is a kernel thread which:
2248 * 1. Retries failed read operations on working mirrors.
2249 * 2. Updates the raid superblock when problems encounter.
2250 * 3. Performs writes following reads for array synchronising.
2253 static void fix_read_error(struct r1conf *conf, int read_disk,
2254 sector_t sect, int sectors)
2256 struct mddev *mddev = conf->mddev;
2262 struct md_rdev *rdev;
2264 if (s > (PAGE_SIZE>>9))
2272 rdev = rcu_dereference(conf->mirrors[d].rdev);
2274 (test_bit(In_sync, &rdev->flags) ||
2275 (!test_bit(Faulty, &rdev->flags) &&
2276 rdev->recovery_offset >= sect + s)) &&
2277 is_badblock(rdev, sect, s,
2278 &first_bad, &bad_sectors) == 0) {
2279 atomic_inc(&rdev->nr_pending);
2281 if (sync_page_io(rdev, sect, s<<9,
2282 conf->tmppage, REQ_OP_READ, 0, false))
2284 rdev_dec_pending(rdev, mddev);
2290 if (d == conf->raid_disks * 2)
2292 } while (!success && d != read_disk);
2295 /* Cannot read from anywhere - mark it bad */
2296 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2297 if (!rdev_set_badblocks(rdev, sect, s, 0))
2298 md_error(mddev, rdev);
2301 /* write it back and re-read */
2303 while (d != read_disk) {
2305 d = conf->raid_disks * 2;
2308 rdev = rcu_dereference(conf->mirrors[d].rdev);
2310 !test_bit(Faulty, &rdev->flags)) {
2311 atomic_inc(&rdev->nr_pending);
2313 r1_sync_page_io(rdev, sect, s,
2314 conf->tmppage, WRITE);
2315 rdev_dec_pending(rdev, mddev);
2320 while (d != read_disk) {
2321 char b[BDEVNAME_SIZE];
2323 d = conf->raid_disks * 2;
2326 rdev = rcu_dereference(conf->mirrors[d].rdev);
2328 !test_bit(Faulty, &rdev->flags)) {
2329 atomic_inc(&rdev->nr_pending);
2331 if (r1_sync_page_io(rdev, sect, s,
2332 conf->tmppage, READ)) {
2333 atomic_add(s, &rdev->corrected_errors);
2334 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2336 (unsigned long long)(sect +
2338 bdevname(rdev->bdev, b));
2340 rdev_dec_pending(rdev, mddev);
2349 static int narrow_write_error(struct r1bio *r1_bio, int i)
2351 struct mddev *mddev = r1_bio->mddev;
2352 struct r1conf *conf = mddev->private;
2353 struct md_rdev *rdev = conf->mirrors[i].rdev;
2355 /* bio has the data to be written to device 'i' where
2356 * we just recently had a write error.
2357 * We repeatedly clone the bio and trim down to one block,
2358 * then try the write. Where the write fails we record
2360 * It is conceivable that the bio doesn't exactly align with
2361 * blocks. We must handle this somehow.
2363 * We currently own a reference on the rdev.
2369 int sect_to_write = r1_bio->sectors;
2372 if (rdev->badblocks.shift < 0)
2375 block_sectors = roundup(1 << rdev->badblocks.shift,
2376 bdev_logical_block_size(rdev->bdev) >> 9);
2377 sector = r1_bio->sector;
2378 sectors = ((sector + block_sectors)
2379 & ~(sector_t)(block_sectors - 1))
2382 while (sect_to_write) {
2384 if (sectors > sect_to_write)
2385 sectors = sect_to_write;
2386 /* Write at 'sector' for 'sectors'*/
2388 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2389 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2393 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2397 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2398 wbio->bi_iter.bi_sector = r1_bio->sector;
2399 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2401 bio_trim(wbio, sector - r1_bio->sector, sectors);
2402 wbio->bi_iter.bi_sector += rdev->data_offset;
2403 bio_set_dev(wbio, rdev->bdev);
2405 if (submit_bio_wait(wbio) < 0)
2407 ok = rdev_set_badblocks(rdev, sector,
2412 sect_to_write -= sectors;
2414 sectors = block_sectors;
2419 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2422 int s = r1_bio->sectors;
2423 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2424 struct md_rdev *rdev = conf->mirrors[m].rdev;
2425 struct bio *bio = r1_bio->bios[m];
2426 if (bio->bi_end_io == NULL)
2428 if (!bio->bi_status &&
2429 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2430 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2432 if (bio->bi_status &&
2433 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2434 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2435 md_error(conf->mddev, rdev);
2439 md_done_sync(conf->mddev, s, 1);
2442 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2447 for (m = 0; m < conf->raid_disks * 2 ; m++)
2448 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2449 struct md_rdev *rdev = conf->mirrors[m].rdev;
2450 rdev_clear_badblocks(rdev,
2452 r1_bio->sectors, 0);
2453 rdev_dec_pending(rdev, conf->mddev);
2454 } else if (r1_bio->bios[m] != NULL) {
2455 /* This drive got a write error. We need to
2456 * narrow down and record precise write
2460 if (!narrow_write_error(r1_bio, m)) {
2461 md_error(conf->mddev,
2462 conf->mirrors[m].rdev);
2463 /* an I/O failed, we can't clear the bitmap */
2464 set_bit(R1BIO_Degraded, &r1_bio->state);
2466 rdev_dec_pending(conf->mirrors[m].rdev,
2470 spin_lock_irq(&conf->device_lock);
2471 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2472 idx = sector_to_idx(r1_bio->sector);
2473 atomic_inc(&conf->nr_queued[idx]);
2474 spin_unlock_irq(&conf->device_lock);
2476 * In case freeze_array() is waiting for condition
2477 * get_unqueued_pending() == extra to be true.
2479 wake_up(&conf->wait_barrier);
2480 md_wakeup_thread(conf->mddev->thread);
2482 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2483 close_write(r1_bio);
2484 raid_end_bio_io(r1_bio);
2488 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2490 struct mddev *mddev = conf->mddev;
2492 struct md_rdev *rdev;
2494 clear_bit(R1BIO_ReadError, &r1_bio->state);
2495 /* we got a read error. Maybe the drive is bad. Maybe just
2496 * the block and we can fix it.
2497 * We freeze all other IO, and try reading the block from
2498 * other devices. When we find one, we re-write
2499 * and check it that fixes the read error.
2500 * This is all done synchronously while the array is
2504 bio = r1_bio->bios[r1_bio->read_disk];
2506 r1_bio->bios[r1_bio->read_disk] = NULL;
2508 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2510 && !test_bit(FailFast, &rdev->flags)) {
2511 freeze_array(conf, 1);
2512 fix_read_error(conf, r1_bio->read_disk,
2513 r1_bio->sector, r1_bio->sectors);
2514 unfreeze_array(conf);
2515 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2516 md_error(mddev, rdev);
2518 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2521 rdev_dec_pending(rdev, conf->mddev);
2522 allow_barrier(conf, r1_bio->sector);
2523 bio = r1_bio->master_bio;
2525 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2527 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2530 static void raid1d(struct md_thread *thread)
2532 struct mddev *mddev = thread->mddev;
2533 struct r1bio *r1_bio;
2534 unsigned long flags;
2535 struct r1conf *conf = mddev->private;
2536 struct list_head *head = &conf->retry_list;
2537 struct blk_plug plug;
2540 md_check_recovery(mddev);
2542 if (!list_empty_careful(&conf->bio_end_io_list) &&
2543 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2545 spin_lock_irqsave(&conf->device_lock, flags);
2546 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2547 list_splice_init(&conf->bio_end_io_list, &tmp);
2548 spin_unlock_irqrestore(&conf->device_lock, flags);
2549 while (!list_empty(&tmp)) {
2550 r1_bio = list_first_entry(&tmp, struct r1bio,
2552 list_del(&r1_bio->retry_list);
2553 idx = sector_to_idx(r1_bio->sector);
2554 atomic_dec(&conf->nr_queued[idx]);
2555 if (mddev->degraded)
2556 set_bit(R1BIO_Degraded, &r1_bio->state);
2557 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2558 close_write(r1_bio);
2559 raid_end_bio_io(r1_bio);
2563 blk_start_plug(&plug);
2566 flush_pending_writes(conf);
2568 spin_lock_irqsave(&conf->device_lock, flags);
2569 if (list_empty(head)) {
2570 spin_unlock_irqrestore(&conf->device_lock, flags);
2573 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2574 list_del(head->prev);
2575 idx = sector_to_idx(r1_bio->sector);
2576 atomic_dec(&conf->nr_queued[idx]);
2577 spin_unlock_irqrestore(&conf->device_lock, flags);
2579 mddev = r1_bio->mddev;
2580 conf = mddev->private;
2581 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2582 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2583 test_bit(R1BIO_WriteError, &r1_bio->state))
2584 handle_sync_write_finished(conf, r1_bio);
2586 sync_request_write(mddev, r1_bio);
2587 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2588 test_bit(R1BIO_WriteError, &r1_bio->state))
2589 handle_write_finished(conf, r1_bio);
2590 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2591 handle_read_error(conf, r1_bio);
2596 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2597 md_check_recovery(mddev);
2599 blk_finish_plug(&plug);
2602 static int init_resync(struct r1conf *conf)
2606 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2607 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2609 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2610 r1buf_pool_free, conf->poolinfo);
2613 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2615 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2616 struct resync_pages *rps;
2620 for (i = conf->poolinfo->raid_disks; i--; ) {
2621 bio = r1bio->bios[i];
2622 rps = bio->bi_private;
2624 bio->bi_private = rps;
2626 r1bio->master_bio = NULL;
2631 * perform a "sync" on one "block"
2633 * We need to make sure that no normal I/O request - particularly write
2634 * requests - conflict with active sync requests.
2636 * This is achieved by tracking pending requests and a 'barrier' concept
2637 * that can be installed to exclude normal IO requests.
2640 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2643 struct r1conf *conf = mddev->private;
2644 struct r1bio *r1_bio;
2646 sector_t max_sector, nr_sectors;
2650 int write_targets = 0, read_targets = 0;
2651 sector_t sync_blocks;
2652 int still_degraded = 0;
2653 int good_sectors = RESYNC_SECTORS;
2654 int min_bad = 0; /* number of sectors that are bad in all devices */
2655 int idx = sector_to_idx(sector_nr);
2658 if (!mempool_initialized(&conf->r1buf_pool))
2659 if (init_resync(conf))
2662 max_sector = mddev->dev_sectors;
2663 if (sector_nr >= max_sector) {
2664 /* If we aborted, we need to abort the
2665 * sync on the 'current' bitmap chunk (there will
2666 * only be one in raid1 resync.
2667 * We can find the current addess in mddev->curr_resync
2669 if (mddev->curr_resync < max_sector) /* aborted */
2670 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2672 else /* completed sync */
2675 md_bitmap_close_sync(mddev->bitmap);
2678 if (mddev_is_clustered(mddev)) {
2679 conf->cluster_sync_low = 0;
2680 conf->cluster_sync_high = 0;
2685 if (mddev->bitmap == NULL &&
2686 mddev->recovery_cp == MaxSector &&
2687 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2688 conf->fullsync == 0) {
2690 return max_sector - sector_nr;
2692 /* before building a request, check if we can skip these blocks..
2693 * This call the bitmap_start_sync doesn't actually record anything
2695 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2696 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2697 /* We can skip this block, and probably several more */
2703 * If there is non-resync activity waiting for a turn, then let it
2704 * though before starting on this new sync request.
2706 if (atomic_read(&conf->nr_waiting[idx]))
2707 schedule_timeout_uninterruptible(1);
2709 /* we are incrementing sector_nr below. To be safe, we check against
2710 * sector_nr + two times RESYNC_SECTORS
2713 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2714 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2717 if (raise_barrier(conf, sector_nr))
2720 r1_bio = raid1_alloc_init_r1buf(conf);
2724 * If we get a correctably read error during resync or recovery,
2725 * we might want to read from a different device. So we
2726 * flag all drives that could conceivably be read from for READ,
2727 * and any others (which will be non-In_sync devices) for WRITE.
2728 * If a read fails, we try reading from something else for which READ
2732 r1_bio->mddev = mddev;
2733 r1_bio->sector = sector_nr;
2735 set_bit(R1BIO_IsSync, &r1_bio->state);
2736 /* make sure good_sectors won't go across barrier unit boundary */
2737 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2739 for (i = 0; i < conf->raid_disks * 2; i++) {
2740 struct md_rdev *rdev;
2741 bio = r1_bio->bios[i];
2743 rdev = rcu_dereference(conf->mirrors[i].rdev);
2745 test_bit(Faulty, &rdev->flags)) {
2746 if (i < conf->raid_disks)
2748 } else if (!test_bit(In_sync, &rdev->flags)) {
2749 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2750 bio->bi_end_io = end_sync_write;
2753 /* may need to read from here */
2754 sector_t first_bad = MaxSector;
2757 if (is_badblock(rdev, sector_nr, good_sectors,
2758 &first_bad, &bad_sectors)) {
2759 if (first_bad > sector_nr)
2760 good_sectors = first_bad - sector_nr;
2762 bad_sectors -= (sector_nr - first_bad);
2764 min_bad > bad_sectors)
2765 min_bad = bad_sectors;
2768 if (sector_nr < first_bad) {
2769 if (test_bit(WriteMostly, &rdev->flags)) {
2776 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2777 bio->bi_end_io = end_sync_read;
2779 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2780 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2781 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2783 * The device is suitable for reading (InSync),
2784 * but has bad block(s) here. Let's try to correct them,
2785 * if we are doing resync or repair. Otherwise, leave
2786 * this device alone for this sync request.
2788 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2789 bio->bi_end_io = end_sync_write;
2793 if (rdev && bio->bi_end_io) {
2794 atomic_inc(&rdev->nr_pending);
2795 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2796 bio_set_dev(bio, rdev->bdev);
2797 if (test_bit(FailFast, &rdev->flags))
2798 bio->bi_opf |= MD_FAILFAST;
2804 r1_bio->read_disk = disk;
2806 if (read_targets == 0 && min_bad > 0) {
2807 /* These sectors are bad on all InSync devices, so we
2808 * need to mark them bad on all write targets
2811 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2812 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2813 struct md_rdev *rdev = conf->mirrors[i].rdev;
2814 ok = rdev_set_badblocks(rdev, sector_nr,
2818 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2823 /* Cannot record the badblocks, so need to
2825 * If there are multiple read targets, could just
2826 * fail the really bad ones ???
2828 conf->recovery_disabled = mddev->recovery_disabled;
2829 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2835 if (min_bad > 0 && min_bad < good_sectors) {
2836 /* only resync enough to reach the next bad->good
2838 good_sectors = min_bad;
2841 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2842 /* extra read targets are also write targets */
2843 write_targets += read_targets-1;
2845 if (write_targets == 0 || read_targets == 0) {
2846 /* There is nowhere to write, so all non-sync
2847 * drives must be failed - so we are finished
2851 max_sector = sector_nr + min_bad;
2852 rv = max_sector - sector_nr;
2858 if (max_sector > mddev->resync_max)
2859 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2860 if (max_sector > sector_nr + good_sectors)
2861 max_sector = sector_nr + good_sectors;
2866 int len = PAGE_SIZE;
2867 if (sector_nr + (len>>9) > max_sector)
2868 len = (max_sector - sector_nr) << 9;
2871 if (sync_blocks == 0) {
2872 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2873 &sync_blocks, still_degraded) &&
2875 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2877 if ((len >> 9) > sync_blocks)
2878 len = sync_blocks<<9;
2881 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2882 struct resync_pages *rp;
2884 bio = r1_bio->bios[i];
2885 rp = get_resync_pages(bio);
2886 if (bio->bi_end_io) {
2887 page = resync_fetch_page(rp, page_idx);
2890 * won't fail because the vec table is big
2891 * enough to hold all these pages
2893 bio_add_page(bio, page, len, 0);
2896 nr_sectors += len>>9;
2897 sector_nr += len>>9;
2898 sync_blocks -= (len>>9);
2899 } while (++page_idx < RESYNC_PAGES);
2901 r1_bio->sectors = nr_sectors;
2903 if (mddev_is_clustered(mddev) &&
2904 conf->cluster_sync_high < sector_nr + nr_sectors) {
2905 conf->cluster_sync_low = mddev->curr_resync_completed;
2906 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2907 /* Send resync message */
2908 md_cluster_ops->resync_info_update(mddev,
2909 conf->cluster_sync_low,
2910 conf->cluster_sync_high);
2913 /* For a user-requested sync, we read all readable devices and do a
2916 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2917 atomic_set(&r1_bio->remaining, read_targets);
2918 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2919 bio = r1_bio->bios[i];
2920 if (bio->bi_end_io == end_sync_read) {
2922 md_sync_acct_bio(bio, nr_sectors);
2923 if (read_targets == 1)
2924 bio->bi_opf &= ~MD_FAILFAST;
2925 submit_bio_noacct(bio);
2929 atomic_set(&r1_bio->remaining, 1);
2930 bio = r1_bio->bios[r1_bio->read_disk];
2931 md_sync_acct_bio(bio, nr_sectors);
2932 if (read_targets == 1)
2933 bio->bi_opf &= ~MD_FAILFAST;
2934 submit_bio_noacct(bio);
2939 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2944 return mddev->dev_sectors;
2947 static struct r1conf *setup_conf(struct mddev *mddev)
2949 struct r1conf *conf;
2951 struct raid1_info *disk;
2952 struct md_rdev *rdev;
2955 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2959 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2960 sizeof(atomic_t), GFP_KERNEL);
2961 if (!conf->nr_pending)
2964 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2965 sizeof(atomic_t), GFP_KERNEL);
2966 if (!conf->nr_waiting)
2969 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2970 sizeof(atomic_t), GFP_KERNEL);
2971 if (!conf->nr_queued)
2974 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2975 sizeof(atomic_t), GFP_KERNEL);
2979 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2980 mddev->raid_disks, 2),
2985 conf->tmppage = alloc_page(GFP_KERNEL);
2989 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2990 if (!conf->poolinfo)
2992 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2993 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2994 rbio_pool_free, conf->poolinfo);
2998 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3002 conf->poolinfo->mddev = mddev;
3005 spin_lock_init(&conf->device_lock);
3006 rdev_for_each(rdev, mddev) {
3007 int disk_idx = rdev->raid_disk;
3008 if (disk_idx >= mddev->raid_disks
3011 if (test_bit(Replacement, &rdev->flags))
3012 disk = conf->mirrors + mddev->raid_disks + disk_idx;
3014 disk = conf->mirrors + disk_idx;
3019 disk->head_position = 0;
3020 disk->seq_start = MaxSector;
3022 conf->raid_disks = mddev->raid_disks;
3023 conf->mddev = mddev;
3024 INIT_LIST_HEAD(&conf->retry_list);
3025 INIT_LIST_HEAD(&conf->bio_end_io_list);
3027 spin_lock_init(&conf->resync_lock);
3028 init_waitqueue_head(&conf->wait_barrier);
3030 bio_list_init(&conf->pending_bio_list);
3031 conf->pending_count = 0;
3032 conf->recovery_disabled = mddev->recovery_disabled - 1;
3035 for (i = 0; i < conf->raid_disks * 2; i++) {
3037 disk = conf->mirrors + i;
3039 if (i < conf->raid_disks &&
3040 disk[conf->raid_disks].rdev) {
3041 /* This slot has a replacement. */
3043 /* No original, just make the replacement
3044 * a recovering spare
3047 disk[conf->raid_disks].rdev;
3048 disk[conf->raid_disks].rdev = NULL;
3049 } else if (!test_bit(In_sync, &disk->rdev->flags))
3050 /* Original is not in_sync - bad */
3055 !test_bit(In_sync, &disk->rdev->flags)) {
3056 disk->head_position = 0;
3058 (disk->rdev->saved_raid_disk < 0))
3064 conf->thread = md_register_thread(raid1d, mddev, "raid1");
3072 mempool_exit(&conf->r1bio_pool);
3073 kfree(conf->mirrors);
3074 safe_put_page(conf->tmppage);
3075 kfree(conf->poolinfo);
3076 kfree(conf->nr_pending);
3077 kfree(conf->nr_waiting);
3078 kfree(conf->nr_queued);
3079 kfree(conf->barrier);
3080 bioset_exit(&conf->bio_split);
3083 return ERR_PTR(err);
3086 static void raid1_free(struct mddev *mddev, void *priv);
3087 static int raid1_run(struct mddev *mddev)
3089 struct r1conf *conf;
3091 struct md_rdev *rdev;
3093 bool discard_supported = false;
3095 if (mddev->level != 1) {
3096 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3097 mdname(mddev), mddev->level);
3100 if (mddev->reshape_position != MaxSector) {
3101 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3105 if (mddev_init_writes_pending(mddev) < 0)
3108 * copy the already verified devices into our private RAID1
3109 * bookkeeping area. [whatever we allocate in run(),
3110 * should be freed in raid1_free()]
3112 if (mddev->private == NULL)
3113 conf = setup_conf(mddev);
3115 conf = mddev->private;
3118 return PTR_ERR(conf);
3121 blk_queue_max_write_same_sectors(mddev->queue, 0);
3122 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3125 rdev_for_each(rdev, mddev) {
3126 if (!mddev->gendisk)
3128 disk_stack_limits(mddev->gendisk, rdev->bdev,
3129 rdev->data_offset << 9);
3130 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3131 discard_supported = true;
3134 mddev->degraded = 0;
3135 for (i = 0; i < conf->raid_disks; i++)
3136 if (conf->mirrors[i].rdev == NULL ||
3137 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3138 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3141 * RAID1 needs at least one disk in active
3143 if (conf->raid_disks - mddev->degraded < 1) {
3148 if (conf->raid_disks - mddev->degraded == 1)
3149 mddev->recovery_cp = MaxSector;
3151 if (mddev->recovery_cp != MaxSector)
3152 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3154 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3155 mdname(mddev), mddev->raid_disks - mddev->degraded,
3159 * Ok, everything is just fine now
3161 mddev->thread = conf->thread;
3162 conf->thread = NULL;
3163 mddev->private = conf;
3164 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3166 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3169 if (discard_supported)
3170 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3173 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3177 ret = md_integrity_register(mddev);
3179 md_unregister_thread(&mddev->thread);
3185 raid1_free(mddev, conf);
3189 static void raid1_free(struct mddev *mddev, void *priv)
3191 struct r1conf *conf = priv;
3193 mempool_exit(&conf->r1bio_pool);
3194 kfree(conf->mirrors);
3195 safe_put_page(conf->tmppage);
3196 kfree(conf->poolinfo);
3197 kfree(conf->nr_pending);
3198 kfree(conf->nr_waiting);
3199 kfree(conf->nr_queued);
3200 kfree(conf->barrier);
3201 bioset_exit(&conf->bio_split);
3205 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3207 /* no resync is happening, and there is enough space
3208 * on all devices, so we can resize.
3209 * We need to make sure resync covers any new space.
3210 * If the array is shrinking we should possibly wait until
3211 * any io in the removed space completes, but it hardly seems
3214 sector_t newsize = raid1_size(mddev, sectors, 0);
3215 if (mddev->external_size &&
3216 mddev->array_sectors > newsize)
3218 if (mddev->bitmap) {
3219 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3223 md_set_array_sectors(mddev, newsize);
3224 if (sectors > mddev->dev_sectors &&
3225 mddev->recovery_cp > mddev->dev_sectors) {
3226 mddev->recovery_cp = mddev->dev_sectors;
3227 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3229 mddev->dev_sectors = sectors;
3230 mddev->resync_max_sectors = sectors;
3234 static int raid1_reshape(struct mddev *mddev)
3237 * 1/ resize the r1bio_pool
3238 * 2/ resize conf->mirrors
3240 * We allocate a new r1bio_pool if we can.
3241 * Then raise a device barrier and wait until all IO stops.
3242 * Then resize conf->mirrors and swap in the new r1bio pool.
3244 * At the same time, we "pack" the devices so that all the missing
3245 * devices have the higher raid_disk numbers.
3247 mempool_t newpool, oldpool;
3248 struct pool_info *newpoolinfo;
3249 struct raid1_info *newmirrors;
3250 struct r1conf *conf = mddev->private;
3251 int cnt, raid_disks;
3252 unsigned long flags;
3256 memset(&newpool, 0, sizeof(newpool));
3257 memset(&oldpool, 0, sizeof(oldpool));
3259 /* Cannot change chunk_size, layout, or level */
3260 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3261 mddev->layout != mddev->new_layout ||
3262 mddev->level != mddev->new_level) {
3263 mddev->new_chunk_sectors = mddev->chunk_sectors;
3264 mddev->new_layout = mddev->layout;
3265 mddev->new_level = mddev->level;
3269 if (!mddev_is_clustered(mddev))
3270 md_allow_write(mddev);
3272 raid_disks = mddev->raid_disks + mddev->delta_disks;
3274 if (raid_disks < conf->raid_disks) {
3276 for (d= 0; d < conf->raid_disks; d++)
3277 if (conf->mirrors[d].rdev)
3279 if (cnt > raid_disks)
3283 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3286 newpoolinfo->mddev = mddev;
3287 newpoolinfo->raid_disks = raid_disks * 2;
3289 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3290 rbio_pool_free, newpoolinfo);
3295 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3300 mempool_exit(&newpool);
3304 freeze_array(conf, 0);
3306 /* ok, everything is stopped */
3307 oldpool = conf->r1bio_pool;
3308 conf->r1bio_pool = newpool;
3310 for (d = d2 = 0; d < conf->raid_disks; d++) {
3311 struct md_rdev *rdev = conf->mirrors[d].rdev;
3312 if (rdev && rdev->raid_disk != d2) {
3313 sysfs_unlink_rdev(mddev, rdev);
3314 rdev->raid_disk = d2;
3315 sysfs_unlink_rdev(mddev, rdev);
3316 if (sysfs_link_rdev(mddev, rdev))
3317 pr_warn("md/raid1:%s: cannot register rd%d\n",
3318 mdname(mddev), rdev->raid_disk);
3321 newmirrors[d2++].rdev = rdev;
3323 kfree(conf->mirrors);
3324 conf->mirrors = newmirrors;
3325 kfree(conf->poolinfo);
3326 conf->poolinfo = newpoolinfo;
3328 spin_lock_irqsave(&conf->device_lock, flags);
3329 mddev->degraded += (raid_disks - conf->raid_disks);
3330 spin_unlock_irqrestore(&conf->device_lock, flags);
3331 conf->raid_disks = mddev->raid_disks = raid_disks;
3332 mddev->delta_disks = 0;
3334 unfreeze_array(conf);
3336 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3337 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3338 md_wakeup_thread(mddev->thread);
3340 mempool_exit(&oldpool);
3344 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3346 struct r1conf *conf = mddev->private;
3349 freeze_array(conf, 0);
3351 unfreeze_array(conf);
3354 static void *raid1_takeover(struct mddev *mddev)
3356 /* raid1 can take over:
3357 * raid5 with 2 devices, any layout or chunk size
3359 if (mddev->level == 5 && mddev->raid_disks == 2) {
3360 struct r1conf *conf;
3361 mddev->new_level = 1;
3362 mddev->new_layout = 0;
3363 mddev->new_chunk_sectors = 0;
3364 conf = setup_conf(mddev);
3365 if (!IS_ERR(conf)) {
3366 /* Array must appear to be quiesced */
3367 conf->array_frozen = 1;
3368 mddev_clear_unsupported_flags(mddev,
3369 UNSUPPORTED_MDDEV_FLAGS);
3373 return ERR_PTR(-EINVAL);
3376 static struct md_personality raid1_personality =
3380 .owner = THIS_MODULE,
3381 .make_request = raid1_make_request,
3384 .status = raid1_status,
3385 .error_handler = raid1_error,
3386 .hot_add_disk = raid1_add_disk,
3387 .hot_remove_disk= raid1_remove_disk,
3388 .spare_active = raid1_spare_active,
3389 .sync_request = raid1_sync_request,
3390 .resize = raid1_resize,
3392 .check_reshape = raid1_reshape,
3393 .quiesce = raid1_quiesce,
3394 .takeover = raid1_takeover,
3397 static int __init raid_init(void)
3399 return register_md_personality(&raid1_personality);
3402 static void raid_exit(void)
3404 unregister_md_personality(&raid1_personality);
3407 module_init(raid_init);
3408 module_exit(raid_exit);
3409 MODULE_LICENSE("GPL");
3410 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3411 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3412 MODULE_ALIAS("md-raid1");
3413 MODULE_ALIAS("md-level-1");
3415 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);