overlays: i2c-rtc: Add pcf85363 support
[platform/kernel/linux-rpi.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40
41 #include <trace/events/block.h>
42
43 #include "md.h"
44 #include "raid1.h"
45 #include "md-bitmap.h"
46
47 #define UNSUPPORTED_MDDEV_FLAGS         \
48         ((1L << MD_HAS_JOURNAL) |       \
49          (1L << MD_JOURNAL_CLEAN) |     \
50          (1L << MD_HAS_PPL) |           \
51          (1L << MD_HAS_MULTIPLE_PPLS))
52
53 /*
54  * Number of guaranteed r1bios in case of extreme VM load:
55  */
56 #define NR_RAID1_BIOS 256
57
58 /* when we get a read error on a read-only array, we redirect to another
59  * device without failing the first device, or trying to over-write to
60  * correct the read error.  To keep track of bad blocks on a per-bio
61  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62  */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65  * bad-block marking which must be done from process context.  So we record
66  * the success by setting devs[n].bio to IO_MADE_GOOD
67  */
68 #define IO_MADE_GOOD ((struct bio *)2)
69
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
72 /* When there are this many requests queue to be written by
73  * the raid1 thread, we become 'congested' to provide back-pressure
74  * for writeback.
75  */
76 static int max_queued_requests = 1024;
77
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80
81 #define raid1_log(md, fmt, args...)                             \
82         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
84 #include "raid1-10.c"
85
86 /*
87  * for resync bio, r1bio pointer can be retrieved from the per-bio
88  * 'struct resync_pages'.
89  */
90 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
91 {
92         return get_resync_pages(bio)->raid_bio;
93 }
94
95 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97         struct pool_info *pi = data;
98         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
99
100         /* allocate a r1bio with room for raid_disks entries in the bios array */
101         return kzalloc(size, gfp_flags);
102 }
103
104 static void r1bio_pool_free(void *r1_bio, void *data)
105 {
106         kfree(r1_bio);
107 }
108
109 #define RESYNC_DEPTH 32
110 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
111 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
112 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
113 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
114 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
115
116 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118         struct pool_info *pi = data;
119         struct r1bio *r1_bio;
120         struct bio *bio;
121         int need_pages;
122         int j;
123         struct resync_pages *rps;
124
125         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
126         if (!r1_bio)
127                 return NULL;
128
129         rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
130                             gfp_flags);
131         if (!rps)
132                 goto out_free_r1bio;
133
134         /*
135          * Allocate bios : 1 for reading, n-1 for writing
136          */
137         for (j = pi->raid_disks ; j-- ; ) {
138                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
139                 if (!bio)
140                         goto out_free_bio;
141                 r1_bio->bios[j] = bio;
142         }
143         /*
144          * Allocate RESYNC_PAGES data pages and attach them to
145          * the first bio.
146          * If this is a user-requested check/repair, allocate
147          * RESYNC_PAGES for each bio.
148          */
149         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
150                 need_pages = pi->raid_disks;
151         else
152                 need_pages = 1;
153         for (j = 0; j < pi->raid_disks; j++) {
154                 struct resync_pages *rp = &rps[j];
155
156                 bio = r1_bio->bios[j];
157
158                 if (j < need_pages) {
159                         if (resync_alloc_pages(rp, gfp_flags))
160                                 goto out_free_pages;
161                 } else {
162                         memcpy(rp, &rps[0], sizeof(*rp));
163                         resync_get_all_pages(rp);
164                 }
165
166                 rp->raid_bio = r1_bio;
167                 bio->bi_private = rp;
168         }
169
170         r1_bio->master_bio = NULL;
171
172         return r1_bio;
173
174 out_free_pages:
175         while (--j >= 0)
176                 resync_free_pages(&rps[j]);
177
178 out_free_bio:
179         while (++j < pi->raid_disks)
180                 bio_put(r1_bio->bios[j]);
181         kfree(rps);
182
183 out_free_r1bio:
184         r1bio_pool_free(r1_bio, data);
185         return NULL;
186 }
187
188 static void r1buf_pool_free(void *__r1_bio, void *data)
189 {
190         struct pool_info *pi = data;
191         int i;
192         struct r1bio *r1bio = __r1_bio;
193         struct resync_pages *rp = NULL;
194
195         for (i = pi->raid_disks; i--; ) {
196                 rp = get_resync_pages(r1bio->bios[i]);
197                 resync_free_pages(rp);
198                 bio_put(r1bio->bios[i]);
199         }
200
201         /* resync pages array stored in the 1st bio's .bi_private */
202         kfree(rp);
203
204         r1bio_pool_free(r1bio, data);
205 }
206
207 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
208 {
209         int i;
210
211         for (i = 0; i < conf->raid_disks * 2; i++) {
212                 struct bio **bio = r1_bio->bios + i;
213                 if (!BIO_SPECIAL(*bio))
214                         bio_put(*bio);
215                 *bio = NULL;
216         }
217 }
218
219 static void free_r1bio(struct r1bio *r1_bio)
220 {
221         struct r1conf *conf = r1_bio->mddev->private;
222
223         put_all_bios(conf, r1_bio);
224         mempool_free(r1_bio, &conf->r1bio_pool);
225 }
226
227 static void put_buf(struct r1bio *r1_bio)
228 {
229         struct r1conf *conf = r1_bio->mddev->private;
230         sector_t sect = r1_bio->sector;
231         int i;
232
233         for (i = 0; i < conf->raid_disks * 2; i++) {
234                 struct bio *bio = r1_bio->bios[i];
235                 if (bio->bi_end_io)
236                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
237         }
238
239         mempool_free(r1_bio, &conf->r1buf_pool);
240
241         lower_barrier(conf, sect);
242 }
243
244 static void reschedule_retry(struct r1bio *r1_bio)
245 {
246         unsigned long flags;
247         struct mddev *mddev = r1_bio->mddev;
248         struct r1conf *conf = mddev->private;
249         int idx;
250
251         idx = sector_to_idx(r1_bio->sector);
252         spin_lock_irqsave(&conf->device_lock, flags);
253         list_add(&r1_bio->retry_list, &conf->retry_list);
254         atomic_inc(&conf->nr_queued[idx]);
255         spin_unlock_irqrestore(&conf->device_lock, flags);
256
257         wake_up(&conf->wait_barrier);
258         md_wakeup_thread(mddev->thread);
259 }
260
261 /*
262  * raid_end_bio_io() is called when we have finished servicing a mirrored
263  * operation and are ready to return a success/failure code to the buffer
264  * cache layer.
265  */
266 static void call_bio_endio(struct r1bio *r1_bio)
267 {
268         struct bio *bio = r1_bio->master_bio;
269         struct r1conf *conf = r1_bio->mddev->private;
270
271         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
272                 bio->bi_status = BLK_STS_IOERR;
273
274         bio_endio(bio);
275         /*
276          * Wake up any possible resync thread that waits for the device
277          * to go idle.
278          */
279         allow_barrier(conf, r1_bio->sector);
280 }
281
282 static void raid_end_bio_io(struct r1bio *r1_bio)
283 {
284         struct bio *bio = r1_bio->master_bio;
285
286         /* if nobody has done the final endio yet, do it now */
287         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
288                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
289                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
290                          (unsigned long long) bio->bi_iter.bi_sector,
291                          (unsigned long long) bio_end_sector(bio) - 1);
292
293                 call_bio_endio(r1_bio);
294         }
295         free_r1bio(r1_bio);
296 }
297
298 /*
299  * Update disk head position estimator based on IRQ completion info.
300  */
301 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
302 {
303         struct r1conf *conf = r1_bio->mddev->private;
304
305         conf->mirrors[disk].head_position =
306                 r1_bio->sector + (r1_bio->sectors);
307 }
308
309 /*
310  * Find the disk number which triggered given bio
311  */
312 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
313 {
314         int mirror;
315         struct r1conf *conf = r1_bio->mddev->private;
316         int raid_disks = conf->raid_disks;
317
318         for (mirror = 0; mirror < raid_disks * 2; mirror++)
319                 if (r1_bio->bios[mirror] == bio)
320                         break;
321
322         BUG_ON(mirror == raid_disks * 2);
323         update_head_pos(mirror, r1_bio);
324
325         return mirror;
326 }
327
328 static void raid1_end_read_request(struct bio *bio)
329 {
330         int uptodate = !bio->bi_status;
331         struct r1bio *r1_bio = bio->bi_private;
332         struct r1conf *conf = r1_bio->mddev->private;
333         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
334
335         /*
336          * this branch is our 'one mirror IO has finished' event handler:
337          */
338         update_head_pos(r1_bio->read_disk, r1_bio);
339
340         if (uptodate)
341                 set_bit(R1BIO_Uptodate, &r1_bio->state);
342         else if (test_bit(FailFast, &rdev->flags) &&
343                  test_bit(R1BIO_FailFast, &r1_bio->state))
344                 /* This was a fail-fast read so we definitely
345                  * want to retry */
346                 ;
347         else {
348                 /* If all other devices have failed, we want to return
349                  * the error upwards rather than fail the last device.
350                  * Here we redefine "uptodate" to mean "Don't want to retry"
351                  */
352                 unsigned long flags;
353                 spin_lock_irqsave(&conf->device_lock, flags);
354                 if (r1_bio->mddev->degraded == conf->raid_disks ||
355                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
356                      test_bit(In_sync, &rdev->flags)))
357                         uptodate = 1;
358                 spin_unlock_irqrestore(&conf->device_lock, flags);
359         }
360
361         if (uptodate) {
362                 raid_end_bio_io(r1_bio);
363                 rdev_dec_pending(rdev, conf->mddev);
364         } else {
365                 /*
366                  * oops, read error:
367                  */
368                 char b[BDEVNAME_SIZE];
369                 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
370                                    mdname(conf->mddev),
371                                    bdevname(rdev->bdev, b),
372                                    (unsigned long long)r1_bio->sector);
373                 set_bit(R1BIO_ReadError, &r1_bio->state);
374                 reschedule_retry(r1_bio);
375                 /* don't drop the reference on read_disk yet */
376         }
377 }
378
379 static void close_write(struct r1bio *r1_bio)
380 {
381         /* it really is the end of this request */
382         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
383                 bio_free_pages(r1_bio->behind_master_bio);
384                 bio_put(r1_bio->behind_master_bio);
385                 r1_bio->behind_master_bio = NULL;
386         }
387         /* clear the bitmap if all writes complete successfully */
388         md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389                            r1_bio->sectors,
390                            !test_bit(R1BIO_Degraded, &r1_bio->state),
391                            test_bit(R1BIO_BehindIO, &r1_bio->state));
392         md_write_end(r1_bio->mddev);
393 }
394
395 static void r1_bio_write_done(struct r1bio *r1_bio)
396 {
397         if (!atomic_dec_and_test(&r1_bio->remaining))
398                 return;
399
400         if (test_bit(R1BIO_WriteError, &r1_bio->state))
401                 reschedule_retry(r1_bio);
402         else {
403                 close_write(r1_bio);
404                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
405                         reschedule_retry(r1_bio);
406                 else
407                         raid_end_bio_io(r1_bio);
408         }
409 }
410
411 static void raid1_end_write_request(struct bio *bio)
412 {
413         struct r1bio *r1_bio = bio->bi_private;
414         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
415         struct r1conf *conf = r1_bio->mddev->private;
416         struct bio *to_put = NULL;
417         int mirror = find_bio_disk(r1_bio, bio);
418         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
419         bool discard_error;
420
421         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
422
423         /*
424          * 'one mirror IO has finished' event handler:
425          */
426         if (bio->bi_status && !discard_error) {
427                 set_bit(WriteErrorSeen, &rdev->flags);
428                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
429                         set_bit(MD_RECOVERY_NEEDED, &
430                                 conf->mddev->recovery);
431
432                 if (test_bit(FailFast, &rdev->flags) &&
433                     (bio->bi_opf & MD_FAILFAST) &&
434                     /* We never try FailFast to WriteMostly devices */
435                     !test_bit(WriteMostly, &rdev->flags)) {
436                         md_error(r1_bio->mddev, rdev);
437                 }
438
439                 /*
440                  * When the device is faulty, it is not necessary to
441                  * handle write error.
442                  * For failfast, this is the only remaining device,
443                  * We need to retry the write without FailFast.
444                  */
445                 if (!test_bit(Faulty, &rdev->flags))
446                         set_bit(R1BIO_WriteError, &r1_bio->state);
447                 else {
448                         /* Finished with this branch */
449                         r1_bio->bios[mirror] = NULL;
450                         to_put = bio;
451                 }
452         } else {
453                 /*
454                  * Set R1BIO_Uptodate in our master bio, so that we
455                  * will return a good error code for to the higher
456                  * levels even if IO on some other mirrored buffer
457                  * fails.
458                  *
459                  * The 'master' represents the composite IO operation
460                  * to user-side. So if something waits for IO, then it
461                  * will wait for the 'master' bio.
462                  */
463                 sector_t first_bad;
464                 int bad_sectors;
465
466                 r1_bio->bios[mirror] = NULL;
467                 to_put = bio;
468                 /*
469                  * Do not set R1BIO_Uptodate if the current device is
470                  * rebuilding or Faulty. This is because we cannot use
471                  * such device for properly reading the data back (we could
472                  * potentially use it, if the current write would have felt
473                  * before rdev->recovery_offset, but for simplicity we don't
474                  * check this here.
475                  */
476                 if (test_bit(In_sync, &rdev->flags) &&
477                     !test_bit(Faulty, &rdev->flags))
478                         set_bit(R1BIO_Uptodate, &r1_bio->state);
479
480                 /* Maybe we can clear some bad blocks. */
481                 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
482                                 &first_bad, &bad_sectors) && !discard_error) {
483                         r1_bio->bios[mirror] = IO_MADE_GOOD;
484                         set_bit(R1BIO_MadeGood, &r1_bio->state);
485                 }
486         }
487
488         if (behind) {
489                 if (test_bit(WriteMostly, &rdev->flags))
490                         atomic_dec(&r1_bio->behind_remaining);
491
492                 /*
493                  * In behind mode, we ACK the master bio once the I/O
494                  * has safely reached all non-writemostly
495                  * disks. Setting the Returned bit ensures that this
496                  * gets done only once -- we don't ever want to return
497                  * -EIO here, instead we'll wait
498                  */
499                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
500                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
501                         /* Maybe we can return now */
502                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
503                                 struct bio *mbio = r1_bio->master_bio;
504                                 pr_debug("raid1: behind end write sectors"
505                                          " %llu-%llu\n",
506                                          (unsigned long long) mbio->bi_iter.bi_sector,
507                                          (unsigned long long) bio_end_sector(mbio) - 1);
508                                 call_bio_endio(r1_bio);
509                         }
510                 }
511         }
512         if (r1_bio->bios[mirror] == NULL)
513                 rdev_dec_pending(rdev, conf->mddev);
514
515         /*
516          * Let's see if all mirrored write operations have finished
517          * already.
518          */
519         r1_bio_write_done(r1_bio);
520
521         if (to_put)
522                 bio_put(to_put);
523 }
524
525 static sector_t align_to_barrier_unit_end(sector_t start_sector,
526                                           sector_t sectors)
527 {
528         sector_t len;
529
530         WARN_ON(sectors == 0);
531         /*
532          * len is the number of sectors from start_sector to end of the
533          * barrier unit which start_sector belongs to.
534          */
535         len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
536               start_sector;
537
538         if (len > sectors)
539                 len = sectors;
540
541         return len;
542 }
543
544 /*
545  * This routine returns the disk from which the requested read should
546  * be done. There is a per-array 'next expected sequential IO' sector
547  * number - if this matches on the next IO then we use the last disk.
548  * There is also a per-disk 'last know head position' sector that is
549  * maintained from IRQ contexts, both the normal and the resync IO
550  * completion handlers update this position correctly. If there is no
551  * perfect sequential match then we pick the disk whose head is closest.
552  *
553  * If there are 2 mirrors in the same 2 devices, performance degrades
554  * because position is mirror, not device based.
555  *
556  * The rdev for the device selected will have nr_pending incremented.
557  */
558 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
559 {
560         const sector_t this_sector = r1_bio->sector;
561         int sectors;
562         int best_good_sectors;
563         int best_disk, best_dist_disk, best_pending_disk;
564         int has_nonrot_disk;
565         int disk;
566         sector_t best_dist;
567         unsigned int min_pending;
568         struct md_rdev *rdev;
569         int choose_first;
570         int choose_next_idle;
571
572         rcu_read_lock();
573         /*
574          * Check if we can balance. We can balance on the whole
575          * device if no resync is going on, or below the resync window.
576          * We take the first readable disk when above the resync window.
577          */
578  retry:
579         sectors = r1_bio->sectors;
580         best_disk = -1;
581         best_dist_disk = -1;
582         best_dist = MaxSector;
583         best_pending_disk = -1;
584         min_pending = UINT_MAX;
585         best_good_sectors = 0;
586         has_nonrot_disk = 0;
587         choose_next_idle = 0;
588         clear_bit(R1BIO_FailFast, &r1_bio->state);
589
590         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
591             (mddev_is_clustered(conf->mddev) &&
592             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
593                     this_sector + sectors)))
594                 choose_first = 1;
595         else
596                 choose_first = 0;
597
598         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
599                 sector_t dist;
600                 sector_t first_bad;
601                 int bad_sectors;
602                 unsigned int pending;
603                 bool nonrot;
604
605                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
606                 if (r1_bio->bios[disk] == IO_BLOCKED
607                     || rdev == NULL
608                     || test_bit(Faulty, &rdev->flags))
609                         continue;
610                 if (!test_bit(In_sync, &rdev->flags) &&
611                     rdev->recovery_offset < this_sector + sectors)
612                         continue;
613                 if (test_bit(WriteMostly, &rdev->flags)) {
614                         /* Don't balance among write-mostly, just
615                          * use the first as a last resort */
616                         if (best_dist_disk < 0) {
617                                 if (is_badblock(rdev, this_sector, sectors,
618                                                 &first_bad, &bad_sectors)) {
619                                         if (first_bad <= this_sector)
620                                                 /* Cannot use this */
621                                                 continue;
622                                         best_good_sectors = first_bad - this_sector;
623                                 } else
624                                         best_good_sectors = sectors;
625                                 best_dist_disk = disk;
626                                 best_pending_disk = disk;
627                         }
628                         continue;
629                 }
630                 /* This is a reasonable device to use.  It might
631                  * even be best.
632                  */
633                 if (is_badblock(rdev, this_sector, sectors,
634                                 &first_bad, &bad_sectors)) {
635                         if (best_dist < MaxSector)
636                                 /* already have a better device */
637                                 continue;
638                         if (first_bad <= this_sector) {
639                                 /* cannot read here. If this is the 'primary'
640                                  * device, then we must not read beyond
641                                  * bad_sectors from another device..
642                                  */
643                                 bad_sectors -= (this_sector - first_bad);
644                                 if (choose_first && sectors > bad_sectors)
645                                         sectors = bad_sectors;
646                                 if (best_good_sectors > sectors)
647                                         best_good_sectors = sectors;
648
649                         } else {
650                                 sector_t good_sectors = first_bad - this_sector;
651                                 if (good_sectors > best_good_sectors) {
652                                         best_good_sectors = good_sectors;
653                                         best_disk = disk;
654                                 }
655                                 if (choose_first)
656                                         break;
657                         }
658                         continue;
659                 } else {
660                         if ((sectors > best_good_sectors) && (best_disk >= 0))
661                                 best_disk = -1;
662                         best_good_sectors = sectors;
663                 }
664
665                 if (best_disk >= 0)
666                         /* At least two disks to choose from so failfast is OK */
667                         set_bit(R1BIO_FailFast, &r1_bio->state);
668
669                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
670                 has_nonrot_disk |= nonrot;
671                 pending = atomic_read(&rdev->nr_pending);
672                 dist = abs(this_sector - conf->mirrors[disk].head_position);
673                 if (choose_first) {
674                         best_disk = disk;
675                         break;
676                 }
677                 /* Don't change to another disk for sequential reads */
678                 if (conf->mirrors[disk].next_seq_sect == this_sector
679                     || dist == 0) {
680                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
681                         struct raid1_info *mirror = &conf->mirrors[disk];
682
683                         best_disk = disk;
684                         /*
685                          * If buffered sequential IO size exceeds optimal
686                          * iosize, check if there is idle disk. If yes, choose
687                          * the idle disk. read_balance could already choose an
688                          * idle disk before noticing it's a sequential IO in
689                          * this disk. This doesn't matter because this disk
690                          * will idle, next time it will be utilized after the
691                          * first disk has IO size exceeds optimal iosize. In
692                          * this way, iosize of the first disk will be optimal
693                          * iosize at least. iosize of the second disk might be
694                          * small, but not a big deal since when the second disk
695                          * starts IO, the first disk is likely still busy.
696                          */
697                         if (nonrot && opt_iosize > 0 &&
698                             mirror->seq_start != MaxSector &&
699                             mirror->next_seq_sect > opt_iosize &&
700                             mirror->next_seq_sect - opt_iosize >=
701                             mirror->seq_start) {
702                                 choose_next_idle = 1;
703                                 continue;
704                         }
705                         break;
706                 }
707
708                 if (choose_next_idle)
709                         continue;
710
711                 if (min_pending > pending) {
712                         min_pending = pending;
713                         best_pending_disk = disk;
714                 }
715
716                 if (dist < best_dist) {
717                         best_dist = dist;
718                         best_dist_disk = disk;
719                 }
720         }
721
722         /*
723          * If all disks are rotational, choose the closest disk. If any disk is
724          * non-rotational, choose the disk with less pending request even the
725          * disk is rotational, which might/might not be optimal for raids with
726          * mixed ratation/non-rotational disks depending on workload.
727          */
728         if (best_disk == -1) {
729                 if (has_nonrot_disk || min_pending == 0)
730                         best_disk = best_pending_disk;
731                 else
732                         best_disk = best_dist_disk;
733         }
734
735         if (best_disk >= 0) {
736                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
737                 if (!rdev)
738                         goto retry;
739                 atomic_inc(&rdev->nr_pending);
740                 sectors = best_good_sectors;
741
742                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
743                         conf->mirrors[best_disk].seq_start = this_sector;
744
745                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
746         }
747         rcu_read_unlock();
748         *max_sectors = sectors;
749
750         return best_disk;
751 }
752
753 static int raid1_congested(struct mddev *mddev, int bits)
754 {
755         struct r1conf *conf = mddev->private;
756         int i, ret = 0;
757
758         if ((bits & (1 << WB_async_congested)) &&
759             conf->pending_count >= max_queued_requests)
760                 return 1;
761
762         rcu_read_lock();
763         for (i = 0; i < conf->raid_disks * 2; i++) {
764                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
765                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
766                         struct request_queue *q = bdev_get_queue(rdev->bdev);
767
768                         BUG_ON(!q);
769
770                         /* Note the '|| 1' - when read_balance prefers
771                          * non-congested targets, it can be removed
772                          */
773                         if ((bits & (1 << WB_async_congested)) || 1)
774                                 ret |= bdi_congested(q->backing_dev_info, bits);
775                         else
776                                 ret &= bdi_congested(q->backing_dev_info, bits);
777                 }
778         }
779         rcu_read_unlock();
780         return ret;
781 }
782
783 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
784 {
785         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
786         md_bitmap_unplug(conf->mddev->bitmap);
787         wake_up(&conf->wait_barrier);
788
789         while (bio) { /* submit pending writes */
790                 struct bio *next = bio->bi_next;
791                 struct md_rdev *rdev = (void *)bio->bi_disk;
792                 bio->bi_next = NULL;
793                 bio_set_dev(bio, rdev->bdev);
794                 if (test_bit(Faulty, &rdev->flags)) {
795                         bio_io_error(bio);
796                 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
797                                     !blk_queue_discard(bio->bi_disk->queue)))
798                         /* Just ignore it */
799                         bio_endio(bio);
800                 else
801                         generic_make_request(bio);
802                 bio = next;
803         }
804 }
805
806 static void flush_pending_writes(struct r1conf *conf)
807 {
808         /* Any writes that have been queued but are awaiting
809          * bitmap updates get flushed here.
810          */
811         spin_lock_irq(&conf->device_lock);
812
813         if (conf->pending_bio_list.head) {
814                 struct blk_plug plug;
815                 struct bio *bio;
816
817                 bio = bio_list_get(&conf->pending_bio_list);
818                 conf->pending_count = 0;
819                 spin_unlock_irq(&conf->device_lock);
820
821                 /*
822                  * As this is called in a wait_event() loop (see freeze_array),
823                  * current->state might be TASK_UNINTERRUPTIBLE which will
824                  * cause a warning when we prepare to wait again.  As it is
825                  * rare that this path is taken, it is perfectly safe to force
826                  * us to go around the wait_event() loop again, so the warning
827                  * is a false-positive.  Silence the warning by resetting
828                  * thread state
829                  */
830                 __set_current_state(TASK_RUNNING);
831                 blk_start_plug(&plug);
832                 flush_bio_list(conf, bio);
833                 blk_finish_plug(&plug);
834         } else
835                 spin_unlock_irq(&conf->device_lock);
836 }
837
838 /* Barriers....
839  * Sometimes we need to suspend IO while we do something else,
840  * either some resync/recovery, or reconfigure the array.
841  * To do this we raise a 'barrier'.
842  * The 'barrier' is a counter that can be raised multiple times
843  * to count how many activities are happening which preclude
844  * normal IO.
845  * We can only raise the barrier if there is no pending IO.
846  * i.e. if nr_pending == 0.
847  * We choose only to raise the barrier if no-one is waiting for the
848  * barrier to go down.  This means that as soon as an IO request
849  * is ready, no other operations which require a barrier will start
850  * until the IO request has had a chance.
851  *
852  * So: regular IO calls 'wait_barrier'.  When that returns there
853  *    is no backgroup IO happening,  It must arrange to call
854  *    allow_barrier when it has finished its IO.
855  * backgroup IO calls must call raise_barrier.  Once that returns
856  *    there is no normal IO happeing.  It must arrange to call
857  *    lower_barrier when the particular background IO completes.
858  */
859 static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr)
860 {
861         int idx = sector_to_idx(sector_nr);
862
863         spin_lock_irq(&conf->resync_lock);
864
865         /* Wait until no block IO is waiting */
866         wait_event_lock_irq(conf->wait_barrier,
867                             !atomic_read(&conf->nr_waiting[idx]),
868                             conf->resync_lock);
869
870         /* block any new IO from starting */
871         atomic_inc(&conf->barrier[idx]);
872         /*
873          * In raise_barrier() we firstly increase conf->barrier[idx] then
874          * check conf->nr_pending[idx]. In _wait_barrier() we firstly
875          * increase conf->nr_pending[idx] then check conf->barrier[idx].
876          * A memory barrier here to make sure conf->nr_pending[idx] won't
877          * be fetched before conf->barrier[idx] is increased. Otherwise
878          * there will be a race between raise_barrier() and _wait_barrier().
879          */
880         smp_mb__after_atomic();
881
882         /* For these conditions we must wait:
883          * A: while the array is in frozen state
884          * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
885          *    existing in corresponding I/O barrier bucket.
886          * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
887          *    max resync count which allowed on current I/O barrier bucket.
888          */
889         wait_event_lock_irq(conf->wait_barrier,
890                             (!conf->array_frozen &&
891                              !atomic_read(&conf->nr_pending[idx]) &&
892                              atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
893                                 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
894                             conf->resync_lock);
895
896         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
897                 atomic_dec(&conf->barrier[idx]);
898                 spin_unlock_irq(&conf->resync_lock);
899                 wake_up(&conf->wait_barrier);
900                 return -EINTR;
901         }
902
903         atomic_inc(&conf->nr_sync_pending);
904         spin_unlock_irq(&conf->resync_lock);
905
906         return 0;
907 }
908
909 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
910 {
911         int idx = sector_to_idx(sector_nr);
912
913         BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
914
915         atomic_dec(&conf->barrier[idx]);
916         atomic_dec(&conf->nr_sync_pending);
917         wake_up(&conf->wait_barrier);
918 }
919
920 static void _wait_barrier(struct r1conf *conf, int idx)
921 {
922         /*
923          * We need to increase conf->nr_pending[idx] very early here,
924          * then raise_barrier() can be blocked when it waits for
925          * conf->nr_pending[idx] to be 0. Then we can avoid holding
926          * conf->resync_lock when there is no barrier raised in same
927          * barrier unit bucket. Also if the array is frozen, I/O
928          * should be blocked until array is unfrozen.
929          */
930         atomic_inc(&conf->nr_pending[idx]);
931         /*
932          * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
933          * check conf->barrier[idx]. In raise_barrier() we firstly increase
934          * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
935          * barrier is necessary here to make sure conf->barrier[idx] won't be
936          * fetched before conf->nr_pending[idx] is increased. Otherwise there
937          * will be a race between _wait_barrier() and raise_barrier().
938          */
939         smp_mb__after_atomic();
940
941         /*
942          * Don't worry about checking two atomic_t variables at same time
943          * here. If during we check conf->barrier[idx], the array is
944          * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
945          * 0, it is safe to return and make the I/O continue. Because the
946          * array is frozen, all I/O returned here will eventually complete
947          * or be queued, no race will happen. See code comment in
948          * frozen_array().
949          */
950         if (!READ_ONCE(conf->array_frozen) &&
951             !atomic_read(&conf->barrier[idx]))
952                 return;
953
954         /*
955          * After holding conf->resync_lock, conf->nr_pending[idx]
956          * should be decreased before waiting for barrier to drop.
957          * Otherwise, we may encounter a race condition because
958          * raise_barrer() might be waiting for conf->nr_pending[idx]
959          * to be 0 at same time.
960          */
961         spin_lock_irq(&conf->resync_lock);
962         atomic_inc(&conf->nr_waiting[idx]);
963         atomic_dec(&conf->nr_pending[idx]);
964         /*
965          * In case freeze_array() is waiting for
966          * get_unqueued_pending() == extra
967          */
968         wake_up(&conf->wait_barrier);
969         /* Wait for the barrier in same barrier unit bucket to drop. */
970         wait_event_lock_irq(conf->wait_barrier,
971                             !conf->array_frozen &&
972                              !atomic_read(&conf->barrier[idx]),
973                             conf->resync_lock);
974         atomic_inc(&conf->nr_pending[idx]);
975         atomic_dec(&conf->nr_waiting[idx]);
976         spin_unlock_irq(&conf->resync_lock);
977 }
978
979 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
980 {
981         int idx = sector_to_idx(sector_nr);
982
983         /*
984          * Very similar to _wait_barrier(). The difference is, for read
985          * I/O we don't need wait for sync I/O, but if the whole array
986          * is frozen, the read I/O still has to wait until the array is
987          * unfrozen. Since there is no ordering requirement with
988          * conf->barrier[idx] here, memory barrier is unnecessary as well.
989          */
990         atomic_inc(&conf->nr_pending[idx]);
991
992         if (!READ_ONCE(conf->array_frozen))
993                 return;
994
995         spin_lock_irq(&conf->resync_lock);
996         atomic_inc(&conf->nr_waiting[idx]);
997         atomic_dec(&conf->nr_pending[idx]);
998         /*
999          * In case freeze_array() is waiting for
1000          * get_unqueued_pending() == extra
1001          */
1002         wake_up(&conf->wait_barrier);
1003         /* Wait for array to be unfrozen */
1004         wait_event_lock_irq(conf->wait_barrier,
1005                             !conf->array_frozen,
1006                             conf->resync_lock);
1007         atomic_inc(&conf->nr_pending[idx]);
1008         atomic_dec(&conf->nr_waiting[idx]);
1009         spin_unlock_irq(&conf->resync_lock);
1010 }
1011
1012 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1013 {
1014         int idx = sector_to_idx(sector_nr);
1015
1016         _wait_barrier(conf, idx);
1017 }
1018
1019 static void _allow_barrier(struct r1conf *conf, int idx)
1020 {
1021         atomic_dec(&conf->nr_pending[idx]);
1022         wake_up(&conf->wait_barrier);
1023 }
1024
1025 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1026 {
1027         int idx = sector_to_idx(sector_nr);
1028
1029         _allow_barrier(conf, idx);
1030 }
1031
1032 /* conf->resync_lock should be held */
1033 static int get_unqueued_pending(struct r1conf *conf)
1034 {
1035         int idx, ret;
1036
1037         ret = atomic_read(&conf->nr_sync_pending);
1038         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1039                 ret += atomic_read(&conf->nr_pending[idx]) -
1040                         atomic_read(&conf->nr_queued[idx]);
1041
1042         return ret;
1043 }
1044
1045 static void freeze_array(struct r1conf *conf, int extra)
1046 {
1047         /* Stop sync I/O and normal I/O and wait for everything to
1048          * go quiet.
1049          * This is called in two situations:
1050          * 1) management command handlers (reshape, remove disk, quiesce).
1051          * 2) one normal I/O request failed.
1052
1053          * After array_frozen is set to 1, new sync IO will be blocked at
1054          * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1055          * or wait_read_barrier(). The flying I/Os will either complete or be
1056          * queued. When everything goes quite, there are only queued I/Os left.
1057
1058          * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1059          * barrier bucket index which this I/O request hits. When all sync and
1060          * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1061          * of all conf->nr_queued[]. But normal I/O failure is an exception,
1062          * in handle_read_error(), we may call freeze_array() before trying to
1063          * fix the read error. In this case, the error read I/O is not queued,
1064          * so get_unqueued_pending() == 1.
1065          *
1066          * Therefore before this function returns, we need to wait until
1067          * get_unqueued_pendings(conf) gets equal to extra. For
1068          * normal I/O context, extra is 1, in rested situations extra is 0.
1069          */
1070         spin_lock_irq(&conf->resync_lock);
1071         conf->array_frozen = 1;
1072         raid1_log(conf->mddev, "wait freeze");
1073         wait_event_lock_irq_cmd(
1074                 conf->wait_barrier,
1075                 get_unqueued_pending(conf) == extra,
1076                 conf->resync_lock,
1077                 flush_pending_writes(conf));
1078         spin_unlock_irq(&conf->resync_lock);
1079 }
1080 static void unfreeze_array(struct r1conf *conf)
1081 {
1082         /* reverse the effect of the freeze */
1083         spin_lock_irq(&conf->resync_lock);
1084         conf->array_frozen = 0;
1085         spin_unlock_irq(&conf->resync_lock);
1086         wake_up(&conf->wait_barrier);
1087 }
1088
1089 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1090                                            struct bio *bio)
1091 {
1092         int size = bio->bi_iter.bi_size;
1093         unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1094         int i = 0;
1095         struct bio *behind_bio = NULL;
1096
1097         behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1098         if (!behind_bio)
1099                 return;
1100
1101         /* discard op, we don't support writezero/writesame yet */
1102         if (!bio_has_data(bio)) {
1103                 behind_bio->bi_iter.bi_size = size;
1104                 goto skip_copy;
1105         }
1106
1107         behind_bio->bi_write_hint = bio->bi_write_hint;
1108
1109         while (i < vcnt && size) {
1110                 struct page *page;
1111                 int len = min_t(int, PAGE_SIZE, size);
1112
1113                 page = alloc_page(GFP_NOIO);
1114                 if (unlikely(!page))
1115                         goto free_pages;
1116
1117                 bio_add_page(behind_bio, page, len, 0);
1118
1119                 size -= len;
1120                 i++;
1121         }
1122
1123         bio_copy_data(behind_bio, bio);
1124 skip_copy:
1125         r1_bio->behind_master_bio = behind_bio;
1126         set_bit(R1BIO_BehindIO, &r1_bio->state);
1127
1128         return;
1129
1130 free_pages:
1131         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1132                  bio->bi_iter.bi_size);
1133         bio_free_pages(behind_bio);
1134         bio_put(behind_bio);
1135 }
1136
1137 struct raid1_plug_cb {
1138         struct blk_plug_cb      cb;
1139         struct bio_list         pending;
1140         int                     pending_cnt;
1141 };
1142
1143 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1144 {
1145         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1146                                                   cb);
1147         struct mddev *mddev = plug->cb.data;
1148         struct r1conf *conf = mddev->private;
1149         struct bio *bio;
1150
1151         if (from_schedule || current->bio_list) {
1152                 spin_lock_irq(&conf->device_lock);
1153                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1154                 conf->pending_count += plug->pending_cnt;
1155                 spin_unlock_irq(&conf->device_lock);
1156                 wake_up(&conf->wait_barrier);
1157                 md_wakeup_thread(mddev->thread);
1158                 kfree(plug);
1159                 return;
1160         }
1161
1162         /* we aren't scheduling, so we can do the write-out directly. */
1163         bio = bio_list_get(&plug->pending);
1164         flush_bio_list(conf, bio);
1165         kfree(plug);
1166 }
1167
1168 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1169 {
1170         r1_bio->master_bio = bio;
1171         r1_bio->sectors = bio_sectors(bio);
1172         r1_bio->state = 0;
1173         r1_bio->mddev = mddev;
1174         r1_bio->sector = bio->bi_iter.bi_sector;
1175 }
1176
1177 static inline struct r1bio *
1178 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1179 {
1180         struct r1conf *conf = mddev->private;
1181         struct r1bio *r1_bio;
1182
1183         r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1184         /* Ensure no bio records IO_BLOCKED */
1185         memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1186         init_r1bio(r1_bio, mddev, bio);
1187         return r1_bio;
1188 }
1189
1190 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1191                                int max_read_sectors, struct r1bio *r1_bio)
1192 {
1193         struct r1conf *conf = mddev->private;
1194         struct raid1_info *mirror;
1195         struct bio *read_bio;
1196         struct bitmap *bitmap = mddev->bitmap;
1197         const int op = bio_op(bio);
1198         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1199         int max_sectors;
1200         int rdisk;
1201         bool print_msg = !!r1_bio;
1202         char b[BDEVNAME_SIZE];
1203
1204         /*
1205          * If r1_bio is set, we are blocking the raid1d thread
1206          * so there is a tiny risk of deadlock.  So ask for
1207          * emergency memory if needed.
1208          */
1209         gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1210
1211         if (print_msg) {
1212                 /* Need to get the block device name carefully */
1213                 struct md_rdev *rdev;
1214                 rcu_read_lock();
1215                 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1216                 if (rdev)
1217                         bdevname(rdev->bdev, b);
1218                 else
1219                         strcpy(b, "???");
1220                 rcu_read_unlock();
1221         }
1222
1223         /*
1224          * Still need barrier for READ in case that whole
1225          * array is frozen.
1226          */
1227         wait_read_barrier(conf, bio->bi_iter.bi_sector);
1228
1229         if (!r1_bio)
1230                 r1_bio = alloc_r1bio(mddev, bio);
1231         else
1232                 init_r1bio(r1_bio, mddev, bio);
1233         r1_bio->sectors = max_read_sectors;
1234
1235         /*
1236          * make_request() can abort the operation when read-ahead is being
1237          * used and no empty request is available.
1238          */
1239         rdisk = read_balance(conf, r1_bio, &max_sectors);
1240
1241         if (rdisk < 0) {
1242                 /* couldn't find anywhere to read from */
1243                 if (print_msg) {
1244                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1245                                             mdname(mddev),
1246                                             b,
1247                                             (unsigned long long)r1_bio->sector);
1248                 }
1249                 raid_end_bio_io(r1_bio);
1250                 return;
1251         }
1252         mirror = conf->mirrors + rdisk;
1253
1254         if (print_msg)
1255                 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1256                                     mdname(mddev),
1257                                     (unsigned long long)r1_bio->sector,
1258                                     bdevname(mirror->rdev->bdev, b));
1259
1260         if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1261             bitmap) {
1262                 /*
1263                  * Reading from a write-mostly device must take care not to
1264                  * over-take any writes that are 'behind'
1265                  */
1266                 raid1_log(mddev, "wait behind writes");
1267                 wait_event(bitmap->behind_wait,
1268                            atomic_read(&bitmap->behind_writes) == 0);
1269         }
1270
1271         if (max_sectors < bio_sectors(bio)) {
1272                 struct bio *split = bio_split(bio, max_sectors,
1273                                               gfp, &conf->bio_split);
1274                 bio_chain(split, bio);
1275                 generic_make_request(bio);
1276                 bio = split;
1277                 r1_bio->master_bio = bio;
1278                 r1_bio->sectors = max_sectors;
1279         }
1280
1281         r1_bio->read_disk = rdisk;
1282
1283         read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1284
1285         r1_bio->bios[rdisk] = read_bio;
1286
1287         read_bio->bi_iter.bi_sector = r1_bio->sector +
1288                 mirror->rdev->data_offset;
1289         bio_set_dev(read_bio, mirror->rdev->bdev);
1290         read_bio->bi_end_io = raid1_end_read_request;
1291         bio_set_op_attrs(read_bio, op, do_sync);
1292         if (test_bit(FailFast, &mirror->rdev->flags) &&
1293             test_bit(R1BIO_FailFast, &r1_bio->state))
1294                 read_bio->bi_opf |= MD_FAILFAST;
1295         read_bio->bi_private = r1_bio;
1296
1297         if (mddev->gendisk)
1298                 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1299                                 disk_devt(mddev->gendisk), r1_bio->sector);
1300
1301         generic_make_request(read_bio);
1302 }
1303
1304 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1305                                 int max_write_sectors)
1306 {
1307         struct r1conf *conf = mddev->private;
1308         struct r1bio *r1_bio;
1309         int i, disks;
1310         struct bitmap *bitmap = mddev->bitmap;
1311         unsigned long flags;
1312         struct md_rdev *blocked_rdev;
1313         struct blk_plug_cb *cb;
1314         struct raid1_plug_cb *plug = NULL;
1315         int first_clone;
1316         int max_sectors;
1317
1318         if (mddev_is_clustered(mddev) &&
1319              md_cluster_ops->area_resyncing(mddev, WRITE,
1320                      bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1321
1322                 DEFINE_WAIT(w);
1323                 for (;;) {
1324                         prepare_to_wait(&conf->wait_barrier,
1325                                         &w, TASK_IDLE);
1326                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1327                                                         bio->bi_iter.bi_sector,
1328                                                         bio_end_sector(bio)))
1329                                 break;
1330                         schedule();
1331                 }
1332                 finish_wait(&conf->wait_barrier, &w);
1333         }
1334
1335         /*
1336          * Register the new request and wait if the reconstruction
1337          * thread has put up a bar for new requests.
1338          * Continue immediately if no resync is active currently.
1339          */
1340         wait_barrier(conf, bio->bi_iter.bi_sector);
1341
1342         r1_bio = alloc_r1bio(mddev, bio);
1343         r1_bio->sectors = max_write_sectors;
1344
1345         if (conf->pending_count >= max_queued_requests) {
1346                 md_wakeup_thread(mddev->thread);
1347                 raid1_log(mddev, "wait queued");
1348                 wait_event(conf->wait_barrier,
1349                            conf->pending_count < max_queued_requests);
1350         }
1351         /* first select target devices under rcu_lock and
1352          * inc refcount on their rdev.  Record them by setting
1353          * bios[x] to bio
1354          * If there are known/acknowledged bad blocks on any device on
1355          * which we have seen a write error, we want to avoid writing those
1356          * blocks.
1357          * This potentially requires several writes to write around
1358          * the bad blocks.  Each set of writes gets it's own r1bio
1359          * with a set of bios attached.
1360          */
1361
1362         disks = conf->raid_disks * 2;
1363  retry_write:
1364         blocked_rdev = NULL;
1365         rcu_read_lock();
1366         max_sectors = r1_bio->sectors;
1367         for (i = 0;  i < disks; i++) {
1368                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1369                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1370                         atomic_inc(&rdev->nr_pending);
1371                         blocked_rdev = rdev;
1372                         break;
1373                 }
1374                 r1_bio->bios[i] = NULL;
1375                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1376                         if (i < conf->raid_disks)
1377                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1378                         continue;
1379                 }
1380
1381                 atomic_inc(&rdev->nr_pending);
1382                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1383                         sector_t first_bad;
1384                         int bad_sectors;
1385                         int is_bad;
1386
1387                         is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1388                                              &first_bad, &bad_sectors);
1389                         if (is_bad < 0) {
1390                                 /* mustn't write here until the bad block is
1391                                  * acknowledged*/
1392                                 set_bit(BlockedBadBlocks, &rdev->flags);
1393                                 blocked_rdev = rdev;
1394                                 break;
1395                         }
1396                         if (is_bad && first_bad <= r1_bio->sector) {
1397                                 /* Cannot write here at all */
1398                                 bad_sectors -= (r1_bio->sector - first_bad);
1399                                 if (bad_sectors < max_sectors)
1400                                         /* mustn't write more than bad_sectors
1401                                          * to other devices yet
1402                                          */
1403                                         max_sectors = bad_sectors;
1404                                 rdev_dec_pending(rdev, mddev);
1405                                 /* We don't set R1BIO_Degraded as that
1406                                  * only applies if the disk is
1407                                  * missing, so it might be re-added,
1408                                  * and we want to know to recover this
1409                                  * chunk.
1410                                  * In this case the device is here,
1411                                  * and the fact that this chunk is not
1412                                  * in-sync is recorded in the bad
1413                                  * block log
1414                                  */
1415                                 continue;
1416                         }
1417                         if (is_bad) {
1418                                 int good_sectors = first_bad - r1_bio->sector;
1419                                 if (good_sectors < max_sectors)
1420                                         max_sectors = good_sectors;
1421                         }
1422                 }
1423                 r1_bio->bios[i] = bio;
1424         }
1425         rcu_read_unlock();
1426
1427         if (unlikely(blocked_rdev)) {
1428                 /* Wait for this device to become unblocked */
1429                 int j;
1430
1431                 for (j = 0; j < i; j++)
1432                         if (r1_bio->bios[j])
1433                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1434                 r1_bio->state = 0;
1435                 allow_barrier(conf, bio->bi_iter.bi_sector);
1436                 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1437                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1438                 wait_barrier(conf, bio->bi_iter.bi_sector);
1439                 goto retry_write;
1440         }
1441
1442         if (max_sectors < bio_sectors(bio)) {
1443                 struct bio *split = bio_split(bio, max_sectors,
1444                                               GFP_NOIO, &conf->bio_split);
1445                 bio_chain(split, bio);
1446                 generic_make_request(bio);
1447                 bio = split;
1448                 r1_bio->master_bio = bio;
1449                 r1_bio->sectors = max_sectors;
1450         }
1451
1452         atomic_set(&r1_bio->remaining, 1);
1453         atomic_set(&r1_bio->behind_remaining, 0);
1454
1455         first_clone = 1;
1456
1457         for (i = 0; i < disks; i++) {
1458                 struct bio *mbio = NULL;
1459                 if (!r1_bio->bios[i])
1460                         continue;
1461
1462
1463                 if (first_clone) {
1464                         /* do behind I/O ?
1465                          * Not if there are too many, or cannot
1466                          * allocate memory, or a reader on WriteMostly
1467                          * is waiting for behind writes to flush */
1468                         if (bitmap &&
1469                             (atomic_read(&bitmap->behind_writes)
1470                              < mddev->bitmap_info.max_write_behind) &&
1471                             !waitqueue_active(&bitmap->behind_wait)) {
1472                                 alloc_behind_master_bio(r1_bio, bio);
1473                         }
1474
1475                         md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1476                                              test_bit(R1BIO_BehindIO, &r1_bio->state));
1477                         first_clone = 0;
1478                 }
1479
1480                 if (r1_bio->behind_master_bio)
1481                         mbio = bio_clone_fast(r1_bio->behind_master_bio,
1482                                               GFP_NOIO, &mddev->bio_set);
1483                 else
1484                         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1485
1486                 if (r1_bio->behind_master_bio) {
1487                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1488                                 atomic_inc(&r1_bio->behind_remaining);
1489                 }
1490
1491                 r1_bio->bios[i] = mbio;
1492
1493                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1494                                    conf->mirrors[i].rdev->data_offset);
1495                 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1496                 mbio->bi_end_io = raid1_end_write_request;
1497                 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1498                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1499                     !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1500                     conf->raid_disks - mddev->degraded > 1)
1501                         mbio->bi_opf |= MD_FAILFAST;
1502                 mbio->bi_private = r1_bio;
1503
1504                 atomic_inc(&r1_bio->remaining);
1505
1506                 if (mddev->gendisk)
1507                         trace_block_bio_remap(mbio->bi_disk->queue,
1508                                               mbio, disk_devt(mddev->gendisk),
1509                                               r1_bio->sector);
1510                 /* flush_pending_writes() needs access to the rdev so...*/
1511                 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1512
1513                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1514                 if (cb)
1515                         plug = container_of(cb, struct raid1_plug_cb, cb);
1516                 else
1517                         plug = NULL;
1518                 if (plug) {
1519                         bio_list_add(&plug->pending, mbio);
1520                         plug->pending_cnt++;
1521                 } else {
1522                         spin_lock_irqsave(&conf->device_lock, flags);
1523                         bio_list_add(&conf->pending_bio_list, mbio);
1524                         conf->pending_count++;
1525                         spin_unlock_irqrestore(&conf->device_lock, flags);
1526                         md_wakeup_thread(mddev->thread);
1527                 }
1528         }
1529
1530         r1_bio_write_done(r1_bio);
1531
1532         /* In case raid1d snuck in to freeze_array */
1533         wake_up(&conf->wait_barrier);
1534 }
1535
1536 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1537 {
1538         sector_t sectors;
1539
1540         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1541                 md_flush_request(mddev, bio);
1542                 return true;
1543         }
1544
1545         /*
1546          * There is a limit to the maximum size, but
1547          * the read/write handler might find a lower limit
1548          * due to bad blocks.  To avoid multiple splits,
1549          * we pass the maximum number of sectors down
1550          * and let the lower level perform the split.
1551          */
1552         sectors = align_to_barrier_unit_end(
1553                 bio->bi_iter.bi_sector, bio_sectors(bio));
1554
1555         if (bio_data_dir(bio) == READ)
1556                 raid1_read_request(mddev, bio, sectors, NULL);
1557         else {
1558                 if (!md_write_start(mddev,bio))
1559                         return false;
1560                 raid1_write_request(mddev, bio, sectors);
1561         }
1562         return true;
1563 }
1564
1565 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1566 {
1567         struct r1conf *conf = mddev->private;
1568         int i;
1569
1570         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1571                    conf->raid_disks - mddev->degraded);
1572         rcu_read_lock();
1573         for (i = 0; i < conf->raid_disks; i++) {
1574                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1575                 seq_printf(seq, "%s",
1576                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1577         }
1578         rcu_read_unlock();
1579         seq_printf(seq, "]");
1580 }
1581
1582 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1583 {
1584         char b[BDEVNAME_SIZE];
1585         struct r1conf *conf = mddev->private;
1586         unsigned long flags;
1587
1588         /*
1589          * If it is not operational, then we have already marked it as dead
1590          * else if it is the last working disks, ignore the error, let the
1591          * next level up know.
1592          * else mark the drive as failed
1593          */
1594         spin_lock_irqsave(&conf->device_lock, flags);
1595         if (test_bit(In_sync, &rdev->flags)
1596             && (conf->raid_disks - mddev->degraded) == 1) {
1597                 /*
1598                  * Don't fail the drive, act as though we were just a
1599                  * normal single drive.
1600                  * However don't try a recovery from this drive as
1601                  * it is very likely to fail.
1602                  */
1603                 conf->recovery_disabled = mddev->recovery_disabled;
1604                 spin_unlock_irqrestore(&conf->device_lock, flags);
1605                 return;
1606         }
1607         set_bit(Blocked, &rdev->flags);
1608         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1609                 mddev->degraded++;
1610                 set_bit(Faulty, &rdev->flags);
1611         } else
1612                 set_bit(Faulty, &rdev->flags);
1613         spin_unlock_irqrestore(&conf->device_lock, flags);
1614         /*
1615          * if recovery is running, make sure it aborts.
1616          */
1617         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1618         set_mask_bits(&mddev->sb_flags, 0,
1619                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1620         pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1621                 "md/raid1:%s: Operation continuing on %d devices.\n",
1622                 mdname(mddev), bdevname(rdev->bdev, b),
1623                 mdname(mddev), conf->raid_disks - mddev->degraded);
1624 }
1625
1626 static void print_conf(struct r1conf *conf)
1627 {
1628         int i;
1629
1630         pr_debug("RAID1 conf printout:\n");
1631         if (!conf) {
1632                 pr_debug("(!conf)\n");
1633                 return;
1634         }
1635         pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1636                  conf->raid_disks);
1637
1638         rcu_read_lock();
1639         for (i = 0; i < conf->raid_disks; i++) {
1640                 char b[BDEVNAME_SIZE];
1641                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1642                 if (rdev)
1643                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1644                                  i, !test_bit(In_sync, &rdev->flags),
1645                                  !test_bit(Faulty, &rdev->flags),
1646                                  bdevname(rdev->bdev,b));
1647         }
1648         rcu_read_unlock();
1649 }
1650
1651 static void close_sync(struct r1conf *conf)
1652 {
1653         int idx;
1654
1655         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1656                 _wait_barrier(conf, idx);
1657                 _allow_barrier(conf, idx);
1658         }
1659
1660         mempool_exit(&conf->r1buf_pool);
1661 }
1662
1663 static int raid1_spare_active(struct mddev *mddev)
1664 {
1665         int i;
1666         struct r1conf *conf = mddev->private;
1667         int count = 0;
1668         unsigned long flags;
1669
1670         /*
1671          * Find all failed disks within the RAID1 configuration
1672          * and mark them readable.
1673          * Called under mddev lock, so rcu protection not needed.
1674          * device_lock used to avoid races with raid1_end_read_request
1675          * which expects 'In_sync' flags and ->degraded to be consistent.
1676          */
1677         spin_lock_irqsave(&conf->device_lock, flags);
1678         for (i = 0; i < conf->raid_disks; i++) {
1679                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1680                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1681                 if (repl
1682                     && !test_bit(Candidate, &repl->flags)
1683                     && repl->recovery_offset == MaxSector
1684                     && !test_bit(Faulty, &repl->flags)
1685                     && !test_and_set_bit(In_sync, &repl->flags)) {
1686                         /* replacement has just become active */
1687                         if (!rdev ||
1688                             !test_and_clear_bit(In_sync, &rdev->flags))
1689                                 count++;
1690                         if (rdev) {
1691                                 /* Replaced device not technically
1692                                  * faulty, but we need to be sure
1693                                  * it gets removed and never re-added
1694                                  */
1695                                 set_bit(Faulty, &rdev->flags);
1696                                 sysfs_notify_dirent_safe(
1697                                         rdev->sysfs_state);
1698                         }
1699                 }
1700                 if (rdev
1701                     && rdev->recovery_offset == MaxSector
1702                     && !test_bit(Faulty, &rdev->flags)
1703                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1704                         count++;
1705                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1706                 }
1707         }
1708         mddev->degraded -= count;
1709         spin_unlock_irqrestore(&conf->device_lock, flags);
1710
1711         print_conf(conf);
1712         return count;
1713 }
1714
1715 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1716 {
1717         struct r1conf *conf = mddev->private;
1718         int err = -EEXIST;
1719         int mirror = 0;
1720         struct raid1_info *p;
1721         int first = 0;
1722         int last = conf->raid_disks - 1;
1723
1724         if (mddev->recovery_disabled == conf->recovery_disabled)
1725                 return -EBUSY;
1726
1727         if (md_integrity_add_rdev(rdev, mddev))
1728                 return -ENXIO;
1729
1730         if (rdev->raid_disk >= 0)
1731                 first = last = rdev->raid_disk;
1732
1733         /*
1734          * find the disk ... but prefer rdev->saved_raid_disk
1735          * if possible.
1736          */
1737         if (rdev->saved_raid_disk >= 0 &&
1738             rdev->saved_raid_disk >= first &&
1739             rdev->saved_raid_disk < conf->raid_disks &&
1740             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1741                 first = last = rdev->saved_raid_disk;
1742
1743         for (mirror = first; mirror <= last; mirror++) {
1744                 p = conf->mirrors+mirror;
1745                 if (!p->rdev) {
1746
1747                         if (mddev->gendisk)
1748                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1749                                                   rdev->data_offset << 9);
1750
1751                         p->head_position = 0;
1752                         rdev->raid_disk = mirror;
1753                         err = 0;
1754                         /* As all devices are equivalent, we don't need a full recovery
1755                          * if this was recently any drive of the array
1756                          */
1757                         if (rdev->saved_raid_disk < 0)
1758                                 conf->fullsync = 1;
1759                         rcu_assign_pointer(p->rdev, rdev);
1760                         break;
1761                 }
1762                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1763                     p[conf->raid_disks].rdev == NULL) {
1764                         /* Add this device as a replacement */
1765                         clear_bit(In_sync, &rdev->flags);
1766                         set_bit(Replacement, &rdev->flags);
1767                         rdev->raid_disk = mirror;
1768                         err = 0;
1769                         conf->fullsync = 1;
1770                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1771                         break;
1772                 }
1773         }
1774         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1775                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1776         print_conf(conf);
1777         return err;
1778 }
1779
1780 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1781 {
1782         struct r1conf *conf = mddev->private;
1783         int err = 0;
1784         int number = rdev->raid_disk;
1785         struct raid1_info *p = conf->mirrors + number;
1786
1787         if (rdev != p->rdev)
1788                 p = conf->mirrors + conf->raid_disks + number;
1789
1790         print_conf(conf);
1791         if (rdev == p->rdev) {
1792                 if (test_bit(In_sync, &rdev->flags) ||
1793                     atomic_read(&rdev->nr_pending)) {
1794                         err = -EBUSY;
1795                         goto abort;
1796                 }
1797                 /* Only remove non-faulty devices if recovery
1798                  * is not possible.
1799                  */
1800                 if (!test_bit(Faulty, &rdev->flags) &&
1801                     mddev->recovery_disabled != conf->recovery_disabled &&
1802                     mddev->degraded < conf->raid_disks) {
1803                         err = -EBUSY;
1804                         goto abort;
1805                 }
1806                 p->rdev = NULL;
1807                 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1808                         synchronize_rcu();
1809                         if (atomic_read(&rdev->nr_pending)) {
1810                                 /* lost the race, try later */
1811                                 err = -EBUSY;
1812                                 p->rdev = rdev;
1813                                 goto abort;
1814                         }
1815                 }
1816                 if (conf->mirrors[conf->raid_disks + number].rdev) {
1817                         /* We just removed a device that is being replaced.
1818                          * Move down the replacement.  We drain all IO before
1819                          * doing this to avoid confusion.
1820                          */
1821                         struct md_rdev *repl =
1822                                 conf->mirrors[conf->raid_disks + number].rdev;
1823                         freeze_array(conf, 0);
1824                         if (atomic_read(&repl->nr_pending)) {
1825                                 /* It means that some queued IO of retry_list
1826                                  * hold repl. Thus, we cannot set replacement
1827                                  * as NULL, avoiding rdev NULL pointer
1828                                  * dereference in sync_request_write and
1829                                  * handle_write_finished.
1830                                  */
1831                                 err = -EBUSY;
1832                                 unfreeze_array(conf);
1833                                 goto abort;
1834                         }
1835                         clear_bit(Replacement, &repl->flags);
1836                         p->rdev = repl;
1837                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1838                         unfreeze_array(conf);
1839                 }
1840
1841                 clear_bit(WantReplacement, &rdev->flags);
1842                 err = md_integrity_register(mddev);
1843         }
1844 abort:
1845
1846         print_conf(conf);
1847         return err;
1848 }
1849
1850 static void end_sync_read(struct bio *bio)
1851 {
1852         struct r1bio *r1_bio = get_resync_r1bio(bio);
1853
1854         update_head_pos(r1_bio->read_disk, r1_bio);
1855
1856         /*
1857          * we have read a block, now it needs to be re-written,
1858          * or re-read if the read failed.
1859          * We don't do much here, just schedule handling by raid1d
1860          */
1861         if (!bio->bi_status)
1862                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1863
1864         if (atomic_dec_and_test(&r1_bio->remaining))
1865                 reschedule_retry(r1_bio);
1866 }
1867
1868 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1869 {
1870         sector_t sync_blocks = 0;
1871         sector_t s = r1_bio->sector;
1872         long sectors_to_go = r1_bio->sectors;
1873
1874         /* make sure these bits don't get cleared. */
1875         do {
1876                 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1877                 s += sync_blocks;
1878                 sectors_to_go -= sync_blocks;
1879         } while (sectors_to_go > 0);
1880 }
1881
1882 static void end_sync_write(struct bio *bio)
1883 {
1884         int uptodate = !bio->bi_status;
1885         struct r1bio *r1_bio = get_resync_r1bio(bio);
1886         struct mddev *mddev = r1_bio->mddev;
1887         struct r1conf *conf = mddev->private;
1888         sector_t first_bad;
1889         int bad_sectors;
1890         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1891
1892         if (!uptodate) {
1893                 abort_sync_write(mddev, r1_bio);
1894                 set_bit(WriteErrorSeen, &rdev->flags);
1895                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1896                         set_bit(MD_RECOVERY_NEEDED, &
1897                                 mddev->recovery);
1898                 set_bit(R1BIO_WriteError, &r1_bio->state);
1899         } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1900                                &first_bad, &bad_sectors) &&
1901                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1902                                 r1_bio->sector,
1903                                 r1_bio->sectors,
1904                                 &first_bad, &bad_sectors)
1905                 )
1906                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1907
1908         if (atomic_dec_and_test(&r1_bio->remaining)) {
1909                 int s = r1_bio->sectors;
1910                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1911                     test_bit(R1BIO_WriteError, &r1_bio->state))
1912                         reschedule_retry(r1_bio);
1913                 else {
1914                         put_buf(r1_bio);
1915                         md_done_sync(mddev, s, uptodate);
1916                 }
1917         }
1918 }
1919
1920 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1921                             int sectors, struct page *page, int rw)
1922 {
1923         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1924                 /* success */
1925                 return 1;
1926         if (rw == WRITE) {
1927                 set_bit(WriteErrorSeen, &rdev->flags);
1928                 if (!test_and_set_bit(WantReplacement,
1929                                       &rdev->flags))
1930                         set_bit(MD_RECOVERY_NEEDED, &
1931                                 rdev->mddev->recovery);
1932         }
1933         /* need to record an error - either for the block or the device */
1934         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1935                 md_error(rdev->mddev, rdev);
1936         return 0;
1937 }
1938
1939 static int fix_sync_read_error(struct r1bio *r1_bio)
1940 {
1941         /* Try some synchronous reads of other devices to get
1942          * good data, much like with normal read errors.  Only
1943          * read into the pages we already have so we don't
1944          * need to re-issue the read request.
1945          * We don't need to freeze the array, because being in an
1946          * active sync request, there is no normal IO, and
1947          * no overlapping syncs.
1948          * We don't need to check is_badblock() again as we
1949          * made sure that anything with a bad block in range
1950          * will have bi_end_io clear.
1951          */
1952         struct mddev *mddev = r1_bio->mddev;
1953         struct r1conf *conf = mddev->private;
1954         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1955         struct page **pages = get_resync_pages(bio)->pages;
1956         sector_t sect = r1_bio->sector;
1957         int sectors = r1_bio->sectors;
1958         int idx = 0;
1959         struct md_rdev *rdev;
1960
1961         rdev = conf->mirrors[r1_bio->read_disk].rdev;
1962         if (test_bit(FailFast, &rdev->flags)) {
1963                 /* Don't try recovering from here - just fail it
1964                  * ... unless it is the last working device of course */
1965                 md_error(mddev, rdev);
1966                 if (test_bit(Faulty, &rdev->flags))
1967                         /* Don't try to read from here, but make sure
1968                          * put_buf does it's thing
1969                          */
1970                         bio->bi_end_io = end_sync_write;
1971         }
1972
1973         while(sectors) {
1974                 int s = sectors;
1975                 int d = r1_bio->read_disk;
1976                 int success = 0;
1977                 int start;
1978
1979                 if (s > (PAGE_SIZE>>9))
1980                         s = PAGE_SIZE >> 9;
1981                 do {
1982                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1983                                 /* No rcu protection needed here devices
1984                                  * can only be removed when no resync is
1985                                  * active, and resync is currently active
1986                                  */
1987                                 rdev = conf->mirrors[d].rdev;
1988                                 if (sync_page_io(rdev, sect, s<<9,
1989                                                  pages[idx],
1990                                                  REQ_OP_READ, 0, false)) {
1991                                         success = 1;
1992                                         break;
1993                                 }
1994                         }
1995                         d++;
1996                         if (d == conf->raid_disks * 2)
1997                                 d = 0;
1998                 } while (!success && d != r1_bio->read_disk);
1999
2000                 if (!success) {
2001                         char b[BDEVNAME_SIZE];
2002                         int abort = 0;
2003                         /* Cannot read from anywhere, this block is lost.
2004                          * Record a bad block on each device.  If that doesn't
2005                          * work just disable and interrupt the recovery.
2006                          * Don't fail devices as that won't really help.
2007                          */
2008                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2009                                             mdname(mddev), bio_devname(bio, b),
2010                                             (unsigned long long)r1_bio->sector);
2011                         for (d = 0; d < conf->raid_disks * 2; d++) {
2012                                 rdev = conf->mirrors[d].rdev;
2013                                 if (!rdev || test_bit(Faulty, &rdev->flags))
2014                                         continue;
2015                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
2016                                         abort = 1;
2017                         }
2018                         if (abort) {
2019                                 conf->recovery_disabled =
2020                                         mddev->recovery_disabled;
2021                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2022                                 md_done_sync(mddev, r1_bio->sectors, 0);
2023                                 put_buf(r1_bio);
2024                                 return 0;
2025                         }
2026                         /* Try next page */
2027                         sectors -= s;
2028                         sect += s;
2029                         idx++;
2030                         continue;
2031                 }
2032
2033                 start = d;
2034                 /* write it back and re-read */
2035                 while (d != r1_bio->read_disk) {
2036                         if (d == 0)
2037                                 d = conf->raid_disks * 2;
2038                         d--;
2039                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2040                                 continue;
2041                         rdev = conf->mirrors[d].rdev;
2042                         if (r1_sync_page_io(rdev, sect, s,
2043                                             pages[idx],
2044                                             WRITE) == 0) {
2045                                 r1_bio->bios[d]->bi_end_io = NULL;
2046                                 rdev_dec_pending(rdev, mddev);
2047                         }
2048                 }
2049                 d = start;
2050                 while (d != r1_bio->read_disk) {
2051                         if (d == 0)
2052                                 d = conf->raid_disks * 2;
2053                         d--;
2054                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2055                                 continue;
2056                         rdev = conf->mirrors[d].rdev;
2057                         if (r1_sync_page_io(rdev, sect, s,
2058                                             pages[idx],
2059                                             READ) != 0)
2060                                 atomic_add(s, &rdev->corrected_errors);
2061                 }
2062                 sectors -= s;
2063                 sect += s;
2064                 idx ++;
2065         }
2066         set_bit(R1BIO_Uptodate, &r1_bio->state);
2067         bio->bi_status = 0;
2068         return 1;
2069 }
2070
2071 static void process_checks(struct r1bio *r1_bio)
2072 {
2073         /* We have read all readable devices.  If we haven't
2074          * got the block, then there is no hope left.
2075          * If we have, then we want to do a comparison
2076          * and skip the write if everything is the same.
2077          * If any blocks failed to read, then we need to
2078          * attempt an over-write
2079          */
2080         struct mddev *mddev = r1_bio->mddev;
2081         struct r1conf *conf = mddev->private;
2082         int primary;
2083         int i;
2084         int vcnt;
2085
2086         /* Fix variable parts of all bios */
2087         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2088         for (i = 0; i < conf->raid_disks * 2; i++) {
2089                 blk_status_t status;
2090                 struct bio *b = r1_bio->bios[i];
2091                 struct resync_pages *rp = get_resync_pages(b);
2092                 if (b->bi_end_io != end_sync_read)
2093                         continue;
2094                 /* fixup the bio for reuse, but preserve errno */
2095                 status = b->bi_status;
2096                 bio_reset(b);
2097                 b->bi_status = status;
2098                 b->bi_iter.bi_sector = r1_bio->sector +
2099                         conf->mirrors[i].rdev->data_offset;
2100                 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2101                 b->bi_end_io = end_sync_read;
2102                 rp->raid_bio = r1_bio;
2103                 b->bi_private = rp;
2104
2105                 /* initialize bvec table again */
2106                 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2107         }
2108         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2109                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2110                     !r1_bio->bios[primary]->bi_status) {
2111                         r1_bio->bios[primary]->bi_end_io = NULL;
2112                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2113                         break;
2114                 }
2115         r1_bio->read_disk = primary;
2116         for (i = 0; i < conf->raid_disks * 2; i++) {
2117                 int j;
2118                 struct bio *pbio = r1_bio->bios[primary];
2119                 struct bio *sbio = r1_bio->bios[i];
2120                 blk_status_t status = sbio->bi_status;
2121                 struct page **ppages = get_resync_pages(pbio)->pages;
2122                 struct page **spages = get_resync_pages(sbio)->pages;
2123                 struct bio_vec *bi;
2124                 int page_len[RESYNC_PAGES] = { 0 };
2125
2126                 if (sbio->bi_end_io != end_sync_read)
2127                         continue;
2128                 /* Now we can 'fixup' the error value */
2129                 sbio->bi_status = 0;
2130
2131                 bio_for_each_segment_all(bi, sbio, j)
2132                         page_len[j] = bi->bv_len;
2133
2134                 if (!status) {
2135                         for (j = vcnt; j-- ; ) {
2136                                 if (memcmp(page_address(ppages[j]),
2137                                            page_address(spages[j]),
2138                                            page_len[j]))
2139                                         break;
2140                         }
2141                 } else
2142                         j = 0;
2143                 if (j >= 0)
2144                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2145                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2146                               && !status)) {
2147                         /* No need to write to this device. */
2148                         sbio->bi_end_io = NULL;
2149                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2150                         continue;
2151                 }
2152
2153                 bio_copy_data(sbio, pbio);
2154         }
2155 }
2156
2157 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2158 {
2159         struct r1conf *conf = mddev->private;
2160         int i;
2161         int disks = conf->raid_disks * 2;
2162         struct bio *wbio;
2163
2164         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2165                 /* ouch - failed to read all of that. */
2166                 if (!fix_sync_read_error(r1_bio))
2167                         return;
2168
2169         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2170                 process_checks(r1_bio);
2171
2172         /*
2173          * schedule writes
2174          */
2175         atomic_set(&r1_bio->remaining, 1);
2176         for (i = 0; i < disks ; i++) {
2177                 wbio = r1_bio->bios[i];
2178                 if (wbio->bi_end_io == NULL ||
2179                     (wbio->bi_end_io == end_sync_read &&
2180                      (i == r1_bio->read_disk ||
2181                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2182                         continue;
2183                 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2184                         abort_sync_write(mddev, r1_bio);
2185                         continue;
2186                 }
2187
2188                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2189                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2190                         wbio->bi_opf |= MD_FAILFAST;
2191
2192                 wbio->bi_end_io = end_sync_write;
2193                 atomic_inc(&r1_bio->remaining);
2194                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2195
2196                 generic_make_request(wbio);
2197         }
2198
2199         if (atomic_dec_and_test(&r1_bio->remaining)) {
2200                 /* if we're here, all write(s) have completed, so clean up */
2201                 int s = r1_bio->sectors;
2202                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2203                     test_bit(R1BIO_WriteError, &r1_bio->state))
2204                         reschedule_retry(r1_bio);
2205                 else {
2206                         put_buf(r1_bio);
2207                         md_done_sync(mddev, s, 1);
2208                 }
2209         }
2210 }
2211
2212 /*
2213  * This is a kernel thread which:
2214  *
2215  *      1.      Retries failed read operations on working mirrors.
2216  *      2.      Updates the raid superblock when problems encounter.
2217  *      3.      Performs writes following reads for array synchronising.
2218  */
2219
2220 static void fix_read_error(struct r1conf *conf, int read_disk,
2221                            sector_t sect, int sectors)
2222 {
2223         struct mddev *mddev = conf->mddev;
2224         while(sectors) {
2225                 int s = sectors;
2226                 int d = read_disk;
2227                 int success = 0;
2228                 int start;
2229                 struct md_rdev *rdev;
2230
2231                 if (s > (PAGE_SIZE>>9))
2232                         s = PAGE_SIZE >> 9;
2233
2234                 do {
2235                         sector_t first_bad;
2236                         int bad_sectors;
2237
2238                         rcu_read_lock();
2239                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2240                         if (rdev &&
2241                             (test_bit(In_sync, &rdev->flags) ||
2242                              (!test_bit(Faulty, &rdev->flags) &&
2243                               rdev->recovery_offset >= sect + s)) &&
2244                             is_badblock(rdev, sect, s,
2245                                         &first_bad, &bad_sectors) == 0) {
2246                                 atomic_inc(&rdev->nr_pending);
2247                                 rcu_read_unlock();
2248                                 if (sync_page_io(rdev, sect, s<<9,
2249                                          conf->tmppage, REQ_OP_READ, 0, false))
2250                                         success = 1;
2251                                 rdev_dec_pending(rdev, mddev);
2252                                 if (success)
2253                                         break;
2254                         } else
2255                                 rcu_read_unlock();
2256                         d++;
2257                         if (d == conf->raid_disks * 2)
2258                                 d = 0;
2259                 } while (!success && d != read_disk);
2260
2261                 if (!success) {
2262                         /* Cannot read from anywhere - mark it bad */
2263                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2264                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2265                                 md_error(mddev, rdev);
2266                         break;
2267                 }
2268                 /* write it back and re-read */
2269                 start = d;
2270                 while (d != read_disk) {
2271                         if (d==0)
2272                                 d = conf->raid_disks * 2;
2273                         d--;
2274                         rcu_read_lock();
2275                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2276                         if (rdev &&
2277                             !test_bit(Faulty, &rdev->flags)) {
2278                                 atomic_inc(&rdev->nr_pending);
2279                                 rcu_read_unlock();
2280                                 r1_sync_page_io(rdev, sect, s,
2281                                                 conf->tmppage, WRITE);
2282                                 rdev_dec_pending(rdev, mddev);
2283                         } else
2284                                 rcu_read_unlock();
2285                 }
2286                 d = start;
2287                 while (d != read_disk) {
2288                         char b[BDEVNAME_SIZE];
2289                         if (d==0)
2290                                 d = conf->raid_disks * 2;
2291                         d--;
2292                         rcu_read_lock();
2293                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2294                         if (rdev &&
2295                             !test_bit(Faulty, &rdev->flags)) {
2296                                 atomic_inc(&rdev->nr_pending);
2297                                 rcu_read_unlock();
2298                                 if (r1_sync_page_io(rdev, sect, s,
2299                                                     conf->tmppage, READ)) {
2300                                         atomic_add(s, &rdev->corrected_errors);
2301                                         pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2302                                                 mdname(mddev), s,
2303                                                 (unsigned long long)(sect +
2304                                                                      rdev->data_offset),
2305                                                 bdevname(rdev->bdev, b));
2306                                 }
2307                                 rdev_dec_pending(rdev, mddev);
2308                         } else
2309                                 rcu_read_unlock();
2310                 }
2311                 sectors -= s;
2312                 sect += s;
2313         }
2314 }
2315
2316 static int narrow_write_error(struct r1bio *r1_bio, int i)
2317 {
2318         struct mddev *mddev = r1_bio->mddev;
2319         struct r1conf *conf = mddev->private;
2320         struct md_rdev *rdev = conf->mirrors[i].rdev;
2321
2322         /* bio has the data to be written to device 'i' where
2323          * we just recently had a write error.
2324          * We repeatedly clone the bio and trim down to one block,
2325          * then try the write.  Where the write fails we record
2326          * a bad block.
2327          * It is conceivable that the bio doesn't exactly align with
2328          * blocks.  We must handle this somehow.
2329          *
2330          * We currently own a reference on the rdev.
2331          */
2332
2333         int block_sectors;
2334         sector_t sector;
2335         int sectors;
2336         int sect_to_write = r1_bio->sectors;
2337         int ok = 1;
2338
2339         if (rdev->badblocks.shift < 0)
2340                 return 0;
2341
2342         block_sectors = roundup(1 << rdev->badblocks.shift,
2343                                 bdev_logical_block_size(rdev->bdev) >> 9);
2344         sector = r1_bio->sector;
2345         sectors = ((sector + block_sectors)
2346                    & ~(sector_t)(block_sectors - 1))
2347                 - sector;
2348
2349         while (sect_to_write) {
2350                 struct bio *wbio;
2351                 if (sectors > sect_to_write)
2352                         sectors = sect_to_write;
2353                 /* Write at 'sector' for 'sectors'*/
2354
2355                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2356                         wbio = bio_clone_fast(r1_bio->behind_master_bio,
2357                                               GFP_NOIO,
2358                                               &mddev->bio_set);
2359                 } else {
2360                         wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2361                                               &mddev->bio_set);
2362                 }
2363
2364                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2365                 wbio->bi_iter.bi_sector = r1_bio->sector;
2366                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2367
2368                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2369                 wbio->bi_iter.bi_sector += rdev->data_offset;
2370                 bio_set_dev(wbio, rdev->bdev);
2371
2372                 if (submit_bio_wait(wbio) < 0)
2373                         /* failure! */
2374                         ok = rdev_set_badblocks(rdev, sector,
2375                                                 sectors, 0)
2376                                 && ok;
2377
2378                 bio_put(wbio);
2379                 sect_to_write -= sectors;
2380                 sector += sectors;
2381                 sectors = block_sectors;
2382         }
2383         return ok;
2384 }
2385
2386 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2387 {
2388         int m;
2389         int s = r1_bio->sectors;
2390         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2391                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2392                 struct bio *bio = r1_bio->bios[m];
2393                 if (bio->bi_end_io == NULL)
2394                         continue;
2395                 if (!bio->bi_status &&
2396                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2397                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2398                 }
2399                 if (bio->bi_status &&
2400                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2401                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2402                                 md_error(conf->mddev, rdev);
2403                 }
2404         }
2405         put_buf(r1_bio);
2406         md_done_sync(conf->mddev, s, 1);
2407 }
2408
2409 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2410 {
2411         int m, idx;
2412         bool fail = false;
2413
2414         for (m = 0; m < conf->raid_disks * 2 ; m++)
2415                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2416                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2417                         rdev_clear_badblocks(rdev,
2418                                              r1_bio->sector,
2419                                              r1_bio->sectors, 0);
2420                         rdev_dec_pending(rdev, conf->mddev);
2421                 } else if (r1_bio->bios[m] != NULL) {
2422                         /* This drive got a write error.  We need to
2423                          * narrow down and record precise write
2424                          * errors.
2425                          */
2426                         fail = true;
2427                         if (!narrow_write_error(r1_bio, m)) {
2428                                 md_error(conf->mddev,
2429                                          conf->mirrors[m].rdev);
2430                                 /* an I/O failed, we can't clear the bitmap */
2431                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2432                         }
2433                         rdev_dec_pending(conf->mirrors[m].rdev,
2434                                          conf->mddev);
2435                 }
2436         if (fail) {
2437                 spin_lock_irq(&conf->device_lock);
2438                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2439                 idx = sector_to_idx(r1_bio->sector);
2440                 atomic_inc(&conf->nr_queued[idx]);
2441                 spin_unlock_irq(&conf->device_lock);
2442                 /*
2443                  * In case freeze_array() is waiting for condition
2444                  * get_unqueued_pending() == extra to be true.
2445                  */
2446                 wake_up(&conf->wait_barrier);
2447                 md_wakeup_thread(conf->mddev->thread);
2448         } else {
2449                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2450                         close_write(r1_bio);
2451                 raid_end_bio_io(r1_bio);
2452         }
2453 }
2454
2455 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2456 {
2457         struct mddev *mddev = conf->mddev;
2458         struct bio *bio;
2459         struct md_rdev *rdev;
2460
2461         clear_bit(R1BIO_ReadError, &r1_bio->state);
2462         /* we got a read error. Maybe the drive is bad.  Maybe just
2463          * the block and we can fix it.
2464          * We freeze all other IO, and try reading the block from
2465          * other devices.  When we find one, we re-write
2466          * and check it that fixes the read error.
2467          * This is all done synchronously while the array is
2468          * frozen
2469          */
2470
2471         bio = r1_bio->bios[r1_bio->read_disk];
2472         bio_put(bio);
2473         r1_bio->bios[r1_bio->read_disk] = NULL;
2474
2475         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2476         if (mddev->ro == 0
2477             && !test_bit(FailFast, &rdev->flags)) {
2478                 freeze_array(conf, 1);
2479                 fix_read_error(conf, r1_bio->read_disk,
2480                                r1_bio->sector, r1_bio->sectors);
2481                 unfreeze_array(conf);
2482         } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2483                 md_error(mddev, rdev);
2484         } else {
2485                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2486         }
2487
2488         rdev_dec_pending(rdev, conf->mddev);
2489         allow_barrier(conf, r1_bio->sector);
2490         bio = r1_bio->master_bio;
2491
2492         /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2493         r1_bio->state = 0;
2494         raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2495 }
2496
2497 static void raid1d(struct md_thread *thread)
2498 {
2499         struct mddev *mddev = thread->mddev;
2500         struct r1bio *r1_bio;
2501         unsigned long flags;
2502         struct r1conf *conf = mddev->private;
2503         struct list_head *head = &conf->retry_list;
2504         struct blk_plug plug;
2505         int idx;
2506
2507         md_check_recovery(mddev);
2508
2509         if (!list_empty_careful(&conf->bio_end_io_list) &&
2510             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2511                 LIST_HEAD(tmp);
2512                 spin_lock_irqsave(&conf->device_lock, flags);
2513                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2514                         list_splice_init(&conf->bio_end_io_list, &tmp);
2515                 spin_unlock_irqrestore(&conf->device_lock, flags);
2516                 while (!list_empty(&tmp)) {
2517                         r1_bio = list_first_entry(&tmp, struct r1bio,
2518                                                   retry_list);
2519                         list_del(&r1_bio->retry_list);
2520                         idx = sector_to_idx(r1_bio->sector);
2521                         atomic_dec(&conf->nr_queued[idx]);
2522                         if (mddev->degraded)
2523                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2524                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2525                                 close_write(r1_bio);
2526                         raid_end_bio_io(r1_bio);
2527                 }
2528         }
2529
2530         blk_start_plug(&plug);
2531         for (;;) {
2532
2533                 flush_pending_writes(conf);
2534
2535                 spin_lock_irqsave(&conf->device_lock, flags);
2536                 if (list_empty(head)) {
2537                         spin_unlock_irqrestore(&conf->device_lock, flags);
2538                         break;
2539                 }
2540                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2541                 list_del(head->prev);
2542                 idx = sector_to_idx(r1_bio->sector);
2543                 atomic_dec(&conf->nr_queued[idx]);
2544                 spin_unlock_irqrestore(&conf->device_lock, flags);
2545
2546                 mddev = r1_bio->mddev;
2547                 conf = mddev->private;
2548                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2549                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2550                             test_bit(R1BIO_WriteError, &r1_bio->state))
2551                                 handle_sync_write_finished(conf, r1_bio);
2552                         else
2553                                 sync_request_write(mddev, r1_bio);
2554                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2555                            test_bit(R1BIO_WriteError, &r1_bio->state))
2556                         handle_write_finished(conf, r1_bio);
2557                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2558                         handle_read_error(conf, r1_bio);
2559                 else
2560                         WARN_ON_ONCE(1);
2561
2562                 cond_resched();
2563                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2564                         md_check_recovery(mddev);
2565         }
2566         blk_finish_plug(&plug);
2567 }
2568
2569 static int init_resync(struct r1conf *conf)
2570 {
2571         int buffs;
2572
2573         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2574         BUG_ON(mempool_initialized(&conf->r1buf_pool));
2575
2576         return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2577                             r1buf_pool_free, conf->poolinfo);
2578 }
2579
2580 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2581 {
2582         struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2583         struct resync_pages *rps;
2584         struct bio *bio;
2585         int i;
2586
2587         for (i = conf->poolinfo->raid_disks; i--; ) {
2588                 bio = r1bio->bios[i];
2589                 rps = bio->bi_private;
2590                 bio_reset(bio);
2591                 bio->bi_private = rps;
2592         }
2593         r1bio->master_bio = NULL;
2594         return r1bio;
2595 }
2596
2597 /*
2598  * perform a "sync" on one "block"
2599  *
2600  * We need to make sure that no normal I/O request - particularly write
2601  * requests - conflict with active sync requests.
2602  *
2603  * This is achieved by tracking pending requests and a 'barrier' concept
2604  * that can be installed to exclude normal IO requests.
2605  */
2606
2607 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2608                                    int *skipped)
2609 {
2610         struct r1conf *conf = mddev->private;
2611         struct r1bio *r1_bio;
2612         struct bio *bio;
2613         sector_t max_sector, nr_sectors;
2614         int disk = -1;
2615         int i;
2616         int wonly = -1;
2617         int write_targets = 0, read_targets = 0;
2618         sector_t sync_blocks;
2619         int still_degraded = 0;
2620         int good_sectors = RESYNC_SECTORS;
2621         int min_bad = 0; /* number of sectors that are bad in all devices */
2622         int idx = sector_to_idx(sector_nr);
2623         int page_idx = 0;
2624
2625         if (!mempool_initialized(&conf->r1buf_pool))
2626                 if (init_resync(conf))
2627                         return 0;
2628
2629         max_sector = mddev->dev_sectors;
2630         if (sector_nr >= max_sector) {
2631                 /* If we aborted, we need to abort the
2632                  * sync on the 'current' bitmap chunk (there will
2633                  * only be one in raid1 resync.
2634                  * We can find the current addess in mddev->curr_resync
2635                  */
2636                 if (mddev->curr_resync < max_sector) /* aborted */
2637                         md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2638                                            &sync_blocks, 1);
2639                 else /* completed sync */
2640                         conf->fullsync = 0;
2641
2642                 md_bitmap_close_sync(mddev->bitmap);
2643                 close_sync(conf);
2644
2645                 if (mddev_is_clustered(mddev)) {
2646                         conf->cluster_sync_low = 0;
2647                         conf->cluster_sync_high = 0;
2648                 }
2649                 return 0;
2650         }
2651
2652         if (mddev->bitmap == NULL &&
2653             mddev->recovery_cp == MaxSector &&
2654             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2655             conf->fullsync == 0) {
2656                 *skipped = 1;
2657                 return max_sector - sector_nr;
2658         }
2659         /* before building a request, check if we can skip these blocks..
2660          * This call the bitmap_start_sync doesn't actually record anything
2661          */
2662         if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2663             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2664                 /* We can skip this block, and probably several more */
2665                 *skipped = 1;
2666                 return sync_blocks;
2667         }
2668
2669         /*
2670          * If there is non-resync activity waiting for a turn, then let it
2671          * though before starting on this new sync request.
2672          */
2673         if (atomic_read(&conf->nr_waiting[idx]))
2674                 schedule_timeout_uninterruptible(1);
2675
2676         /* we are incrementing sector_nr below. To be safe, we check against
2677          * sector_nr + two times RESYNC_SECTORS
2678          */
2679
2680         md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2681                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2682
2683
2684         if (raise_barrier(conf, sector_nr))
2685                 return 0;
2686
2687         r1_bio = raid1_alloc_init_r1buf(conf);
2688
2689         rcu_read_lock();
2690         /*
2691          * If we get a correctably read error during resync or recovery,
2692          * we might want to read from a different device.  So we
2693          * flag all drives that could conceivably be read from for READ,
2694          * and any others (which will be non-In_sync devices) for WRITE.
2695          * If a read fails, we try reading from something else for which READ
2696          * is OK.
2697          */
2698
2699         r1_bio->mddev = mddev;
2700         r1_bio->sector = sector_nr;
2701         r1_bio->state = 0;
2702         set_bit(R1BIO_IsSync, &r1_bio->state);
2703         /* make sure good_sectors won't go across barrier unit boundary */
2704         good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2705
2706         for (i = 0; i < conf->raid_disks * 2; i++) {
2707                 struct md_rdev *rdev;
2708                 bio = r1_bio->bios[i];
2709
2710                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2711                 if (rdev == NULL ||
2712                     test_bit(Faulty, &rdev->flags)) {
2713                         if (i < conf->raid_disks)
2714                                 still_degraded = 1;
2715                 } else if (!test_bit(In_sync, &rdev->flags)) {
2716                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2717                         bio->bi_end_io = end_sync_write;
2718                         write_targets ++;
2719                 } else {
2720                         /* may need to read from here */
2721                         sector_t first_bad = MaxSector;
2722                         int bad_sectors;
2723
2724                         if (is_badblock(rdev, sector_nr, good_sectors,
2725                                         &first_bad, &bad_sectors)) {
2726                                 if (first_bad > sector_nr)
2727                                         good_sectors = first_bad - sector_nr;
2728                                 else {
2729                                         bad_sectors -= (sector_nr - first_bad);
2730                                         if (min_bad == 0 ||
2731                                             min_bad > bad_sectors)
2732                                                 min_bad = bad_sectors;
2733                                 }
2734                         }
2735                         if (sector_nr < first_bad) {
2736                                 if (test_bit(WriteMostly, &rdev->flags)) {
2737                                         if (wonly < 0)
2738                                                 wonly = i;
2739                                 } else {
2740                                         if (disk < 0)
2741                                                 disk = i;
2742                                 }
2743                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2744                                 bio->bi_end_io = end_sync_read;
2745                                 read_targets++;
2746                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2747                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2748                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2749                                 /*
2750                                  * The device is suitable for reading (InSync),
2751                                  * but has bad block(s) here. Let's try to correct them,
2752                                  * if we are doing resync or repair. Otherwise, leave
2753                                  * this device alone for this sync request.
2754                                  */
2755                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2756                                 bio->bi_end_io = end_sync_write;
2757                                 write_targets++;
2758                         }
2759                 }
2760                 if (bio->bi_end_io) {
2761                         atomic_inc(&rdev->nr_pending);
2762                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2763                         bio_set_dev(bio, rdev->bdev);
2764                         if (test_bit(FailFast, &rdev->flags))
2765                                 bio->bi_opf |= MD_FAILFAST;
2766                 }
2767         }
2768         rcu_read_unlock();
2769         if (disk < 0)
2770                 disk = wonly;
2771         r1_bio->read_disk = disk;
2772
2773         if (read_targets == 0 && min_bad > 0) {
2774                 /* These sectors are bad on all InSync devices, so we
2775                  * need to mark them bad on all write targets
2776                  */
2777                 int ok = 1;
2778                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2779                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2780                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2781                                 ok = rdev_set_badblocks(rdev, sector_nr,
2782                                                         min_bad, 0
2783                                         ) && ok;
2784                         }
2785                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2786                 *skipped = 1;
2787                 put_buf(r1_bio);
2788
2789                 if (!ok) {
2790                         /* Cannot record the badblocks, so need to
2791                          * abort the resync.
2792                          * If there are multiple read targets, could just
2793                          * fail the really bad ones ???
2794                          */
2795                         conf->recovery_disabled = mddev->recovery_disabled;
2796                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2797                         return 0;
2798                 } else
2799                         return min_bad;
2800
2801         }
2802         if (min_bad > 0 && min_bad < good_sectors) {
2803                 /* only resync enough to reach the next bad->good
2804                  * transition */
2805                 good_sectors = min_bad;
2806         }
2807
2808         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2809                 /* extra read targets are also write targets */
2810                 write_targets += read_targets-1;
2811
2812         if (write_targets == 0 || read_targets == 0) {
2813                 /* There is nowhere to write, so all non-sync
2814                  * drives must be failed - so we are finished
2815                  */
2816                 sector_t rv;
2817                 if (min_bad > 0)
2818                         max_sector = sector_nr + min_bad;
2819                 rv = max_sector - sector_nr;
2820                 *skipped = 1;
2821                 put_buf(r1_bio);
2822                 return rv;
2823         }
2824
2825         if (max_sector > mddev->resync_max)
2826                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2827         if (max_sector > sector_nr + good_sectors)
2828                 max_sector = sector_nr + good_sectors;
2829         nr_sectors = 0;
2830         sync_blocks = 0;
2831         do {
2832                 struct page *page;
2833                 int len = PAGE_SIZE;
2834                 if (sector_nr + (len>>9) > max_sector)
2835                         len = (max_sector - sector_nr) << 9;
2836                 if (len == 0)
2837                         break;
2838                 if (sync_blocks == 0) {
2839                         if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2840                                                   &sync_blocks, still_degraded) &&
2841                             !conf->fullsync &&
2842                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2843                                 break;
2844                         if ((len >> 9) > sync_blocks)
2845                                 len = sync_blocks<<9;
2846                 }
2847
2848                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2849                         struct resync_pages *rp;
2850
2851                         bio = r1_bio->bios[i];
2852                         rp = get_resync_pages(bio);
2853                         if (bio->bi_end_io) {
2854                                 page = resync_fetch_page(rp, page_idx);
2855
2856                                 /*
2857                                  * won't fail because the vec table is big
2858                                  * enough to hold all these pages
2859                                  */
2860                                 bio_add_page(bio, page, len, 0);
2861                         }
2862                 }
2863                 nr_sectors += len>>9;
2864                 sector_nr += len>>9;
2865                 sync_blocks -= (len>>9);
2866         } while (++page_idx < RESYNC_PAGES);
2867
2868         r1_bio->sectors = nr_sectors;
2869
2870         if (mddev_is_clustered(mddev) &&
2871                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2872                 conf->cluster_sync_low = mddev->curr_resync_completed;
2873                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2874                 /* Send resync message */
2875                 md_cluster_ops->resync_info_update(mddev,
2876                                 conf->cluster_sync_low,
2877                                 conf->cluster_sync_high);
2878         }
2879
2880         /* For a user-requested sync, we read all readable devices and do a
2881          * compare
2882          */
2883         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2884                 atomic_set(&r1_bio->remaining, read_targets);
2885                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2886                         bio = r1_bio->bios[i];
2887                         if (bio->bi_end_io == end_sync_read) {
2888                                 read_targets--;
2889                                 md_sync_acct_bio(bio, nr_sectors);
2890                                 if (read_targets == 1)
2891                                         bio->bi_opf &= ~MD_FAILFAST;
2892                                 generic_make_request(bio);
2893                         }
2894                 }
2895         } else {
2896                 atomic_set(&r1_bio->remaining, 1);
2897                 bio = r1_bio->bios[r1_bio->read_disk];
2898                 md_sync_acct_bio(bio, nr_sectors);
2899                 if (read_targets == 1)
2900                         bio->bi_opf &= ~MD_FAILFAST;
2901                 generic_make_request(bio);
2902
2903         }
2904         return nr_sectors;
2905 }
2906
2907 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2908 {
2909         if (sectors)
2910                 return sectors;
2911
2912         return mddev->dev_sectors;
2913 }
2914
2915 static struct r1conf *setup_conf(struct mddev *mddev)
2916 {
2917         struct r1conf *conf;
2918         int i;
2919         struct raid1_info *disk;
2920         struct md_rdev *rdev;
2921         int err = -ENOMEM;
2922
2923         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2924         if (!conf)
2925                 goto abort;
2926
2927         conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2928                                    sizeof(atomic_t), GFP_KERNEL);
2929         if (!conf->nr_pending)
2930                 goto abort;
2931
2932         conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2933                                    sizeof(atomic_t), GFP_KERNEL);
2934         if (!conf->nr_waiting)
2935                 goto abort;
2936
2937         conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2938                                   sizeof(atomic_t), GFP_KERNEL);
2939         if (!conf->nr_queued)
2940                 goto abort;
2941
2942         conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2943                                 sizeof(atomic_t), GFP_KERNEL);
2944         if (!conf->barrier)
2945                 goto abort;
2946
2947         conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2948                                             mddev->raid_disks, 2),
2949                                 GFP_KERNEL);
2950         if (!conf->mirrors)
2951                 goto abort;
2952
2953         conf->tmppage = alloc_page(GFP_KERNEL);
2954         if (!conf->tmppage)
2955                 goto abort;
2956
2957         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2958         if (!conf->poolinfo)
2959                 goto abort;
2960         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2961         err = mempool_init(&conf->r1bio_pool, NR_RAID1_BIOS, r1bio_pool_alloc,
2962                            r1bio_pool_free, conf->poolinfo);
2963         if (err)
2964                 goto abort;
2965
2966         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2967         if (err)
2968                 goto abort;
2969
2970         conf->poolinfo->mddev = mddev;
2971
2972         err = -EINVAL;
2973         spin_lock_init(&conf->device_lock);
2974         rdev_for_each(rdev, mddev) {
2975                 int disk_idx = rdev->raid_disk;
2976                 if (disk_idx >= mddev->raid_disks
2977                     || disk_idx < 0)
2978                         continue;
2979                 if (test_bit(Replacement, &rdev->flags))
2980                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2981                 else
2982                         disk = conf->mirrors + disk_idx;
2983
2984                 if (disk->rdev)
2985                         goto abort;
2986                 disk->rdev = rdev;
2987                 disk->head_position = 0;
2988                 disk->seq_start = MaxSector;
2989         }
2990         conf->raid_disks = mddev->raid_disks;
2991         conf->mddev = mddev;
2992         INIT_LIST_HEAD(&conf->retry_list);
2993         INIT_LIST_HEAD(&conf->bio_end_io_list);
2994
2995         spin_lock_init(&conf->resync_lock);
2996         init_waitqueue_head(&conf->wait_barrier);
2997
2998         bio_list_init(&conf->pending_bio_list);
2999         conf->pending_count = 0;
3000         conf->recovery_disabled = mddev->recovery_disabled - 1;
3001
3002         err = -EIO;
3003         for (i = 0; i < conf->raid_disks * 2; i++) {
3004
3005                 disk = conf->mirrors + i;
3006
3007                 if (i < conf->raid_disks &&
3008                     disk[conf->raid_disks].rdev) {
3009                         /* This slot has a replacement. */
3010                         if (!disk->rdev) {
3011                                 /* No original, just make the replacement
3012                                  * a recovering spare
3013                                  */
3014                                 disk->rdev =
3015                                         disk[conf->raid_disks].rdev;
3016                                 disk[conf->raid_disks].rdev = NULL;
3017                         } else if (!test_bit(In_sync, &disk->rdev->flags))
3018                                 /* Original is not in_sync - bad */
3019                                 goto abort;
3020                 }
3021
3022                 if (!disk->rdev ||
3023                     !test_bit(In_sync, &disk->rdev->flags)) {
3024                         disk->head_position = 0;
3025                         if (disk->rdev &&
3026                             (disk->rdev->saved_raid_disk < 0))
3027                                 conf->fullsync = 1;
3028                 }
3029         }
3030
3031         err = -ENOMEM;
3032         conf->thread = md_register_thread(raid1d, mddev, "raid1");
3033         if (!conf->thread)
3034                 goto abort;
3035
3036         return conf;
3037
3038  abort:
3039         if (conf) {
3040                 mempool_exit(&conf->r1bio_pool);
3041                 kfree(conf->mirrors);
3042                 safe_put_page(conf->tmppage);
3043                 kfree(conf->poolinfo);
3044                 kfree(conf->nr_pending);
3045                 kfree(conf->nr_waiting);
3046                 kfree(conf->nr_queued);
3047                 kfree(conf->barrier);
3048                 bioset_exit(&conf->bio_split);
3049                 kfree(conf);
3050         }
3051         return ERR_PTR(err);
3052 }
3053
3054 static void raid1_free(struct mddev *mddev, void *priv);
3055 static int raid1_run(struct mddev *mddev)
3056 {
3057         struct r1conf *conf;
3058         int i;
3059         struct md_rdev *rdev;
3060         int ret;
3061         bool discard_supported = false;
3062
3063         if (mddev->level != 1) {
3064                 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3065                         mdname(mddev), mddev->level);
3066                 return -EIO;
3067         }
3068         if (mddev->reshape_position != MaxSector) {
3069                 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3070                         mdname(mddev));
3071                 return -EIO;
3072         }
3073         if (mddev_init_writes_pending(mddev) < 0)
3074                 return -ENOMEM;
3075         /*
3076          * copy the already verified devices into our private RAID1
3077          * bookkeeping area. [whatever we allocate in run(),
3078          * should be freed in raid1_free()]
3079          */
3080         if (mddev->private == NULL)
3081                 conf = setup_conf(mddev);
3082         else
3083                 conf = mddev->private;
3084
3085         if (IS_ERR(conf))
3086                 return PTR_ERR(conf);
3087
3088         if (mddev->queue) {
3089                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3090                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3091         }
3092
3093         rdev_for_each(rdev, mddev) {
3094                 if (!mddev->gendisk)
3095                         continue;
3096                 disk_stack_limits(mddev->gendisk, rdev->bdev,
3097                                   rdev->data_offset << 9);
3098                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3099                         discard_supported = true;
3100         }
3101
3102         mddev->degraded = 0;
3103         for (i=0; i < conf->raid_disks; i++)
3104                 if (conf->mirrors[i].rdev == NULL ||
3105                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3106                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3107                         mddev->degraded++;
3108         /*
3109          * RAID1 needs at least one disk in active
3110          */
3111         if (conf->raid_disks - mddev->degraded < 1) {
3112                 ret = -EINVAL;
3113                 goto abort;
3114         }
3115
3116         if (conf->raid_disks - mddev->degraded == 1)
3117                 mddev->recovery_cp = MaxSector;
3118
3119         if (mddev->recovery_cp != MaxSector)
3120                 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3121                         mdname(mddev));
3122         pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3123                 mdname(mddev), mddev->raid_disks - mddev->degraded,
3124                 mddev->raid_disks);
3125
3126         /*
3127          * Ok, everything is just fine now
3128          */
3129         mddev->thread = conf->thread;
3130         conf->thread = NULL;
3131         mddev->private = conf;
3132         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3133
3134         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3135
3136         if (mddev->queue) {
3137                 if (discard_supported)
3138                         blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3139                                                 mddev->queue);
3140                 else
3141                         blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3142                                                   mddev->queue);
3143         }
3144
3145         ret =  md_integrity_register(mddev);
3146         if (ret) {
3147                 md_unregister_thread(&mddev->thread);
3148                 goto abort;
3149         }
3150         return 0;
3151
3152 abort:
3153         raid1_free(mddev, conf);
3154         return ret;
3155 }
3156
3157 static void raid1_free(struct mddev *mddev, void *priv)
3158 {
3159         struct r1conf *conf = priv;
3160
3161         mempool_exit(&conf->r1bio_pool);
3162         kfree(conf->mirrors);
3163         safe_put_page(conf->tmppage);
3164         kfree(conf->poolinfo);
3165         kfree(conf->nr_pending);
3166         kfree(conf->nr_waiting);
3167         kfree(conf->nr_queued);
3168         kfree(conf->barrier);
3169         bioset_exit(&conf->bio_split);
3170         kfree(conf);
3171 }
3172
3173 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3174 {
3175         /* no resync is happening, and there is enough space
3176          * on all devices, so we can resize.
3177          * We need to make sure resync covers any new space.
3178          * If the array is shrinking we should possibly wait until
3179          * any io in the removed space completes, but it hardly seems
3180          * worth it.
3181          */
3182         sector_t newsize = raid1_size(mddev, sectors, 0);
3183         if (mddev->external_size &&
3184             mddev->array_sectors > newsize)
3185                 return -EINVAL;
3186         if (mddev->bitmap) {
3187                 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3188                 if (ret)
3189                         return ret;
3190         }
3191         md_set_array_sectors(mddev, newsize);
3192         if (sectors > mddev->dev_sectors &&
3193             mddev->recovery_cp > mddev->dev_sectors) {
3194                 mddev->recovery_cp = mddev->dev_sectors;
3195                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3196         }
3197         mddev->dev_sectors = sectors;
3198         mddev->resync_max_sectors = sectors;
3199         return 0;
3200 }
3201
3202 static int raid1_reshape(struct mddev *mddev)
3203 {
3204         /* We need to:
3205          * 1/ resize the r1bio_pool
3206          * 2/ resize conf->mirrors
3207          *
3208          * We allocate a new r1bio_pool if we can.
3209          * Then raise a device barrier and wait until all IO stops.
3210          * Then resize conf->mirrors and swap in the new r1bio pool.
3211          *
3212          * At the same time, we "pack" the devices so that all the missing
3213          * devices have the higher raid_disk numbers.
3214          */
3215         mempool_t newpool, oldpool;
3216         struct pool_info *newpoolinfo;
3217         struct raid1_info *newmirrors;
3218         struct r1conf *conf = mddev->private;
3219         int cnt, raid_disks;
3220         unsigned long flags;
3221         int d, d2;
3222         int ret;
3223
3224         memset(&newpool, 0, sizeof(newpool));
3225         memset(&oldpool, 0, sizeof(oldpool));
3226
3227         /* Cannot change chunk_size, layout, or level */
3228         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3229             mddev->layout != mddev->new_layout ||
3230             mddev->level != mddev->new_level) {
3231                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3232                 mddev->new_layout = mddev->layout;
3233                 mddev->new_level = mddev->level;
3234                 return -EINVAL;
3235         }
3236
3237         if (!mddev_is_clustered(mddev))
3238                 md_allow_write(mddev);
3239
3240         raid_disks = mddev->raid_disks + mddev->delta_disks;
3241
3242         if (raid_disks < conf->raid_disks) {
3243                 cnt=0;
3244                 for (d= 0; d < conf->raid_disks; d++)
3245                         if (conf->mirrors[d].rdev)
3246                                 cnt++;
3247                 if (cnt > raid_disks)
3248                         return -EBUSY;
3249         }
3250
3251         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3252         if (!newpoolinfo)
3253                 return -ENOMEM;
3254         newpoolinfo->mddev = mddev;
3255         newpoolinfo->raid_disks = raid_disks * 2;
3256
3257         ret = mempool_init(&newpool, NR_RAID1_BIOS, r1bio_pool_alloc,
3258                            r1bio_pool_free, newpoolinfo);
3259         if (ret) {
3260                 kfree(newpoolinfo);
3261                 return ret;
3262         }
3263         newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3264                                          raid_disks, 2),
3265                              GFP_KERNEL);
3266         if (!newmirrors) {
3267                 kfree(newpoolinfo);
3268                 mempool_exit(&newpool);
3269                 return -ENOMEM;
3270         }
3271
3272         freeze_array(conf, 0);
3273
3274         /* ok, everything is stopped */
3275         oldpool = conf->r1bio_pool;
3276         conf->r1bio_pool = newpool;
3277
3278         for (d = d2 = 0; d < conf->raid_disks; d++) {
3279                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3280                 if (rdev && rdev->raid_disk != d2) {
3281                         sysfs_unlink_rdev(mddev, rdev);
3282                         rdev->raid_disk = d2;
3283                         sysfs_unlink_rdev(mddev, rdev);
3284                         if (sysfs_link_rdev(mddev, rdev))
3285                                 pr_warn("md/raid1:%s: cannot register rd%d\n",
3286                                         mdname(mddev), rdev->raid_disk);
3287                 }
3288                 if (rdev)
3289                         newmirrors[d2++].rdev = rdev;
3290         }
3291         kfree(conf->mirrors);
3292         conf->mirrors = newmirrors;
3293         kfree(conf->poolinfo);
3294         conf->poolinfo = newpoolinfo;
3295
3296         spin_lock_irqsave(&conf->device_lock, flags);
3297         mddev->degraded += (raid_disks - conf->raid_disks);
3298         spin_unlock_irqrestore(&conf->device_lock, flags);
3299         conf->raid_disks = mddev->raid_disks = raid_disks;
3300         mddev->delta_disks = 0;
3301
3302         unfreeze_array(conf);
3303
3304         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3305         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3306         md_wakeup_thread(mddev->thread);
3307
3308         mempool_exit(&oldpool);
3309         return 0;
3310 }
3311
3312 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3313 {
3314         struct r1conf *conf = mddev->private;
3315
3316         if (quiesce)
3317                 freeze_array(conf, 0);
3318         else
3319                 unfreeze_array(conf);
3320 }
3321
3322 static void *raid1_takeover(struct mddev *mddev)
3323 {
3324         /* raid1 can take over:
3325          *  raid5 with 2 devices, any layout or chunk size
3326          */
3327         if (mddev->level == 5 && mddev->raid_disks == 2) {
3328                 struct r1conf *conf;
3329                 mddev->new_level = 1;
3330                 mddev->new_layout = 0;
3331                 mddev->new_chunk_sectors = 0;
3332                 conf = setup_conf(mddev);
3333                 if (!IS_ERR(conf)) {
3334                         /* Array must appear to be quiesced */
3335                         conf->array_frozen = 1;
3336                         mddev_clear_unsupported_flags(mddev,
3337                                 UNSUPPORTED_MDDEV_FLAGS);
3338                 }
3339                 return conf;
3340         }
3341         return ERR_PTR(-EINVAL);
3342 }
3343
3344 static struct md_personality raid1_personality =
3345 {
3346         .name           = "raid1",
3347         .level          = 1,
3348         .owner          = THIS_MODULE,
3349         .make_request   = raid1_make_request,
3350         .run            = raid1_run,
3351         .free           = raid1_free,
3352         .status         = raid1_status,
3353         .error_handler  = raid1_error,
3354         .hot_add_disk   = raid1_add_disk,
3355         .hot_remove_disk= raid1_remove_disk,
3356         .spare_active   = raid1_spare_active,
3357         .sync_request   = raid1_sync_request,
3358         .resize         = raid1_resize,
3359         .size           = raid1_size,
3360         .check_reshape  = raid1_reshape,
3361         .quiesce        = raid1_quiesce,
3362         .takeover       = raid1_takeover,
3363         .congested      = raid1_congested,
3364 };
3365
3366 static int __init raid_init(void)
3367 {
3368         return register_md_personality(&raid1_personality);
3369 }
3370
3371 static void raid_exit(void)
3372 {
3373         unregister_md_personality(&raid1_personality);
3374 }
3375
3376 module_init(raid_init);
3377 module_exit(raid_exit);
3378 MODULE_LICENSE("GPL");
3379 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3380 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3381 MODULE_ALIAS("md-raid1");
3382 MODULE_ALIAS("md-level-1");
3383
3384 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);