Merge remote-tracking branch 'stable/linux-4.19.y' into rpi-4.19.y
[platform/kernel/linux-rpi.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40
41 #include <trace/events/block.h>
42
43 #include "md.h"
44 #include "raid1.h"
45 #include "md-bitmap.h"
46
47 #define UNSUPPORTED_MDDEV_FLAGS         \
48         ((1L << MD_HAS_JOURNAL) |       \
49          (1L << MD_JOURNAL_CLEAN) |     \
50          (1L << MD_HAS_PPL) |           \
51          (1L << MD_HAS_MULTIPLE_PPLS))
52
53 /*
54  * Number of guaranteed r1bios in case of extreme VM load:
55  */
56 #define NR_RAID1_BIOS 256
57
58 /* when we get a read error on a read-only array, we redirect to another
59  * device without failing the first device, or trying to over-write to
60  * correct the read error.  To keep track of bad blocks on a per-bio
61  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62  */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65  * bad-block marking which must be done from process context.  So we record
66  * the success by setting devs[n].bio to IO_MADE_GOOD
67  */
68 #define IO_MADE_GOOD ((struct bio *)2)
69
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
72 /* When there are this many requests queue to be written by
73  * the raid1 thread, we become 'congested' to provide back-pressure
74  * for writeback.
75  */
76 static int max_queued_requests = 1024;
77
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80
81 #define raid1_log(md, fmt, args...)                             \
82         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
84 #include "raid1-10.c"
85
86 /*
87  * for resync bio, r1bio pointer can be retrieved from the per-bio
88  * 'struct resync_pages'.
89  */
90 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
91 {
92         return get_resync_pages(bio)->raid_bio;
93 }
94
95 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97         struct pool_info *pi = data;
98         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
99
100         /* allocate a r1bio with room for raid_disks entries in the bios array */
101         return kzalloc(size, gfp_flags);
102 }
103
104 static void r1bio_pool_free(void *r1_bio, void *data)
105 {
106         kfree(r1_bio);
107 }
108
109 #define RESYNC_DEPTH 32
110 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
111 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
112 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
113 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
114 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
115
116 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118         struct pool_info *pi = data;
119         struct r1bio *r1_bio;
120         struct bio *bio;
121         int need_pages;
122         int j;
123         struct resync_pages *rps;
124
125         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
126         if (!r1_bio)
127                 return NULL;
128
129         rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
130                             gfp_flags);
131         if (!rps)
132                 goto out_free_r1bio;
133
134         /*
135          * Allocate bios : 1 for reading, n-1 for writing
136          */
137         for (j = pi->raid_disks ; j-- ; ) {
138                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
139                 if (!bio)
140                         goto out_free_bio;
141                 r1_bio->bios[j] = bio;
142         }
143         /*
144          * Allocate RESYNC_PAGES data pages and attach them to
145          * the first bio.
146          * If this is a user-requested check/repair, allocate
147          * RESYNC_PAGES for each bio.
148          */
149         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
150                 need_pages = pi->raid_disks;
151         else
152                 need_pages = 1;
153         for (j = 0; j < pi->raid_disks; j++) {
154                 struct resync_pages *rp = &rps[j];
155
156                 bio = r1_bio->bios[j];
157
158                 if (j < need_pages) {
159                         if (resync_alloc_pages(rp, gfp_flags))
160                                 goto out_free_pages;
161                 } else {
162                         memcpy(rp, &rps[0], sizeof(*rp));
163                         resync_get_all_pages(rp);
164                 }
165
166                 rp->raid_bio = r1_bio;
167                 bio->bi_private = rp;
168         }
169
170         r1_bio->master_bio = NULL;
171
172         return r1_bio;
173
174 out_free_pages:
175         while (--j >= 0)
176                 resync_free_pages(&rps[j]);
177
178 out_free_bio:
179         while (++j < pi->raid_disks)
180                 bio_put(r1_bio->bios[j]);
181         kfree(rps);
182
183 out_free_r1bio:
184         r1bio_pool_free(r1_bio, data);
185         return NULL;
186 }
187
188 static void r1buf_pool_free(void *__r1_bio, void *data)
189 {
190         struct pool_info *pi = data;
191         int i;
192         struct r1bio *r1bio = __r1_bio;
193         struct resync_pages *rp = NULL;
194
195         for (i = pi->raid_disks; i--; ) {
196                 rp = get_resync_pages(r1bio->bios[i]);
197                 resync_free_pages(rp);
198                 bio_put(r1bio->bios[i]);
199         }
200
201         /* resync pages array stored in the 1st bio's .bi_private */
202         kfree(rp);
203
204         r1bio_pool_free(r1bio, data);
205 }
206
207 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
208 {
209         int i;
210
211         for (i = 0; i < conf->raid_disks * 2; i++) {
212                 struct bio **bio = r1_bio->bios + i;
213                 if (!BIO_SPECIAL(*bio))
214                         bio_put(*bio);
215                 *bio = NULL;
216         }
217 }
218
219 static void free_r1bio(struct r1bio *r1_bio)
220 {
221         struct r1conf *conf = r1_bio->mddev->private;
222
223         put_all_bios(conf, r1_bio);
224         mempool_free(r1_bio, &conf->r1bio_pool);
225 }
226
227 static void put_buf(struct r1bio *r1_bio)
228 {
229         struct r1conf *conf = r1_bio->mddev->private;
230         sector_t sect = r1_bio->sector;
231         int i;
232
233         for (i = 0; i < conf->raid_disks * 2; i++) {
234                 struct bio *bio = r1_bio->bios[i];
235                 if (bio->bi_end_io)
236                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
237         }
238
239         mempool_free(r1_bio, &conf->r1buf_pool);
240
241         lower_barrier(conf, sect);
242 }
243
244 static void reschedule_retry(struct r1bio *r1_bio)
245 {
246         unsigned long flags;
247         struct mddev *mddev = r1_bio->mddev;
248         struct r1conf *conf = mddev->private;
249         int idx;
250
251         idx = sector_to_idx(r1_bio->sector);
252         spin_lock_irqsave(&conf->device_lock, flags);
253         list_add(&r1_bio->retry_list, &conf->retry_list);
254         atomic_inc(&conf->nr_queued[idx]);
255         spin_unlock_irqrestore(&conf->device_lock, flags);
256
257         wake_up(&conf->wait_barrier);
258         md_wakeup_thread(mddev->thread);
259 }
260
261 /*
262  * raid_end_bio_io() is called when we have finished servicing a mirrored
263  * operation and are ready to return a success/failure code to the buffer
264  * cache layer.
265  */
266 static void call_bio_endio(struct r1bio *r1_bio)
267 {
268         struct bio *bio = r1_bio->master_bio;
269         struct r1conf *conf = r1_bio->mddev->private;
270
271         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
272                 bio->bi_status = BLK_STS_IOERR;
273
274         bio_endio(bio);
275         /*
276          * Wake up any possible resync thread that waits for the device
277          * to go idle.
278          */
279         allow_barrier(conf, r1_bio->sector);
280 }
281
282 static void raid_end_bio_io(struct r1bio *r1_bio)
283 {
284         struct bio *bio = r1_bio->master_bio;
285
286         /* if nobody has done the final endio yet, do it now */
287         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
288                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
289                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
290                          (unsigned long long) bio->bi_iter.bi_sector,
291                          (unsigned long long) bio_end_sector(bio) - 1);
292
293                 call_bio_endio(r1_bio);
294         }
295         free_r1bio(r1_bio);
296 }
297
298 /*
299  * Update disk head position estimator based on IRQ completion info.
300  */
301 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
302 {
303         struct r1conf *conf = r1_bio->mddev->private;
304
305         conf->mirrors[disk].head_position =
306                 r1_bio->sector + (r1_bio->sectors);
307 }
308
309 /*
310  * Find the disk number which triggered given bio
311  */
312 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
313 {
314         int mirror;
315         struct r1conf *conf = r1_bio->mddev->private;
316         int raid_disks = conf->raid_disks;
317
318         for (mirror = 0; mirror < raid_disks * 2; mirror++)
319                 if (r1_bio->bios[mirror] == bio)
320                         break;
321
322         BUG_ON(mirror == raid_disks * 2);
323         update_head_pos(mirror, r1_bio);
324
325         return mirror;
326 }
327
328 static void raid1_end_read_request(struct bio *bio)
329 {
330         int uptodate = !bio->bi_status;
331         struct r1bio *r1_bio = bio->bi_private;
332         struct r1conf *conf = r1_bio->mddev->private;
333         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
334
335         /*
336          * this branch is our 'one mirror IO has finished' event handler:
337          */
338         update_head_pos(r1_bio->read_disk, r1_bio);
339
340         if (uptodate)
341                 set_bit(R1BIO_Uptodate, &r1_bio->state);
342         else if (test_bit(FailFast, &rdev->flags) &&
343                  test_bit(R1BIO_FailFast, &r1_bio->state))
344                 /* This was a fail-fast read so we definitely
345                  * want to retry */
346                 ;
347         else {
348                 /* If all other devices have failed, we want to return
349                  * the error upwards rather than fail the last device.
350                  * Here we redefine "uptodate" to mean "Don't want to retry"
351                  */
352                 unsigned long flags;
353                 spin_lock_irqsave(&conf->device_lock, flags);
354                 if (r1_bio->mddev->degraded == conf->raid_disks ||
355                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
356                      test_bit(In_sync, &rdev->flags)))
357                         uptodate = 1;
358                 spin_unlock_irqrestore(&conf->device_lock, flags);
359         }
360
361         if (uptodate) {
362                 raid_end_bio_io(r1_bio);
363                 rdev_dec_pending(rdev, conf->mddev);
364         } else {
365                 /*
366                  * oops, read error:
367                  */
368                 char b[BDEVNAME_SIZE];
369                 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
370                                    mdname(conf->mddev),
371                                    bdevname(rdev->bdev, b),
372                                    (unsigned long long)r1_bio->sector);
373                 set_bit(R1BIO_ReadError, &r1_bio->state);
374                 reschedule_retry(r1_bio);
375                 /* don't drop the reference on read_disk yet */
376         }
377 }
378
379 static void close_write(struct r1bio *r1_bio)
380 {
381         /* it really is the end of this request */
382         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
383                 bio_free_pages(r1_bio->behind_master_bio);
384                 bio_put(r1_bio->behind_master_bio);
385                 r1_bio->behind_master_bio = NULL;
386         }
387         /* clear the bitmap if all writes complete successfully */
388         md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389                            r1_bio->sectors,
390                            !test_bit(R1BIO_Degraded, &r1_bio->state),
391                            test_bit(R1BIO_BehindIO, &r1_bio->state));
392         md_write_end(r1_bio->mddev);
393 }
394
395 static void r1_bio_write_done(struct r1bio *r1_bio)
396 {
397         if (!atomic_dec_and_test(&r1_bio->remaining))
398                 return;
399
400         if (test_bit(R1BIO_WriteError, &r1_bio->state))
401                 reschedule_retry(r1_bio);
402         else {
403                 close_write(r1_bio);
404                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
405                         reschedule_retry(r1_bio);
406                 else
407                         raid_end_bio_io(r1_bio);
408         }
409 }
410
411 static void raid1_end_write_request(struct bio *bio)
412 {
413         struct r1bio *r1_bio = bio->bi_private;
414         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
415         struct r1conf *conf = r1_bio->mddev->private;
416         struct bio *to_put = NULL;
417         int mirror = find_bio_disk(r1_bio, bio);
418         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
419         bool discard_error;
420
421         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
422
423         /*
424          * 'one mirror IO has finished' event handler:
425          */
426         if (bio->bi_status && !discard_error) {
427                 set_bit(WriteErrorSeen, &rdev->flags);
428                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
429                         set_bit(MD_RECOVERY_NEEDED, &
430                                 conf->mddev->recovery);
431
432                 if (test_bit(FailFast, &rdev->flags) &&
433                     (bio->bi_opf & MD_FAILFAST) &&
434                     /* We never try FailFast to WriteMostly devices */
435                     !test_bit(WriteMostly, &rdev->flags)) {
436                         md_error(r1_bio->mddev, rdev);
437                 }
438
439                 /*
440                  * When the device is faulty, it is not necessary to
441                  * handle write error.
442                  * For failfast, this is the only remaining device,
443                  * We need to retry the write without FailFast.
444                  */
445                 if (!test_bit(Faulty, &rdev->flags))
446                         set_bit(R1BIO_WriteError, &r1_bio->state);
447                 else {
448                         /* Finished with this branch */
449                         r1_bio->bios[mirror] = NULL;
450                         to_put = bio;
451                 }
452         } else {
453                 /*
454                  * Set R1BIO_Uptodate in our master bio, so that we
455                  * will return a good error code for to the higher
456                  * levels even if IO on some other mirrored buffer
457                  * fails.
458                  *
459                  * The 'master' represents the composite IO operation
460                  * to user-side. So if something waits for IO, then it
461                  * will wait for the 'master' bio.
462                  */
463                 sector_t first_bad;
464                 int bad_sectors;
465
466                 r1_bio->bios[mirror] = NULL;
467                 to_put = bio;
468                 /*
469                  * Do not set R1BIO_Uptodate if the current device is
470                  * rebuilding or Faulty. This is because we cannot use
471                  * such device for properly reading the data back (we could
472                  * potentially use it, if the current write would have felt
473                  * before rdev->recovery_offset, but for simplicity we don't
474                  * check this here.
475                  */
476                 if (test_bit(In_sync, &rdev->flags) &&
477                     !test_bit(Faulty, &rdev->flags))
478                         set_bit(R1BIO_Uptodate, &r1_bio->state);
479
480                 /* Maybe we can clear some bad blocks. */
481                 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
482                                 &first_bad, &bad_sectors) && !discard_error) {
483                         r1_bio->bios[mirror] = IO_MADE_GOOD;
484                         set_bit(R1BIO_MadeGood, &r1_bio->state);
485                 }
486         }
487
488         if (behind) {
489                 if (test_bit(WriteMostly, &rdev->flags))
490                         atomic_dec(&r1_bio->behind_remaining);
491
492                 /*
493                  * In behind mode, we ACK the master bio once the I/O
494                  * has safely reached all non-writemostly
495                  * disks. Setting the Returned bit ensures that this
496                  * gets done only once -- we don't ever want to return
497                  * -EIO here, instead we'll wait
498                  */
499                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
500                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
501                         /* Maybe we can return now */
502                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
503                                 struct bio *mbio = r1_bio->master_bio;
504                                 pr_debug("raid1: behind end write sectors"
505                                          " %llu-%llu\n",
506                                          (unsigned long long) mbio->bi_iter.bi_sector,
507                                          (unsigned long long) bio_end_sector(mbio) - 1);
508                                 call_bio_endio(r1_bio);
509                         }
510                 }
511         }
512         if (r1_bio->bios[mirror] == NULL)
513                 rdev_dec_pending(rdev, conf->mddev);
514
515         /*
516          * Let's see if all mirrored write operations have finished
517          * already.
518          */
519         r1_bio_write_done(r1_bio);
520
521         if (to_put)
522                 bio_put(to_put);
523 }
524
525 static sector_t align_to_barrier_unit_end(sector_t start_sector,
526                                           sector_t sectors)
527 {
528         sector_t len;
529
530         WARN_ON(sectors == 0);
531         /*
532          * len is the number of sectors from start_sector to end of the
533          * barrier unit which start_sector belongs to.
534          */
535         len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
536               start_sector;
537
538         if (len > sectors)
539                 len = sectors;
540
541         return len;
542 }
543
544 /*
545  * This routine returns the disk from which the requested read should
546  * be done. There is a per-array 'next expected sequential IO' sector
547  * number - if this matches on the next IO then we use the last disk.
548  * There is also a per-disk 'last know head position' sector that is
549  * maintained from IRQ contexts, both the normal and the resync IO
550  * completion handlers update this position correctly. If there is no
551  * perfect sequential match then we pick the disk whose head is closest.
552  *
553  * If there are 2 mirrors in the same 2 devices, performance degrades
554  * because position is mirror, not device based.
555  *
556  * The rdev for the device selected will have nr_pending incremented.
557  */
558 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
559 {
560         const sector_t this_sector = r1_bio->sector;
561         int sectors;
562         int best_good_sectors;
563         int best_disk, best_dist_disk, best_pending_disk;
564         int has_nonrot_disk;
565         int disk;
566         sector_t best_dist;
567         unsigned int min_pending;
568         struct md_rdev *rdev;
569         int choose_first;
570         int choose_next_idle;
571
572         rcu_read_lock();
573         /*
574          * Check if we can balance. We can balance on the whole
575          * device if no resync is going on, or below the resync window.
576          * We take the first readable disk when above the resync window.
577          */
578  retry:
579         sectors = r1_bio->sectors;
580         best_disk = -1;
581         best_dist_disk = -1;
582         best_dist = MaxSector;
583         best_pending_disk = -1;
584         min_pending = UINT_MAX;
585         best_good_sectors = 0;
586         has_nonrot_disk = 0;
587         choose_next_idle = 0;
588         clear_bit(R1BIO_FailFast, &r1_bio->state);
589
590         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
591             (mddev_is_clustered(conf->mddev) &&
592             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
593                     this_sector + sectors)))
594                 choose_first = 1;
595         else
596                 choose_first = 0;
597
598         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
599                 sector_t dist;
600                 sector_t first_bad;
601                 int bad_sectors;
602                 unsigned int pending;
603                 bool nonrot;
604
605                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
606                 if (r1_bio->bios[disk] == IO_BLOCKED
607                     || rdev == NULL
608                     || test_bit(Faulty, &rdev->flags))
609                         continue;
610                 if (!test_bit(In_sync, &rdev->flags) &&
611                     rdev->recovery_offset < this_sector + sectors)
612                         continue;
613                 if (test_bit(WriteMostly, &rdev->flags)) {
614                         /* Don't balance among write-mostly, just
615                          * use the first as a last resort */
616                         if (best_dist_disk < 0) {
617                                 if (is_badblock(rdev, this_sector, sectors,
618                                                 &first_bad, &bad_sectors)) {
619                                         if (first_bad <= this_sector)
620                                                 /* Cannot use this */
621                                                 continue;
622                                         best_good_sectors = first_bad - this_sector;
623                                 } else
624                                         best_good_sectors = sectors;
625                                 best_dist_disk = disk;
626                                 best_pending_disk = disk;
627                         }
628                         continue;
629                 }
630                 /* This is a reasonable device to use.  It might
631                  * even be best.
632                  */
633                 if (is_badblock(rdev, this_sector, sectors,
634                                 &first_bad, &bad_sectors)) {
635                         if (best_dist < MaxSector)
636                                 /* already have a better device */
637                                 continue;
638                         if (first_bad <= this_sector) {
639                                 /* cannot read here. If this is the 'primary'
640                                  * device, then we must not read beyond
641                                  * bad_sectors from another device..
642                                  */
643                                 bad_sectors -= (this_sector - first_bad);
644                                 if (choose_first && sectors > bad_sectors)
645                                         sectors = bad_sectors;
646                                 if (best_good_sectors > sectors)
647                                         best_good_sectors = sectors;
648
649                         } else {
650                                 sector_t good_sectors = first_bad - this_sector;
651                                 if (good_sectors > best_good_sectors) {
652                                         best_good_sectors = good_sectors;
653                                         best_disk = disk;
654                                 }
655                                 if (choose_first)
656                                         break;
657                         }
658                         continue;
659                 } else {
660                         if ((sectors > best_good_sectors) && (best_disk >= 0))
661                                 best_disk = -1;
662                         best_good_sectors = sectors;
663                 }
664
665                 if (best_disk >= 0)
666                         /* At least two disks to choose from so failfast is OK */
667                         set_bit(R1BIO_FailFast, &r1_bio->state);
668
669                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
670                 has_nonrot_disk |= nonrot;
671                 pending = atomic_read(&rdev->nr_pending);
672                 dist = abs(this_sector - conf->mirrors[disk].head_position);
673                 if (choose_first) {
674                         best_disk = disk;
675                         break;
676                 }
677                 /* Don't change to another disk for sequential reads */
678                 if (conf->mirrors[disk].next_seq_sect == this_sector
679                     || dist == 0) {
680                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
681                         struct raid1_info *mirror = &conf->mirrors[disk];
682
683                         best_disk = disk;
684                         /*
685                          * If buffered sequential IO size exceeds optimal
686                          * iosize, check if there is idle disk. If yes, choose
687                          * the idle disk. read_balance could already choose an
688                          * idle disk before noticing it's a sequential IO in
689                          * this disk. This doesn't matter because this disk
690                          * will idle, next time it will be utilized after the
691                          * first disk has IO size exceeds optimal iosize. In
692                          * this way, iosize of the first disk will be optimal
693                          * iosize at least. iosize of the second disk might be
694                          * small, but not a big deal since when the second disk
695                          * starts IO, the first disk is likely still busy.
696                          */
697                         if (nonrot && opt_iosize > 0 &&
698                             mirror->seq_start != MaxSector &&
699                             mirror->next_seq_sect > opt_iosize &&
700                             mirror->next_seq_sect - opt_iosize >=
701                             mirror->seq_start) {
702                                 choose_next_idle = 1;
703                                 continue;
704                         }
705                         break;
706                 }
707
708                 if (choose_next_idle)
709                         continue;
710
711                 if (min_pending > pending) {
712                         min_pending = pending;
713                         best_pending_disk = disk;
714                 }
715
716                 if (dist < best_dist) {
717                         best_dist = dist;
718                         best_dist_disk = disk;
719                 }
720         }
721
722         /*
723          * If all disks are rotational, choose the closest disk. If any disk is
724          * non-rotational, choose the disk with less pending request even the
725          * disk is rotational, which might/might not be optimal for raids with
726          * mixed ratation/non-rotational disks depending on workload.
727          */
728         if (best_disk == -1) {
729                 if (has_nonrot_disk || min_pending == 0)
730                         best_disk = best_pending_disk;
731                 else
732                         best_disk = best_dist_disk;
733         }
734
735         if (best_disk >= 0) {
736                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
737                 if (!rdev)
738                         goto retry;
739                 atomic_inc(&rdev->nr_pending);
740                 sectors = best_good_sectors;
741
742                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
743                         conf->mirrors[best_disk].seq_start = this_sector;
744
745                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
746         }
747         rcu_read_unlock();
748         *max_sectors = sectors;
749
750         return best_disk;
751 }
752
753 static int raid1_congested(struct mddev *mddev, int bits)
754 {
755         struct r1conf *conf = mddev->private;
756         int i, ret = 0;
757
758         if ((bits & (1 << WB_async_congested)) &&
759             conf->pending_count >= max_queued_requests)
760                 return 1;
761
762         rcu_read_lock();
763         for (i = 0; i < conf->raid_disks * 2; i++) {
764                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
765                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
766                         struct request_queue *q = bdev_get_queue(rdev->bdev);
767
768                         BUG_ON(!q);
769
770                         /* Note the '|| 1' - when read_balance prefers
771                          * non-congested targets, it can be removed
772                          */
773                         if ((bits & (1 << WB_async_congested)) || 1)
774                                 ret |= bdi_congested(q->backing_dev_info, bits);
775                         else
776                                 ret &= bdi_congested(q->backing_dev_info, bits);
777                 }
778         }
779         rcu_read_unlock();
780         return ret;
781 }
782
783 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
784 {
785         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
786         md_bitmap_unplug(conf->mddev->bitmap);
787         wake_up(&conf->wait_barrier);
788
789         while (bio) { /* submit pending writes */
790                 struct bio *next = bio->bi_next;
791                 struct md_rdev *rdev = (void *)bio->bi_disk;
792                 bio->bi_next = NULL;
793                 bio_set_dev(bio, rdev->bdev);
794                 if (test_bit(Faulty, &rdev->flags)) {
795                         bio_io_error(bio);
796                 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
797                                     !blk_queue_discard(bio->bi_disk->queue)))
798                         /* Just ignore it */
799                         bio_endio(bio);
800                 else
801                         generic_make_request(bio);
802                 bio = next;
803         }
804 }
805
806 static void flush_pending_writes(struct r1conf *conf)
807 {
808         /* Any writes that have been queued but are awaiting
809          * bitmap updates get flushed here.
810          */
811         spin_lock_irq(&conf->device_lock);
812
813         if (conf->pending_bio_list.head) {
814                 struct blk_plug plug;
815                 struct bio *bio;
816
817                 bio = bio_list_get(&conf->pending_bio_list);
818                 conf->pending_count = 0;
819                 spin_unlock_irq(&conf->device_lock);
820
821                 /*
822                  * As this is called in a wait_event() loop (see freeze_array),
823                  * current->state might be TASK_UNINTERRUPTIBLE which will
824                  * cause a warning when we prepare to wait again.  As it is
825                  * rare that this path is taken, it is perfectly safe to force
826                  * us to go around the wait_event() loop again, so the warning
827                  * is a false-positive.  Silence the warning by resetting
828                  * thread state
829                  */
830                 __set_current_state(TASK_RUNNING);
831                 blk_start_plug(&plug);
832                 flush_bio_list(conf, bio);
833                 blk_finish_plug(&plug);
834         } else
835                 spin_unlock_irq(&conf->device_lock);
836 }
837
838 /* Barriers....
839  * Sometimes we need to suspend IO while we do something else,
840  * either some resync/recovery, or reconfigure the array.
841  * To do this we raise a 'barrier'.
842  * The 'barrier' is a counter that can be raised multiple times
843  * to count how many activities are happening which preclude
844  * normal IO.
845  * We can only raise the barrier if there is no pending IO.
846  * i.e. if nr_pending == 0.
847  * We choose only to raise the barrier if no-one is waiting for the
848  * barrier to go down.  This means that as soon as an IO request
849  * is ready, no other operations which require a barrier will start
850  * until the IO request has had a chance.
851  *
852  * So: regular IO calls 'wait_barrier'.  When that returns there
853  *    is no backgroup IO happening,  It must arrange to call
854  *    allow_barrier when it has finished its IO.
855  * backgroup IO calls must call raise_barrier.  Once that returns
856  *    there is no normal IO happeing.  It must arrange to call
857  *    lower_barrier when the particular background IO completes.
858  */
859 static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr)
860 {
861         int idx = sector_to_idx(sector_nr);
862
863         spin_lock_irq(&conf->resync_lock);
864
865         /* Wait until no block IO is waiting */
866         wait_event_lock_irq(conf->wait_barrier,
867                             !atomic_read(&conf->nr_waiting[idx]),
868                             conf->resync_lock);
869
870         /* block any new IO from starting */
871         atomic_inc(&conf->barrier[idx]);
872         /*
873          * In raise_barrier() we firstly increase conf->barrier[idx] then
874          * check conf->nr_pending[idx]. In _wait_barrier() we firstly
875          * increase conf->nr_pending[idx] then check conf->barrier[idx].
876          * A memory barrier here to make sure conf->nr_pending[idx] won't
877          * be fetched before conf->barrier[idx] is increased. Otherwise
878          * there will be a race between raise_barrier() and _wait_barrier().
879          */
880         smp_mb__after_atomic();
881
882         /* For these conditions we must wait:
883          * A: while the array is in frozen state
884          * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
885          *    existing in corresponding I/O barrier bucket.
886          * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
887          *    max resync count which allowed on current I/O barrier bucket.
888          */
889         wait_event_lock_irq(conf->wait_barrier,
890                             (!conf->array_frozen &&
891                              !atomic_read(&conf->nr_pending[idx]) &&
892                              atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
893                                 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
894                             conf->resync_lock);
895
896         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
897                 atomic_dec(&conf->barrier[idx]);
898                 spin_unlock_irq(&conf->resync_lock);
899                 wake_up(&conf->wait_barrier);
900                 return -EINTR;
901         }
902
903         atomic_inc(&conf->nr_sync_pending);
904         spin_unlock_irq(&conf->resync_lock);
905
906         return 0;
907 }
908
909 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
910 {
911         int idx = sector_to_idx(sector_nr);
912
913         BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
914
915         atomic_dec(&conf->barrier[idx]);
916         atomic_dec(&conf->nr_sync_pending);
917         wake_up(&conf->wait_barrier);
918 }
919
920 static void _wait_barrier(struct r1conf *conf, int idx)
921 {
922         /*
923          * We need to increase conf->nr_pending[idx] very early here,
924          * then raise_barrier() can be blocked when it waits for
925          * conf->nr_pending[idx] to be 0. Then we can avoid holding
926          * conf->resync_lock when there is no barrier raised in same
927          * barrier unit bucket. Also if the array is frozen, I/O
928          * should be blocked until array is unfrozen.
929          */
930         atomic_inc(&conf->nr_pending[idx]);
931         /*
932          * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
933          * check conf->barrier[idx]. In raise_barrier() we firstly increase
934          * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
935          * barrier is necessary here to make sure conf->barrier[idx] won't be
936          * fetched before conf->nr_pending[idx] is increased. Otherwise there
937          * will be a race between _wait_barrier() and raise_barrier().
938          */
939         smp_mb__after_atomic();
940
941         /*
942          * Don't worry about checking two atomic_t variables at same time
943          * here. If during we check conf->barrier[idx], the array is
944          * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
945          * 0, it is safe to return and make the I/O continue. Because the
946          * array is frozen, all I/O returned here will eventually complete
947          * or be queued, no race will happen. See code comment in
948          * frozen_array().
949          */
950         if (!READ_ONCE(conf->array_frozen) &&
951             !atomic_read(&conf->barrier[idx]))
952                 return;
953
954         /*
955          * After holding conf->resync_lock, conf->nr_pending[idx]
956          * should be decreased before waiting for barrier to drop.
957          * Otherwise, we may encounter a race condition because
958          * raise_barrer() might be waiting for conf->nr_pending[idx]
959          * to be 0 at same time.
960          */
961         spin_lock_irq(&conf->resync_lock);
962         atomic_inc(&conf->nr_waiting[idx]);
963         atomic_dec(&conf->nr_pending[idx]);
964         /*
965          * In case freeze_array() is waiting for
966          * get_unqueued_pending() == extra
967          */
968         wake_up(&conf->wait_barrier);
969         /* Wait for the barrier in same barrier unit bucket to drop. */
970         wait_event_lock_irq(conf->wait_barrier,
971                             !conf->array_frozen &&
972                              !atomic_read(&conf->barrier[idx]),
973                             conf->resync_lock);
974         atomic_inc(&conf->nr_pending[idx]);
975         atomic_dec(&conf->nr_waiting[idx]);
976         spin_unlock_irq(&conf->resync_lock);
977 }
978
979 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
980 {
981         int idx = sector_to_idx(sector_nr);
982
983         /*
984          * Very similar to _wait_barrier(). The difference is, for read
985          * I/O we don't need wait for sync I/O, but if the whole array
986          * is frozen, the read I/O still has to wait until the array is
987          * unfrozen. Since there is no ordering requirement with
988          * conf->barrier[idx] here, memory barrier is unnecessary as well.
989          */
990         atomic_inc(&conf->nr_pending[idx]);
991
992         if (!READ_ONCE(conf->array_frozen))
993                 return;
994
995         spin_lock_irq(&conf->resync_lock);
996         atomic_inc(&conf->nr_waiting[idx]);
997         atomic_dec(&conf->nr_pending[idx]);
998         /*
999          * In case freeze_array() is waiting for
1000          * get_unqueued_pending() == extra
1001          */
1002         wake_up(&conf->wait_barrier);
1003         /* Wait for array to be unfrozen */
1004         wait_event_lock_irq(conf->wait_barrier,
1005                             !conf->array_frozen,
1006                             conf->resync_lock);
1007         atomic_inc(&conf->nr_pending[idx]);
1008         atomic_dec(&conf->nr_waiting[idx]);
1009         spin_unlock_irq(&conf->resync_lock);
1010 }
1011
1012 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1013 {
1014         int idx = sector_to_idx(sector_nr);
1015
1016         _wait_barrier(conf, idx);
1017 }
1018
1019 static void _allow_barrier(struct r1conf *conf, int idx)
1020 {
1021         atomic_dec(&conf->nr_pending[idx]);
1022         wake_up(&conf->wait_barrier);
1023 }
1024
1025 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1026 {
1027         int idx = sector_to_idx(sector_nr);
1028
1029         _allow_barrier(conf, idx);
1030 }
1031
1032 /* conf->resync_lock should be held */
1033 static int get_unqueued_pending(struct r1conf *conf)
1034 {
1035         int idx, ret;
1036
1037         ret = atomic_read(&conf->nr_sync_pending);
1038         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1039                 ret += atomic_read(&conf->nr_pending[idx]) -
1040                         atomic_read(&conf->nr_queued[idx]);
1041
1042         return ret;
1043 }
1044
1045 static void freeze_array(struct r1conf *conf, int extra)
1046 {
1047         /* Stop sync I/O and normal I/O and wait for everything to
1048          * go quiet.
1049          * This is called in two situations:
1050          * 1) management command handlers (reshape, remove disk, quiesce).
1051          * 2) one normal I/O request failed.
1052
1053          * After array_frozen is set to 1, new sync IO will be blocked at
1054          * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1055          * or wait_read_barrier(). The flying I/Os will either complete or be
1056          * queued. When everything goes quite, there are only queued I/Os left.
1057
1058          * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1059          * barrier bucket index which this I/O request hits. When all sync and
1060          * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1061          * of all conf->nr_queued[]. But normal I/O failure is an exception,
1062          * in handle_read_error(), we may call freeze_array() before trying to
1063          * fix the read error. In this case, the error read I/O is not queued,
1064          * so get_unqueued_pending() == 1.
1065          *
1066          * Therefore before this function returns, we need to wait until
1067          * get_unqueued_pendings(conf) gets equal to extra. For
1068          * normal I/O context, extra is 1, in rested situations extra is 0.
1069          */
1070         spin_lock_irq(&conf->resync_lock);
1071         conf->array_frozen = 1;
1072         raid1_log(conf->mddev, "wait freeze");
1073         wait_event_lock_irq_cmd(
1074                 conf->wait_barrier,
1075                 get_unqueued_pending(conf) == extra,
1076                 conf->resync_lock,
1077                 flush_pending_writes(conf));
1078         spin_unlock_irq(&conf->resync_lock);
1079 }
1080 static void unfreeze_array(struct r1conf *conf)
1081 {
1082         /* reverse the effect of the freeze */
1083         spin_lock_irq(&conf->resync_lock);
1084         conf->array_frozen = 0;
1085         spin_unlock_irq(&conf->resync_lock);
1086         wake_up(&conf->wait_barrier);
1087 }
1088
1089 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1090                                            struct bio *bio)
1091 {
1092         int size = bio->bi_iter.bi_size;
1093         unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1094         int i = 0;
1095         struct bio *behind_bio = NULL;
1096
1097         behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1098         if (!behind_bio)
1099                 return;
1100
1101         /* discard op, we don't support writezero/writesame yet */
1102         if (!bio_has_data(bio)) {
1103                 behind_bio->bi_iter.bi_size = size;
1104                 goto skip_copy;
1105         }
1106
1107         behind_bio->bi_write_hint = bio->bi_write_hint;
1108
1109         while (i < vcnt && size) {
1110                 struct page *page;
1111                 int len = min_t(int, PAGE_SIZE, size);
1112
1113                 page = alloc_page(GFP_NOIO);
1114                 if (unlikely(!page))
1115                         goto free_pages;
1116
1117                 bio_add_page(behind_bio, page, len, 0);
1118
1119                 size -= len;
1120                 i++;
1121         }
1122
1123         bio_copy_data(behind_bio, bio);
1124 skip_copy:
1125         r1_bio->behind_master_bio = behind_bio;
1126         set_bit(R1BIO_BehindIO, &r1_bio->state);
1127
1128         return;
1129
1130 free_pages:
1131         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1132                  bio->bi_iter.bi_size);
1133         bio_free_pages(behind_bio);
1134         bio_put(behind_bio);
1135 }
1136
1137 struct raid1_plug_cb {
1138         struct blk_plug_cb      cb;
1139         struct bio_list         pending;
1140         int                     pending_cnt;
1141 };
1142
1143 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1144 {
1145         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1146                                                   cb);
1147         struct mddev *mddev = plug->cb.data;
1148         struct r1conf *conf = mddev->private;
1149         struct bio *bio;
1150
1151         if (from_schedule || current->bio_list) {
1152                 spin_lock_irq(&conf->device_lock);
1153                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1154                 conf->pending_count += plug->pending_cnt;
1155                 spin_unlock_irq(&conf->device_lock);
1156                 wake_up(&conf->wait_barrier);
1157                 md_wakeup_thread(mddev->thread);
1158                 kfree(plug);
1159                 return;
1160         }
1161
1162         /* we aren't scheduling, so we can do the write-out directly. */
1163         bio = bio_list_get(&plug->pending);
1164         flush_bio_list(conf, bio);
1165         kfree(plug);
1166 }
1167
1168 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1169 {
1170         r1_bio->master_bio = bio;
1171         r1_bio->sectors = bio_sectors(bio);
1172         r1_bio->state = 0;
1173         r1_bio->mddev = mddev;
1174         r1_bio->sector = bio->bi_iter.bi_sector;
1175 }
1176
1177 static inline struct r1bio *
1178 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1179 {
1180         struct r1conf *conf = mddev->private;
1181         struct r1bio *r1_bio;
1182
1183         r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1184         /* Ensure no bio records IO_BLOCKED */
1185         memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1186         init_r1bio(r1_bio, mddev, bio);
1187         return r1_bio;
1188 }
1189
1190 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1191                                int max_read_sectors, struct r1bio *r1_bio)
1192 {
1193         struct r1conf *conf = mddev->private;
1194         struct raid1_info *mirror;
1195         struct bio *read_bio;
1196         struct bitmap *bitmap = mddev->bitmap;
1197         const int op = bio_op(bio);
1198         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1199         int max_sectors;
1200         int rdisk;
1201         bool print_msg = !!r1_bio;
1202         char b[BDEVNAME_SIZE];
1203
1204         /*
1205          * If r1_bio is set, we are blocking the raid1d thread
1206          * so there is a tiny risk of deadlock.  So ask for
1207          * emergency memory if needed.
1208          */
1209         gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1210
1211         if (print_msg) {
1212                 /* Need to get the block device name carefully */
1213                 struct md_rdev *rdev;
1214                 rcu_read_lock();
1215                 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1216                 if (rdev)
1217                         bdevname(rdev->bdev, b);
1218                 else
1219                         strcpy(b, "???");
1220                 rcu_read_unlock();
1221         }
1222
1223         /*
1224          * Still need barrier for READ in case that whole
1225          * array is frozen.
1226          */
1227         wait_read_barrier(conf, bio->bi_iter.bi_sector);
1228
1229         if (!r1_bio)
1230                 r1_bio = alloc_r1bio(mddev, bio);
1231         else
1232                 init_r1bio(r1_bio, mddev, bio);
1233         r1_bio->sectors = max_read_sectors;
1234
1235         /*
1236          * make_request() can abort the operation when read-ahead is being
1237          * used and no empty request is available.
1238          */
1239         rdisk = read_balance(conf, r1_bio, &max_sectors);
1240
1241         if (rdisk < 0) {
1242                 /* couldn't find anywhere to read from */
1243                 if (print_msg) {
1244                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1245                                             mdname(mddev),
1246                                             b,
1247                                             (unsigned long long)r1_bio->sector);
1248                 }
1249                 raid_end_bio_io(r1_bio);
1250                 return;
1251         }
1252         mirror = conf->mirrors + rdisk;
1253
1254         if (print_msg)
1255                 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1256                                     mdname(mddev),
1257                                     (unsigned long long)r1_bio->sector,
1258                                     bdevname(mirror->rdev->bdev, b));
1259
1260         if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1261             bitmap) {
1262                 /*
1263                  * Reading from a write-mostly device must take care not to
1264                  * over-take any writes that are 'behind'
1265                  */
1266                 raid1_log(mddev, "wait behind writes");
1267                 wait_event(bitmap->behind_wait,
1268                            atomic_read(&bitmap->behind_writes) == 0);
1269         }
1270
1271         if (max_sectors < bio_sectors(bio)) {
1272                 struct bio *split = bio_split(bio, max_sectors,
1273                                               gfp, &conf->bio_split);
1274                 bio_chain(split, bio);
1275                 generic_make_request(bio);
1276                 bio = split;
1277                 r1_bio->master_bio = bio;
1278                 r1_bio->sectors = max_sectors;
1279         }
1280
1281         r1_bio->read_disk = rdisk;
1282
1283         read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1284
1285         r1_bio->bios[rdisk] = read_bio;
1286
1287         read_bio->bi_iter.bi_sector = r1_bio->sector +
1288                 mirror->rdev->data_offset;
1289         bio_set_dev(read_bio, mirror->rdev->bdev);
1290         read_bio->bi_end_io = raid1_end_read_request;
1291         bio_set_op_attrs(read_bio, op, do_sync);
1292         if (test_bit(FailFast, &mirror->rdev->flags) &&
1293             test_bit(R1BIO_FailFast, &r1_bio->state))
1294                 read_bio->bi_opf |= MD_FAILFAST;
1295         read_bio->bi_private = r1_bio;
1296
1297         if (mddev->gendisk)
1298                 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1299                                 disk_devt(mddev->gendisk), r1_bio->sector);
1300
1301         generic_make_request(read_bio);
1302 }
1303
1304 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1305                                 int max_write_sectors)
1306 {
1307         struct r1conf *conf = mddev->private;
1308         struct r1bio *r1_bio;
1309         int i, disks;
1310         struct bitmap *bitmap = mddev->bitmap;
1311         unsigned long flags;
1312         struct md_rdev *blocked_rdev;
1313         struct blk_plug_cb *cb;
1314         struct raid1_plug_cb *plug = NULL;
1315         int first_clone;
1316         int max_sectors;
1317
1318         if (mddev_is_clustered(mddev) &&
1319              md_cluster_ops->area_resyncing(mddev, WRITE,
1320                      bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1321
1322                 DEFINE_WAIT(w);
1323                 for (;;) {
1324                         prepare_to_wait(&conf->wait_barrier,
1325                                         &w, TASK_IDLE);
1326                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1327                                                         bio->bi_iter.bi_sector,
1328                                                         bio_end_sector(bio)))
1329                                 break;
1330                         schedule();
1331                 }
1332                 finish_wait(&conf->wait_barrier, &w);
1333         }
1334
1335         /*
1336          * Register the new request and wait if the reconstruction
1337          * thread has put up a bar for new requests.
1338          * Continue immediately if no resync is active currently.
1339          */
1340         wait_barrier(conf, bio->bi_iter.bi_sector);
1341
1342         r1_bio = alloc_r1bio(mddev, bio);
1343         r1_bio->sectors = max_write_sectors;
1344
1345         if (conf->pending_count >= max_queued_requests) {
1346                 md_wakeup_thread(mddev->thread);
1347                 raid1_log(mddev, "wait queued");
1348                 wait_event(conf->wait_barrier,
1349                            conf->pending_count < max_queued_requests);
1350         }
1351         /* first select target devices under rcu_lock and
1352          * inc refcount on their rdev.  Record them by setting
1353          * bios[x] to bio
1354          * If there are known/acknowledged bad blocks on any device on
1355          * which we have seen a write error, we want to avoid writing those
1356          * blocks.
1357          * This potentially requires several writes to write around
1358          * the bad blocks.  Each set of writes gets it's own r1bio
1359          * with a set of bios attached.
1360          */
1361
1362         disks = conf->raid_disks * 2;
1363  retry_write:
1364         blocked_rdev = NULL;
1365         rcu_read_lock();
1366         max_sectors = r1_bio->sectors;
1367         for (i = 0;  i < disks; i++) {
1368                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1369                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1370                         atomic_inc(&rdev->nr_pending);
1371                         blocked_rdev = rdev;
1372                         break;
1373                 }
1374                 r1_bio->bios[i] = NULL;
1375                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1376                         if (i < conf->raid_disks)
1377                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1378                         continue;
1379                 }
1380
1381                 atomic_inc(&rdev->nr_pending);
1382                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1383                         sector_t first_bad;
1384                         int bad_sectors;
1385                         int is_bad;
1386
1387                         is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1388                                              &first_bad, &bad_sectors);
1389                         if (is_bad < 0) {
1390                                 /* mustn't write here until the bad block is
1391                                  * acknowledged*/
1392                                 set_bit(BlockedBadBlocks, &rdev->flags);
1393                                 blocked_rdev = rdev;
1394                                 break;
1395                         }
1396                         if (is_bad && first_bad <= r1_bio->sector) {
1397                                 /* Cannot write here at all */
1398                                 bad_sectors -= (r1_bio->sector - first_bad);
1399                                 if (bad_sectors < max_sectors)
1400                                         /* mustn't write more than bad_sectors
1401                                          * to other devices yet
1402                                          */
1403                                         max_sectors = bad_sectors;
1404                                 rdev_dec_pending(rdev, mddev);
1405                                 /* We don't set R1BIO_Degraded as that
1406                                  * only applies if the disk is
1407                                  * missing, so it might be re-added,
1408                                  * and we want to know to recover this
1409                                  * chunk.
1410                                  * In this case the device is here,
1411                                  * and the fact that this chunk is not
1412                                  * in-sync is recorded in the bad
1413                                  * block log
1414                                  */
1415                                 continue;
1416                         }
1417                         if (is_bad) {
1418                                 int good_sectors = first_bad - r1_bio->sector;
1419                                 if (good_sectors < max_sectors)
1420                                         max_sectors = good_sectors;
1421                         }
1422                 }
1423                 r1_bio->bios[i] = bio;
1424         }
1425         rcu_read_unlock();
1426
1427         if (unlikely(blocked_rdev)) {
1428                 /* Wait for this device to become unblocked */
1429                 int j;
1430
1431                 for (j = 0; j < i; j++)
1432                         if (r1_bio->bios[j])
1433                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1434                 r1_bio->state = 0;
1435                 allow_barrier(conf, bio->bi_iter.bi_sector);
1436                 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1437                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1438                 wait_barrier(conf, bio->bi_iter.bi_sector);
1439                 goto retry_write;
1440         }
1441
1442         if (max_sectors < bio_sectors(bio)) {
1443                 struct bio *split = bio_split(bio, max_sectors,
1444                                               GFP_NOIO, &conf->bio_split);
1445                 bio_chain(split, bio);
1446                 generic_make_request(bio);
1447                 bio = split;
1448                 r1_bio->master_bio = bio;
1449                 r1_bio->sectors = max_sectors;
1450         }
1451
1452         atomic_set(&r1_bio->remaining, 1);
1453         atomic_set(&r1_bio->behind_remaining, 0);
1454
1455         first_clone = 1;
1456
1457         for (i = 0; i < disks; i++) {
1458                 struct bio *mbio = NULL;
1459                 if (!r1_bio->bios[i])
1460                         continue;
1461
1462
1463                 if (first_clone) {
1464                         /* do behind I/O ?
1465                          * Not if there are too many, or cannot
1466                          * allocate memory, or a reader on WriteMostly
1467                          * is waiting for behind writes to flush */
1468                         if (bitmap &&
1469                             (atomic_read(&bitmap->behind_writes)
1470                              < mddev->bitmap_info.max_write_behind) &&
1471                             !waitqueue_active(&bitmap->behind_wait)) {
1472                                 alloc_behind_master_bio(r1_bio, bio);
1473                         }
1474
1475                         md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1476                                              test_bit(R1BIO_BehindIO, &r1_bio->state));
1477                         first_clone = 0;
1478                 }
1479
1480                 if (r1_bio->behind_master_bio)
1481                         mbio = bio_clone_fast(r1_bio->behind_master_bio,
1482                                               GFP_NOIO, &mddev->bio_set);
1483                 else
1484                         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1485
1486                 if (r1_bio->behind_master_bio) {
1487                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1488                                 atomic_inc(&r1_bio->behind_remaining);
1489                 }
1490
1491                 r1_bio->bios[i] = mbio;
1492
1493                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1494                                    conf->mirrors[i].rdev->data_offset);
1495                 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1496                 mbio->bi_end_io = raid1_end_write_request;
1497                 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1498                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1499                     !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1500                     conf->raid_disks - mddev->degraded > 1)
1501                         mbio->bi_opf |= MD_FAILFAST;
1502                 mbio->bi_private = r1_bio;
1503
1504                 atomic_inc(&r1_bio->remaining);
1505
1506                 if (mddev->gendisk)
1507                         trace_block_bio_remap(mbio->bi_disk->queue,
1508                                               mbio, disk_devt(mddev->gendisk),
1509                                               r1_bio->sector);
1510                 /* flush_pending_writes() needs access to the rdev so...*/
1511                 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1512
1513                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1514                 if (cb)
1515                         plug = container_of(cb, struct raid1_plug_cb, cb);
1516                 else
1517                         plug = NULL;
1518                 if (plug) {
1519                         bio_list_add(&plug->pending, mbio);
1520                         plug->pending_cnt++;
1521                 } else {
1522                         spin_lock_irqsave(&conf->device_lock, flags);
1523                         bio_list_add(&conf->pending_bio_list, mbio);
1524                         conf->pending_count++;
1525                         spin_unlock_irqrestore(&conf->device_lock, flags);
1526                         md_wakeup_thread(mddev->thread);
1527                 }
1528         }
1529
1530         r1_bio_write_done(r1_bio);
1531
1532         /* In case raid1d snuck in to freeze_array */
1533         wake_up(&conf->wait_barrier);
1534 }
1535
1536 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1537 {
1538         sector_t sectors;
1539
1540         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1541             && md_flush_request(mddev, bio))
1542                 return true;
1543
1544         /*
1545          * There is a limit to the maximum size, but
1546          * the read/write handler might find a lower limit
1547          * due to bad blocks.  To avoid multiple splits,
1548          * we pass the maximum number of sectors down
1549          * and let the lower level perform the split.
1550          */
1551         sectors = align_to_barrier_unit_end(
1552                 bio->bi_iter.bi_sector, bio_sectors(bio));
1553
1554         if (bio_data_dir(bio) == READ)
1555                 raid1_read_request(mddev, bio, sectors, NULL);
1556         else {
1557                 if (!md_write_start(mddev,bio))
1558                         return false;
1559                 raid1_write_request(mddev, bio, sectors);
1560         }
1561         return true;
1562 }
1563
1564 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1565 {
1566         struct r1conf *conf = mddev->private;
1567         int i;
1568
1569         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1570                    conf->raid_disks - mddev->degraded);
1571         rcu_read_lock();
1572         for (i = 0; i < conf->raid_disks; i++) {
1573                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1574                 seq_printf(seq, "%s",
1575                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1576         }
1577         rcu_read_unlock();
1578         seq_printf(seq, "]");
1579 }
1580
1581 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1582 {
1583         char b[BDEVNAME_SIZE];
1584         struct r1conf *conf = mddev->private;
1585         unsigned long flags;
1586
1587         /*
1588          * If it is not operational, then we have already marked it as dead
1589          * else if it is the last working disks, ignore the error, let the
1590          * next level up know.
1591          * else mark the drive as failed
1592          */
1593         spin_lock_irqsave(&conf->device_lock, flags);
1594         if (test_bit(In_sync, &rdev->flags)
1595             && (conf->raid_disks - mddev->degraded) == 1) {
1596                 /*
1597                  * Don't fail the drive, act as though we were just a
1598                  * normal single drive.
1599                  * However don't try a recovery from this drive as
1600                  * it is very likely to fail.
1601                  */
1602                 conf->recovery_disabled = mddev->recovery_disabled;
1603                 spin_unlock_irqrestore(&conf->device_lock, flags);
1604                 return;
1605         }
1606         set_bit(Blocked, &rdev->flags);
1607         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1608                 mddev->degraded++;
1609                 set_bit(Faulty, &rdev->flags);
1610         } else
1611                 set_bit(Faulty, &rdev->flags);
1612         spin_unlock_irqrestore(&conf->device_lock, flags);
1613         /*
1614          * if recovery is running, make sure it aborts.
1615          */
1616         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1617         set_mask_bits(&mddev->sb_flags, 0,
1618                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1619         pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1620                 "md/raid1:%s: Operation continuing on %d devices.\n",
1621                 mdname(mddev), bdevname(rdev->bdev, b),
1622                 mdname(mddev), conf->raid_disks - mddev->degraded);
1623 }
1624
1625 static void print_conf(struct r1conf *conf)
1626 {
1627         int i;
1628
1629         pr_debug("RAID1 conf printout:\n");
1630         if (!conf) {
1631                 pr_debug("(!conf)\n");
1632                 return;
1633         }
1634         pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1635                  conf->raid_disks);
1636
1637         rcu_read_lock();
1638         for (i = 0; i < conf->raid_disks; i++) {
1639                 char b[BDEVNAME_SIZE];
1640                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1641                 if (rdev)
1642                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1643                                  i, !test_bit(In_sync, &rdev->flags),
1644                                  !test_bit(Faulty, &rdev->flags),
1645                                  bdevname(rdev->bdev,b));
1646         }
1647         rcu_read_unlock();
1648 }
1649
1650 static void close_sync(struct r1conf *conf)
1651 {
1652         int idx;
1653
1654         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1655                 _wait_barrier(conf, idx);
1656                 _allow_barrier(conf, idx);
1657         }
1658
1659         mempool_exit(&conf->r1buf_pool);
1660 }
1661
1662 static int raid1_spare_active(struct mddev *mddev)
1663 {
1664         int i;
1665         struct r1conf *conf = mddev->private;
1666         int count = 0;
1667         unsigned long flags;
1668
1669         /*
1670          * Find all failed disks within the RAID1 configuration
1671          * and mark them readable.
1672          * Called under mddev lock, so rcu protection not needed.
1673          * device_lock used to avoid races with raid1_end_read_request
1674          * which expects 'In_sync' flags and ->degraded to be consistent.
1675          */
1676         spin_lock_irqsave(&conf->device_lock, flags);
1677         for (i = 0; i < conf->raid_disks; i++) {
1678                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1679                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1680                 if (repl
1681                     && !test_bit(Candidate, &repl->flags)
1682                     && repl->recovery_offset == MaxSector
1683                     && !test_bit(Faulty, &repl->flags)
1684                     && !test_and_set_bit(In_sync, &repl->flags)) {
1685                         /* replacement has just become active */
1686                         if (!rdev ||
1687                             !test_and_clear_bit(In_sync, &rdev->flags))
1688                                 count++;
1689                         if (rdev) {
1690                                 /* Replaced device not technically
1691                                  * faulty, but we need to be sure
1692                                  * it gets removed and never re-added
1693                                  */
1694                                 set_bit(Faulty, &rdev->flags);
1695                                 sysfs_notify_dirent_safe(
1696                                         rdev->sysfs_state);
1697                         }
1698                 }
1699                 if (rdev
1700                     && rdev->recovery_offset == MaxSector
1701                     && !test_bit(Faulty, &rdev->flags)
1702                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1703                         count++;
1704                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1705                 }
1706         }
1707         mddev->degraded -= count;
1708         spin_unlock_irqrestore(&conf->device_lock, flags);
1709
1710         print_conf(conf);
1711         return count;
1712 }
1713
1714 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1715 {
1716         struct r1conf *conf = mddev->private;
1717         int err = -EEXIST;
1718         int mirror = 0;
1719         struct raid1_info *p;
1720         int first = 0;
1721         int last = conf->raid_disks - 1;
1722
1723         if (mddev->recovery_disabled == conf->recovery_disabled)
1724                 return -EBUSY;
1725
1726         if (md_integrity_add_rdev(rdev, mddev))
1727                 return -ENXIO;
1728
1729         if (rdev->raid_disk >= 0)
1730                 first = last = rdev->raid_disk;
1731
1732         /*
1733          * find the disk ... but prefer rdev->saved_raid_disk
1734          * if possible.
1735          */
1736         if (rdev->saved_raid_disk >= 0 &&
1737             rdev->saved_raid_disk >= first &&
1738             rdev->saved_raid_disk < conf->raid_disks &&
1739             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1740                 first = last = rdev->saved_raid_disk;
1741
1742         for (mirror = first; mirror <= last; mirror++) {
1743                 p = conf->mirrors+mirror;
1744                 if (!p->rdev) {
1745
1746                         if (mddev->gendisk)
1747                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1748                                                   rdev->data_offset << 9);
1749
1750                         p->head_position = 0;
1751                         rdev->raid_disk = mirror;
1752                         err = 0;
1753                         /* As all devices are equivalent, we don't need a full recovery
1754                          * if this was recently any drive of the array
1755                          */
1756                         if (rdev->saved_raid_disk < 0)
1757                                 conf->fullsync = 1;
1758                         rcu_assign_pointer(p->rdev, rdev);
1759                         break;
1760                 }
1761                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1762                     p[conf->raid_disks].rdev == NULL) {
1763                         /* Add this device as a replacement */
1764                         clear_bit(In_sync, &rdev->flags);
1765                         set_bit(Replacement, &rdev->flags);
1766                         rdev->raid_disk = mirror;
1767                         err = 0;
1768                         conf->fullsync = 1;
1769                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1770                         break;
1771                 }
1772         }
1773         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1774                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1775         print_conf(conf);
1776         return err;
1777 }
1778
1779 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1780 {
1781         struct r1conf *conf = mddev->private;
1782         int err = 0;
1783         int number = rdev->raid_disk;
1784         struct raid1_info *p = conf->mirrors + number;
1785
1786         if (rdev != p->rdev)
1787                 p = conf->mirrors + conf->raid_disks + number;
1788
1789         print_conf(conf);
1790         if (rdev == p->rdev) {
1791                 if (test_bit(In_sync, &rdev->flags) ||
1792                     atomic_read(&rdev->nr_pending)) {
1793                         err = -EBUSY;
1794                         goto abort;
1795                 }
1796                 /* Only remove non-faulty devices if recovery
1797                  * is not possible.
1798                  */
1799                 if (!test_bit(Faulty, &rdev->flags) &&
1800                     mddev->recovery_disabled != conf->recovery_disabled &&
1801                     mddev->degraded < conf->raid_disks) {
1802                         err = -EBUSY;
1803                         goto abort;
1804                 }
1805                 p->rdev = NULL;
1806                 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1807                         synchronize_rcu();
1808                         if (atomic_read(&rdev->nr_pending)) {
1809                                 /* lost the race, try later */
1810                                 err = -EBUSY;
1811                                 p->rdev = rdev;
1812                                 goto abort;
1813                         }
1814                 }
1815                 if (conf->mirrors[conf->raid_disks + number].rdev) {
1816                         /* We just removed a device that is being replaced.
1817                          * Move down the replacement.  We drain all IO before
1818                          * doing this to avoid confusion.
1819                          */
1820                         struct md_rdev *repl =
1821                                 conf->mirrors[conf->raid_disks + number].rdev;
1822                         freeze_array(conf, 0);
1823                         if (atomic_read(&repl->nr_pending)) {
1824                                 /* It means that some queued IO of retry_list
1825                                  * hold repl. Thus, we cannot set replacement
1826                                  * as NULL, avoiding rdev NULL pointer
1827                                  * dereference in sync_request_write and
1828                                  * handle_write_finished.
1829                                  */
1830                                 err = -EBUSY;
1831                                 unfreeze_array(conf);
1832                                 goto abort;
1833                         }
1834                         clear_bit(Replacement, &repl->flags);
1835                         p->rdev = repl;
1836                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1837                         unfreeze_array(conf);
1838                 }
1839
1840                 clear_bit(WantReplacement, &rdev->flags);
1841                 err = md_integrity_register(mddev);
1842         }
1843 abort:
1844
1845         print_conf(conf);
1846         return err;
1847 }
1848
1849 static void end_sync_read(struct bio *bio)
1850 {
1851         struct r1bio *r1_bio = get_resync_r1bio(bio);
1852
1853         update_head_pos(r1_bio->read_disk, r1_bio);
1854
1855         /*
1856          * we have read a block, now it needs to be re-written,
1857          * or re-read if the read failed.
1858          * We don't do much here, just schedule handling by raid1d
1859          */
1860         if (!bio->bi_status)
1861                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1862
1863         if (atomic_dec_and_test(&r1_bio->remaining))
1864                 reschedule_retry(r1_bio);
1865 }
1866
1867 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1868 {
1869         sector_t sync_blocks = 0;
1870         sector_t s = r1_bio->sector;
1871         long sectors_to_go = r1_bio->sectors;
1872
1873         /* make sure these bits don't get cleared. */
1874         do {
1875                 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1876                 s += sync_blocks;
1877                 sectors_to_go -= sync_blocks;
1878         } while (sectors_to_go > 0);
1879 }
1880
1881 static void end_sync_write(struct bio *bio)
1882 {
1883         int uptodate = !bio->bi_status;
1884         struct r1bio *r1_bio = get_resync_r1bio(bio);
1885         struct mddev *mddev = r1_bio->mddev;
1886         struct r1conf *conf = mddev->private;
1887         sector_t first_bad;
1888         int bad_sectors;
1889         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1890
1891         if (!uptodate) {
1892                 abort_sync_write(mddev, r1_bio);
1893                 set_bit(WriteErrorSeen, &rdev->flags);
1894                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1895                         set_bit(MD_RECOVERY_NEEDED, &
1896                                 mddev->recovery);
1897                 set_bit(R1BIO_WriteError, &r1_bio->state);
1898         } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1899                                &first_bad, &bad_sectors) &&
1900                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1901                                 r1_bio->sector,
1902                                 r1_bio->sectors,
1903                                 &first_bad, &bad_sectors)
1904                 )
1905                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1906
1907         if (atomic_dec_and_test(&r1_bio->remaining)) {
1908                 int s = r1_bio->sectors;
1909                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1910                     test_bit(R1BIO_WriteError, &r1_bio->state))
1911                         reschedule_retry(r1_bio);
1912                 else {
1913                         put_buf(r1_bio);
1914                         md_done_sync(mddev, s, uptodate);
1915                 }
1916         }
1917 }
1918
1919 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1920                             int sectors, struct page *page, int rw)
1921 {
1922         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1923                 /* success */
1924                 return 1;
1925         if (rw == WRITE) {
1926                 set_bit(WriteErrorSeen, &rdev->flags);
1927                 if (!test_and_set_bit(WantReplacement,
1928                                       &rdev->flags))
1929                         set_bit(MD_RECOVERY_NEEDED, &
1930                                 rdev->mddev->recovery);
1931         }
1932         /* need to record an error - either for the block or the device */
1933         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1934                 md_error(rdev->mddev, rdev);
1935         return 0;
1936 }
1937
1938 static int fix_sync_read_error(struct r1bio *r1_bio)
1939 {
1940         /* Try some synchronous reads of other devices to get
1941          * good data, much like with normal read errors.  Only
1942          * read into the pages we already have so we don't
1943          * need to re-issue the read request.
1944          * We don't need to freeze the array, because being in an
1945          * active sync request, there is no normal IO, and
1946          * no overlapping syncs.
1947          * We don't need to check is_badblock() again as we
1948          * made sure that anything with a bad block in range
1949          * will have bi_end_io clear.
1950          */
1951         struct mddev *mddev = r1_bio->mddev;
1952         struct r1conf *conf = mddev->private;
1953         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1954         struct page **pages = get_resync_pages(bio)->pages;
1955         sector_t sect = r1_bio->sector;
1956         int sectors = r1_bio->sectors;
1957         int idx = 0;
1958         struct md_rdev *rdev;
1959
1960         rdev = conf->mirrors[r1_bio->read_disk].rdev;
1961         if (test_bit(FailFast, &rdev->flags)) {
1962                 /* Don't try recovering from here - just fail it
1963                  * ... unless it is the last working device of course */
1964                 md_error(mddev, rdev);
1965                 if (test_bit(Faulty, &rdev->flags))
1966                         /* Don't try to read from here, but make sure
1967                          * put_buf does it's thing
1968                          */
1969                         bio->bi_end_io = end_sync_write;
1970         }
1971
1972         while(sectors) {
1973                 int s = sectors;
1974                 int d = r1_bio->read_disk;
1975                 int success = 0;
1976                 int start;
1977
1978                 if (s > (PAGE_SIZE>>9))
1979                         s = PAGE_SIZE >> 9;
1980                 do {
1981                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1982                                 /* No rcu protection needed here devices
1983                                  * can only be removed when no resync is
1984                                  * active, and resync is currently active
1985                                  */
1986                                 rdev = conf->mirrors[d].rdev;
1987                                 if (sync_page_io(rdev, sect, s<<9,
1988                                                  pages[idx],
1989                                                  REQ_OP_READ, 0, false)) {
1990                                         success = 1;
1991                                         break;
1992                                 }
1993                         }
1994                         d++;
1995                         if (d == conf->raid_disks * 2)
1996                                 d = 0;
1997                 } while (!success && d != r1_bio->read_disk);
1998
1999                 if (!success) {
2000                         char b[BDEVNAME_SIZE];
2001                         int abort = 0;
2002                         /* Cannot read from anywhere, this block is lost.
2003                          * Record a bad block on each device.  If that doesn't
2004                          * work just disable and interrupt the recovery.
2005                          * Don't fail devices as that won't really help.
2006                          */
2007                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2008                                             mdname(mddev), bio_devname(bio, b),
2009                                             (unsigned long long)r1_bio->sector);
2010                         for (d = 0; d < conf->raid_disks * 2; d++) {
2011                                 rdev = conf->mirrors[d].rdev;
2012                                 if (!rdev || test_bit(Faulty, &rdev->flags))
2013                                         continue;
2014                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
2015                                         abort = 1;
2016                         }
2017                         if (abort) {
2018                                 conf->recovery_disabled =
2019                                         mddev->recovery_disabled;
2020                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2021                                 md_done_sync(mddev, r1_bio->sectors, 0);
2022                                 put_buf(r1_bio);
2023                                 return 0;
2024                         }
2025                         /* Try next page */
2026                         sectors -= s;
2027                         sect += s;
2028                         idx++;
2029                         continue;
2030                 }
2031
2032                 start = d;
2033                 /* write it back and re-read */
2034                 while (d != r1_bio->read_disk) {
2035                         if (d == 0)
2036                                 d = conf->raid_disks * 2;
2037                         d--;
2038                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2039                                 continue;
2040                         rdev = conf->mirrors[d].rdev;
2041                         if (r1_sync_page_io(rdev, sect, s,
2042                                             pages[idx],
2043                                             WRITE) == 0) {
2044                                 r1_bio->bios[d]->bi_end_io = NULL;
2045                                 rdev_dec_pending(rdev, mddev);
2046                         }
2047                 }
2048                 d = start;
2049                 while (d != r1_bio->read_disk) {
2050                         if (d == 0)
2051                                 d = conf->raid_disks * 2;
2052                         d--;
2053                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2054                                 continue;
2055                         rdev = conf->mirrors[d].rdev;
2056                         if (r1_sync_page_io(rdev, sect, s,
2057                                             pages[idx],
2058                                             READ) != 0)
2059                                 atomic_add(s, &rdev->corrected_errors);
2060                 }
2061                 sectors -= s;
2062                 sect += s;
2063                 idx ++;
2064         }
2065         set_bit(R1BIO_Uptodate, &r1_bio->state);
2066         bio->bi_status = 0;
2067         return 1;
2068 }
2069
2070 static void process_checks(struct r1bio *r1_bio)
2071 {
2072         /* We have read all readable devices.  If we haven't
2073          * got the block, then there is no hope left.
2074          * If we have, then we want to do a comparison
2075          * and skip the write if everything is the same.
2076          * If any blocks failed to read, then we need to
2077          * attempt an over-write
2078          */
2079         struct mddev *mddev = r1_bio->mddev;
2080         struct r1conf *conf = mddev->private;
2081         int primary;
2082         int i;
2083         int vcnt;
2084
2085         /* Fix variable parts of all bios */
2086         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2087         for (i = 0; i < conf->raid_disks * 2; i++) {
2088                 blk_status_t status;
2089                 struct bio *b = r1_bio->bios[i];
2090                 struct resync_pages *rp = get_resync_pages(b);
2091                 if (b->bi_end_io != end_sync_read)
2092                         continue;
2093                 /* fixup the bio for reuse, but preserve errno */
2094                 status = b->bi_status;
2095                 bio_reset(b);
2096                 b->bi_status = status;
2097                 b->bi_iter.bi_sector = r1_bio->sector +
2098                         conf->mirrors[i].rdev->data_offset;
2099                 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2100                 b->bi_end_io = end_sync_read;
2101                 rp->raid_bio = r1_bio;
2102                 b->bi_private = rp;
2103
2104                 /* initialize bvec table again */
2105                 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2106         }
2107         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2108                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2109                     !r1_bio->bios[primary]->bi_status) {
2110                         r1_bio->bios[primary]->bi_end_io = NULL;
2111                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2112                         break;
2113                 }
2114         r1_bio->read_disk = primary;
2115         for (i = 0; i < conf->raid_disks * 2; i++) {
2116                 int j;
2117                 struct bio *pbio = r1_bio->bios[primary];
2118                 struct bio *sbio = r1_bio->bios[i];
2119                 blk_status_t status = sbio->bi_status;
2120                 struct page **ppages = get_resync_pages(pbio)->pages;
2121                 struct page **spages = get_resync_pages(sbio)->pages;
2122                 struct bio_vec *bi;
2123                 int page_len[RESYNC_PAGES] = { 0 };
2124
2125                 if (sbio->bi_end_io != end_sync_read)
2126                         continue;
2127                 /* Now we can 'fixup' the error value */
2128                 sbio->bi_status = 0;
2129
2130                 bio_for_each_segment_all(bi, sbio, j)
2131                         page_len[j] = bi->bv_len;
2132
2133                 if (!status) {
2134                         for (j = vcnt; j-- ; ) {
2135                                 if (memcmp(page_address(ppages[j]),
2136                                            page_address(spages[j]),
2137                                            page_len[j]))
2138                                         break;
2139                         }
2140                 } else
2141                         j = 0;
2142                 if (j >= 0)
2143                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2144                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2145                               && !status)) {
2146                         /* No need to write to this device. */
2147                         sbio->bi_end_io = NULL;
2148                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2149                         continue;
2150                 }
2151
2152                 bio_copy_data(sbio, pbio);
2153         }
2154 }
2155
2156 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2157 {
2158         struct r1conf *conf = mddev->private;
2159         int i;
2160         int disks = conf->raid_disks * 2;
2161         struct bio *wbio;
2162
2163         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2164                 /* ouch - failed to read all of that. */
2165                 if (!fix_sync_read_error(r1_bio))
2166                         return;
2167
2168         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2169                 process_checks(r1_bio);
2170
2171         /*
2172          * schedule writes
2173          */
2174         atomic_set(&r1_bio->remaining, 1);
2175         for (i = 0; i < disks ; i++) {
2176                 wbio = r1_bio->bios[i];
2177                 if (wbio->bi_end_io == NULL ||
2178                     (wbio->bi_end_io == end_sync_read &&
2179                      (i == r1_bio->read_disk ||
2180                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2181                         continue;
2182                 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2183                         abort_sync_write(mddev, r1_bio);
2184                         continue;
2185                 }
2186
2187                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2188                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2189                         wbio->bi_opf |= MD_FAILFAST;
2190
2191                 wbio->bi_end_io = end_sync_write;
2192                 atomic_inc(&r1_bio->remaining);
2193                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2194
2195                 generic_make_request(wbio);
2196         }
2197
2198         if (atomic_dec_and_test(&r1_bio->remaining)) {
2199                 /* if we're here, all write(s) have completed, so clean up */
2200                 int s = r1_bio->sectors;
2201                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2202                     test_bit(R1BIO_WriteError, &r1_bio->state))
2203                         reschedule_retry(r1_bio);
2204                 else {
2205                         put_buf(r1_bio);
2206                         md_done_sync(mddev, s, 1);
2207                 }
2208         }
2209 }
2210
2211 /*
2212  * This is a kernel thread which:
2213  *
2214  *      1.      Retries failed read operations on working mirrors.
2215  *      2.      Updates the raid superblock when problems encounter.
2216  *      3.      Performs writes following reads for array synchronising.
2217  */
2218
2219 static void fix_read_error(struct r1conf *conf, int read_disk,
2220                            sector_t sect, int sectors)
2221 {
2222         struct mddev *mddev = conf->mddev;
2223         while(sectors) {
2224                 int s = sectors;
2225                 int d = read_disk;
2226                 int success = 0;
2227                 int start;
2228                 struct md_rdev *rdev;
2229
2230                 if (s > (PAGE_SIZE>>9))
2231                         s = PAGE_SIZE >> 9;
2232
2233                 do {
2234                         sector_t first_bad;
2235                         int bad_sectors;
2236
2237                         rcu_read_lock();
2238                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2239                         if (rdev &&
2240                             (test_bit(In_sync, &rdev->flags) ||
2241                              (!test_bit(Faulty, &rdev->flags) &&
2242                               rdev->recovery_offset >= sect + s)) &&
2243                             is_badblock(rdev, sect, s,
2244                                         &first_bad, &bad_sectors) == 0) {
2245                                 atomic_inc(&rdev->nr_pending);
2246                                 rcu_read_unlock();
2247                                 if (sync_page_io(rdev, sect, s<<9,
2248                                          conf->tmppage, REQ_OP_READ, 0, false))
2249                                         success = 1;
2250                                 rdev_dec_pending(rdev, mddev);
2251                                 if (success)
2252                                         break;
2253                         } else
2254                                 rcu_read_unlock();
2255                         d++;
2256                         if (d == conf->raid_disks * 2)
2257                                 d = 0;
2258                 } while (!success && d != read_disk);
2259
2260                 if (!success) {
2261                         /* Cannot read from anywhere - mark it bad */
2262                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2263                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2264                                 md_error(mddev, rdev);
2265                         break;
2266                 }
2267                 /* write it back and re-read */
2268                 start = d;
2269                 while (d != read_disk) {
2270                         if (d==0)
2271                                 d = conf->raid_disks * 2;
2272                         d--;
2273                         rcu_read_lock();
2274                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2275                         if (rdev &&
2276                             !test_bit(Faulty, &rdev->flags)) {
2277                                 atomic_inc(&rdev->nr_pending);
2278                                 rcu_read_unlock();
2279                                 r1_sync_page_io(rdev, sect, s,
2280                                                 conf->tmppage, WRITE);
2281                                 rdev_dec_pending(rdev, mddev);
2282                         } else
2283                                 rcu_read_unlock();
2284                 }
2285                 d = start;
2286                 while (d != read_disk) {
2287                         char b[BDEVNAME_SIZE];
2288                         if (d==0)
2289                                 d = conf->raid_disks * 2;
2290                         d--;
2291                         rcu_read_lock();
2292                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2293                         if (rdev &&
2294                             !test_bit(Faulty, &rdev->flags)) {
2295                                 atomic_inc(&rdev->nr_pending);
2296                                 rcu_read_unlock();
2297                                 if (r1_sync_page_io(rdev, sect, s,
2298                                                     conf->tmppage, READ)) {
2299                                         atomic_add(s, &rdev->corrected_errors);
2300                                         pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2301                                                 mdname(mddev), s,
2302                                                 (unsigned long long)(sect +
2303                                                                      rdev->data_offset),
2304                                                 bdevname(rdev->bdev, b));
2305                                 }
2306                                 rdev_dec_pending(rdev, mddev);
2307                         } else
2308                                 rcu_read_unlock();
2309                 }
2310                 sectors -= s;
2311                 sect += s;
2312         }
2313 }
2314
2315 static int narrow_write_error(struct r1bio *r1_bio, int i)
2316 {
2317         struct mddev *mddev = r1_bio->mddev;
2318         struct r1conf *conf = mddev->private;
2319         struct md_rdev *rdev = conf->mirrors[i].rdev;
2320
2321         /* bio has the data to be written to device 'i' where
2322          * we just recently had a write error.
2323          * We repeatedly clone the bio and trim down to one block,
2324          * then try the write.  Where the write fails we record
2325          * a bad block.
2326          * It is conceivable that the bio doesn't exactly align with
2327          * blocks.  We must handle this somehow.
2328          *
2329          * We currently own a reference on the rdev.
2330          */
2331
2332         int block_sectors;
2333         sector_t sector;
2334         int sectors;
2335         int sect_to_write = r1_bio->sectors;
2336         int ok = 1;
2337
2338         if (rdev->badblocks.shift < 0)
2339                 return 0;
2340
2341         block_sectors = roundup(1 << rdev->badblocks.shift,
2342                                 bdev_logical_block_size(rdev->bdev) >> 9);
2343         sector = r1_bio->sector;
2344         sectors = ((sector + block_sectors)
2345                    & ~(sector_t)(block_sectors - 1))
2346                 - sector;
2347
2348         while (sect_to_write) {
2349                 struct bio *wbio;
2350                 if (sectors > sect_to_write)
2351                         sectors = sect_to_write;
2352                 /* Write at 'sector' for 'sectors'*/
2353
2354                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2355                         wbio = bio_clone_fast(r1_bio->behind_master_bio,
2356                                               GFP_NOIO,
2357                                               &mddev->bio_set);
2358                 } else {
2359                         wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2360                                               &mddev->bio_set);
2361                 }
2362
2363                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2364                 wbio->bi_iter.bi_sector = r1_bio->sector;
2365                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2366
2367                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2368                 wbio->bi_iter.bi_sector += rdev->data_offset;
2369                 bio_set_dev(wbio, rdev->bdev);
2370
2371                 if (submit_bio_wait(wbio) < 0)
2372                         /* failure! */
2373                         ok = rdev_set_badblocks(rdev, sector,
2374                                                 sectors, 0)
2375                                 && ok;
2376
2377                 bio_put(wbio);
2378                 sect_to_write -= sectors;
2379                 sector += sectors;
2380                 sectors = block_sectors;
2381         }
2382         return ok;
2383 }
2384
2385 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2386 {
2387         int m;
2388         int s = r1_bio->sectors;
2389         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2390                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2391                 struct bio *bio = r1_bio->bios[m];
2392                 if (bio->bi_end_io == NULL)
2393                         continue;
2394                 if (!bio->bi_status &&
2395                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2396                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2397                 }
2398                 if (bio->bi_status &&
2399                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2400                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2401                                 md_error(conf->mddev, rdev);
2402                 }
2403         }
2404         put_buf(r1_bio);
2405         md_done_sync(conf->mddev, s, 1);
2406 }
2407
2408 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2409 {
2410         int m, idx;
2411         bool fail = false;
2412
2413         for (m = 0; m < conf->raid_disks * 2 ; m++)
2414                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2415                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2416                         rdev_clear_badblocks(rdev,
2417                                              r1_bio->sector,
2418                                              r1_bio->sectors, 0);
2419                         rdev_dec_pending(rdev, conf->mddev);
2420                 } else if (r1_bio->bios[m] != NULL) {
2421                         /* This drive got a write error.  We need to
2422                          * narrow down and record precise write
2423                          * errors.
2424                          */
2425                         fail = true;
2426                         if (!narrow_write_error(r1_bio, m)) {
2427                                 md_error(conf->mddev,
2428                                          conf->mirrors[m].rdev);
2429                                 /* an I/O failed, we can't clear the bitmap */
2430                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2431                         }
2432                         rdev_dec_pending(conf->mirrors[m].rdev,
2433                                          conf->mddev);
2434                 }
2435         if (fail) {
2436                 spin_lock_irq(&conf->device_lock);
2437                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2438                 idx = sector_to_idx(r1_bio->sector);
2439                 atomic_inc(&conf->nr_queued[idx]);
2440                 spin_unlock_irq(&conf->device_lock);
2441                 /*
2442                  * In case freeze_array() is waiting for condition
2443                  * get_unqueued_pending() == extra to be true.
2444                  */
2445                 wake_up(&conf->wait_barrier);
2446                 md_wakeup_thread(conf->mddev->thread);
2447         } else {
2448                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2449                         close_write(r1_bio);
2450                 raid_end_bio_io(r1_bio);
2451         }
2452 }
2453
2454 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2455 {
2456         struct mddev *mddev = conf->mddev;
2457         struct bio *bio;
2458         struct md_rdev *rdev;
2459
2460         clear_bit(R1BIO_ReadError, &r1_bio->state);
2461         /* we got a read error. Maybe the drive is bad.  Maybe just
2462          * the block and we can fix it.
2463          * We freeze all other IO, and try reading the block from
2464          * other devices.  When we find one, we re-write
2465          * and check it that fixes the read error.
2466          * This is all done synchronously while the array is
2467          * frozen
2468          */
2469
2470         bio = r1_bio->bios[r1_bio->read_disk];
2471         bio_put(bio);
2472         r1_bio->bios[r1_bio->read_disk] = NULL;
2473
2474         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2475         if (mddev->ro == 0
2476             && !test_bit(FailFast, &rdev->flags)) {
2477                 freeze_array(conf, 1);
2478                 fix_read_error(conf, r1_bio->read_disk,
2479                                r1_bio->sector, r1_bio->sectors);
2480                 unfreeze_array(conf);
2481         } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2482                 md_error(mddev, rdev);
2483         } else {
2484                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2485         }
2486
2487         rdev_dec_pending(rdev, conf->mddev);
2488         allow_barrier(conf, r1_bio->sector);
2489         bio = r1_bio->master_bio;
2490
2491         /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2492         r1_bio->state = 0;
2493         raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2494 }
2495
2496 static void raid1d(struct md_thread *thread)
2497 {
2498         struct mddev *mddev = thread->mddev;
2499         struct r1bio *r1_bio;
2500         unsigned long flags;
2501         struct r1conf *conf = mddev->private;
2502         struct list_head *head = &conf->retry_list;
2503         struct blk_plug plug;
2504         int idx;
2505
2506         md_check_recovery(mddev);
2507
2508         if (!list_empty_careful(&conf->bio_end_io_list) &&
2509             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2510                 LIST_HEAD(tmp);
2511                 spin_lock_irqsave(&conf->device_lock, flags);
2512                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2513                         list_splice_init(&conf->bio_end_io_list, &tmp);
2514                 spin_unlock_irqrestore(&conf->device_lock, flags);
2515                 while (!list_empty(&tmp)) {
2516                         r1_bio = list_first_entry(&tmp, struct r1bio,
2517                                                   retry_list);
2518                         list_del(&r1_bio->retry_list);
2519                         idx = sector_to_idx(r1_bio->sector);
2520                         atomic_dec(&conf->nr_queued[idx]);
2521                         if (mddev->degraded)
2522                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2523                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2524                                 close_write(r1_bio);
2525                         raid_end_bio_io(r1_bio);
2526                 }
2527         }
2528
2529         blk_start_plug(&plug);
2530         for (;;) {
2531
2532                 flush_pending_writes(conf);
2533
2534                 spin_lock_irqsave(&conf->device_lock, flags);
2535                 if (list_empty(head)) {
2536                         spin_unlock_irqrestore(&conf->device_lock, flags);
2537                         break;
2538                 }
2539                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2540                 list_del(head->prev);
2541                 idx = sector_to_idx(r1_bio->sector);
2542                 atomic_dec(&conf->nr_queued[idx]);
2543                 spin_unlock_irqrestore(&conf->device_lock, flags);
2544
2545                 mddev = r1_bio->mddev;
2546                 conf = mddev->private;
2547                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2548                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2549                             test_bit(R1BIO_WriteError, &r1_bio->state))
2550                                 handle_sync_write_finished(conf, r1_bio);
2551                         else
2552                                 sync_request_write(mddev, r1_bio);
2553                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2554                            test_bit(R1BIO_WriteError, &r1_bio->state))
2555                         handle_write_finished(conf, r1_bio);
2556                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2557                         handle_read_error(conf, r1_bio);
2558                 else
2559                         WARN_ON_ONCE(1);
2560
2561                 cond_resched();
2562                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2563                         md_check_recovery(mddev);
2564         }
2565         blk_finish_plug(&plug);
2566 }
2567
2568 static int init_resync(struct r1conf *conf)
2569 {
2570         int buffs;
2571
2572         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2573         BUG_ON(mempool_initialized(&conf->r1buf_pool));
2574
2575         return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2576                             r1buf_pool_free, conf->poolinfo);
2577 }
2578
2579 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2580 {
2581         struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2582         struct resync_pages *rps;
2583         struct bio *bio;
2584         int i;
2585
2586         for (i = conf->poolinfo->raid_disks; i--; ) {
2587                 bio = r1bio->bios[i];
2588                 rps = bio->bi_private;
2589                 bio_reset(bio);
2590                 bio->bi_private = rps;
2591         }
2592         r1bio->master_bio = NULL;
2593         return r1bio;
2594 }
2595
2596 /*
2597  * perform a "sync" on one "block"
2598  *
2599  * We need to make sure that no normal I/O request - particularly write
2600  * requests - conflict with active sync requests.
2601  *
2602  * This is achieved by tracking pending requests and a 'barrier' concept
2603  * that can be installed to exclude normal IO requests.
2604  */
2605
2606 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2607                                    int *skipped)
2608 {
2609         struct r1conf *conf = mddev->private;
2610         struct r1bio *r1_bio;
2611         struct bio *bio;
2612         sector_t max_sector, nr_sectors;
2613         int disk = -1;
2614         int i;
2615         int wonly = -1;
2616         int write_targets = 0, read_targets = 0;
2617         sector_t sync_blocks;
2618         int still_degraded = 0;
2619         int good_sectors = RESYNC_SECTORS;
2620         int min_bad = 0; /* number of sectors that are bad in all devices */
2621         int idx = sector_to_idx(sector_nr);
2622         int page_idx = 0;
2623
2624         if (!mempool_initialized(&conf->r1buf_pool))
2625                 if (init_resync(conf))
2626                         return 0;
2627
2628         max_sector = mddev->dev_sectors;
2629         if (sector_nr >= max_sector) {
2630                 /* If we aborted, we need to abort the
2631                  * sync on the 'current' bitmap chunk (there will
2632                  * only be one in raid1 resync.
2633                  * We can find the current addess in mddev->curr_resync
2634                  */
2635                 if (mddev->curr_resync < max_sector) /* aborted */
2636                         md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2637                                            &sync_blocks, 1);
2638                 else /* completed sync */
2639                         conf->fullsync = 0;
2640
2641                 md_bitmap_close_sync(mddev->bitmap);
2642                 close_sync(conf);
2643
2644                 if (mddev_is_clustered(mddev)) {
2645                         conf->cluster_sync_low = 0;
2646                         conf->cluster_sync_high = 0;
2647                 }
2648                 return 0;
2649         }
2650
2651         if (mddev->bitmap == NULL &&
2652             mddev->recovery_cp == MaxSector &&
2653             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2654             conf->fullsync == 0) {
2655                 *skipped = 1;
2656                 return max_sector - sector_nr;
2657         }
2658         /* before building a request, check if we can skip these blocks..
2659          * This call the bitmap_start_sync doesn't actually record anything
2660          */
2661         if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2662             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2663                 /* We can skip this block, and probably several more */
2664                 *skipped = 1;
2665                 return sync_blocks;
2666         }
2667
2668         /*
2669          * If there is non-resync activity waiting for a turn, then let it
2670          * though before starting on this new sync request.
2671          */
2672         if (atomic_read(&conf->nr_waiting[idx]))
2673                 schedule_timeout_uninterruptible(1);
2674
2675         /* we are incrementing sector_nr below. To be safe, we check against
2676          * sector_nr + two times RESYNC_SECTORS
2677          */
2678
2679         md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2680                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2681
2682
2683         if (raise_barrier(conf, sector_nr))
2684                 return 0;
2685
2686         r1_bio = raid1_alloc_init_r1buf(conf);
2687
2688         rcu_read_lock();
2689         /*
2690          * If we get a correctably read error during resync or recovery,
2691          * we might want to read from a different device.  So we
2692          * flag all drives that could conceivably be read from for READ,
2693          * and any others (which will be non-In_sync devices) for WRITE.
2694          * If a read fails, we try reading from something else for which READ
2695          * is OK.
2696          */
2697
2698         r1_bio->mddev = mddev;
2699         r1_bio->sector = sector_nr;
2700         r1_bio->state = 0;
2701         set_bit(R1BIO_IsSync, &r1_bio->state);
2702         /* make sure good_sectors won't go across barrier unit boundary */
2703         good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2704
2705         for (i = 0; i < conf->raid_disks * 2; i++) {
2706                 struct md_rdev *rdev;
2707                 bio = r1_bio->bios[i];
2708
2709                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2710                 if (rdev == NULL ||
2711                     test_bit(Faulty, &rdev->flags)) {
2712                         if (i < conf->raid_disks)
2713                                 still_degraded = 1;
2714                 } else if (!test_bit(In_sync, &rdev->flags)) {
2715                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2716                         bio->bi_end_io = end_sync_write;
2717                         write_targets ++;
2718                 } else {
2719                         /* may need to read from here */
2720                         sector_t first_bad = MaxSector;
2721                         int bad_sectors;
2722
2723                         if (is_badblock(rdev, sector_nr, good_sectors,
2724                                         &first_bad, &bad_sectors)) {
2725                                 if (first_bad > sector_nr)
2726                                         good_sectors = first_bad - sector_nr;
2727                                 else {
2728                                         bad_sectors -= (sector_nr - first_bad);
2729                                         if (min_bad == 0 ||
2730                                             min_bad > bad_sectors)
2731                                                 min_bad = bad_sectors;
2732                                 }
2733                         }
2734                         if (sector_nr < first_bad) {
2735                                 if (test_bit(WriteMostly, &rdev->flags)) {
2736                                         if (wonly < 0)
2737                                                 wonly = i;
2738                                 } else {
2739                                         if (disk < 0)
2740                                                 disk = i;
2741                                 }
2742                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2743                                 bio->bi_end_io = end_sync_read;
2744                                 read_targets++;
2745                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2746                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2747                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2748                                 /*
2749                                  * The device is suitable for reading (InSync),
2750                                  * but has bad block(s) here. Let's try to correct them,
2751                                  * if we are doing resync or repair. Otherwise, leave
2752                                  * this device alone for this sync request.
2753                                  */
2754                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2755                                 bio->bi_end_io = end_sync_write;
2756                                 write_targets++;
2757                         }
2758                 }
2759                 if (bio->bi_end_io) {
2760                         atomic_inc(&rdev->nr_pending);
2761                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2762                         bio_set_dev(bio, rdev->bdev);
2763                         if (test_bit(FailFast, &rdev->flags))
2764                                 bio->bi_opf |= MD_FAILFAST;
2765                 }
2766         }
2767         rcu_read_unlock();
2768         if (disk < 0)
2769                 disk = wonly;
2770         r1_bio->read_disk = disk;
2771
2772         if (read_targets == 0 && min_bad > 0) {
2773                 /* These sectors are bad on all InSync devices, so we
2774                  * need to mark them bad on all write targets
2775                  */
2776                 int ok = 1;
2777                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2778                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2779                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2780                                 ok = rdev_set_badblocks(rdev, sector_nr,
2781                                                         min_bad, 0
2782                                         ) && ok;
2783                         }
2784                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2785                 *skipped = 1;
2786                 put_buf(r1_bio);
2787
2788                 if (!ok) {
2789                         /* Cannot record the badblocks, so need to
2790                          * abort the resync.
2791                          * If there are multiple read targets, could just
2792                          * fail the really bad ones ???
2793                          */
2794                         conf->recovery_disabled = mddev->recovery_disabled;
2795                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2796                         return 0;
2797                 } else
2798                         return min_bad;
2799
2800         }
2801         if (min_bad > 0 && min_bad < good_sectors) {
2802                 /* only resync enough to reach the next bad->good
2803                  * transition */
2804                 good_sectors = min_bad;
2805         }
2806
2807         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2808                 /* extra read targets are also write targets */
2809                 write_targets += read_targets-1;
2810
2811         if (write_targets == 0 || read_targets == 0) {
2812                 /* There is nowhere to write, so all non-sync
2813                  * drives must be failed - so we are finished
2814                  */
2815                 sector_t rv;
2816                 if (min_bad > 0)
2817                         max_sector = sector_nr + min_bad;
2818                 rv = max_sector - sector_nr;
2819                 *skipped = 1;
2820                 put_buf(r1_bio);
2821                 return rv;
2822         }
2823
2824         if (max_sector > mddev->resync_max)
2825                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2826         if (max_sector > sector_nr + good_sectors)
2827                 max_sector = sector_nr + good_sectors;
2828         nr_sectors = 0;
2829         sync_blocks = 0;
2830         do {
2831                 struct page *page;
2832                 int len = PAGE_SIZE;
2833                 if (sector_nr + (len>>9) > max_sector)
2834                         len = (max_sector - sector_nr) << 9;
2835                 if (len == 0)
2836                         break;
2837                 if (sync_blocks == 0) {
2838                         if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2839                                                   &sync_blocks, still_degraded) &&
2840                             !conf->fullsync &&
2841                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2842                                 break;
2843                         if ((len >> 9) > sync_blocks)
2844                                 len = sync_blocks<<9;
2845                 }
2846
2847                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2848                         struct resync_pages *rp;
2849
2850                         bio = r1_bio->bios[i];
2851                         rp = get_resync_pages(bio);
2852                         if (bio->bi_end_io) {
2853                                 page = resync_fetch_page(rp, page_idx);
2854
2855                                 /*
2856                                  * won't fail because the vec table is big
2857                                  * enough to hold all these pages
2858                                  */
2859                                 bio_add_page(bio, page, len, 0);
2860                         }
2861                 }
2862                 nr_sectors += len>>9;
2863                 sector_nr += len>>9;
2864                 sync_blocks -= (len>>9);
2865         } while (++page_idx < RESYNC_PAGES);
2866
2867         r1_bio->sectors = nr_sectors;
2868
2869         if (mddev_is_clustered(mddev) &&
2870                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2871                 conf->cluster_sync_low = mddev->curr_resync_completed;
2872                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2873                 /* Send resync message */
2874                 md_cluster_ops->resync_info_update(mddev,
2875                                 conf->cluster_sync_low,
2876                                 conf->cluster_sync_high);
2877         }
2878
2879         /* For a user-requested sync, we read all readable devices and do a
2880          * compare
2881          */
2882         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2883                 atomic_set(&r1_bio->remaining, read_targets);
2884                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2885                         bio = r1_bio->bios[i];
2886                         if (bio->bi_end_io == end_sync_read) {
2887                                 read_targets--;
2888                                 md_sync_acct_bio(bio, nr_sectors);
2889                                 if (read_targets == 1)
2890                                         bio->bi_opf &= ~MD_FAILFAST;
2891                                 generic_make_request(bio);
2892                         }
2893                 }
2894         } else {
2895                 atomic_set(&r1_bio->remaining, 1);
2896                 bio = r1_bio->bios[r1_bio->read_disk];
2897                 md_sync_acct_bio(bio, nr_sectors);
2898                 if (read_targets == 1)
2899                         bio->bi_opf &= ~MD_FAILFAST;
2900                 generic_make_request(bio);
2901
2902         }
2903         return nr_sectors;
2904 }
2905
2906 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2907 {
2908         if (sectors)
2909                 return sectors;
2910
2911         return mddev->dev_sectors;
2912 }
2913
2914 static struct r1conf *setup_conf(struct mddev *mddev)
2915 {
2916         struct r1conf *conf;
2917         int i;
2918         struct raid1_info *disk;
2919         struct md_rdev *rdev;
2920         int err = -ENOMEM;
2921
2922         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2923         if (!conf)
2924                 goto abort;
2925
2926         conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2927                                    sizeof(atomic_t), GFP_KERNEL);
2928         if (!conf->nr_pending)
2929                 goto abort;
2930
2931         conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2932                                    sizeof(atomic_t), GFP_KERNEL);
2933         if (!conf->nr_waiting)
2934                 goto abort;
2935
2936         conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2937                                   sizeof(atomic_t), GFP_KERNEL);
2938         if (!conf->nr_queued)
2939                 goto abort;
2940
2941         conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2942                                 sizeof(atomic_t), GFP_KERNEL);
2943         if (!conf->barrier)
2944                 goto abort;
2945
2946         conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2947                                             mddev->raid_disks, 2),
2948                                 GFP_KERNEL);
2949         if (!conf->mirrors)
2950                 goto abort;
2951
2952         conf->tmppage = alloc_page(GFP_KERNEL);
2953         if (!conf->tmppage)
2954                 goto abort;
2955
2956         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2957         if (!conf->poolinfo)
2958                 goto abort;
2959         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2960         err = mempool_init(&conf->r1bio_pool, NR_RAID1_BIOS, r1bio_pool_alloc,
2961                            r1bio_pool_free, conf->poolinfo);
2962         if (err)
2963                 goto abort;
2964
2965         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2966         if (err)
2967                 goto abort;
2968
2969         conf->poolinfo->mddev = mddev;
2970
2971         err = -EINVAL;
2972         spin_lock_init(&conf->device_lock);
2973         rdev_for_each(rdev, mddev) {
2974                 int disk_idx = rdev->raid_disk;
2975                 if (disk_idx >= mddev->raid_disks
2976                     || disk_idx < 0)
2977                         continue;
2978                 if (test_bit(Replacement, &rdev->flags))
2979                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2980                 else
2981                         disk = conf->mirrors + disk_idx;
2982
2983                 if (disk->rdev)
2984                         goto abort;
2985                 disk->rdev = rdev;
2986                 disk->head_position = 0;
2987                 disk->seq_start = MaxSector;
2988         }
2989         conf->raid_disks = mddev->raid_disks;
2990         conf->mddev = mddev;
2991         INIT_LIST_HEAD(&conf->retry_list);
2992         INIT_LIST_HEAD(&conf->bio_end_io_list);
2993
2994         spin_lock_init(&conf->resync_lock);
2995         init_waitqueue_head(&conf->wait_barrier);
2996
2997         bio_list_init(&conf->pending_bio_list);
2998         conf->pending_count = 0;
2999         conf->recovery_disabled = mddev->recovery_disabled - 1;
3000
3001         err = -EIO;
3002         for (i = 0; i < conf->raid_disks * 2; i++) {
3003
3004                 disk = conf->mirrors + i;
3005
3006                 if (i < conf->raid_disks &&
3007                     disk[conf->raid_disks].rdev) {
3008                         /* This slot has a replacement. */
3009                         if (!disk->rdev) {
3010                                 /* No original, just make the replacement
3011                                  * a recovering spare
3012                                  */
3013                                 disk->rdev =
3014                                         disk[conf->raid_disks].rdev;
3015                                 disk[conf->raid_disks].rdev = NULL;
3016                         } else if (!test_bit(In_sync, &disk->rdev->flags))
3017                                 /* Original is not in_sync - bad */
3018                                 goto abort;
3019                 }
3020
3021                 if (!disk->rdev ||
3022                     !test_bit(In_sync, &disk->rdev->flags)) {
3023                         disk->head_position = 0;
3024                         if (disk->rdev &&
3025                             (disk->rdev->saved_raid_disk < 0))
3026                                 conf->fullsync = 1;
3027                 }
3028         }
3029
3030         err = -ENOMEM;
3031         conf->thread = md_register_thread(raid1d, mddev, "raid1");
3032         if (!conf->thread)
3033                 goto abort;
3034
3035         return conf;
3036
3037  abort:
3038         if (conf) {
3039                 mempool_exit(&conf->r1bio_pool);
3040                 kfree(conf->mirrors);
3041                 safe_put_page(conf->tmppage);
3042                 kfree(conf->poolinfo);
3043                 kfree(conf->nr_pending);
3044                 kfree(conf->nr_waiting);
3045                 kfree(conf->nr_queued);
3046                 kfree(conf->barrier);
3047                 bioset_exit(&conf->bio_split);
3048                 kfree(conf);
3049         }
3050         return ERR_PTR(err);
3051 }
3052
3053 static void raid1_free(struct mddev *mddev, void *priv);
3054 static int raid1_run(struct mddev *mddev)
3055 {
3056         struct r1conf *conf;
3057         int i;
3058         struct md_rdev *rdev;
3059         int ret;
3060         bool discard_supported = false;
3061
3062         if (mddev->level != 1) {
3063                 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3064                         mdname(mddev), mddev->level);
3065                 return -EIO;
3066         }
3067         if (mddev->reshape_position != MaxSector) {
3068                 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3069                         mdname(mddev));
3070                 return -EIO;
3071         }
3072         if (mddev_init_writes_pending(mddev) < 0)
3073                 return -ENOMEM;
3074         /*
3075          * copy the already verified devices into our private RAID1
3076          * bookkeeping area. [whatever we allocate in run(),
3077          * should be freed in raid1_free()]
3078          */
3079         if (mddev->private == NULL)
3080                 conf = setup_conf(mddev);
3081         else
3082                 conf = mddev->private;
3083
3084         if (IS_ERR(conf))
3085                 return PTR_ERR(conf);
3086
3087         if (mddev->queue) {
3088                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3089                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3090         }
3091
3092         rdev_for_each(rdev, mddev) {
3093                 if (!mddev->gendisk)
3094                         continue;
3095                 disk_stack_limits(mddev->gendisk, rdev->bdev,
3096                                   rdev->data_offset << 9);
3097                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3098                         discard_supported = true;
3099         }
3100
3101         mddev->degraded = 0;
3102         for (i=0; i < conf->raid_disks; i++)
3103                 if (conf->mirrors[i].rdev == NULL ||
3104                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3105                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3106                         mddev->degraded++;
3107         /*
3108          * RAID1 needs at least one disk in active
3109          */
3110         if (conf->raid_disks - mddev->degraded < 1) {
3111                 ret = -EINVAL;
3112                 goto abort;
3113         }
3114
3115         if (conf->raid_disks - mddev->degraded == 1)
3116                 mddev->recovery_cp = MaxSector;
3117
3118         if (mddev->recovery_cp != MaxSector)
3119                 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3120                         mdname(mddev));
3121         pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3122                 mdname(mddev), mddev->raid_disks - mddev->degraded,
3123                 mddev->raid_disks);
3124
3125         /*
3126          * Ok, everything is just fine now
3127          */
3128         mddev->thread = conf->thread;
3129         conf->thread = NULL;
3130         mddev->private = conf;
3131         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3132
3133         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3134
3135         if (mddev->queue) {
3136                 if (discard_supported)
3137                         blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3138                                                 mddev->queue);
3139                 else
3140                         blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3141                                                   mddev->queue);
3142         }
3143
3144         ret =  md_integrity_register(mddev);
3145         if (ret) {
3146                 md_unregister_thread(&mddev->thread);
3147                 goto abort;
3148         }
3149         return 0;
3150
3151 abort:
3152         raid1_free(mddev, conf);
3153         return ret;
3154 }
3155
3156 static void raid1_free(struct mddev *mddev, void *priv)
3157 {
3158         struct r1conf *conf = priv;
3159
3160         mempool_exit(&conf->r1bio_pool);
3161         kfree(conf->mirrors);
3162         safe_put_page(conf->tmppage);
3163         kfree(conf->poolinfo);
3164         kfree(conf->nr_pending);
3165         kfree(conf->nr_waiting);
3166         kfree(conf->nr_queued);
3167         kfree(conf->barrier);
3168         bioset_exit(&conf->bio_split);
3169         kfree(conf);
3170 }
3171
3172 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3173 {
3174         /* no resync is happening, and there is enough space
3175          * on all devices, so we can resize.
3176          * We need to make sure resync covers any new space.
3177          * If the array is shrinking we should possibly wait until
3178          * any io in the removed space completes, but it hardly seems
3179          * worth it.
3180          */
3181         sector_t newsize = raid1_size(mddev, sectors, 0);
3182         if (mddev->external_size &&
3183             mddev->array_sectors > newsize)
3184                 return -EINVAL;
3185         if (mddev->bitmap) {
3186                 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3187                 if (ret)
3188                         return ret;
3189         }
3190         md_set_array_sectors(mddev, newsize);
3191         if (sectors > mddev->dev_sectors &&
3192             mddev->recovery_cp > mddev->dev_sectors) {
3193                 mddev->recovery_cp = mddev->dev_sectors;
3194                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3195         }
3196         mddev->dev_sectors = sectors;
3197         mddev->resync_max_sectors = sectors;
3198         return 0;
3199 }
3200
3201 static int raid1_reshape(struct mddev *mddev)
3202 {
3203         /* We need to:
3204          * 1/ resize the r1bio_pool
3205          * 2/ resize conf->mirrors
3206          *
3207          * We allocate a new r1bio_pool if we can.
3208          * Then raise a device barrier and wait until all IO stops.
3209          * Then resize conf->mirrors and swap in the new r1bio pool.
3210          *
3211          * At the same time, we "pack" the devices so that all the missing
3212          * devices have the higher raid_disk numbers.
3213          */
3214         mempool_t newpool, oldpool;
3215         struct pool_info *newpoolinfo;
3216         struct raid1_info *newmirrors;
3217         struct r1conf *conf = mddev->private;
3218         int cnt, raid_disks;
3219         unsigned long flags;
3220         int d, d2;
3221         int ret;
3222
3223         memset(&newpool, 0, sizeof(newpool));
3224         memset(&oldpool, 0, sizeof(oldpool));
3225
3226         /* Cannot change chunk_size, layout, or level */
3227         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3228             mddev->layout != mddev->new_layout ||
3229             mddev->level != mddev->new_level) {
3230                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3231                 mddev->new_layout = mddev->layout;
3232                 mddev->new_level = mddev->level;
3233                 return -EINVAL;
3234         }
3235
3236         if (!mddev_is_clustered(mddev))
3237                 md_allow_write(mddev);
3238
3239         raid_disks = mddev->raid_disks + mddev->delta_disks;
3240
3241         if (raid_disks < conf->raid_disks) {
3242                 cnt=0;
3243                 for (d= 0; d < conf->raid_disks; d++)
3244                         if (conf->mirrors[d].rdev)
3245                                 cnt++;
3246                 if (cnt > raid_disks)
3247                         return -EBUSY;
3248         }
3249
3250         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3251         if (!newpoolinfo)
3252                 return -ENOMEM;
3253         newpoolinfo->mddev = mddev;
3254         newpoolinfo->raid_disks = raid_disks * 2;
3255
3256         ret = mempool_init(&newpool, NR_RAID1_BIOS, r1bio_pool_alloc,
3257                            r1bio_pool_free, newpoolinfo);
3258         if (ret) {
3259                 kfree(newpoolinfo);
3260                 return ret;
3261         }
3262         newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3263                                          raid_disks, 2),
3264                              GFP_KERNEL);
3265         if (!newmirrors) {
3266                 kfree(newpoolinfo);
3267                 mempool_exit(&newpool);
3268                 return -ENOMEM;
3269         }
3270
3271         freeze_array(conf, 0);
3272
3273         /* ok, everything is stopped */
3274         oldpool = conf->r1bio_pool;
3275         conf->r1bio_pool = newpool;
3276
3277         for (d = d2 = 0; d < conf->raid_disks; d++) {
3278                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3279                 if (rdev && rdev->raid_disk != d2) {
3280                         sysfs_unlink_rdev(mddev, rdev);
3281                         rdev->raid_disk = d2;
3282                         sysfs_unlink_rdev(mddev, rdev);
3283                         if (sysfs_link_rdev(mddev, rdev))
3284                                 pr_warn("md/raid1:%s: cannot register rd%d\n",
3285                                         mdname(mddev), rdev->raid_disk);
3286                 }
3287                 if (rdev)
3288                         newmirrors[d2++].rdev = rdev;
3289         }
3290         kfree(conf->mirrors);
3291         conf->mirrors = newmirrors;
3292         kfree(conf->poolinfo);
3293         conf->poolinfo = newpoolinfo;
3294
3295         spin_lock_irqsave(&conf->device_lock, flags);
3296         mddev->degraded += (raid_disks - conf->raid_disks);
3297         spin_unlock_irqrestore(&conf->device_lock, flags);
3298         conf->raid_disks = mddev->raid_disks = raid_disks;
3299         mddev->delta_disks = 0;
3300
3301         unfreeze_array(conf);
3302
3303         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3304         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3305         md_wakeup_thread(mddev->thread);
3306
3307         mempool_exit(&oldpool);
3308         return 0;
3309 }
3310
3311 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3312 {
3313         struct r1conf *conf = mddev->private;
3314
3315         if (quiesce)
3316                 freeze_array(conf, 0);
3317         else
3318                 unfreeze_array(conf);
3319 }
3320
3321 static void *raid1_takeover(struct mddev *mddev)
3322 {
3323         /* raid1 can take over:
3324          *  raid5 with 2 devices, any layout or chunk size
3325          */
3326         if (mddev->level == 5 && mddev->raid_disks == 2) {
3327                 struct r1conf *conf;
3328                 mddev->new_level = 1;
3329                 mddev->new_layout = 0;
3330                 mddev->new_chunk_sectors = 0;
3331                 conf = setup_conf(mddev);
3332                 if (!IS_ERR(conf)) {
3333                         /* Array must appear to be quiesced */
3334                         conf->array_frozen = 1;
3335                         mddev_clear_unsupported_flags(mddev,
3336                                 UNSUPPORTED_MDDEV_FLAGS);
3337                 }
3338                 return conf;
3339         }
3340         return ERR_PTR(-EINVAL);
3341 }
3342
3343 static struct md_personality raid1_personality =
3344 {
3345         .name           = "raid1",
3346         .level          = 1,
3347         .owner          = THIS_MODULE,
3348         .make_request   = raid1_make_request,
3349         .run            = raid1_run,
3350         .free           = raid1_free,
3351         .status         = raid1_status,
3352         .error_handler  = raid1_error,
3353         .hot_add_disk   = raid1_add_disk,
3354         .hot_remove_disk= raid1_remove_disk,
3355         .spare_active   = raid1_spare_active,
3356         .sync_request   = raid1_sync_request,
3357         .resize         = raid1_resize,
3358         .size           = raid1_size,
3359         .check_reshape  = raid1_reshape,
3360         .quiesce        = raid1_quiesce,
3361         .takeover       = raid1_takeover,
3362         .congested      = raid1_congested,
3363 };
3364
3365 static int __init raid_init(void)
3366 {
3367         return register_md_personality(&raid1_personality);
3368 }
3369
3370 static void raid_exit(void)
3371 {
3372         unregister_md_personality(&raid1_personality);
3373 }
3374
3375 module_init(raid_init);
3376 module_exit(raid_exit);
3377 MODULE_LICENSE("GPL");
3378 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3379 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3380 MODULE_ALIAS("md-raid1");
3381 MODULE_ALIAS("md-level-1");
3382
3383 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);