drivers: media: pisp_be: Update seqeuence numbers of the buffers
[platform/kernel/linux-rpi.git] / drivers / md / persistent-data / dm-array.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Red Hat, Inc.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm-array.h"
9 #include "dm-space-map.h"
10 #include "dm-transaction-manager.h"
11
12 #include <linux/export.h>
13 #include <linux/device-mapper.h>
14
15 #define DM_MSG_PREFIX "array"
16
17 /*----------------------------------------------------------------*/
18
19 /*
20  * The array is implemented as a fully populated btree, which points to
21  * blocks that contain the packed values.  This is more space efficient
22  * than just using a btree since we don't store 1 key per value.
23  */
24 struct array_block {
25         __le32 csum;
26         __le32 max_entries;
27         __le32 nr_entries;
28         __le32 value_size;
29         __le64 blocknr; /* Block this node is supposed to live in. */
30 } __packed;
31
32 /*----------------------------------------------------------------*/
33
34 /*
35  * Validator methods.  As usual we calculate a checksum, and also write the
36  * block location into the header (paranoia about ssds remapping areas by
37  * mistake).
38  */
39 #define CSUM_XOR 595846735
40
41 static void array_block_prepare_for_write(struct dm_block_validator *v,
42                                           struct dm_block *b,
43                                           size_t size_of_block)
44 {
45         struct array_block *bh_le = dm_block_data(b);
46
47         bh_le->blocknr = cpu_to_le64(dm_block_location(b));
48         bh_le->csum = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries,
49                                                  size_of_block - sizeof(__le32),
50                                                  CSUM_XOR));
51 }
52
53 static int array_block_check(struct dm_block_validator *v,
54                              struct dm_block *b,
55                              size_t size_of_block)
56 {
57         struct array_block *bh_le = dm_block_data(b);
58         __le32 csum_disk;
59
60         if (dm_block_location(b) != le64_to_cpu(bh_le->blocknr)) {
61                 DMERR_LIMIT("%s failed: blocknr %llu != wanted %llu", __func__,
62                             (unsigned long long) le64_to_cpu(bh_le->blocknr),
63                             (unsigned long long) dm_block_location(b));
64                 return -ENOTBLK;
65         }
66
67         csum_disk = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries,
68                                                size_of_block - sizeof(__le32),
69                                                CSUM_XOR));
70         if (csum_disk != bh_le->csum) {
71                 DMERR_LIMIT("%s failed: csum %u != wanted %u", __func__,
72                             (unsigned int) le32_to_cpu(csum_disk),
73                             (unsigned int) le32_to_cpu(bh_le->csum));
74                 return -EILSEQ;
75         }
76
77         return 0;
78 }
79
80 static struct dm_block_validator array_validator = {
81         .name = "array",
82         .prepare_for_write = array_block_prepare_for_write,
83         .check = array_block_check
84 };
85
86 /*----------------------------------------------------------------*/
87
88 /*
89  * Functions for manipulating the array blocks.
90  */
91
92 /*
93  * Returns a pointer to a value within an array block.
94  *
95  * index - The index into _this_ specific block.
96  */
97 static void *element_at(struct dm_array_info *info, struct array_block *ab,
98                         unsigned int index)
99 {
100         unsigned char *entry = (unsigned char *) (ab + 1);
101
102         entry += index * info->value_type.size;
103
104         return entry;
105 }
106
107 /*
108  * Utility function that calls one of the value_type methods on every value
109  * in an array block.
110  */
111 static void on_entries(struct dm_array_info *info, struct array_block *ab,
112                        void (*fn)(void *, const void *, unsigned int))
113 {
114         unsigned int nr_entries = le32_to_cpu(ab->nr_entries);
115
116         fn(info->value_type.context, element_at(info, ab, 0), nr_entries);
117 }
118
119 /*
120  * Increment every value in an array block.
121  */
122 static void inc_ablock_entries(struct dm_array_info *info, struct array_block *ab)
123 {
124         struct dm_btree_value_type *vt = &info->value_type;
125
126         if (vt->inc)
127                 on_entries(info, ab, vt->inc);
128 }
129
130 /*
131  * Decrement every value in an array block.
132  */
133 static void dec_ablock_entries(struct dm_array_info *info, struct array_block *ab)
134 {
135         struct dm_btree_value_type *vt = &info->value_type;
136
137         if (vt->dec)
138                 on_entries(info, ab, vt->dec);
139 }
140
141 /*
142  * Each array block can hold this many values.
143  */
144 static uint32_t calc_max_entries(size_t value_size, size_t size_of_block)
145 {
146         return (size_of_block - sizeof(struct array_block)) / value_size;
147 }
148
149 /*
150  * Allocate a new array block.  The caller will need to unlock block.
151  */
152 static int alloc_ablock(struct dm_array_info *info, size_t size_of_block,
153                         uint32_t max_entries,
154                         struct dm_block **block, struct array_block **ab)
155 {
156         int r;
157
158         r = dm_tm_new_block(info->btree_info.tm, &array_validator, block);
159         if (r)
160                 return r;
161
162         (*ab) = dm_block_data(*block);
163         (*ab)->max_entries = cpu_to_le32(max_entries);
164         (*ab)->nr_entries = cpu_to_le32(0);
165         (*ab)->value_size = cpu_to_le32(info->value_type.size);
166
167         return 0;
168 }
169
170 /*
171  * Pad an array block out with a particular value.  Every instance will
172  * cause an increment of the value_type.  new_nr must always be more than
173  * the current number of entries.
174  */
175 static void fill_ablock(struct dm_array_info *info, struct array_block *ab,
176                         const void *value, unsigned int new_nr)
177 {
178         uint32_t nr_entries, delta, i;
179         struct dm_btree_value_type *vt = &info->value_type;
180
181         BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
182         BUG_ON(new_nr < le32_to_cpu(ab->nr_entries));
183
184         nr_entries = le32_to_cpu(ab->nr_entries);
185         delta = new_nr - nr_entries;
186         if (vt->inc)
187                 vt->inc(vt->context, value, delta);
188         for (i = nr_entries; i < new_nr; i++)
189                 memcpy(element_at(info, ab, i), value, vt->size);
190         ab->nr_entries = cpu_to_le32(new_nr);
191 }
192
193 /*
194  * Remove some entries from the back of an array block.  Every value
195  * removed will be decremented.  new_nr must be <= the current number of
196  * entries.
197  */
198 static void trim_ablock(struct dm_array_info *info, struct array_block *ab,
199                         unsigned int new_nr)
200 {
201         uint32_t nr_entries, delta;
202         struct dm_btree_value_type *vt = &info->value_type;
203
204         BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
205         BUG_ON(new_nr > le32_to_cpu(ab->nr_entries));
206
207         nr_entries = le32_to_cpu(ab->nr_entries);
208         delta = nr_entries - new_nr;
209         if (vt->dec)
210                 vt->dec(vt->context, element_at(info, ab, new_nr - 1), delta);
211         ab->nr_entries = cpu_to_le32(new_nr);
212 }
213
214 /*
215  * Read locks a block, and coerces it to an array block.  The caller must
216  * unlock 'block' when finished.
217  */
218 static int get_ablock(struct dm_array_info *info, dm_block_t b,
219                       struct dm_block **block, struct array_block **ab)
220 {
221         int r;
222
223         r = dm_tm_read_lock(info->btree_info.tm, b, &array_validator, block);
224         if (r)
225                 return r;
226
227         *ab = dm_block_data(*block);
228         return 0;
229 }
230
231 /*
232  * Unlocks an array block.
233  */
234 static void unlock_ablock(struct dm_array_info *info, struct dm_block *block)
235 {
236         dm_tm_unlock(info->btree_info.tm, block);
237 }
238
239 /*----------------------------------------------------------------*/
240
241 /*
242  * Btree manipulation.
243  */
244
245 /*
246  * Looks up an array block in the btree, and then read locks it.
247  *
248  * index is the index of the index of the array_block, (ie. the array index
249  * / max_entries).
250  */
251 static int lookup_ablock(struct dm_array_info *info, dm_block_t root,
252                          unsigned int index, struct dm_block **block,
253                          struct array_block **ab)
254 {
255         int r;
256         uint64_t key = index;
257         __le64 block_le;
258
259         r = dm_btree_lookup(&info->btree_info, root, &key, &block_le);
260         if (r)
261                 return r;
262
263         return get_ablock(info, le64_to_cpu(block_le), block, ab);
264 }
265
266 /*
267  * Insert an array block into the btree.  The block is _not_ unlocked.
268  */
269 static int insert_ablock(struct dm_array_info *info, uint64_t index,
270                          struct dm_block *block, dm_block_t *root)
271 {
272         __le64 block_le = cpu_to_le64(dm_block_location(block));
273
274         __dm_bless_for_disk(block_le);
275         return dm_btree_insert(&info->btree_info, *root, &index, &block_le, root);
276 }
277
278 /*----------------------------------------------------------------*/
279
280 static int __shadow_ablock(struct dm_array_info *info, dm_block_t b,
281                            struct dm_block **block, struct array_block **ab)
282 {
283         int inc;
284         int r = dm_tm_shadow_block(info->btree_info.tm, b,
285                                    &array_validator, block, &inc);
286         if (r)
287                 return r;
288
289         *ab = dm_block_data(*block);
290         if (inc)
291                 inc_ablock_entries(info, *ab);
292
293         return 0;
294 }
295
296 /*
297  * The shadow op will often be a noop.  Only insert if it really
298  * copied data.
299  */
300 static int __reinsert_ablock(struct dm_array_info *info, unsigned int index,
301                              struct dm_block *block, dm_block_t b,
302                              dm_block_t *root)
303 {
304         int r = 0;
305
306         if (dm_block_location(block) != b) {
307                 /*
308                  * dm_tm_shadow_block will have already decremented the old
309                  * block, but it is still referenced by the btree.  We
310                  * increment to stop the insert decrementing it below zero
311                  * when overwriting the old value.
312                  */
313                 dm_tm_inc(info->btree_info.tm, b);
314                 r = insert_ablock(info, index, block, root);
315         }
316
317         return r;
318 }
319
320 /*
321  * Looks up an array block in the btree.  Then shadows it, and updates the
322  * btree to point to this new shadow.  'root' is an input/output parameter
323  * for both the current root block, and the new one.
324  */
325 static int shadow_ablock(struct dm_array_info *info, dm_block_t *root,
326                          unsigned int index, struct dm_block **block,
327                          struct array_block **ab)
328 {
329         int r;
330         uint64_t key = index;
331         dm_block_t b;
332         __le64 block_le;
333
334         r = dm_btree_lookup(&info->btree_info, *root, &key, &block_le);
335         if (r)
336                 return r;
337         b = le64_to_cpu(block_le);
338
339         r = __shadow_ablock(info, b, block, ab);
340         if (r)
341                 return r;
342
343         return __reinsert_ablock(info, index, *block, b, root);
344 }
345
346 /*
347  * Allocate an new array block, and fill it with some values.
348  */
349 static int insert_new_ablock(struct dm_array_info *info, size_t size_of_block,
350                              uint32_t max_entries,
351                              unsigned int block_index, uint32_t nr,
352                              const void *value, dm_block_t *root)
353 {
354         int r;
355         struct dm_block *block;
356         struct array_block *ab;
357
358         r = alloc_ablock(info, size_of_block, max_entries, &block, &ab);
359         if (r)
360                 return r;
361
362         fill_ablock(info, ab, value, nr);
363         r = insert_ablock(info, block_index, block, root);
364         unlock_ablock(info, block);
365
366         return r;
367 }
368
369 static int insert_full_ablocks(struct dm_array_info *info, size_t size_of_block,
370                                unsigned int begin_block, unsigned int end_block,
371                                unsigned int max_entries, const void *value,
372                                dm_block_t *root)
373 {
374         int r = 0;
375
376         for (; !r && begin_block != end_block; begin_block++)
377                 r = insert_new_ablock(info, size_of_block, max_entries, begin_block, max_entries, value, root);
378
379         return r;
380 }
381
382 /*
383  * There are a bunch of functions involved with resizing an array.  This
384  * structure holds information that commonly needed by them.  Purely here
385  * to reduce parameter count.
386  */
387 struct resize {
388         /*
389          * Describes the array.
390          */
391         struct dm_array_info *info;
392
393         /*
394          * The current root of the array.  This gets updated.
395          */
396         dm_block_t root;
397
398         /*
399          * Metadata block size.  Used to calculate the nr entries in an
400          * array block.
401          */
402         size_t size_of_block;
403
404         /*
405          * Maximum nr entries in an array block.
406          */
407         unsigned int max_entries;
408
409         /*
410          * nr of completely full blocks in the array.
411          *
412          * 'old' refers to before the resize, 'new' after.
413          */
414         unsigned int old_nr_full_blocks, new_nr_full_blocks;
415
416         /*
417          * Number of entries in the final block.  0 iff only full blocks in
418          * the array.
419          */
420         unsigned int old_nr_entries_in_last_block, new_nr_entries_in_last_block;
421
422         /*
423          * The default value used when growing the array.
424          */
425         const void *value;
426 };
427
428 /*
429  * Removes a consecutive set of array blocks from the btree.  The values
430  * in block are decremented as a side effect of the btree remove.
431  *
432  * begin_index - the index of the first array block to remove.
433  * end_index - the one-past-the-end value.  ie. this block is not removed.
434  */
435 static int drop_blocks(struct resize *resize, unsigned int begin_index,
436                        unsigned int end_index)
437 {
438         int r;
439
440         while (begin_index != end_index) {
441                 uint64_t key = begin_index++;
442
443                 r = dm_btree_remove(&resize->info->btree_info, resize->root,
444                                     &key, &resize->root);
445                 if (r)
446                         return r;
447         }
448
449         return 0;
450 }
451
452 /*
453  * Calculates how many blocks are needed for the array.
454  */
455 static unsigned int total_nr_blocks_needed(unsigned int nr_full_blocks,
456                                        unsigned int nr_entries_in_last_block)
457 {
458         return nr_full_blocks + (nr_entries_in_last_block ? 1 : 0);
459 }
460
461 /*
462  * Shrink an array.
463  */
464 static int shrink(struct resize *resize)
465 {
466         int r;
467         unsigned int begin, end;
468         struct dm_block *block;
469         struct array_block *ab;
470
471         /*
472          * Lose some blocks from the back?
473          */
474         if (resize->new_nr_full_blocks < resize->old_nr_full_blocks) {
475                 begin = total_nr_blocks_needed(resize->new_nr_full_blocks,
476                                                resize->new_nr_entries_in_last_block);
477                 end = total_nr_blocks_needed(resize->old_nr_full_blocks,
478                                              resize->old_nr_entries_in_last_block);
479
480                 r = drop_blocks(resize, begin, end);
481                 if (r)
482                         return r;
483         }
484
485         /*
486          * Trim the new tail block
487          */
488         if (resize->new_nr_entries_in_last_block) {
489                 r = shadow_ablock(resize->info, &resize->root,
490                                   resize->new_nr_full_blocks, &block, &ab);
491                 if (r)
492                         return r;
493
494                 trim_ablock(resize->info, ab, resize->new_nr_entries_in_last_block);
495                 unlock_ablock(resize->info, block);
496         }
497
498         return 0;
499 }
500
501 /*
502  * Grow an array.
503  */
504 static int grow_extend_tail_block(struct resize *resize, uint32_t new_nr_entries)
505 {
506         int r;
507         struct dm_block *block;
508         struct array_block *ab;
509
510         r = shadow_ablock(resize->info, &resize->root,
511                           resize->old_nr_full_blocks, &block, &ab);
512         if (r)
513                 return r;
514
515         fill_ablock(resize->info, ab, resize->value, new_nr_entries);
516         unlock_ablock(resize->info, block);
517
518         return r;
519 }
520
521 static int grow_add_tail_block(struct resize *resize)
522 {
523         return insert_new_ablock(resize->info, resize->size_of_block,
524                                  resize->max_entries,
525                                  resize->new_nr_full_blocks,
526                                  resize->new_nr_entries_in_last_block,
527                                  resize->value, &resize->root);
528 }
529
530 static int grow_needs_more_blocks(struct resize *resize)
531 {
532         int r;
533         unsigned int old_nr_blocks = resize->old_nr_full_blocks;
534
535         if (resize->old_nr_entries_in_last_block > 0) {
536                 old_nr_blocks++;
537
538                 r = grow_extend_tail_block(resize, resize->max_entries);
539                 if (r)
540                         return r;
541         }
542
543         r = insert_full_ablocks(resize->info, resize->size_of_block,
544                                 old_nr_blocks,
545                                 resize->new_nr_full_blocks,
546                                 resize->max_entries, resize->value,
547                                 &resize->root);
548         if (r)
549                 return r;
550
551         if (resize->new_nr_entries_in_last_block)
552                 r = grow_add_tail_block(resize);
553
554         return r;
555 }
556
557 static int grow(struct resize *resize)
558 {
559         if (resize->new_nr_full_blocks > resize->old_nr_full_blocks)
560                 return grow_needs_more_blocks(resize);
561
562         else if (resize->old_nr_entries_in_last_block)
563                 return grow_extend_tail_block(resize, resize->new_nr_entries_in_last_block);
564
565         else
566                 return grow_add_tail_block(resize);
567 }
568
569 /*----------------------------------------------------------------*/
570
571 /*
572  * These are the value_type functions for the btree elements, which point
573  * to array blocks.
574  */
575 static void block_inc(void *context, const void *value, unsigned int count)
576 {
577         const __le64 *block_le = value;
578         struct dm_array_info *info = context;
579         unsigned int i;
580
581         for (i = 0; i < count; i++, block_le++)
582                 dm_tm_inc(info->btree_info.tm, le64_to_cpu(*block_le));
583 }
584
585 static void __block_dec(void *context, const void *value)
586 {
587         int r;
588         uint64_t b;
589         __le64 block_le;
590         uint32_t ref_count;
591         struct dm_block *block;
592         struct array_block *ab;
593         struct dm_array_info *info = context;
594
595         memcpy(&block_le, value, sizeof(block_le));
596         b = le64_to_cpu(block_le);
597
598         r = dm_tm_ref(info->btree_info.tm, b, &ref_count);
599         if (r) {
600                 DMERR_LIMIT("couldn't get reference count for block %llu",
601                             (unsigned long long) b);
602                 return;
603         }
604
605         if (ref_count == 1) {
606                 /*
607                  * We're about to drop the last reference to this ablock.
608                  * So we need to decrement the ref count of the contents.
609                  */
610                 r = get_ablock(info, b, &block, &ab);
611                 if (r) {
612                         DMERR_LIMIT("couldn't get array block %llu",
613                                     (unsigned long long) b);
614                         return;
615                 }
616
617                 dec_ablock_entries(info, ab);
618                 unlock_ablock(info, block);
619         }
620
621         dm_tm_dec(info->btree_info.tm, b);
622 }
623
624 static void block_dec(void *context, const void *value, unsigned int count)
625 {
626         unsigned int i;
627
628         for (i = 0; i < count; i++, value += sizeof(__le64))
629                 __block_dec(context, value);
630 }
631
632 static int block_equal(void *context, const void *value1, const void *value2)
633 {
634         return !memcmp(value1, value2, sizeof(__le64));
635 }
636
637 /*----------------------------------------------------------------*/
638
639 void dm_array_info_init(struct dm_array_info *info,
640                         struct dm_transaction_manager *tm,
641                         struct dm_btree_value_type *vt)
642 {
643         struct dm_btree_value_type *bvt = &info->btree_info.value_type;
644
645         memcpy(&info->value_type, vt, sizeof(info->value_type));
646         info->btree_info.tm = tm;
647         info->btree_info.levels = 1;
648
649         bvt->context = info;
650         bvt->size = sizeof(__le64);
651         bvt->inc = block_inc;
652         bvt->dec = block_dec;
653         bvt->equal = block_equal;
654 }
655 EXPORT_SYMBOL_GPL(dm_array_info_init);
656
657 int dm_array_empty(struct dm_array_info *info, dm_block_t *root)
658 {
659         return dm_btree_empty(&info->btree_info, root);
660 }
661 EXPORT_SYMBOL_GPL(dm_array_empty);
662
663 static int array_resize(struct dm_array_info *info, dm_block_t root,
664                         uint32_t old_size, uint32_t new_size,
665                         const void *value, dm_block_t *new_root)
666 {
667         int r;
668         struct resize resize;
669
670         if (old_size == new_size) {
671                 *new_root = root;
672                 return 0;
673         }
674
675         resize.info = info;
676         resize.root = root;
677         resize.size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
678         resize.max_entries = calc_max_entries(info->value_type.size,
679                                               resize.size_of_block);
680
681         resize.old_nr_full_blocks = old_size / resize.max_entries;
682         resize.old_nr_entries_in_last_block = old_size % resize.max_entries;
683         resize.new_nr_full_blocks = new_size / resize.max_entries;
684         resize.new_nr_entries_in_last_block = new_size % resize.max_entries;
685         resize.value = value;
686
687         r = ((new_size > old_size) ? grow : shrink)(&resize);
688         if (r)
689                 return r;
690
691         *new_root = resize.root;
692         return 0;
693 }
694
695 int dm_array_resize(struct dm_array_info *info, dm_block_t root,
696                     uint32_t old_size, uint32_t new_size,
697                     const void *value, dm_block_t *new_root)
698         __dm_written_to_disk(value)
699 {
700         int r = array_resize(info, root, old_size, new_size, value, new_root);
701
702         __dm_unbless_for_disk(value);
703         return r;
704 }
705 EXPORT_SYMBOL_GPL(dm_array_resize);
706
707 static int populate_ablock_with_values(struct dm_array_info *info, struct array_block *ab,
708                                        value_fn fn, void *context,
709                                        unsigned int base, unsigned int new_nr)
710 {
711         int r;
712         unsigned int i;
713         struct dm_btree_value_type *vt = &info->value_type;
714
715         BUG_ON(le32_to_cpu(ab->nr_entries));
716         BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
717
718         for (i = 0; i < new_nr; i++) {
719                 r = fn(base + i, element_at(info, ab, i), context);
720                 if (r)
721                         return r;
722
723                 if (vt->inc)
724                         vt->inc(vt->context, element_at(info, ab, i), 1);
725         }
726
727         ab->nr_entries = cpu_to_le32(new_nr);
728         return 0;
729 }
730
731 int dm_array_new(struct dm_array_info *info, dm_block_t *root,
732                  uint32_t size, value_fn fn, void *context)
733 {
734         int r;
735         struct dm_block *block;
736         struct array_block *ab;
737         unsigned int block_index, end_block, size_of_block, max_entries;
738
739         r = dm_array_empty(info, root);
740         if (r)
741                 return r;
742
743         size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
744         max_entries = calc_max_entries(info->value_type.size, size_of_block);
745         end_block = dm_div_up(size, max_entries);
746
747         for (block_index = 0; block_index != end_block; block_index++) {
748                 r = alloc_ablock(info, size_of_block, max_entries, &block, &ab);
749                 if (r)
750                         break;
751
752                 r = populate_ablock_with_values(info, ab, fn, context,
753                                                 block_index * max_entries,
754                                                 min(max_entries, size));
755                 if (r) {
756                         unlock_ablock(info, block);
757                         break;
758                 }
759
760                 r = insert_ablock(info, block_index, block, root);
761                 unlock_ablock(info, block);
762                 if (r)
763                         break;
764
765                 size -= max_entries;
766         }
767
768         return r;
769 }
770 EXPORT_SYMBOL_GPL(dm_array_new);
771
772 int dm_array_del(struct dm_array_info *info, dm_block_t root)
773 {
774         return dm_btree_del(&info->btree_info, root);
775 }
776 EXPORT_SYMBOL_GPL(dm_array_del);
777
778 int dm_array_get_value(struct dm_array_info *info, dm_block_t root,
779                        uint32_t index, void *value_le)
780 {
781         int r;
782         struct dm_block *block;
783         struct array_block *ab;
784         size_t size_of_block;
785         unsigned int entry, max_entries;
786
787         size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
788         max_entries = calc_max_entries(info->value_type.size, size_of_block);
789
790         r = lookup_ablock(info, root, index / max_entries, &block, &ab);
791         if (r)
792                 return r;
793
794         entry = index % max_entries;
795         if (entry >= le32_to_cpu(ab->nr_entries))
796                 r = -ENODATA;
797         else
798                 memcpy(value_le, element_at(info, ab, entry),
799                        info->value_type.size);
800
801         unlock_ablock(info, block);
802         return r;
803 }
804 EXPORT_SYMBOL_GPL(dm_array_get_value);
805
806 static int array_set_value(struct dm_array_info *info, dm_block_t root,
807                            uint32_t index, const void *value, dm_block_t *new_root)
808 {
809         int r;
810         struct dm_block *block;
811         struct array_block *ab;
812         size_t size_of_block;
813         unsigned int max_entries;
814         unsigned int entry;
815         void *old_value;
816         struct dm_btree_value_type *vt = &info->value_type;
817
818         size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
819         max_entries = calc_max_entries(info->value_type.size, size_of_block);
820
821         r = shadow_ablock(info, &root, index / max_entries, &block, &ab);
822         if (r)
823                 return r;
824         *new_root = root;
825
826         entry = index % max_entries;
827         if (entry >= le32_to_cpu(ab->nr_entries)) {
828                 r = -ENODATA;
829                 goto out;
830         }
831
832         old_value = element_at(info, ab, entry);
833         if (vt->dec &&
834             (!vt->equal || !vt->equal(vt->context, old_value, value))) {
835                 vt->dec(vt->context, old_value, 1);
836                 if (vt->inc)
837                         vt->inc(vt->context, value, 1);
838         }
839
840         memcpy(old_value, value, info->value_type.size);
841
842 out:
843         unlock_ablock(info, block);
844         return r;
845 }
846
847 int dm_array_set_value(struct dm_array_info *info, dm_block_t root,
848                  uint32_t index, const void *value, dm_block_t *new_root)
849         __dm_written_to_disk(value)
850 {
851         int r;
852
853         r = array_set_value(info, root, index, value, new_root);
854         __dm_unbless_for_disk(value);
855         return r;
856 }
857 EXPORT_SYMBOL_GPL(dm_array_set_value);
858
859 struct walk_info {
860         struct dm_array_info *info;
861         int (*fn)(void *context, uint64_t key, void *leaf);
862         void *context;
863 };
864
865 static int walk_ablock(void *context, uint64_t *keys, void *leaf)
866 {
867         struct walk_info *wi = context;
868
869         int r;
870         unsigned int i;
871         __le64 block_le;
872         unsigned int nr_entries, max_entries;
873         struct dm_block *block;
874         struct array_block *ab;
875
876         memcpy(&block_le, leaf, sizeof(block_le));
877         r = get_ablock(wi->info, le64_to_cpu(block_le), &block, &ab);
878         if (r)
879                 return r;
880
881         max_entries = le32_to_cpu(ab->max_entries);
882         nr_entries = le32_to_cpu(ab->nr_entries);
883         for (i = 0; i < nr_entries; i++) {
884                 r = wi->fn(wi->context, keys[0] * max_entries + i,
885                            element_at(wi->info, ab, i));
886
887                 if (r)
888                         break;
889         }
890
891         unlock_ablock(wi->info, block);
892         return r;
893 }
894
895 int dm_array_walk(struct dm_array_info *info, dm_block_t root,
896                   int (*fn)(void *, uint64_t key, void *leaf),
897                   void *context)
898 {
899         struct walk_info wi;
900
901         wi.info = info;
902         wi.fn = fn;
903         wi.context = context;
904
905         return dm_btree_walk(&info->btree_info, root, walk_ablock, &wi);
906 }
907 EXPORT_SYMBOL_GPL(dm_array_walk);
908
909 /*----------------------------------------------------------------*/
910
911 static int load_ablock(struct dm_array_cursor *c)
912 {
913         int r;
914         __le64 value_le;
915         uint64_t key;
916
917         if (c->block)
918                 unlock_ablock(c->info, c->block);
919
920         c->block = NULL;
921         c->ab = NULL;
922         c->index = 0;
923
924         r = dm_btree_cursor_get_value(&c->cursor, &key, &value_le);
925         if (r) {
926                 DMERR("dm_btree_cursor_get_value failed");
927                 dm_btree_cursor_end(&c->cursor);
928
929         } else {
930                 r = get_ablock(c->info, le64_to_cpu(value_le), &c->block, &c->ab);
931                 if (r) {
932                         DMERR("get_ablock failed");
933                         dm_btree_cursor_end(&c->cursor);
934                 }
935         }
936
937         return r;
938 }
939
940 int dm_array_cursor_begin(struct dm_array_info *info, dm_block_t root,
941                           struct dm_array_cursor *c)
942 {
943         int r;
944
945         memset(c, 0, sizeof(*c));
946         c->info = info;
947         r = dm_btree_cursor_begin(&info->btree_info, root, true, &c->cursor);
948         if (r) {
949                 DMERR("couldn't create btree cursor");
950                 return r;
951         }
952
953         return load_ablock(c);
954 }
955 EXPORT_SYMBOL_GPL(dm_array_cursor_begin);
956
957 void dm_array_cursor_end(struct dm_array_cursor *c)
958 {
959         if (c->block) {
960                 unlock_ablock(c->info, c->block);
961                 dm_btree_cursor_end(&c->cursor);
962         }
963 }
964 EXPORT_SYMBOL_GPL(dm_array_cursor_end);
965
966 int dm_array_cursor_next(struct dm_array_cursor *c)
967 {
968         int r;
969
970         if (!c->block)
971                 return -ENODATA;
972
973         c->index++;
974
975         if (c->index >= le32_to_cpu(c->ab->nr_entries)) {
976                 r = dm_btree_cursor_next(&c->cursor);
977                 if (r)
978                         return r;
979
980                 r = load_ablock(c);
981                 if (r)
982                         return r;
983         }
984
985         return 0;
986 }
987 EXPORT_SYMBOL_GPL(dm_array_cursor_next);
988
989 int dm_array_cursor_skip(struct dm_array_cursor *c, uint32_t count)
990 {
991         int r;
992
993         do {
994                 uint32_t remaining = le32_to_cpu(c->ab->nr_entries) - c->index;
995
996                 if (count < remaining) {
997                         c->index += count;
998                         return 0;
999                 }
1000
1001                 count -= remaining;
1002                 r = dm_array_cursor_next(c);
1003
1004         } while (!r);
1005
1006         return r;
1007 }
1008 EXPORT_SYMBOL_GPL(dm_array_cursor_skip);
1009
1010 void dm_array_cursor_get_value(struct dm_array_cursor *c, void **value_le)
1011 {
1012         *value_le = element_at(c->info, c->ab, c->index);
1013 }
1014 EXPORT_SYMBOL_GPL(dm_array_cursor_get_value);
1015
1016 /*----------------------------------------------------------------*/