md/raid1: be more cautious where we read-balance during resync.
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70                           sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75         struct pool_info *pi = data;
76         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78         /* allocate a r1bio with room for raid_disks entries in the bios array */
79         return kzalloc(size, gfp_flags);
80 }
81
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84         kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97         struct pool_info *pi = data;
98         struct r1bio *r1_bio;
99         struct bio *bio;
100         int need_pages;
101         int i, j;
102
103         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104         if (!r1_bio)
105                 return NULL;
106
107         /*
108          * Allocate bios : 1 for reading, n-1 for writing
109          */
110         for (j = pi->raid_disks ; j-- ; ) {
111                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112                 if (!bio)
113                         goto out_free_bio;
114                 r1_bio->bios[j] = bio;
115         }
116         /*
117          * Allocate RESYNC_PAGES data pages and attach them to
118          * the first bio.
119          * If this is a user-requested check/repair, allocate
120          * RESYNC_PAGES for each bio.
121          */
122         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123                 need_pages = pi->raid_disks;
124         else
125                 need_pages = 1;
126         for (j = 0; j < need_pages; j++) {
127                 bio = r1_bio->bios[j];
128                 bio->bi_vcnt = RESYNC_PAGES;
129
130                 if (bio_alloc_pages(bio, gfp_flags))
131                         goto out_free_pages;
132         }
133         /* If not user-requests, copy the page pointers to all bios */
134         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135                 for (i=0; i<RESYNC_PAGES ; i++)
136                         for (j=1; j<pi->raid_disks; j++)
137                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
139         }
140
141         r1_bio->master_bio = NULL;
142
143         return r1_bio;
144
145 out_free_pages:
146         while (--j >= 0) {
147                 struct bio_vec *bv;
148
149                 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150                         __free_page(bv->bv_page);
151         }
152
153 out_free_bio:
154         while (++j < pi->raid_disks)
155                 bio_put(r1_bio->bios[j]);
156         r1bio_pool_free(r1_bio, data);
157         return NULL;
158 }
159
160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162         struct pool_info *pi = data;
163         int i,j;
164         struct r1bio *r1bio = __r1_bio;
165
166         for (i = 0; i < RESYNC_PAGES; i++)
167                 for (j = pi->raid_disks; j-- ;) {
168                         if (j == 0 ||
169                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
170                             r1bio->bios[0]->bi_io_vec[i].bv_page)
171                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172                 }
173         for (i=0 ; i < pi->raid_disks; i++)
174                 bio_put(r1bio->bios[i]);
175
176         r1bio_pool_free(r1bio, data);
177 }
178
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181         int i;
182
183         for (i = 0; i < conf->raid_disks * 2; i++) {
184                 struct bio **bio = r1_bio->bios + i;
185                 if (!BIO_SPECIAL(*bio))
186                         bio_put(*bio);
187                 *bio = NULL;
188         }
189 }
190
191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193         struct r1conf *conf = r1_bio->mddev->private;
194
195         put_all_bios(conf, r1_bio);
196         mempool_free(r1_bio, conf->r1bio_pool);
197 }
198
199 static void put_buf(struct r1bio *r1_bio)
200 {
201         struct r1conf *conf = r1_bio->mddev->private;
202         int i;
203
204         for (i = 0; i < conf->raid_disks * 2; i++) {
205                 struct bio *bio = r1_bio->bios[i];
206                 if (bio->bi_end_io)
207                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208         }
209
210         mempool_free(r1_bio, conf->r1buf_pool);
211
212         lower_barrier(conf);
213 }
214
215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217         unsigned long flags;
218         struct mddev *mddev = r1_bio->mddev;
219         struct r1conf *conf = mddev->private;
220
221         spin_lock_irqsave(&conf->device_lock, flags);
222         list_add(&r1_bio->retry_list, &conf->retry_list);
223         conf->nr_queued ++;
224         spin_unlock_irqrestore(&conf->device_lock, flags);
225
226         wake_up(&conf->wait_barrier);
227         md_wakeup_thread(mddev->thread);
228 }
229
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237         struct bio *bio = r1_bio->master_bio;
238         int done;
239         struct r1conf *conf = r1_bio->mddev->private;
240         sector_t start_next_window = r1_bio->start_next_window;
241         sector_t bi_sector = bio->bi_iter.bi_sector;
242
243         if (bio->bi_phys_segments) {
244                 unsigned long flags;
245                 spin_lock_irqsave(&conf->device_lock, flags);
246                 bio->bi_phys_segments--;
247                 done = (bio->bi_phys_segments == 0);
248                 spin_unlock_irqrestore(&conf->device_lock, flags);
249                 /*
250                  * make_request() might be waiting for
251                  * bi_phys_segments to decrease
252                  */
253                 wake_up(&conf->wait_barrier);
254         } else
255                 done = 1;
256
257         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
259         if (done) {
260                 bio_endio(bio, 0);
261                 /*
262                  * Wake up any possible resync thread that waits for the device
263                  * to go idle.
264                  */
265                 allow_barrier(conf, start_next_window, bi_sector);
266         }
267 }
268
269 static void raid_end_bio_io(struct r1bio *r1_bio)
270 {
271         struct bio *bio = r1_bio->master_bio;
272
273         /* if nobody has done the final endio yet, do it now */
274         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
277                          (unsigned long long) bio->bi_iter.bi_sector,
278                          (unsigned long long) bio_end_sector(bio) - 1);
279
280                 call_bio_endio(r1_bio);
281         }
282         free_r1bio(r1_bio);
283 }
284
285 /*
286  * Update disk head position estimator based on IRQ completion info.
287  */
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289 {
290         struct r1conf *conf = r1_bio->mddev->private;
291
292         conf->mirrors[disk].head_position =
293                 r1_bio->sector + (r1_bio->sectors);
294 }
295
296 /*
297  * Find the disk number which triggered given bio
298  */
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300 {
301         int mirror;
302         struct r1conf *conf = r1_bio->mddev->private;
303         int raid_disks = conf->raid_disks;
304
305         for (mirror = 0; mirror < raid_disks * 2; mirror++)
306                 if (r1_bio->bios[mirror] == bio)
307                         break;
308
309         BUG_ON(mirror == raid_disks * 2);
310         update_head_pos(mirror, r1_bio);
311
312         return mirror;
313 }
314
315 static void raid1_end_read_request(struct bio *bio, int error)
316 {
317         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318         struct r1bio *r1_bio = bio->bi_private;
319         int mirror;
320         struct r1conf *conf = r1_bio->mddev->private;
321
322         mirror = r1_bio->read_disk;
323         /*
324          * this branch is our 'one mirror IO has finished' event handler:
325          */
326         update_head_pos(mirror, r1_bio);
327
328         if (uptodate)
329                 set_bit(R1BIO_Uptodate, &r1_bio->state);
330         else {
331                 /* If all other devices have failed, we want to return
332                  * the error upwards rather than fail the last device.
333                  * Here we redefine "uptodate" to mean "Don't want to retry"
334                  */
335                 unsigned long flags;
336                 spin_lock_irqsave(&conf->device_lock, flags);
337                 if (r1_bio->mddev->degraded == conf->raid_disks ||
338                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339                      !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340                         uptodate = 1;
341                 spin_unlock_irqrestore(&conf->device_lock, flags);
342         }
343
344         if (uptodate) {
345                 raid_end_bio_io(r1_bio);
346                 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347         } else {
348                 /*
349                  * oops, read error:
350                  */
351                 char b[BDEVNAME_SIZE];
352                 printk_ratelimited(
353                         KERN_ERR "md/raid1:%s: %s: "
354                         "rescheduling sector %llu\n",
355                         mdname(conf->mddev),
356                         bdevname(conf->mirrors[mirror].rdev->bdev,
357                                  b),
358                         (unsigned long long)r1_bio->sector);
359                 set_bit(R1BIO_ReadError, &r1_bio->state);
360                 reschedule_retry(r1_bio);
361                 /* don't drop the reference on read_disk yet */
362         }
363 }
364
365 static void close_write(struct r1bio *r1_bio)
366 {
367         /* it really is the end of this request */
368         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369                 /* free extra copy of the data pages */
370                 int i = r1_bio->behind_page_count;
371                 while (i--)
372                         safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373                 kfree(r1_bio->behind_bvecs);
374                 r1_bio->behind_bvecs = NULL;
375         }
376         /* clear the bitmap if all writes complete successfully */
377         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378                         r1_bio->sectors,
379                         !test_bit(R1BIO_Degraded, &r1_bio->state),
380                         test_bit(R1BIO_BehindIO, &r1_bio->state));
381         md_write_end(r1_bio->mddev);
382 }
383
384 static void r1_bio_write_done(struct r1bio *r1_bio)
385 {
386         if (!atomic_dec_and_test(&r1_bio->remaining))
387                 return;
388
389         if (test_bit(R1BIO_WriteError, &r1_bio->state))
390                 reschedule_retry(r1_bio);
391         else {
392                 close_write(r1_bio);
393                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394                         reschedule_retry(r1_bio);
395                 else
396                         raid_end_bio_io(r1_bio);
397         }
398 }
399
400 static void raid1_end_write_request(struct bio *bio, int error)
401 {
402         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403         struct r1bio *r1_bio = bio->bi_private;
404         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405         struct r1conf *conf = r1_bio->mddev->private;
406         struct bio *to_put = NULL;
407
408         mirror = find_bio_disk(r1_bio, bio);
409
410         /*
411          * 'one mirror IO has finished' event handler:
412          */
413         if (!uptodate) {
414                 set_bit(WriteErrorSeen,
415                         &conf->mirrors[mirror].rdev->flags);
416                 if (!test_and_set_bit(WantReplacement,
417                                       &conf->mirrors[mirror].rdev->flags))
418                         set_bit(MD_RECOVERY_NEEDED, &
419                                 conf->mddev->recovery);
420
421                 set_bit(R1BIO_WriteError, &r1_bio->state);
422         } else {
423                 /*
424                  * Set R1BIO_Uptodate in our master bio, so that we
425                  * will return a good error code for to the higher
426                  * levels even if IO on some other mirrored buffer
427                  * fails.
428                  *
429                  * The 'master' represents the composite IO operation
430                  * to user-side. So if something waits for IO, then it
431                  * will wait for the 'master' bio.
432                  */
433                 sector_t first_bad;
434                 int bad_sectors;
435
436                 r1_bio->bios[mirror] = NULL;
437                 to_put = bio;
438                 /*
439                  * Do not set R1BIO_Uptodate if the current device is
440                  * rebuilding or Faulty. This is because we cannot use
441                  * such device for properly reading the data back (we could
442                  * potentially use it, if the current write would have felt
443                  * before rdev->recovery_offset, but for simplicity we don't
444                  * check this here.
445                  */
446                 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447                     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448                         set_bit(R1BIO_Uptodate, &r1_bio->state);
449
450                 /* Maybe we can clear some bad blocks. */
451                 if (is_badblock(conf->mirrors[mirror].rdev,
452                                 r1_bio->sector, r1_bio->sectors,
453                                 &first_bad, &bad_sectors)) {
454                         r1_bio->bios[mirror] = IO_MADE_GOOD;
455                         set_bit(R1BIO_MadeGood, &r1_bio->state);
456                 }
457         }
458
459         if (behind) {
460                 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461                         atomic_dec(&r1_bio->behind_remaining);
462
463                 /*
464                  * In behind mode, we ACK the master bio once the I/O
465                  * has safely reached all non-writemostly
466                  * disks. Setting the Returned bit ensures that this
467                  * gets done only once -- we don't ever want to return
468                  * -EIO here, instead we'll wait
469                  */
470                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472                         /* Maybe we can return now */
473                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474                                 struct bio *mbio = r1_bio->master_bio;
475                                 pr_debug("raid1: behind end write sectors"
476                                          " %llu-%llu\n",
477                                          (unsigned long long) mbio->bi_iter.bi_sector,
478                                          (unsigned long long) bio_end_sector(mbio) - 1);
479                                 call_bio_endio(r1_bio);
480                         }
481                 }
482         }
483         if (r1_bio->bios[mirror] == NULL)
484                 rdev_dec_pending(conf->mirrors[mirror].rdev,
485                                  conf->mddev);
486
487         /*
488          * Let's see if all mirrored write operations have finished
489          * already.
490          */
491         r1_bio_write_done(r1_bio);
492
493         if (to_put)
494                 bio_put(to_put);
495 }
496
497
498 /*
499  * This routine returns the disk from which the requested read should
500  * be done. There is a per-array 'next expected sequential IO' sector
501  * number - if this matches on the next IO then we use the last disk.
502  * There is also a per-disk 'last know head position' sector that is
503  * maintained from IRQ contexts, both the normal and the resync IO
504  * completion handlers update this position correctly. If there is no
505  * perfect sequential match then we pick the disk whose head is closest.
506  *
507  * If there are 2 mirrors in the same 2 devices, performance degrades
508  * because position is mirror, not device based.
509  *
510  * The rdev for the device selected will have nr_pending incremented.
511  */
512 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
513 {
514         const sector_t this_sector = r1_bio->sector;
515         int sectors;
516         int best_good_sectors;
517         int best_disk, best_dist_disk, best_pending_disk;
518         int has_nonrot_disk;
519         int disk;
520         sector_t best_dist;
521         unsigned int min_pending;
522         struct md_rdev *rdev;
523         int choose_first;
524         int choose_next_idle;
525
526         rcu_read_lock();
527         /*
528          * Check if we can balance. We can balance on the whole
529          * device if no resync is going on, or below the resync window.
530          * We take the first readable disk when above the resync window.
531          */
532  retry:
533         sectors = r1_bio->sectors;
534         best_disk = -1;
535         best_dist_disk = -1;
536         best_dist = MaxSector;
537         best_pending_disk = -1;
538         min_pending = UINT_MAX;
539         best_good_sectors = 0;
540         has_nonrot_disk = 0;
541         choose_next_idle = 0;
542
543         choose_first = (conf->mddev->recovery_cp < this_sector + sectors);
544
545         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
546                 sector_t dist;
547                 sector_t first_bad;
548                 int bad_sectors;
549                 unsigned int pending;
550                 bool nonrot;
551
552                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
553                 if (r1_bio->bios[disk] == IO_BLOCKED
554                     || rdev == NULL
555                     || test_bit(Unmerged, &rdev->flags)
556                     || test_bit(Faulty, &rdev->flags))
557                         continue;
558                 if (!test_bit(In_sync, &rdev->flags) &&
559                     rdev->recovery_offset < this_sector + sectors)
560                         continue;
561                 if (test_bit(WriteMostly, &rdev->flags)) {
562                         /* Don't balance among write-mostly, just
563                          * use the first as a last resort */
564                         if (best_disk < 0) {
565                                 if (is_badblock(rdev, this_sector, sectors,
566                                                 &first_bad, &bad_sectors)) {
567                                         if (first_bad < this_sector)
568                                                 /* Cannot use this */
569                                                 continue;
570                                         best_good_sectors = first_bad - this_sector;
571                                 } else
572                                         best_good_sectors = sectors;
573                                 best_disk = disk;
574                         }
575                         continue;
576                 }
577                 /* This is a reasonable device to use.  It might
578                  * even be best.
579                  */
580                 if (is_badblock(rdev, this_sector, sectors,
581                                 &first_bad, &bad_sectors)) {
582                         if (best_dist < MaxSector)
583                                 /* already have a better device */
584                                 continue;
585                         if (first_bad <= this_sector) {
586                                 /* cannot read here. If this is the 'primary'
587                                  * device, then we must not read beyond
588                                  * bad_sectors from another device..
589                                  */
590                                 bad_sectors -= (this_sector - first_bad);
591                                 if (choose_first && sectors > bad_sectors)
592                                         sectors = bad_sectors;
593                                 if (best_good_sectors > sectors)
594                                         best_good_sectors = sectors;
595
596                         } else {
597                                 sector_t good_sectors = first_bad - this_sector;
598                                 if (good_sectors > best_good_sectors) {
599                                         best_good_sectors = good_sectors;
600                                         best_disk = disk;
601                                 }
602                                 if (choose_first)
603                                         break;
604                         }
605                         continue;
606                 } else
607                         best_good_sectors = sectors;
608
609                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
610                 has_nonrot_disk |= nonrot;
611                 pending = atomic_read(&rdev->nr_pending);
612                 dist = abs(this_sector - conf->mirrors[disk].head_position);
613                 if (choose_first) {
614                         best_disk = disk;
615                         break;
616                 }
617                 /* Don't change to another disk for sequential reads */
618                 if (conf->mirrors[disk].next_seq_sect == this_sector
619                     || dist == 0) {
620                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
621                         struct raid1_info *mirror = &conf->mirrors[disk];
622
623                         best_disk = disk;
624                         /*
625                          * If buffered sequential IO size exceeds optimal
626                          * iosize, check if there is idle disk. If yes, choose
627                          * the idle disk. read_balance could already choose an
628                          * idle disk before noticing it's a sequential IO in
629                          * this disk. This doesn't matter because this disk
630                          * will idle, next time it will be utilized after the
631                          * first disk has IO size exceeds optimal iosize. In
632                          * this way, iosize of the first disk will be optimal
633                          * iosize at least. iosize of the second disk might be
634                          * small, but not a big deal since when the second disk
635                          * starts IO, the first disk is likely still busy.
636                          */
637                         if (nonrot && opt_iosize > 0 &&
638                             mirror->seq_start != MaxSector &&
639                             mirror->next_seq_sect > opt_iosize &&
640                             mirror->next_seq_sect - opt_iosize >=
641                             mirror->seq_start) {
642                                 choose_next_idle = 1;
643                                 continue;
644                         }
645                         break;
646                 }
647                 /* If device is idle, use it */
648                 if (pending == 0) {
649                         best_disk = disk;
650                         break;
651                 }
652
653                 if (choose_next_idle)
654                         continue;
655
656                 if (min_pending > pending) {
657                         min_pending = pending;
658                         best_pending_disk = disk;
659                 }
660
661                 if (dist < best_dist) {
662                         best_dist = dist;
663                         best_dist_disk = disk;
664                 }
665         }
666
667         /*
668          * If all disks are rotational, choose the closest disk. If any disk is
669          * non-rotational, choose the disk with less pending request even the
670          * disk is rotational, which might/might not be optimal for raids with
671          * mixed ratation/non-rotational disks depending on workload.
672          */
673         if (best_disk == -1) {
674                 if (has_nonrot_disk)
675                         best_disk = best_pending_disk;
676                 else
677                         best_disk = best_dist_disk;
678         }
679
680         if (best_disk >= 0) {
681                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
682                 if (!rdev)
683                         goto retry;
684                 atomic_inc(&rdev->nr_pending);
685                 if (test_bit(Faulty, &rdev->flags)) {
686                         /* cannot risk returning a device that failed
687                          * before we inc'ed nr_pending
688                          */
689                         rdev_dec_pending(rdev, conf->mddev);
690                         goto retry;
691                 }
692                 sectors = best_good_sectors;
693
694                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
695                         conf->mirrors[best_disk].seq_start = this_sector;
696
697                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
698         }
699         rcu_read_unlock();
700         *max_sectors = sectors;
701
702         return best_disk;
703 }
704
705 static int raid1_mergeable_bvec(struct request_queue *q,
706                                 struct bvec_merge_data *bvm,
707                                 struct bio_vec *biovec)
708 {
709         struct mddev *mddev = q->queuedata;
710         struct r1conf *conf = mddev->private;
711         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
712         int max = biovec->bv_len;
713
714         if (mddev->merge_check_needed) {
715                 int disk;
716                 rcu_read_lock();
717                 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
718                         struct md_rdev *rdev = rcu_dereference(
719                                 conf->mirrors[disk].rdev);
720                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
721                                 struct request_queue *q =
722                                         bdev_get_queue(rdev->bdev);
723                                 if (q->merge_bvec_fn) {
724                                         bvm->bi_sector = sector +
725                                                 rdev->data_offset;
726                                         bvm->bi_bdev = rdev->bdev;
727                                         max = min(max, q->merge_bvec_fn(
728                                                           q, bvm, biovec));
729                                 }
730                         }
731                 }
732                 rcu_read_unlock();
733         }
734         return max;
735
736 }
737
738 int md_raid1_congested(struct mddev *mddev, int bits)
739 {
740         struct r1conf *conf = mddev->private;
741         int i, ret = 0;
742
743         if ((bits & (1 << BDI_async_congested)) &&
744             conf->pending_count >= max_queued_requests)
745                 return 1;
746
747         rcu_read_lock();
748         for (i = 0; i < conf->raid_disks * 2; i++) {
749                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
750                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
751                         struct request_queue *q = bdev_get_queue(rdev->bdev);
752
753                         BUG_ON(!q);
754
755                         /* Note the '|| 1' - when read_balance prefers
756                          * non-congested targets, it can be removed
757                          */
758                         if ((bits & (1<<BDI_async_congested)) || 1)
759                                 ret |= bdi_congested(&q->backing_dev_info, bits);
760                         else
761                                 ret &= bdi_congested(&q->backing_dev_info, bits);
762                 }
763         }
764         rcu_read_unlock();
765         return ret;
766 }
767 EXPORT_SYMBOL_GPL(md_raid1_congested);
768
769 static int raid1_congested(void *data, int bits)
770 {
771         struct mddev *mddev = data;
772
773         return mddev_congested(mddev, bits) ||
774                 md_raid1_congested(mddev, bits);
775 }
776
777 static void flush_pending_writes(struct r1conf *conf)
778 {
779         /* Any writes that have been queued but are awaiting
780          * bitmap updates get flushed here.
781          */
782         spin_lock_irq(&conf->device_lock);
783
784         if (conf->pending_bio_list.head) {
785                 struct bio *bio;
786                 bio = bio_list_get(&conf->pending_bio_list);
787                 conf->pending_count = 0;
788                 spin_unlock_irq(&conf->device_lock);
789                 /* flush any pending bitmap writes to
790                  * disk before proceeding w/ I/O */
791                 bitmap_unplug(conf->mddev->bitmap);
792                 wake_up(&conf->wait_barrier);
793
794                 while (bio) { /* submit pending writes */
795                         struct bio *next = bio->bi_next;
796                         bio->bi_next = NULL;
797                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
798                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
799                                 /* Just ignore it */
800                                 bio_endio(bio, 0);
801                         else
802                                 generic_make_request(bio);
803                         bio = next;
804                 }
805         } else
806                 spin_unlock_irq(&conf->device_lock);
807 }
808
809 /* Barriers....
810  * Sometimes we need to suspend IO while we do something else,
811  * either some resync/recovery, or reconfigure the array.
812  * To do this we raise a 'barrier'.
813  * The 'barrier' is a counter that can be raised multiple times
814  * to count how many activities are happening which preclude
815  * normal IO.
816  * We can only raise the barrier if there is no pending IO.
817  * i.e. if nr_pending == 0.
818  * We choose only to raise the barrier if no-one is waiting for the
819  * barrier to go down.  This means that as soon as an IO request
820  * is ready, no other operations which require a barrier will start
821  * until the IO request has had a chance.
822  *
823  * So: regular IO calls 'wait_barrier'.  When that returns there
824  *    is no backgroup IO happening,  It must arrange to call
825  *    allow_barrier when it has finished its IO.
826  * backgroup IO calls must call raise_barrier.  Once that returns
827  *    there is no normal IO happeing.  It must arrange to call
828  *    lower_barrier when the particular background IO completes.
829  */
830 static void raise_barrier(struct r1conf *conf)
831 {
832         spin_lock_irq(&conf->resync_lock);
833
834         /* Wait until no block IO is waiting */
835         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
836                             conf->resync_lock);
837
838         /* block any new IO from starting */
839         conf->barrier++;
840
841         /* For these conditions we must wait:
842          * A: while the array is in frozen state
843          * B: while barrier >= RESYNC_DEPTH, meaning resync reach
844          *    the max count which allowed.
845          * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
846          *    next resync will reach to the window which normal bios are
847          *    handling.
848          */
849         wait_event_lock_irq(conf->wait_barrier,
850                             !conf->array_frozen &&
851                             conf->barrier < RESYNC_DEPTH &&
852                             (conf->start_next_window >=
853                              conf->next_resync + RESYNC_SECTORS),
854                             conf->resync_lock);
855
856         spin_unlock_irq(&conf->resync_lock);
857 }
858
859 static void lower_barrier(struct r1conf *conf)
860 {
861         unsigned long flags;
862         BUG_ON(conf->barrier <= 0);
863         spin_lock_irqsave(&conf->resync_lock, flags);
864         conf->barrier--;
865         spin_unlock_irqrestore(&conf->resync_lock, flags);
866         wake_up(&conf->wait_barrier);
867 }
868
869 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
870 {
871         bool wait = false;
872
873         if (conf->array_frozen || !bio)
874                 wait = true;
875         else if (conf->barrier && bio_data_dir(bio) == WRITE) {
876                 if (conf->next_resync < RESYNC_WINDOW_SECTORS)
877                         wait = true;
878                 else if ((conf->next_resync - RESYNC_WINDOW_SECTORS
879                                 >= bio_end_sector(bio)) ||
880                          (conf->next_resync + NEXT_NORMALIO_DISTANCE
881                                 <= bio->bi_iter.bi_sector))
882                         wait = false;
883                 else
884                         wait = true;
885         }
886
887         return wait;
888 }
889
890 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
891 {
892         sector_t sector = 0;
893
894         spin_lock_irq(&conf->resync_lock);
895         if (need_to_wait_for_sync(conf, bio)) {
896                 conf->nr_waiting++;
897                 /* Wait for the barrier to drop.
898                  * However if there are already pending
899                  * requests (preventing the barrier from
900                  * rising completely), and the
901                  * pre-process bio queue isn't empty,
902                  * then don't wait, as we need to empty
903                  * that queue to get the nr_pending
904                  * count down.
905                  */
906                 wait_event_lock_irq(conf->wait_barrier,
907                                     !conf->array_frozen &&
908                                     (!conf->barrier ||
909                                     ((conf->start_next_window <
910                                       conf->next_resync + RESYNC_SECTORS) &&
911                                      current->bio_list &&
912                                      !bio_list_empty(current->bio_list))),
913                                     conf->resync_lock);
914                 conf->nr_waiting--;
915         }
916
917         if (bio && bio_data_dir(bio) == WRITE) {
918                 if (conf->next_resync + NEXT_NORMALIO_DISTANCE
919                     <= bio->bi_iter.bi_sector) {
920                         if (conf->start_next_window == MaxSector)
921                                 conf->start_next_window =
922                                         conf->next_resync +
923                                         NEXT_NORMALIO_DISTANCE;
924
925                         if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
926                             <= bio->bi_iter.bi_sector)
927                                 conf->next_window_requests++;
928                         else
929                                 conf->current_window_requests++;
930                         sector = conf->start_next_window;
931                 }
932         }
933
934         conf->nr_pending++;
935         spin_unlock_irq(&conf->resync_lock);
936         return sector;
937 }
938
939 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
940                           sector_t bi_sector)
941 {
942         unsigned long flags;
943
944         spin_lock_irqsave(&conf->resync_lock, flags);
945         conf->nr_pending--;
946         if (start_next_window) {
947                 if (start_next_window == conf->start_next_window) {
948                         if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
949                             <= bi_sector)
950                                 conf->next_window_requests--;
951                         else
952                                 conf->current_window_requests--;
953                 } else
954                         conf->current_window_requests--;
955
956                 if (!conf->current_window_requests) {
957                         if (conf->next_window_requests) {
958                                 conf->current_window_requests =
959                                         conf->next_window_requests;
960                                 conf->next_window_requests = 0;
961                                 conf->start_next_window +=
962                                         NEXT_NORMALIO_DISTANCE;
963                         } else
964                                 conf->start_next_window = MaxSector;
965                 }
966         }
967         spin_unlock_irqrestore(&conf->resync_lock, flags);
968         wake_up(&conf->wait_barrier);
969 }
970
971 static void freeze_array(struct r1conf *conf, int extra)
972 {
973         /* stop syncio and normal IO and wait for everything to
974          * go quite.
975          * We wait until nr_pending match nr_queued+extra
976          * This is called in the context of one normal IO request
977          * that has failed. Thus any sync request that might be pending
978          * will be blocked by nr_pending, and we need to wait for
979          * pending IO requests to complete or be queued for re-try.
980          * Thus the number queued (nr_queued) plus this request (extra)
981          * must match the number of pending IOs (nr_pending) before
982          * we continue.
983          */
984         spin_lock_irq(&conf->resync_lock);
985         conf->array_frozen = 1;
986         wait_event_lock_irq_cmd(conf->wait_barrier,
987                                 conf->nr_pending == conf->nr_queued+extra,
988                                 conf->resync_lock,
989                                 flush_pending_writes(conf));
990         spin_unlock_irq(&conf->resync_lock);
991 }
992 static void unfreeze_array(struct r1conf *conf)
993 {
994         /* reverse the effect of the freeze */
995         spin_lock_irq(&conf->resync_lock);
996         conf->array_frozen = 0;
997         wake_up(&conf->wait_barrier);
998         spin_unlock_irq(&conf->resync_lock);
999 }
1000
1001
1002 /* duplicate the data pages for behind I/O 
1003  */
1004 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1005 {
1006         int i;
1007         struct bio_vec *bvec;
1008         struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1009                                         GFP_NOIO);
1010         if (unlikely(!bvecs))
1011                 return;
1012
1013         bio_for_each_segment_all(bvec, bio, i) {
1014                 bvecs[i] = *bvec;
1015                 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1016                 if (unlikely(!bvecs[i].bv_page))
1017                         goto do_sync_io;
1018                 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1019                        kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1020                 kunmap(bvecs[i].bv_page);
1021                 kunmap(bvec->bv_page);
1022         }
1023         r1_bio->behind_bvecs = bvecs;
1024         r1_bio->behind_page_count = bio->bi_vcnt;
1025         set_bit(R1BIO_BehindIO, &r1_bio->state);
1026         return;
1027
1028 do_sync_io:
1029         for (i = 0; i < bio->bi_vcnt; i++)
1030                 if (bvecs[i].bv_page)
1031                         put_page(bvecs[i].bv_page);
1032         kfree(bvecs);
1033         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1034                  bio->bi_iter.bi_size);
1035 }
1036
1037 struct raid1_plug_cb {
1038         struct blk_plug_cb      cb;
1039         struct bio_list         pending;
1040         int                     pending_cnt;
1041 };
1042
1043 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1044 {
1045         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1046                                                   cb);
1047         struct mddev *mddev = plug->cb.data;
1048         struct r1conf *conf = mddev->private;
1049         struct bio *bio;
1050
1051         if (from_schedule || current->bio_list) {
1052                 spin_lock_irq(&conf->device_lock);
1053                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1054                 conf->pending_count += plug->pending_cnt;
1055                 spin_unlock_irq(&conf->device_lock);
1056                 wake_up(&conf->wait_barrier);
1057                 md_wakeup_thread(mddev->thread);
1058                 kfree(plug);
1059                 return;
1060         }
1061
1062         /* we aren't scheduling, so we can do the write-out directly. */
1063         bio = bio_list_get(&plug->pending);
1064         bitmap_unplug(mddev->bitmap);
1065         wake_up(&conf->wait_barrier);
1066
1067         while (bio) { /* submit pending writes */
1068                 struct bio *next = bio->bi_next;
1069                 bio->bi_next = NULL;
1070                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1071                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1072                         /* Just ignore it */
1073                         bio_endio(bio, 0);
1074                 else
1075                         generic_make_request(bio);
1076                 bio = next;
1077         }
1078         kfree(plug);
1079 }
1080
1081 static void make_request(struct mddev *mddev, struct bio * bio)
1082 {
1083         struct r1conf *conf = mddev->private;
1084         struct raid1_info *mirror;
1085         struct r1bio *r1_bio;
1086         struct bio *read_bio;
1087         int i, disks;
1088         struct bitmap *bitmap;
1089         unsigned long flags;
1090         const int rw = bio_data_dir(bio);
1091         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1092         const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1093         const unsigned long do_discard = (bio->bi_rw
1094                                           & (REQ_DISCARD | REQ_SECURE));
1095         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1096         struct md_rdev *blocked_rdev;
1097         struct blk_plug_cb *cb;
1098         struct raid1_plug_cb *plug = NULL;
1099         int first_clone;
1100         int sectors_handled;
1101         int max_sectors;
1102         sector_t start_next_window;
1103
1104         /*
1105          * Register the new request and wait if the reconstruction
1106          * thread has put up a bar for new requests.
1107          * Continue immediately if no resync is active currently.
1108          */
1109
1110         md_write_start(mddev, bio); /* wait on superblock update early */
1111
1112         if (bio_data_dir(bio) == WRITE &&
1113             bio_end_sector(bio) > mddev->suspend_lo &&
1114             bio->bi_iter.bi_sector < mddev->suspend_hi) {
1115                 /* As the suspend_* range is controlled by
1116                  * userspace, we want an interruptible
1117                  * wait.
1118                  */
1119                 DEFINE_WAIT(w);
1120                 for (;;) {
1121                         flush_signals(current);
1122                         prepare_to_wait(&conf->wait_barrier,
1123                                         &w, TASK_INTERRUPTIBLE);
1124                         if (bio_end_sector(bio) <= mddev->suspend_lo ||
1125                             bio->bi_iter.bi_sector >= mddev->suspend_hi)
1126                                 break;
1127                         schedule();
1128                 }
1129                 finish_wait(&conf->wait_barrier, &w);
1130         }
1131
1132         start_next_window = wait_barrier(conf, bio);
1133
1134         bitmap = mddev->bitmap;
1135
1136         /*
1137          * make_request() can abort the operation when READA is being
1138          * used and no empty request is available.
1139          *
1140          */
1141         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1142
1143         r1_bio->master_bio = bio;
1144         r1_bio->sectors = bio_sectors(bio);
1145         r1_bio->state = 0;
1146         r1_bio->mddev = mddev;
1147         r1_bio->sector = bio->bi_iter.bi_sector;
1148
1149         /* We might need to issue multiple reads to different
1150          * devices if there are bad blocks around, so we keep
1151          * track of the number of reads in bio->bi_phys_segments.
1152          * If this is 0, there is only one r1_bio and no locking
1153          * will be needed when requests complete.  If it is
1154          * non-zero, then it is the number of not-completed requests.
1155          */
1156         bio->bi_phys_segments = 0;
1157         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1158
1159         if (rw == READ) {
1160                 /*
1161                  * read balancing logic:
1162                  */
1163                 int rdisk;
1164
1165 read_again:
1166                 rdisk = read_balance(conf, r1_bio, &max_sectors);
1167
1168                 if (rdisk < 0) {
1169                         /* couldn't find anywhere to read from */
1170                         raid_end_bio_io(r1_bio);
1171                         return;
1172                 }
1173                 mirror = conf->mirrors + rdisk;
1174
1175                 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1176                     bitmap) {
1177                         /* Reading from a write-mostly device must
1178                          * take care not to over-take any writes
1179                          * that are 'behind'
1180                          */
1181                         wait_event(bitmap->behind_wait,
1182                                    atomic_read(&bitmap->behind_writes) == 0);
1183                 }
1184                 r1_bio->read_disk = rdisk;
1185
1186                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1187                 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1188                          max_sectors);
1189
1190                 r1_bio->bios[rdisk] = read_bio;
1191
1192                 read_bio->bi_iter.bi_sector = r1_bio->sector +
1193                         mirror->rdev->data_offset;
1194                 read_bio->bi_bdev = mirror->rdev->bdev;
1195                 read_bio->bi_end_io = raid1_end_read_request;
1196                 read_bio->bi_rw = READ | do_sync;
1197                 read_bio->bi_private = r1_bio;
1198
1199                 if (max_sectors < r1_bio->sectors) {
1200                         /* could not read all from this device, so we will
1201                          * need another r1_bio.
1202                          */
1203
1204                         sectors_handled = (r1_bio->sector + max_sectors
1205                                            - bio->bi_iter.bi_sector);
1206                         r1_bio->sectors = max_sectors;
1207                         spin_lock_irq(&conf->device_lock);
1208                         if (bio->bi_phys_segments == 0)
1209                                 bio->bi_phys_segments = 2;
1210                         else
1211                                 bio->bi_phys_segments++;
1212                         spin_unlock_irq(&conf->device_lock);
1213                         /* Cannot call generic_make_request directly
1214                          * as that will be queued in __make_request
1215                          * and subsequent mempool_alloc might block waiting
1216                          * for it.  So hand bio over to raid1d.
1217                          */
1218                         reschedule_retry(r1_bio);
1219
1220                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1221
1222                         r1_bio->master_bio = bio;
1223                         r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1224                         r1_bio->state = 0;
1225                         r1_bio->mddev = mddev;
1226                         r1_bio->sector = bio->bi_iter.bi_sector +
1227                                 sectors_handled;
1228                         goto read_again;
1229                 } else
1230                         generic_make_request(read_bio);
1231                 return;
1232         }
1233
1234         /*
1235          * WRITE:
1236          */
1237         if (conf->pending_count >= max_queued_requests) {
1238                 md_wakeup_thread(mddev->thread);
1239                 wait_event(conf->wait_barrier,
1240                            conf->pending_count < max_queued_requests);
1241         }
1242         /* first select target devices under rcu_lock and
1243          * inc refcount on their rdev.  Record them by setting
1244          * bios[x] to bio
1245          * If there are known/acknowledged bad blocks on any device on
1246          * which we have seen a write error, we want to avoid writing those
1247          * blocks.
1248          * This potentially requires several writes to write around
1249          * the bad blocks.  Each set of writes gets it's own r1bio
1250          * with a set of bios attached.
1251          */
1252
1253         disks = conf->raid_disks * 2;
1254  retry_write:
1255         r1_bio->start_next_window = start_next_window;
1256         blocked_rdev = NULL;
1257         rcu_read_lock();
1258         max_sectors = r1_bio->sectors;
1259         for (i = 0;  i < disks; i++) {
1260                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1261                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1262                         atomic_inc(&rdev->nr_pending);
1263                         blocked_rdev = rdev;
1264                         break;
1265                 }
1266                 r1_bio->bios[i] = NULL;
1267                 if (!rdev || test_bit(Faulty, &rdev->flags)
1268                     || test_bit(Unmerged, &rdev->flags)) {
1269                         if (i < conf->raid_disks)
1270                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1271                         continue;
1272                 }
1273
1274                 atomic_inc(&rdev->nr_pending);
1275                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1276                         sector_t first_bad;
1277                         int bad_sectors;
1278                         int is_bad;
1279
1280                         is_bad = is_badblock(rdev, r1_bio->sector,
1281                                              max_sectors,
1282                                              &first_bad, &bad_sectors);
1283                         if (is_bad < 0) {
1284                                 /* mustn't write here until the bad block is
1285                                  * acknowledged*/
1286                                 set_bit(BlockedBadBlocks, &rdev->flags);
1287                                 blocked_rdev = rdev;
1288                                 break;
1289                         }
1290                         if (is_bad && first_bad <= r1_bio->sector) {
1291                                 /* Cannot write here at all */
1292                                 bad_sectors -= (r1_bio->sector - first_bad);
1293                                 if (bad_sectors < max_sectors)
1294                                         /* mustn't write more than bad_sectors
1295                                          * to other devices yet
1296                                          */
1297                                         max_sectors = bad_sectors;
1298                                 rdev_dec_pending(rdev, mddev);
1299                                 /* We don't set R1BIO_Degraded as that
1300                                  * only applies if the disk is
1301                                  * missing, so it might be re-added,
1302                                  * and we want to know to recover this
1303                                  * chunk.
1304                                  * In this case the device is here,
1305                                  * and the fact that this chunk is not
1306                                  * in-sync is recorded in the bad
1307                                  * block log
1308                                  */
1309                                 continue;
1310                         }
1311                         if (is_bad) {
1312                                 int good_sectors = first_bad - r1_bio->sector;
1313                                 if (good_sectors < max_sectors)
1314                                         max_sectors = good_sectors;
1315                         }
1316                 }
1317                 r1_bio->bios[i] = bio;
1318         }
1319         rcu_read_unlock();
1320
1321         if (unlikely(blocked_rdev)) {
1322                 /* Wait for this device to become unblocked */
1323                 int j;
1324                 sector_t old = start_next_window;
1325
1326                 for (j = 0; j < i; j++)
1327                         if (r1_bio->bios[j])
1328                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1329                 r1_bio->state = 0;
1330                 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1331                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1332                 start_next_window = wait_barrier(conf, bio);
1333                 /*
1334                  * We must make sure the multi r1bios of bio have
1335                  * the same value of bi_phys_segments
1336                  */
1337                 if (bio->bi_phys_segments && old &&
1338                     old != start_next_window)
1339                         /* Wait for the former r1bio(s) to complete */
1340                         wait_event(conf->wait_barrier,
1341                                    bio->bi_phys_segments == 1);
1342                 goto retry_write;
1343         }
1344
1345         if (max_sectors < r1_bio->sectors) {
1346                 /* We are splitting this write into multiple parts, so
1347                  * we need to prepare for allocating another r1_bio.
1348                  */
1349                 r1_bio->sectors = max_sectors;
1350                 spin_lock_irq(&conf->device_lock);
1351                 if (bio->bi_phys_segments == 0)
1352                         bio->bi_phys_segments = 2;
1353                 else
1354                         bio->bi_phys_segments++;
1355                 spin_unlock_irq(&conf->device_lock);
1356         }
1357         sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1358
1359         atomic_set(&r1_bio->remaining, 1);
1360         atomic_set(&r1_bio->behind_remaining, 0);
1361
1362         first_clone = 1;
1363         for (i = 0; i < disks; i++) {
1364                 struct bio *mbio;
1365                 if (!r1_bio->bios[i])
1366                         continue;
1367
1368                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1369                 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1370
1371                 if (first_clone) {
1372                         /* do behind I/O ?
1373                          * Not if there are too many, or cannot
1374                          * allocate memory, or a reader on WriteMostly
1375                          * is waiting for behind writes to flush */
1376                         if (bitmap &&
1377                             (atomic_read(&bitmap->behind_writes)
1378                              < mddev->bitmap_info.max_write_behind) &&
1379                             !waitqueue_active(&bitmap->behind_wait))
1380                                 alloc_behind_pages(mbio, r1_bio);
1381
1382                         bitmap_startwrite(bitmap, r1_bio->sector,
1383                                           r1_bio->sectors,
1384                                           test_bit(R1BIO_BehindIO,
1385                                                    &r1_bio->state));
1386                         first_clone = 0;
1387                 }
1388                 if (r1_bio->behind_bvecs) {
1389                         struct bio_vec *bvec;
1390                         int j;
1391
1392                         /*
1393                          * We trimmed the bio, so _all is legit
1394                          */
1395                         bio_for_each_segment_all(bvec, mbio, j)
1396                                 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1397                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1398                                 atomic_inc(&r1_bio->behind_remaining);
1399                 }
1400
1401                 r1_bio->bios[i] = mbio;
1402
1403                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1404                                    conf->mirrors[i].rdev->data_offset);
1405                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1406                 mbio->bi_end_io = raid1_end_write_request;
1407                 mbio->bi_rw =
1408                         WRITE | do_flush_fua | do_sync | do_discard | do_same;
1409                 mbio->bi_private = r1_bio;
1410
1411                 atomic_inc(&r1_bio->remaining);
1412
1413                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1414                 if (cb)
1415                         plug = container_of(cb, struct raid1_plug_cb, cb);
1416                 else
1417                         plug = NULL;
1418                 spin_lock_irqsave(&conf->device_lock, flags);
1419                 if (plug) {
1420                         bio_list_add(&plug->pending, mbio);
1421                         plug->pending_cnt++;
1422                 } else {
1423                         bio_list_add(&conf->pending_bio_list, mbio);
1424                         conf->pending_count++;
1425                 }
1426                 spin_unlock_irqrestore(&conf->device_lock, flags);
1427                 if (!plug)
1428                         md_wakeup_thread(mddev->thread);
1429         }
1430         /* Mustn't call r1_bio_write_done before this next test,
1431          * as it could result in the bio being freed.
1432          */
1433         if (sectors_handled < bio_sectors(bio)) {
1434                 r1_bio_write_done(r1_bio);
1435                 /* We need another r1_bio.  It has already been counted
1436                  * in bio->bi_phys_segments
1437                  */
1438                 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1439                 r1_bio->master_bio = bio;
1440                 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1441                 r1_bio->state = 0;
1442                 r1_bio->mddev = mddev;
1443                 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1444                 goto retry_write;
1445         }
1446
1447         r1_bio_write_done(r1_bio);
1448
1449         /* In case raid1d snuck in to freeze_array */
1450         wake_up(&conf->wait_barrier);
1451 }
1452
1453 static void status(struct seq_file *seq, struct mddev *mddev)
1454 {
1455         struct r1conf *conf = mddev->private;
1456         int i;
1457
1458         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1459                    conf->raid_disks - mddev->degraded);
1460         rcu_read_lock();
1461         for (i = 0; i < conf->raid_disks; i++) {
1462                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1463                 seq_printf(seq, "%s",
1464                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1465         }
1466         rcu_read_unlock();
1467         seq_printf(seq, "]");
1468 }
1469
1470
1471 static void error(struct mddev *mddev, struct md_rdev *rdev)
1472 {
1473         char b[BDEVNAME_SIZE];
1474         struct r1conf *conf = mddev->private;
1475
1476         /*
1477          * If it is not operational, then we have already marked it as dead
1478          * else if it is the last working disks, ignore the error, let the
1479          * next level up know.
1480          * else mark the drive as failed
1481          */
1482         if (test_bit(In_sync, &rdev->flags)
1483             && (conf->raid_disks - mddev->degraded) == 1) {
1484                 /*
1485                  * Don't fail the drive, act as though we were just a
1486                  * normal single drive.
1487                  * However don't try a recovery from this drive as
1488                  * it is very likely to fail.
1489                  */
1490                 conf->recovery_disabled = mddev->recovery_disabled;
1491                 return;
1492         }
1493         set_bit(Blocked, &rdev->flags);
1494         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1495                 unsigned long flags;
1496                 spin_lock_irqsave(&conf->device_lock, flags);
1497                 mddev->degraded++;
1498                 set_bit(Faulty, &rdev->flags);
1499                 spin_unlock_irqrestore(&conf->device_lock, flags);
1500         } else
1501                 set_bit(Faulty, &rdev->flags);
1502         /*
1503          * if recovery is running, make sure it aborts.
1504          */
1505         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1506         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1507         printk(KERN_ALERT
1508                "md/raid1:%s: Disk failure on %s, disabling device.\n"
1509                "md/raid1:%s: Operation continuing on %d devices.\n",
1510                mdname(mddev), bdevname(rdev->bdev, b),
1511                mdname(mddev), conf->raid_disks - mddev->degraded);
1512 }
1513
1514 static void print_conf(struct r1conf *conf)
1515 {
1516         int i;
1517
1518         printk(KERN_DEBUG "RAID1 conf printout:\n");
1519         if (!conf) {
1520                 printk(KERN_DEBUG "(!conf)\n");
1521                 return;
1522         }
1523         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1524                 conf->raid_disks);
1525
1526         rcu_read_lock();
1527         for (i = 0; i < conf->raid_disks; i++) {
1528                 char b[BDEVNAME_SIZE];
1529                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1530                 if (rdev)
1531                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1532                                i, !test_bit(In_sync, &rdev->flags),
1533                                !test_bit(Faulty, &rdev->flags),
1534                                bdevname(rdev->bdev,b));
1535         }
1536         rcu_read_unlock();
1537 }
1538
1539 static void close_sync(struct r1conf *conf)
1540 {
1541         wait_barrier(conf, NULL);
1542         allow_barrier(conf, 0, 0);
1543
1544         mempool_destroy(conf->r1buf_pool);
1545         conf->r1buf_pool = NULL;
1546
1547         spin_lock_irq(&conf->resync_lock);
1548         conf->next_resync = 0;
1549         conf->start_next_window = MaxSector;
1550         conf->current_window_requests +=
1551                 conf->next_window_requests;
1552         conf->next_window_requests = 0;
1553         spin_unlock_irq(&conf->resync_lock);
1554 }
1555
1556 static int raid1_spare_active(struct mddev *mddev)
1557 {
1558         int i;
1559         struct r1conf *conf = mddev->private;
1560         int count = 0;
1561         unsigned long flags;
1562
1563         /*
1564          * Find all failed disks within the RAID1 configuration 
1565          * and mark them readable.
1566          * Called under mddev lock, so rcu protection not needed.
1567          */
1568         for (i = 0; i < conf->raid_disks; i++) {
1569                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1570                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1571                 if (repl
1572                     && repl->recovery_offset == MaxSector
1573                     && !test_bit(Faulty, &repl->flags)
1574                     && !test_and_set_bit(In_sync, &repl->flags)) {
1575                         /* replacement has just become active */
1576                         if (!rdev ||
1577                             !test_and_clear_bit(In_sync, &rdev->flags))
1578                                 count++;
1579                         if (rdev) {
1580                                 /* Replaced device not technically
1581                                  * faulty, but we need to be sure
1582                                  * it gets removed and never re-added
1583                                  */
1584                                 set_bit(Faulty, &rdev->flags);
1585                                 sysfs_notify_dirent_safe(
1586                                         rdev->sysfs_state);
1587                         }
1588                 }
1589                 if (rdev
1590                     && rdev->recovery_offset == MaxSector
1591                     && !test_bit(Faulty, &rdev->flags)
1592                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1593                         count++;
1594                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1595                 }
1596         }
1597         spin_lock_irqsave(&conf->device_lock, flags);
1598         mddev->degraded -= count;
1599         spin_unlock_irqrestore(&conf->device_lock, flags);
1600
1601         print_conf(conf);
1602         return count;
1603 }
1604
1605
1606 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1607 {
1608         struct r1conf *conf = mddev->private;
1609         int err = -EEXIST;
1610         int mirror = 0;
1611         struct raid1_info *p;
1612         int first = 0;
1613         int last = conf->raid_disks - 1;
1614         struct request_queue *q = bdev_get_queue(rdev->bdev);
1615
1616         if (mddev->recovery_disabled == conf->recovery_disabled)
1617                 return -EBUSY;
1618
1619         if (rdev->raid_disk >= 0)
1620                 first = last = rdev->raid_disk;
1621
1622         if (q->merge_bvec_fn) {
1623                 set_bit(Unmerged, &rdev->flags);
1624                 mddev->merge_check_needed = 1;
1625         }
1626
1627         for (mirror = first; mirror <= last; mirror++) {
1628                 p = conf->mirrors+mirror;
1629                 if (!p->rdev) {
1630
1631                         if (mddev->gendisk)
1632                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1633                                                   rdev->data_offset << 9);
1634
1635                         p->head_position = 0;
1636                         rdev->raid_disk = mirror;
1637                         err = 0;
1638                         /* As all devices are equivalent, we don't need a full recovery
1639                          * if this was recently any drive of the array
1640                          */
1641                         if (rdev->saved_raid_disk < 0)
1642                                 conf->fullsync = 1;
1643                         rcu_assign_pointer(p->rdev, rdev);
1644                         break;
1645                 }
1646                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1647                     p[conf->raid_disks].rdev == NULL) {
1648                         /* Add this device as a replacement */
1649                         clear_bit(In_sync, &rdev->flags);
1650                         set_bit(Replacement, &rdev->flags);
1651                         rdev->raid_disk = mirror;
1652                         err = 0;
1653                         conf->fullsync = 1;
1654                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1655                         break;
1656                 }
1657         }
1658         if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1659                 /* Some requests might not have seen this new
1660                  * merge_bvec_fn.  We must wait for them to complete
1661                  * before merging the device fully.
1662                  * First we make sure any code which has tested
1663                  * our function has submitted the request, then
1664                  * we wait for all outstanding requests to complete.
1665                  */
1666                 synchronize_sched();
1667                 freeze_array(conf, 0);
1668                 unfreeze_array(conf);
1669                 clear_bit(Unmerged, &rdev->flags);
1670         }
1671         md_integrity_add_rdev(rdev, mddev);
1672         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1673                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1674         print_conf(conf);
1675         return err;
1676 }
1677
1678 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1679 {
1680         struct r1conf *conf = mddev->private;
1681         int err = 0;
1682         int number = rdev->raid_disk;
1683         struct raid1_info *p = conf->mirrors + number;
1684
1685         if (rdev != p->rdev)
1686                 p = conf->mirrors + conf->raid_disks + number;
1687
1688         print_conf(conf);
1689         if (rdev == p->rdev) {
1690                 if (test_bit(In_sync, &rdev->flags) ||
1691                     atomic_read(&rdev->nr_pending)) {
1692                         err = -EBUSY;
1693                         goto abort;
1694                 }
1695                 /* Only remove non-faulty devices if recovery
1696                  * is not possible.
1697                  */
1698                 if (!test_bit(Faulty, &rdev->flags) &&
1699                     mddev->recovery_disabled != conf->recovery_disabled &&
1700                     mddev->degraded < conf->raid_disks) {
1701                         err = -EBUSY;
1702                         goto abort;
1703                 }
1704                 p->rdev = NULL;
1705                 synchronize_rcu();
1706                 if (atomic_read(&rdev->nr_pending)) {
1707                         /* lost the race, try later */
1708                         err = -EBUSY;
1709                         p->rdev = rdev;
1710                         goto abort;
1711                 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1712                         /* We just removed a device that is being replaced.
1713                          * Move down the replacement.  We drain all IO before
1714                          * doing this to avoid confusion.
1715                          */
1716                         struct md_rdev *repl =
1717                                 conf->mirrors[conf->raid_disks + number].rdev;
1718                         freeze_array(conf, 0);
1719                         clear_bit(Replacement, &repl->flags);
1720                         p->rdev = repl;
1721                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1722                         unfreeze_array(conf);
1723                         clear_bit(WantReplacement, &rdev->flags);
1724                 } else
1725                         clear_bit(WantReplacement, &rdev->flags);
1726                 err = md_integrity_register(mddev);
1727         }
1728 abort:
1729
1730         print_conf(conf);
1731         return err;
1732 }
1733
1734
1735 static void end_sync_read(struct bio *bio, int error)
1736 {
1737         struct r1bio *r1_bio = bio->bi_private;
1738
1739         update_head_pos(r1_bio->read_disk, r1_bio);
1740
1741         /*
1742          * we have read a block, now it needs to be re-written,
1743          * or re-read if the read failed.
1744          * We don't do much here, just schedule handling by raid1d
1745          */
1746         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1747                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1748
1749         if (atomic_dec_and_test(&r1_bio->remaining))
1750                 reschedule_retry(r1_bio);
1751 }
1752
1753 static void end_sync_write(struct bio *bio, int error)
1754 {
1755         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1756         struct r1bio *r1_bio = bio->bi_private;
1757         struct mddev *mddev = r1_bio->mddev;
1758         struct r1conf *conf = mddev->private;
1759         int mirror=0;
1760         sector_t first_bad;
1761         int bad_sectors;
1762
1763         mirror = find_bio_disk(r1_bio, bio);
1764
1765         if (!uptodate) {
1766                 sector_t sync_blocks = 0;
1767                 sector_t s = r1_bio->sector;
1768                 long sectors_to_go = r1_bio->sectors;
1769                 /* make sure these bits doesn't get cleared. */
1770                 do {
1771                         bitmap_end_sync(mddev->bitmap, s,
1772                                         &sync_blocks, 1);
1773                         s += sync_blocks;
1774                         sectors_to_go -= sync_blocks;
1775                 } while (sectors_to_go > 0);
1776                 set_bit(WriteErrorSeen,
1777                         &conf->mirrors[mirror].rdev->flags);
1778                 if (!test_and_set_bit(WantReplacement,
1779                                       &conf->mirrors[mirror].rdev->flags))
1780                         set_bit(MD_RECOVERY_NEEDED, &
1781                                 mddev->recovery);
1782                 set_bit(R1BIO_WriteError, &r1_bio->state);
1783         } else if (is_badblock(conf->mirrors[mirror].rdev,
1784                                r1_bio->sector,
1785                                r1_bio->sectors,
1786                                &first_bad, &bad_sectors) &&
1787                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1788                                 r1_bio->sector,
1789                                 r1_bio->sectors,
1790                                 &first_bad, &bad_sectors)
1791                 )
1792                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1793
1794         if (atomic_dec_and_test(&r1_bio->remaining)) {
1795                 int s = r1_bio->sectors;
1796                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1797                     test_bit(R1BIO_WriteError, &r1_bio->state))
1798                         reschedule_retry(r1_bio);
1799                 else {
1800                         put_buf(r1_bio);
1801                         md_done_sync(mddev, s, uptodate);
1802                 }
1803         }
1804 }
1805
1806 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1807                             int sectors, struct page *page, int rw)
1808 {
1809         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1810                 /* success */
1811                 return 1;
1812         if (rw == WRITE) {
1813                 set_bit(WriteErrorSeen, &rdev->flags);
1814                 if (!test_and_set_bit(WantReplacement,
1815                                       &rdev->flags))
1816                         set_bit(MD_RECOVERY_NEEDED, &
1817                                 rdev->mddev->recovery);
1818         }
1819         /* need to record an error - either for the block or the device */
1820         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1821                 md_error(rdev->mddev, rdev);
1822         return 0;
1823 }
1824
1825 static int fix_sync_read_error(struct r1bio *r1_bio)
1826 {
1827         /* Try some synchronous reads of other devices to get
1828          * good data, much like with normal read errors.  Only
1829          * read into the pages we already have so we don't
1830          * need to re-issue the read request.
1831          * We don't need to freeze the array, because being in an
1832          * active sync request, there is no normal IO, and
1833          * no overlapping syncs.
1834          * We don't need to check is_badblock() again as we
1835          * made sure that anything with a bad block in range
1836          * will have bi_end_io clear.
1837          */
1838         struct mddev *mddev = r1_bio->mddev;
1839         struct r1conf *conf = mddev->private;
1840         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1841         sector_t sect = r1_bio->sector;
1842         int sectors = r1_bio->sectors;
1843         int idx = 0;
1844
1845         while(sectors) {
1846                 int s = sectors;
1847                 int d = r1_bio->read_disk;
1848                 int success = 0;
1849                 struct md_rdev *rdev;
1850                 int start;
1851
1852                 if (s > (PAGE_SIZE>>9))
1853                         s = PAGE_SIZE >> 9;
1854                 do {
1855                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1856                                 /* No rcu protection needed here devices
1857                                  * can only be removed when no resync is
1858                                  * active, and resync is currently active
1859                                  */
1860                                 rdev = conf->mirrors[d].rdev;
1861                                 if (sync_page_io(rdev, sect, s<<9,
1862                                                  bio->bi_io_vec[idx].bv_page,
1863                                                  READ, false)) {
1864                                         success = 1;
1865                                         break;
1866                                 }
1867                         }
1868                         d++;
1869                         if (d == conf->raid_disks * 2)
1870                                 d = 0;
1871                 } while (!success && d != r1_bio->read_disk);
1872
1873                 if (!success) {
1874                         char b[BDEVNAME_SIZE];
1875                         int abort = 0;
1876                         /* Cannot read from anywhere, this block is lost.
1877                          * Record a bad block on each device.  If that doesn't
1878                          * work just disable and interrupt the recovery.
1879                          * Don't fail devices as that won't really help.
1880                          */
1881                         printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1882                                " for block %llu\n",
1883                                mdname(mddev),
1884                                bdevname(bio->bi_bdev, b),
1885                                (unsigned long long)r1_bio->sector);
1886                         for (d = 0; d < conf->raid_disks * 2; d++) {
1887                                 rdev = conf->mirrors[d].rdev;
1888                                 if (!rdev || test_bit(Faulty, &rdev->flags))
1889                                         continue;
1890                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
1891                                         abort = 1;
1892                         }
1893                         if (abort) {
1894                                 conf->recovery_disabled =
1895                                         mddev->recovery_disabled;
1896                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1897                                 md_done_sync(mddev, r1_bio->sectors, 0);
1898                                 put_buf(r1_bio);
1899                                 return 0;
1900                         }
1901                         /* Try next page */
1902                         sectors -= s;
1903                         sect += s;
1904                         idx++;
1905                         continue;
1906                 }
1907
1908                 start = d;
1909                 /* write it back and re-read */
1910                 while (d != r1_bio->read_disk) {
1911                         if (d == 0)
1912                                 d = conf->raid_disks * 2;
1913                         d--;
1914                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1915                                 continue;
1916                         rdev = conf->mirrors[d].rdev;
1917                         if (r1_sync_page_io(rdev, sect, s,
1918                                             bio->bi_io_vec[idx].bv_page,
1919                                             WRITE) == 0) {
1920                                 r1_bio->bios[d]->bi_end_io = NULL;
1921                                 rdev_dec_pending(rdev, mddev);
1922                         }
1923                 }
1924                 d = start;
1925                 while (d != r1_bio->read_disk) {
1926                         if (d == 0)
1927                                 d = conf->raid_disks * 2;
1928                         d--;
1929                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1930                                 continue;
1931                         rdev = conf->mirrors[d].rdev;
1932                         if (r1_sync_page_io(rdev, sect, s,
1933                                             bio->bi_io_vec[idx].bv_page,
1934                                             READ) != 0)
1935                                 atomic_add(s, &rdev->corrected_errors);
1936                 }
1937                 sectors -= s;
1938                 sect += s;
1939                 idx ++;
1940         }
1941         set_bit(R1BIO_Uptodate, &r1_bio->state);
1942         set_bit(BIO_UPTODATE, &bio->bi_flags);
1943         return 1;
1944 }
1945
1946 static int process_checks(struct r1bio *r1_bio)
1947 {
1948         /* We have read all readable devices.  If we haven't
1949          * got the block, then there is no hope left.
1950          * If we have, then we want to do a comparison
1951          * and skip the write if everything is the same.
1952          * If any blocks failed to read, then we need to
1953          * attempt an over-write
1954          */
1955         struct mddev *mddev = r1_bio->mddev;
1956         struct r1conf *conf = mddev->private;
1957         int primary;
1958         int i;
1959         int vcnt;
1960
1961         /* Fix variable parts of all bios */
1962         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1963         for (i = 0; i < conf->raid_disks * 2; i++) {
1964                 int j;
1965                 int size;
1966                 int uptodate;
1967                 struct bio *b = r1_bio->bios[i];
1968                 if (b->bi_end_io != end_sync_read)
1969                         continue;
1970                 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1971                 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1972                 bio_reset(b);
1973                 if (!uptodate)
1974                         clear_bit(BIO_UPTODATE, &b->bi_flags);
1975                 b->bi_vcnt = vcnt;
1976                 b->bi_iter.bi_size = r1_bio->sectors << 9;
1977                 b->bi_iter.bi_sector = r1_bio->sector +
1978                         conf->mirrors[i].rdev->data_offset;
1979                 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1980                 b->bi_end_io = end_sync_read;
1981                 b->bi_private = r1_bio;
1982
1983                 size = b->bi_iter.bi_size;
1984                 for (j = 0; j < vcnt ; j++) {
1985                         struct bio_vec *bi;
1986                         bi = &b->bi_io_vec[j];
1987                         bi->bv_offset = 0;
1988                         if (size > PAGE_SIZE)
1989                                 bi->bv_len = PAGE_SIZE;
1990                         else
1991                                 bi->bv_len = size;
1992                         size -= PAGE_SIZE;
1993                 }
1994         }
1995         for (primary = 0; primary < conf->raid_disks * 2; primary++)
1996                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1997                     test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1998                         r1_bio->bios[primary]->bi_end_io = NULL;
1999                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2000                         break;
2001                 }
2002         r1_bio->read_disk = primary;
2003         for (i = 0; i < conf->raid_disks * 2; i++) {
2004                 int j;
2005                 struct bio *pbio = r1_bio->bios[primary];
2006                 struct bio *sbio = r1_bio->bios[i];
2007                 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2008
2009                 if (sbio->bi_end_io != end_sync_read)
2010                         continue;
2011                 /* Now we can 'fixup' the BIO_UPTODATE flag */
2012                 set_bit(BIO_UPTODATE, &sbio->bi_flags);
2013
2014                 if (uptodate) {
2015                         for (j = vcnt; j-- ; ) {
2016                                 struct page *p, *s;
2017                                 p = pbio->bi_io_vec[j].bv_page;
2018                                 s = sbio->bi_io_vec[j].bv_page;
2019                                 if (memcmp(page_address(p),
2020                                            page_address(s),
2021                                            sbio->bi_io_vec[j].bv_len))
2022                                         break;
2023                         }
2024                 } else
2025                         j = 0;
2026                 if (j >= 0)
2027                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2028                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2029                               && uptodate)) {
2030                         /* No need to write to this device. */
2031                         sbio->bi_end_io = NULL;
2032                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2033                         continue;
2034                 }
2035
2036                 bio_copy_data(sbio, pbio);
2037         }
2038         return 0;
2039 }
2040
2041 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2042 {
2043         struct r1conf *conf = mddev->private;
2044         int i;
2045         int disks = conf->raid_disks * 2;
2046         struct bio *bio, *wbio;
2047
2048         bio = r1_bio->bios[r1_bio->read_disk];
2049
2050         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2051                 /* ouch - failed to read all of that. */
2052                 if (!fix_sync_read_error(r1_bio))
2053                         return;
2054
2055         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2056                 if (process_checks(r1_bio) < 0)
2057                         return;
2058         /*
2059          * schedule writes
2060          */
2061         atomic_set(&r1_bio->remaining, 1);
2062         for (i = 0; i < disks ; i++) {
2063                 wbio = r1_bio->bios[i];
2064                 if (wbio->bi_end_io == NULL ||
2065                     (wbio->bi_end_io == end_sync_read &&
2066                      (i == r1_bio->read_disk ||
2067                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2068                         continue;
2069
2070                 wbio->bi_rw = WRITE;
2071                 wbio->bi_end_io = end_sync_write;
2072                 atomic_inc(&r1_bio->remaining);
2073                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2074
2075                 generic_make_request(wbio);
2076         }
2077
2078         if (atomic_dec_and_test(&r1_bio->remaining)) {
2079                 /* if we're here, all write(s) have completed, so clean up */
2080                 int s = r1_bio->sectors;
2081                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2082                     test_bit(R1BIO_WriteError, &r1_bio->state))
2083                         reschedule_retry(r1_bio);
2084                 else {
2085                         put_buf(r1_bio);
2086                         md_done_sync(mddev, s, 1);
2087                 }
2088         }
2089 }
2090
2091 /*
2092  * This is a kernel thread which:
2093  *
2094  *      1.      Retries failed read operations on working mirrors.
2095  *      2.      Updates the raid superblock when problems encounter.
2096  *      3.      Performs writes following reads for array synchronising.
2097  */
2098
2099 static void fix_read_error(struct r1conf *conf, int read_disk,
2100                            sector_t sect, int sectors)
2101 {
2102         struct mddev *mddev = conf->mddev;
2103         while(sectors) {
2104                 int s = sectors;
2105                 int d = read_disk;
2106                 int success = 0;
2107                 int start;
2108                 struct md_rdev *rdev;
2109
2110                 if (s > (PAGE_SIZE>>9))
2111                         s = PAGE_SIZE >> 9;
2112
2113                 do {
2114                         /* Note: no rcu protection needed here
2115                          * as this is synchronous in the raid1d thread
2116                          * which is the thread that might remove
2117                          * a device.  If raid1d ever becomes multi-threaded....
2118                          */
2119                         sector_t first_bad;
2120                         int bad_sectors;
2121
2122                         rdev = conf->mirrors[d].rdev;
2123                         if (rdev &&
2124                             (test_bit(In_sync, &rdev->flags) ||
2125                              (!test_bit(Faulty, &rdev->flags) &&
2126                               rdev->recovery_offset >= sect + s)) &&
2127                             is_badblock(rdev, sect, s,
2128                                         &first_bad, &bad_sectors) == 0 &&
2129                             sync_page_io(rdev, sect, s<<9,
2130                                          conf->tmppage, READ, false))
2131                                 success = 1;
2132                         else {
2133                                 d++;
2134                                 if (d == conf->raid_disks * 2)
2135                                         d = 0;
2136                         }
2137                 } while (!success && d != read_disk);
2138
2139                 if (!success) {
2140                         /* Cannot read from anywhere - mark it bad */
2141                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2142                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2143                                 md_error(mddev, rdev);
2144                         break;
2145                 }
2146                 /* write it back and re-read */
2147                 start = d;
2148                 while (d != read_disk) {
2149                         if (d==0)
2150                                 d = conf->raid_disks * 2;
2151                         d--;
2152                         rdev = conf->mirrors[d].rdev;
2153                         if (rdev &&
2154                             test_bit(In_sync, &rdev->flags))
2155                                 r1_sync_page_io(rdev, sect, s,
2156                                                 conf->tmppage, WRITE);
2157                 }
2158                 d = start;
2159                 while (d != read_disk) {
2160                         char b[BDEVNAME_SIZE];
2161                         if (d==0)
2162                                 d = conf->raid_disks * 2;
2163                         d--;
2164                         rdev = conf->mirrors[d].rdev;
2165                         if (rdev &&
2166                             test_bit(In_sync, &rdev->flags)) {
2167                                 if (r1_sync_page_io(rdev, sect, s,
2168                                                     conf->tmppage, READ)) {
2169                                         atomic_add(s, &rdev->corrected_errors);
2170                                         printk(KERN_INFO
2171                                                "md/raid1:%s: read error corrected "
2172                                                "(%d sectors at %llu on %s)\n",
2173                                                mdname(mddev), s,
2174                                                (unsigned long long)(sect +
2175                                                    rdev->data_offset),
2176                                                bdevname(rdev->bdev, b));
2177                                 }
2178                         }
2179                 }
2180                 sectors -= s;
2181                 sect += s;
2182         }
2183 }
2184
2185 static int narrow_write_error(struct r1bio *r1_bio, int i)
2186 {
2187         struct mddev *mddev = r1_bio->mddev;
2188         struct r1conf *conf = mddev->private;
2189         struct md_rdev *rdev = conf->mirrors[i].rdev;
2190
2191         /* bio has the data to be written to device 'i' where
2192          * we just recently had a write error.
2193          * We repeatedly clone the bio and trim down to one block,
2194          * then try the write.  Where the write fails we record
2195          * a bad block.
2196          * It is conceivable that the bio doesn't exactly align with
2197          * blocks.  We must handle this somehow.
2198          *
2199          * We currently own a reference on the rdev.
2200          */
2201
2202         int block_sectors;
2203         sector_t sector;
2204         int sectors;
2205         int sect_to_write = r1_bio->sectors;
2206         int ok = 1;
2207
2208         if (rdev->badblocks.shift < 0)
2209                 return 0;
2210
2211         block_sectors = 1 << rdev->badblocks.shift;
2212         sector = r1_bio->sector;
2213         sectors = ((sector + block_sectors)
2214                    & ~(sector_t)(block_sectors - 1))
2215                 - sector;
2216
2217         while (sect_to_write) {
2218                 struct bio *wbio;
2219                 if (sectors > sect_to_write)
2220                         sectors = sect_to_write;
2221                 /* Write at 'sector' for 'sectors'*/
2222
2223                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2224                         unsigned vcnt = r1_bio->behind_page_count;
2225                         struct bio_vec *vec = r1_bio->behind_bvecs;
2226
2227                         while (!vec->bv_page) {
2228                                 vec++;
2229                                 vcnt--;
2230                         }
2231
2232                         wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2233                         memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2234
2235                         wbio->bi_vcnt = vcnt;
2236                 } else {
2237                         wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2238                 }
2239
2240                 wbio->bi_rw = WRITE;
2241                 wbio->bi_iter.bi_sector = r1_bio->sector;
2242                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2243
2244                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2245                 wbio->bi_iter.bi_sector += rdev->data_offset;
2246                 wbio->bi_bdev = rdev->bdev;
2247                 if (submit_bio_wait(WRITE, wbio) == 0)
2248                         /* failure! */
2249                         ok = rdev_set_badblocks(rdev, sector,
2250                                                 sectors, 0)
2251                                 && ok;
2252
2253                 bio_put(wbio);
2254                 sect_to_write -= sectors;
2255                 sector += sectors;
2256                 sectors = block_sectors;
2257         }
2258         return ok;
2259 }
2260
2261 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2262 {
2263         int m;
2264         int s = r1_bio->sectors;
2265         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2266                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2267                 struct bio *bio = r1_bio->bios[m];
2268                 if (bio->bi_end_io == NULL)
2269                         continue;
2270                 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2271                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2272                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2273                 }
2274                 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2275                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2276                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2277                                 md_error(conf->mddev, rdev);
2278                 }
2279         }
2280         put_buf(r1_bio);
2281         md_done_sync(conf->mddev, s, 1);
2282 }
2283
2284 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2285 {
2286         int m;
2287         for (m = 0; m < conf->raid_disks * 2 ; m++)
2288                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2289                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2290                         rdev_clear_badblocks(rdev,
2291                                              r1_bio->sector,
2292                                              r1_bio->sectors, 0);
2293                         rdev_dec_pending(rdev, conf->mddev);
2294                 } else if (r1_bio->bios[m] != NULL) {
2295                         /* This drive got a write error.  We need to
2296                          * narrow down and record precise write
2297                          * errors.
2298                          */
2299                         if (!narrow_write_error(r1_bio, m)) {
2300                                 md_error(conf->mddev,
2301                                          conf->mirrors[m].rdev);
2302                                 /* an I/O failed, we can't clear the bitmap */
2303                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2304                         }
2305                         rdev_dec_pending(conf->mirrors[m].rdev,
2306                                          conf->mddev);
2307                 }
2308         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2309                 close_write(r1_bio);
2310         raid_end_bio_io(r1_bio);
2311 }
2312
2313 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2314 {
2315         int disk;
2316         int max_sectors;
2317         struct mddev *mddev = conf->mddev;
2318         struct bio *bio;
2319         char b[BDEVNAME_SIZE];
2320         struct md_rdev *rdev;
2321
2322         clear_bit(R1BIO_ReadError, &r1_bio->state);
2323         /* we got a read error. Maybe the drive is bad.  Maybe just
2324          * the block and we can fix it.
2325          * We freeze all other IO, and try reading the block from
2326          * other devices.  When we find one, we re-write
2327          * and check it that fixes the read error.
2328          * This is all done synchronously while the array is
2329          * frozen
2330          */
2331         if (mddev->ro == 0) {
2332                 freeze_array(conf, 1);
2333                 fix_read_error(conf, r1_bio->read_disk,
2334                                r1_bio->sector, r1_bio->sectors);
2335                 unfreeze_array(conf);
2336         } else
2337                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2338         rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2339
2340         bio = r1_bio->bios[r1_bio->read_disk];
2341         bdevname(bio->bi_bdev, b);
2342 read_more:
2343         disk = read_balance(conf, r1_bio, &max_sectors);
2344         if (disk == -1) {
2345                 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2346                        " read error for block %llu\n",
2347                        mdname(mddev), b, (unsigned long long)r1_bio->sector);
2348                 raid_end_bio_io(r1_bio);
2349         } else {
2350                 const unsigned long do_sync
2351                         = r1_bio->master_bio->bi_rw & REQ_SYNC;
2352                 if (bio) {
2353                         r1_bio->bios[r1_bio->read_disk] =
2354                                 mddev->ro ? IO_BLOCKED : NULL;
2355                         bio_put(bio);
2356                 }
2357                 r1_bio->read_disk = disk;
2358                 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2359                 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2360                          max_sectors);
2361                 r1_bio->bios[r1_bio->read_disk] = bio;
2362                 rdev = conf->mirrors[disk].rdev;
2363                 printk_ratelimited(KERN_ERR
2364                                    "md/raid1:%s: redirecting sector %llu"
2365                                    " to other mirror: %s\n",
2366                                    mdname(mddev),
2367                                    (unsigned long long)r1_bio->sector,
2368                                    bdevname(rdev->bdev, b));
2369                 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2370                 bio->bi_bdev = rdev->bdev;
2371                 bio->bi_end_io = raid1_end_read_request;
2372                 bio->bi_rw = READ | do_sync;
2373                 bio->bi_private = r1_bio;
2374                 if (max_sectors < r1_bio->sectors) {
2375                         /* Drat - have to split this up more */
2376                         struct bio *mbio = r1_bio->master_bio;
2377                         int sectors_handled = (r1_bio->sector + max_sectors
2378                                                - mbio->bi_iter.bi_sector);
2379                         r1_bio->sectors = max_sectors;
2380                         spin_lock_irq(&conf->device_lock);
2381                         if (mbio->bi_phys_segments == 0)
2382                                 mbio->bi_phys_segments = 2;
2383                         else
2384                                 mbio->bi_phys_segments++;
2385                         spin_unlock_irq(&conf->device_lock);
2386                         generic_make_request(bio);
2387                         bio = NULL;
2388
2389                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2390
2391                         r1_bio->master_bio = mbio;
2392                         r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2393                         r1_bio->state = 0;
2394                         set_bit(R1BIO_ReadError, &r1_bio->state);
2395                         r1_bio->mddev = mddev;
2396                         r1_bio->sector = mbio->bi_iter.bi_sector +
2397                                 sectors_handled;
2398
2399                         goto read_more;
2400                 } else
2401                         generic_make_request(bio);
2402         }
2403 }
2404
2405 static void raid1d(struct md_thread *thread)
2406 {
2407         struct mddev *mddev = thread->mddev;
2408         struct r1bio *r1_bio;
2409         unsigned long flags;
2410         struct r1conf *conf = mddev->private;
2411         struct list_head *head = &conf->retry_list;
2412         struct blk_plug plug;
2413
2414         md_check_recovery(mddev);
2415
2416         blk_start_plug(&plug);
2417         for (;;) {
2418
2419                 flush_pending_writes(conf);
2420
2421                 spin_lock_irqsave(&conf->device_lock, flags);
2422                 if (list_empty(head)) {
2423                         spin_unlock_irqrestore(&conf->device_lock, flags);
2424                         break;
2425                 }
2426                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2427                 list_del(head->prev);
2428                 conf->nr_queued--;
2429                 spin_unlock_irqrestore(&conf->device_lock, flags);
2430
2431                 mddev = r1_bio->mddev;
2432                 conf = mddev->private;
2433                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2434                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2435                             test_bit(R1BIO_WriteError, &r1_bio->state))
2436                                 handle_sync_write_finished(conf, r1_bio);
2437                         else
2438                                 sync_request_write(mddev, r1_bio);
2439                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2440                            test_bit(R1BIO_WriteError, &r1_bio->state))
2441                         handle_write_finished(conf, r1_bio);
2442                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2443                         handle_read_error(conf, r1_bio);
2444                 else
2445                         /* just a partial read to be scheduled from separate
2446                          * context
2447                          */
2448                         generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2449
2450                 cond_resched();
2451                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2452                         md_check_recovery(mddev);
2453         }
2454         blk_finish_plug(&plug);
2455 }
2456
2457
2458 static int init_resync(struct r1conf *conf)
2459 {
2460         int buffs;
2461
2462         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2463         BUG_ON(conf->r1buf_pool);
2464         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2465                                           conf->poolinfo);
2466         if (!conf->r1buf_pool)
2467                 return -ENOMEM;
2468         conf->next_resync = 0;
2469         return 0;
2470 }
2471
2472 /*
2473  * perform a "sync" on one "block"
2474  *
2475  * We need to make sure that no normal I/O request - particularly write
2476  * requests - conflict with active sync requests.
2477  *
2478  * This is achieved by tracking pending requests and a 'barrier' concept
2479  * that can be installed to exclude normal IO requests.
2480  */
2481
2482 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2483 {
2484         struct r1conf *conf = mddev->private;
2485         struct r1bio *r1_bio;
2486         struct bio *bio;
2487         sector_t max_sector, nr_sectors;
2488         int disk = -1;
2489         int i;
2490         int wonly = -1;
2491         int write_targets = 0, read_targets = 0;
2492         sector_t sync_blocks;
2493         int still_degraded = 0;
2494         int good_sectors = RESYNC_SECTORS;
2495         int min_bad = 0; /* number of sectors that are bad in all devices */
2496
2497         if (!conf->r1buf_pool)
2498                 if (init_resync(conf))
2499                         return 0;
2500
2501         max_sector = mddev->dev_sectors;
2502         if (sector_nr >= max_sector) {
2503                 /* If we aborted, we need to abort the
2504                  * sync on the 'current' bitmap chunk (there will
2505                  * only be one in raid1 resync.
2506                  * We can find the current addess in mddev->curr_resync
2507                  */
2508                 if (mddev->curr_resync < max_sector) /* aborted */
2509                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2510                                                 &sync_blocks, 1);
2511                 else /* completed sync */
2512                         conf->fullsync = 0;
2513
2514                 bitmap_close_sync(mddev->bitmap);
2515                 close_sync(conf);
2516                 return 0;
2517         }
2518
2519         if (mddev->bitmap == NULL &&
2520             mddev->recovery_cp == MaxSector &&
2521             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2522             conf->fullsync == 0) {
2523                 *skipped = 1;
2524                 return max_sector - sector_nr;
2525         }
2526         /* before building a request, check if we can skip these blocks..
2527          * This call the bitmap_start_sync doesn't actually record anything
2528          */
2529         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2530             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2531                 /* We can skip this block, and probably several more */
2532                 *skipped = 1;
2533                 return sync_blocks;
2534         }
2535         /*
2536          * If there is non-resync activity waiting for a turn,
2537          * and resync is going fast enough,
2538          * then let it though before starting on this new sync request.
2539          */
2540         if (!go_faster && conf->nr_waiting)
2541                 msleep_interruptible(1000);
2542
2543         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2544         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2545         raise_barrier(conf);
2546
2547         conf->next_resync = sector_nr;
2548
2549         rcu_read_lock();
2550         /*
2551          * If we get a correctably read error during resync or recovery,
2552          * we might want to read from a different device.  So we
2553          * flag all drives that could conceivably be read from for READ,
2554          * and any others (which will be non-In_sync devices) for WRITE.
2555          * If a read fails, we try reading from something else for which READ
2556          * is OK.
2557          */
2558
2559         r1_bio->mddev = mddev;
2560         r1_bio->sector = sector_nr;
2561         r1_bio->state = 0;
2562         set_bit(R1BIO_IsSync, &r1_bio->state);
2563
2564         for (i = 0; i < conf->raid_disks * 2; i++) {
2565                 struct md_rdev *rdev;
2566                 bio = r1_bio->bios[i];
2567                 bio_reset(bio);
2568
2569                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2570                 if (rdev == NULL ||
2571                     test_bit(Faulty, &rdev->flags)) {
2572                         if (i < conf->raid_disks)
2573                                 still_degraded = 1;
2574                 } else if (!test_bit(In_sync, &rdev->flags)) {
2575                         bio->bi_rw = WRITE;
2576                         bio->bi_end_io = end_sync_write;
2577                         write_targets ++;
2578                 } else {
2579                         /* may need to read from here */
2580                         sector_t first_bad = MaxSector;
2581                         int bad_sectors;
2582
2583                         if (is_badblock(rdev, sector_nr, good_sectors,
2584                                         &first_bad, &bad_sectors)) {
2585                                 if (first_bad > sector_nr)
2586                                         good_sectors = first_bad - sector_nr;
2587                                 else {
2588                                         bad_sectors -= (sector_nr - first_bad);
2589                                         if (min_bad == 0 ||
2590                                             min_bad > bad_sectors)
2591                                                 min_bad = bad_sectors;
2592                                 }
2593                         }
2594                         if (sector_nr < first_bad) {
2595                                 if (test_bit(WriteMostly, &rdev->flags)) {
2596                                         if (wonly < 0)
2597                                                 wonly = i;
2598                                 } else {
2599                                         if (disk < 0)
2600                                                 disk = i;
2601                                 }
2602                                 bio->bi_rw = READ;
2603                                 bio->bi_end_io = end_sync_read;
2604                                 read_targets++;
2605                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2606                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2607                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2608                                 /*
2609                                  * The device is suitable for reading (InSync),
2610                                  * but has bad block(s) here. Let's try to correct them,
2611                                  * if we are doing resync or repair. Otherwise, leave
2612                                  * this device alone for this sync request.
2613                                  */
2614                                 bio->bi_rw = WRITE;
2615                                 bio->bi_end_io = end_sync_write;
2616                                 write_targets++;
2617                         }
2618                 }
2619                 if (bio->bi_end_io) {
2620                         atomic_inc(&rdev->nr_pending);
2621                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2622                         bio->bi_bdev = rdev->bdev;
2623                         bio->bi_private = r1_bio;
2624                 }
2625         }
2626         rcu_read_unlock();
2627         if (disk < 0)
2628                 disk = wonly;
2629         r1_bio->read_disk = disk;
2630
2631         if (read_targets == 0 && min_bad > 0) {
2632                 /* These sectors are bad on all InSync devices, so we
2633                  * need to mark them bad on all write targets
2634                  */
2635                 int ok = 1;
2636                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2637                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2638                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2639                                 ok = rdev_set_badblocks(rdev, sector_nr,
2640                                                         min_bad, 0
2641                                         ) && ok;
2642                         }
2643                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2644                 *skipped = 1;
2645                 put_buf(r1_bio);
2646
2647                 if (!ok) {
2648                         /* Cannot record the badblocks, so need to
2649                          * abort the resync.
2650                          * If there are multiple read targets, could just
2651                          * fail the really bad ones ???
2652                          */
2653                         conf->recovery_disabled = mddev->recovery_disabled;
2654                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2655                         return 0;
2656                 } else
2657                         return min_bad;
2658
2659         }
2660         if (min_bad > 0 && min_bad < good_sectors) {
2661                 /* only resync enough to reach the next bad->good
2662                  * transition */
2663                 good_sectors = min_bad;
2664         }
2665
2666         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2667                 /* extra read targets are also write targets */
2668                 write_targets += read_targets-1;
2669
2670         if (write_targets == 0 || read_targets == 0) {
2671                 /* There is nowhere to write, so all non-sync
2672                  * drives must be failed - so we are finished
2673                  */
2674                 sector_t rv;
2675                 if (min_bad > 0)
2676                         max_sector = sector_nr + min_bad;
2677                 rv = max_sector - sector_nr;
2678                 *skipped = 1;
2679                 put_buf(r1_bio);
2680                 return rv;
2681         }
2682
2683         if (max_sector > mddev->resync_max)
2684                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2685         if (max_sector > sector_nr + good_sectors)
2686                 max_sector = sector_nr + good_sectors;
2687         nr_sectors = 0;
2688         sync_blocks = 0;
2689         do {
2690                 struct page *page;
2691                 int len = PAGE_SIZE;
2692                 if (sector_nr + (len>>9) > max_sector)
2693                         len = (max_sector - sector_nr) << 9;
2694                 if (len == 0)
2695                         break;
2696                 if (sync_blocks == 0) {
2697                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2698                                                &sync_blocks, still_degraded) &&
2699                             !conf->fullsync &&
2700                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2701                                 break;
2702                         BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2703                         if ((len >> 9) > sync_blocks)
2704                                 len = sync_blocks<<9;
2705                 }
2706
2707                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2708                         bio = r1_bio->bios[i];
2709                         if (bio->bi_end_io) {
2710                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2711                                 if (bio_add_page(bio, page, len, 0) == 0) {
2712                                         /* stop here */
2713                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2714                                         while (i > 0) {
2715                                                 i--;
2716                                                 bio = r1_bio->bios[i];
2717                                                 if (bio->bi_end_io==NULL)
2718                                                         continue;
2719                                                 /* remove last page from this bio */
2720                                                 bio->bi_vcnt--;
2721                                                 bio->bi_iter.bi_size -= len;
2722                                                 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2723                                         }
2724                                         goto bio_full;
2725                                 }
2726                         }
2727                 }
2728                 nr_sectors += len>>9;
2729                 sector_nr += len>>9;
2730                 sync_blocks -= (len>>9);
2731         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2732  bio_full:
2733         r1_bio->sectors = nr_sectors;
2734
2735         /* For a user-requested sync, we read all readable devices and do a
2736          * compare
2737          */
2738         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2739                 atomic_set(&r1_bio->remaining, read_targets);
2740                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2741                         bio = r1_bio->bios[i];
2742                         if (bio->bi_end_io == end_sync_read) {
2743                                 read_targets--;
2744                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2745                                 generic_make_request(bio);
2746                         }
2747                 }
2748         } else {
2749                 atomic_set(&r1_bio->remaining, 1);
2750                 bio = r1_bio->bios[r1_bio->read_disk];
2751                 md_sync_acct(bio->bi_bdev, nr_sectors);
2752                 generic_make_request(bio);
2753
2754         }
2755         return nr_sectors;
2756 }
2757
2758 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2759 {
2760         if (sectors)
2761                 return sectors;
2762
2763         return mddev->dev_sectors;
2764 }
2765
2766 static struct r1conf *setup_conf(struct mddev *mddev)
2767 {
2768         struct r1conf *conf;
2769         int i;
2770         struct raid1_info *disk;
2771         struct md_rdev *rdev;
2772         int err = -ENOMEM;
2773
2774         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2775         if (!conf)
2776                 goto abort;
2777
2778         conf->mirrors = kzalloc(sizeof(struct raid1_info)
2779                                 * mddev->raid_disks * 2,
2780                                  GFP_KERNEL);
2781         if (!conf->mirrors)
2782                 goto abort;
2783
2784         conf->tmppage = alloc_page(GFP_KERNEL);
2785         if (!conf->tmppage)
2786                 goto abort;
2787
2788         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2789         if (!conf->poolinfo)
2790                 goto abort;
2791         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2792         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2793                                           r1bio_pool_free,
2794                                           conf->poolinfo);
2795         if (!conf->r1bio_pool)
2796                 goto abort;
2797
2798         conf->poolinfo->mddev = mddev;
2799
2800         err = -EINVAL;
2801         spin_lock_init(&conf->device_lock);
2802         rdev_for_each(rdev, mddev) {
2803                 struct request_queue *q;
2804                 int disk_idx = rdev->raid_disk;
2805                 if (disk_idx >= mddev->raid_disks
2806                     || disk_idx < 0)
2807                         continue;
2808                 if (test_bit(Replacement, &rdev->flags))
2809                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2810                 else
2811                         disk = conf->mirrors + disk_idx;
2812
2813                 if (disk->rdev)
2814                         goto abort;
2815                 disk->rdev = rdev;
2816                 q = bdev_get_queue(rdev->bdev);
2817                 if (q->merge_bvec_fn)
2818                         mddev->merge_check_needed = 1;
2819
2820                 disk->head_position = 0;
2821                 disk->seq_start = MaxSector;
2822         }
2823         conf->raid_disks = mddev->raid_disks;
2824         conf->mddev = mddev;
2825         INIT_LIST_HEAD(&conf->retry_list);
2826
2827         spin_lock_init(&conf->resync_lock);
2828         init_waitqueue_head(&conf->wait_barrier);
2829
2830         bio_list_init(&conf->pending_bio_list);
2831         conf->pending_count = 0;
2832         conf->recovery_disabled = mddev->recovery_disabled - 1;
2833
2834         conf->start_next_window = MaxSector;
2835         conf->current_window_requests = conf->next_window_requests = 0;
2836
2837         err = -EIO;
2838         for (i = 0; i < conf->raid_disks * 2; i++) {
2839
2840                 disk = conf->mirrors + i;
2841
2842                 if (i < conf->raid_disks &&
2843                     disk[conf->raid_disks].rdev) {
2844                         /* This slot has a replacement. */
2845                         if (!disk->rdev) {
2846                                 /* No original, just make the replacement
2847                                  * a recovering spare
2848                                  */
2849                                 disk->rdev =
2850                                         disk[conf->raid_disks].rdev;
2851                                 disk[conf->raid_disks].rdev = NULL;
2852                         } else if (!test_bit(In_sync, &disk->rdev->flags))
2853                                 /* Original is not in_sync - bad */
2854                                 goto abort;
2855                 }
2856
2857                 if (!disk->rdev ||
2858                     !test_bit(In_sync, &disk->rdev->flags)) {
2859                         disk->head_position = 0;
2860                         if (disk->rdev &&
2861                             (disk->rdev->saved_raid_disk < 0))
2862                                 conf->fullsync = 1;
2863                 }
2864         }
2865
2866         err = -ENOMEM;
2867         conf->thread = md_register_thread(raid1d, mddev, "raid1");
2868         if (!conf->thread) {
2869                 printk(KERN_ERR
2870                        "md/raid1:%s: couldn't allocate thread\n",
2871                        mdname(mddev));
2872                 goto abort;
2873         }
2874
2875         return conf;
2876
2877  abort:
2878         if (conf) {
2879                 if (conf->r1bio_pool)
2880                         mempool_destroy(conf->r1bio_pool);
2881                 kfree(conf->mirrors);
2882                 safe_put_page(conf->tmppage);
2883                 kfree(conf->poolinfo);
2884                 kfree(conf);
2885         }
2886         return ERR_PTR(err);
2887 }
2888
2889 static int stop(struct mddev *mddev);
2890 static int run(struct mddev *mddev)
2891 {
2892         struct r1conf *conf;
2893         int i;
2894         struct md_rdev *rdev;
2895         int ret;
2896         bool discard_supported = false;
2897
2898         if (mddev->level != 1) {
2899                 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2900                        mdname(mddev), mddev->level);
2901                 return -EIO;
2902         }
2903         if (mddev->reshape_position != MaxSector) {
2904                 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2905                        mdname(mddev));
2906                 return -EIO;
2907         }
2908         /*
2909          * copy the already verified devices into our private RAID1
2910          * bookkeeping area. [whatever we allocate in run(),
2911          * should be freed in stop()]
2912          */
2913         if (mddev->private == NULL)
2914                 conf = setup_conf(mddev);
2915         else
2916                 conf = mddev->private;
2917
2918         if (IS_ERR(conf))
2919                 return PTR_ERR(conf);
2920
2921         if (mddev->queue)
2922                 blk_queue_max_write_same_sectors(mddev->queue, 0);
2923
2924         rdev_for_each(rdev, mddev) {
2925                 if (!mddev->gendisk)
2926                         continue;
2927                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2928                                   rdev->data_offset << 9);
2929                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2930                         discard_supported = true;
2931         }
2932
2933         mddev->degraded = 0;
2934         for (i=0; i < conf->raid_disks; i++)
2935                 if (conf->mirrors[i].rdev == NULL ||
2936                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2937                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2938                         mddev->degraded++;
2939
2940         if (conf->raid_disks - mddev->degraded == 1)
2941                 mddev->recovery_cp = MaxSector;
2942
2943         if (mddev->recovery_cp != MaxSector)
2944                 printk(KERN_NOTICE "md/raid1:%s: not clean"
2945                        " -- starting background reconstruction\n",
2946                        mdname(mddev));
2947         printk(KERN_INFO 
2948                 "md/raid1:%s: active with %d out of %d mirrors\n",
2949                 mdname(mddev), mddev->raid_disks - mddev->degraded, 
2950                 mddev->raid_disks);
2951
2952         /*
2953          * Ok, everything is just fine now
2954          */
2955         mddev->thread = conf->thread;
2956         conf->thread = NULL;
2957         mddev->private = conf;
2958
2959         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2960
2961         if (mddev->queue) {
2962                 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2963                 mddev->queue->backing_dev_info.congested_data = mddev;
2964                 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2965
2966                 if (discard_supported)
2967                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2968                                                 mddev->queue);
2969                 else
2970                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2971                                                   mddev->queue);
2972         }
2973
2974         ret =  md_integrity_register(mddev);
2975         if (ret)
2976                 stop(mddev);
2977         return ret;
2978 }
2979
2980 static int stop(struct mddev *mddev)
2981 {
2982         struct r1conf *conf = mddev->private;
2983         struct bitmap *bitmap = mddev->bitmap;
2984
2985         /* wait for behind writes to complete */
2986         if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2987                 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2988                        mdname(mddev));
2989                 /* need to kick something here to make sure I/O goes? */
2990                 wait_event(bitmap->behind_wait,
2991                            atomic_read(&bitmap->behind_writes) == 0);
2992         }
2993
2994         freeze_array(conf, 0);
2995         unfreeze_array(conf);
2996
2997         md_unregister_thread(&mddev->thread);
2998         if (conf->r1bio_pool)
2999                 mempool_destroy(conf->r1bio_pool);
3000         kfree(conf->mirrors);
3001         safe_put_page(conf->tmppage);
3002         kfree(conf->poolinfo);
3003         kfree(conf);
3004         mddev->private = NULL;
3005         return 0;
3006 }
3007
3008 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3009 {
3010         /* no resync is happening, and there is enough space
3011          * on all devices, so we can resize.
3012          * We need to make sure resync covers any new space.
3013          * If the array is shrinking we should possibly wait until
3014          * any io in the removed space completes, but it hardly seems
3015          * worth it.
3016          */
3017         sector_t newsize = raid1_size(mddev, sectors, 0);
3018         if (mddev->external_size &&
3019             mddev->array_sectors > newsize)
3020                 return -EINVAL;
3021         if (mddev->bitmap) {
3022                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3023                 if (ret)
3024                         return ret;
3025         }
3026         md_set_array_sectors(mddev, newsize);
3027         set_capacity(mddev->gendisk, mddev->array_sectors);
3028         revalidate_disk(mddev->gendisk);
3029         if (sectors > mddev->dev_sectors &&
3030             mddev->recovery_cp > mddev->dev_sectors) {
3031                 mddev->recovery_cp = mddev->dev_sectors;
3032                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3033         }
3034         mddev->dev_sectors = sectors;
3035         mddev->resync_max_sectors = sectors;
3036         return 0;
3037 }
3038
3039 static int raid1_reshape(struct mddev *mddev)
3040 {
3041         /* We need to:
3042          * 1/ resize the r1bio_pool
3043          * 2/ resize conf->mirrors
3044          *
3045          * We allocate a new r1bio_pool if we can.
3046          * Then raise a device barrier and wait until all IO stops.
3047          * Then resize conf->mirrors and swap in the new r1bio pool.
3048          *
3049          * At the same time, we "pack" the devices so that all the missing
3050          * devices have the higher raid_disk numbers.
3051          */
3052         mempool_t *newpool, *oldpool;
3053         struct pool_info *newpoolinfo;
3054         struct raid1_info *newmirrors;
3055         struct r1conf *conf = mddev->private;
3056         int cnt, raid_disks;
3057         unsigned long flags;
3058         int d, d2, err;
3059
3060         /* Cannot change chunk_size, layout, or level */
3061         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3062             mddev->layout != mddev->new_layout ||
3063             mddev->level != mddev->new_level) {
3064                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3065                 mddev->new_layout = mddev->layout;
3066                 mddev->new_level = mddev->level;
3067                 return -EINVAL;
3068         }
3069
3070         err = md_allow_write(mddev);
3071         if (err)
3072                 return err;
3073
3074         raid_disks = mddev->raid_disks + mddev->delta_disks;
3075
3076         if (raid_disks < conf->raid_disks) {
3077                 cnt=0;
3078                 for (d= 0; d < conf->raid_disks; d++)
3079                         if (conf->mirrors[d].rdev)
3080                                 cnt++;
3081                 if (cnt > raid_disks)
3082                         return -EBUSY;
3083         }
3084
3085         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3086         if (!newpoolinfo)
3087                 return -ENOMEM;
3088         newpoolinfo->mddev = mddev;
3089         newpoolinfo->raid_disks = raid_disks * 2;
3090
3091         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3092                                  r1bio_pool_free, newpoolinfo);
3093         if (!newpool) {
3094                 kfree(newpoolinfo);
3095                 return -ENOMEM;
3096         }
3097         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3098                              GFP_KERNEL);
3099         if (!newmirrors) {
3100                 kfree(newpoolinfo);
3101                 mempool_destroy(newpool);
3102                 return -ENOMEM;
3103         }
3104
3105         freeze_array(conf, 0);
3106
3107         /* ok, everything is stopped */
3108         oldpool = conf->r1bio_pool;
3109         conf->r1bio_pool = newpool;
3110
3111         for (d = d2 = 0; d < conf->raid_disks; d++) {
3112                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3113                 if (rdev && rdev->raid_disk != d2) {
3114                         sysfs_unlink_rdev(mddev, rdev);
3115                         rdev->raid_disk = d2;
3116                         sysfs_unlink_rdev(mddev, rdev);
3117                         if (sysfs_link_rdev(mddev, rdev))
3118                                 printk(KERN_WARNING
3119                                        "md/raid1:%s: cannot register rd%d\n",
3120                                        mdname(mddev), rdev->raid_disk);
3121                 }
3122                 if (rdev)
3123                         newmirrors[d2++].rdev = rdev;
3124         }
3125         kfree(conf->mirrors);
3126         conf->mirrors = newmirrors;
3127         kfree(conf->poolinfo);
3128         conf->poolinfo = newpoolinfo;
3129
3130         spin_lock_irqsave(&conf->device_lock, flags);
3131         mddev->degraded += (raid_disks - conf->raid_disks);
3132         spin_unlock_irqrestore(&conf->device_lock, flags);
3133         conf->raid_disks = mddev->raid_disks = raid_disks;
3134         mddev->delta_disks = 0;
3135
3136         unfreeze_array(conf);
3137
3138         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3139         md_wakeup_thread(mddev->thread);
3140
3141         mempool_destroy(oldpool);
3142         return 0;
3143 }
3144
3145 static void raid1_quiesce(struct mddev *mddev, int state)
3146 {
3147         struct r1conf *conf = mddev->private;
3148
3149         switch(state) {
3150         case 2: /* wake for suspend */
3151                 wake_up(&conf->wait_barrier);
3152                 break;
3153         case 1:
3154                 freeze_array(conf, 0);
3155                 break;
3156         case 0:
3157                 unfreeze_array(conf);
3158                 break;
3159         }
3160 }
3161
3162 static void *raid1_takeover(struct mddev *mddev)
3163 {
3164         /* raid1 can take over:
3165          *  raid5 with 2 devices, any layout or chunk size
3166          */
3167         if (mddev->level == 5 && mddev->raid_disks == 2) {
3168                 struct r1conf *conf;
3169                 mddev->new_level = 1;
3170                 mddev->new_layout = 0;
3171                 mddev->new_chunk_sectors = 0;
3172                 conf = setup_conf(mddev);
3173                 if (!IS_ERR(conf))
3174                         /* Array must appear to be quiesced */
3175                         conf->array_frozen = 1;
3176                 return conf;
3177         }
3178         return ERR_PTR(-EINVAL);
3179 }
3180
3181 static struct md_personality raid1_personality =
3182 {
3183         .name           = "raid1",
3184         .level          = 1,
3185         .owner          = THIS_MODULE,
3186         .make_request   = make_request,
3187         .run            = run,
3188         .stop           = stop,
3189         .status         = status,
3190         .error_handler  = error,
3191         .hot_add_disk   = raid1_add_disk,
3192         .hot_remove_disk= raid1_remove_disk,
3193         .spare_active   = raid1_spare_active,
3194         .sync_request   = sync_request,
3195         .resize         = raid1_resize,
3196         .size           = raid1_size,
3197         .check_reshape  = raid1_reshape,
3198         .quiesce        = raid1_quiesce,
3199         .takeover       = raid1_takeover,
3200 };
3201
3202 static int __init raid_init(void)
3203 {
3204         return register_md_personality(&raid1_personality);
3205 }
3206
3207 static void raid_exit(void)
3208 {
3209         unregister_md_personality(&raid1_personality);
3210 }
3211
3212 module_init(raid_init);
3213 module_exit(raid_exit);
3214 MODULE_LICENSE("GPL");
3215 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3216 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3217 MODULE_ALIAS("md-raid1");
3218 MODULE_ALIAS("md-level-1");
3219
3220 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);