Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100         return mddev->sync_speed_min ?
101                 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106         return mddev->sync_speed_max ?
107                 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static ctl_table raid_table[] = {
113         {
114                 .procname       = "speed_limit_min",
115                 .data           = &sysctl_speed_limit_min,
116                 .maxlen         = sizeof(int),
117                 .mode           = S_IRUGO|S_IWUSR,
118                 .proc_handler   = proc_dointvec,
119         },
120         {
121                 .procname       = "speed_limit_max",
122                 .data           = &sysctl_speed_limit_max,
123                 .maxlen         = sizeof(int),
124                 .mode           = S_IRUGO|S_IWUSR,
125                 .proc_handler   = proc_dointvec,
126         },
127         { }
128 };
129
130 static ctl_table raid_dir_table[] = {
131         {
132                 .procname       = "raid",
133                 .maxlen         = 0,
134                 .mode           = S_IRUGO|S_IXUGO,
135                 .child          = raid_table,
136         },
137         { }
138 };
139
140 static ctl_table raid_root_table[] = {
141         {
142                 .procname       = "dev",
143                 .maxlen         = 0,
144                 .mode           = 0555,
145                 .child          = raid_dir_table,
146         },
147         {  }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157
158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
159                             struct mddev *mddev)
160 {
161         struct bio *b;
162
163         if (!mddev || !mddev->bio_set)
164                 return bio_alloc(gfp_mask, nr_iovecs);
165
166         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
167         if (!b)
168                 return NULL;
169         return b;
170 }
171 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
172
173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
174                             struct mddev *mddev)
175 {
176         if (!mddev || !mddev->bio_set)
177                 return bio_clone(bio, gfp_mask);
178
179         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
180 }
181 EXPORT_SYMBOL_GPL(bio_clone_mddev);
182
183 void md_trim_bio(struct bio *bio, int offset, int size)
184 {
185         /* 'bio' is a cloned bio which we need to trim to match
186          * the given offset and size.
187          * This requires adjusting bi_sector, bi_size, and bi_io_vec
188          */
189         int i;
190         struct bio_vec *bvec;
191         int sofar = 0;
192
193         size <<= 9;
194         if (offset == 0 && size == bio->bi_size)
195                 return;
196
197         bio->bi_sector += offset;
198         bio->bi_size = size;
199         offset <<= 9;
200         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
201
202         while (bio->bi_idx < bio->bi_vcnt &&
203                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
204                 /* remove this whole bio_vec */
205                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
206                 bio->bi_idx++;
207         }
208         if (bio->bi_idx < bio->bi_vcnt) {
209                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
210                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
211         }
212         /* avoid any complications with bi_idx being non-zero*/
213         if (bio->bi_idx) {
214                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
215                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
216                 bio->bi_vcnt -= bio->bi_idx;
217                 bio->bi_idx = 0;
218         }
219         /* Make sure vcnt and last bv are not too big */
220         bio_for_each_segment(bvec, bio, i) {
221                 if (sofar + bvec->bv_len > size)
222                         bvec->bv_len = size - sofar;
223                 if (bvec->bv_len == 0) {
224                         bio->bi_vcnt = i;
225                         break;
226                 }
227                 sofar += bvec->bv_len;
228         }
229 }
230 EXPORT_SYMBOL_GPL(md_trim_bio);
231
232 /*
233  * We have a system wide 'event count' that is incremented
234  * on any 'interesting' event, and readers of /proc/mdstat
235  * can use 'poll' or 'select' to find out when the event
236  * count increases.
237  *
238  * Events are:
239  *  start array, stop array, error, add device, remove device,
240  *  start build, activate spare
241  */
242 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
243 static atomic_t md_event_count;
244 void md_new_event(struct mddev *mddev)
245 {
246         atomic_inc(&md_event_count);
247         wake_up(&md_event_waiters);
248 }
249 EXPORT_SYMBOL_GPL(md_new_event);
250
251 /* Alternate version that can be called from interrupts
252  * when calling sysfs_notify isn't needed.
253  */
254 static void md_new_event_inintr(struct mddev *mddev)
255 {
256         atomic_inc(&md_event_count);
257         wake_up(&md_event_waiters);
258 }
259
260 /*
261  * Enables to iterate over all existing md arrays
262  * all_mddevs_lock protects this list.
263  */
264 static LIST_HEAD(all_mddevs);
265 static DEFINE_SPINLOCK(all_mddevs_lock);
266
267
268 /*
269  * iterates through all used mddevs in the system.
270  * We take care to grab the all_mddevs_lock whenever navigating
271  * the list, and to always hold a refcount when unlocked.
272  * Any code which breaks out of this loop while own
273  * a reference to the current mddev and must mddev_put it.
274  */
275 #define for_each_mddev(_mddev,_tmp)                                     \
276                                                                         \
277         for (({ spin_lock(&all_mddevs_lock);                            \
278                 _tmp = all_mddevs.next;                                 \
279                 _mddev = NULL;});                                       \
280              ({ if (_tmp != &all_mddevs)                                \
281                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
282                 spin_unlock(&all_mddevs_lock);                          \
283                 if (_mddev) mddev_put(_mddev);                          \
284                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
285                 _tmp != &all_mddevs;});                                 \
286              ({ spin_lock(&all_mddevs_lock);                            \
287                 _tmp = _tmp->next;})                                    \
288                 )
289
290
291 /* Rather than calling directly into the personality make_request function,
292  * IO requests come here first so that we can check if the device is
293  * being suspended pending a reconfiguration.
294  * We hold a refcount over the call to ->make_request.  By the time that
295  * call has finished, the bio has been linked into some internal structure
296  * and so is visible to ->quiesce(), so we don't need the refcount any more.
297  */
298 static void md_make_request(struct request_queue *q, struct bio *bio)
299 {
300         const int rw = bio_data_dir(bio);
301         struct mddev *mddev = q->queuedata;
302         int cpu;
303         unsigned int sectors;
304
305         if (mddev == NULL || mddev->pers == NULL
306             || !mddev->ready) {
307                 bio_io_error(bio);
308                 return;
309         }
310         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
311                 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
312                 return;
313         }
314         smp_rmb(); /* Ensure implications of  'active' are visible */
315         rcu_read_lock();
316         if (mddev->suspended) {
317                 DEFINE_WAIT(__wait);
318                 for (;;) {
319                         prepare_to_wait(&mddev->sb_wait, &__wait,
320                                         TASK_UNINTERRUPTIBLE);
321                         if (!mddev->suspended)
322                                 break;
323                         rcu_read_unlock();
324                         schedule();
325                         rcu_read_lock();
326                 }
327                 finish_wait(&mddev->sb_wait, &__wait);
328         }
329         atomic_inc(&mddev->active_io);
330         rcu_read_unlock();
331
332         /*
333          * save the sectors now since our bio can
334          * go away inside make_request
335          */
336         sectors = bio_sectors(bio);
337         mddev->pers->make_request(mddev, bio);
338
339         cpu = part_stat_lock();
340         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
341         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
342         part_stat_unlock();
343
344         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
345                 wake_up(&mddev->sb_wait);
346 }
347
348 /* mddev_suspend makes sure no new requests are submitted
349  * to the device, and that any requests that have been submitted
350  * are completely handled.
351  * Once ->stop is called and completes, the module will be completely
352  * unused.
353  */
354 void mddev_suspend(struct mddev *mddev)
355 {
356         BUG_ON(mddev->suspended);
357         mddev->suspended = 1;
358         synchronize_rcu();
359         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
360         mddev->pers->quiesce(mddev, 1);
361
362         del_timer_sync(&mddev->safemode_timer);
363 }
364 EXPORT_SYMBOL_GPL(mddev_suspend);
365
366 void mddev_resume(struct mddev *mddev)
367 {
368         mddev->suspended = 0;
369         wake_up(&mddev->sb_wait);
370         mddev->pers->quiesce(mddev, 0);
371
372         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
373         md_wakeup_thread(mddev->thread);
374         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
375 }
376 EXPORT_SYMBOL_GPL(mddev_resume);
377
378 int mddev_congested(struct mddev *mddev, int bits)
379 {
380         return mddev->suspended;
381 }
382 EXPORT_SYMBOL(mddev_congested);
383
384 /*
385  * Generic flush handling for md
386  */
387
388 static void md_end_flush(struct bio *bio, int err)
389 {
390         struct md_rdev *rdev = bio->bi_private;
391         struct mddev *mddev = rdev->mddev;
392
393         rdev_dec_pending(rdev, mddev);
394
395         if (atomic_dec_and_test(&mddev->flush_pending)) {
396                 /* The pre-request flush has finished */
397                 queue_work(md_wq, &mddev->flush_work);
398         }
399         bio_put(bio);
400 }
401
402 static void md_submit_flush_data(struct work_struct *ws);
403
404 static void submit_flushes(struct work_struct *ws)
405 {
406         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
407         struct md_rdev *rdev;
408
409         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
410         atomic_set(&mddev->flush_pending, 1);
411         rcu_read_lock();
412         rdev_for_each_rcu(rdev, mddev)
413                 if (rdev->raid_disk >= 0 &&
414                     !test_bit(Faulty, &rdev->flags)) {
415                         /* Take two references, one is dropped
416                          * when request finishes, one after
417                          * we reclaim rcu_read_lock
418                          */
419                         struct bio *bi;
420                         atomic_inc(&rdev->nr_pending);
421                         atomic_inc(&rdev->nr_pending);
422                         rcu_read_unlock();
423                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
424                         bi->bi_end_io = md_end_flush;
425                         bi->bi_private = rdev;
426                         bi->bi_bdev = rdev->bdev;
427                         atomic_inc(&mddev->flush_pending);
428                         submit_bio(WRITE_FLUSH, bi);
429                         rcu_read_lock();
430                         rdev_dec_pending(rdev, mddev);
431                 }
432         rcu_read_unlock();
433         if (atomic_dec_and_test(&mddev->flush_pending))
434                 queue_work(md_wq, &mddev->flush_work);
435 }
436
437 static void md_submit_flush_data(struct work_struct *ws)
438 {
439         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
440         struct bio *bio = mddev->flush_bio;
441
442         if (bio->bi_size == 0)
443                 /* an empty barrier - all done */
444                 bio_endio(bio, 0);
445         else {
446                 bio->bi_rw &= ~REQ_FLUSH;
447                 mddev->pers->make_request(mddev, bio);
448         }
449
450         mddev->flush_bio = NULL;
451         wake_up(&mddev->sb_wait);
452 }
453
454 void md_flush_request(struct mddev *mddev, struct bio *bio)
455 {
456         spin_lock_irq(&mddev->write_lock);
457         wait_event_lock_irq(mddev->sb_wait,
458                             !mddev->flush_bio,
459                             mddev->write_lock);
460         mddev->flush_bio = bio;
461         spin_unlock_irq(&mddev->write_lock);
462
463         INIT_WORK(&mddev->flush_work, submit_flushes);
464         queue_work(md_wq, &mddev->flush_work);
465 }
466 EXPORT_SYMBOL(md_flush_request);
467
468 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
469 {
470         struct mddev *mddev = cb->data;
471         md_wakeup_thread(mddev->thread);
472         kfree(cb);
473 }
474 EXPORT_SYMBOL(md_unplug);
475
476 static inline struct mddev *mddev_get(struct mddev *mddev)
477 {
478         atomic_inc(&mddev->active);
479         return mddev;
480 }
481
482 static void mddev_delayed_delete(struct work_struct *ws);
483
484 static void mddev_put(struct mddev *mddev)
485 {
486         struct bio_set *bs = NULL;
487
488         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
489                 return;
490         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
491             mddev->ctime == 0 && !mddev->hold_active) {
492                 /* Array is not configured at all, and not held active,
493                  * so destroy it */
494                 list_del_init(&mddev->all_mddevs);
495                 bs = mddev->bio_set;
496                 mddev->bio_set = NULL;
497                 if (mddev->gendisk) {
498                         /* We did a probe so need to clean up.  Call
499                          * queue_work inside the spinlock so that
500                          * flush_workqueue() after mddev_find will
501                          * succeed in waiting for the work to be done.
502                          */
503                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
504                         queue_work(md_misc_wq, &mddev->del_work);
505                 } else
506                         kfree(mddev);
507         }
508         spin_unlock(&all_mddevs_lock);
509         if (bs)
510                 bioset_free(bs);
511 }
512
513 void mddev_init(struct mddev *mddev)
514 {
515         mutex_init(&mddev->open_mutex);
516         mutex_init(&mddev->reconfig_mutex);
517         mutex_init(&mddev->bitmap_info.mutex);
518         INIT_LIST_HEAD(&mddev->disks);
519         INIT_LIST_HEAD(&mddev->all_mddevs);
520         init_timer(&mddev->safemode_timer);
521         atomic_set(&mddev->active, 1);
522         atomic_set(&mddev->openers, 0);
523         atomic_set(&mddev->active_io, 0);
524         spin_lock_init(&mddev->write_lock);
525         atomic_set(&mddev->flush_pending, 0);
526         init_waitqueue_head(&mddev->sb_wait);
527         init_waitqueue_head(&mddev->recovery_wait);
528         mddev->reshape_position = MaxSector;
529         mddev->reshape_backwards = 0;
530         mddev->resync_min = 0;
531         mddev->resync_max = MaxSector;
532         mddev->level = LEVEL_NONE;
533 }
534 EXPORT_SYMBOL_GPL(mddev_init);
535
536 static struct mddev * mddev_find(dev_t unit)
537 {
538         struct mddev *mddev, *new = NULL;
539
540         if (unit && MAJOR(unit) != MD_MAJOR)
541                 unit &= ~((1<<MdpMinorShift)-1);
542
543  retry:
544         spin_lock(&all_mddevs_lock);
545
546         if (unit) {
547                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
548                         if (mddev->unit == unit) {
549                                 mddev_get(mddev);
550                                 spin_unlock(&all_mddevs_lock);
551                                 kfree(new);
552                                 return mddev;
553                         }
554
555                 if (new) {
556                         list_add(&new->all_mddevs, &all_mddevs);
557                         spin_unlock(&all_mddevs_lock);
558                         new->hold_active = UNTIL_IOCTL;
559                         return new;
560                 }
561         } else if (new) {
562                 /* find an unused unit number */
563                 static int next_minor = 512;
564                 int start = next_minor;
565                 int is_free = 0;
566                 int dev = 0;
567                 while (!is_free) {
568                         dev = MKDEV(MD_MAJOR, next_minor);
569                         next_minor++;
570                         if (next_minor > MINORMASK)
571                                 next_minor = 0;
572                         if (next_minor == start) {
573                                 /* Oh dear, all in use. */
574                                 spin_unlock(&all_mddevs_lock);
575                                 kfree(new);
576                                 return NULL;
577                         }
578                                 
579                         is_free = 1;
580                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
581                                 if (mddev->unit == dev) {
582                                         is_free = 0;
583                                         break;
584                                 }
585                 }
586                 new->unit = dev;
587                 new->md_minor = MINOR(dev);
588                 new->hold_active = UNTIL_STOP;
589                 list_add(&new->all_mddevs, &all_mddevs);
590                 spin_unlock(&all_mddevs_lock);
591                 return new;
592         }
593         spin_unlock(&all_mddevs_lock);
594
595         new = kzalloc(sizeof(*new), GFP_KERNEL);
596         if (!new)
597                 return NULL;
598
599         new->unit = unit;
600         if (MAJOR(unit) == MD_MAJOR)
601                 new->md_minor = MINOR(unit);
602         else
603                 new->md_minor = MINOR(unit) >> MdpMinorShift;
604
605         mddev_init(new);
606
607         goto retry;
608 }
609
610 static inline int mddev_lock(struct mddev * mddev)
611 {
612         return mutex_lock_interruptible(&mddev->reconfig_mutex);
613 }
614
615 static inline int mddev_is_locked(struct mddev *mddev)
616 {
617         return mutex_is_locked(&mddev->reconfig_mutex);
618 }
619
620 static inline int mddev_trylock(struct mddev * mddev)
621 {
622         return mutex_trylock(&mddev->reconfig_mutex);
623 }
624
625 static struct attribute_group md_redundancy_group;
626
627 static void mddev_unlock(struct mddev * mddev)
628 {
629         if (mddev->to_remove) {
630                 /* These cannot be removed under reconfig_mutex as
631                  * an access to the files will try to take reconfig_mutex
632                  * while holding the file unremovable, which leads to
633                  * a deadlock.
634                  * So hold set sysfs_active while the remove in happeing,
635                  * and anything else which might set ->to_remove or my
636                  * otherwise change the sysfs namespace will fail with
637                  * -EBUSY if sysfs_active is still set.
638                  * We set sysfs_active under reconfig_mutex and elsewhere
639                  * test it under the same mutex to ensure its correct value
640                  * is seen.
641                  */
642                 struct attribute_group *to_remove = mddev->to_remove;
643                 mddev->to_remove = NULL;
644                 mddev->sysfs_active = 1;
645                 mutex_unlock(&mddev->reconfig_mutex);
646
647                 if (mddev->kobj.sd) {
648                         if (to_remove != &md_redundancy_group)
649                                 sysfs_remove_group(&mddev->kobj, to_remove);
650                         if (mddev->pers == NULL ||
651                             mddev->pers->sync_request == NULL) {
652                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
653                                 if (mddev->sysfs_action)
654                                         sysfs_put(mddev->sysfs_action);
655                                 mddev->sysfs_action = NULL;
656                         }
657                 }
658                 mddev->sysfs_active = 0;
659         } else
660                 mutex_unlock(&mddev->reconfig_mutex);
661
662         /* As we've dropped the mutex we need a spinlock to
663          * make sure the thread doesn't disappear
664          */
665         spin_lock(&pers_lock);
666         md_wakeup_thread(mddev->thread);
667         spin_unlock(&pers_lock);
668 }
669
670 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
671 {
672         struct md_rdev *rdev;
673
674         rdev_for_each(rdev, mddev)
675                 if (rdev->desc_nr == nr)
676                         return rdev;
677
678         return NULL;
679 }
680
681 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
682 {
683         struct md_rdev *rdev;
684
685         rdev_for_each_rcu(rdev, mddev)
686                 if (rdev->desc_nr == nr)
687                         return rdev;
688
689         return NULL;
690 }
691
692 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
693 {
694         struct md_rdev *rdev;
695
696         rdev_for_each(rdev, mddev)
697                 if (rdev->bdev->bd_dev == dev)
698                         return rdev;
699
700         return NULL;
701 }
702
703 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
704 {
705         struct md_rdev *rdev;
706
707         rdev_for_each_rcu(rdev, mddev)
708                 if (rdev->bdev->bd_dev == dev)
709                         return rdev;
710
711         return NULL;
712 }
713
714 static struct md_personality *find_pers(int level, char *clevel)
715 {
716         struct md_personality *pers;
717         list_for_each_entry(pers, &pers_list, list) {
718                 if (level != LEVEL_NONE && pers->level == level)
719                         return pers;
720                 if (strcmp(pers->name, clevel)==0)
721                         return pers;
722         }
723         return NULL;
724 }
725
726 /* return the offset of the super block in 512byte sectors */
727 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
728 {
729         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
730         return MD_NEW_SIZE_SECTORS(num_sectors);
731 }
732
733 static int alloc_disk_sb(struct md_rdev * rdev)
734 {
735         if (rdev->sb_page)
736                 MD_BUG();
737
738         rdev->sb_page = alloc_page(GFP_KERNEL);
739         if (!rdev->sb_page) {
740                 printk(KERN_ALERT "md: out of memory.\n");
741                 return -ENOMEM;
742         }
743
744         return 0;
745 }
746
747 void md_rdev_clear(struct md_rdev *rdev)
748 {
749         if (rdev->sb_page) {
750                 put_page(rdev->sb_page);
751                 rdev->sb_loaded = 0;
752                 rdev->sb_page = NULL;
753                 rdev->sb_start = 0;
754                 rdev->sectors = 0;
755         }
756         if (rdev->bb_page) {
757                 put_page(rdev->bb_page);
758                 rdev->bb_page = NULL;
759         }
760         kfree(rdev->badblocks.page);
761         rdev->badblocks.page = NULL;
762 }
763 EXPORT_SYMBOL_GPL(md_rdev_clear);
764
765 static void super_written(struct bio *bio, int error)
766 {
767         struct md_rdev *rdev = bio->bi_private;
768         struct mddev *mddev = rdev->mddev;
769
770         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
771                 printk("md: super_written gets error=%d, uptodate=%d\n",
772                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
773                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
774                 md_error(mddev, rdev);
775         }
776
777         if (atomic_dec_and_test(&mddev->pending_writes))
778                 wake_up(&mddev->sb_wait);
779         bio_put(bio);
780 }
781
782 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
783                    sector_t sector, int size, struct page *page)
784 {
785         /* write first size bytes of page to sector of rdev
786          * Increment mddev->pending_writes before returning
787          * and decrement it on completion, waking up sb_wait
788          * if zero is reached.
789          * If an error occurred, call md_error
790          */
791         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
792
793         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
794         bio->bi_sector = sector;
795         bio_add_page(bio, page, size, 0);
796         bio->bi_private = rdev;
797         bio->bi_end_io = super_written;
798
799         atomic_inc(&mddev->pending_writes);
800         submit_bio(WRITE_FLUSH_FUA, bio);
801 }
802
803 void md_super_wait(struct mddev *mddev)
804 {
805         /* wait for all superblock writes that were scheduled to complete */
806         DEFINE_WAIT(wq);
807         for(;;) {
808                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
809                 if (atomic_read(&mddev->pending_writes)==0)
810                         break;
811                 schedule();
812         }
813         finish_wait(&mddev->sb_wait, &wq);
814 }
815
816 static void bi_complete(struct bio *bio, int error)
817 {
818         complete((struct completion*)bio->bi_private);
819 }
820
821 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
822                  struct page *page, int rw, bool metadata_op)
823 {
824         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
825         struct completion event;
826         int ret;
827
828         rw |= REQ_SYNC;
829
830         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
831                 rdev->meta_bdev : rdev->bdev;
832         if (metadata_op)
833                 bio->bi_sector = sector + rdev->sb_start;
834         else if (rdev->mddev->reshape_position != MaxSector &&
835                  (rdev->mddev->reshape_backwards ==
836                   (sector >= rdev->mddev->reshape_position)))
837                 bio->bi_sector = sector + rdev->new_data_offset;
838         else
839                 bio->bi_sector = sector + rdev->data_offset;
840         bio_add_page(bio, page, size, 0);
841         init_completion(&event);
842         bio->bi_private = &event;
843         bio->bi_end_io = bi_complete;
844         submit_bio(rw, bio);
845         wait_for_completion(&event);
846
847         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
848         bio_put(bio);
849         return ret;
850 }
851 EXPORT_SYMBOL_GPL(sync_page_io);
852
853 static int read_disk_sb(struct md_rdev * rdev, int size)
854 {
855         char b[BDEVNAME_SIZE];
856         if (!rdev->sb_page) {
857                 MD_BUG();
858                 return -EINVAL;
859         }
860         if (rdev->sb_loaded)
861                 return 0;
862
863
864         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
865                 goto fail;
866         rdev->sb_loaded = 1;
867         return 0;
868
869 fail:
870         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
871                 bdevname(rdev->bdev,b));
872         return -EINVAL;
873 }
874
875 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
876 {
877         return  sb1->set_uuid0 == sb2->set_uuid0 &&
878                 sb1->set_uuid1 == sb2->set_uuid1 &&
879                 sb1->set_uuid2 == sb2->set_uuid2 &&
880                 sb1->set_uuid3 == sb2->set_uuid3;
881 }
882
883 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
884 {
885         int ret;
886         mdp_super_t *tmp1, *tmp2;
887
888         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
889         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
890
891         if (!tmp1 || !tmp2) {
892                 ret = 0;
893                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
894                 goto abort;
895         }
896
897         *tmp1 = *sb1;
898         *tmp2 = *sb2;
899
900         /*
901          * nr_disks is not constant
902          */
903         tmp1->nr_disks = 0;
904         tmp2->nr_disks = 0;
905
906         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
907 abort:
908         kfree(tmp1);
909         kfree(tmp2);
910         return ret;
911 }
912
913
914 static u32 md_csum_fold(u32 csum)
915 {
916         csum = (csum & 0xffff) + (csum >> 16);
917         return (csum & 0xffff) + (csum >> 16);
918 }
919
920 static unsigned int calc_sb_csum(mdp_super_t * sb)
921 {
922         u64 newcsum = 0;
923         u32 *sb32 = (u32*)sb;
924         int i;
925         unsigned int disk_csum, csum;
926
927         disk_csum = sb->sb_csum;
928         sb->sb_csum = 0;
929
930         for (i = 0; i < MD_SB_BYTES/4 ; i++)
931                 newcsum += sb32[i];
932         csum = (newcsum & 0xffffffff) + (newcsum>>32);
933
934
935 #ifdef CONFIG_ALPHA
936         /* This used to use csum_partial, which was wrong for several
937          * reasons including that different results are returned on
938          * different architectures.  It isn't critical that we get exactly
939          * the same return value as before (we always csum_fold before
940          * testing, and that removes any differences).  However as we
941          * know that csum_partial always returned a 16bit value on
942          * alphas, do a fold to maximise conformity to previous behaviour.
943          */
944         sb->sb_csum = md_csum_fold(disk_csum);
945 #else
946         sb->sb_csum = disk_csum;
947 #endif
948         return csum;
949 }
950
951
952 /*
953  * Handle superblock details.
954  * We want to be able to handle multiple superblock formats
955  * so we have a common interface to them all, and an array of
956  * different handlers.
957  * We rely on user-space to write the initial superblock, and support
958  * reading and updating of superblocks.
959  * Interface methods are:
960  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
961  *      loads and validates a superblock on dev.
962  *      if refdev != NULL, compare superblocks on both devices
963  *    Return:
964  *      0 - dev has a superblock that is compatible with refdev
965  *      1 - dev has a superblock that is compatible and newer than refdev
966  *          so dev should be used as the refdev in future
967  *     -EINVAL superblock incompatible or invalid
968  *     -othererror e.g. -EIO
969  *
970  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
971  *      Verify that dev is acceptable into mddev.
972  *       The first time, mddev->raid_disks will be 0, and data from
973  *       dev should be merged in.  Subsequent calls check that dev
974  *       is new enough.  Return 0 or -EINVAL
975  *
976  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
977  *     Update the superblock for rdev with data in mddev
978  *     This does not write to disc.
979  *
980  */
981
982 struct super_type  {
983         char                *name;
984         struct module       *owner;
985         int                 (*load_super)(struct md_rdev *rdev,
986                                           struct md_rdev *refdev,
987                                           int minor_version);
988         int                 (*validate_super)(struct mddev *mddev,
989                                               struct md_rdev *rdev);
990         void                (*sync_super)(struct mddev *mddev,
991                                           struct md_rdev *rdev);
992         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
993                                                 sector_t num_sectors);
994         int                 (*allow_new_offset)(struct md_rdev *rdev,
995                                                 unsigned long long new_offset);
996 };
997
998 /*
999  * Check that the given mddev has no bitmap.
1000  *
1001  * This function is called from the run method of all personalities that do not
1002  * support bitmaps. It prints an error message and returns non-zero if mddev
1003  * has a bitmap. Otherwise, it returns 0.
1004  *
1005  */
1006 int md_check_no_bitmap(struct mddev *mddev)
1007 {
1008         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1009                 return 0;
1010         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1011                 mdname(mddev), mddev->pers->name);
1012         return 1;
1013 }
1014 EXPORT_SYMBOL(md_check_no_bitmap);
1015
1016 /*
1017  * load_super for 0.90.0 
1018  */
1019 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1020 {
1021         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1022         mdp_super_t *sb;
1023         int ret;
1024
1025         /*
1026          * Calculate the position of the superblock (512byte sectors),
1027          * it's at the end of the disk.
1028          *
1029          * It also happens to be a multiple of 4Kb.
1030          */
1031         rdev->sb_start = calc_dev_sboffset(rdev);
1032
1033         ret = read_disk_sb(rdev, MD_SB_BYTES);
1034         if (ret) return ret;
1035
1036         ret = -EINVAL;
1037
1038         bdevname(rdev->bdev, b);
1039         sb = page_address(rdev->sb_page);
1040
1041         if (sb->md_magic != MD_SB_MAGIC) {
1042                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1043                        b);
1044                 goto abort;
1045         }
1046
1047         if (sb->major_version != 0 ||
1048             sb->minor_version < 90 ||
1049             sb->minor_version > 91) {
1050                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1051                         sb->major_version, sb->minor_version,
1052                         b);
1053                 goto abort;
1054         }
1055
1056         if (sb->raid_disks <= 0)
1057                 goto abort;
1058
1059         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1060                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1061                         b);
1062                 goto abort;
1063         }
1064
1065         rdev->preferred_minor = sb->md_minor;
1066         rdev->data_offset = 0;
1067         rdev->new_data_offset = 0;
1068         rdev->sb_size = MD_SB_BYTES;
1069         rdev->badblocks.shift = -1;
1070
1071         if (sb->level == LEVEL_MULTIPATH)
1072                 rdev->desc_nr = -1;
1073         else
1074                 rdev->desc_nr = sb->this_disk.number;
1075
1076         if (!refdev) {
1077                 ret = 1;
1078         } else {
1079                 __u64 ev1, ev2;
1080                 mdp_super_t *refsb = page_address(refdev->sb_page);
1081                 if (!uuid_equal(refsb, sb)) {
1082                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1083                                 b, bdevname(refdev->bdev,b2));
1084                         goto abort;
1085                 }
1086                 if (!sb_equal(refsb, sb)) {
1087                         printk(KERN_WARNING "md: %s has same UUID"
1088                                " but different superblock to %s\n",
1089                                b, bdevname(refdev->bdev, b2));
1090                         goto abort;
1091                 }
1092                 ev1 = md_event(sb);
1093                 ev2 = md_event(refsb);
1094                 if (ev1 > ev2)
1095                         ret = 1;
1096                 else 
1097                         ret = 0;
1098         }
1099         rdev->sectors = rdev->sb_start;
1100         /* Limit to 4TB as metadata cannot record more than that.
1101          * (not needed for Linear and RAID0 as metadata doesn't
1102          * record this size)
1103          */
1104         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1105                 rdev->sectors = (2ULL << 32) - 2;
1106
1107         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1108                 /* "this cannot possibly happen" ... */
1109                 ret = -EINVAL;
1110
1111  abort:
1112         return ret;
1113 }
1114
1115 /*
1116  * validate_super for 0.90.0
1117  */
1118 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1119 {
1120         mdp_disk_t *desc;
1121         mdp_super_t *sb = page_address(rdev->sb_page);
1122         __u64 ev1 = md_event(sb);
1123
1124         rdev->raid_disk = -1;
1125         clear_bit(Faulty, &rdev->flags);
1126         clear_bit(In_sync, &rdev->flags);
1127         clear_bit(WriteMostly, &rdev->flags);
1128
1129         if (mddev->raid_disks == 0) {
1130                 mddev->major_version = 0;
1131                 mddev->minor_version = sb->minor_version;
1132                 mddev->patch_version = sb->patch_version;
1133                 mddev->external = 0;
1134                 mddev->chunk_sectors = sb->chunk_size >> 9;
1135                 mddev->ctime = sb->ctime;
1136                 mddev->utime = sb->utime;
1137                 mddev->level = sb->level;
1138                 mddev->clevel[0] = 0;
1139                 mddev->layout = sb->layout;
1140                 mddev->raid_disks = sb->raid_disks;
1141                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1142                 mddev->events = ev1;
1143                 mddev->bitmap_info.offset = 0;
1144                 mddev->bitmap_info.space = 0;
1145                 /* bitmap can use 60 K after the 4K superblocks */
1146                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1147                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1148                 mddev->reshape_backwards = 0;
1149
1150                 if (mddev->minor_version >= 91) {
1151                         mddev->reshape_position = sb->reshape_position;
1152                         mddev->delta_disks = sb->delta_disks;
1153                         mddev->new_level = sb->new_level;
1154                         mddev->new_layout = sb->new_layout;
1155                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1156                         if (mddev->delta_disks < 0)
1157                                 mddev->reshape_backwards = 1;
1158                 } else {
1159                         mddev->reshape_position = MaxSector;
1160                         mddev->delta_disks = 0;
1161                         mddev->new_level = mddev->level;
1162                         mddev->new_layout = mddev->layout;
1163                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1164                 }
1165
1166                 if (sb->state & (1<<MD_SB_CLEAN))
1167                         mddev->recovery_cp = MaxSector;
1168                 else {
1169                         if (sb->events_hi == sb->cp_events_hi && 
1170                                 sb->events_lo == sb->cp_events_lo) {
1171                                 mddev->recovery_cp = sb->recovery_cp;
1172                         } else
1173                                 mddev->recovery_cp = 0;
1174                 }
1175
1176                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1177                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1178                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1179                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1180
1181                 mddev->max_disks = MD_SB_DISKS;
1182
1183                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1184                     mddev->bitmap_info.file == NULL) {
1185                         mddev->bitmap_info.offset =
1186                                 mddev->bitmap_info.default_offset;
1187                         mddev->bitmap_info.space =
1188                                 mddev->bitmap_info.space;
1189                 }
1190
1191         } else if (mddev->pers == NULL) {
1192                 /* Insist on good event counter while assembling, except
1193                  * for spares (which don't need an event count) */
1194                 ++ev1;
1195                 if (sb->disks[rdev->desc_nr].state & (
1196                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1197                         if (ev1 < mddev->events) 
1198                                 return -EINVAL;
1199         } else if (mddev->bitmap) {
1200                 /* if adding to array with a bitmap, then we can accept an
1201                  * older device ... but not too old.
1202                  */
1203                 if (ev1 < mddev->bitmap->events_cleared)
1204                         return 0;
1205         } else {
1206                 if (ev1 < mddev->events)
1207                         /* just a hot-add of a new device, leave raid_disk at -1 */
1208                         return 0;
1209         }
1210
1211         if (mddev->level != LEVEL_MULTIPATH) {
1212                 desc = sb->disks + rdev->desc_nr;
1213
1214                 if (desc->state & (1<<MD_DISK_FAULTY))
1215                         set_bit(Faulty, &rdev->flags);
1216                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1217                             desc->raid_disk < mddev->raid_disks */) {
1218                         set_bit(In_sync, &rdev->flags);
1219                         rdev->raid_disk = desc->raid_disk;
1220                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1221                         /* active but not in sync implies recovery up to
1222                          * reshape position.  We don't know exactly where
1223                          * that is, so set to zero for now */
1224                         if (mddev->minor_version >= 91) {
1225                                 rdev->recovery_offset = 0;
1226                                 rdev->raid_disk = desc->raid_disk;
1227                         }
1228                 }
1229                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1230                         set_bit(WriteMostly, &rdev->flags);
1231         } else /* MULTIPATH are always insync */
1232                 set_bit(In_sync, &rdev->flags);
1233         return 0;
1234 }
1235
1236 /*
1237  * sync_super for 0.90.0
1238  */
1239 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1240 {
1241         mdp_super_t *sb;
1242         struct md_rdev *rdev2;
1243         int next_spare = mddev->raid_disks;
1244
1245
1246         /* make rdev->sb match mddev data..
1247          *
1248          * 1/ zero out disks
1249          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1250          * 3/ any empty disks < next_spare become removed
1251          *
1252          * disks[0] gets initialised to REMOVED because
1253          * we cannot be sure from other fields if it has
1254          * been initialised or not.
1255          */
1256         int i;
1257         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1258
1259         rdev->sb_size = MD_SB_BYTES;
1260
1261         sb = page_address(rdev->sb_page);
1262
1263         memset(sb, 0, sizeof(*sb));
1264
1265         sb->md_magic = MD_SB_MAGIC;
1266         sb->major_version = mddev->major_version;
1267         sb->patch_version = mddev->patch_version;
1268         sb->gvalid_words  = 0; /* ignored */
1269         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1270         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1271         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1272         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1273
1274         sb->ctime = mddev->ctime;
1275         sb->level = mddev->level;
1276         sb->size = mddev->dev_sectors / 2;
1277         sb->raid_disks = mddev->raid_disks;
1278         sb->md_minor = mddev->md_minor;
1279         sb->not_persistent = 0;
1280         sb->utime = mddev->utime;
1281         sb->state = 0;
1282         sb->events_hi = (mddev->events>>32);
1283         sb->events_lo = (u32)mddev->events;
1284
1285         if (mddev->reshape_position == MaxSector)
1286                 sb->minor_version = 90;
1287         else {
1288                 sb->minor_version = 91;
1289                 sb->reshape_position = mddev->reshape_position;
1290                 sb->new_level = mddev->new_level;
1291                 sb->delta_disks = mddev->delta_disks;
1292                 sb->new_layout = mddev->new_layout;
1293                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1294         }
1295         mddev->minor_version = sb->minor_version;
1296         if (mddev->in_sync)
1297         {
1298                 sb->recovery_cp = mddev->recovery_cp;
1299                 sb->cp_events_hi = (mddev->events>>32);
1300                 sb->cp_events_lo = (u32)mddev->events;
1301                 if (mddev->recovery_cp == MaxSector)
1302                         sb->state = (1<< MD_SB_CLEAN);
1303         } else
1304                 sb->recovery_cp = 0;
1305
1306         sb->layout = mddev->layout;
1307         sb->chunk_size = mddev->chunk_sectors << 9;
1308
1309         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1310                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1311
1312         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1313         rdev_for_each(rdev2, mddev) {
1314                 mdp_disk_t *d;
1315                 int desc_nr;
1316                 int is_active = test_bit(In_sync, &rdev2->flags);
1317
1318                 if (rdev2->raid_disk >= 0 &&
1319                     sb->minor_version >= 91)
1320                         /* we have nowhere to store the recovery_offset,
1321                          * but if it is not below the reshape_position,
1322                          * we can piggy-back on that.
1323                          */
1324                         is_active = 1;
1325                 if (rdev2->raid_disk < 0 ||
1326                     test_bit(Faulty, &rdev2->flags))
1327                         is_active = 0;
1328                 if (is_active)
1329                         desc_nr = rdev2->raid_disk;
1330                 else
1331                         desc_nr = next_spare++;
1332                 rdev2->desc_nr = desc_nr;
1333                 d = &sb->disks[rdev2->desc_nr];
1334                 nr_disks++;
1335                 d->number = rdev2->desc_nr;
1336                 d->major = MAJOR(rdev2->bdev->bd_dev);
1337                 d->minor = MINOR(rdev2->bdev->bd_dev);
1338                 if (is_active)
1339                         d->raid_disk = rdev2->raid_disk;
1340                 else
1341                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1342                 if (test_bit(Faulty, &rdev2->flags))
1343                         d->state = (1<<MD_DISK_FAULTY);
1344                 else if (is_active) {
1345                         d->state = (1<<MD_DISK_ACTIVE);
1346                         if (test_bit(In_sync, &rdev2->flags))
1347                                 d->state |= (1<<MD_DISK_SYNC);
1348                         active++;
1349                         working++;
1350                 } else {
1351                         d->state = 0;
1352                         spare++;
1353                         working++;
1354                 }
1355                 if (test_bit(WriteMostly, &rdev2->flags))
1356                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1357         }
1358         /* now set the "removed" and "faulty" bits on any missing devices */
1359         for (i=0 ; i < mddev->raid_disks ; i++) {
1360                 mdp_disk_t *d = &sb->disks[i];
1361                 if (d->state == 0 && d->number == 0) {
1362                         d->number = i;
1363                         d->raid_disk = i;
1364                         d->state = (1<<MD_DISK_REMOVED);
1365                         d->state |= (1<<MD_DISK_FAULTY);
1366                         failed++;
1367                 }
1368         }
1369         sb->nr_disks = nr_disks;
1370         sb->active_disks = active;
1371         sb->working_disks = working;
1372         sb->failed_disks = failed;
1373         sb->spare_disks = spare;
1374
1375         sb->this_disk = sb->disks[rdev->desc_nr];
1376         sb->sb_csum = calc_sb_csum(sb);
1377 }
1378
1379 /*
1380  * rdev_size_change for 0.90.0
1381  */
1382 static unsigned long long
1383 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1384 {
1385         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1386                 return 0; /* component must fit device */
1387         if (rdev->mddev->bitmap_info.offset)
1388                 return 0; /* can't move bitmap */
1389         rdev->sb_start = calc_dev_sboffset(rdev);
1390         if (!num_sectors || num_sectors > rdev->sb_start)
1391                 num_sectors = rdev->sb_start;
1392         /* Limit to 4TB as metadata cannot record more than that.
1393          * 4TB == 2^32 KB, or 2*2^32 sectors.
1394          */
1395         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1396                 num_sectors = (2ULL << 32) - 2;
1397         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1398                        rdev->sb_page);
1399         md_super_wait(rdev->mddev);
1400         return num_sectors;
1401 }
1402
1403 static int
1404 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1405 {
1406         /* non-zero offset changes not possible with v0.90 */
1407         return new_offset == 0;
1408 }
1409
1410 /*
1411  * version 1 superblock
1412  */
1413
1414 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1415 {
1416         __le32 disk_csum;
1417         u32 csum;
1418         unsigned long long newcsum;
1419         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1420         __le32 *isuper = (__le32*)sb;
1421
1422         disk_csum = sb->sb_csum;
1423         sb->sb_csum = 0;
1424         newcsum = 0;
1425         for (; size >= 4; size -= 4)
1426                 newcsum += le32_to_cpu(*isuper++);
1427
1428         if (size == 2)
1429                 newcsum += le16_to_cpu(*(__le16*) isuper);
1430
1431         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1432         sb->sb_csum = disk_csum;
1433         return cpu_to_le32(csum);
1434 }
1435
1436 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1437                             int acknowledged);
1438 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1439 {
1440         struct mdp_superblock_1 *sb;
1441         int ret;
1442         sector_t sb_start;
1443         sector_t sectors;
1444         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1445         int bmask;
1446
1447         /*
1448          * Calculate the position of the superblock in 512byte sectors.
1449          * It is always aligned to a 4K boundary and
1450          * depeding on minor_version, it can be:
1451          * 0: At least 8K, but less than 12K, from end of device
1452          * 1: At start of device
1453          * 2: 4K from start of device.
1454          */
1455         switch(minor_version) {
1456         case 0:
1457                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1458                 sb_start -= 8*2;
1459                 sb_start &= ~(sector_t)(4*2-1);
1460                 break;
1461         case 1:
1462                 sb_start = 0;
1463                 break;
1464         case 2:
1465                 sb_start = 8;
1466                 break;
1467         default:
1468                 return -EINVAL;
1469         }
1470         rdev->sb_start = sb_start;
1471
1472         /* superblock is rarely larger than 1K, but it can be larger,
1473          * and it is safe to read 4k, so we do that
1474          */
1475         ret = read_disk_sb(rdev, 4096);
1476         if (ret) return ret;
1477
1478
1479         sb = page_address(rdev->sb_page);
1480
1481         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1482             sb->major_version != cpu_to_le32(1) ||
1483             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1484             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1485             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1486                 return -EINVAL;
1487
1488         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1489                 printk("md: invalid superblock checksum on %s\n",
1490                         bdevname(rdev->bdev,b));
1491                 return -EINVAL;
1492         }
1493         if (le64_to_cpu(sb->data_size) < 10) {
1494                 printk("md: data_size too small on %s\n",
1495                        bdevname(rdev->bdev,b));
1496                 return -EINVAL;
1497         }
1498         if (sb->pad0 ||
1499             sb->pad3[0] ||
1500             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1501                 /* Some padding is non-zero, might be a new feature */
1502                 return -EINVAL;
1503
1504         rdev->preferred_minor = 0xffff;
1505         rdev->data_offset = le64_to_cpu(sb->data_offset);
1506         rdev->new_data_offset = rdev->data_offset;
1507         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1508             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1509                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1510         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1511
1512         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1513         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1514         if (rdev->sb_size & bmask)
1515                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1516
1517         if (minor_version
1518             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1519                 return -EINVAL;
1520         if (minor_version
1521             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1522                 return -EINVAL;
1523
1524         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1525                 rdev->desc_nr = -1;
1526         else
1527                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1528
1529         if (!rdev->bb_page) {
1530                 rdev->bb_page = alloc_page(GFP_KERNEL);
1531                 if (!rdev->bb_page)
1532                         return -ENOMEM;
1533         }
1534         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1535             rdev->badblocks.count == 0) {
1536                 /* need to load the bad block list.
1537                  * Currently we limit it to one page.
1538                  */
1539                 s32 offset;
1540                 sector_t bb_sector;
1541                 u64 *bbp;
1542                 int i;
1543                 int sectors = le16_to_cpu(sb->bblog_size);
1544                 if (sectors > (PAGE_SIZE / 512))
1545                         return -EINVAL;
1546                 offset = le32_to_cpu(sb->bblog_offset);
1547                 if (offset == 0)
1548                         return -EINVAL;
1549                 bb_sector = (long long)offset;
1550                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1551                                   rdev->bb_page, READ, true))
1552                         return -EIO;
1553                 bbp = (u64 *)page_address(rdev->bb_page);
1554                 rdev->badblocks.shift = sb->bblog_shift;
1555                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1556                         u64 bb = le64_to_cpu(*bbp);
1557                         int count = bb & (0x3ff);
1558                         u64 sector = bb >> 10;
1559                         sector <<= sb->bblog_shift;
1560                         count <<= sb->bblog_shift;
1561                         if (bb + 1 == 0)
1562                                 break;
1563                         if (md_set_badblocks(&rdev->badblocks,
1564                                              sector, count, 1) == 0)
1565                                 return -EINVAL;
1566                 }
1567         } else if (sb->bblog_offset == 0)
1568                 rdev->badblocks.shift = -1;
1569
1570         if (!refdev) {
1571                 ret = 1;
1572         } else {
1573                 __u64 ev1, ev2;
1574                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1575
1576                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1577                     sb->level != refsb->level ||
1578                     sb->layout != refsb->layout ||
1579                     sb->chunksize != refsb->chunksize) {
1580                         printk(KERN_WARNING "md: %s has strangely different"
1581                                 " superblock to %s\n",
1582                                 bdevname(rdev->bdev,b),
1583                                 bdevname(refdev->bdev,b2));
1584                         return -EINVAL;
1585                 }
1586                 ev1 = le64_to_cpu(sb->events);
1587                 ev2 = le64_to_cpu(refsb->events);
1588
1589                 if (ev1 > ev2)
1590                         ret = 1;
1591                 else
1592                         ret = 0;
1593         }
1594         if (minor_version) {
1595                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1596                 sectors -= rdev->data_offset;
1597         } else
1598                 sectors = rdev->sb_start;
1599         if (sectors < le64_to_cpu(sb->data_size))
1600                 return -EINVAL;
1601         rdev->sectors = le64_to_cpu(sb->data_size);
1602         return ret;
1603 }
1604
1605 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1606 {
1607         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1608         __u64 ev1 = le64_to_cpu(sb->events);
1609
1610         rdev->raid_disk = -1;
1611         clear_bit(Faulty, &rdev->flags);
1612         clear_bit(In_sync, &rdev->flags);
1613         clear_bit(WriteMostly, &rdev->flags);
1614
1615         if (mddev->raid_disks == 0) {
1616                 mddev->major_version = 1;
1617                 mddev->patch_version = 0;
1618                 mddev->external = 0;
1619                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1620                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1621                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1622                 mddev->level = le32_to_cpu(sb->level);
1623                 mddev->clevel[0] = 0;
1624                 mddev->layout = le32_to_cpu(sb->layout);
1625                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1626                 mddev->dev_sectors = le64_to_cpu(sb->size);
1627                 mddev->events = ev1;
1628                 mddev->bitmap_info.offset = 0;
1629                 mddev->bitmap_info.space = 0;
1630                 /* Default location for bitmap is 1K after superblock
1631                  * using 3K - total of 4K
1632                  */
1633                 mddev->bitmap_info.default_offset = 1024 >> 9;
1634                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1635                 mddev->reshape_backwards = 0;
1636
1637                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1638                 memcpy(mddev->uuid, sb->set_uuid, 16);
1639
1640                 mddev->max_disks =  (4096-256)/2;
1641
1642                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1643                     mddev->bitmap_info.file == NULL) {
1644                         mddev->bitmap_info.offset =
1645                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1646                         /* Metadata doesn't record how much space is available.
1647                          * For 1.0, we assume we can use up to the superblock
1648                          * if before, else to 4K beyond superblock.
1649                          * For others, assume no change is possible.
1650                          */
1651                         if (mddev->minor_version > 0)
1652                                 mddev->bitmap_info.space = 0;
1653                         else if (mddev->bitmap_info.offset > 0)
1654                                 mddev->bitmap_info.space =
1655                                         8 - mddev->bitmap_info.offset;
1656                         else
1657                                 mddev->bitmap_info.space =
1658                                         -mddev->bitmap_info.offset;
1659                 }
1660
1661                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1662                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1663                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1664                         mddev->new_level = le32_to_cpu(sb->new_level);
1665                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1666                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1667                         if (mddev->delta_disks < 0 ||
1668                             (mddev->delta_disks == 0 &&
1669                              (le32_to_cpu(sb->feature_map)
1670                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1671                                 mddev->reshape_backwards = 1;
1672                 } else {
1673                         mddev->reshape_position = MaxSector;
1674                         mddev->delta_disks = 0;
1675                         mddev->new_level = mddev->level;
1676                         mddev->new_layout = mddev->layout;
1677                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1678                 }
1679
1680         } else if (mddev->pers == NULL) {
1681                 /* Insist of good event counter while assembling, except for
1682                  * spares (which don't need an event count) */
1683                 ++ev1;
1684                 if (rdev->desc_nr >= 0 &&
1685                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1686                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1687                         if (ev1 < mddev->events)
1688                                 return -EINVAL;
1689         } else if (mddev->bitmap) {
1690                 /* If adding to array with a bitmap, then we can accept an
1691                  * older device, but not too old.
1692                  */
1693                 if (ev1 < mddev->bitmap->events_cleared)
1694                         return 0;
1695         } else {
1696                 if (ev1 < mddev->events)
1697                         /* just a hot-add of a new device, leave raid_disk at -1 */
1698                         return 0;
1699         }
1700         if (mddev->level != LEVEL_MULTIPATH) {
1701                 int role;
1702                 if (rdev->desc_nr < 0 ||
1703                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1704                         role = 0xffff;
1705                         rdev->desc_nr = -1;
1706                 } else
1707                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1708                 switch(role) {
1709                 case 0xffff: /* spare */
1710                         break;
1711                 case 0xfffe: /* faulty */
1712                         set_bit(Faulty, &rdev->flags);
1713                         break;
1714                 default:
1715                         if ((le32_to_cpu(sb->feature_map) &
1716                              MD_FEATURE_RECOVERY_OFFSET))
1717                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1718                         else
1719                                 set_bit(In_sync, &rdev->flags);
1720                         rdev->raid_disk = role;
1721                         break;
1722                 }
1723                 if (sb->devflags & WriteMostly1)
1724                         set_bit(WriteMostly, &rdev->flags);
1725                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1726                         set_bit(Replacement, &rdev->flags);
1727         } else /* MULTIPATH are always insync */
1728                 set_bit(In_sync, &rdev->flags);
1729
1730         return 0;
1731 }
1732
1733 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1734 {
1735         struct mdp_superblock_1 *sb;
1736         struct md_rdev *rdev2;
1737         int max_dev, i;
1738         /* make rdev->sb match mddev and rdev data. */
1739
1740         sb = page_address(rdev->sb_page);
1741
1742         sb->feature_map = 0;
1743         sb->pad0 = 0;
1744         sb->recovery_offset = cpu_to_le64(0);
1745         memset(sb->pad3, 0, sizeof(sb->pad3));
1746
1747         sb->utime = cpu_to_le64((__u64)mddev->utime);
1748         sb->events = cpu_to_le64(mddev->events);
1749         if (mddev->in_sync)
1750                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1751         else
1752                 sb->resync_offset = cpu_to_le64(0);
1753
1754         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1755
1756         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1757         sb->size = cpu_to_le64(mddev->dev_sectors);
1758         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1759         sb->level = cpu_to_le32(mddev->level);
1760         sb->layout = cpu_to_le32(mddev->layout);
1761
1762         if (test_bit(WriteMostly, &rdev->flags))
1763                 sb->devflags |= WriteMostly1;
1764         else
1765                 sb->devflags &= ~WriteMostly1;
1766         sb->data_offset = cpu_to_le64(rdev->data_offset);
1767         sb->data_size = cpu_to_le64(rdev->sectors);
1768
1769         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1770                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1771                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1772         }
1773
1774         if (rdev->raid_disk >= 0 &&
1775             !test_bit(In_sync, &rdev->flags)) {
1776                 sb->feature_map |=
1777                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1778                 sb->recovery_offset =
1779                         cpu_to_le64(rdev->recovery_offset);
1780         }
1781         if (test_bit(Replacement, &rdev->flags))
1782                 sb->feature_map |=
1783                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1784
1785         if (mddev->reshape_position != MaxSector) {
1786                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1787                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1788                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1789                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1790                 sb->new_level = cpu_to_le32(mddev->new_level);
1791                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1792                 if (mddev->delta_disks == 0 &&
1793                     mddev->reshape_backwards)
1794                         sb->feature_map
1795                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1796                 if (rdev->new_data_offset != rdev->data_offset) {
1797                         sb->feature_map
1798                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1799                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1800                                                              - rdev->data_offset));
1801                 }
1802         }
1803
1804         if (rdev->badblocks.count == 0)
1805                 /* Nothing to do for bad blocks*/ ;
1806         else if (sb->bblog_offset == 0)
1807                 /* Cannot record bad blocks on this device */
1808                 md_error(mddev, rdev);
1809         else {
1810                 struct badblocks *bb = &rdev->badblocks;
1811                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1812                 u64 *p = bb->page;
1813                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1814                 if (bb->changed) {
1815                         unsigned seq;
1816
1817 retry:
1818                         seq = read_seqbegin(&bb->lock);
1819
1820                         memset(bbp, 0xff, PAGE_SIZE);
1821
1822                         for (i = 0 ; i < bb->count ; i++) {
1823                                 u64 internal_bb = p[i];
1824                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1825                                                 | BB_LEN(internal_bb));
1826                                 bbp[i] = cpu_to_le64(store_bb);
1827                         }
1828                         bb->changed = 0;
1829                         if (read_seqretry(&bb->lock, seq))
1830                                 goto retry;
1831
1832                         bb->sector = (rdev->sb_start +
1833                                       (int)le32_to_cpu(sb->bblog_offset));
1834                         bb->size = le16_to_cpu(sb->bblog_size);
1835                 }
1836         }
1837
1838         max_dev = 0;
1839         rdev_for_each(rdev2, mddev)
1840                 if (rdev2->desc_nr+1 > max_dev)
1841                         max_dev = rdev2->desc_nr+1;
1842
1843         if (max_dev > le32_to_cpu(sb->max_dev)) {
1844                 int bmask;
1845                 sb->max_dev = cpu_to_le32(max_dev);
1846                 rdev->sb_size = max_dev * 2 + 256;
1847                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1848                 if (rdev->sb_size & bmask)
1849                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1850         } else
1851                 max_dev = le32_to_cpu(sb->max_dev);
1852
1853         for (i=0; i<max_dev;i++)
1854                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1855         
1856         rdev_for_each(rdev2, mddev) {
1857                 i = rdev2->desc_nr;
1858                 if (test_bit(Faulty, &rdev2->flags))
1859                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1860                 else if (test_bit(In_sync, &rdev2->flags))
1861                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1862                 else if (rdev2->raid_disk >= 0)
1863                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1864                 else
1865                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1866         }
1867
1868         sb->sb_csum = calc_sb_1_csum(sb);
1869 }
1870
1871 static unsigned long long
1872 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1873 {
1874         struct mdp_superblock_1 *sb;
1875         sector_t max_sectors;
1876         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1877                 return 0; /* component must fit device */
1878         if (rdev->data_offset != rdev->new_data_offset)
1879                 return 0; /* too confusing */
1880         if (rdev->sb_start < rdev->data_offset) {
1881                 /* minor versions 1 and 2; superblock before data */
1882                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1883                 max_sectors -= rdev->data_offset;
1884                 if (!num_sectors || num_sectors > max_sectors)
1885                         num_sectors = max_sectors;
1886         } else if (rdev->mddev->bitmap_info.offset) {
1887                 /* minor version 0 with bitmap we can't move */
1888                 return 0;
1889         } else {
1890                 /* minor version 0; superblock after data */
1891                 sector_t sb_start;
1892                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1893                 sb_start &= ~(sector_t)(4*2 - 1);
1894                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1895                 if (!num_sectors || num_sectors > max_sectors)
1896                         num_sectors = max_sectors;
1897                 rdev->sb_start = sb_start;
1898         }
1899         sb = page_address(rdev->sb_page);
1900         sb->data_size = cpu_to_le64(num_sectors);
1901         sb->super_offset = rdev->sb_start;
1902         sb->sb_csum = calc_sb_1_csum(sb);
1903         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1904                        rdev->sb_page);
1905         md_super_wait(rdev->mddev);
1906         return num_sectors;
1907
1908 }
1909
1910 static int
1911 super_1_allow_new_offset(struct md_rdev *rdev,
1912                          unsigned long long new_offset)
1913 {
1914         /* All necessary checks on new >= old have been done */
1915         struct bitmap *bitmap;
1916         if (new_offset >= rdev->data_offset)
1917                 return 1;
1918
1919         /* with 1.0 metadata, there is no metadata to tread on
1920          * so we can always move back */
1921         if (rdev->mddev->minor_version == 0)
1922                 return 1;
1923
1924         /* otherwise we must be sure not to step on
1925          * any metadata, so stay:
1926          * 36K beyond start of superblock
1927          * beyond end of badblocks
1928          * beyond write-intent bitmap
1929          */
1930         if (rdev->sb_start + (32+4)*2 > new_offset)
1931                 return 0;
1932         bitmap = rdev->mddev->bitmap;
1933         if (bitmap && !rdev->mddev->bitmap_info.file &&
1934             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1935             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1936                 return 0;
1937         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1938                 return 0;
1939
1940         return 1;
1941 }
1942
1943 static struct super_type super_types[] = {
1944         [0] = {
1945                 .name   = "0.90.0",
1946                 .owner  = THIS_MODULE,
1947                 .load_super         = super_90_load,
1948                 .validate_super     = super_90_validate,
1949                 .sync_super         = super_90_sync,
1950                 .rdev_size_change   = super_90_rdev_size_change,
1951                 .allow_new_offset   = super_90_allow_new_offset,
1952         },
1953         [1] = {
1954                 .name   = "md-1",
1955                 .owner  = THIS_MODULE,
1956                 .load_super         = super_1_load,
1957                 .validate_super     = super_1_validate,
1958                 .sync_super         = super_1_sync,
1959                 .rdev_size_change   = super_1_rdev_size_change,
1960                 .allow_new_offset   = super_1_allow_new_offset,
1961         },
1962 };
1963
1964 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1965 {
1966         if (mddev->sync_super) {
1967                 mddev->sync_super(mddev, rdev);
1968                 return;
1969         }
1970
1971         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1972
1973         super_types[mddev->major_version].sync_super(mddev, rdev);
1974 }
1975
1976 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1977 {
1978         struct md_rdev *rdev, *rdev2;
1979
1980         rcu_read_lock();
1981         rdev_for_each_rcu(rdev, mddev1)
1982                 rdev_for_each_rcu(rdev2, mddev2)
1983                         if (rdev->bdev->bd_contains ==
1984                             rdev2->bdev->bd_contains) {
1985                                 rcu_read_unlock();
1986                                 return 1;
1987                         }
1988         rcu_read_unlock();
1989         return 0;
1990 }
1991
1992 static LIST_HEAD(pending_raid_disks);
1993
1994 /*
1995  * Try to register data integrity profile for an mddev
1996  *
1997  * This is called when an array is started and after a disk has been kicked
1998  * from the array. It only succeeds if all working and active component devices
1999  * are integrity capable with matching profiles.
2000  */
2001 int md_integrity_register(struct mddev *mddev)
2002 {
2003         struct md_rdev *rdev, *reference = NULL;
2004
2005         if (list_empty(&mddev->disks))
2006                 return 0; /* nothing to do */
2007         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2008                 return 0; /* shouldn't register, or already is */
2009         rdev_for_each(rdev, mddev) {
2010                 /* skip spares and non-functional disks */
2011                 if (test_bit(Faulty, &rdev->flags))
2012                         continue;
2013                 if (rdev->raid_disk < 0)
2014                         continue;
2015                 if (!reference) {
2016                         /* Use the first rdev as the reference */
2017                         reference = rdev;
2018                         continue;
2019                 }
2020                 /* does this rdev's profile match the reference profile? */
2021                 if (blk_integrity_compare(reference->bdev->bd_disk,
2022                                 rdev->bdev->bd_disk) < 0)
2023                         return -EINVAL;
2024         }
2025         if (!reference || !bdev_get_integrity(reference->bdev))
2026                 return 0;
2027         /*
2028          * All component devices are integrity capable and have matching
2029          * profiles, register the common profile for the md device.
2030          */
2031         if (blk_integrity_register(mddev->gendisk,
2032                         bdev_get_integrity(reference->bdev)) != 0) {
2033                 printk(KERN_ERR "md: failed to register integrity for %s\n",
2034                         mdname(mddev));
2035                 return -EINVAL;
2036         }
2037         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2038         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2039                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2040                        mdname(mddev));
2041                 return -EINVAL;
2042         }
2043         return 0;
2044 }
2045 EXPORT_SYMBOL(md_integrity_register);
2046
2047 /* Disable data integrity if non-capable/non-matching disk is being added */
2048 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2049 {
2050         struct blk_integrity *bi_rdev;
2051         struct blk_integrity *bi_mddev;
2052
2053         if (!mddev->gendisk)
2054                 return;
2055
2056         bi_rdev = bdev_get_integrity(rdev->bdev);
2057         bi_mddev = blk_get_integrity(mddev->gendisk);
2058
2059         if (!bi_mddev) /* nothing to do */
2060                 return;
2061         if (rdev->raid_disk < 0) /* skip spares */
2062                 return;
2063         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2064                                              rdev->bdev->bd_disk) >= 0)
2065                 return;
2066         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2067         blk_integrity_unregister(mddev->gendisk);
2068 }
2069 EXPORT_SYMBOL(md_integrity_add_rdev);
2070
2071 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2072 {
2073         char b[BDEVNAME_SIZE];
2074         struct kobject *ko;
2075         char *s;
2076         int err;
2077
2078         if (rdev->mddev) {
2079                 MD_BUG();
2080                 return -EINVAL;
2081         }
2082
2083         /* prevent duplicates */
2084         if (find_rdev(mddev, rdev->bdev->bd_dev))
2085                 return -EEXIST;
2086
2087         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2088         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2089                         rdev->sectors < mddev->dev_sectors)) {
2090                 if (mddev->pers) {
2091                         /* Cannot change size, so fail
2092                          * If mddev->level <= 0, then we don't care
2093                          * about aligning sizes (e.g. linear)
2094                          */
2095                         if (mddev->level > 0)
2096                                 return -ENOSPC;
2097                 } else
2098                         mddev->dev_sectors = rdev->sectors;
2099         }
2100
2101         /* Verify rdev->desc_nr is unique.
2102          * If it is -1, assign a free number, else
2103          * check number is not in use
2104          */
2105         if (rdev->desc_nr < 0) {
2106                 int choice = 0;
2107                 if (mddev->pers) choice = mddev->raid_disks;
2108                 while (find_rdev_nr(mddev, choice))
2109                         choice++;
2110                 rdev->desc_nr = choice;
2111         } else {
2112                 if (find_rdev_nr(mddev, rdev->desc_nr))
2113                         return -EBUSY;
2114         }
2115         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2116                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2117                        mdname(mddev), mddev->max_disks);
2118                 return -EBUSY;
2119         }
2120         bdevname(rdev->bdev,b);
2121         while ( (s=strchr(b, '/')) != NULL)
2122                 *s = '!';
2123
2124         rdev->mddev = mddev;
2125         printk(KERN_INFO "md: bind<%s>\n", b);
2126
2127         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2128                 goto fail;
2129
2130         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2131         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2132                 /* failure here is OK */;
2133         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2134
2135         list_add_rcu(&rdev->same_set, &mddev->disks);
2136         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2137
2138         /* May as well allow recovery to be retried once */
2139         mddev->recovery_disabled++;
2140
2141         return 0;
2142
2143  fail:
2144         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2145                b, mdname(mddev));
2146         return err;
2147 }
2148
2149 static void md_delayed_delete(struct work_struct *ws)
2150 {
2151         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2152         kobject_del(&rdev->kobj);
2153         kobject_put(&rdev->kobj);
2154 }
2155
2156 static void unbind_rdev_from_array(struct md_rdev * rdev)
2157 {
2158         char b[BDEVNAME_SIZE];
2159         if (!rdev->mddev) {
2160                 MD_BUG();
2161                 return;
2162         }
2163         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2164         list_del_rcu(&rdev->same_set);
2165         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2166         rdev->mddev = NULL;
2167         sysfs_remove_link(&rdev->kobj, "block");
2168         sysfs_put(rdev->sysfs_state);
2169         rdev->sysfs_state = NULL;
2170         rdev->badblocks.count = 0;
2171         /* We need to delay this, otherwise we can deadlock when
2172          * writing to 'remove' to "dev/state".  We also need
2173          * to delay it due to rcu usage.
2174          */
2175         synchronize_rcu();
2176         INIT_WORK(&rdev->del_work, md_delayed_delete);
2177         kobject_get(&rdev->kobj);
2178         queue_work(md_misc_wq, &rdev->del_work);
2179 }
2180
2181 /*
2182  * prevent the device from being mounted, repartitioned or
2183  * otherwise reused by a RAID array (or any other kernel
2184  * subsystem), by bd_claiming the device.
2185  */
2186 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2187 {
2188         int err = 0;
2189         struct block_device *bdev;
2190         char b[BDEVNAME_SIZE];
2191
2192         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2193                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2194         if (IS_ERR(bdev)) {
2195                 printk(KERN_ERR "md: could not open %s.\n",
2196                         __bdevname(dev, b));
2197                 return PTR_ERR(bdev);
2198         }
2199         rdev->bdev = bdev;
2200         return err;
2201 }
2202
2203 static void unlock_rdev(struct md_rdev *rdev)
2204 {
2205         struct block_device *bdev = rdev->bdev;
2206         rdev->bdev = NULL;
2207         if (!bdev)
2208                 MD_BUG();
2209         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2210 }
2211
2212 void md_autodetect_dev(dev_t dev);
2213
2214 static void export_rdev(struct md_rdev * rdev)
2215 {
2216         char b[BDEVNAME_SIZE];
2217         printk(KERN_INFO "md: export_rdev(%s)\n",
2218                 bdevname(rdev->bdev,b));
2219         if (rdev->mddev)
2220                 MD_BUG();
2221         md_rdev_clear(rdev);
2222 #ifndef MODULE
2223         if (test_bit(AutoDetected, &rdev->flags))
2224                 md_autodetect_dev(rdev->bdev->bd_dev);
2225 #endif
2226         unlock_rdev(rdev);
2227         kobject_put(&rdev->kobj);
2228 }
2229
2230 static void kick_rdev_from_array(struct md_rdev * rdev)
2231 {
2232         unbind_rdev_from_array(rdev);
2233         export_rdev(rdev);
2234 }
2235
2236 static void export_array(struct mddev *mddev)
2237 {
2238         struct md_rdev *rdev, *tmp;
2239
2240         rdev_for_each_safe(rdev, tmp, mddev) {
2241                 if (!rdev->mddev) {
2242                         MD_BUG();
2243                         continue;
2244                 }
2245                 kick_rdev_from_array(rdev);
2246         }
2247         if (!list_empty(&mddev->disks))
2248                 MD_BUG();
2249         mddev->raid_disks = 0;
2250         mddev->major_version = 0;
2251 }
2252
2253 static void print_desc(mdp_disk_t *desc)
2254 {
2255         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2256                 desc->major,desc->minor,desc->raid_disk,desc->state);
2257 }
2258
2259 static void print_sb_90(mdp_super_t *sb)
2260 {
2261         int i;
2262
2263         printk(KERN_INFO 
2264                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2265                 sb->major_version, sb->minor_version, sb->patch_version,
2266                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2267                 sb->ctime);
2268         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2269                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2270                 sb->md_minor, sb->layout, sb->chunk_size);
2271         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2272                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2273                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2274                 sb->failed_disks, sb->spare_disks,
2275                 sb->sb_csum, (unsigned long)sb->events_lo);
2276
2277         printk(KERN_INFO);
2278         for (i = 0; i < MD_SB_DISKS; i++) {
2279                 mdp_disk_t *desc;
2280
2281                 desc = sb->disks + i;
2282                 if (desc->number || desc->major || desc->minor ||
2283                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2284                         printk("     D %2d: ", i);
2285                         print_desc(desc);
2286                 }
2287         }
2288         printk(KERN_INFO "md:     THIS: ");
2289         print_desc(&sb->this_disk);
2290 }
2291
2292 static void print_sb_1(struct mdp_superblock_1 *sb)
2293 {
2294         __u8 *uuid;
2295
2296         uuid = sb->set_uuid;
2297         printk(KERN_INFO
2298                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2299                "md:    Name: \"%s\" CT:%llu\n",
2300                 le32_to_cpu(sb->major_version),
2301                 le32_to_cpu(sb->feature_map),
2302                 uuid,
2303                 sb->set_name,
2304                 (unsigned long long)le64_to_cpu(sb->ctime)
2305                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2306
2307         uuid = sb->device_uuid;
2308         printk(KERN_INFO
2309                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2310                         " RO:%llu\n"
2311                "md:     Dev:%08x UUID: %pU\n"
2312                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2313                "md:         (MaxDev:%u) \n",
2314                 le32_to_cpu(sb->level),
2315                 (unsigned long long)le64_to_cpu(sb->size),
2316                 le32_to_cpu(sb->raid_disks),
2317                 le32_to_cpu(sb->layout),
2318                 le32_to_cpu(sb->chunksize),
2319                 (unsigned long long)le64_to_cpu(sb->data_offset),
2320                 (unsigned long long)le64_to_cpu(sb->data_size),
2321                 (unsigned long long)le64_to_cpu(sb->super_offset),
2322                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2323                 le32_to_cpu(sb->dev_number),
2324                 uuid,
2325                 sb->devflags,
2326                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2327                 (unsigned long long)le64_to_cpu(sb->events),
2328                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2329                 le32_to_cpu(sb->sb_csum),
2330                 le32_to_cpu(sb->max_dev)
2331                 );
2332 }
2333
2334 static void print_rdev(struct md_rdev *rdev, int major_version)
2335 {
2336         char b[BDEVNAME_SIZE];
2337         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2338                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2339                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2340                 rdev->desc_nr);
2341         if (rdev->sb_loaded) {
2342                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2343                 switch (major_version) {
2344                 case 0:
2345                         print_sb_90(page_address(rdev->sb_page));
2346                         break;
2347                 case 1:
2348                         print_sb_1(page_address(rdev->sb_page));
2349                         break;
2350                 }
2351         } else
2352                 printk(KERN_INFO "md: no rdev superblock!\n");
2353 }
2354
2355 static void md_print_devices(void)
2356 {
2357         struct list_head *tmp;
2358         struct md_rdev *rdev;
2359         struct mddev *mddev;
2360         char b[BDEVNAME_SIZE];
2361
2362         printk("\n");
2363         printk("md:     **********************************\n");
2364         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2365         printk("md:     **********************************\n");
2366         for_each_mddev(mddev, tmp) {
2367
2368                 if (mddev->bitmap)
2369                         bitmap_print_sb(mddev->bitmap);
2370                 else
2371                         printk("%s: ", mdname(mddev));
2372                 rdev_for_each(rdev, mddev)
2373                         printk("<%s>", bdevname(rdev->bdev,b));
2374                 printk("\n");
2375
2376                 rdev_for_each(rdev, mddev)
2377                         print_rdev(rdev, mddev->major_version);
2378         }
2379         printk("md:     **********************************\n");
2380         printk("\n");
2381 }
2382
2383
2384 static void sync_sbs(struct mddev * mddev, int nospares)
2385 {
2386         /* Update each superblock (in-memory image), but
2387          * if we are allowed to, skip spares which already
2388          * have the right event counter, or have one earlier
2389          * (which would mean they aren't being marked as dirty
2390          * with the rest of the array)
2391          */
2392         struct md_rdev *rdev;
2393         rdev_for_each(rdev, mddev) {
2394                 if (rdev->sb_events == mddev->events ||
2395                     (nospares &&
2396                      rdev->raid_disk < 0 &&
2397                      rdev->sb_events+1 == mddev->events)) {
2398                         /* Don't update this superblock */
2399                         rdev->sb_loaded = 2;
2400                 } else {
2401                         sync_super(mddev, rdev);
2402                         rdev->sb_loaded = 1;
2403                 }
2404         }
2405 }
2406
2407 static void md_update_sb(struct mddev * mddev, int force_change)
2408 {
2409         struct md_rdev *rdev;
2410         int sync_req;
2411         int nospares = 0;
2412         int any_badblocks_changed = 0;
2413
2414 repeat:
2415         /* First make sure individual recovery_offsets are correct */
2416         rdev_for_each(rdev, mddev) {
2417                 if (rdev->raid_disk >= 0 &&
2418                     mddev->delta_disks >= 0 &&
2419                     !test_bit(In_sync, &rdev->flags) &&
2420                     mddev->curr_resync_completed > rdev->recovery_offset)
2421                                 rdev->recovery_offset = mddev->curr_resync_completed;
2422
2423         }       
2424         if (!mddev->persistent) {
2425                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2426                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2427                 if (!mddev->external) {
2428                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2429                         rdev_for_each(rdev, mddev) {
2430                                 if (rdev->badblocks.changed) {
2431                                         rdev->badblocks.changed = 0;
2432                                         md_ack_all_badblocks(&rdev->badblocks);
2433                                         md_error(mddev, rdev);
2434                                 }
2435                                 clear_bit(Blocked, &rdev->flags);
2436                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2437                                 wake_up(&rdev->blocked_wait);
2438                         }
2439                 }
2440                 wake_up(&mddev->sb_wait);
2441                 return;
2442         }
2443
2444         spin_lock_irq(&mddev->write_lock);
2445
2446         mddev->utime = get_seconds();
2447
2448         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2449                 force_change = 1;
2450         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2451                 /* just a clean<-> dirty transition, possibly leave spares alone,
2452                  * though if events isn't the right even/odd, we will have to do
2453                  * spares after all
2454                  */
2455                 nospares = 1;
2456         if (force_change)
2457                 nospares = 0;
2458         if (mddev->degraded)
2459                 /* If the array is degraded, then skipping spares is both
2460                  * dangerous and fairly pointless.
2461                  * Dangerous because a device that was removed from the array
2462                  * might have a event_count that still looks up-to-date,
2463                  * so it can be re-added without a resync.
2464                  * Pointless because if there are any spares to skip,
2465                  * then a recovery will happen and soon that array won't
2466                  * be degraded any more and the spare can go back to sleep then.
2467                  */
2468                 nospares = 0;
2469
2470         sync_req = mddev->in_sync;
2471
2472         /* If this is just a dirty<->clean transition, and the array is clean
2473          * and 'events' is odd, we can roll back to the previous clean state */
2474         if (nospares
2475             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2476             && mddev->can_decrease_events
2477             && mddev->events != 1) {
2478                 mddev->events--;
2479                 mddev->can_decrease_events = 0;
2480         } else {
2481                 /* otherwise we have to go forward and ... */
2482                 mddev->events ++;
2483                 mddev->can_decrease_events = nospares;
2484         }
2485
2486         if (!mddev->events) {
2487                 /*
2488                  * oops, this 64-bit counter should never wrap.
2489                  * Either we are in around ~1 trillion A.C., assuming
2490                  * 1 reboot per second, or we have a bug:
2491                  */
2492                 MD_BUG();
2493                 mddev->events --;
2494         }
2495
2496         rdev_for_each(rdev, mddev) {
2497                 if (rdev->badblocks.changed)
2498                         any_badblocks_changed++;
2499                 if (test_bit(Faulty, &rdev->flags))
2500                         set_bit(FaultRecorded, &rdev->flags);
2501         }
2502
2503         sync_sbs(mddev, nospares);
2504         spin_unlock_irq(&mddev->write_lock);
2505
2506         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2507                  mdname(mddev), mddev->in_sync);
2508
2509         bitmap_update_sb(mddev->bitmap);
2510         rdev_for_each(rdev, mddev) {
2511                 char b[BDEVNAME_SIZE];
2512
2513                 if (rdev->sb_loaded != 1)
2514                         continue; /* no noise on spare devices */
2515
2516                 if (!test_bit(Faulty, &rdev->flags) &&
2517                     rdev->saved_raid_disk == -1) {
2518                         md_super_write(mddev,rdev,
2519                                        rdev->sb_start, rdev->sb_size,
2520                                        rdev->sb_page);
2521                         pr_debug("md: (write) %s's sb offset: %llu\n",
2522                                  bdevname(rdev->bdev, b),
2523                                  (unsigned long long)rdev->sb_start);
2524                         rdev->sb_events = mddev->events;
2525                         if (rdev->badblocks.size) {
2526                                 md_super_write(mddev, rdev,
2527                                                rdev->badblocks.sector,
2528                                                rdev->badblocks.size << 9,
2529                                                rdev->bb_page);
2530                                 rdev->badblocks.size = 0;
2531                         }
2532
2533                 } else if (test_bit(Faulty, &rdev->flags))
2534                         pr_debug("md: %s (skipping faulty)\n",
2535                                  bdevname(rdev->bdev, b));
2536                 else
2537                         pr_debug("(skipping incremental s/r ");
2538
2539                 if (mddev->level == LEVEL_MULTIPATH)
2540                         /* only need to write one superblock... */
2541                         break;
2542         }
2543         md_super_wait(mddev);
2544         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2545
2546         spin_lock_irq(&mddev->write_lock);
2547         if (mddev->in_sync != sync_req ||
2548             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2549                 /* have to write it out again */
2550                 spin_unlock_irq(&mddev->write_lock);
2551                 goto repeat;
2552         }
2553         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2554         spin_unlock_irq(&mddev->write_lock);
2555         wake_up(&mddev->sb_wait);
2556         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2557                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2558
2559         rdev_for_each(rdev, mddev) {
2560                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2561                         clear_bit(Blocked, &rdev->flags);
2562
2563                 if (any_badblocks_changed)
2564                         md_ack_all_badblocks(&rdev->badblocks);
2565                 clear_bit(BlockedBadBlocks, &rdev->flags);
2566                 wake_up(&rdev->blocked_wait);
2567         }
2568 }
2569
2570 /* words written to sysfs files may, or may not, be \n terminated.
2571  * We want to accept with case. For this we use cmd_match.
2572  */
2573 static int cmd_match(const char *cmd, const char *str)
2574 {
2575         /* See if cmd, written into a sysfs file, matches
2576          * str.  They must either be the same, or cmd can
2577          * have a trailing newline
2578          */
2579         while (*cmd && *str && *cmd == *str) {
2580                 cmd++;
2581                 str++;
2582         }
2583         if (*cmd == '\n')
2584                 cmd++;
2585         if (*str || *cmd)
2586                 return 0;
2587         return 1;
2588 }
2589
2590 struct rdev_sysfs_entry {
2591         struct attribute attr;
2592         ssize_t (*show)(struct md_rdev *, char *);
2593         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2594 };
2595
2596 static ssize_t
2597 state_show(struct md_rdev *rdev, char *page)
2598 {
2599         char *sep = "";
2600         size_t len = 0;
2601
2602         if (test_bit(Faulty, &rdev->flags) ||
2603             rdev->badblocks.unacked_exist) {
2604                 len+= sprintf(page+len, "%sfaulty",sep);
2605                 sep = ",";
2606         }
2607         if (test_bit(In_sync, &rdev->flags)) {
2608                 len += sprintf(page+len, "%sin_sync",sep);
2609                 sep = ",";
2610         }
2611         if (test_bit(WriteMostly, &rdev->flags)) {
2612                 len += sprintf(page+len, "%swrite_mostly",sep);
2613                 sep = ",";
2614         }
2615         if (test_bit(Blocked, &rdev->flags) ||
2616             (rdev->badblocks.unacked_exist
2617              && !test_bit(Faulty, &rdev->flags))) {
2618                 len += sprintf(page+len, "%sblocked", sep);
2619                 sep = ",";
2620         }
2621         if (!test_bit(Faulty, &rdev->flags) &&
2622             !test_bit(In_sync, &rdev->flags)) {
2623                 len += sprintf(page+len, "%sspare", sep);
2624                 sep = ",";
2625         }
2626         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2627                 len += sprintf(page+len, "%swrite_error", sep);
2628                 sep = ",";
2629         }
2630         if (test_bit(WantReplacement, &rdev->flags)) {
2631                 len += sprintf(page+len, "%swant_replacement", sep);
2632                 sep = ",";
2633         }
2634         if (test_bit(Replacement, &rdev->flags)) {
2635                 len += sprintf(page+len, "%sreplacement", sep);
2636                 sep = ",";
2637         }
2638
2639         return len+sprintf(page+len, "\n");
2640 }
2641
2642 static ssize_t
2643 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2644 {
2645         /* can write
2646          *  faulty  - simulates an error
2647          *  remove  - disconnects the device
2648          *  writemostly - sets write_mostly
2649          *  -writemostly - clears write_mostly
2650          *  blocked - sets the Blocked flags
2651          *  -blocked - clears the Blocked and possibly simulates an error
2652          *  insync - sets Insync providing device isn't active
2653          *  write_error - sets WriteErrorSeen
2654          *  -write_error - clears WriteErrorSeen
2655          */
2656         int err = -EINVAL;
2657         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2658                 md_error(rdev->mddev, rdev);
2659                 if (test_bit(Faulty, &rdev->flags))
2660                         err = 0;
2661                 else
2662                         err = -EBUSY;
2663         } else if (cmd_match(buf, "remove")) {
2664                 if (rdev->raid_disk >= 0)
2665                         err = -EBUSY;
2666                 else {
2667                         struct mddev *mddev = rdev->mddev;
2668                         kick_rdev_from_array(rdev);
2669                         if (mddev->pers)
2670                                 md_update_sb(mddev, 1);
2671                         md_new_event(mddev);
2672                         err = 0;
2673                 }
2674         } else if (cmd_match(buf, "writemostly")) {
2675                 set_bit(WriteMostly, &rdev->flags);
2676                 err = 0;
2677         } else if (cmd_match(buf, "-writemostly")) {
2678                 clear_bit(WriteMostly, &rdev->flags);
2679                 err = 0;
2680         } else if (cmd_match(buf, "blocked")) {
2681                 set_bit(Blocked, &rdev->flags);
2682                 err = 0;
2683         } else if (cmd_match(buf, "-blocked")) {
2684                 if (!test_bit(Faulty, &rdev->flags) &&
2685                     rdev->badblocks.unacked_exist) {
2686                         /* metadata handler doesn't understand badblocks,
2687                          * so we need to fail the device
2688                          */
2689                         md_error(rdev->mddev, rdev);
2690                 }
2691                 clear_bit(Blocked, &rdev->flags);
2692                 clear_bit(BlockedBadBlocks, &rdev->flags);
2693                 wake_up(&rdev->blocked_wait);
2694                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2695                 md_wakeup_thread(rdev->mddev->thread);
2696
2697                 err = 0;
2698         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2699                 set_bit(In_sync, &rdev->flags);
2700                 err = 0;
2701         } else if (cmd_match(buf, "write_error")) {
2702                 set_bit(WriteErrorSeen, &rdev->flags);
2703                 err = 0;
2704         } else if (cmd_match(buf, "-write_error")) {
2705                 clear_bit(WriteErrorSeen, &rdev->flags);
2706                 err = 0;
2707         } else if (cmd_match(buf, "want_replacement")) {
2708                 /* Any non-spare device that is not a replacement can
2709                  * become want_replacement at any time, but we then need to
2710                  * check if recovery is needed.
2711                  */
2712                 if (rdev->raid_disk >= 0 &&
2713                     !test_bit(Replacement, &rdev->flags))
2714                         set_bit(WantReplacement, &rdev->flags);
2715                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2716                 md_wakeup_thread(rdev->mddev->thread);
2717                 err = 0;
2718         } else if (cmd_match(buf, "-want_replacement")) {
2719                 /* Clearing 'want_replacement' is always allowed.
2720                  * Once replacements starts it is too late though.
2721                  */
2722                 err = 0;
2723                 clear_bit(WantReplacement, &rdev->flags);
2724         } else if (cmd_match(buf, "replacement")) {
2725                 /* Can only set a device as a replacement when array has not
2726                  * yet been started.  Once running, replacement is automatic
2727                  * from spares, or by assigning 'slot'.
2728                  */
2729                 if (rdev->mddev->pers)
2730                         err = -EBUSY;
2731                 else {
2732                         set_bit(Replacement, &rdev->flags);
2733                         err = 0;
2734                 }
2735         } else if (cmd_match(buf, "-replacement")) {
2736                 /* Similarly, can only clear Replacement before start */
2737                 if (rdev->mddev->pers)
2738                         err = -EBUSY;
2739                 else {
2740                         clear_bit(Replacement, &rdev->flags);
2741                         err = 0;
2742                 }
2743         }
2744         if (!err)
2745                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2746         return err ? err : len;
2747 }
2748 static struct rdev_sysfs_entry rdev_state =
2749 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2750
2751 static ssize_t
2752 errors_show(struct md_rdev *rdev, char *page)
2753 {
2754         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2755 }
2756
2757 static ssize_t
2758 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2759 {
2760         char *e;
2761         unsigned long n = simple_strtoul(buf, &e, 10);
2762         if (*buf && (*e == 0 || *e == '\n')) {
2763                 atomic_set(&rdev->corrected_errors, n);
2764                 return len;
2765         }
2766         return -EINVAL;
2767 }
2768 static struct rdev_sysfs_entry rdev_errors =
2769 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2770
2771 static ssize_t
2772 slot_show(struct md_rdev *rdev, char *page)
2773 {
2774         if (rdev->raid_disk < 0)
2775                 return sprintf(page, "none\n");
2776         else
2777                 return sprintf(page, "%d\n", rdev->raid_disk);
2778 }
2779
2780 static ssize_t
2781 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2782 {
2783         char *e;
2784         int err;
2785         int slot = simple_strtoul(buf, &e, 10);
2786         if (strncmp(buf, "none", 4)==0)
2787                 slot = -1;
2788         else if (e==buf || (*e && *e!= '\n'))
2789                 return -EINVAL;
2790         if (rdev->mddev->pers && slot == -1) {
2791                 /* Setting 'slot' on an active array requires also
2792                  * updating the 'rd%d' link, and communicating
2793                  * with the personality with ->hot_*_disk.
2794                  * For now we only support removing
2795                  * failed/spare devices.  This normally happens automatically,
2796                  * but not when the metadata is externally managed.
2797                  */
2798                 if (rdev->raid_disk == -1)
2799                         return -EEXIST;
2800                 /* personality does all needed checks */
2801                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2802                         return -EINVAL;
2803                 err = rdev->mddev->pers->
2804                         hot_remove_disk(rdev->mddev, rdev);
2805                 if (err)
2806                         return err;
2807                 sysfs_unlink_rdev(rdev->mddev, rdev);
2808                 rdev->raid_disk = -1;
2809                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2810                 md_wakeup_thread(rdev->mddev->thread);
2811         } else if (rdev->mddev->pers) {
2812                 /* Activating a spare .. or possibly reactivating
2813                  * if we ever get bitmaps working here.
2814                  */
2815
2816                 if (rdev->raid_disk != -1)
2817                         return -EBUSY;
2818
2819                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2820                         return -EBUSY;
2821
2822                 if (rdev->mddev->pers->hot_add_disk == NULL)
2823                         return -EINVAL;
2824
2825                 if (slot >= rdev->mddev->raid_disks &&
2826                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2827                         return -ENOSPC;
2828
2829                 rdev->raid_disk = slot;
2830                 if (test_bit(In_sync, &rdev->flags))
2831                         rdev->saved_raid_disk = slot;
2832                 else
2833                         rdev->saved_raid_disk = -1;
2834                 clear_bit(In_sync, &rdev->flags);
2835                 err = rdev->mddev->pers->
2836                         hot_add_disk(rdev->mddev, rdev);
2837                 if (err) {
2838                         rdev->raid_disk = -1;
2839                         return err;
2840                 } else
2841                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2842                 if (sysfs_link_rdev(rdev->mddev, rdev))
2843                         /* failure here is OK */;
2844                 /* don't wakeup anyone, leave that to userspace. */
2845         } else {
2846                 if (slot >= rdev->mddev->raid_disks &&
2847                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2848                         return -ENOSPC;
2849                 rdev->raid_disk = slot;
2850                 /* assume it is working */
2851                 clear_bit(Faulty, &rdev->flags);
2852                 clear_bit(WriteMostly, &rdev->flags);
2853                 set_bit(In_sync, &rdev->flags);
2854                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2855         }
2856         return len;
2857 }
2858
2859
2860 static struct rdev_sysfs_entry rdev_slot =
2861 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2862
2863 static ssize_t
2864 offset_show(struct md_rdev *rdev, char *page)
2865 {
2866         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2867 }
2868
2869 static ssize_t
2870 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2871 {
2872         unsigned long long offset;
2873         if (strict_strtoull(buf, 10, &offset) < 0)
2874                 return -EINVAL;
2875         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2876                 return -EBUSY;
2877         if (rdev->sectors && rdev->mddev->external)
2878                 /* Must set offset before size, so overlap checks
2879                  * can be sane */
2880                 return -EBUSY;
2881         rdev->data_offset = offset;
2882         rdev->new_data_offset = offset;
2883         return len;
2884 }
2885
2886 static struct rdev_sysfs_entry rdev_offset =
2887 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2888
2889 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2890 {
2891         return sprintf(page, "%llu\n",
2892                        (unsigned long long)rdev->new_data_offset);
2893 }
2894
2895 static ssize_t new_offset_store(struct md_rdev *rdev,
2896                                 const char *buf, size_t len)
2897 {
2898         unsigned long long new_offset;
2899         struct mddev *mddev = rdev->mddev;
2900
2901         if (strict_strtoull(buf, 10, &new_offset) < 0)
2902                 return -EINVAL;
2903
2904         if (mddev->sync_thread)
2905                 return -EBUSY;
2906         if (new_offset == rdev->data_offset)
2907                 /* reset is always permitted */
2908                 ;
2909         else if (new_offset > rdev->data_offset) {
2910                 /* must not push array size beyond rdev_sectors */
2911                 if (new_offset - rdev->data_offset
2912                     + mddev->dev_sectors > rdev->sectors)
2913                                 return -E2BIG;
2914         }
2915         /* Metadata worries about other space details. */
2916
2917         /* decreasing the offset is inconsistent with a backwards
2918          * reshape.
2919          */
2920         if (new_offset < rdev->data_offset &&
2921             mddev->reshape_backwards)
2922                 return -EINVAL;
2923         /* Increasing offset is inconsistent with forwards
2924          * reshape.  reshape_direction should be set to
2925          * 'backwards' first.
2926          */
2927         if (new_offset > rdev->data_offset &&
2928             !mddev->reshape_backwards)
2929                 return -EINVAL;
2930
2931         if (mddev->pers && mddev->persistent &&
2932             !super_types[mddev->major_version]
2933             .allow_new_offset(rdev, new_offset))
2934                 return -E2BIG;
2935         rdev->new_data_offset = new_offset;
2936         if (new_offset > rdev->data_offset)
2937                 mddev->reshape_backwards = 1;
2938         else if (new_offset < rdev->data_offset)
2939                 mddev->reshape_backwards = 0;
2940
2941         return len;
2942 }
2943 static struct rdev_sysfs_entry rdev_new_offset =
2944 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2945
2946 static ssize_t
2947 rdev_size_show(struct md_rdev *rdev, char *page)
2948 {
2949         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2950 }
2951
2952 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2953 {
2954         /* check if two start/length pairs overlap */
2955         if (s1+l1 <= s2)
2956                 return 0;
2957         if (s2+l2 <= s1)
2958                 return 0;
2959         return 1;
2960 }
2961
2962 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2963 {
2964         unsigned long long blocks;
2965         sector_t new;
2966
2967         if (strict_strtoull(buf, 10, &blocks) < 0)
2968                 return -EINVAL;
2969
2970         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2971                 return -EINVAL; /* sector conversion overflow */
2972
2973         new = blocks * 2;
2974         if (new != blocks * 2)
2975                 return -EINVAL; /* unsigned long long to sector_t overflow */
2976
2977         *sectors = new;
2978         return 0;
2979 }
2980
2981 static ssize_t
2982 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2983 {
2984         struct mddev *my_mddev = rdev->mddev;
2985         sector_t oldsectors = rdev->sectors;
2986         sector_t sectors;
2987
2988         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2989                 return -EINVAL;
2990         if (rdev->data_offset != rdev->new_data_offset)
2991                 return -EINVAL; /* too confusing */
2992         if (my_mddev->pers && rdev->raid_disk >= 0) {
2993                 if (my_mddev->persistent) {
2994                         sectors = super_types[my_mddev->major_version].
2995                                 rdev_size_change(rdev, sectors);
2996                         if (!sectors)
2997                                 return -EBUSY;
2998                 } else if (!sectors)
2999                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3000                                 rdev->data_offset;
3001                 if (!my_mddev->pers->resize)
3002                         /* Cannot change size for RAID0 or Linear etc */
3003                         return -EINVAL;
3004         }
3005         if (sectors < my_mddev->dev_sectors)
3006                 return -EINVAL; /* component must fit device */
3007
3008         rdev->sectors = sectors;
3009         if (sectors > oldsectors && my_mddev->external) {
3010                 /* need to check that all other rdevs with the same ->bdev
3011                  * do not overlap.  We need to unlock the mddev to avoid
3012                  * a deadlock.  We have already changed rdev->sectors, and if
3013                  * we have to change it back, we will have the lock again.
3014                  */
3015                 struct mddev *mddev;
3016                 int overlap = 0;
3017                 struct list_head *tmp;
3018
3019                 mddev_unlock(my_mddev);
3020                 for_each_mddev(mddev, tmp) {
3021                         struct md_rdev *rdev2;
3022
3023                         mddev_lock(mddev);
3024                         rdev_for_each(rdev2, mddev)
3025                                 if (rdev->bdev == rdev2->bdev &&
3026                                     rdev != rdev2 &&
3027                                     overlaps(rdev->data_offset, rdev->sectors,
3028                                              rdev2->data_offset,
3029                                              rdev2->sectors)) {
3030                                         overlap = 1;
3031                                         break;
3032                                 }
3033                         mddev_unlock(mddev);
3034                         if (overlap) {
3035                                 mddev_put(mddev);
3036                                 break;
3037                         }
3038                 }
3039                 mddev_lock(my_mddev);
3040                 if (overlap) {
3041                         /* Someone else could have slipped in a size
3042                          * change here, but doing so is just silly.
3043                          * We put oldsectors back because we *know* it is
3044                          * safe, and trust userspace not to race with
3045                          * itself
3046                          */
3047                         rdev->sectors = oldsectors;
3048                         return -EBUSY;
3049                 }
3050         }
3051         return len;
3052 }
3053
3054 static struct rdev_sysfs_entry rdev_size =
3055 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3056
3057
3058 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3059 {
3060         unsigned long long recovery_start = rdev->recovery_offset;
3061
3062         if (test_bit(In_sync, &rdev->flags) ||
3063             recovery_start == MaxSector)
3064                 return sprintf(page, "none\n");
3065
3066         return sprintf(page, "%llu\n", recovery_start);
3067 }
3068
3069 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3070 {
3071         unsigned long long recovery_start;
3072
3073         if (cmd_match(buf, "none"))
3074                 recovery_start = MaxSector;
3075         else if (strict_strtoull(buf, 10, &recovery_start))
3076                 return -EINVAL;
3077
3078         if (rdev->mddev->pers &&
3079             rdev->raid_disk >= 0)
3080                 return -EBUSY;
3081
3082         rdev->recovery_offset = recovery_start;
3083         if (recovery_start == MaxSector)
3084                 set_bit(In_sync, &rdev->flags);
3085         else
3086                 clear_bit(In_sync, &rdev->flags);
3087         return len;
3088 }
3089
3090 static struct rdev_sysfs_entry rdev_recovery_start =
3091 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3092
3093
3094 static ssize_t
3095 badblocks_show(struct badblocks *bb, char *page, int unack);
3096 static ssize_t
3097 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3098
3099 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3100 {
3101         return badblocks_show(&rdev->badblocks, page, 0);
3102 }
3103 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3104 {
3105         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3106         /* Maybe that ack was all we needed */
3107         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3108                 wake_up(&rdev->blocked_wait);
3109         return rv;
3110 }
3111 static struct rdev_sysfs_entry rdev_bad_blocks =
3112 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3113
3114
3115 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3116 {
3117         return badblocks_show(&rdev->badblocks, page, 1);
3118 }
3119 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3120 {
3121         return badblocks_store(&rdev->badblocks, page, len, 1);
3122 }
3123 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3124 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3125
3126 static struct attribute *rdev_default_attrs[] = {
3127         &rdev_state.attr,
3128         &rdev_errors.attr,
3129         &rdev_slot.attr,
3130         &rdev_offset.attr,
3131         &rdev_new_offset.attr,
3132         &rdev_size.attr,
3133         &rdev_recovery_start.attr,
3134         &rdev_bad_blocks.attr,
3135         &rdev_unack_bad_blocks.attr,
3136         NULL,
3137 };
3138 static ssize_t
3139 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3140 {
3141         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3142         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3143         struct mddev *mddev = rdev->mddev;
3144         ssize_t rv;
3145
3146         if (!entry->show)
3147                 return -EIO;
3148
3149         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3150         if (!rv) {
3151                 if (rdev->mddev == NULL)
3152                         rv = -EBUSY;
3153                 else
3154                         rv = entry->show(rdev, page);
3155                 mddev_unlock(mddev);
3156         }
3157         return rv;
3158 }
3159
3160 static ssize_t
3161 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3162               const char *page, size_t length)
3163 {
3164         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3165         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3166         ssize_t rv;
3167         struct mddev *mddev = rdev->mddev;
3168
3169         if (!entry->store)
3170                 return -EIO;
3171         if (!capable(CAP_SYS_ADMIN))
3172                 return -EACCES;
3173         rv = mddev ? mddev_lock(mddev): -EBUSY;
3174         if (!rv) {
3175                 if (rdev->mddev == NULL)
3176                         rv = -EBUSY;
3177                 else
3178                         rv = entry->store(rdev, page, length);
3179                 mddev_unlock(mddev);
3180         }
3181         return rv;
3182 }
3183
3184 static void rdev_free(struct kobject *ko)
3185 {
3186         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3187         kfree(rdev);
3188 }
3189 static const struct sysfs_ops rdev_sysfs_ops = {
3190         .show           = rdev_attr_show,
3191         .store          = rdev_attr_store,
3192 };
3193 static struct kobj_type rdev_ktype = {
3194         .release        = rdev_free,
3195         .sysfs_ops      = &rdev_sysfs_ops,
3196         .default_attrs  = rdev_default_attrs,
3197 };
3198
3199 int md_rdev_init(struct md_rdev *rdev)
3200 {
3201         rdev->desc_nr = -1;
3202         rdev->saved_raid_disk = -1;
3203         rdev->raid_disk = -1;
3204         rdev->flags = 0;
3205         rdev->data_offset = 0;
3206         rdev->new_data_offset = 0;
3207         rdev->sb_events = 0;
3208         rdev->last_read_error.tv_sec  = 0;
3209         rdev->last_read_error.tv_nsec = 0;
3210         rdev->sb_loaded = 0;
3211         rdev->bb_page = NULL;
3212         atomic_set(&rdev->nr_pending, 0);
3213         atomic_set(&rdev->read_errors, 0);
3214         atomic_set(&rdev->corrected_errors, 0);
3215
3216         INIT_LIST_HEAD(&rdev->same_set);
3217         init_waitqueue_head(&rdev->blocked_wait);
3218
3219         /* Add space to store bad block list.
3220          * This reserves the space even on arrays where it cannot
3221          * be used - I wonder if that matters
3222          */
3223         rdev->badblocks.count = 0;
3224         rdev->badblocks.shift = 0;
3225         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3226         seqlock_init(&rdev->badblocks.lock);
3227         if (rdev->badblocks.page == NULL)
3228                 return -ENOMEM;
3229
3230         return 0;
3231 }
3232 EXPORT_SYMBOL_GPL(md_rdev_init);
3233 /*
3234  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3235  *
3236  * mark the device faulty if:
3237  *
3238  *   - the device is nonexistent (zero size)
3239  *   - the device has no valid superblock
3240  *
3241  * a faulty rdev _never_ has rdev->sb set.
3242  */
3243 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3244 {
3245         char b[BDEVNAME_SIZE];
3246         int err;
3247         struct md_rdev *rdev;
3248         sector_t size;
3249
3250         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3251         if (!rdev) {
3252                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3253                 return ERR_PTR(-ENOMEM);
3254         }
3255
3256         err = md_rdev_init(rdev);
3257         if (err)
3258                 goto abort_free;
3259         err = alloc_disk_sb(rdev);
3260         if (err)
3261                 goto abort_free;
3262
3263         err = lock_rdev(rdev, newdev, super_format == -2);
3264         if (err)
3265                 goto abort_free;
3266
3267         kobject_init(&rdev->kobj, &rdev_ktype);
3268
3269         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3270         if (!size) {
3271                 printk(KERN_WARNING 
3272                         "md: %s has zero or unknown size, marking faulty!\n",
3273                         bdevname(rdev->bdev,b));
3274                 err = -EINVAL;
3275                 goto abort_free;
3276         }
3277
3278         if (super_format >= 0) {
3279                 err = super_types[super_format].
3280                         load_super(rdev, NULL, super_minor);
3281                 if (err == -EINVAL) {
3282                         printk(KERN_WARNING
3283                                 "md: %s does not have a valid v%d.%d "
3284                                "superblock, not importing!\n",
3285                                 bdevname(rdev->bdev,b),
3286                                super_format, super_minor);
3287                         goto abort_free;
3288                 }
3289                 if (err < 0) {
3290                         printk(KERN_WARNING 
3291                                 "md: could not read %s's sb, not importing!\n",
3292                                 bdevname(rdev->bdev,b));
3293                         goto abort_free;
3294                 }
3295         }
3296         if (super_format == -1)
3297                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3298                 rdev->badblocks.shift = -1;
3299
3300         return rdev;
3301
3302 abort_free:
3303         if (rdev->bdev)
3304                 unlock_rdev(rdev);
3305         md_rdev_clear(rdev);
3306         kfree(rdev);
3307         return ERR_PTR(err);
3308 }
3309
3310 /*
3311  * Check a full RAID array for plausibility
3312  */
3313
3314
3315 static void analyze_sbs(struct mddev * mddev)
3316 {
3317         int i;
3318         struct md_rdev *rdev, *freshest, *tmp;
3319         char b[BDEVNAME_SIZE];
3320
3321         freshest = NULL;
3322         rdev_for_each_safe(rdev, tmp, mddev)
3323                 switch (super_types[mddev->major_version].
3324                         load_super(rdev, freshest, mddev->minor_version)) {
3325                 case 1:
3326                         freshest = rdev;
3327                         break;
3328                 case 0:
3329                         break;
3330                 default:
3331                         printk( KERN_ERR \
3332                                 "md: fatal superblock inconsistency in %s"
3333                                 " -- removing from array\n", 
3334                                 bdevname(rdev->bdev,b));
3335                         kick_rdev_from_array(rdev);
3336                 }
3337
3338
3339         super_types[mddev->major_version].
3340                 validate_super(mddev, freshest);
3341
3342         i = 0;
3343         rdev_for_each_safe(rdev, tmp, mddev) {
3344                 if (mddev->max_disks &&
3345                     (rdev->desc_nr >= mddev->max_disks ||
3346                      i > mddev->max_disks)) {
3347                         printk(KERN_WARNING
3348                                "md: %s: %s: only %d devices permitted\n",
3349                                mdname(mddev), bdevname(rdev->bdev, b),
3350                                mddev->max_disks);
3351                         kick_rdev_from_array(rdev);
3352                         continue;
3353                 }
3354                 if (rdev != freshest)
3355                         if (super_types[mddev->major_version].
3356                             validate_super(mddev, rdev)) {
3357                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3358                                         " from array!\n",
3359                                         bdevname(rdev->bdev,b));
3360                                 kick_rdev_from_array(rdev);
3361                                 continue;
3362                         }
3363                 if (mddev->level == LEVEL_MULTIPATH) {
3364                         rdev->desc_nr = i++;
3365                         rdev->raid_disk = rdev->desc_nr;
3366                         set_bit(In_sync, &rdev->flags);
3367                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3368                         rdev->raid_disk = -1;
3369                         clear_bit(In_sync, &rdev->flags);
3370                 }
3371         }
3372 }
3373
3374 /* Read a fixed-point number.
3375  * Numbers in sysfs attributes should be in "standard" units where
3376  * possible, so time should be in seconds.
3377  * However we internally use a a much smaller unit such as 
3378  * milliseconds or jiffies.
3379  * This function takes a decimal number with a possible fractional
3380  * component, and produces an integer which is the result of
3381  * multiplying that number by 10^'scale'.
3382  * all without any floating-point arithmetic.
3383  */
3384 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3385 {
3386         unsigned long result = 0;
3387         long decimals = -1;
3388         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3389                 if (*cp == '.')
3390                         decimals = 0;
3391                 else if (decimals < scale) {
3392                         unsigned int value;
3393                         value = *cp - '0';
3394                         result = result * 10 + value;
3395                         if (decimals >= 0)
3396                                 decimals++;
3397                 }
3398                 cp++;
3399         }
3400         if (*cp == '\n')
3401                 cp++;
3402         if (*cp)
3403                 return -EINVAL;
3404         if (decimals < 0)
3405                 decimals = 0;
3406         while (decimals < scale) {
3407                 result *= 10;
3408                 decimals ++;
3409         }
3410         *res = result;
3411         return 0;
3412 }
3413
3414
3415 static void md_safemode_timeout(unsigned long data);
3416
3417 static ssize_t
3418 safe_delay_show(struct mddev *mddev, char *page)
3419 {
3420         int msec = (mddev->safemode_delay*1000)/HZ;
3421         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3422 }
3423 static ssize_t
3424 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3425 {
3426         unsigned long msec;
3427
3428         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3429                 return -EINVAL;
3430         if (msec == 0)
3431                 mddev->safemode_delay = 0;
3432         else {
3433                 unsigned long old_delay = mddev->safemode_delay;
3434                 mddev->safemode_delay = (msec*HZ)/1000;
3435                 if (mddev->safemode_delay == 0)
3436                         mddev->safemode_delay = 1;
3437                 if (mddev->safemode_delay < old_delay)
3438                         md_safemode_timeout((unsigned long)mddev);
3439         }
3440         return len;
3441 }
3442 static struct md_sysfs_entry md_safe_delay =
3443 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3444
3445 static ssize_t
3446 level_show(struct mddev *mddev, char *page)
3447 {
3448         struct md_personality *p = mddev->pers;
3449         if (p)
3450                 return sprintf(page, "%s\n", p->name);
3451         else if (mddev->clevel[0])
3452                 return sprintf(page, "%s\n", mddev->clevel);
3453         else if (mddev->level != LEVEL_NONE)
3454                 return sprintf(page, "%d\n", mddev->level);
3455         else
3456                 return 0;
3457 }
3458
3459 static ssize_t
3460 level_store(struct mddev *mddev, const char *buf, size_t len)
3461 {
3462         char clevel[16];
3463         ssize_t rv = len;
3464         struct md_personality *pers;
3465         long level;
3466         void *priv;
3467         struct md_rdev *rdev;
3468
3469         if (mddev->pers == NULL) {
3470                 if (len == 0)
3471                         return 0;
3472                 if (len >= sizeof(mddev->clevel))
3473                         return -ENOSPC;
3474                 strncpy(mddev->clevel, buf, len);
3475                 if (mddev->clevel[len-1] == '\n')
3476                         len--;
3477                 mddev->clevel[len] = 0;
3478                 mddev->level = LEVEL_NONE;
3479                 return rv;
3480         }
3481
3482         /* request to change the personality.  Need to ensure:
3483          *  - array is not engaged in resync/recovery/reshape
3484          *  - old personality can be suspended
3485          *  - new personality will access other array.
3486          */
3487
3488         if (mddev->sync_thread ||
3489             mddev->reshape_position != MaxSector ||
3490             mddev->sysfs_active)
3491                 return -EBUSY;
3492
3493         if (!mddev->pers->quiesce) {
3494                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3495                        mdname(mddev), mddev->pers->name);
3496                 return -EINVAL;
3497         }
3498
3499         /* Now find the new personality */
3500         if (len == 0 || len >= sizeof(clevel))
3501                 return -EINVAL;
3502         strncpy(clevel, buf, len);
3503         if (clevel[len-1] == '\n')
3504                 len--;
3505         clevel[len] = 0;
3506         if (strict_strtol(clevel, 10, &level))
3507                 level = LEVEL_NONE;
3508
3509         if (request_module("md-%s", clevel) != 0)
3510                 request_module("md-level-%s", clevel);
3511         spin_lock(&pers_lock);
3512         pers = find_pers(level, clevel);
3513         if (!pers || !try_module_get(pers->owner)) {
3514                 spin_unlock(&pers_lock);
3515                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3516                 return -EINVAL;
3517         }
3518         spin_unlock(&pers_lock);
3519
3520         if (pers == mddev->pers) {
3521                 /* Nothing to do! */
3522                 module_put(pers->owner);
3523                 return rv;
3524         }
3525         if (!pers->takeover) {
3526                 module_put(pers->owner);
3527                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3528                        mdname(mddev), clevel);
3529                 return -EINVAL;
3530         }
3531
3532         rdev_for_each(rdev, mddev)
3533                 rdev->new_raid_disk = rdev->raid_disk;
3534
3535         /* ->takeover must set new_* and/or delta_disks
3536          * if it succeeds, and may set them when it fails.
3537          */
3538         priv = pers->takeover(mddev);
3539         if (IS_ERR(priv)) {
3540                 mddev->new_level = mddev->level;
3541                 mddev->new_layout = mddev->layout;
3542                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3543                 mddev->raid_disks -= mddev->delta_disks;
3544                 mddev->delta_disks = 0;
3545                 mddev->reshape_backwards = 0;
3546                 module_put(pers->owner);
3547                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3548                        mdname(mddev), clevel);
3549                 return PTR_ERR(priv);
3550         }
3551
3552         /* Looks like we have a winner */
3553         mddev_suspend(mddev);
3554         mddev->pers->stop(mddev);
3555         
3556         if (mddev->pers->sync_request == NULL &&
3557             pers->sync_request != NULL) {
3558                 /* need to add the md_redundancy_group */
3559                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3560                         printk(KERN_WARNING
3561                                "md: cannot register extra attributes for %s\n",
3562                                mdname(mddev));
3563                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3564         }               
3565         if (mddev->pers->sync_request != NULL &&
3566             pers->sync_request == NULL) {
3567                 /* need to remove the md_redundancy_group */
3568                 if (mddev->to_remove == NULL)
3569                         mddev->to_remove = &md_redundancy_group;
3570         }
3571
3572         if (mddev->pers->sync_request == NULL &&
3573             mddev->external) {
3574                 /* We are converting from a no-redundancy array
3575                  * to a redundancy array and metadata is managed
3576                  * externally so we need to be sure that writes
3577                  * won't block due to a need to transition
3578                  *      clean->dirty
3579                  * until external management is started.
3580                  */
3581                 mddev->in_sync = 0;
3582                 mddev->safemode_delay = 0;
3583                 mddev->safemode = 0;
3584         }
3585
3586         rdev_for_each(rdev, mddev) {
3587                 if (rdev->raid_disk < 0)
3588                         continue;
3589                 if (rdev->new_raid_disk >= mddev->raid_disks)
3590                         rdev->new_raid_disk = -1;
3591                 if (rdev->new_raid_disk == rdev->raid_disk)
3592                         continue;
3593                 sysfs_unlink_rdev(mddev, rdev);
3594         }
3595         rdev_for_each(rdev, mddev) {
3596                 if (rdev->raid_disk < 0)
3597                         continue;
3598                 if (rdev->new_raid_disk == rdev->raid_disk)
3599                         continue;
3600                 rdev->raid_disk = rdev->new_raid_disk;
3601                 if (rdev->raid_disk < 0)
3602                         clear_bit(In_sync, &rdev->flags);
3603                 else {
3604                         if (sysfs_link_rdev(mddev, rdev))
3605                                 printk(KERN_WARNING "md: cannot register rd%d"
3606                                        " for %s after level change\n",
3607                                        rdev->raid_disk, mdname(mddev));
3608                 }
3609         }
3610
3611         module_put(mddev->pers->owner);
3612         mddev->pers = pers;
3613         mddev->private = priv;
3614         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3615         mddev->level = mddev->new_level;
3616         mddev->layout = mddev->new_layout;
3617         mddev->chunk_sectors = mddev->new_chunk_sectors;
3618         mddev->delta_disks = 0;
3619         mddev->reshape_backwards = 0;
3620         mddev->degraded = 0;
3621         if (mddev->pers->sync_request == NULL) {
3622                 /* this is now an array without redundancy, so
3623                  * it must always be in_sync
3624                  */
3625                 mddev->in_sync = 1;
3626                 del_timer_sync(&mddev->safemode_timer);
3627         }
3628         pers->run(mddev);
3629         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3630         mddev_resume(mddev);
3631         sysfs_notify(&mddev->kobj, NULL, "level");
3632         md_new_event(mddev);
3633         return rv;
3634 }
3635
3636 static struct md_sysfs_entry md_level =
3637 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3638
3639
3640 static ssize_t
3641 layout_show(struct mddev *mddev, char *page)
3642 {
3643         /* just a number, not meaningful for all levels */
3644         if (mddev->reshape_position != MaxSector &&
3645             mddev->layout != mddev->new_layout)
3646                 return sprintf(page, "%d (%d)\n",
3647                                mddev->new_layout, mddev->layout);
3648         return sprintf(page, "%d\n", mddev->layout);
3649 }
3650
3651 static ssize_t
3652 layout_store(struct mddev *mddev, const char *buf, size_t len)
3653 {
3654         char *e;
3655         unsigned long n = simple_strtoul(buf, &e, 10);
3656
3657         if (!*buf || (*e && *e != '\n'))
3658                 return -EINVAL;
3659
3660         if (mddev->pers) {
3661                 int err;
3662                 if (mddev->pers->check_reshape == NULL)
3663                         return -EBUSY;
3664                 mddev->new_layout = n;
3665                 err = mddev->pers->check_reshape(mddev);
3666                 if (err) {
3667                         mddev->new_layout = mddev->layout;
3668                         return err;
3669                 }
3670         } else {
3671                 mddev->new_layout = n;
3672                 if (mddev->reshape_position == MaxSector)
3673                         mddev->layout = n;
3674         }
3675         return len;
3676 }
3677 static struct md_sysfs_entry md_layout =
3678 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3679
3680
3681 static ssize_t
3682 raid_disks_show(struct mddev *mddev, char *page)
3683 {
3684         if (mddev->raid_disks == 0)
3685                 return 0;
3686         if (mddev->reshape_position != MaxSector &&
3687             mddev->delta_disks != 0)
3688                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3689                                mddev->raid_disks - mddev->delta_disks);
3690         return sprintf(page, "%d\n", mddev->raid_disks);
3691 }
3692
3693 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3694
3695 static ssize_t
3696 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3697 {
3698         char *e;
3699         int rv = 0;
3700         unsigned long n = simple_strtoul(buf, &e, 10);
3701
3702         if (!*buf || (*e && *e != '\n'))
3703                 return -EINVAL;
3704
3705         if (mddev->pers)
3706                 rv = update_raid_disks(mddev, n);
3707         else if (mddev->reshape_position != MaxSector) {
3708                 struct md_rdev *rdev;
3709                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3710
3711                 rdev_for_each(rdev, mddev) {
3712                         if (olddisks < n &&
3713                             rdev->data_offset < rdev->new_data_offset)
3714                                 return -EINVAL;
3715                         if (olddisks > n &&
3716                             rdev->data_offset > rdev->new_data_offset)
3717                                 return -EINVAL;
3718                 }
3719                 mddev->delta_disks = n - olddisks;
3720                 mddev->raid_disks = n;
3721                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3722         } else
3723                 mddev->raid_disks = n;
3724         return rv ? rv : len;
3725 }
3726 static struct md_sysfs_entry md_raid_disks =
3727 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3728
3729 static ssize_t
3730 chunk_size_show(struct mddev *mddev, char *page)
3731 {
3732         if (mddev->reshape_position != MaxSector &&
3733             mddev->chunk_sectors != mddev->new_chunk_sectors)
3734                 return sprintf(page, "%d (%d)\n",
3735                                mddev->new_chunk_sectors << 9,
3736                                mddev->chunk_sectors << 9);
3737         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3738 }
3739
3740 static ssize_t
3741 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3742 {
3743         char *e;
3744         unsigned long n = simple_strtoul(buf, &e, 10);
3745
3746         if (!*buf || (*e && *e != '\n'))
3747                 return -EINVAL;
3748
3749         if (mddev->pers) {
3750                 int err;
3751                 if (mddev->pers->check_reshape == NULL)
3752                         return -EBUSY;
3753                 mddev->new_chunk_sectors = n >> 9;
3754                 err = mddev->pers->check_reshape(mddev);
3755                 if (err) {
3756                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3757                         return err;
3758                 }
3759         } else {
3760                 mddev->new_chunk_sectors = n >> 9;
3761                 if (mddev->reshape_position == MaxSector)
3762                         mddev->chunk_sectors = n >> 9;
3763         }
3764         return len;
3765 }
3766 static struct md_sysfs_entry md_chunk_size =
3767 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3768
3769 static ssize_t
3770 resync_start_show(struct mddev *mddev, char *page)
3771 {
3772         if (mddev->recovery_cp == MaxSector)
3773                 return sprintf(page, "none\n");
3774         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3775 }
3776
3777 static ssize_t
3778 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3779 {
3780         char *e;
3781         unsigned long long n = simple_strtoull(buf, &e, 10);
3782
3783         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3784                 return -EBUSY;
3785         if (cmd_match(buf, "none"))
3786                 n = MaxSector;
3787         else if (!*buf || (*e && *e != '\n'))
3788                 return -EINVAL;
3789
3790         mddev->recovery_cp = n;
3791         if (mddev->pers)
3792                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3793         return len;
3794 }
3795 static struct md_sysfs_entry md_resync_start =
3796 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3797
3798 /*
3799  * The array state can be:
3800  *
3801  * clear
3802  *     No devices, no size, no level
3803  *     Equivalent to STOP_ARRAY ioctl
3804  * inactive
3805  *     May have some settings, but array is not active
3806  *        all IO results in error
3807  *     When written, doesn't tear down array, but just stops it
3808  * suspended (not supported yet)
3809  *     All IO requests will block. The array can be reconfigured.
3810  *     Writing this, if accepted, will block until array is quiescent
3811  * readonly
3812  *     no resync can happen.  no superblocks get written.
3813  *     write requests fail
3814  * read-auto
3815  *     like readonly, but behaves like 'clean' on a write request.
3816  *
3817  * clean - no pending writes, but otherwise active.
3818  *     When written to inactive array, starts without resync
3819  *     If a write request arrives then
3820  *       if metadata is known, mark 'dirty' and switch to 'active'.
3821  *       if not known, block and switch to write-pending
3822  *     If written to an active array that has pending writes, then fails.
3823  * active
3824  *     fully active: IO and resync can be happening.
3825  *     When written to inactive array, starts with resync
3826  *
3827  * write-pending
3828  *     clean, but writes are blocked waiting for 'active' to be written.
3829  *
3830  * active-idle
3831  *     like active, but no writes have been seen for a while (100msec).
3832  *
3833  */
3834 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3835                    write_pending, active_idle, bad_word};
3836 static char *array_states[] = {
3837         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3838         "write-pending", "active-idle", NULL };
3839
3840 static int match_word(const char *word, char **list)
3841 {
3842         int n;
3843         for (n=0; list[n]; n++)
3844                 if (cmd_match(word, list[n]))
3845                         break;
3846         return n;
3847 }
3848
3849 static ssize_t
3850 array_state_show(struct mddev *mddev, char *page)
3851 {
3852         enum array_state st = inactive;
3853
3854         if (mddev->pers)
3855                 switch(mddev->ro) {
3856                 case 1:
3857                         st = readonly;
3858                         break;
3859                 case 2:
3860                         st = read_auto;
3861                         break;
3862                 case 0:
3863                         if (mddev->in_sync)
3864                                 st = clean;
3865                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3866                                 st = write_pending;
3867                         else if (mddev->safemode)
3868                                 st = active_idle;
3869                         else
3870                                 st = active;
3871                 }
3872         else {
3873                 if (list_empty(&mddev->disks) &&
3874                     mddev->raid_disks == 0 &&
3875                     mddev->dev_sectors == 0)
3876                         st = clear;
3877                 else
3878                         st = inactive;
3879         }
3880         return sprintf(page, "%s\n", array_states[st]);
3881 }
3882
3883 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3884 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3885 static int do_md_run(struct mddev * mddev);
3886 static int restart_array(struct mddev *mddev);
3887
3888 static ssize_t
3889 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3890 {
3891         int err = -EINVAL;
3892         enum array_state st = match_word(buf, array_states);
3893         switch(st) {
3894         case bad_word:
3895                 break;
3896         case clear:
3897                 /* stopping an active array */
3898                 err = do_md_stop(mddev, 0, NULL);
3899                 break;
3900         case inactive:
3901                 /* stopping an active array */
3902                 if (mddev->pers)
3903                         err = do_md_stop(mddev, 2, NULL);
3904                 else
3905                         err = 0; /* already inactive */
3906                 break;
3907         case suspended:
3908                 break; /* not supported yet */
3909         case readonly:
3910                 if (mddev->pers)
3911                         err = md_set_readonly(mddev, NULL);
3912                 else {
3913                         mddev->ro = 1;
3914                         set_disk_ro(mddev->gendisk, 1);
3915                         err = do_md_run(mddev);
3916                 }
3917                 break;
3918         case read_auto:
3919                 if (mddev->pers) {
3920                         if (mddev->ro == 0)
3921                                 err = md_set_readonly(mddev, NULL);
3922                         else if (mddev->ro == 1)
3923                                 err = restart_array(mddev);
3924                         if (err == 0) {
3925                                 mddev->ro = 2;
3926                                 set_disk_ro(mddev->gendisk, 0);
3927                         }
3928                 } else {
3929                         mddev->ro = 2;
3930                         err = do_md_run(mddev);
3931                 }
3932                 break;
3933         case clean:
3934                 if (mddev->pers) {
3935                         restart_array(mddev);
3936                         spin_lock_irq(&mddev->write_lock);
3937                         if (atomic_read(&mddev->writes_pending) == 0) {
3938                                 if (mddev->in_sync == 0) {
3939                                         mddev->in_sync = 1;
3940                                         if (mddev->safemode == 1)
3941                                                 mddev->safemode = 0;
3942                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3943                                 }
3944                                 err = 0;
3945                         } else
3946                                 err = -EBUSY;
3947                         spin_unlock_irq(&mddev->write_lock);
3948                 } else
3949                         err = -EINVAL;
3950                 break;
3951         case active:
3952                 if (mddev->pers) {
3953                         restart_array(mddev);
3954                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3955                         wake_up(&mddev->sb_wait);
3956                         err = 0;
3957                 } else {
3958                         mddev->ro = 0;
3959                         set_disk_ro(mddev->gendisk, 0);
3960                         err = do_md_run(mddev);
3961                 }
3962                 break;
3963         case write_pending:
3964         case active_idle:
3965                 /* these cannot be set */
3966                 break;
3967         }
3968         if (err)
3969                 return err;
3970         else {
3971                 if (mddev->hold_active == UNTIL_IOCTL)
3972                         mddev->hold_active = 0;
3973                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3974                 return len;
3975         }
3976 }
3977 static struct md_sysfs_entry md_array_state =
3978 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3979
3980 static ssize_t
3981 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3982         return sprintf(page, "%d\n",
3983                        atomic_read(&mddev->max_corr_read_errors));
3984 }
3985
3986 static ssize_t
3987 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3988 {
3989         char *e;
3990         unsigned long n = simple_strtoul(buf, &e, 10);
3991
3992         if (*buf && (*e == 0 || *e == '\n')) {
3993                 atomic_set(&mddev->max_corr_read_errors, n);
3994                 return len;
3995         }
3996         return -EINVAL;
3997 }
3998
3999 static struct md_sysfs_entry max_corr_read_errors =
4000 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4001         max_corrected_read_errors_store);
4002
4003 static ssize_t
4004 null_show(struct mddev *mddev, char *page)
4005 {
4006         return -EINVAL;
4007 }
4008
4009 static ssize_t
4010 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4011 {
4012         /* buf must be %d:%d\n? giving major and minor numbers */
4013         /* The new device is added to the array.
4014          * If the array has a persistent superblock, we read the
4015          * superblock to initialise info and check validity.
4016          * Otherwise, only checking done is that in bind_rdev_to_array,
4017          * which mainly checks size.
4018          */
4019         char *e;
4020         int major = simple_strtoul(buf, &e, 10);
4021         int minor;
4022         dev_t dev;
4023         struct md_rdev *rdev;
4024         int err;
4025
4026         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4027                 return -EINVAL;
4028         minor = simple_strtoul(e+1, &e, 10);
4029         if (*e && *e != '\n')
4030                 return -EINVAL;
4031         dev = MKDEV(major, minor);
4032         if (major != MAJOR(dev) ||
4033             minor != MINOR(dev))
4034                 return -EOVERFLOW;
4035
4036
4037         if (mddev->persistent) {
4038                 rdev = md_import_device(dev, mddev->major_version,
4039                                         mddev->minor_version);
4040                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4041                         struct md_rdev *rdev0
4042                                 = list_entry(mddev->disks.next,
4043                                              struct md_rdev, same_set);
4044                         err = super_types[mddev->major_version]
4045                                 .load_super(rdev, rdev0, mddev->minor_version);
4046                         if (err < 0)
4047                                 goto out;
4048                 }
4049         } else if (mddev->external)
4050                 rdev = md_import_device(dev, -2, -1);
4051         else
4052                 rdev = md_import_device(dev, -1, -1);
4053
4054         if (IS_ERR(rdev))
4055                 return PTR_ERR(rdev);
4056         err = bind_rdev_to_array(rdev, mddev);
4057  out:
4058         if (err)
4059                 export_rdev(rdev);
4060         return err ? err : len;
4061 }
4062
4063 static struct md_sysfs_entry md_new_device =
4064 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4065
4066 static ssize_t
4067 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4068 {
4069         char *end;
4070         unsigned long chunk, end_chunk;
4071
4072         if (!mddev->bitmap)
4073                 goto out;
4074         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4075         while (*buf) {
4076                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4077                 if (buf == end) break;
4078                 if (*end == '-') { /* range */
4079                         buf = end + 1;
4080                         end_chunk = simple_strtoul(buf, &end, 0);
4081                         if (buf == end) break;
4082                 }
4083                 if (*end && !isspace(*end)) break;
4084                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4085                 buf = skip_spaces(end);
4086         }
4087         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4088 out:
4089         return len;
4090 }
4091
4092 static struct md_sysfs_entry md_bitmap =
4093 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4094
4095 static ssize_t
4096 size_show(struct mddev *mddev, char *page)
4097 {
4098         return sprintf(page, "%llu\n",
4099                 (unsigned long long)mddev->dev_sectors / 2);
4100 }
4101
4102 static int update_size(struct mddev *mddev, sector_t num_sectors);
4103
4104 static ssize_t
4105 size_store(struct mddev *mddev, const char *buf, size_t len)
4106 {
4107         /* If array is inactive, we can reduce the component size, but
4108          * not increase it (except from 0).
4109          * If array is active, we can try an on-line resize
4110          */
4111         sector_t sectors;
4112         int err = strict_blocks_to_sectors(buf, &sectors);
4113
4114         if (err < 0)
4115                 return err;
4116         if (mddev->pers) {
4117                 err = update_size(mddev, sectors);
4118                 md_update_sb(mddev, 1);
4119         } else {
4120                 if (mddev->dev_sectors == 0 ||
4121                     mddev->dev_sectors > sectors)
4122                         mddev->dev_sectors = sectors;
4123                 else
4124                         err = -ENOSPC;
4125         }
4126         return err ? err : len;
4127 }
4128
4129 static struct md_sysfs_entry md_size =
4130 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4131
4132
4133 /* Metadata version.
4134  * This is one of
4135  *   'none' for arrays with no metadata (good luck...)
4136  *   'external' for arrays with externally managed metadata,
4137  * or N.M for internally known formats
4138  */
4139 static ssize_t
4140 metadata_show(struct mddev *mddev, char *page)
4141 {
4142         if (mddev->persistent)
4143                 return sprintf(page, "%d.%d\n",
4144                                mddev->major_version, mddev->minor_version);
4145         else if (mddev->external)
4146                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4147         else
4148                 return sprintf(page, "none\n");
4149 }
4150
4151 static ssize_t
4152 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4153 {
4154         int major, minor;
4155         char *e;
4156         /* Changing the details of 'external' metadata is
4157          * always permitted.  Otherwise there must be
4158          * no devices attached to the array.
4159          */
4160         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4161                 ;
4162         else if (!list_empty(&mddev->disks))
4163                 return -EBUSY;
4164
4165         if (cmd_match(buf, "none")) {
4166                 mddev->persistent = 0;
4167                 mddev->external = 0;
4168                 mddev->major_version = 0;
4169                 mddev->minor_version = 90;
4170                 return len;
4171         }
4172         if (strncmp(buf, "external:", 9) == 0) {
4173                 size_t namelen = len-9;
4174                 if (namelen >= sizeof(mddev->metadata_type))
4175                         namelen = sizeof(mddev->metadata_type)-1;
4176                 strncpy(mddev->metadata_type, buf+9, namelen);
4177                 mddev->metadata_type[namelen] = 0;
4178                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4179                         mddev->metadata_type[--namelen] = 0;
4180                 mddev->persistent = 0;
4181                 mddev->external = 1;
4182                 mddev->major_version = 0;
4183                 mddev->minor_version = 90;
4184                 return len;
4185         }
4186         major = simple_strtoul(buf, &e, 10);
4187         if (e==buf || *e != '.')
4188                 return -EINVAL;
4189         buf = e+1;
4190         minor = simple_strtoul(buf, &e, 10);
4191         if (e==buf || (*e && *e != '\n') )
4192                 return -EINVAL;
4193         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4194                 return -ENOENT;
4195         mddev->major_version = major;
4196         mddev->minor_version = minor;
4197         mddev->persistent = 1;
4198         mddev->external = 0;
4199         return len;
4200 }
4201
4202 static struct md_sysfs_entry md_metadata =
4203 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4204
4205 static ssize_t
4206 action_show(struct mddev *mddev, char *page)
4207 {
4208         char *type = "idle";
4209         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4210                 type = "frozen";
4211         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4212             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4213                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4214                         type = "reshape";
4215                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4216                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4217                                 type = "resync";
4218                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4219                                 type = "check";
4220                         else
4221                                 type = "repair";
4222                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4223                         type = "recover";
4224         }
4225         return sprintf(page, "%s\n", type);
4226 }
4227
4228 static void reap_sync_thread(struct mddev *mddev);
4229
4230 static ssize_t
4231 action_store(struct mddev *mddev, const char *page, size_t len)
4232 {
4233         if (!mddev->pers || !mddev->pers->sync_request)
4234                 return -EINVAL;
4235
4236         if (cmd_match(page, "frozen"))
4237                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4238         else
4239                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4240
4241         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4242                 if (mddev->sync_thread) {
4243                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4244                         reap_sync_thread(mddev);
4245                 }
4246         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4247                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4248                 return -EBUSY;
4249         else if (cmd_match(page, "resync"))
4250                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4251         else if (cmd_match(page, "recover")) {
4252                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4253                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4254         } else if (cmd_match(page, "reshape")) {
4255                 int err;
4256                 if (mddev->pers->start_reshape == NULL)
4257                         return -EINVAL;
4258                 err = mddev->pers->start_reshape(mddev);
4259                 if (err)
4260                         return err;
4261                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4262         } else {
4263                 if (cmd_match(page, "check"))
4264                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4265                 else if (!cmd_match(page, "repair"))
4266                         return -EINVAL;
4267                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4268                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4269         }
4270         if (mddev->ro == 2) {
4271                 /* A write to sync_action is enough to justify
4272                  * canceling read-auto mode
4273                  */
4274                 mddev->ro = 0;
4275                 md_wakeup_thread(mddev->sync_thread);
4276         }
4277         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4278         md_wakeup_thread(mddev->thread);
4279         sysfs_notify_dirent_safe(mddev->sysfs_action);
4280         return len;
4281 }
4282
4283 static ssize_t
4284 mismatch_cnt_show(struct mddev *mddev, char *page)
4285 {
4286         return sprintf(page, "%llu\n",
4287                        (unsigned long long)
4288                        atomic64_read(&mddev->resync_mismatches));
4289 }
4290
4291 static struct md_sysfs_entry md_scan_mode =
4292 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4293
4294
4295 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4296
4297 static ssize_t
4298 sync_min_show(struct mddev *mddev, char *page)
4299 {
4300         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4301                        mddev->sync_speed_min ? "local": "system");
4302 }
4303
4304 static ssize_t
4305 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4306 {
4307         int min;
4308         char *e;
4309         if (strncmp(buf, "system", 6)==0) {
4310                 mddev->sync_speed_min = 0;
4311                 return len;
4312         }
4313         min = simple_strtoul(buf, &e, 10);
4314         if (buf == e || (*e && *e != '\n') || min <= 0)
4315                 return -EINVAL;
4316         mddev->sync_speed_min = min;
4317         return len;
4318 }
4319
4320 static struct md_sysfs_entry md_sync_min =
4321 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4322
4323 static ssize_t
4324 sync_max_show(struct mddev *mddev, char *page)
4325 {
4326         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4327                        mddev->sync_speed_max ? "local": "system");
4328 }
4329
4330 static ssize_t
4331 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4332 {
4333         int max;
4334         char *e;
4335         if (strncmp(buf, "system", 6)==0) {
4336                 mddev->sync_speed_max = 0;
4337                 return len;
4338         }
4339         max = simple_strtoul(buf, &e, 10);
4340         if (buf == e || (*e && *e != '\n') || max <= 0)
4341                 return -EINVAL;
4342         mddev->sync_speed_max = max;
4343         return len;
4344 }
4345
4346 static struct md_sysfs_entry md_sync_max =
4347 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4348
4349 static ssize_t
4350 degraded_show(struct mddev *mddev, char *page)
4351 {
4352         return sprintf(page, "%d\n", mddev->degraded);
4353 }
4354 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4355
4356 static ssize_t
4357 sync_force_parallel_show(struct mddev *mddev, char *page)
4358 {
4359         return sprintf(page, "%d\n", mddev->parallel_resync);
4360 }
4361
4362 static ssize_t
4363 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4364 {
4365         long n;
4366
4367         if (strict_strtol(buf, 10, &n))
4368                 return -EINVAL;
4369
4370         if (n != 0 && n != 1)
4371                 return -EINVAL;
4372
4373         mddev->parallel_resync = n;
4374
4375         if (mddev->sync_thread)
4376                 wake_up(&resync_wait);
4377
4378         return len;
4379 }
4380
4381 /* force parallel resync, even with shared block devices */
4382 static struct md_sysfs_entry md_sync_force_parallel =
4383 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4384        sync_force_parallel_show, sync_force_parallel_store);
4385
4386 static ssize_t
4387 sync_speed_show(struct mddev *mddev, char *page)
4388 {
4389         unsigned long resync, dt, db;
4390         if (mddev->curr_resync == 0)
4391                 return sprintf(page, "none\n");
4392         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4393         dt = (jiffies - mddev->resync_mark) / HZ;
4394         if (!dt) dt++;
4395         db = resync - mddev->resync_mark_cnt;
4396         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4397 }
4398
4399 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4400
4401 static ssize_t
4402 sync_completed_show(struct mddev *mddev, char *page)
4403 {
4404         unsigned long long max_sectors, resync;
4405
4406         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4407                 return sprintf(page, "none\n");
4408
4409         if (mddev->curr_resync == 1 ||
4410             mddev->curr_resync == 2)
4411                 return sprintf(page, "delayed\n");
4412
4413         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4414             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4415                 max_sectors = mddev->resync_max_sectors;
4416         else
4417                 max_sectors = mddev->dev_sectors;
4418
4419         resync = mddev->curr_resync_completed;
4420         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4421 }
4422
4423 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4424
4425 static ssize_t
4426 min_sync_show(struct mddev *mddev, char *page)
4427 {
4428         return sprintf(page, "%llu\n",
4429                        (unsigned long long)mddev->resync_min);
4430 }
4431 static ssize_t
4432 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4433 {
4434         unsigned long long min;
4435         if (strict_strtoull(buf, 10, &min))
4436                 return -EINVAL;
4437         if (min > mddev->resync_max)
4438                 return -EINVAL;
4439         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4440                 return -EBUSY;
4441
4442         /* Must be a multiple of chunk_size */
4443         if (mddev->chunk_sectors) {
4444                 sector_t temp = min;
4445                 if (sector_div(temp, mddev->chunk_sectors))
4446                         return -EINVAL;
4447         }
4448         mddev->resync_min = min;
4449
4450         return len;
4451 }
4452
4453 static struct md_sysfs_entry md_min_sync =
4454 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4455
4456 static ssize_t
4457 max_sync_show(struct mddev *mddev, char *page)
4458 {
4459         if (mddev->resync_max == MaxSector)
4460                 return sprintf(page, "max\n");
4461         else
4462                 return sprintf(page, "%llu\n",
4463                                (unsigned long long)mddev->resync_max);
4464 }
4465 static ssize_t
4466 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4467 {
4468         if (strncmp(buf, "max", 3) == 0)
4469                 mddev->resync_max = MaxSector;
4470         else {
4471                 unsigned long long max;
4472                 if (strict_strtoull(buf, 10, &max))
4473                         return -EINVAL;
4474                 if (max < mddev->resync_min)
4475                         return -EINVAL;
4476                 if (max < mddev->resync_max &&
4477                     mddev->ro == 0 &&
4478                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4479                         return -EBUSY;
4480
4481                 /* Must be a multiple of chunk_size */
4482                 if (mddev->chunk_sectors) {
4483                         sector_t temp = max;
4484                         if (sector_div(temp, mddev->chunk_sectors))
4485                                 return -EINVAL;
4486                 }
4487                 mddev->resync_max = max;
4488         }
4489         wake_up(&mddev->recovery_wait);
4490         return len;
4491 }
4492
4493 static struct md_sysfs_entry md_max_sync =
4494 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4495
4496 static ssize_t
4497 suspend_lo_show(struct mddev *mddev, char *page)
4498 {
4499         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4500 }
4501
4502 static ssize_t
4503 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4504 {
4505         char *e;
4506         unsigned long long new = simple_strtoull(buf, &e, 10);
4507         unsigned long long old = mddev->suspend_lo;
4508
4509         if (mddev->pers == NULL || 
4510             mddev->pers->quiesce == NULL)
4511                 return -EINVAL;
4512         if (buf == e || (*e && *e != '\n'))
4513                 return -EINVAL;
4514
4515         mddev->suspend_lo = new;
4516         if (new >= old)
4517                 /* Shrinking suspended region */
4518                 mddev->pers->quiesce(mddev, 2);
4519         else {
4520                 /* Expanding suspended region - need to wait */
4521                 mddev->pers->quiesce(mddev, 1);
4522                 mddev->pers->quiesce(mddev, 0);
4523         }
4524         return len;
4525 }
4526 static struct md_sysfs_entry md_suspend_lo =
4527 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4528
4529
4530 static ssize_t
4531 suspend_hi_show(struct mddev *mddev, char *page)
4532 {
4533         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4534 }
4535
4536 static ssize_t
4537 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4538 {
4539         char *e;
4540         unsigned long long new = simple_strtoull(buf, &e, 10);
4541         unsigned long long old = mddev->suspend_hi;
4542
4543         if (mddev->pers == NULL ||
4544             mddev->pers->quiesce == NULL)
4545                 return -EINVAL;
4546         if (buf == e || (*e && *e != '\n'))
4547                 return -EINVAL;
4548
4549         mddev->suspend_hi = new;
4550         if (new <= old)
4551                 /* Shrinking suspended region */
4552                 mddev->pers->quiesce(mddev, 2);
4553         else {
4554                 /* Expanding suspended region - need to wait */
4555                 mddev->pers->quiesce(mddev, 1);
4556                 mddev->pers->quiesce(mddev, 0);
4557         }
4558         return len;
4559 }
4560 static struct md_sysfs_entry md_suspend_hi =
4561 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4562
4563 static ssize_t
4564 reshape_position_show(struct mddev *mddev, char *page)
4565 {
4566         if (mddev->reshape_position != MaxSector)
4567                 return sprintf(page, "%llu\n",
4568                                (unsigned long long)mddev->reshape_position);
4569         strcpy(page, "none\n");
4570         return 5;
4571 }
4572
4573 static ssize_t
4574 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4575 {
4576         struct md_rdev *rdev;
4577         char *e;
4578         unsigned long long new = simple_strtoull(buf, &e, 10);
4579         if (mddev->pers)
4580                 return -EBUSY;
4581         if (buf == e || (*e && *e != '\n'))
4582                 return -EINVAL;
4583         mddev->reshape_position = new;
4584         mddev->delta_disks = 0;
4585         mddev->reshape_backwards = 0;
4586         mddev->new_level = mddev->level;
4587         mddev->new_layout = mddev->layout;
4588         mddev->new_chunk_sectors = mddev->chunk_sectors;
4589         rdev_for_each(rdev, mddev)
4590                 rdev->new_data_offset = rdev->data_offset;
4591         return len;
4592 }
4593
4594 static struct md_sysfs_entry md_reshape_position =
4595 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4596        reshape_position_store);
4597
4598 static ssize_t
4599 reshape_direction_show(struct mddev *mddev, char *page)
4600 {
4601         return sprintf(page, "%s\n",
4602                        mddev->reshape_backwards ? "backwards" : "forwards");
4603 }
4604
4605 static ssize_t
4606 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4607 {
4608         int backwards = 0;
4609         if (cmd_match(buf, "forwards"))
4610                 backwards = 0;
4611         else if (cmd_match(buf, "backwards"))
4612                 backwards = 1;
4613         else
4614                 return -EINVAL;
4615         if (mddev->reshape_backwards == backwards)
4616                 return len;
4617
4618         /* check if we are allowed to change */
4619         if (mddev->delta_disks)
4620                 return -EBUSY;
4621
4622         if (mddev->persistent &&
4623             mddev->major_version == 0)
4624                 return -EINVAL;
4625
4626         mddev->reshape_backwards = backwards;
4627         return len;
4628 }
4629
4630 static struct md_sysfs_entry md_reshape_direction =
4631 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4632        reshape_direction_store);
4633
4634 static ssize_t
4635 array_size_show(struct mddev *mddev, char *page)
4636 {
4637         if (mddev->external_size)
4638                 return sprintf(page, "%llu\n",
4639                                (unsigned long long)mddev->array_sectors/2);
4640         else
4641                 return sprintf(page, "default\n");
4642 }
4643
4644 static ssize_t
4645 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4646 {
4647         sector_t sectors;
4648
4649         if (strncmp(buf, "default", 7) == 0) {
4650                 if (mddev->pers)
4651                         sectors = mddev->pers->size(mddev, 0, 0);
4652                 else
4653                         sectors = mddev->array_sectors;
4654
4655                 mddev->external_size = 0;
4656         } else {
4657                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4658                         return -EINVAL;
4659                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4660                         return -E2BIG;
4661
4662                 mddev->external_size = 1;
4663         }
4664
4665         mddev->array_sectors = sectors;
4666         if (mddev->pers) {
4667                 set_capacity(mddev->gendisk, mddev->array_sectors);
4668                 revalidate_disk(mddev->gendisk);
4669         }
4670         return len;
4671 }
4672
4673 static struct md_sysfs_entry md_array_size =
4674 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4675        array_size_store);
4676
4677 static struct attribute *md_default_attrs[] = {
4678         &md_level.attr,
4679         &md_layout.attr,
4680         &md_raid_disks.attr,
4681         &md_chunk_size.attr,
4682         &md_size.attr,
4683         &md_resync_start.attr,
4684         &md_metadata.attr,
4685         &md_new_device.attr,
4686         &md_safe_delay.attr,
4687         &md_array_state.attr,
4688         &md_reshape_position.attr,
4689         &md_reshape_direction.attr,
4690         &md_array_size.attr,
4691         &max_corr_read_errors.attr,
4692         NULL,
4693 };
4694
4695 static struct attribute *md_redundancy_attrs[] = {
4696         &md_scan_mode.attr,
4697         &md_mismatches.attr,
4698         &md_sync_min.attr,
4699         &md_sync_max.attr,
4700         &md_sync_speed.attr,
4701         &md_sync_force_parallel.attr,
4702         &md_sync_completed.attr,
4703         &md_min_sync.attr,
4704         &md_max_sync.attr,
4705         &md_suspend_lo.attr,
4706         &md_suspend_hi.attr,
4707         &md_bitmap.attr,
4708         &md_degraded.attr,
4709         NULL,
4710 };
4711 static struct attribute_group md_redundancy_group = {
4712         .name = NULL,
4713         .attrs = md_redundancy_attrs,
4714 };
4715
4716
4717 static ssize_t
4718 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4719 {
4720         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4721         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4722         ssize_t rv;
4723
4724         if (!entry->show)
4725                 return -EIO;
4726         spin_lock(&all_mddevs_lock);
4727         if (list_empty(&mddev->all_mddevs)) {
4728                 spin_unlock(&all_mddevs_lock);
4729                 return -EBUSY;
4730         }
4731         mddev_get(mddev);
4732         spin_unlock(&all_mddevs_lock);
4733
4734         rv = mddev_lock(mddev);
4735         if (!rv) {
4736                 rv = entry->show(mddev, page);
4737                 mddev_unlock(mddev);
4738         }
4739         mddev_put(mddev);
4740         return rv;
4741 }
4742
4743 static ssize_t
4744 md_attr_store(struct kobject *kobj, struct attribute *attr,
4745               const char *page, size_t length)
4746 {
4747         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4748         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4749         ssize_t rv;
4750
4751         if (!entry->store)
4752                 return -EIO;
4753         if (!capable(CAP_SYS_ADMIN))
4754                 return -EACCES;
4755         spin_lock(&all_mddevs_lock);
4756         if (list_empty(&mddev->all_mddevs)) {
4757                 spin_unlock(&all_mddevs_lock);
4758                 return -EBUSY;
4759         }
4760         mddev_get(mddev);
4761         spin_unlock(&all_mddevs_lock);
4762         if (entry->store == new_dev_store)
4763                 flush_workqueue(md_misc_wq);
4764         rv = mddev_lock(mddev);
4765         if (!rv) {
4766                 rv = entry->store(mddev, page, length);
4767                 mddev_unlock(mddev);
4768         }
4769         mddev_put(mddev);
4770         return rv;
4771 }
4772
4773 static void md_free(struct kobject *ko)
4774 {
4775         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4776
4777         if (mddev->sysfs_state)
4778                 sysfs_put(mddev->sysfs_state);
4779
4780         if (mddev->gendisk) {
4781                 del_gendisk(mddev->gendisk);
4782                 put_disk(mddev->gendisk);
4783         }
4784         if (mddev->queue)
4785                 blk_cleanup_queue(mddev->queue);
4786
4787         kfree(mddev);
4788 }
4789
4790 static const struct sysfs_ops md_sysfs_ops = {
4791         .show   = md_attr_show,
4792         .store  = md_attr_store,
4793 };
4794 static struct kobj_type md_ktype = {
4795         .release        = md_free,
4796         .sysfs_ops      = &md_sysfs_ops,
4797         .default_attrs  = md_default_attrs,
4798 };
4799
4800 int mdp_major = 0;
4801
4802 static void mddev_delayed_delete(struct work_struct *ws)
4803 {
4804         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4805
4806         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4807         kobject_del(&mddev->kobj);
4808         kobject_put(&mddev->kobj);
4809 }
4810
4811 static int md_alloc(dev_t dev, char *name)
4812 {
4813         static DEFINE_MUTEX(disks_mutex);
4814         struct mddev *mddev = mddev_find(dev);
4815         struct gendisk *disk;
4816         int partitioned;
4817         int shift;
4818         int unit;
4819         int error;
4820
4821         if (!mddev)
4822                 return -ENODEV;
4823
4824         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4825         shift = partitioned ? MdpMinorShift : 0;
4826         unit = MINOR(mddev->unit) >> shift;
4827
4828         /* wait for any previous instance of this device to be
4829          * completely removed (mddev_delayed_delete).
4830          */
4831         flush_workqueue(md_misc_wq);
4832
4833         mutex_lock(&disks_mutex);
4834         error = -EEXIST;
4835         if (mddev->gendisk)
4836                 goto abort;
4837
4838         if (name) {
4839                 /* Need to ensure that 'name' is not a duplicate.
4840                  */
4841                 struct mddev *mddev2;
4842                 spin_lock(&all_mddevs_lock);
4843
4844                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4845                         if (mddev2->gendisk &&
4846                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4847                                 spin_unlock(&all_mddevs_lock);
4848                                 goto abort;
4849                         }
4850                 spin_unlock(&all_mddevs_lock);
4851         }
4852
4853         error = -ENOMEM;
4854         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4855         if (!mddev->queue)
4856                 goto abort;
4857         mddev->queue->queuedata = mddev;
4858
4859         blk_queue_make_request(mddev->queue, md_make_request);
4860         blk_set_stacking_limits(&mddev->queue->limits);
4861
4862         disk = alloc_disk(1 << shift);
4863         if (!disk) {
4864                 blk_cleanup_queue(mddev->queue);
4865                 mddev->queue = NULL;
4866                 goto abort;
4867         }
4868         disk->major = MAJOR(mddev->unit);
4869         disk->first_minor = unit << shift;
4870         if (name)
4871                 strcpy(disk->disk_name, name);
4872         else if (partitioned)
4873                 sprintf(disk->disk_name, "md_d%d", unit);
4874         else
4875                 sprintf(disk->disk_name, "md%d", unit);
4876         disk->fops = &md_fops;
4877         disk->private_data = mddev;
4878         disk->queue = mddev->queue;
4879         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4880         /* Allow extended partitions.  This makes the
4881          * 'mdp' device redundant, but we can't really
4882          * remove it now.
4883          */
4884         disk->flags |= GENHD_FL_EXT_DEVT;
4885         mddev->gendisk = disk;
4886         /* As soon as we call add_disk(), another thread could get
4887          * through to md_open, so make sure it doesn't get too far
4888          */
4889         mutex_lock(&mddev->open_mutex);
4890         add_disk(disk);
4891
4892         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4893                                      &disk_to_dev(disk)->kobj, "%s", "md");
4894         if (error) {
4895                 /* This isn't possible, but as kobject_init_and_add is marked
4896                  * __must_check, we must do something with the result
4897                  */
4898                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4899                        disk->disk_name);
4900                 error = 0;
4901         }
4902         if (mddev->kobj.sd &&
4903             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4904                 printk(KERN_DEBUG "pointless warning\n");
4905         mutex_unlock(&mddev->open_mutex);
4906  abort:
4907         mutex_unlock(&disks_mutex);
4908         if (!error && mddev->kobj.sd) {
4909                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4910                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4911         }
4912         mddev_put(mddev);
4913         return error;
4914 }
4915
4916 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4917 {
4918         md_alloc(dev, NULL);
4919         return NULL;
4920 }
4921
4922 static int add_named_array(const char *val, struct kernel_param *kp)
4923 {
4924         /* val must be "md_*" where * is not all digits.
4925          * We allocate an array with a large free minor number, and
4926          * set the name to val.  val must not already be an active name.
4927          */
4928         int len = strlen(val);
4929         char buf[DISK_NAME_LEN];
4930
4931         while (len && val[len-1] == '\n')
4932                 len--;
4933         if (len >= DISK_NAME_LEN)
4934                 return -E2BIG;
4935         strlcpy(buf, val, len+1);
4936         if (strncmp(buf, "md_", 3) != 0)
4937                 return -EINVAL;
4938         return md_alloc(0, buf);
4939 }
4940
4941 static void md_safemode_timeout(unsigned long data)
4942 {
4943         struct mddev *mddev = (struct mddev *) data;
4944
4945         if (!atomic_read(&mddev->writes_pending)) {
4946                 mddev->safemode = 1;
4947                 if (mddev->external)
4948                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4949         }
4950         md_wakeup_thread(mddev->thread);
4951 }
4952
4953 static int start_dirty_degraded;
4954
4955 int md_run(struct mddev *mddev)
4956 {
4957         int err;
4958         struct md_rdev *rdev;
4959         struct md_personality *pers;
4960
4961         if (list_empty(&mddev->disks))
4962                 /* cannot run an array with no devices.. */
4963                 return -EINVAL;
4964
4965         if (mddev->pers)
4966                 return -EBUSY;
4967         /* Cannot run until previous stop completes properly */
4968         if (mddev->sysfs_active)
4969                 return -EBUSY;
4970
4971         /*
4972          * Analyze all RAID superblock(s)
4973          */
4974         if (!mddev->raid_disks) {
4975                 if (!mddev->persistent)
4976                         return -EINVAL;
4977                 analyze_sbs(mddev);
4978         }
4979
4980         if (mddev->level != LEVEL_NONE)
4981                 request_module("md-level-%d", mddev->level);
4982         else if (mddev->clevel[0])
4983                 request_module("md-%s", mddev->clevel);
4984
4985         /*
4986          * Drop all container device buffers, from now on
4987          * the only valid external interface is through the md
4988          * device.
4989          */
4990         rdev_for_each(rdev, mddev) {
4991                 if (test_bit(Faulty, &rdev->flags))
4992                         continue;
4993                 sync_blockdev(rdev->bdev);
4994                 invalidate_bdev(rdev->bdev);
4995
4996                 /* perform some consistency tests on the device.
4997                  * We don't want the data to overlap the metadata,
4998                  * Internal Bitmap issues have been handled elsewhere.
4999                  */
5000                 if (rdev->meta_bdev) {
5001                         /* Nothing to check */;
5002                 } else if (rdev->data_offset < rdev->sb_start) {
5003                         if (mddev->dev_sectors &&
5004                             rdev->data_offset + mddev->dev_sectors
5005                             > rdev->sb_start) {
5006                                 printk("md: %s: data overlaps metadata\n",
5007                                        mdname(mddev));
5008                                 return -EINVAL;
5009                         }
5010                 } else {
5011                         if (rdev->sb_start + rdev->sb_size/512
5012                             > rdev->data_offset) {
5013                                 printk("md: %s: metadata overlaps data\n",
5014                                        mdname(mddev));
5015                                 return -EINVAL;
5016                         }
5017                 }
5018                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5019         }
5020
5021         if (mddev->bio_set == NULL)
5022                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5023
5024         spin_lock(&pers_lock);
5025         pers = find_pers(mddev->level, mddev->clevel);
5026         if (!pers || !try_module_get(pers->owner)) {
5027                 spin_unlock(&pers_lock);
5028                 if (mddev->level != LEVEL_NONE)
5029                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5030                                mddev->level);
5031                 else
5032                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5033                                mddev->clevel);
5034                 return -EINVAL;
5035         }
5036         mddev->pers = pers;
5037         spin_unlock(&pers_lock);
5038         if (mddev->level != pers->level) {
5039                 mddev->level = pers->level;
5040                 mddev->new_level = pers->level;
5041         }
5042         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5043
5044         if (mddev->reshape_position != MaxSector &&
5045             pers->start_reshape == NULL) {
5046                 /* This personality cannot handle reshaping... */
5047                 mddev->pers = NULL;
5048                 module_put(pers->owner);
5049                 return -EINVAL;
5050         }
5051
5052         if (pers->sync_request) {
5053                 /* Warn if this is a potentially silly
5054                  * configuration.
5055                  */
5056                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5057                 struct md_rdev *rdev2;
5058                 int warned = 0;
5059
5060                 rdev_for_each(rdev, mddev)
5061                         rdev_for_each(rdev2, mddev) {
5062                                 if (rdev < rdev2 &&
5063                                     rdev->bdev->bd_contains ==
5064                                     rdev2->bdev->bd_contains) {
5065                                         printk(KERN_WARNING
5066                                                "%s: WARNING: %s appears to be"
5067                                                " on the same physical disk as"
5068                                                " %s.\n",
5069                                                mdname(mddev),
5070                                                bdevname(rdev->bdev,b),
5071                                                bdevname(rdev2->bdev,b2));
5072                                         warned = 1;
5073                                 }
5074                         }
5075
5076                 if (warned)
5077                         printk(KERN_WARNING
5078                                "True protection against single-disk"
5079                                " failure might be compromised.\n");
5080         }
5081
5082         mddev->recovery = 0;
5083         /* may be over-ridden by personality */
5084         mddev->resync_max_sectors = mddev->dev_sectors;
5085
5086         mddev->ok_start_degraded = start_dirty_degraded;
5087
5088         if (start_readonly && mddev->ro == 0)
5089                 mddev->ro = 2; /* read-only, but switch on first write */
5090
5091         err = mddev->pers->run(mddev);
5092         if (err)
5093                 printk(KERN_ERR "md: pers->run() failed ...\n");
5094         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5095                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5096                           " but 'external_size' not in effect?\n", __func__);
5097                 printk(KERN_ERR
5098                        "md: invalid array_size %llu > default size %llu\n",
5099                        (unsigned long long)mddev->array_sectors / 2,
5100                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5101                 err = -EINVAL;
5102                 mddev->pers->stop(mddev);
5103         }
5104         if (err == 0 && mddev->pers->sync_request &&
5105             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5106                 err = bitmap_create(mddev);
5107                 if (err) {
5108                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5109                                mdname(mddev), err);
5110                         mddev->pers->stop(mddev);
5111                 }
5112         }
5113         if (err) {
5114                 module_put(mddev->pers->owner);
5115                 mddev->pers = NULL;
5116                 bitmap_destroy(mddev);
5117                 return err;
5118         }
5119         if (mddev->pers->sync_request) {
5120                 if (mddev->kobj.sd &&
5121                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5122                         printk(KERN_WARNING
5123                                "md: cannot register extra attributes for %s\n",
5124                                mdname(mddev));
5125                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5126         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5127                 mddev->ro = 0;
5128
5129         atomic_set(&mddev->writes_pending,0);
5130         atomic_set(&mddev->max_corr_read_errors,
5131                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5132         mddev->safemode = 0;
5133         mddev->safemode_timer.function = md_safemode_timeout;
5134         mddev->safemode_timer.data = (unsigned long) mddev;
5135         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5136         mddev->in_sync = 1;
5137         smp_wmb();
5138         mddev->ready = 1;
5139         rdev_for_each(rdev, mddev)
5140                 if (rdev->raid_disk >= 0)
5141                         if (sysfs_link_rdev(mddev, rdev))
5142                                 /* failure here is OK */;
5143         
5144         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5145         
5146         if (mddev->flags)
5147                 md_update_sb(mddev, 0);
5148
5149         md_new_event(mddev);
5150         sysfs_notify_dirent_safe(mddev->sysfs_state);
5151         sysfs_notify_dirent_safe(mddev->sysfs_action);
5152         sysfs_notify(&mddev->kobj, NULL, "degraded");
5153         return 0;
5154 }
5155 EXPORT_SYMBOL_GPL(md_run);
5156
5157 static int do_md_run(struct mddev *mddev)
5158 {
5159         int err;
5160
5161         err = md_run(mddev);
5162         if (err)
5163                 goto out;
5164         err = bitmap_load(mddev);
5165         if (err) {
5166                 bitmap_destroy(mddev);
5167                 goto out;
5168         }
5169
5170         md_wakeup_thread(mddev->thread);
5171         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5172
5173         set_capacity(mddev->gendisk, mddev->array_sectors);
5174         revalidate_disk(mddev->gendisk);
5175         mddev->changed = 1;
5176         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5177 out:
5178         return err;
5179 }
5180
5181 static int restart_array(struct mddev *mddev)
5182 {
5183         struct gendisk *disk = mddev->gendisk;
5184
5185         /* Complain if it has no devices */
5186         if (list_empty(&mddev->disks))
5187                 return -ENXIO;
5188         if (!mddev->pers)
5189                 return -EINVAL;
5190         if (!mddev->ro)
5191                 return -EBUSY;
5192         mddev->safemode = 0;
5193         mddev->ro = 0;
5194         set_disk_ro(disk, 0);
5195         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5196                 mdname(mddev));
5197         /* Kick recovery or resync if necessary */
5198         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5199         md_wakeup_thread(mddev->thread);
5200         md_wakeup_thread(mddev->sync_thread);
5201         sysfs_notify_dirent_safe(mddev->sysfs_state);
5202         return 0;
5203 }
5204
5205 /* similar to deny_write_access, but accounts for our holding a reference
5206  * to the file ourselves */
5207 static int deny_bitmap_write_access(struct file * file)
5208 {
5209         struct inode *inode = file->f_mapping->host;
5210
5211         spin_lock(&inode->i_lock);
5212         if (atomic_read(&inode->i_writecount) > 1) {
5213                 spin_unlock(&inode->i_lock);
5214                 return -ETXTBSY;
5215         }
5216         atomic_set(&inode->i_writecount, -1);
5217         spin_unlock(&inode->i_lock);
5218
5219         return 0;
5220 }
5221
5222 void restore_bitmap_write_access(struct file *file)
5223 {
5224         struct inode *inode = file->f_mapping->host;
5225
5226         spin_lock(&inode->i_lock);
5227         atomic_set(&inode->i_writecount, 1);
5228         spin_unlock(&inode->i_lock);
5229 }
5230
5231 static void md_clean(struct mddev *mddev)
5232 {
5233         mddev->array_sectors = 0;
5234         mddev->external_size = 0;
5235         mddev->dev_sectors = 0;
5236         mddev->raid_disks = 0;
5237         mddev->recovery_cp = 0;
5238         mddev->resync_min = 0;
5239         mddev->resync_max = MaxSector;
5240         mddev->reshape_position = MaxSector;
5241         mddev->external = 0;
5242         mddev->persistent = 0;
5243         mddev->level = LEVEL_NONE;
5244         mddev->clevel[0] = 0;
5245         mddev->flags = 0;
5246         mddev->ro = 0;
5247         mddev->metadata_type[0] = 0;
5248         mddev->chunk_sectors = 0;
5249         mddev->ctime = mddev->utime = 0;
5250         mddev->layout = 0;
5251         mddev->max_disks = 0;
5252         mddev->events = 0;
5253         mddev->can_decrease_events = 0;
5254         mddev->delta_disks = 0;
5255         mddev->reshape_backwards = 0;
5256         mddev->new_level = LEVEL_NONE;
5257         mddev->new_layout = 0;
5258         mddev->new_chunk_sectors = 0;
5259         mddev->curr_resync = 0;
5260         atomic64_set(&mddev->resync_mismatches, 0);
5261         mddev->suspend_lo = mddev->suspend_hi = 0;
5262         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5263         mddev->recovery = 0;
5264         mddev->in_sync = 0;
5265         mddev->changed = 0;
5266         mddev->degraded = 0;
5267         mddev->safemode = 0;
5268         mddev->merge_check_needed = 0;
5269         mddev->bitmap_info.offset = 0;
5270         mddev->bitmap_info.default_offset = 0;
5271         mddev->bitmap_info.default_space = 0;
5272         mddev->bitmap_info.chunksize = 0;
5273         mddev->bitmap_info.daemon_sleep = 0;
5274         mddev->bitmap_info.max_write_behind = 0;
5275 }
5276
5277 static void __md_stop_writes(struct mddev *mddev)
5278 {
5279         if (mddev->sync_thread) {
5280                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5281                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5282                 reap_sync_thread(mddev);
5283         }
5284
5285         del_timer_sync(&mddev->safemode_timer);
5286
5287         bitmap_flush(mddev);
5288         md_super_wait(mddev);
5289
5290         if (!mddev->in_sync || mddev->flags) {
5291                 /* mark array as shutdown cleanly */
5292                 mddev->in_sync = 1;
5293                 md_update_sb(mddev, 1);
5294         }
5295 }
5296
5297 void md_stop_writes(struct mddev *mddev)
5298 {
5299         mddev_lock(mddev);
5300         __md_stop_writes(mddev);
5301         mddev_unlock(mddev);
5302 }
5303 EXPORT_SYMBOL_GPL(md_stop_writes);
5304
5305 static void __md_stop(struct mddev *mddev)
5306 {
5307         mddev->ready = 0;
5308         mddev->pers->stop(mddev);
5309         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5310                 mddev->to_remove = &md_redundancy_group;
5311         module_put(mddev->pers->owner);
5312         mddev->pers = NULL;
5313         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5314 }
5315
5316 void md_stop(struct mddev *mddev)
5317 {
5318         /* stop the array and free an attached data structures.
5319          * This is called from dm-raid
5320          */
5321         __md_stop(mddev);
5322         bitmap_destroy(mddev);
5323         if (mddev->bio_set)
5324                 bioset_free(mddev->bio_set);
5325 }
5326
5327 EXPORT_SYMBOL_GPL(md_stop);
5328
5329 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5330 {
5331         int err = 0;
5332         mutex_lock(&mddev->open_mutex);
5333         if (atomic_read(&mddev->openers) > !!bdev) {
5334                 printk("md: %s still in use.\n",mdname(mddev));
5335                 err = -EBUSY;
5336                 goto out;
5337         }
5338         if (bdev)
5339                 sync_blockdev(bdev);
5340         if (mddev->pers) {
5341                 __md_stop_writes(mddev);
5342
5343                 err  = -ENXIO;
5344                 if (mddev->ro==1)
5345                         goto out;
5346                 mddev->ro = 1;
5347                 set_disk_ro(mddev->gendisk, 1);
5348                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5349                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5350                 err = 0;        
5351         }
5352 out:
5353         mutex_unlock(&mddev->open_mutex);
5354         return err;
5355 }
5356
5357 /* mode:
5358  *   0 - completely stop and dis-assemble array
5359  *   2 - stop but do not disassemble array
5360  */
5361 static int do_md_stop(struct mddev * mddev, int mode,
5362                       struct block_device *bdev)
5363 {
5364         struct gendisk *disk = mddev->gendisk;
5365         struct md_rdev *rdev;
5366
5367         mutex_lock(&mddev->open_mutex);
5368         if (atomic_read(&mddev->openers) > !!bdev ||
5369             mddev->sysfs_active) {
5370                 printk("md: %s still in use.\n",mdname(mddev));
5371                 mutex_unlock(&mddev->open_mutex);
5372                 return -EBUSY;
5373         }
5374         if (bdev)
5375                 /* It is possible IO was issued on some other
5376                  * open file which was closed before we took ->open_mutex.
5377                  * As that was not the last close __blkdev_put will not
5378                  * have called sync_blockdev, so we must.
5379                  */
5380                 sync_blockdev(bdev);
5381
5382         if (mddev->pers) {
5383                 if (mddev->ro)
5384                         set_disk_ro(disk, 0);
5385
5386                 __md_stop_writes(mddev);
5387                 __md_stop(mddev);
5388                 mddev->queue->merge_bvec_fn = NULL;
5389                 mddev->queue->backing_dev_info.congested_fn = NULL;
5390
5391                 /* tell userspace to handle 'inactive' */
5392                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5393
5394                 rdev_for_each(rdev, mddev)
5395                         if (rdev->raid_disk >= 0)
5396                                 sysfs_unlink_rdev(mddev, rdev);
5397
5398                 set_capacity(disk, 0);
5399                 mutex_unlock(&mddev->open_mutex);
5400                 mddev->changed = 1;
5401                 revalidate_disk(disk);
5402
5403                 if (mddev->ro)
5404                         mddev->ro = 0;
5405         } else
5406                 mutex_unlock(&mddev->open_mutex);
5407         /*
5408          * Free resources if final stop
5409          */
5410         if (mode == 0) {
5411                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5412
5413                 bitmap_destroy(mddev);
5414                 if (mddev->bitmap_info.file) {
5415                         restore_bitmap_write_access(mddev->bitmap_info.file);
5416                         fput(mddev->bitmap_info.file);
5417                         mddev->bitmap_info.file = NULL;
5418                 }
5419                 mddev->bitmap_info.offset = 0;
5420
5421                 export_array(mddev);
5422
5423                 md_clean(mddev);
5424                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5425                 if (mddev->hold_active == UNTIL_STOP)
5426                         mddev->hold_active = 0;
5427         }
5428         blk_integrity_unregister(disk);
5429         md_new_event(mddev);
5430         sysfs_notify_dirent_safe(mddev->sysfs_state);
5431         return 0;
5432 }
5433
5434 #ifndef MODULE
5435 static void autorun_array(struct mddev *mddev)
5436 {
5437         struct md_rdev *rdev;
5438         int err;
5439
5440         if (list_empty(&mddev->disks))
5441                 return;
5442
5443         printk(KERN_INFO "md: running: ");
5444
5445         rdev_for_each(rdev, mddev) {
5446                 char b[BDEVNAME_SIZE];
5447                 printk("<%s>", bdevname(rdev->bdev,b));
5448         }
5449         printk("\n");
5450
5451         err = do_md_run(mddev);
5452         if (err) {
5453                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5454                 do_md_stop(mddev, 0, NULL);
5455         }
5456 }
5457
5458 /*
5459  * lets try to run arrays based on all disks that have arrived
5460  * until now. (those are in pending_raid_disks)
5461  *
5462  * the method: pick the first pending disk, collect all disks with
5463  * the same UUID, remove all from the pending list and put them into
5464  * the 'same_array' list. Then order this list based on superblock
5465  * update time (freshest comes first), kick out 'old' disks and
5466  * compare superblocks. If everything's fine then run it.
5467  *
5468  * If "unit" is allocated, then bump its reference count
5469  */
5470 static void autorun_devices(int part)
5471 {
5472         struct md_rdev *rdev0, *rdev, *tmp;
5473         struct mddev *mddev;
5474         char b[BDEVNAME_SIZE];
5475
5476         printk(KERN_INFO "md: autorun ...\n");
5477         while (!list_empty(&pending_raid_disks)) {
5478                 int unit;
5479                 dev_t dev;
5480                 LIST_HEAD(candidates);
5481                 rdev0 = list_entry(pending_raid_disks.next,
5482                                          struct md_rdev, same_set);
5483
5484                 printk(KERN_INFO "md: considering %s ...\n",
5485                         bdevname(rdev0->bdev,b));
5486                 INIT_LIST_HEAD(&candidates);
5487                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5488                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5489                                 printk(KERN_INFO "md:  adding %s ...\n",
5490                                         bdevname(rdev->bdev,b));
5491                                 list_move(&rdev->same_set, &candidates);
5492                         }
5493                 /*
5494                  * now we have a set of devices, with all of them having
5495                  * mostly sane superblocks. It's time to allocate the
5496                  * mddev.
5497                  */
5498                 if (part) {
5499                         dev = MKDEV(mdp_major,
5500                                     rdev0->preferred_minor << MdpMinorShift);
5501                         unit = MINOR(dev) >> MdpMinorShift;
5502                 } else {
5503                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5504                         unit = MINOR(dev);
5505                 }
5506                 if (rdev0->preferred_minor != unit) {
5507                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5508                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5509                         break;
5510                 }
5511
5512                 md_probe(dev, NULL, NULL);
5513                 mddev = mddev_find(dev);
5514                 if (!mddev || !mddev->gendisk) {
5515                         if (mddev)
5516                                 mddev_put(mddev);
5517                         printk(KERN_ERR
5518                                 "md: cannot allocate memory for md drive.\n");
5519                         break;
5520                 }
5521                 if (mddev_lock(mddev)) 
5522                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5523                                mdname(mddev));
5524                 else if (mddev->raid_disks || mddev->major_version
5525                          || !list_empty(&mddev->disks)) {
5526                         printk(KERN_WARNING 
5527                                 "md: %s already running, cannot run %s\n",
5528                                 mdname(mddev), bdevname(rdev0->bdev,b));
5529                         mddev_unlock(mddev);
5530                 } else {
5531                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5532                         mddev->persistent = 1;
5533                         rdev_for_each_list(rdev, tmp, &candidates) {
5534                                 list_del_init(&rdev->same_set);
5535                                 if (bind_rdev_to_array(rdev, mddev))
5536                                         export_rdev(rdev);
5537                         }
5538                         autorun_array(mddev);
5539                         mddev_unlock(mddev);
5540                 }
5541                 /* on success, candidates will be empty, on error
5542                  * it won't...
5543                  */
5544                 rdev_for_each_list(rdev, tmp, &candidates) {
5545                         list_del_init(&rdev->same_set);
5546                         export_rdev(rdev);
5547                 }
5548                 mddev_put(mddev);
5549         }
5550         printk(KERN_INFO "md: ... autorun DONE.\n");
5551 }
5552 #endif /* !MODULE */
5553
5554 static int get_version(void __user * arg)
5555 {
5556         mdu_version_t ver;
5557
5558         ver.major = MD_MAJOR_VERSION;
5559         ver.minor = MD_MINOR_VERSION;
5560         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5561
5562         if (copy_to_user(arg, &ver, sizeof(ver)))
5563                 return -EFAULT;
5564
5565         return 0;
5566 }
5567
5568 static int get_array_info(struct mddev * mddev, void __user * arg)
5569 {
5570         mdu_array_info_t info;
5571         int nr,working,insync,failed,spare;
5572         struct md_rdev *rdev;
5573
5574         nr = working = insync = failed = spare = 0;
5575         rcu_read_lock();
5576         rdev_for_each_rcu(rdev, mddev) {
5577                 nr++;
5578                 if (test_bit(Faulty, &rdev->flags))
5579                         failed++;
5580                 else {
5581                         working++;
5582                         if (test_bit(In_sync, &rdev->flags))
5583                                 insync++;       
5584                         else
5585                                 spare++;
5586                 }
5587         }
5588         rcu_read_unlock();
5589
5590         info.major_version = mddev->major_version;
5591         info.minor_version = mddev->minor_version;
5592         info.patch_version = MD_PATCHLEVEL_VERSION;
5593         info.ctime         = mddev->ctime;
5594         info.level         = mddev->level;
5595         info.size          = mddev->dev_sectors / 2;
5596         if (info.size != mddev->dev_sectors / 2) /* overflow */
5597                 info.size = -1;
5598         info.nr_disks      = nr;
5599         info.raid_disks    = mddev->raid_disks;
5600         info.md_minor      = mddev->md_minor;
5601         info.not_persistent= !mddev->persistent;
5602
5603         info.utime         = mddev->utime;
5604         info.state         = 0;
5605         if (mddev->in_sync)
5606                 info.state = (1<<MD_SB_CLEAN);
5607         if (mddev->bitmap && mddev->bitmap_info.offset)
5608                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5609         info.active_disks  = insync;
5610         info.working_disks = working;
5611         info.failed_disks  = failed;
5612         info.spare_disks   = spare;
5613
5614         info.layout        = mddev->layout;
5615         info.chunk_size    = mddev->chunk_sectors << 9;
5616
5617         if (copy_to_user(arg, &info, sizeof(info)))
5618                 return -EFAULT;
5619
5620         return 0;
5621 }
5622
5623 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5624 {
5625         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5626         char *ptr, *buf = NULL;
5627         int err = -ENOMEM;
5628
5629         if (md_allow_write(mddev))
5630                 file = kmalloc(sizeof(*file), GFP_NOIO);
5631         else
5632                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5633
5634         if (!file)
5635                 goto out;
5636
5637         /* bitmap disabled, zero the first byte and copy out */
5638         if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5639                 file->pathname[0] = '\0';
5640                 goto copy_out;
5641         }
5642
5643         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5644         if (!buf)
5645                 goto out;
5646
5647         ptr = d_path(&mddev->bitmap->storage.file->f_path,
5648                      buf, sizeof(file->pathname));
5649         if (IS_ERR(ptr))
5650                 goto out;
5651
5652         strcpy(file->pathname, ptr);
5653
5654 copy_out:
5655         err = 0;
5656         if (copy_to_user(arg, file, sizeof(*file)))
5657                 err = -EFAULT;
5658 out:
5659         kfree(buf);
5660         kfree(file);
5661         return err;
5662 }
5663
5664 static int get_disk_info(struct mddev * mddev, void __user * arg)
5665 {
5666         mdu_disk_info_t info;
5667         struct md_rdev *rdev;
5668
5669         if (copy_from_user(&info, arg, sizeof(info)))
5670                 return -EFAULT;
5671
5672         rcu_read_lock();
5673         rdev = find_rdev_nr_rcu(mddev, info.number);
5674         if (rdev) {
5675                 info.major = MAJOR(rdev->bdev->bd_dev);
5676                 info.minor = MINOR(rdev->bdev->bd_dev);
5677                 info.raid_disk = rdev->raid_disk;
5678                 info.state = 0;
5679                 if (test_bit(Faulty, &rdev->flags))
5680                         info.state |= (1<<MD_DISK_FAULTY);
5681                 else if (test_bit(In_sync, &rdev->flags)) {
5682                         info.state |= (1<<MD_DISK_ACTIVE);
5683                         info.state |= (1<<MD_DISK_SYNC);
5684                 }
5685                 if (test_bit(WriteMostly, &rdev->flags))
5686                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5687         } else {
5688                 info.major = info.minor = 0;
5689                 info.raid_disk = -1;
5690                 info.state = (1<<MD_DISK_REMOVED);
5691         }
5692         rcu_read_unlock();
5693
5694         if (copy_to_user(arg, &info, sizeof(info)))
5695                 return -EFAULT;
5696
5697         return 0;
5698 }
5699
5700 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5701 {
5702         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5703         struct md_rdev *rdev;
5704         dev_t dev = MKDEV(info->major,info->minor);
5705
5706         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5707                 return -EOVERFLOW;
5708
5709         if (!mddev->raid_disks) {
5710                 int err;
5711                 /* expecting a device which has a superblock */
5712                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5713                 if (IS_ERR(rdev)) {
5714                         printk(KERN_WARNING 
5715                                 "md: md_import_device returned %ld\n",
5716                                 PTR_ERR(rdev));
5717                         return PTR_ERR(rdev);
5718                 }
5719                 if (!list_empty(&mddev->disks)) {
5720                         struct md_rdev *rdev0
5721                                 = list_entry(mddev->disks.next,
5722                                              struct md_rdev, same_set);
5723                         err = super_types[mddev->major_version]
5724                                 .load_super(rdev, rdev0, mddev->minor_version);
5725                         if (err < 0) {
5726                                 printk(KERN_WARNING 
5727                                         "md: %s has different UUID to %s\n",
5728                                         bdevname(rdev->bdev,b), 
5729                                         bdevname(rdev0->bdev,b2));
5730                                 export_rdev(rdev);
5731                                 return -EINVAL;
5732                         }
5733                 }
5734                 err = bind_rdev_to_array(rdev, mddev);
5735                 if (err)
5736                         export_rdev(rdev);
5737                 return err;
5738         }
5739
5740         /*
5741          * add_new_disk can be used once the array is assembled
5742          * to add "hot spares".  They must already have a superblock
5743          * written
5744          */
5745         if (mddev->pers) {
5746                 int err;
5747                 if (!mddev->pers->hot_add_disk) {
5748                         printk(KERN_WARNING 
5749                                 "%s: personality does not support diskops!\n",
5750                                mdname(mddev));
5751                         return -EINVAL;
5752                 }
5753                 if (mddev->persistent)
5754                         rdev = md_import_device(dev, mddev->major_version,
5755                                                 mddev->minor_version);
5756                 else
5757                         rdev = md_import_device(dev, -1, -1);
5758                 if (IS_ERR(rdev)) {
5759                         printk(KERN_WARNING 
5760                                 "md: md_import_device returned %ld\n",
5761                                 PTR_ERR(rdev));
5762                         return PTR_ERR(rdev);
5763                 }
5764                 /* set saved_raid_disk if appropriate */
5765                 if (!mddev->persistent) {
5766                         if (info->state & (1<<MD_DISK_SYNC)  &&
5767                             info->raid_disk < mddev->raid_disks) {
5768                                 rdev->raid_disk = info->raid_disk;
5769                                 set_bit(In_sync, &rdev->flags);
5770                         } else
5771                                 rdev->raid_disk = -1;
5772                 } else
5773                         super_types[mddev->major_version].
5774                                 validate_super(mddev, rdev);
5775                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5776                      rdev->raid_disk != info->raid_disk) {
5777                         /* This was a hot-add request, but events doesn't
5778                          * match, so reject it.
5779                          */
5780                         export_rdev(rdev);
5781                         return -EINVAL;
5782                 }
5783
5784                 if (test_bit(In_sync, &rdev->flags))
5785                         rdev->saved_raid_disk = rdev->raid_disk;
5786                 else
5787                         rdev->saved_raid_disk = -1;
5788
5789                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5790                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5791                         set_bit(WriteMostly, &rdev->flags);
5792                 else
5793                         clear_bit(WriteMostly, &rdev->flags);
5794
5795                 rdev->raid_disk = -1;
5796                 err = bind_rdev_to_array(rdev, mddev);
5797                 if (!err && !mddev->pers->hot_remove_disk) {
5798                         /* If there is hot_add_disk but no hot_remove_disk
5799                          * then added disks for geometry changes,
5800                          * and should be added immediately.
5801                          */
5802                         super_types[mddev->major_version].
5803                                 validate_super(mddev, rdev);
5804                         err = mddev->pers->hot_add_disk(mddev, rdev);
5805                         if (err)
5806                                 unbind_rdev_from_array(rdev);
5807                 }
5808                 if (err)
5809                         export_rdev(rdev);
5810                 else
5811                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5812
5813                 md_update_sb(mddev, 1);
5814                 if (mddev->degraded)
5815                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5816                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5817                 if (!err)
5818                         md_new_event(mddev);
5819                 md_wakeup_thread(mddev->thread);
5820                 return err;
5821         }
5822
5823         /* otherwise, add_new_disk is only allowed
5824          * for major_version==0 superblocks
5825          */
5826         if (mddev->major_version != 0) {
5827                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5828                        mdname(mddev));
5829                 return -EINVAL;
5830         }
5831
5832         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5833                 int err;
5834                 rdev = md_import_device(dev, -1, 0);
5835                 if (IS_ERR(rdev)) {
5836                         printk(KERN_WARNING 
5837                                 "md: error, md_import_device() returned %ld\n",
5838                                 PTR_ERR(rdev));
5839                         return PTR_ERR(rdev);
5840                 }
5841                 rdev->desc_nr = info->number;
5842                 if (info->raid_disk < mddev->raid_disks)
5843                         rdev->raid_disk = info->raid_disk;
5844                 else
5845                         rdev->raid_disk = -1;
5846
5847                 if (rdev->raid_disk < mddev->raid_disks)
5848                         if (info->state & (1<<MD_DISK_SYNC))
5849                                 set_bit(In_sync, &rdev->flags);
5850
5851                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5852                         set_bit(WriteMostly, &rdev->flags);
5853
5854                 if (!mddev->persistent) {
5855                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5856                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5857                 } else
5858                         rdev->sb_start = calc_dev_sboffset(rdev);
5859                 rdev->sectors = rdev->sb_start;
5860
5861                 err = bind_rdev_to_array(rdev, mddev);
5862                 if (err) {
5863                         export_rdev(rdev);
5864                         return err;
5865                 }
5866         }
5867
5868         return 0;
5869 }
5870
5871 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5872 {
5873         char b[BDEVNAME_SIZE];
5874         struct md_rdev *rdev;
5875
5876         rdev = find_rdev(mddev, dev);
5877         if (!rdev)
5878                 return -ENXIO;
5879
5880         if (rdev->raid_disk >= 0)
5881                 goto busy;
5882
5883         kick_rdev_from_array(rdev);
5884         md_update_sb(mddev, 1);
5885         md_new_event(mddev);
5886
5887         return 0;
5888 busy:
5889         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5890                 bdevname(rdev->bdev,b), mdname(mddev));
5891         return -EBUSY;
5892 }
5893
5894 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5895 {
5896         char b[BDEVNAME_SIZE];
5897         int err;
5898         struct md_rdev *rdev;
5899
5900         if (!mddev->pers)
5901                 return -ENODEV;
5902
5903         if (mddev->major_version != 0) {
5904                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5905                         " version-0 superblocks.\n",
5906                         mdname(mddev));
5907                 return -EINVAL;
5908         }
5909         if (!mddev->pers->hot_add_disk) {
5910                 printk(KERN_WARNING 
5911                         "%s: personality does not support diskops!\n",
5912                         mdname(mddev));
5913                 return -EINVAL;
5914         }
5915
5916         rdev = md_import_device(dev, -1, 0);
5917         if (IS_ERR(rdev)) {
5918                 printk(KERN_WARNING 
5919                         "md: error, md_import_device() returned %ld\n",
5920                         PTR_ERR(rdev));
5921                 return -EINVAL;
5922         }
5923
5924         if (mddev->persistent)
5925                 rdev->sb_start = calc_dev_sboffset(rdev);
5926         else
5927                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5928
5929         rdev->sectors = rdev->sb_start;
5930
5931         if (test_bit(Faulty, &rdev->flags)) {
5932                 printk(KERN_WARNING 
5933                         "md: can not hot-add faulty %s disk to %s!\n",
5934                         bdevname(rdev->bdev,b), mdname(mddev));
5935                 err = -EINVAL;
5936                 goto abort_export;
5937         }
5938         clear_bit(In_sync, &rdev->flags);
5939         rdev->desc_nr = -1;
5940         rdev->saved_raid_disk = -1;
5941         err = bind_rdev_to_array(rdev, mddev);
5942         if (err)
5943                 goto abort_export;
5944
5945         /*
5946          * The rest should better be atomic, we can have disk failures
5947          * noticed in interrupt contexts ...
5948          */
5949
5950         rdev->raid_disk = -1;
5951
5952         md_update_sb(mddev, 1);
5953
5954         /*
5955          * Kick recovery, maybe this spare has to be added to the
5956          * array immediately.
5957          */
5958         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5959         md_wakeup_thread(mddev->thread);
5960         md_new_event(mddev);
5961         return 0;
5962
5963 abort_export:
5964         export_rdev(rdev);
5965         return err;
5966 }
5967
5968 static int set_bitmap_file(struct mddev *mddev, int fd)
5969 {
5970         int err;
5971
5972         if (mddev->pers) {
5973                 if (!mddev->pers->quiesce)
5974                         return -EBUSY;
5975                 if (mddev->recovery || mddev->sync_thread)
5976                         return -EBUSY;
5977                 /* we should be able to change the bitmap.. */
5978         }
5979
5980
5981         if (fd >= 0) {
5982                 if (mddev->bitmap)
5983                         return -EEXIST; /* cannot add when bitmap is present */
5984                 mddev->bitmap_info.file = fget(fd);
5985
5986                 if (mddev->bitmap_info.file == NULL) {
5987                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5988                                mdname(mddev));
5989                         return -EBADF;
5990                 }
5991
5992                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5993                 if (err) {
5994                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5995                                mdname(mddev));
5996                         fput(mddev->bitmap_info.file);
5997                         mddev->bitmap_info.file = NULL;
5998                         return err;
5999                 }
6000                 mddev->bitmap_info.offset = 0; /* file overrides offset */
6001         } else if (mddev->bitmap == NULL)
6002                 return -ENOENT; /* cannot remove what isn't there */
6003         err = 0;
6004         if (mddev->pers) {
6005                 mddev->pers->quiesce(mddev, 1);
6006                 if (fd >= 0) {
6007                         err = bitmap_create(mddev);
6008                         if (!err)
6009                                 err = bitmap_load(mddev);
6010                 }
6011                 if (fd < 0 || err) {
6012                         bitmap_destroy(mddev);
6013                         fd = -1; /* make sure to put the file */
6014                 }
6015                 mddev->pers->quiesce(mddev, 0);
6016         }
6017         if (fd < 0) {
6018                 if (mddev->bitmap_info.file) {
6019                         restore_bitmap_write_access(mddev->bitmap_info.file);
6020                         fput(mddev->bitmap_info.file);
6021                 }
6022                 mddev->bitmap_info.file = NULL;
6023         }
6024
6025         return err;
6026 }
6027
6028 /*
6029  * set_array_info is used two different ways
6030  * The original usage is when creating a new array.
6031  * In this usage, raid_disks is > 0 and it together with
6032  *  level, size, not_persistent,layout,chunksize determine the
6033  *  shape of the array.
6034  *  This will always create an array with a type-0.90.0 superblock.
6035  * The newer usage is when assembling an array.
6036  *  In this case raid_disks will be 0, and the major_version field is
6037  *  use to determine which style super-blocks are to be found on the devices.
6038  *  The minor and patch _version numbers are also kept incase the
6039  *  super_block handler wishes to interpret them.
6040  */
6041 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6042 {
6043
6044         if (info->raid_disks == 0) {
6045                 /* just setting version number for superblock loading */
6046                 if (info->major_version < 0 ||
6047                     info->major_version >= ARRAY_SIZE(super_types) ||
6048                     super_types[info->major_version].name == NULL) {
6049                         /* maybe try to auto-load a module? */
6050                         printk(KERN_INFO 
6051                                 "md: superblock version %d not known\n",
6052                                 info->major_version);
6053                         return -EINVAL;
6054                 }
6055                 mddev->major_version = info->major_version;
6056                 mddev->minor_version = info->minor_version;
6057                 mddev->patch_version = info->patch_version;
6058                 mddev->persistent = !info->not_persistent;
6059                 /* ensure mddev_put doesn't delete this now that there
6060                  * is some minimal configuration.
6061                  */
6062                 mddev->ctime         = get_seconds();
6063                 return 0;
6064         }
6065         mddev->major_version = MD_MAJOR_VERSION;
6066         mddev->minor_version = MD_MINOR_VERSION;
6067         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6068         mddev->ctime         = get_seconds();
6069
6070         mddev->level         = info->level;
6071         mddev->clevel[0]     = 0;
6072         mddev->dev_sectors   = 2 * (sector_t)info->size;
6073         mddev->raid_disks    = info->raid_disks;
6074         /* don't set md_minor, it is determined by which /dev/md* was
6075          * openned
6076          */
6077         if (info->state & (1<<MD_SB_CLEAN))
6078                 mddev->recovery_cp = MaxSector;
6079         else
6080                 mddev->recovery_cp = 0;
6081         mddev->persistent    = ! info->not_persistent;
6082         mddev->external      = 0;
6083
6084         mddev->layout        = info->layout;
6085         mddev->chunk_sectors = info->chunk_size >> 9;
6086
6087         mddev->max_disks     = MD_SB_DISKS;
6088
6089         if (mddev->persistent)
6090                 mddev->flags         = 0;
6091         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6092
6093         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6094         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6095         mddev->bitmap_info.offset = 0;
6096
6097         mddev->reshape_position = MaxSector;
6098
6099         /*
6100          * Generate a 128 bit UUID
6101          */
6102         get_random_bytes(mddev->uuid, 16);
6103
6104         mddev->new_level = mddev->level;
6105         mddev->new_chunk_sectors = mddev->chunk_sectors;
6106         mddev->new_layout = mddev->layout;
6107         mddev->delta_disks = 0;
6108         mddev->reshape_backwards = 0;
6109
6110         return 0;
6111 }
6112
6113 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6114 {
6115         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6116
6117         if (mddev->external_size)
6118                 return;
6119
6120         mddev->array_sectors = array_sectors;
6121 }
6122 EXPORT_SYMBOL(md_set_array_sectors);
6123
6124 static int update_size(struct mddev *mddev, sector_t num_sectors)
6125 {
6126         struct md_rdev *rdev;
6127         int rv;
6128         int fit = (num_sectors == 0);
6129
6130         if (mddev->pers->resize == NULL)
6131                 return -EINVAL;
6132         /* The "num_sectors" is the number of sectors of each device that
6133          * is used.  This can only make sense for arrays with redundancy.
6134          * linear and raid0 always use whatever space is available. We can only
6135          * consider changing this number if no resync or reconstruction is
6136          * happening, and if the new size is acceptable. It must fit before the
6137          * sb_start or, if that is <data_offset, it must fit before the size
6138          * of each device.  If num_sectors is zero, we find the largest size
6139          * that fits.
6140          */
6141         if (mddev->sync_thread)
6142                 return -EBUSY;
6143
6144         rdev_for_each(rdev, mddev) {
6145                 sector_t avail = rdev->sectors;
6146
6147                 if (fit && (num_sectors == 0 || num_sectors > avail))
6148                         num_sectors = avail;
6149                 if (avail < num_sectors)
6150                         return -ENOSPC;
6151         }
6152         rv = mddev->pers->resize(mddev, num_sectors);
6153         if (!rv)
6154                 revalidate_disk(mddev->gendisk);
6155         return rv;
6156 }
6157
6158 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6159 {
6160         int rv;
6161         struct md_rdev *rdev;
6162         /* change the number of raid disks */
6163         if (mddev->pers->check_reshape == NULL)
6164                 return -EINVAL;
6165         if (raid_disks <= 0 ||
6166             (mddev->max_disks && raid_disks >= mddev->max_disks))
6167                 return -EINVAL;
6168         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6169                 return -EBUSY;
6170
6171         rdev_for_each(rdev, mddev) {
6172                 if (mddev->raid_disks < raid_disks &&
6173                     rdev->data_offset < rdev->new_data_offset)
6174                         return -EINVAL;
6175                 if (mddev->raid_disks > raid_disks &&
6176                     rdev->data_offset > rdev->new_data_offset)
6177                         return -EINVAL;
6178         }
6179
6180         mddev->delta_disks = raid_disks - mddev->raid_disks;
6181         if (mddev->delta_disks < 0)
6182                 mddev->reshape_backwards = 1;
6183         else if (mddev->delta_disks > 0)
6184                 mddev->reshape_backwards = 0;
6185
6186         rv = mddev->pers->check_reshape(mddev);
6187         if (rv < 0) {
6188                 mddev->delta_disks = 0;
6189                 mddev->reshape_backwards = 0;
6190         }
6191         return rv;
6192 }
6193
6194
6195 /*
6196  * update_array_info is used to change the configuration of an
6197  * on-line array.
6198  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6199  * fields in the info are checked against the array.
6200  * Any differences that cannot be handled will cause an error.
6201  * Normally, only one change can be managed at a time.
6202  */
6203 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6204 {
6205         int rv = 0;
6206         int cnt = 0;
6207         int state = 0;
6208
6209         /* calculate expected state,ignoring low bits */
6210         if (mddev->bitmap && mddev->bitmap_info.offset)
6211                 state |= (1 << MD_SB_BITMAP_PRESENT);
6212
6213         if (mddev->major_version != info->major_version ||
6214             mddev->minor_version != info->minor_version ||
6215 /*          mddev->patch_version != info->patch_version || */
6216             mddev->ctime         != info->ctime         ||
6217             mddev->level         != info->level         ||
6218 /*          mddev->layout        != info->layout        || */
6219             !mddev->persistent   != info->not_persistent||
6220             mddev->chunk_sectors != info->chunk_size >> 9 ||
6221             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6222             ((state^info->state) & 0xfffffe00)
6223                 )
6224                 return -EINVAL;
6225         /* Check there is only one change */
6226         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6227                 cnt++;
6228         if (mddev->raid_disks != info->raid_disks)
6229                 cnt++;
6230         if (mddev->layout != info->layout)
6231                 cnt++;
6232         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6233                 cnt++;
6234         if (cnt == 0)
6235                 return 0;
6236         if (cnt > 1)
6237                 return -EINVAL;
6238
6239         if (mddev->layout != info->layout) {
6240                 /* Change layout
6241                  * we don't need to do anything at the md level, the
6242                  * personality will take care of it all.
6243                  */
6244                 if (mddev->pers->check_reshape == NULL)
6245                         return -EINVAL;
6246                 else {
6247                         mddev->new_layout = info->layout;
6248                         rv = mddev->pers->check_reshape(mddev);
6249                         if (rv)
6250                                 mddev->new_layout = mddev->layout;
6251                         return rv;
6252                 }
6253         }
6254         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6255                 rv = update_size(mddev, (sector_t)info->size * 2);
6256
6257         if (mddev->raid_disks    != info->raid_disks)
6258                 rv = update_raid_disks(mddev, info->raid_disks);
6259
6260         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6261                 if (mddev->pers->quiesce == NULL)
6262                         return -EINVAL;
6263                 if (mddev->recovery || mddev->sync_thread)
6264                         return -EBUSY;
6265                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6266                         /* add the bitmap */
6267                         if (mddev->bitmap)
6268                                 return -EEXIST;
6269                         if (mddev->bitmap_info.default_offset == 0)
6270                                 return -EINVAL;
6271                         mddev->bitmap_info.offset =
6272                                 mddev->bitmap_info.default_offset;
6273                         mddev->bitmap_info.space =
6274                                 mddev->bitmap_info.default_space;
6275                         mddev->pers->quiesce(mddev, 1);
6276                         rv = bitmap_create(mddev);
6277                         if (!rv)
6278                                 rv = bitmap_load(mddev);
6279                         if (rv)
6280                                 bitmap_destroy(mddev);
6281                         mddev->pers->quiesce(mddev, 0);
6282                 } else {
6283                         /* remove the bitmap */
6284                         if (!mddev->bitmap)
6285                                 return -ENOENT;
6286                         if (mddev->bitmap->storage.file)
6287                                 return -EINVAL;
6288                         mddev->pers->quiesce(mddev, 1);
6289                         bitmap_destroy(mddev);
6290                         mddev->pers->quiesce(mddev, 0);
6291                         mddev->bitmap_info.offset = 0;
6292                 }
6293         }
6294         md_update_sb(mddev, 1);
6295         return rv;
6296 }
6297
6298 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6299 {
6300         struct md_rdev *rdev;
6301         int err = 0;
6302
6303         if (mddev->pers == NULL)
6304                 return -ENODEV;
6305
6306         rcu_read_lock();
6307         rdev = find_rdev_rcu(mddev, dev);
6308         if (!rdev)
6309                 err =  -ENODEV;
6310         else {
6311                 md_error(mddev, rdev);
6312                 if (!test_bit(Faulty, &rdev->flags))
6313                         err = -EBUSY;
6314         }
6315         rcu_read_unlock();
6316         return err;
6317 }
6318
6319 /*
6320  * We have a problem here : there is no easy way to give a CHS
6321  * virtual geometry. We currently pretend that we have a 2 heads
6322  * 4 sectors (with a BIG number of cylinders...). This drives
6323  * dosfs just mad... ;-)
6324  */
6325 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6326 {
6327         struct mddev *mddev = bdev->bd_disk->private_data;
6328
6329         geo->heads = 2;
6330         geo->sectors = 4;
6331         geo->cylinders = mddev->array_sectors / 8;
6332         return 0;
6333 }
6334
6335 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6336                         unsigned int cmd, unsigned long arg)
6337 {
6338         int err = 0;
6339         void __user *argp = (void __user *)arg;
6340         struct mddev *mddev = NULL;
6341         int ro;
6342
6343         switch (cmd) {
6344         case RAID_VERSION:
6345         case GET_ARRAY_INFO:
6346         case GET_DISK_INFO:
6347                 break;
6348         default:
6349                 if (!capable(CAP_SYS_ADMIN))
6350                         return -EACCES;
6351         }
6352
6353         /*
6354          * Commands dealing with the RAID driver but not any
6355          * particular array:
6356          */
6357         switch (cmd) {
6358         case RAID_VERSION:
6359                 err = get_version(argp);
6360                 goto done;
6361
6362         case PRINT_RAID_DEBUG:
6363                 err = 0;
6364                 md_print_devices();
6365                 goto done;
6366
6367 #ifndef MODULE
6368         case RAID_AUTORUN:
6369                 err = 0;
6370                 autostart_arrays(arg);
6371                 goto done;
6372 #endif
6373         default:;
6374         }
6375
6376         /*
6377          * Commands creating/starting a new array:
6378          */
6379
6380         mddev = bdev->bd_disk->private_data;
6381
6382         if (!mddev) {
6383                 BUG();
6384                 goto abort;
6385         }
6386
6387         /* Some actions do not requires the mutex */
6388         switch (cmd) {
6389         case GET_ARRAY_INFO:
6390                 if (!mddev->raid_disks && !mddev->external)
6391                         err = -ENODEV;
6392                 else
6393                         err = get_array_info(mddev, argp);
6394                 goto abort;
6395
6396         case GET_DISK_INFO:
6397                 if (!mddev->raid_disks && !mddev->external)
6398                         err = -ENODEV;
6399                 else
6400                         err = get_disk_info(mddev, argp);
6401                 goto abort;
6402
6403         case SET_DISK_FAULTY:
6404                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6405                 goto abort;
6406         }
6407
6408         if (cmd == ADD_NEW_DISK)
6409                 /* need to ensure md_delayed_delete() has completed */
6410                 flush_workqueue(md_misc_wq);
6411
6412         err = mddev_lock(mddev);
6413         if (err) {
6414                 printk(KERN_INFO 
6415                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6416                         err, cmd);
6417                 goto abort;
6418         }
6419
6420         if (cmd == SET_ARRAY_INFO) {
6421                 mdu_array_info_t info;
6422                 if (!arg)
6423                         memset(&info, 0, sizeof(info));
6424                 else if (copy_from_user(&info, argp, sizeof(info))) {
6425                         err = -EFAULT;
6426                         goto abort_unlock;
6427                 }
6428                 if (mddev->pers) {
6429                         err = update_array_info(mddev, &info);
6430                         if (err) {
6431                                 printk(KERN_WARNING "md: couldn't update"
6432                                        " array info. %d\n", err);
6433                                 goto abort_unlock;
6434                         }
6435                         goto done_unlock;
6436                 }
6437                 if (!list_empty(&mddev->disks)) {
6438                         printk(KERN_WARNING
6439                                "md: array %s already has disks!\n",
6440                                mdname(mddev));
6441                         err = -EBUSY;
6442                         goto abort_unlock;
6443                 }
6444                 if (mddev->raid_disks) {
6445                         printk(KERN_WARNING
6446                                "md: array %s already initialised!\n",
6447                                mdname(mddev));
6448                         err = -EBUSY;
6449                         goto abort_unlock;
6450                 }
6451                 err = set_array_info(mddev, &info);
6452                 if (err) {
6453                         printk(KERN_WARNING "md: couldn't set"
6454                                " array info. %d\n", err);
6455                         goto abort_unlock;
6456                 }
6457                 goto done_unlock;
6458         }
6459
6460         /*
6461          * Commands querying/configuring an existing array:
6462          */
6463         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6464          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6465         if ((!mddev->raid_disks && !mddev->external)
6466             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6467             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6468             && cmd != GET_BITMAP_FILE) {
6469                 err = -ENODEV;
6470                 goto abort_unlock;
6471         }
6472
6473         /*
6474          * Commands even a read-only array can execute:
6475          */
6476         switch (cmd) {
6477         case GET_BITMAP_FILE:
6478                 err = get_bitmap_file(mddev, argp);
6479                 goto done_unlock;
6480
6481         case RESTART_ARRAY_RW:
6482                 err = restart_array(mddev);
6483                 goto done_unlock;
6484
6485         case STOP_ARRAY:
6486                 err = do_md_stop(mddev, 0, bdev);
6487                 goto done_unlock;
6488
6489         case STOP_ARRAY_RO:
6490                 err = md_set_readonly(mddev, bdev);
6491                 goto done_unlock;
6492
6493         case BLKROSET:
6494                 if (get_user(ro, (int __user *)(arg))) {
6495                         err = -EFAULT;
6496                         goto done_unlock;
6497                 }
6498                 err = -EINVAL;
6499
6500                 /* if the bdev is going readonly the value of mddev->ro
6501                  * does not matter, no writes are coming
6502                  */
6503                 if (ro)
6504                         goto done_unlock;
6505
6506                 /* are we are already prepared for writes? */
6507                 if (mddev->ro != 1)
6508                         goto done_unlock;
6509
6510                 /* transitioning to readauto need only happen for
6511                  * arrays that call md_write_start
6512                  */
6513                 if (mddev->pers) {
6514                         err = restart_array(mddev);
6515                         if (err == 0) {
6516                                 mddev->ro = 2;
6517                                 set_disk_ro(mddev->gendisk, 0);
6518                         }
6519                 }
6520                 goto done_unlock;
6521         }
6522
6523         /*
6524          * The remaining ioctls are changing the state of the
6525          * superblock, so we do not allow them on read-only arrays.
6526          * However non-MD ioctls (e.g. get-size) will still come through
6527          * here and hit the 'default' below, so only disallow
6528          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6529          */
6530         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6531                 if (mddev->ro == 2) {
6532                         mddev->ro = 0;
6533                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6534                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6535                         /* mddev_unlock will wake thread */
6536                         /* If a device failed while we were read-only, we
6537                          * need to make sure the metadata is updated now.
6538                          */
6539                         if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6540                                 mddev_unlock(mddev);
6541                                 wait_event(mddev->sb_wait,
6542                                            !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6543                                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6544                                 mddev_lock(mddev);
6545                         }
6546                 } else {
6547                         err = -EROFS;
6548                         goto abort_unlock;
6549                 }
6550         }
6551
6552         switch (cmd) {
6553         case ADD_NEW_DISK:
6554         {
6555                 mdu_disk_info_t info;
6556                 if (copy_from_user(&info, argp, sizeof(info)))
6557                         err = -EFAULT;
6558                 else
6559                         err = add_new_disk(mddev, &info);
6560                 goto done_unlock;
6561         }
6562
6563         case HOT_REMOVE_DISK:
6564                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6565                 goto done_unlock;
6566
6567         case HOT_ADD_DISK:
6568                 err = hot_add_disk(mddev, new_decode_dev(arg));
6569                 goto done_unlock;
6570
6571         case RUN_ARRAY:
6572                 err = do_md_run(mddev);
6573                 goto done_unlock;
6574
6575         case SET_BITMAP_FILE:
6576                 err = set_bitmap_file(mddev, (int)arg);
6577                 goto done_unlock;
6578
6579         default:
6580                 err = -EINVAL;
6581                 goto abort_unlock;
6582         }
6583
6584 done_unlock:
6585 abort_unlock:
6586         if (mddev->hold_active == UNTIL_IOCTL &&
6587             err != -EINVAL)
6588                 mddev->hold_active = 0;
6589         mddev_unlock(mddev);
6590
6591         return err;
6592 done:
6593         if (err)
6594                 MD_BUG();
6595 abort:
6596         return err;
6597 }
6598 #ifdef CONFIG_COMPAT
6599 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6600                     unsigned int cmd, unsigned long arg)
6601 {
6602         switch (cmd) {
6603         case HOT_REMOVE_DISK:
6604         case HOT_ADD_DISK:
6605         case SET_DISK_FAULTY:
6606         case SET_BITMAP_FILE:
6607                 /* These take in integer arg, do not convert */
6608                 break;
6609         default:
6610                 arg = (unsigned long)compat_ptr(arg);
6611                 break;
6612         }
6613
6614         return md_ioctl(bdev, mode, cmd, arg);
6615 }
6616 #endif /* CONFIG_COMPAT */
6617
6618 static int md_open(struct block_device *bdev, fmode_t mode)
6619 {
6620         /*
6621          * Succeed if we can lock the mddev, which confirms that
6622          * it isn't being stopped right now.
6623          */
6624         struct mddev *mddev = mddev_find(bdev->bd_dev);
6625         int err;
6626
6627         if (!mddev)
6628                 return -ENODEV;
6629
6630         if (mddev->gendisk != bdev->bd_disk) {
6631                 /* we are racing with mddev_put which is discarding this
6632                  * bd_disk.
6633                  */
6634                 mddev_put(mddev);
6635                 /* Wait until bdev->bd_disk is definitely gone */
6636                 flush_workqueue(md_misc_wq);
6637                 /* Then retry the open from the top */
6638                 return -ERESTARTSYS;
6639         }
6640         BUG_ON(mddev != bdev->bd_disk->private_data);
6641
6642         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6643                 goto out;
6644
6645         err = 0;
6646         atomic_inc(&mddev->openers);
6647         mutex_unlock(&mddev->open_mutex);
6648
6649         check_disk_change(bdev);
6650  out:
6651         return err;
6652 }
6653
6654 static int md_release(struct gendisk *disk, fmode_t mode)
6655 {
6656         struct mddev *mddev = disk->private_data;
6657
6658         BUG_ON(!mddev);
6659         atomic_dec(&mddev->openers);
6660         mddev_put(mddev);
6661
6662         return 0;
6663 }
6664
6665 static int md_media_changed(struct gendisk *disk)
6666 {
6667         struct mddev *mddev = disk->private_data;
6668
6669         return mddev->changed;
6670 }
6671
6672 static int md_revalidate(struct gendisk *disk)
6673 {
6674         struct mddev *mddev = disk->private_data;
6675
6676         mddev->changed = 0;
6677         return 0;
6678 }
6679 static const struct block_device_operations md_fops =
6680 {
6681         .owner          = THIS_MODULE,
6682         .open           = md_open,
6683         .release        = md_release,
6684         .ioctl          = md_ioctl,
6685 #ifdef CONFIG_COMPAT
6686         .compat_ioctl   = md_compat_ioctl,
6687 #endif
6688         .getgeo         = md_getgeo,
6689         .media_changed  = md_media_changed,
6690         .revalidate_disk= md_revalidate,
6691 };
6692
6693 static int md_thread(void * arg)
6694 {
6695         struct md_thread *thread = arg;
6696
6697         /*
6698          * md_thread is a 'system-thread', it's priority should be very
6699          * high. We avoid resource deadlocks individually in each
6700          * raid personality. (RAID5 does preallocation) We also use RR and
6701          * the very same RT priority as kswapd, thus we will never get
6702          * into a priority inversion deadlock.
6703          *
6704          * we definitely have to have equal or higher priority than
6705          * bdflush, otherwise bdflush will deadlock if there are too
6706          * many dirty RAID5 blocks.
6707          */
6708
6709         allow_signal(SIGKILL);
6710         while (!kthread_should_stop()) {
6711
6712                 /* We need to wait INTERRUPTIBLE so that
6713                  * we don't add to the load-average.
6714                  * That means we need to be sure no signals are
6715                  * pending
6716                  */
6717                 if (signal_pending(current))
6718                         flush_signals(current);
6719
6720                 wait_event_interruptible_timeout
6721                         (thread->wqueue,
6722                          test_bit(THREAD_WAKEUP, &thread->flags)
6723                          || kthread_should_stop(),
6724                          thread->timeout);
6725
6726                 clear_bit(THREAD_WAKEUP, &thread->flags);
6727                 if (!kthread_should_stop())
6728                         thread->run(thread);
6729         }
6730
6731         return 0;
6732 }
6733
6734 void md_wakeup_thread(struct md_thread *thread)
6735 {
6736         if (thread) {
6737                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6738                 set_bit(THREAD_WAKEUP, &thread->flags);
6739                 wake_up(&thread->wqueue);
6740         }
6741 }
6742
6743 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6744                 struct mddev *mddev, const char *name)
6745 {
6746         struct md_thread *thread;
6747
6748         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6749         if (!thread)
6750                 return NULL;
6751
6752         init_waitqueue_head(&thread->wqueue);
6753
6754         thread->run = run;
6755         thread->mddev = mddev;
6756         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6757         thread->tsk = kthread_run(md_thread, thread,
6758                                   "%s_%s",
6759                                   mdname(thread->mddev),
6760                                   name);
6761         if (IS_ERR(thread->tsk)) {
6762                 kfree(thread);
6763                 return NULL;
6764         }
6765         return thread;
6766 }
6767
6768 void md_unregister_thread(struct md_thread **threadp)
6769 {
6770         struct md_thread *thread = *threadp;
6771         if (!thread)
6772                 return;
6773         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6774         /* Locking ensures that mddev_unlock does not wake_up a
6775          * non-existent thread
6776          */
6777         spin_lock(&pers_lock);
6778         *threadp = NULL;
6779         spin_unlock(&pers_lock);
6780
6781         kthread_stop(thread->tsk);
6782         kfree(thread);
6783 }
6784
6785 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6786 {
6787         if (!mddev) {
6788                 MD_BUG();
6789                 return;
6790         }
6791
6792         if (!rdev || test_bit(Faulty, &rdev->flags))
6793                 return;
6794
6795         if (!mddev->pers || !mddev->pers->error_handler)
6796                 return;
6797         mddev->pers->error_handler(mddev,rdev);
6798         if (mddev->degraded)
6799                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6800         sysfs_notify_dirent_safe(rdev->sysfs_state);
6801         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6802         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6803         md_wakeup_thread(mddev->thread);
6804         if (mddev->event_work.func)
6805                 queue_work(md_misc_wq, &mddev->event_work);
6806         md_new_event_inintr(mddev);
6807 }
6808
6809 /* seq_file implementation /proc/mdstat */
6810
6811 static void status_unused(struct seq_file *seq)
6812 {
6813         int i = 0;
6814         struct md_rdev *rdev;
6815
6816         seq_printf(seq, "unused devices: ");
6817
6818         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6819                 char b[BDEVNAME_SIZE];
6820                 i++;
6821                 seq_printf(seq, "%s ",
6822                               bdevname(rdev->bdev,b));
6823         }
6824         if (!i)
6825                 seq_printf(seq, "<none>");
6826
6827         seq_printf(seq, "\n");
6828 }
6829
6830
6831 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6832 {
6833         sector_t max_sectors, resync, res;
6834         unsigned long dt, db;
6835         sector_t rt;
6836         int scale;
6837         unsigned int per_milli;
6838
6839         if (mddev->curr_resync <= 3)
6840                 resync = 0;
6841         else
6842                 resync = mddev->curr_resync
6843                         - atomic_read(&mddev->recovery_active);
6844
6845         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6846             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6847                 max_sectors = mddev->resync_max_sectors;
6848         else
6849                 max_sectors = mddev->dev_sectors;
6850
6851         /*
6852          * Should not happen.
6853          */
6854         if (!max_sectors) {
6855                 MD_BUG();
6856                 return;
6857         }
6858         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6859          * in a sector_t, and (max_sectors>>scale) will fit in a
6860          * u32, as those are the requirements for sector_div.
6861          * Thus 'scale' must be at least 10
6862          */
6863         scale = 10;
6864         if (sizeof(sector_t) > sizeof(unsigned long)) {
6865                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6866                         scale++;
6867         }
6868         res = (resync>>scale)*1000;
6869         sector_div(res, (u32)((max_sectors>>scale)+1));
6870
6871         per_milli = res;
6872         {
6873                 int i, x = per_milli/50, y = 20-x;
6874                 seq_printf(seq, "[");
6875                 for (i = 0; i < x; i++)
6876                         seq_printf(seq, "=");
6877                 seq_printf(seq, ">");
6878                 for (i = 0; i < y; i++)
6879                         seq_printf(seq, ".");
6880                 seq_printf(seq, "] ");
6881         }
6882         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6883                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6884                     "reshape" :
6885                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6886                      "check" :
6887                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6888                       "resync" : "recovery"))),
6889                    per_milli/10, per_milli % 10,
6890                    (unsigned long long) resync/2,
6891                    (unsigned long long) max_sectors/2);
6892
6893         /*
6894          * dt: time from mark until now
6895          * db: blocks written from mark until now
6896          * rt: remaining time
6897          *
6898          * rt is a sector_t, so could be 32bit or 64bit.
6899          * So we divide before multiply in case it is 32bit and close
6900          * to the limit.
6901          * We scale the divisor (db) by 32 to avoid losing precision
6902          * near the end of resync when the number of remaining sectors
6903          * is close to 'db'.
6904          * We then divide rt by 32 after multiplying by db to compensate.
6905          * The '+1' avoids division by zero if db is very small.
6906          */
6907         dt = ((jiffies - mddev->resync_mark) / HZ);
6908         if (!dt) dt++;
6909         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6910                 - mddev->resync_mark_cnt;
6911
6912         rt = max_sectors - resync;    /* number of remaining sectors */
6913         sector_div(rt, db/32+1);
6914         rt *= dt;
6915         rt >>= 5;
6916
6917         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6918                    ((unsigned long)rt % 60)/6);
6919
6920         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6921 }
6922
6923 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6924 {
6925         struct list_head *tmp;
6926         loff_t l = *pos;
6927         struct mddev *mddev;
6928
6929         if (l >= 0x10000)
6930                 return NULL;
6931         if (!l--)
6932                 /* header */
6933                 return (void*)1;
6934
6935         spin_lock(&all_mddevs_lock);
6936         list_for_each(tmp,&all_mddevs)
6937                 if (!l--) {
6938                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6939                         mddev_get(mddev);
6940                         spin_unlock(&all_mddevs_lock);
6941                         return mddev;
6942                 }
6943         spin_unlock(&all_mddevs_lock);
6944         if (!l--)
6945                 return (void*)2;/* tail */
6946         return NULL;
6947 }
6948
6949 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6950 {
6951         struct list_head *tmp;
6952         struct mddev *next_mddev, *mddev = v;
6953         
6954         ++*pos;
6955         if (v == (void*)2)
6956                 return NULL;
6957
6958         spin_lock(&all_mddevs_lock);
6959         if (v == (void*)1)
6960                 tmp = all_mddevs.next;
6961         else
6962                 tmp = mddev->all_mddevs.next;
6963         if (tmp != &all_mddevs)
6964                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6965         else {
6966                 next_mddev = (void*)2;
6967                 *pos = 0x10000;
6968         }               
6969         spin_unlock(&all_mddevs_lock);
6970
6971         if (v != (void*)1)
6972                 mddev_put(mddev);
6973         return next_mddev;
6974
6975 }
6976
6977 static void md_seq_stop(struct seq_file *seq, void *v)
6978 {
6979         struct mddev *mddev = v;
6980
6981         if (mddev && v != (void*)1 && v != (void*)2)
6982                 mddev_put(mddev);
6983 }
6984
6985 static int md_seq_show(struct seq_file *seq, void *v)
6986 {
6987         struct mddev *mddev = v;
6988         sector_t sectors;
6989         struct md_rdev *rdev;
6990
6991         if (v == (void*)1) {
6992                 struct md_personality *pers;
6993                 seq_printf(seq, "Personalities : ");
6994                 spin_lock(&pers_lock);
6995                 list_for_each_entry(pers, &pers_list, list)
6996                         seq_printf(seq, "[%s] ", pers->name);
6997
6998                 spin_unlock(&pers_lock);
6999                 seq_printf(seq, "\n");
7000                 seq->poll_event = atomic_read(&md_event_count);
7001                 return 0;
7002         }
7003         if (v == (void*)2) {
7004                 status_unused(seq);
7005                 return 0;
7006         }
7007
7008         if (mddev_lock(mddev) < 0)
7009                 return -EINTR;
7010
7011         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7012                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7013                                                 mddev->pers ? "" : "in");
7014                 if (mddev->pers) {
7015                         if (mddev->ro==1)
7016                                 seq_printf(seq, " (read-only)");
7017                         if (mddev->ro==2)
7018                                 seq_printf(seq, " (auto-read-only)");
7019                         seq_printf(seq, " %s", mddev->pers->name);
7020                 }
7021
7022                 sectors = 0;
7023                 rdev_for_each(rdev, mddev) {
7024                         char b[BDEVNAME_SIZE];
7025                         seq_printf(seq, " %s[%d]",
7026                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7027                         if (test_bit(WriteMostly, &rdev->flags))
7028                                 seq_printf(seq, "(W)");
7029                         if (test_bit(Faulty, &rdev->flags)) {
7030                                 seq_printf(seq, "(F)");
7031                                 continue;
7032                         }
7033                         if (rdev->raid_disk < 0)
7034                                 seq_printf(seq, "(S)"); /* spare */
7035                         if (test_bit(Replacement, &rdev->flags))
7036                                 seq_printf(seq, "(R)");
7037                         sectors += rdev->sectors;
7038                 }
7039
7040                 if (!list_empty(&mddev->disks)) {
7041                         if (mddev->pers)
7042                                 seq_printf(seq, "\n      %llu blocks",
7043                                            (unsigned long long)
7044                                            mddev->array_sectors / 2);
7045                         else
7046                                 seq_printf(seq, "\n      %llu blocks",
7047                                            (unsigned long long)sectors / 2);
7048                 }
7049                 if (mddev->persistent) {
7050                         if (mddev->major_version != 0 ||
7051                             mddev->minor_version != 90) {
7052                                 seq_printf(seq," super %d.%d",
7053                                            mddev->major_version,
7054                                            mddev->minor_version);
7055                         }
7056                 } else if (mddev->external)
7057                         seq_printf(seq, " super external:%s",
7058                                    mddev->metadata_type);
7059                 else
7060                         seq_printf(seq, " super non-persistent");
7061
7062                 if (mddev->pers) {
7063                         mddev->pers->status(seq, mddev);
7064                         seq_printf(seq, "\n      ");
7065                         if (mddev->pers->sync_request) {
7066                                 if (mddev->curr_resync > 2) {
7067                                         status_resync(seq, mddev);
7068                                         seq_printf(seq, "\n      ");
7069                                 } else if (mddev->curr_resync >= 1)
7070                                         seq_printf(seq, "\tresync=DELAYED\n      ");
7071                                 else if (mddev->recovery_cp < MaxSector)
7072                                         seq_printf(seq, "\tresync=PENDING\n      ");
7073                         }
7074                 } else
7075                         seq_printf(seq, "\n       ");
7076
7077                 bitmap_status(seq, mddev->bitmap);
7078
7079                 seq_printf(seq, "\n");
7080         }
7081         mddev_unlock(mddev);
7082         
7083         return 0;
7084 }
7085
7086 static const struct seq_operations md_seq_ops = {
7087         .start  = md_seq_start,
7088         .next   = md_seq_next,
7089         .stop   = md_seq_stop,
7090         .show   = md_seq_show,
7091 };
7092
7093 static int md_seq_open(struct inode *inode, struct file *file)
7094 {
7095         struct seq_file *seq;
7096         int error;
7097
7098         error = seq_open(file, &md_seq_ops);
7099         if (error)
7100                 return error;
7101
7102         seq = file->private_data;
7103         seq->poll_event = atomic_read(&md_event_count);
7104         return error;
7105 }
7106
7107 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7108 {
7109         struct seq_file *seq = filp->private_data;
7110         int mask;
7111
7112         poll_wait(filp, &md_event_waiters, wait);
7113
7114         /* always allow read */
7115         mask = POLLIN | POLLRDNORM;
7116
7117         if (seq->poll_event != atomic_read(&md_event_count))
7118                 mask |= POLLERR | POLLPRI;
7119         return mask;
7120 }
7121
7122 static const struct file_operations md_seq_fops = {
7123         .owner          = THIS_MODULE,
7124         .open           = md_seq_open,
7125         .read           = seq_read,
7126         .llseek         = seq_lseek,
7127         .release        = seq_release_private,
7128         .poll           = mdstat_poll,
7129 };
7130
7131 int register_md_personality(struct md_personality *p)
7132 {
7133         spin_lock(&pers_lock);
7134         list_add_tail(&p->list, &pers_list);
7135         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7136         spin_unlock(&pers_lock);
7137         return 0;
7138 }
7139
7140 int unregister_md_personality(struct md_personality *p)
7141 {
7142         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7143         spin_lock(&pers_lock);
7144         list_del_init(&p->list);
7145         spin_unlock(&pers_lock);
7146         return 0;
7147 }
7148
7149 static int is_mddev_idle(struct mddev *mddev, int init)
7150 {
7151         struct md_rdev * rdev;
7152         int idle;
7153         int curr_events;
7154
7155         idle = 1;
7156         rcu_read_lock();
7157         rdev_for_each_rcu(rdev, mddev) {
7158                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7159                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7160                               (int)part_stat_read(&disk->part0, sectors[1]) -
7161                               atomic_read(&disk->sync_io);
7162                 /* sync IO will cause sync_io to increase before the disk_stats
7163                  * as sync_io is counted when a request starts, and
7164                  * disk_stats is counted when it completes.
7165                  * So resync activity will cause curr_events to be smaller than
7166                  * when there was no such activity.
7167                  * non-sync IO will cause disk_stat to increase without
7168                  * increasing sync_io so curr_events will (eventually)
7169                  * be larger than it was before.  Once it becomes
7170                  * substantially larger, the test below will cause
7171                  * the array to appear non-idle, and resync will slow
7172                  * down.
7173                  * If there is a lot of outstanding resync activity when
7174                  * we set last_event to curr_events, then all that activity
7175                  * completing might cause the array to appear non-idle
7176                  * and resync will be slowed down even though there might
7177                  * not have been non-resync activity.  This will only
7178                  * happen once though.  'last_events' will soon reflect
7179                  * the state where there is little or no outstanding
7180                  * resync requests, and further resync activity will
7181                  * always make curr_events less than last_events.
7182                  *
7183                  */
7184                 if (init || curr_events - rdev->last_events > 64) {
7185                         rdev->last_events = curr_events;
7186                         idle = 0;
7187                 }
7188         }
7189         rcu_read_unlock();
7190         return idle;
7191 }
7192
7193 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7194 {
7195         /* another "blocks" (512byte) blocks have been synced */
7196         atomic_sub(blocks, &mddev->recovery_active);
7197         wake_up(&mddev->recovery_wait);
7198         if (!ok) {
7199                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7200                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7201                 md_wakeup_thread(mddev->thread);
7202                 // stop recovery, signal do_sync ....
7203         }
7204 }
7205
7206
7207 /* md_write_start(mddev, bi)
7208  * If we need to update some array metadata (e.g. 'active' flag
7209  * in superblock) before writing, schedule a superblock update
7210  * and wait for it to complete.
7211  */
7212 void md_write_start(struct mddev *mddev, struct bio *bi)
7213 {
7214         int did_change = 0;
7215         if (bio_data_dir(bi) != WRITE)
7216                 return;
7217
7218         BUG_ON(mddev->ro == 1);
7219         if (mddev->ro == 2) {
7220                 /* need to switch to read/write */
7221                 mddev->ro = 0;
7222                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7223                 md_wakeup_thread(mddev->thread);
7224                 md_wakeup_thread(mddev->sync_thread);
7225                 did_change = 1;
7226         }
7227         atomic_inc(&mddev->writes_pending);
7228         if (mddev->safemode == 1)
7229                 mddev->safemode = 0;
7230         if (mddev->in_sync) {
7231                 spin_lock_irq(&mddev->write_lock);
7232                 if (mddev->in_sync) {
7233                         mddev->in_sync = 0;
7234                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7235                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7236                         md_wakeup_thread(mddev->thread);
7237                         did_change = 1;
7238                 }
7239                 spin_unlock_irq(&mddev->write_lock);
7240         }
7241         if (did_change)
7242                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7243         wait_event(mddev->sb_wait,
7244                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7245 }
7246
7247 void md_write_end(struct mddev *mddev)
7248 {
7249         if (atomic_dec_and_test(&mddev->writes_pending)) {
7250                 if (mddev->safemode == 2)
7251                         md_wakeup_thread(mddev->thread);
7252                 else if (mddev->safemode_delay)
7253                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7254         }
7255 }
7256
7257 /* md_allow_write(mddev)
7258  * Calling this ensures that the array is marked 'active' so that writes
7259  * may proceed without blocking.  It is important to call this before
7260  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7261  * Must be called with mddev_lock held.
7262  *
7263  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7264  * is dropped, so return -EAGAIN after notifying userspace.
7265  */
7266 int md_allow_write(struct mddev *mddev)
7267 {
7268         if (!mddev->pers)
7269                 return 0;
7270         if (mddev->ro)
7271                 return 0;
7272         if (!mddev->pers->sync_request)
7273                 return 0;
7274
7275         spin_lock_irq(&mddev->write_lock);
7276         if (mddev->in_sync) {
7277                 mddev->in_sync = 0;
7278                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7279                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7280                 if (mddev->safemode_delay &&
7281                     mddev->safemode == 0)
7282                         mddev->safemode = 1;
7283                 spin_unlock_irq(&mddev->write_lock);
7284                 md_update_sb(mddev, 0);
7285                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7286         } else
7287                 spin_unlock_irq(&mddev->write_lock);
7288
7289         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7290                 return -EAGAIN;
7291         else
7292                 return 0;
7293 }
7294 EXPORT_SYMBOL_GPL(md_allow_write);
7295
7296 #define SYNC_MARKS      10
7297 #define SYNC_MARK_STEP  (3*HZ)
7298 #define UPDATE_FREQUENCY (5*60*HZ)
7299 void md_do_sync(struct md_thread *thread)
7300 {
7301         struct mddev *mddev = thread->mddev;
7302         struct mddev *mddev2;
7303         unsigned int currspeed = 0,
7304                  window;
7305         sector_t max_sectors,j, io_sectors;
7306         unsigned long mark[SYNC_MARKS];
7307         unsigned long update_time;
7308         sector_t mark_cnt[SYNC_MARKS];
7309         int last_mark,m;
7310         struct list_head *tmp;
7311         sector_t last_check;
7312         int skipped = 0;
7313         struct md_rdev *rdev;
7314         char *desc;
7315         struct blk_plug plug;
7316
7317         /* just incase thread restarts... */
7318         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7319                 return;
7320         if (mddev->ro) /* never try to sync a read-only array */
7321                 return;
7322
7323         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7324                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7325                         desc = "data-check";
7326                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7327                         desc = "requested-resync";
7328                 else
7329                         desc = "resync";
7330         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7331                 desc = "reshape";
7332         else
7333                 desc = "recovery";
7334
7335         /* we overload curr_resync somewhat here.
7336          * 0 == not engaged in resync at all
7337          * 2 == checking that there is no conflict with another sync
7338          * 1 == like 2, but have yielded to allow conflicting resync to
7339          *              commense
7340          * other == active in resync - this many blocks
7341          *
7342          * Before starting a resync we must have set curr_resync to
7343          * 2, and then checked that every "conflicting" array has curr_resync
7344          * less than ours.  When we find one that is the same or higher
7345          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7346          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7347          * This will mean we have to start checking from the beginning again.
7348          *
7349          */
7350
7351         do {
7352                 mddev->curr_resync = 2;
7353
7354         try_again:
7355                 if (kthread_should_stop())
7356                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7357
7358                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7359                         goto skip;
7360                 for_each_mddev(mddev2, tmp) {
7361                         if (mddev2 == mddev)
7362                                 continue;
7363                         if (!mddev->parallel_resync
7364                         &&  mddev2->curr_resync
7365                         &&  match_mddev_units(mddev, mddev2)) {
7366                                 DEFINE_WAIT(wq);
7367                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7368                                         /* arbitrarily yield */
7369                                         mddev->curr_resync = 1;
7370                                         wake_up(&resync_wait);
7371                                 }
7372                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7373                                         /* no need to wait here, we can wait the next
7374                                          * time 'round when curr_resync == 2
7375                                          */
7376                                         continue;
7377                                 /* We need to wait 'interruptible' so as not to
7378                                  * contribute to the load average, and not to
7379                                  * be caught by 'softlockup'
7380                                  */
7381                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7382                                 if (!kthread_should_stop() &&
7383                                     mddev2->curr_resync >= mddev->curr_resync) {
7384                                         printk(KERN_INFO "md: delaying %s of %s"
7385                                                " until %s has finished (they"
7386                                                " share one or more physical units)\n",
7387                                                desc, mdname(mddev), mdname(mddev2));
7388                                         mddev_put(mddev2);
7389                                         if (signal_pending(current))
7390                                                 flush_signals(current);
7391                                         schedule();
7392                                         finish_wait(&resync_wait, &wq);
7393                                         goto try_again;
7394                                 }
7395                                 finish_wait(&resync_wait, &wq);
7396                         }
7397                 }
7398         } while (mddev->curr_resync < 2);
7399
7400         j = 0;
7401         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7402                 /* resync follows the size requested by the personality,
7403                  * which defaults to physical size, but can be virtual size
7404                  */
7405                 max_sectors = mddev->resync_max_sectors;
7406                 atomic64_set(&mddev->resync_mismatches, 0);
7407                 /* we don't use the checkpoint if there's a bitmap */
7408                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7409                         j = mddev->resync_min;
7410                 else if (!mddev->bitmap)
7411                         j = mddev->recovery_cp;
7412
7413         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7414                 max_sectors = mddev->resync_max_sectors;
7415         else {
7416                 /* recovery follows the physical size of devices */
7417                 max_sectors = mddev->dev_sectors;
7418                 j = MaxSector;
7419                 rcu_read_lock();
7420                 rdev_for_each_rcu(rdev, mddev)
7421                         if (rdev->raid_disk >= 0 &&
7422                             !test_bit(Faulty, &rdev->flags) &&
7423                             !test_bit(In_sync, &rdev->flags) &&
7424                             rdev->recovery_offset < j)
7425                                 j = rdev->recovery_offset;
7426                 rcu_read_unlock();
7427         }
7428
7429         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7430         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7431                 " %d KB/sec/disk.\n", speed_min(mddev));
7432         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7433                "(but not more than %d KB/sec) for %s.\n",
7434                speed_max(mddev), desc);
7435
7436         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7437
7438         io_sectors = 0;
7439         for (m = 0; m < SYNC_MARKS; m++) {
7440                 mark[m] = jiffies;
7441                 mark_cnt[m] = io_sectors;
7442         }
7443         last_mark = 0;
7444         mddev->resync_mark = mark[last_mark];
7445         mddev->resync_mark_cnt = mark_cnt[last_mark];
7446
7447         /*
7448          * Tune reconstruction:
7449          */
7450         window = 32*(PAGE_SIZE/512);
7451         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7452                 window/2, (unsigned long long)max_sectors/2);
7453
7454         atomic_set(&mddev->recovery_active, 0);
7455         last_check = 0;
7456
7457         if (j>2) {
7458                 printk(KERN_INFO 
7459                        "md: resuming %s of %s from checkpoint.\n",
7460                        desc, mdname(mddev));
7461                 mddev->curr_resync = j;
7462         } else
7463                 mddev->curr_resync = 3; /* no longer delayed */
7464         mddev->curr_resync_completed = j;
7465         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7466         md_new_event(mddev);
7467         update_time = jiffies;
7468
7469         blk_start_plug(&plug);
7470         while (j < max_sectors) {
7471                 sector_t sectors;
7472
7473                 skipped = 0;
7474
7475                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7476                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7477                       (mddev->curr_resync - mddev->curr_resync_completed)
7478                       > (max_sectors >> 4)) ||
7479                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7480                      (j - mddev->curr_resync_completed)*2
7481                      >= mddev->resync_max - mddev->curr_resync_completed
7482                             )) {
7483                         /* time to update curr_resync_completed */
7484                         wait_event(mddev->recovery_wait,
7485                                    atomic_read(&mddev->recovery_active) == 0);
7486                         mddev->curr_resync_completed = j;
7487                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7488                             j > mddev->recovery_cp)
7489                                 mddev->recovery_cp = j;
7490                         update_time = jiffies;
7491                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7492                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7493                 }
7494
7495                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7496                         /* As this condition is controlled by user-space,
7497                          * we can block indefinitely, so use '_interruptible'
7498                          * to avoid triggering warnings.
7499                          */
7500                         flush_signals(current); /* just in case */
7501                         wait_event_interruptible(mddev->recovery_wait,
7502                                                  mddev->resync_max > j
7503                                                  || kthread_should_stop());
7504                 }
7505
7506                 if (kthread_should_stop())
7507                         goto interrupted;
7508
7509                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7510                                                   currspeed < speed_min(mddev));
7511                 if (sectors == 0) {
7512                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7513                         goto out;
7514                 }
7515
7516                 if (!skipped) { /* actual IO requested */
7517                         io_sectors += sectors;
7518                         atomic_add(sectors, &mddev->recovery_active);
7519                 }
7520
7521                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7522                         break;
7523
7524                 j += sectors;
7525                 if (j > 2)
7526                         mddev->curr_resync = j;
7527                 mddev->curr_mark_cnt = io_sectors;
7528                 if (last_check == 0)
7529                         /* this is the earliest that rebuild will be
7530                          * visible in /proc/mdstat
7531                          */
7532                         md_new_event(mddev);
7533
7534                 if (last_check + window > io_sectors || j == max_sectors)
7535                         continue;
7536
7537                 last_check = io_sectors;
7538         repeat:
7539                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7540                         /* step marks */
7541                         int next = (last_mark+1) % SYNC_MARKS;
7542
7543                         mddev->resync_mark = mark[next];
7544                         mddev->resync_mark_cnt = mark_cnt[next];
7545                         mark[next] = jiffies;
7546                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7547                         last_mark = next;
7548                 }
7549
7550
7551                 if (kthread_should_stop())
7552                         goto interrupted;
7553
7554
7555                 /*
7556                  * this loop exits only if either when we are slower than
7557                  * the 'hard' speed limit, or the system was IO-idle for
7558                  * a jiffy.
7559                  * the system might be non-idle CPU-wise, but we only care
7560                  * about not overloading the IO subsystem. (things like an
7561                  * e2fsck being done on the RAID array should execute fast)
7562                  */
7563                 cond_resched();
7564
7565                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7566                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7567
7568                 if (currspeed > speed_min(mddev)) {
7569                         if ((currspeed > speed_max(mddev)) ||
7570                                         !is_mddev_idle(mddev, 0)) {
7571                                 msleep(500);
7572                                 goto repeat;
7573                         }
7574                 }
7575         }
7576         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7577         /*
7578          * this also signals 'finished resyncing' to md_stop
7579          */
7580  out:
7581         blk_finish_plug(&plug);
7582         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7583
7584         /* tell personality that we are finished */
7585         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7586
7587         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7588             mddev->curr_resync > 2) {
7589                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7590                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7591                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7592                                         printk(KERN_INFO
7593                                                "md: checkpointing %s of %s.\n",
7594                                                desc, mdname(mddev));
7595                                         if (test_bit(MD_RECOVERY_ERROR,
7596                                                 &mddev->recovery))
7597                                                 mddev->recovery_cp =
7598                                                         mddev->curr_resync_completed;
7599                                         else
7600                                                 mddev->recovery_cp =
7601                                                         mddev->curr_resync;
7602                                 }
7603                         } else
7604                                 mddev->recovery_cp = MaxSector;
7605                 } else {
7606                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7607                                 mddev->curr_resync = MaxSector;
7608                         rcu_read_lock();
7609                         rdev_for_each_rcu(rdev, mddev)
7610                                 if (rdev->raid_disk >= 0 &&
7611                                     mddev->delta_disks >= 0 &&
7612                                     !test_bit(Faulty, &rdev->flags) &&
7613                                     !test_bit(In_sync, &rdev->flags) &&
7614                                     rdev->recovery_offset < mddev->curr_resync)
7615                                         rdev->recovery_offset = mddev->curr_resync;
7616                         rcu_read_unlock();
7617                 }
7618         }
7619  skip:
7620         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7621
7622         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7623                 /* We completed so min/max setting can be forgotten if used. */
7624                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7625                         mddev->resync_min = 0;
7626                 mddev->resync_max = MaxSector;
7627         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7628                 mddev->resync_min = mddev->curr_resync_completed;
7629         mddev->curr_resync = 0;
7630         wake_up(&resync_wait);
7631         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7632         md_wakeup_thread(mddev->thread);
7633         return;
7634
7635  interrupted:
7636         /*
7637          * got a signal, exit.
7638          */
7639         printk(KERN_INFO
7640                "md: md_do_sync() got signal ... exiting\n");
7641         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7642         goto out;
7643
7644 }
7645 EXPORT_SYMBOL_GPL(md_do_sync);
7646
7647 static int remove_and_add_spares(struct mddev *mddev)
7648 {
7649         struct md_rdev *rdev;
7650         int spares = 0;
7651         int removed = 0;
7652
7653         rdev_for_each(rdev, mddev)
7654                 if (rdev->raid_disk >= 0 &&
7655                     !test_bit(Blocked, &rdev->flags) &&
7656                     (test_bit(Faulty, &rdev->flags) ||
7657                      ! test_bit(In_sync, &rdev->flags)) &&
7658                     atomic_read(&rdev->nr_pending)==0) {
7659                         if (mddev->pers->hot_remove_disk(
7660                                     mddev, rdev) == 0) {
7661                                 sysfs_unlink_rdev(mddev, rdev);
7662                                 rdev->raid_disk = -1;
7663                                 removed++;
7664                         }
7665                 }
7666         if (removed && mddev->kobj.sd)
7667                 sysfs_notify(&mddev->kobj, NULL, "degraded");
7668
7669         rdev_for_each(rdev, mddev) {
7670                 if (rdev->raid_disk >= 0 &&
7671                     !test_bit(In_sync, &rdev->flags) &&
7672                     !test_bit(Faulty, &rdev->flags))
7673                         spares++;
7674                 if (rdev->raid_disk < 0
7675                     && !test_bit(Faulty, &rdev->flags)) {
7676                         rdev->recovery_offset = 0;
7677                         if (mddev->pers->
7678                             hot_add_disk(mddev, rdev) == 0) {
7679                                 if (sysfs_link_rdev(mddev, rdev))
7680                                         /* failure here is OK */;
7681                                 spares++;
7682                                 md_new_event(mddev);
7683                                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7684                         }
7685                 }
7686         }
7687         if (removed)
7688                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7689         return spares;
7690 }
7691
7692 static void reap_sync_thread(struct mddev *mddev)
7693 {
7694         struct md_rdev *rdev;
7695
7696         /* resync has finished, collect result */
7697         md_unregister_thread(&mddev->sync_thread);
7698         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7699             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7700                 /* success...*/
7701                 /* activate any spares */
7702                 if (mddev->pers->spare_active(mddev)) {
7703                         sysfs_notify(&mddev->kobj, NULL,
7704                                      "degraded");
7705                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7706                 }
7707         }
7708         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7709             mddev->pers->finish_reshape)
7710                 mddev->pers->finish_reshape(mddev);
7711
7712         /* If array is no-longer degraded, then any saved_raid_disk
7713          * information must be scrapped.  Also if any device is now
7714          * In_sync we must scrape the saved_raid_disk for that device
7715          * do the superblock for an incrementally recovered device
7716          * written out.
7717          */
7718         rdev_for_each(rdev, mddev)
7719                 if (!mddev->degraded ||
7720                     test_bit(In_sync, &rdev->flags))
7721                         rdev->saved_raid_disk = -1;
7722
7723         md_update_sb(mddev, 1);
7724         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7725         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7726         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7727         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7728         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7729         /* flag recovery needed just to double check */
7730         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7731         sysfs_notify_dirent_safe(mddev->sysfs_action);
7732         md_new_event(mddev);
7733         if (mddev->event_work.func)
7734                 queue_work(md_misc_wq, &mddev->event_work);
7735 }
7736
7737 /*
7738  * This routine is regularly called by all per-raid-array threads to
7739  * deal with generic issues like resync and super-block update.
7740  * Raid personalities that don't have a thread (linear/raid0) do not
7741  * need this as they never do any recovery or update the superblock.
7742  *
7743  * It does not do any resync itself, but rather "forks" off other threads
7744  * to do that as needed.
7745  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7746  * "->recovery" and create a thread at ->sync_thread.
7747  * When the thread finishes it sets MD_RECOVERY_DONE
7748  * and wakeups up this thread which will reap the thread and finish up.
7749  * This thread also removes any faulty devices (with nr_pending == 0).
7750  *
7751  * The overall approach is:
7752  *  1/ if the superblock needs updating, update it.
7753  *  2/ If a recovery thread is running, don't do anything else.
7754  *  3/ If recovery has finished, clean up, possibly marking spares active.
7755  *  4/ If there are any faulty devices, remove them.
7756  *  5/ If array is degraded, try to add spares devices
7757  *  6/ If array has spares or is not in-sync, start a resync thread.
7758  */
7759 void md_check_recovery(struct mddev *mddev)
7760 {
7761         if (mddev->suspended)
7762                 return;
7763
7764         if (mddev->bitmap)
7765                 bitmap_daemon_work(mddev);
7766
7767         if (signal_pending(current)) {
7768                 if (mddev->pers->sync_request && !mddev->external) {
7769                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7770                                mdname(mddev));
7771                         mddev->safemode = 2;
7772                 }
7773                 flush_signals(current);
7774         }
7775
7776         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7777                 return;
7778         if ( ! (
7779                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7780                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7781                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7782                 (mddev->external == 0 && mddev->safemode == 1) ||
7783                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7784                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7785                 ))
7786                 return;
7787
7788         if (mddev_trylock(mddev)) {
7789                 int spares = 0;
7790
7791                 if (mddev->ro) {
7792                         /* Only thing we do on a ro array is remove
7793                          * failed devices.
7794                          */
7795                         struct md_rdev *rdev;
7796                         rdev_for_each(rdev, mddev)
7797                                 if (rdev->raid_disk >= 0 &&
7798                                     !test_bit(Blocked, &rdev->flags) &&
7799                                     test_bit(Faulty, &rdev->flags) &&
7800                                     atomic_read(&rdev->nr_pending)==0) {
7801                                         if (mddev->pers->hot_remove_disk(
7802                                                     mddev, rdev) == 0) {
7803                                                 sysfs_unlink_rdev(mddev, rdev);
7804                                                 rdev->raid_disk = -1;
7805                                         }
7806                                 }
7807                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7808                         goto unlock;
7809                 }
7810
7811                 if (!mddev->external) {
7812                         int did_change = 0;
7813                         spin_lock_irq(&mddev->write_lock);
7814                         if (mddev->safemode &&
7815                             !atomic_read(&mddev->writes_pending) &&
7816                             !mddev->in_sync &&
7817                             mddev->recovery_cp == MaxSector) {
7818                                 mddev->in_sync = 1;
7819                                 did_change = 1;
7820                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7821                         }
7822                         if (mddev->safemode == 1)
7823                                 mddev->safemode = 0;
7824                         spin_unlock_irq(&mddev->write_lock);
7825                         if (did_change)
7826                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7827                 }
7828
7829                 if (mddev->flags)
7830                         md_update_sb(mddev, 0);
7831
7832                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7833                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7834                         /* resync/recovery still happening */
7835                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7836                         goto unlock;
7837                 }
7838                 if (mddev->sync_thread) {
7839                         reap_sync_thread(mddev);
7840                         goto unlock;
7841                 }
7842                 /* Set RUNNING before clearing NEEDED to avoid
7843                  * any transients in the value of "sync_action".
7844                  */
7845                 mddev->curr_resync_completed = 0;
7846                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7847                 /* Clear some bits that don't mean anything, but
7848                  * might be left set
7849                  */
7850                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7851                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7852
7853                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7854                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7855                         goto unlock;
7856                 /* no recovery is running.
7857                  * remove any failed drives, then
7858                  * add spares if possible.
7859                  * Spares are also removed and re-added, to allow
7860                  * the personality to fail the re-add.
7861                  */
7862
7863                 if (mddev->reshape_position != MaxSector) {
7864                         if (mddev->pers->check_reshape == NULL ||
7865                             mddev->pers->check_reshape(mddev) != 0)
7866                                 /* Cannot proceed */
7867                                 goto unlock;
7868                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7869                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7870                 } else if ((spares = remove_and_add_spares(mddev))) {
7871                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7872                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7873                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7874                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7875                 } else if (mddev->recovery_cp < MaxSector) {
7876                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7877                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7878                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7879                         /* nothing to be done ... */
7880                         goto unlock;
7881
7882                 if (mddev->pers->sync_request) {
7883                         if (spares) {
7884                                 /* We are adding a device or devices to an array
7885                                  * which has the bitmap stored on all devices.
7886                                  * So make sure all bitmap pages get written
7887                                  */
7888                                 bitmap_write_all(mddev->bitmap);
7889                         }
7890                         mddev->sync_thread = md_register_thread(md_do_sync,
7891                                                                 mddev,
7892                                                                 "resync");
7893                         if (!mddev->sync_thread) {
7894                                 printk(KERN_ERR "%s: could not start resync"
7895                                         " thread...\n", 
7896                                         mdname(mddev));
7897                                 /* leave the spares where they are, it shouldn't hurt */
7898                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7899                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7900                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7901                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7902                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7903                         } else
7904                                 md_wakeup_thread(mddev->sync_thread);
7905                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7906                         md_new_event(mddev);
7907                 }
7908         unlock:
7909                 if (!mddev->sync_thread) {
7910                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7911                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7912                                                &mddev->recovery))
7913                                 if (mddev->sysfs_action)
7914                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7915                 }
7916                 mddev_unlock(mddev);
7917         }
7918 }
7919
7920 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7921 {
7922         sysfs_notify_dirent_safe(rdev->sysfs_state);
7923         wait_event_timeout(rdev->blocked_wait,
7924                            !test_bit(Blocked, &rdev->flags) &&
7925                            !test_bit(BlockedBadBlocks, &rdev->flags),
7926                            msecs_to_jiffies(5000));
7927         rdev_dec_pending(rdev, mddev);
7928 }
7929 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7930
7931 void md_finish_reshape(struct mddev *mddev)
7932 {
7933         /* called be personality module when reshape completes. */
7934         struct md_rdev *rdev;
7935
7936         rdev_for_each(rdev, mddev) {
7937                 if (rdev->data_offset > rdev->new_data_offset)
7938                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7939                 else
7940                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7941                 rdev->data_offset = rdev->new_data_offset;
7942         }
7943 }
7944 EXPORT_SYMBOL(md_finish_reshape);
7945
7946 /* Bad block management.
7947  * We can record which blocks on each device are 'bad' and so just
7948  * fail those blocks, or that stripe, rather than the whole device.
7949  * Entries in the bad-block table are 64bits wide.  This comprises:
7950  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7951  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7952  *  A 'shift' can be set so that larger blocks are tracked and
7953  *  consequently larger devices can be covered.
7954  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7955  *
7956  * Locking of the bad-block table uses a seqlock so md_is_badblock
7957  * might need to retry if it is very unlucky.
7958  * We will sometimes want to check for bad blocks in a bi_end_io function,
7959  * so we use the write_seqlock_irq variant.
7960  *
7961  * When looking for a bad block we specify a range and want to
7962  * know if any block in the range is bad.  So we binary-search
7963  * to the last range that starts at-or-before the given endpoint,
7964  * (or "before the sector after the target range")
7965  * then see if it ends after the given start.
7966  * We return
7967  *  0 if there are no known bad blocks in the range
7968  *  1 if there are known bad block which are all acknowledged
7969  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7970  * plus the start/length of the first bad section we overlap.
7971  */
7972 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7973                    sector_t *first_bad, int *bad_sectors)
7974 {
7975         int hi;
7976         int lo;
7977         u64 *p = bb->page;
7978         int rv;
7979         sector_t target = s + sectors;
7980         unsigned seq;
7981
7982         if (bb->shift > 0) {
7983                 /* round the start down, and the end up */
7984                 s >>= bb->shift;
7985                 target += (1<<bb->shift) - 1;
7986                 target >>= bb->shift;
7987                 sectors = target - s;
7988         }
7989         /* 'target' is now the first block after the bad range */
7990
7991 retry:
7992         seq = read_seqbegin(&bb->lock);
7993         lo = 0;
7994         rv = 0;
7995         hi = bb->count;
7996
7997         /* Binary search between lo and hi for 'target'
7998          * i.e. for the last range that starts before 'target'
7999          */
8000         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8001          * are known not to be the last range before target.
8002          * VARIANT: hi-lo is the number of possible
8003          * ranges, and decreases until it reaches 1
8004          */
8005         while (hi - lo > 1) {
8006                 int mid = (lo + hi) / 2;
8007                 sector_t a = BB_OFFSET(p[mid]);
8008                 if (a < target)
8009                         /* This could still be the one, earlier ranges
8010                          * could not. */
8011                         lo = mid;
8012                 else
8013                         /* This and later ranges are definitely out. */
8014                         hi = mid;
8015         }
8016         /* 'lo' might be the last that started before target, but 'hi' isn't */
8017         if (hi > lo) {
8018                 /* need to check all range that end after 's' to see if
8019                  * any are unacknowledged.
8020                  */
8021                 while (lo >= 0 &&
8022                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8023                         if (BB_OFFSET(p[lo]) < target) {
8024                                 /* starts before the end, and finishes after
8025                                  * the start, so they must overlap
8026                                  */
8027                                 if (rv != -1 && BB_ACK(p[lo]))
8028                                         rv = 1;
8029                                 else
8030                                         rv = -1;
8031                                 *first_bad = BB_OFFSET(p[lo]);
8032                                 *bad_sectors = BB_LEN(p[lo]);
8033                         }
8034                         lo--;
8035                 }
8036         }
8037
8038         if (read_seqretry(&bb->lock, seq))
8039                 goto retry;
8040
8041         return rv;
8042 }
8043 EXPORT_SYMBOL_GPL(md_is_badblock);
8044
8045 /*
8046  * Add a range of bad blocks to the table.
8047  * This might extend the table, or might contract it
8048  * if two adjacent ranges can be merged.
8049  * We binary-search to find the 'insertion' point, then
8050  * decide how best to handle it.
8051  */
8052 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8053                             int acknowledged)
8054 {
8055         u64 *p;
8056         int lo, hi;
8057         int rv = 1;
8058
8059         if (bb->shift < 0)
8060                 /* badblocks are disabled */
8061                 return 0;
8062
8063         if (bb->shift) {
8064                 /* round the start down, and the end up */
8065                 sector_t next = s + sectors;
8066                 s >>= bb->shift;
8067                 next += (1<<bb->shift) - 1;
8068                 next >>= bb->shift;
8069                 sectors = next - s;
8070         }
8071
8072         write_seqlock_irq(&bb->lock);
8073
8074         p = bb->page;
8075         lo = 0;
8076         hi = bb->count;
8077         /* Find the last range that starts at-or-before 's' */
8078         while (hi - lo > 1) {
8079                 int mid = (lo + hi) / 2;
8080                 sector_t a = BB_OFFSET(p[mid]);
8081                 if (a <= s)
8082                         lo = mid;
8083                 else
8084                         hi = mid;
8085         }
8086         if (hi > lo && BB_OFFSET(p[lo]) > s)
8087                 hi = lo;
8088
8089         if (hi > lo) {
8090                 /* we found a range that might merge with the start
8091                  * of our new range
8092                  */
8093                 sector_t a = BB_OFFSET(p[lo]);
8094                 sector_t e = a + BB_LEN(p[lo]);
8095                 int ack = BB_ACK(p[lo]);
8096                 if (e >= s) {
8097                         /* Yes, we can merge with a previous range */
8098                         if (s == a && s + sectors >= e)
8099                                 /* new range covers old */
8100                                 ack = acknowledged;
8101                         else
8102                                 ack = ack && acknowledged;
8103
8104                         if (e < s + sectors)
8105                                 e = s + sectors;
8106                         if (e - a <= BB_MAX_LEN) {
8107                                 p[lo] = BB_MAKE(a, e-a, ack);
8108                                 s = e;
8109                         } else {
8110                                 /* does not all fit in one range,
8111                                  * make p[lo] maximal
8112                                  */
8113                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8114                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8115                                 s = a + BB_MAX_LEN;
8116                         }
8117                         sectors = e - s;
8118                 }
8119         }
8120         if (sectors && hi < bb->count) {
8121                 /* 'hi' points to the first range that starts after 's'.
8122                  * Maybe we can merge with the start of that range */
8123                 sector_t a = BB_OFFSET(p[hi]);
8124                 sector_t e = a + BB_LEN(p[hi]);
8125                 int ack = BB_ACK(p[hi]);
8126                 if (a <= s + sectors) {
8127                         /* merging is possible */
8128                         if (e <= s + sectors) {
8129                                 /* full overlap */
8130                                 e = s + sectors;
8131                                 ack = acknowledged;
8132                         } else
8133                                 ack = ack && acknowledged;
8134
8135                         a = s;
8136                         if (e - a <= BB_MAX_LEN) {
8137                                 p[hi] = BB_MAKE(a, e-a, ack);
8138                                 s = e;
8139                         } else {
8140                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8141                                 s = a + BB_MAX_LEN;
8142                         }
8143                         sectors = e - s;
8144                         lo = hi;
8145                         hi++;
8146                 }
8147         }
8148         if (sectors == 0 && hi < bb->count) {
8149                 /* we might be able to combine lo and hi */
8150                 /* Note: 's' is at the end of 'lo' */
8151                 sector_t a = BB_OFFSET(p[hi]);
8152                 int lolen = BB_LEN(p[lo]);
8153                 int hilen = BB_LEN(p[hi]);
8154                 int newlen = lolen + hilen - (s - a);
8155                 if (s >= a && newlen < BB_MAX_LEN) {
8156                         /* yes, we can combine them */
8157                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8158                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8159                         memmove(p + hi, p + hi + 1,
8160                                 (bb->count - hi - 1) * 8);
8161                         bb->count--;
8162                 }
8163         }
8164         while (sectors) {
8165                 /* didn't merge (it all).
8166                  * Need to add a range just before 'hi' */
8167                 if (bb->count >= MD_MAX_BADBLOCKS) {
8168                         /* No room for more */
8169                         rv = 0;
8170                         break;
8171                 } else {
8172                         int this_sectors = sectors;
8173                         memmove(p + hi + 1, p + hi,
8174                                 (bb->count - hi) * 8);
8175                         bb->count++;
8176
8177                         if (this_sectors > BB_MAX_LEN)
8178                                 this_sectors = BB_MAX_LEN;
8179                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8180                         sectors -= this_sectors;
8181                         s += this_sectors;
8182                 }
8183         }
8184
8185         bb->changed = 1;
8186         if (!acknowledged)
8187                 bb->unacked_exist = 1;
8188         write_sequnlock_irq(&bb->lock);
8189
8190         return rv;
8191 }
8192
8193 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8194                        int is_new)
8195 {
8196         int rv;
8197         if (is_new)
8198                 s += rdev->new_data_offset;
8199         else
8200                 s += rdev->data_offset;
8201         rv = md_set_badblocks(&rdev->badblocks,
8202                               s, sectors, 0);
8203         if (rv) {
8204                 /* Make sure they get written out promptly */
8205                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8206                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8207                 md_wakeup_thread(rdev->mddev->thread);
8208         }
8209         return rv;
8210 }
8211 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8212
8213 /*
8214  * Remove a range of bad blocks from the table.
8215  * This may involve extending the table if we spilt a region,
8216  * but it must not fail.  So if the table becomes full, we just
8217  * drop the remove request.
8218  */
8219 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8220 {
8221         u64 *p;
8222         int lo, hi;
8223         sector_t target = s + sectors;
8224         int rv = 0;
8225
8226         if (bb->shift > 0) {
8227                 /* When clearing we round the start up and the end down.
8228                  * This should not matter as the shift should align with
8229                  * the block size and no rounding should ever be needed.
8230                  * However it is better the think a block is bad when it
8231                  * isn't than to think a block is not bad when it is.
8232                  */
8233                 s += (1<<bb->shift) - 1;
8234                 s >>= bb->shift;
8235                 target >>= bb->shift;
8236                 sectors = target - s;
8237         }
8238
8239         write_seqlock_irq(&bb->lock);
8240
8241         p = bb->page;
8242         lo = 0;
8243         hi = bb->count;
8244         /* Find the last range that starts before 'target' */
8245         while (hi - lo > 1) {
8246                 int mid = (lo + hi) / 2;
8247                 sector_t a = BB_OFFSET(p[mid]);
8248                 if (a < target)
8249                         lo = mid;
8250                 else
8251                         hi = mid;
8252         }
8253         if (hi > lo) {
8254                 /* p[lo] is the last range that could overlap the
8255                  * current range.  Earlier ranges could also overlap,
8256                  * but only this one can overlap the end of the range.
8257                  */
8258                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8259                         /* Partial overlap, leave the tail of this range */
8260                         int ack = BB_ACK(p[lo]);
8261                         sector_t a = BB_OFFSET(p[lo]);
8262                         sector_t end = a + BB_LEN(p[lo]);
8263
8264                         if (a < s) {
8265                                 /* we need to split this range */
8266                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8267                                         rv = 0;
8268                                         goto out;
8269                                 }
8270                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8271                                 bb->count++;
8272                                 p[lo] = BB_MAKE(a, s-a, ack);
8273                                 lo++;
8274                         }
8275                         p[lo] = BB_MAKE(target, end - target, ack);
8276                         /* there is no longer an overlap */
8277                         hi = lo;
8278                         lo--;
8279                 }
8280                 while (lo >= 0 &&
8281                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8282                         /* This range does overlap */
8283                         if (BB_OFFSET(p[lo]) < s) {
8284                                 /* Keep the early parts of this range. */
8285                                 int ack = BB_ACK(p[lo]);
8286                                 sector_t start = BB_OFFSET(p[lo]);
8287                                 p[lo] = BB_MAKE(start, s - start, ack);
8288                                 /* now low doesn't overlap, so.. */
8289                                 break;
8290                         }
8291                         lo--;
8292                 }
8293                 /* 'lo' is strictly before, 'hi' is strictly after,
8294                  * anything between needs to be discarded
8295                  */
8296                 if (hi - lo > 1) {
8297                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8298                         bb->count -= (hi - lo - 1);
8299                 }
8300         }
8301
8302         bb->changed = 1;
8303 out:
8304         write_sequnlock_irq(&bb->lock);
8305         return rv;
8306 }
8307
8308 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8309                          int is_new)
8310 {
8311         if (is_new)
8312                 s += rdev->new_data_offset;
8313         else
8314                 s += rdev->data_offset;
8315         return md_clear_badblocks(&rdev->badblocks,
8316                                   s, sectors);
8317 }
8318 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8319
8320 /*
8321  * Acknowledge all bad blocks in a list.
8322  * This only succeeds if ->changed is clear.  It is used by
8323  * in-kernel metadata updates
8324  */
8325 void md_ack_all_badblocks(struct badblocks *bb)
8326 {
8327         if (bb->page == NULL || bb->changed)
8328                 /* no point even trying */
8329                 return;
8330         write_seqlock_irq(&bb->lock);
8331
8332         if (bb->changed == 0 && bb->unacked_exist) {
8333                 u64 *p = bb->page;
8334                 int i;
8335                 for (i = 0; i < bb->count ; i++) {
8336                         if (!BB_ACK(p[i])) {
8337                                 sector_t start = BB_OFFSET(p[i]);
8338                                 int len = BB_LEN(p[i]);
8339                                 p[i] = BB_MAKE(start, len, 1);
8340                         }
8341                 }
8342                 bb->unacked_exist = 0;
8343         }
8344         write_sequnlock_irq(&bb->lock);
8345 }
8346 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8347
8348 /* sysfs access to bad-blocks list.
8349  * We present two files.
8350  * 'bad-blocks' lists sector numbers and lengths of ranges that
8351  *    are recorded as bad.  The list is truncated to fit within
8352  *    the one-page limit of sysfs.
8353  *    Writing "sector length" to this file adds an acknowledged
8354  *    bad block list.
8355  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8356  *    been acknowledged.  Writing to this file adds bad blocks
8357  *    without acknowledging them.  This is largely for testing.
8358  */
8359
8360 static ssize_t
8361 badblocks_show(struct badblocks *bb, char *page, int unack)
8362 {
8363         size_t len;
8364         int i;
8365         u64 *p = bb->page;
8366         unsigned seq;
8367
8368         if (bb->shift < 0)
8369                 return 0;
8370
8371 retry:
8372         seq = read_seqbegin(&bb->lock);
8373
8374         len = 0;
8375         i = 0;
8376
8377         while (len < PAGE_SIZE && i < bb->count) {
8378                 sector_t s = BB_OFFSET(p[i]);
8379                 unsigned int length = BB_LEN(p[i]);
8380                 int ack = BB_ACK(p[i]);
8381                 i++;
8382
8383                 if (unack && ack)
8384                         continue;
8385
8386                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8387                                 (unsigned long long)s << bb->shift,
8388                                 length << bb->shift);
8389         }
8390         if (unack && len == 0)
8391                 bb->unacked_exist = 0;
8392
8393         if (read_seqretry(&bb->lock, seq))
8394                 goto retry;
8395
8396         return len;
8397 }
8398
8399 #define DO_DEBUG 1
8400
8401 static ssize_t
8402 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8403 {
8404         unsigned long long sector;
8405         int length;
8406         char newline;
8407 #ifdef DO_DEBUG
8408         /* Allow clearing via sysfs *only* for testing/debugging.
8409          * Normally only a successful write may clear a badblock
8410          */
8411         int clear = 0;
8412         if (page[0] == '-') {
8413                 clear = 1;
8414                 page++;
8415         }
8416 #endif /* DO_DEBUG */
8417
8418         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8419         case 3:
8420                 if (newline != '\n')
8421                         return -EINVAL;
8422         case 2:
8423                 if (length <= 0)
8424                         return -EINVAL;
8425                 break;
8426         default:
8427                 return -EINVAL;
8428         }
8429
8430 #ifdef DO_DEBUG
8431         if (clear) {
8432                 md_clear_badblocks(bb, sector, length);
8433                 return len;
8434         }
8435 #endif /* DO_DEBUG */
8436         if (md_set_badblocks(bb, sector, length, !unack))
8437                 return len;
8438         else
8439                 return -ENOSPC;
8440 }
8441
8442 static int md_notify_reboot(struct notifier_block *this,
8443                             unsigned long code, void *x)
8444 {
8445         struct list_head *tmp;
8446         struct mddev *mddev;
8447         int need_delay = 0;
8448
8449         for_each_mddev(mddev, tmp) {
8450                 if (mddev_trylock(mddev)) {
8451                         if (mddev->pers)
8452                                 __md_stop_writes(mddev);
8453                         mddev->safemode = 2;
8454                         mddev_unlock(mddev);
8455                 }
8456                 need_delay = 1;
8457         }
8458         /*
8459          * certain more exotic SCSI devices are known to be
8460          * volatile wrt too early system reboots. While the
8461          * right place to handle this issue is the given
8462          * driver, we do want to have a safe RAID driver ...
8463          */
8464         if (need_delay)
8465                 mdelay(1000*1);
8466
8467         return NOTIFY_DONE;
8468 }
8469
8470 static struct notifier_block md_notifier = {
8471         .notifier_call  = md_notify_reboot,
8472         .next           = NULL,
8473         .priority       = INT_MAX, /* before any real devices */
8474 };
8475
8476 static void md_geninit(void)
8477 {
8478         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8479
8480         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8481 }
8482
8483 static int __init md_init(void)
8484 {
8485         int ret = -ENOMEM;
8486
8487         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8488         if (!md_wq)
8489                 goto err_wq;
8490
8491         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8492         if (!md_misc_wq)
8493                 goto err_misc_wq;
8494
8495         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8496                 goto err_md;
8497
8498         if ((ret = register_blkdev(0, "mdp")) < 0)
8499                 goto err_mdp;
8500         mdp_major = ret;
8501
8502         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8503                             md_probe, NULL, NULL);
8504         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8505                             md_probe, NULL, NULL);
8506
8507         register_reboot_notifier(&md_notifier);
8508         raid_table_header = register_sysctl_table(raid_root_table);
8509
8510         md_geninit();
8511         return 0;
8512
8513 err_mdp:
8514         unregister_blkdev(MD_MAJOR, "md");
8515 err_md:
8516         destroy_workqueue(md_misc_wq);
8517 err_misc_wq:
8518         destroy_workqueue(md_wq);
8519 err_wq:
8520         return ret;
8521 }
8522
8523 #ifndef MODULE
8524
8525 /*
8526  * Searches all registered partitions for autorun RAID arrays
8527  * at boot time.
8528  */
8529
8530 static LIST_HEAD(all_detected_devices);
8531 struct detected_devices_node {
8532         struct list_head list;
8533         dev_t dev;
8534 };
8535
8536 void md_autodetect_dev(dev_t dev)
8537 {
8538         struct detected_devices_node *node_detected_dev;
8539
8540         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8541         if (node_detected_dev) {
8542                 node_detected_dev->dev = dev;
8543                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8544         } else {
8545                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8546                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8547         }
8548 }
8549
8550
8551 static void autostart_arrays(int part)
8552 {
8553         struct md_rdev *rdev;
8554         struct detected_devices_node *node_detected_dev;
8555         dev_t dev;
8556         int i_scanned, i_passed;
8557
8558         i_scanned = 0;
8559         i_passed = 0;
8560
8561         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8562
8563         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8564                 i_scanned++;
8565                 node_detected_dev = list_entry(all_detected_devices.next,
8566                                         struct detected_devices_node, list);
8567                 list_del(&node_detected_dev->list);
8568                 dev = node_detected_dev->dev;
8569                 kfree(node_detected_dev);
8570                 rdev = md_import_device(dev,0, 90);
8571                 if (IS_ERR(rdev))
8572                         continue;
8573
8574                 if (test_bit(Faulty, &rdev->flags)) {
8575                         MD_BUG();
8576                         continue;
8577                 }
8578                 set_bit(AutoDetected, &rdev->flags);
8579                 list_add(&rdev->same_set, &pending_raid_disks);
8580                 i_passed++;
8581         }
8582
8583         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8584                                                 i_scanned, i_passed);
8585
8586         autorun_devices(part);
8587 }
8588
8589 #endif /* !MODULE */
8590
8591 static __exit void md_exit(void)
8592 {
8593         struct mddev *mddev;
8594         struct list_head *tmp;
8595
8596         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8597         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8598
8599         unregister_blkdev(MD_MAJOR,"md");
8600         unregister_blkdev(mdp_major, "mdp");
8601         unregister_reboot_notifier(&md_notifier);
8602         unregister_sysctl_table(raid_table_header);
8603         remove_proc_entry("mdstat", NULL);
8604         for_each_mddev(mddev, tmp) {
8605                 export_array(mddev);
8606                 mddev->hold_active = 0;
8607         }
8608         destroy_workqueue(md_misc_wq);
8609         destroy_workqueue(md_wq);
8610 }
8611
8612 subsys_initcall(md_init);
8613 module_exit(md_exit)
8614
8615 static int get_ro(char *buffer, struct kernel_param *kp)
8616 {
8617         return sprintf(buffer, "%d", start_readonly);
8618 }
8619 static int set_ro(const char *val, struct kernel_param *kp)
8620 {
8621         char *e;
8622         int num = simple_strtoul(val, &e, 10);
8623         if (*val && (*e == '\0' || *e == '\n')) {
8624                 start_readonly = num;
8625                 return 0;
8626         }
8627         return -EINVAL;
8628 }
8629
8630 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8631 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8632
8633 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8634
8635 EXPORT_SYMBOL(register_md_personality);
8636 EXPORT_SYMBOL(unregister_md_personality);
8637 EXPORT_SYMBOL(md_error);
8638 EXPORT_SYMBOL(md_done_sync);
8639 EXPORT_SYMBOL(md_write_start);
8640 EXPORT_SYMBOL(md_write_end);
8641 EXPORT_SYMBOL(md_register_thread);
8642 EXPORT_SYMBOL(md_unregister_thread);
8643 EXPORT_SYMBOL(md_wakeup_thread);
8644 EXPORT_SYMBOL(md_check_recovery);
8645 MODULE_LICENSE("GPL");
8646 MODULE_DESCRIPTION("MD RAID framework");
8647 MODULE_ALIAS("md");
8648 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);