ARM: mach-shmobile: ag5evm needs CONFIG_I2C
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100         return mddev->sync_speed_min ?
101                 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106         return mddev->sync_speed_max ?
107                 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static ctl_table raid_table[] = {
113         {
114                 .procname       = "speed_limit_min",
115                 .data           = &sysctl_speed_limit_min,
116                 .maxlen         = sizeof(int),
117                 .mode           = S_IRUGO|S_IWUSR,
118                 .proc_handler   = proc_dointvec,
119         },
120         {
121                 .procname       = "speed_limit_max",
122                 .data           = &sysctl_speed_limit_max,
123                 .maxlen         = sizeof(int),
124                 .mode           = S_IRUGO|S_IWUSR,
125                 .proc_handler   = proc_dointvec,
126         },
127         { }
128 };
129
130 static ctl_table raid_dir_table[] = {
131         {
132                 .procname       = "raid",
133                 .maxlen         = 0,
134                 .mode           = S_IRUGO|S_IXUGO,
135                 .child          = raid_table,
136         },
137         { }
138 };
139
140 static ctl_table raid_root_table[] = {
141         {
142                 .procname       = "dev",
143                 .maxlen         = 0,
144                 .mode           = 0555,
145                 .child          = raid_dir_table,
146         },
147         {  }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157
158 static void mddev_bio_destructor(struct bio *bio)
159 {
160         struct mddev *mddev, **mddevp;
161
162         mddevp = (void*)bio;
163         mddev = mddevp[-1];
164
165         bio_free(bio, mddev->bio_set);
166 }
167
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169                             struct mddev *mddev)
170 {
171         struct bio *b;
172         struct mddev **mddevp;
173
174         if (!mddev || !mddev->bio_set)
175                 return bio_alloc(gfp_mask, nr_iovecs);
176
177         b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178                              mddev->bio_set);
179         if (!b)
180                 return NULL;
181         mddevp = (void*)b;
182         mddevp[-1] = mddev;
183         b->bi_destructor = mddev_bio_destructor;
184         return b;
185 }
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
187
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189                             struct mddev *mddev)
190 {
191         struct bio *b;
192         struct mddev **mddevp;
193
194         if (!mddev || !mddev->bio_set)
195                 return bio_clone(bio, gfp_mask);
196
197         b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198                              mddev->bio_set);
199         if (!b)
200                 return NULL;
201         mddevp = (void*)b;
202         mddevp[-1] = mddev;
203         b->bi_destructor = mddev_bio_destructor;
204         __bio_clone(b, bio);
205         if (bio_integrity(bio)) {
206                 int ret;
207
208                 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
209
210                 if (ret < 0) {
211                         bio_put(b);
212                         return NULL;
213                 }
214         }
215
216         return b;
217 }
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
219
220 void md_trim_bio(struct bio *bio, int offset, int size)
221 {
222         /* 'bio' is a cloned bio which we need to trim to match
223          * the given offset and size.
224          * This requires adjusting bi_sector, bi_size, and bi_io_vec
225          */
226         int i;
227         struct bio_vec *bvec;
228         int sofar = 0;
229
230         size <<= 9;
231         if (offset == 0 && size == bio->bi_size)
232                 return;
233
234         bio->bi_sector += offset;
235         bio->bi_size = size;
236         offset <<= 9;
237         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
238
239         while (bio->bi_idx < bio->bi_vcnt &&
240                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241                 /* remove this whole bio_vec */
242                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243                 bio->bi_idx++;
244         }
245         if (bio->bi_idx < bio->bi_vcnt) {
246                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
248         }
249         /* avoid any complications with bi_idx being non-zero*/
250         if (bio->bi_idx) {
251                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253                 bio->bi_vcnt -= bio->bi_idx;
254                 bio->bi_idx = 0;
255         }
256         /* Make sure vcnt and last bv are not too big */
257         bio_for_each_segment(bvec, bio, i) {
258                 if (sofar + bvec->bv_len > size)
259                         bvec->bv_len = size - sofar;
260                 if (bvec->bv_len == 0) {
261                         bio->bi_vcnt = i;
262                         break;
263                 }
264                 sofar += bvec->bv_len;
265         }
266 }
267 EXPORT_SYMBOL_GPL(md_trim_bio);
268
269 /*
270  * We have a system wide 'event count' that is incremented
271  * on any 'interesting' event, and readers of /proc/mdstat
272  * can use 'poll' or 'select' to find out when the event
273  * count increases.
274  *
275  * Events are:
276  *  start array, stop array, error, add device, remove device,
277  *  start build, activate spare
278  */
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(struct mddev *mddev)
282 {
283         atomic_inc(&md_event_count);
284         wake_up(&md_event_waiters);
285 }
286 EXPORT_SYMBOL_GPL(md_new_event);
287
288 /* Alternate version that can be called from interrupts
289  * when calling sysfs_notify isn't needed.
290  */
291 static void md_new_event_inintr(struct mddev *mddev)
292 {
293         atomic_inc(&md_event_count);
294         wake_up(&md_event_waiters);
295 }
296
297 /*
298  * Enables to iterate over all existing md arrays
299  * all_mddevs_lock protects this list.
300  */
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
303
304
305 /*
306  * iterates through all used mddevs in the system.
307  * We take care to grab the all_mddevs_lock whenever navigating
308  * the list, and to always hold a refcount when unlocked.
309  * Any code which breaks out of this loop while own
310  * a reference to the current mddev and must mddev_put it.
311  */
312 #define for_each_mddev(_mddev,_tmp)                                     \
313                                                                         \
314         for (({ spin_lock(&all_mddevs_lock);                            \
315                 _tmp = all_mddevs.next;                                 \
316                 _mddev = NULL;});                                       \
317              ({ if (_tmp != &all_mddevs)                                \
318                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319                 spin_unlock(&all_mddevs_lock);                          \
320                 if (_mddev) mddev_put(_mddev);                          \
321                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
322                 _tmp != &all_mddevs;});                                 \
323              ({ spin_lock(&all_mddevs_lock);                            \
324                 _tmp = _tmp->next;})                                    \
325                 )
326
327
328 /* Rather than calling directly into the personality make_request function,
329  * IO requests come here first so that we can check if the device is
330  * being suspended pending a reconfiguration.
331  * We hold a refcount over the call to ->make_request.  By the time that
332  * call has finished, the bio has been linked into some internal structure
333  * and so is visible to ->quiesce(), so we don't need the refcount any more.
334  */
335 static int md_make_request(struct request_queue *q, struct bio *bio)
336 {
337         const int rw = bio_data_dir(bio);
338         struct mddev *mddev = q->queuedata;
339         int rv;
340         int cpu;
341         unsigned int sectors;
342
343         if (mddev == NULL || mddev->pers == NULL
344             || !mddev->ready) {
345                 bio_io_error(bio);
346                 return 0;
347         }
348         smp_rmb(); /* Ensure implications of  'active' are visible */
349         rcu_read_lock();
350         if (mddev->suspended) {
351                 DEFINE_WAIT(__wait);
352                 for (;;) {
353                         prepare_to_wait(&mddev->sb_wait, &__wait,
354                                         TASK_UNINTERRUPTIBLE);
355                         if (!mddev->suspended)
356                                 break;
357                         rcu_read_unlock();
358                         schedule();
359                         rcu_read_lock();
360                 }
361                 finish_wait(&mddev->sb_wait, &__wait);
362         }
363         atomic_inc(&mddev->active_io);
364         rcu_read_unlock();
365
366         /*
367          * save the sectors now since our bio can
368          * go away inside make_request
369          */
370         sectors = bio_sectors(bio);
371         rv = mddev->pers->make_request(mddev, bio);
372
373         cpu = part_stat_lock();
374         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
375         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
376         part_stat_unlock();
377
378         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
379                 wake_up(&mddev->sb_wait);
380
381         return rv;
382 }
383
384 /* mddev_suspend makes sure no new requests are submitted
385  * to the device, and that any requests that have been submitted
386  * are completely handled.
387  * Once ->stop is called and completes, the module will be completely
388  * unused.
389  */
390 void mddev_suspend(struct mddev *mddev)
391 {
392         BUG_ON(mddev->suspended);
393         mddev->suspended = 1;
394         synchronize_rcu();
395         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
396         mddev->pers->quiesce(mddev, 1);
397 }
398 EXPORT_SYMBOL_GPL(mddev_suspend);
399
400 void mddev_resume(struct mddev *mddev)
401 {
402         mddev->suspended = 0;
403         wake_up(&mddev->sb_wait);
404         mddev->pers->quiesce(mddev, 0);
405
406         md_wakeup_thread(mddev->thread);
407         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
408 }
409 EXPORT_SYMBOL_GPL(mddev_resume);
410
411 int mddev_congested(struct mddev *mddev, int bits)
412 {
413         return mddev->suspended;
414 }
415 EXPORT_SYMBOL(mddev_congested);
416
417 /*
418  * Generic flush handling for md
419  */
420
421 static void md_end_flush(struct bio *bio, int err)
422 {
423         struct md_rdev *rdev = bio->bi_private;
424         struct mddev *mddev = rdev->mddev;
425
426         rdev_dec_pending(rdev, mddev);
427
428         if (atomic_dec_and_test(&mddev->flush_pending)) {
429                 /* The pre-request flush has finished */
430                 queue_work(md_wq, &mddev->flush_work);
431         }
432         bio_put(bio);
433 }
434
435 static void md_submit_flush_data(struct work_struct *ws);
436
437 static void submit_flushes(struct work_struct *ws)
438 {
439         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
440         struct md_rdev *rdev;
441
442         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
443         atomic_set(&mddev->flush_pending, 1);
444         rcu_read_lock();
445         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
446                 if (rdev->raid_disk >= 0 &&
447                     !test_bit(Faulty, &rdev->flags)) {
448                         /* Take two references, one is dropped
449                          * when request finishes, one after
450                          * we reclaim rcu_read_lock
451                          */
452                         struct bio *bi;
453                         atomic_inc(&rdev->nr_pending);
454                         atomic_inc(&rdev->nr_pending);
455                         rcu_read_unlock();
456                         bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
457                         bi->bi_end_io = md_end_flush;
458                         bi->bi_private = rdev;
459                         bi->bi_bdev = rdev->bdev;
460                         atomic_inc(&mddev->flush_pending);
461                         submit_bio(WRITE_FLUSH, bi);
462                         rcu_read_lock();
463                         rdev_dec_pending(rdev, mddev);
464                 }
465         rcu_read_unlock();
466         if (atomic_dec_and_test(&mddev->flush_pending))
467                 queue_work(md_wq, &mddev->flush_work);
468 }
469
470 static void md_submit_flush_data(struct work_struct *ws)
471 {
472         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
473         struct bio *bio = mddev->flush_bio;
474
475         if (bio->bi_size == 0)
476                 /* an empty barrier - all done */
477                 bio_endio(bio, 0);
478         else {
479                 bio->bi_rw &= ~REQ_FLUSH;
480                 if (mddev->pers->make_request(mddev, bio))
481                         generic_make_request(bio);
482         }
483
484         mddev->flush_bio = NULL;
485         wake_up(&mddev->sb_wait);
486 }
487
488 void md_flush_request(struct mddev *mddev, struct bio *bio)
489 {
490         spin_lock_irq(&mddev->write_lock);
491         wait_event_lock_irq(mddev->sb_wait,
492                             !mddev->flush_bio,
493                             mddev->write_lock, /*nothing*/);
494         mddev->flush_bio = bio;
495         spin_unlock_irq(&mddev->write_lock);
496
497         INIT_WORK(&mddev->flush_work, submit_flushes);
498         queue_work(md_wq, &mddev->flush_work);
499 }
500 EXPORT_SYMBOL(md_flush_request);
501
502 /* Support for plugging.
503  * This mirrors the plugging support in request_queue, but does not
504  * require having a whole queue or request structures.
505  * We allocate an md_plug_cb for each md device and each thread it gets
506  * plugged on.  This links tot the private plug_handle structure in the
507  * personality data where we keep a count of the number of outstanding
508  * plugs so other code can see if a plug is active.
509  */
510 struct md_plug_cb {
511         struct blk_plug_cb cb;
512         struct mddev *mddev;
513 };
514
515 static void plugger_unplug(struct blk_plug_cb *cb)
516 {
517         struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
518         if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
519                 md_wakeup_thread(mdcb->mddev->thread);
520         kfree(mdcb);
521 }
522
523 /* Check that an unplug wakeup will come shortly.
524  * If not, wakeup the md thread immediately
525  */
526 int mddev_check_plugged(struct mddev *mddev)
527 {
528         struct blk_plug *plug = current->plug;
529         struct md_plug_cb *mdcb;
530
531         if (!plug)
532                 return 0;
533
534         list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
535                 if (mdcb->cb.callback == plugger_unplug &&
536                     mdcb->mddev == mddev) {
537                         /* Already on the list, move to top */
538                         if (mdcb != list_first_entry(&plug->cb_list,
539                                                     struct md_plug_cb,
540                                                     cb.list))
541                                 list_move(&mdcb->cb.list, &plug->cb_list);
542                         return 1;
543                 }
544         }
545         /* Not currently on the callback list */
546         mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
547         if (!mdcb)
548                 return 0;
549
550         mdcb->mddev = mddev;
551         mdcb->cb.callback = plugger_unplug;
552         atomic_inc(&mddev->plug_cnt);
553         list_add(&mdcb->cb.list, &plug->cb_list);
554         return 1;
555 }
556 EXPORT_SYMBOL_GPL(mddev_check_plugged);
557
558 static inline struct mddev *mddev_get(struct mddev *mddev)
559 {
560         atomic_inc(&mddev->active);
561         return mddev;
562 }
563
564 static void mddev_delayed_delete(struct work_struct *ws);
565
566 static void mddev_put(struct mddev *mddev)
567 {
568         struct bio_set *bs = NULL;
569
570         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
571                 return;
572         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
573             mddev->ctime == 0 && !mddev->hold_active) {
574                 /* Array is not configured at all, and not held active,
575                  * so destroy it */
576                 list_del(&mddev->all_mddevs);
577                 bs = mddev->bio_set;
578                 mddev->bio_set = NULL;
579                 if (mddev->gendisk) {
580                         /* We did a probe so need to clean up.  Call
581                          * queue_work inside the spinlock so that
582                          * flush_workqueue() after mddev_find will
583                          * succeed in waiting for the work to be done.
584                          */
585                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
586                         queue_work(md_misc_wq, &mddev->del_work);
587                 } else
588                         kfree(mddev);
589         }
590         spin_unlock(&all_mddevs_lock);
591         if (bs)
592                 bioset_free(bs);
593 }
594
595 void mddev_init(struct mddev *mddev)
596 {
597         mutex_init(&mddev->open_mutex);
598         mutex_init(&mddev->reconfig_mutex);
599         mutex_init(&mddev->bitmap_info.mutex);
600         INIT_LIST_HEAD(&mddev->disks);
601         INIT_LIST_HEAD(&mddev->all_mddevs);
602         init_timer(&mddev->safemode_timer);
603         atomic_set(&mddev->active, 1);
604         atomic_set(&mddev->openers, 0);
605         atomic_set(&mddev->active_io, 0);
606         atomic_set(&mddev->plug_cnt, 0);
607         spin_lock_init(&mddev->write_lock);
608         atomic_set(&mddev->flush_pending, 0);
609         init_waitqueue_head(&mddev->sb_wait);
610         init_waitqueue_head(&mddev->recovery_wait);
611         mddev->reshape_position = MaxSector;
612         mddev->resync_min = 0;
613         mddev->resync_max = MaxSector;
614         mddev->level = LEVEL_NONE;
615 }
616 EXPORT_SYMBOL_GPL(mddev_init);
617
618 static struct mddev * mddev_find(dev_t unit)
619 {
620         struct mddev *mddev, *new = NULL;
621
622         if (unit && MAJOR(unit) != MD_MAJOR)
623                 unit &= ~((1<<MdpMinorShift)-1);
624
625  retry:
626         spin_lock(&all_mddevs_lock);
627
628         if (unit) {
629                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
630                         if (mddev->unit == unit) {
631                                 mddev_get(mddev);
632                                 spin_unlock(&all_mddevs_lock);
633                                 kfree(new);
634                                 return mddev;
635                         }
636
637                 if (new) {
638                         list_add(&new->all_mddevs, &all_mddevs);
639                         spin_unlock(&all_mddevs_lock);
640                         new->hold_active = UNTIL_IOCTL;
641                         return new;
642                 }
643         } else if (new) {
644                 /* find an unused unit number */
645                 static int next_minor = 512;
646                 int start = next_minor;
647                 int is_free = 0;
648                 int dev = 0;
649                 while (!is_free) {
650                         dev = MKDEV(MD_MAJOR, next_minor);
651                         next_minor++;
652                         if (next_minor > MINORMASK)
653                                 next_minor = 0;
654                         if (next_minor == start) {
655                                 /* Oh dear, all in use. */
656                                 spin_unlock(&all_mddevs_lock);
657                                 kfree(new);
658                                 return NULL;
659                         }
660                                 
661                         is_free = 1;
662                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
663                                 if (mddev->unit == dev) {
664                                         is_free = 0;
665                                         break;
666                                 }
667                 }
668                 new->unit = dev;
669                 new->md_minor = MINOR(dev);
670                 new->hold_active = UNTIL_STOP;
671                 list_add(&new->all_mddevs, &all_mddevs);
672                 spin_unlock(&all_mddevs_lock);
673                 return new;
674         }
675         spin_unlock(&all_mddevs_lock);
676
677         new = kzalloc(sizeof(*new), GFP_KERNEL);
678         if (!new)
679                 return NULL;
680
681         new->unit = unit;
682         if (MAJOR(unit) == MD_MAJOR)
683                 new->md_minor = MINOR(unit);
684         else
685                 new->md_minor = MINOR(unit) >> MdpMinorShift;
686
687         mddev_init(new);
688
689         goto retry;
690 }
691
692 static inline int mddev_lock(struct mddev * mddev)
693 {
694         return mutex_lock_interruptible(&mddev->reconfig_mutex);
695 }
696
697 static inline int mddev_is_locked(struct mddev *mddev)
698 {
699         return mutex_is_locked(&mddev->reconfig_mutex);
700 }
701
702 static inline int mddev_trylock(struct mddev * mddev)
703 {
704         return mutex_trylock(&mddev->reconfig_mutex);
705 }
706
707 static struct attribute_group md_redundancy_group;
708
709 static void mddev_unlock(struct mddev * mddev)
710 {
711         if (mddev->to_remove) {
712                 /* These cannot be removed under reconfig_mutex as
713                  * an access to the files will try to take reconfig_mutex
714                  * while holding the file unremovable, which leads to
715                  * a deadlock.
716                  * So hold set sysfs_active while the remove in happeing,
717                  * and anything else which might set ->to_remove or my
718                  * otherwise change the sysfs namespace will fail with
719                  * -EBUSY if sysfs_active is still set.
720                  * We set sysfs_active under reconfig_mutex and elsewhere
721                  * test it under the same mutex to ensure its correct value
722                  * is seen.
723                  */
724                 struct attribute_group *to_remove = mddev->to_remove;
725                 mddev->to_remove = NULL;
726                 mddev->sysfs_active = 1;
727                 mutex_unlock(&mddev->reconfig_mutex);
728
729                 if (mddev->kobj.sd) {
730                         if (to_remove != &md_redundancy_group)
731                                 sysfs_remove_group(&mddev->kobj, to_remove);
732                         if (mddev->pers == NULL ||
733                             mddev->pers->sync_request == NULL) {
734                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
735                                 if (mddev->sysfs_action)
736                                         sysfs_put(mddev->sysfs_action);
737                                 mddev->sysfs_action = NULL;
738                         }
739                 }
740                 mddev->sysfs_active = 0;
741         } else
742                 mutex_unlock(&mddev->reconfig_mutex);
743
744         /* As we've dropped the mutex we need a spinlock to
745          * make sure the thread doesn't disappear
746          */
747         spin_lock(&pers_lock);
748         md_wakeup_thread(mddev->thread);
749         spin_unlock(&pers_lock);
750 }
751
752 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
753 {
754         struct md_rdev *rdev;
755
756         list_for_each_entry(rdev, &mddev->disks, same_set)
757                 if (rdev->desc_nr == nr)
758                         return rdev;
759
760         return NULL;
761 }
762
763 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
764 {
765         struct md_rdev *rdev;
766
767         list_for_each_entry(rdev, &mddev->disks, same_set)
768                 if (rdev->bdev->bd_dev == dev)
769                         return rdev;
770
771         return NULL;
772 }
773
774 static struct md_personality *find_pers(int level, char *clevel)
775 {
776         struct md_personality *pers;
777         list_for_each_entry(pers, &pers_list, list) {
778                 if (level != LEVEL_NONE && pers->level == level)
779                         return pers;
780                 if (strcmp(pers->name, clevel)==0)
781                         return pers;
782         }
783         return NULL;
784 }
785
786 /* return the offset of the super block in 512byte sectors */
787 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
788 {
789         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
790         return MD_NEW_SIZE_SECTORS(num_sectors);
791 }
792
793 static int alloc_disk_sb(struct md_rdev * rdev)
794 {
795         if (rdev->sb_page)
796                 MD_BUG();
797
798         rdev->sb_page = alloc_page(GFP_KERNEL);
799         if (!rdev->sb_page) {
800                 printk(KERN_ALERT "md: out of memory.\n");
801                 return -ENOMEM;
802         }
803
804         return 0;
805 }
806
807 static void free_disk_sb(struct md_rdev * rdev)
808 {
809         if (rdev->sb_page) {
810                 put_page(rdev->sb_page);
811                 rdev->sb_loaded = 0;
812                 rdev->sb_page = NULL;
813                 rdev->sb_start = 0;
814                 rdev->sectors = 0;
815         }
816         if (rdev->bb_page) {
817                 put_page(rdev->bb_page);
818                 rdev->bb_page = NULL;
819         }
820 }
821
822
823 static void super_written(struct bio *bio, int error)
824 {
825         struct md_rdev *rdev = bio->bi_private;
826         struct mddev *mddev = rdev->mddev;
827
828         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
829                 printk("md: super_written gets error=%d, uptodate=%d\n",
830                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
831                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
832                 md_error(mddev, rdev);
833         }
834
835         if (atomic_dec_and_test(&mddev->pending_writes))
836                 wake_up(&mddev->sb_wait);
837         bio_put(bio);
838 }
839
840 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
841                    sector_t sector, int size, struct page *page)
842 {
843         /* write first size bytes of page to sector of rdev
844          * Increment mddev->pending_writes before returning
845          * and decrement it on completion, waking up sb_wait
846          * if zero is reached.
847          * If an error occurred, call md_error
848          */
849         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
850
851         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
852         bio->bi_sector = sector;
853         bio_add_page(bio, page, size, 0);
854         bio->bi_private = rdev;
855         bio->bi_end_io = super_written;
856
857         atomic_inc(&mddev->pending_writes);
858         submit_bio(WRITE_FLUSH_FUA, bio);
859 }
860
861 void md_super_wait(struct mddev *mddev)
862 {
863         /* wait for all superblock writes that were scheduled to complete */
864         DEFINE_WAIT(wq);
865         for(;;) {
866                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
867                 if (atomic_read(&mddev->pending_writes)==0)
868                         break;
869                 schedule();
870         }
871         finish_wait(&mddev->sb_wait, &wq);
872 }
873
874 static void bi_complete(struct bio *bio, int error)
875 {
876         complete((struct completion*)bio->bi_private);
877 }
878
879 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
880                  struct page *page, int rw, bool metadata_op)
881 {
882         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
883         struct completion event;
884         int ret;
885
886         rw |= REQ_SYNC;
887
888         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
889                 rdev->meta_bdev : rdev->bdev;
890         if (metadata_op)
891                 bio->bi_sector = sector + rdev->sb_start;
892         else
893                 bio->bi_sector = sector + rdev->data_offset;
894         bio_add_page(bio, page, size, 0);
895         init_completion(&event);
896         bio->bi_private = &event;
897         bio->bi_end_io = bi_complete;
898         submit_bio(rw, bio);
899         wait_for_completion(&event);
900
901         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
902         bio_put(bio);
903         return ret;
904 }
905 EXPORT_SYMBOL_GPL(sync_page_io);
906
907 static int read_disk_sb(struct md_rdev * rdev, int size)
908 {
909         char b[BDEVNAME_SIZE];
910         if (!rdev->sb_page) {
911                 MD_BUG();
912                 return -EINVAL;
913         }
914         if (rdev->sb_loaded)
915                 return 0;
916
917
918         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
919                 goto fail;
920         rdev->sb_loaded = 1;
921         return 0;
922
923 fail:
924         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
925                 bdevname(rdev->bdev,b));
926         return -EINVAL;
927 }
928
929 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
930 {
931         return  sb1->set_uuid0 == sb2->set_uuid0 &&
932                 sb1->set_uuid1 == sb2->set_uuid1 &&
933                 sb1->set_uuid2 == sb2->set_uuid2 &&
934                 sb1->set_uuid3 == sb2->set_uuid3;
935 }
936
937 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
938 {
939         int ret;
940         mdp_super_t *tmp1, *tmp2;
941
942         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
943         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
944
945         if (!tmp1 || !tmp2) {
946                 ret = 0;
947                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
948                 goto abort;
949         }
950
951         *tmp1 = *sb1;
952         *tmp2 = *sb2;
953
954         /*
955          * nr_disks is not constant
956          */
957         tmp1->nr_disks = 0;
958         tmp2->nr_disks = 0;
959
960         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
961 abort:
962         kfree(tmp1);
963         kfree(tmp2);
964         return ret;
965 }
966
967
968 static u32 md_csum_fold(u32 csum)
969 {
970         csum = (csum & 0xffff) + (csum >> 16);
971         return (csum & 0xffff) + (csum >> 16);
972 }
973
974 static unsigned int calc_sb_csum(mdp_super_t * sb)
975 {
976         u64 newcsum = 0;
977         u32 *sb32 = (u32*)sb;
978         int i;
979         unsigned int disk_csum, csum;
980
981         disk_csum = sb->sb_csum;
982         sb->sb_csum = 0;
983
984         for (i = 0; i < MD_SB_BYTES/4 ; i++)
985                 newcsum += sb32[i];
986         csum = (newcsum & 0xffffffff) + (newcsum>>32);
987
988
989 #ifdef CONFIG_ALPHA
990         /* This used to use csum_partial, which was wrong for several
991          * reasons including that different results are returned on
992          * different architectures.  It isn't critical that we get exactly
993          * the same return value as before (we always csum_fold before
994          * testing, and that removes any differences).  However as we
995          * know that csum_partial always returned a 16bit value on
996          * alphas, do a fold to maximise conformity to previous behaviour.
997          */
998         sb->sb_csum = md_csum_fold(disk_csum);
999 #else
1000         sb->sb_csum = disk_csum;
1001 #endif
1002         return csum;
1003 }
1004
1005
1006 /*
1007  * Handle superblock details.
1008  * We want to be able to handle multiple superblock formats
1009  * so we have a common interface to them all, and an array of
1010  * different handlers.
1011  * We rely on user-space to write the initial superblock, and support
1012  * reading and updating of superblocks.
1013  * Interface methods are:
1014  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1015  *      loads and validates a superblock on dev.
1016  *      if refdev != NULL, compare superblocks on both devices
1017  *    Return:
1018  *      0 - dev has a superblock that is compatible with refdev
1019  *      1 - dev has a superblock that is compatible and newer than refdev
1020  *          so dev should be used as the refdev in future
1021  *     -EINVAL superblock incompatible or invalid
1022  *     -othererror e.g. -EIO
1023  *
1024  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1025  *      Verify that dev is acceptable into mddev.
1026  *       The first time, mddev->raid_disks will be 0, and data from
1027  *       dev should be merged in.  Subsequent calls check that dev
1028  *       is new enough.  Return 0 or -EINVAL
1029  *
1030  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1031  *     Update the superblock for rdev with data in mddev
1032  *     This does not write to disc.
1033  *
1034  */
1035
1036 struct super_type  {
1037         char                *name;
1038         struct module       *owner;
1039         int                 (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1040                                           int minor_version);
1041         int                 (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1042         void                (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1043         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1044                                                 sector_t num_sectors);
1045 };
1046
1047 /*
1048  * Check that the given mddev has no bitmap.
1049  *
1050  * This function is called from the run method of all personalities that do not
1051  * support bitmaps. It prints an error message and returns non-zero if mddev
1052  * has a bitmap. Otherwise, it returns 0.
1053  *
1054  */
1055 int md_check_no_bitmap(struct mddev *mddev)
1056 {
1057         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1058                 return 0;
1059         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1060                 mdname(mddev), mddev->pers->name);
1061         return 1;
1062 }
1063 EXPORT_SYMBOL(md_check_no_bitmap);
1064
1065 /*
1066  * load_super for 0.90.0 
1067  */
1068 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1069 {
1070         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1071         mdp_super_t *sb;
1072         int ret;
1073
1074         /*
1075          * Calculate the position of the superblock (512byte sectors),
1076          * it's at the end of the disk.
1077          *
1078          * It also happens to be a multiple of 4Kb.
1079          */
1080         rdev->sb_start = calc_dev_sboffset(rdev);
1081
1082         ret = read_disk_sb(rdev, MD_SB_BYTES);
1083         if (ret) return ret;
1084
1085         ret = -EINVAL;
1086
1087         bdevname(rdev->bdev, b);
1088         sb = page_address(rdev->sb_page);
1089
1090         if (sb->md_magic != MD_SB_MAGIC) {
1091                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1092                        b);
1093                 goto abort;
1094         }
1095
1096         if (sb->major_version != 0 ||
1097             sb->minor_version < 90 ||
1098             sb->minor_version > 91) {
1099                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1100                         sb->major_version, sb->minor_version,
1101                         b);
1102                 goto abort;
1103         }
1104
1105         if (sb->raid_disks <= 0)
1106                 goto abort;
1107
1108         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1109                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1110                         b);
1111                 goto abort;
1112         }
1113
1114         rdev->preferred_minor = sb->md_minor;
1115         rdev->data_offset = 0;
1116         rdev->sb_size = MD_SB_BYTES;
1117         rdev->badblocks.shift = -1;
1118
1119         if (sb->level == LEVEL_MULTIPATH)
1120                 rdev->desc_nr = -1;
1121         else
1122                 rdev->desc_nr = sb->this_disk.number;
1123
1124         if (!refdev) {
1125                 ret = 1;
1126         } else {
1127                 __u64 ev1, ev2;
1128                 mdp_super_t *refsb = page_address(refdev->sb_page);
1129                 if (!uuid_equal(refsb, sb)) {
1130                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1131                                 b, bdevname(refdev->bdev,b2));
1132                         goto abort;
1133                 }
1134                 if (!sb_equal(refsb, sb)) {
1135                         printk(KERN_WARNING "md: %s has same UUID"
1136                                " but different superblock to %s\n",
1137                                b, bdevname(refdev->bdev, b2));
1138                         goto abort;
1139                 }
1140                 ev1 = md_event(sb);
1141                 ev2 = md_event(refsb);
1142                 if (ev1 > ev2)
1143                         ret = 1;
1144                 else 
1145                         ret = 0;
1146         }
1147         rdev->sectors = rdev->sb_start;
1148         /* Limit to 4TB as metadata cannot record more than that */
1149         if (rdev->sectors >= (2ULL << 32))
1150                 rdev->sectors = (2ULL << 32) - 2;
1151
1152         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1153                 /* "this cannot possibly happen" ... */
1154                 ret = -EINVAL;
1155
1156  abort:
1157         return ret;
1158 }
1159
1160 /*
1161  * validate_super for 0.90.0
1162  */
1163 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1164 {
1165         mdp_disk_t *desc;
1166         mdp_super_t *sb = page_address(rdev->sb_page);
1167         __u64 ev1 = md_event(sb);
1168
1169         rdev->raid_disk = -1;
1170         clear_bit(Faulty, &rdev->flags);
1171         clear_bit(In_sync, &rdev->flags);
1172         clear_bit(WriteMostly, &rdev->flags);
1173
1174         if (mddev->raid_disks == 0) {
1175                 mddev->major_version = 0;
1176                 mddev->minor_version = sb->minor_version;
1177                 mddev->patch_version = sb->patch_version;
1178                 mddev->external = 0;
1179                 mddev->chunk_sectors = sb->chunk_size >> 9;
1180                 mddev->ctime = sb->ctime;
1181                 mddev->utime = sb->utime;
1182                 mddev->level = sb->level;
1183                 mddev->clevel[0] = 0;
1184                 mddev->layout = sb->layout;
1185                 mddev->raid_disks = sb->raid_disks;
1186                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1187                 mddev->events = ev1;
1188                 mddev->bitmap_info.offset = 0;
1189                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1190
1191                 if (mddev->minor_version >= 91) {
1192                         mddev->reshape_position = sb->reshape_position;
1193                         mddev->delta_disks = sb->delta_disks;
1194                         mddev->new_level = sb->new_level;
1195                         mddev->new_layout = sb->new_layout;
1196                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1197                 } else {
1198                         mddev->reshape_position = MaxSector;
1199                         mddev->delta_disks = 0;
1200                         mddev->new_level = mddev->level;
1201                         mddev->new_layout = mddev->layout;
1202                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1203                 }
1204
1205                 if (sb->state & (1<<MD_SB_CLEAN))
1206                         mddev->recovery_cp = MaxSector;
1207                 else {
1208                         if (sb->events_hi == sb->cp_events_hi && 
1209                                 sb->events_lo == sb->cp_events_lo) {
1210                                 mddev->recovery_cp = sb->recovery_cp;
1211                         } else
1212                                 mddev->recovery_cp = 0;
1213                 }
1214
1215                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1216                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1217                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1218                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1219
1220                 mddev->max_disks = MD_SB_DISKS;
1221
1222                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1223                     mddev->bitmap_info.file == NULL)
1224                         mddev->bitmap_info.offset =
1225                                 mddev->bitmap_info.default_offset;
1226
1227         } else if (mddev->pers == NULL) {
1228                 /* Insist on good event counter while assembling, except
1229                  * for spares (which don't need an event count) */
1230                 ++ev1;
1231                 if (sb->disks[rdev->desc_nr].state & (
1232                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1233                         if (ev1 < mddev->events) 
1234                                 return -EINVAL;
1235         } else if (mddev->bitmap) {
1236                 /* if adding to array with a bitmap, then we can accept an
1237                  * older device ... but not too old.
1238                  */
1239                 if (ev1 < mddev->bitmap->events_cleared)
1240                         return 0;
1241         } else {
1242                 if (ev1 < mddev->events)
1243                         /* just a hot-add of a new device, leave raid_disk at -1 */
1244                         return 0;
1245         }
1246
1247         if (mddev->level != LEVEL_MULTIPATH) {
1248                 desc = sb->disks + rdev->desc_nr;
1249
1250                 if (desc->state & (1<<MD_DISK_FAULTY))
1251                         set_bit(Faulty, &rdev->flags);
1252                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1253                             desc->raid_disk < mddev->raid_disks */) {
1254                         set_bit(In_sync, &rdev->flags);
1255                         rdev->raid_disk = desc->raid_disk;
1256                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1257                         /* active but not in sync implies recovery up to
1258                          * reshape position.  We don't know exactly where
1259                          * that is, so set to zero for now */
1260                         if (mddev->minor_version >= 91) {
1261                                 rdev->recovery_offset = 0;
1262                                 rdev->raid_disk = desc->raid_disk;
1263                         }
1264                 }
1265                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1266                         set_bit(WriteMostly, &rdev->flags);
1267         } else /* MULTIPATH are always insync */
1268                 set_bit(In_sync, &rdev->flags);
1269         return 0;
1270 }
1271
1272 /*
1273  * sync_super for 0.90.0
1274  */
1275 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1276 {
1277         mdp_super_t *sb;
1278         struct md_rdev *rdev2;
1279         int next_spare = mddev->raid_disks;
1280
1281
1282         /* make rdev->sb match mddev data..
1283          *
1284          * 1/ zero out disks
1285          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1286          * 3/ any empty disks < next_spare become removed
1287          *
1288          * disks[0] gets initialised to REMOVED because
1289          * we cannot be sure from other fields if it has
1290          * been initialised or not.
1291          */
1292         int i;
1293         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1294
1295         rdev->sb_size = MD_SB_BYTES;
1296
1297         sb = page_address(rdev->sb_page);
1298
1299         memset(sb, 0, sizeof(*sb));
1300
1301         sb->md_magic = MD_SB_MAGIC;
1302         sb->major_version = mddev->major_version;
1303         sb->patch_version = mddev->patch_version;
1304         sb->gvalid_words  = 0; /* ignored */
1305         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1306         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1307         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1308         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1309
1310         sb->ctime = mddev->ctime;
1311         sb->level = mddev->level;
1312         sb->size = mddev->dev_sectors / 2;
1313         sb->raid_disks = mddev->raid_disks;
1314         sb->md_minor = mddev->md_minor;
1315         sb->not_persistent = 0;
1316         sb->utime = mddev->utime;
1317         sb->state = 0;
1318         sb->events_hi = (mddev->events>>32);
1319         sb->events_lo = (u32)mddev->events;
1320
1321         if (mddev->reshape_position == MaxSector)
1322                 sb->minor_version = 90;
1323         else {
1324                 sb->minor_version = 91;
1325                 sb->reshape_position = mddev->reshape_position;
1326                 sb->new_level = mddev->new_level;
1327                 sb->delta_disks = mddev->delta_disks;
1328                 sb->new_layout = mddev->new_layout;
1329                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1330         }
1331         mddev->minor_version = sb->minor_version;
1332         if (mddev->in_sync)
1333         {
1334                 sb->recovery_cp = mddev->recovery_cp;
1335                 sb->cp_events_hi = (mddev->events>>32);
1336                 sb->cp_events_lo = (u32)mddev->events;
1337                 if (mddev->recovery_cp == MaxSector)
1338                         sb->state = (1<< MD_SB_CLEAN);
1339         } else
1340                 sb->recovery_cp = 0;
1341
1342         sb->layout = mddev->layout;
1343         sb->chunk_size = mddev->chunk_sectors << 9;
1344
1345         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1346                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1347
1348         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1349         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1350                 mdp_disk_t *d;
1351                 int desc_nr;
1352                 int is_active = test_bit(In_sync, &rdev2->flags);
1353
1354                 if (rdev2->raid_disk >= 0 &&
1355                     sb->minor_version >= 91)
1356                         /* we have nowhere to store the recovery_offset,
1357                          * but if it is not below the reshape_position,
1358                          * we can piggy-back on that.
1359                          */
1360                         is_active = 1;
1361                 if (rdev2->raid_disk < 0 ||
1362                     test_bit(Faulty, &rdev2->flags))
1363                         is_active = 0;
1364                 if (is_active)
1365                         desc_nr = rdev2->raid_disk;
1366                 else
1367                         desc_nr = next_spare++;
1368                 rdev2->desc_nr = desc_nr;
1369                 d = &sb->disks[rdev2->desc_nr];
1370                 nr_disks++;
1371                 d->number = rdev2->desc_nr;
1372                 d->major = MAJOR(rdev2->bdev->bd_dev);
1373                 d->minor = MINOR(rdev2->bdev->bd_dev);
1374                 if (is_active)
1375                         d->raid_disk = rdev2->raid_disk;
1376                 else
1377                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1378                 if (test_bit(Faulty, &rdev2->flags))
1379                         d->state = (1<<MD_DISK_FAULTY);
1380                 else if (is_active) {
1381                         d->state = (1<<MD_DISK_ACTIVE);
1382                         if (test_bit(In_sync, &rdev2->flags))
1383                                 d->state |= (1<<MD_DISK_SYNC);
1384                         active++;
1385                         working++;
1386                 } else {
1387                         d->state = 0;
1388                         spare++;
1389                         working++;
1390                 }
1391                 if (test_bit(WriteMostly, &rdev2->flags))
1392                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1393         }
1394         /* now set the "removed" and "faulty" bits on any missing devices */
1395         for (i=0 ; i < mddev->raid_disks ; i++) {
1396                 mdp_disk_t *d = &sb->disks[i];
1397                 if (d->state == 0 && d->number == 0) {
1398                         d->number = i;
1399                         d->raid_disk = i;
1400                         d->state = (1<<MD_DISK_REMOVED);
1401                         d->state |= (1<<MD_DISK_FAULTY);
1402                         failed++;
1403                 }
1404         }
1405         sb->nr_disks = nr_disks;
1406         sb->active_disks = active;
1407         sb->working_disks = working;
1408         sb->failed_disks = failed;
1409         sb->spare_disks = spare;
1410
1411         sb->this_disk = sb->disks[rdev->desc_nr];
1412         sb->sb_csum = calc_sb_csum(sb);
1413 }
1414
1415 /*
1416  * rdev_size_change for 0.90.0
1417  */
1418 static unsigned long long
1419 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1420 {
1421         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1422                 return 0; /* component must fit device */
1423         if (rdev->mddev->bitmap_info.offset)
1424                 return 0; /* can't move bitmap */
1425         rdev->sb_start = calc_dev_sboffset(rdev);
1426         if (!num_sectors || num_sectors > rdev->sb_start)
1427                 num_sectors = rdev->sb_start;
1428         /* Limit to 4TB as metadata cannot record more than that.
1429          * 4TB == 2^32 KB, or 2*2^32 sectors.
1430          */
1431         if (num_sectors >= (2ULL << 32))
1432                 num_sectors = (2ULL << 32) - 2;
1433         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1434                        rdev->sb_page);
1435         md_super_wait(rdev->mddev);
1436         return num_sectors;
1437 }
1438
1439
1440 /*
1441  * version 1 superblock
1442  */
1443
1444 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1445 {
1446         __le32 disk_csum;
1447         u32 csum;
1448         unsigned long long newcsum;
1449         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1450         __le32 *isuper = (__le32*)sb;
1451         int i;
1452
1453         disk_csum = sb->sb_csum;
1454         sb->sb_csum = 0;
1455         newcsum = 0;
1456         for (i=0; size>=4; size -= 4 )
1457                 newcsum += le32_to_cpu(*isuper++);
1458
1459         if (size == 2)
1460                 newcsum += le16_to_cpu(*(__le16*) isuper);
1461
1462         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1463         sb->sb_csum = disk_csum;
1464         return cpu_to_le32(csum);
1465 }
1466
1467 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1468                             int acknowledged);
1469 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1470 {
1471         struct mdp_superblock_1 *sb;
1472         int ret;
1473         sector_t sb_start;
1474         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1475         int bmask;
1476
1477         /*
1478          * Calculate the position of the superblock in 512byte sectors.
1479          * It is always aligned to a 4K boundary and
1480          * depeding on minor_version, it can be:
1481          * 0: At least 8K, but less than 12K, from end of device
1482          * 1: At start of device
1483          * 2: 4K from start of device.
1484          */
1485         switch(minor_version) {
1486         case 0:
1487                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1488                 sb_start -= 8*2;
1489                 sb_start &= ~(sector_t)(4*2-1);
1490                 break;
1491         case 1:
1492                 sb_start = 0;
1493                 break;
1494         case 2:
1495                 sb_start = 8;
1496                 break;
1497         default:
1498                 return -EINVAL;
1499         }
1500         rdev->sb_start = sb_start;
1501
1502         /* superblock is rarely larger than 1K, but it can be larger,
1503          * and it is safe to read 4k, so we do that
1504          */
1505         ret = read_disk_sb(rdev, 4096);
1506         if (ret) return ret;
1507
1508
1509         sb = page_address(rdev->sb_page);
1510
1511         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1512             sb->major_version != cpu_to_le32(1) ||
1513             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1514             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1515             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1516                 return -EINVAL;
1517
1518         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1519                 printk("md: invalid superblock checksum on %s\n",
1520                         bdevname(rdev->bdev,b));
1521                 return -EINVAL;
1522         }
1523         if (le64_to_cpu(sb->data_size) < 10) {
1524                 printk("md: data_size too small on %s\n",
1525                        bdevname(rdev->bdev,b));
1526                 return -EINVAL;
1527         }
1528
1529         rdev->preferred_minor = 0xffff;
1530         rdev->data_offset = le64_to_cpu(sb->data_offset);
1531         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1532
1533         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1534         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1535         if (rdev->sb_size & bmask)
1536                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1537
1538         if (minor_version
1539             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1540                 return -EINVAL;
1541
1542         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1543                 rdev->desc_nr = -1;
1544         else
1545                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1546
1547         if (!rdev->bb_page) {
1548                 rdev->bb_page = alloc_page(GFP_KERNEL);
1549                 if (!rdev->bb_page)
1550                         return -ENOMEM;
1551         }
1552         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1553             rdev->badblocks.count == 0) {
1554                 /* need to load the bad block list.
1555                  * Currently we limit it to one page.
1556                  */
1557                 s32 offset;
1558                 sector_t bb_sector;
1559                 u64 *bbp;
1560                 int i;
1561                 int sectors = le16_to_cpu(sb->bblog_size);
1562                 if (sectors > (PAGE_SIZE / 512))
1563                         return -EINVAL;
1564                 offset = le32_to_cpu(sb->bblog_offset);
1565                 if (offset == 0)
1566                         return -EINVAL;
1567                 bb_sector = (long long)offset;
1568                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1569                                   rdev->bb_page, READ, true))
1570                         return -EIO;
1571                 bbp = (u64 *)page_address(rdev->bb_page);
1572                 rdev->badblocks.shift = sb->bblog_shift;
1573                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1574                         u64 bb = le64_to_cpu(*bbp);
1575                         int count = bb & (0x3ff);
1576                         u64 sector = bb >> 10;
1577                         sector <<= sb->bblog_shift;
1578                         count <<= sb->bblog_shift;
1579                         if (bb + 1 == 0)
1580                                 break;
1581                         if (md_set_badblocks(&rdev->badblocks,
1582                                              sector, count, 1) == 0)
1583                                 return -EINVAL;
1584                 }
1585         } else if (sb->bblog_offset == 0)
1586                 rdev->badblocks.shift = -1;
1587
1588         if (!refdev) {
1589                 ret = 1;
1590         } else {
1591                 __u64 ev1, ev2;
1592                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1593
1594                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1595                     sb->level != refsb->level ||
1596                     sb->layout != refsb->layout ||
1597                     sb->chunksize != refsb->chunksize) {
1598                         printk(KERN_WARNING "md: %s has strangely different"
1599                                 " superblock to %s\n",
1600                                 bdevname(rdev->bdev,b),
1601                                 bdevname(refdev->bdev,b2));
1602                         return -EINVAL;
1603                 }
1604                 ev1 = le64_to_cpu(sb->events);
1605                 ev2 = le64_to_cpu(refsb->events);
1606
1607                 if (ev1 > ev2)
1608                         ret = 1;
1609                 else
1610                         ret = 0;
1611         }
1612         if (minor_version)
1613                 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1614                         le64_to_cpu(sb->data_offset);
1615         else
1616                 rdev->sectors = rdev->sb_start;
1617         if (rdev->sectors < le64_to_cpu(sb->data_size))
1618                 return -EINVAL;
1619         rdev->sectors = le64_to_cpu(sb->data_size);
1620         if (le64_to_cpu(sb->size) > rdev->sectors)
1621                 return -EINVAL;
1622         return ret;
1623 }
1624
1625 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1626 {
1627         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1628         __u64 ev1 = le64_to_cpu(sb->events);
1629
1630         rdev->raid_disk = -1;
1631         clear_bit(Faulty, &rdev->flags);
1632         clear_bit(In_sync, &rdev->flags);
1633         clear_bit(WriteMostly, &rdev->flags);
1634
1635         if (mddev->raid_disks == 0) {
1636                 mddev->major_version = 1;
1637                 mddev->patch_version = 0;
1638                 mddev->external = 0;
1639                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1640                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1641                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1642                 mddev->level = le32_to_cpu(sb->level);
1643                 mddev->clevel[0] = 0;
1644                 mddev->layout = le32_to_cpu(sb->layout);
1645                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1646                 mddev->dev_sectors = le64_to_cpu(sb->size);
1647                 mddev->events = ev1;
1648                 mddev->bitmap_info.offset = 0;
1649                 mddev->bitmap_info.default_offset = 1024 >> 9;
1650                 
1651                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1652                 memcpy(mddev->uuid, sb->set_uuid, 16);
1653
1654                 mddev->max_disks =  (4096-256)/2;
1655
1656                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1657                     mddev->bitmap_info.file == NULL )
1658                         mddev->bitmap_info.offset =
1659                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1660
1661                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1662                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1663                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1664                         mddev->new_level = le32_to_cpu(sb->new_level);
1665                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1666                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1667                 } else {
1668                         mddev->reshape_position = MaxSector;
1669                         mddev->delta_disks = 0;
1670                         mddev->new_level = mddev->level;
1671                         mddev->new_layout = mddev->layout;
1672                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1673                 }
1674
1675         } else if (mddev->pers == NULL) {
1676                 /* Insist of good event counter while assembling, except for
1677                  * spares (which don't need an event count) */
1678                 ++ev1;
1679                 if (rdev->desc_nr >= 0 &&
1680                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1681                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1682                         if (ev1 < mddev->events)
1683                                 return -EINVAL;
1684         } else if (mddev->bitmap) {
1685                 /* If adding to array with a bitmap, then we can accept an
1686                  * older device, but not too old.
1687                  */
1688                 if (ev1 < mddev->bitmap->events_cleared)
1689                         return 0;
1690         } else {
1691                 if (ev1 < mddev->events)
1692                         /* just a hot-add of a new device, leave raid_disk at -1 */
1693                         return 0;
1694         }
1695         if (mddev->level != LEVEL_MULTIPATH) {
1696                 int role;
1697                 if (rdev->desc_nr < 0 ||
1698                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1699                         role = 0xffff;
1700                         rdev->desc_nr = -1;
1701                 } else
1702                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1703                 switch(role) {
1704                 case 0xffff: /* spare */
1705                         break;
1706                 case 0xfffe: /* faulty */
1707                         set_bit(Faulty, &rdev->flags);
1708                         break;
1709                 default:
1710                         if ((le32_to_cpu(sb->feature_map) &
1711                              MD_FEATURE_RECOVERY_OFFSET))
1712                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1713                         else
1714                                 set_bit(In_sync, &rdev->flags);
1715                         rdev->raid_disk = role;
1716                         break;
1717                 }
1718                 if (sb->devflags & WriteMostly1)
1719                         set_bit(WriteMostly, &rdev->flags);
1720         } else /* MULTIPATH are always insync */
1721                 set_bit(In_sync, &rdev->flags);
1722
1723         return 0;
1724 }
1725
1726 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1727 {
1728         struct mdp_superblock_1 *sb;
1729         struct md_rdev *rdev2;
1730         int max_dev, i;
1731         /* make rdev->sb match mddev and rdev data. */
1732
1733         sb = page_address(rdev->sb_page);
1734
1735         sb->feature_map = 0;
1736         sb->pad0 = 0;
1737         sb->recovery_offset = cpu_to_le64(0);
1738         memset(sb->pad1, 0, sizeof(sb->pad1));
1739         memset(sb->pad3, 0, sizeof(sb->pad3));
1740
1741         sb->utime = cpu_to_le64((__u64)mddev->utime);
1742         sb->events = cpu_to_le64(mddev->events);
1743         if (mddev->in_sync)
1744                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1745         else
1746                 sb->resync_offset = cpu_to_le64(0);
1747
1748         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1749
1750         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1751         sb->size = cpu_to_le64(mddev->dev_sectors);
1752         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1753         sb->level = cpu_to_le32(mddev->level);
1754         sb->layout = cpu_to_le32(mddev->layout);
1755
1756         if (test_bit(WriteMostly, &rdev->flags))
1757                 sb->devflags |= WriteMostly1;
1758         else
1759                 sb->devflags &= ~WriteMostly1;
1760
1761         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1762                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1763                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1764         }
1765
1766         if (rdev->raid_disk >= 0 &&
1767             !test_bit(In_sync, &rdev->flags)) {
1768                 sb->feature_map |=
1769                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1770                 sb->recovery_offset =
1771                         cpu_to_le64(rdev->recovery_offset);
1772         }
1773
1774         if (mddev->reshape_position != MaxSector) {
1775                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1776                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1777                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1778                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1779                 sb->new_level = cpu_to_le32(mddev->new_level);
1780                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1781         }
1782
1783         if (rdev->badblocks.count == 0)
1784                 /* Nothing to do for bad blocks*/ ;
1785         else if (sb->bblog_offset == 0)
1786                 /* Cannot record bad blocks on this device */
1787                 md_error(mddev, rdev);
1788         else {
1789                 struct badblocks *bb = &rdev->badblocks;
1790                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1791                 u64 *p = bb->page;
1792                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1793                 if (bb->changed) {
1794                         unsigned seq;
1795
1796 retry:
1797                         seq = read_seqbegin(&bb->lock);
1798
1799                         memset(bbp, 0xff, PAGE_SIZE);
1800
1801                         for (i = 0 ; i < bb->count ; i++) {
1802                                 u64 internal_bb = *p++;
1803                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1804                                                 | BB_LEN(internal_bb));
1805                                 *bbp++ = cpu_to_le64(store_bb);
1806                         }
1807                         if (read_seqretry(&bb->lock, seq))
1808                                 goto retry;
1809
1810                         bb->sector = (rdev->sb_start +
1811                                       (int)le32_to_cpu(sb->bblog_offset));
1812                         bb->size = le16_to_cpu(sb->bblog_size);
1813                         bb->changed = 0;
1814                 }
1815         }
1816
1817         max_dev = 0;
1818         list_for_each_entry(rdev2, &mddev->disks, same_set)
1819                 if (rdev2->desc_nr+1 > max_dev)
1820                         max_dev = rdev2->desc_nr+1;
1821
1822         if (max_dev > le32_to_cpu(sb->max_dev)) {
1823                 int bmask;
1824                 sb->max_dev = cpu_to_le32(max_dev);
1825                 rdev->sb_size = max_dev * 2 + 256;
1826                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1827                 if (rdev->sb_size & bmask)
1828                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1829         } else
1830                 max_dev = le32_to_cpu(sb->max_dev);
1831
1832         for (i=0; i<max_dev;i++)
1833                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1834         
1835         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1836                 i = rdev2->desc_nr;
1837                 if (test_bit(Faulty, &rdev2->flags))
1838                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1839                 else if (test_bit(In_sync, &rdev2->flags))
1840                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1841                 else if (rdev2->raid_disk >= 0)
1842                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1843                 else
1844                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1845         }
1846
1847         sb->sb_csum = calc_sb_1_csum(sb);
1848 }
1849
1850 static unsigned long long
1851 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1852 {
1853         struct mdp_superblock_1 *sb;
1854         sector_t max_sectors;
1855         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1856                 return 0; /* component must fit device */
1857         if (rdev->sb_start < rdev->data_offset) {
1858                 /* minor versions 1 and 2; superblock before data */
1859                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1860                 max_sectors -= rdev->data_offset;
1861                 if (!num_sectors || num_sectors > max_sectors)
1862                         num_sectors = max_sectors;
1863         } else if (rdev->mddev->bitmap_info.offset) {
1864                 /* minor version 0 with bitmap we can't move */
1865                 return 0;
1866         } else {
1867                 /* minor version 0; superblock after data */
1868                 sector_t sb_start;
1869                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1870                 sb_start &= ~(sector_t)(4*2 - 1);
1871                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1872                 if (!num_sectors || num_sectors > max_sectors)
1873                         num_sectors = max_sectors;
1874                 rdev->sb_start = sb_start;
1875         }
1876         sb = page_address(rdev->sb_page);
1877         sb->data_size = cpu_to_le64(num_sectors);
1878         sb->super_offset = rdev->sb_start;
1879         sb->sb_csum = calc_sb_1_csum(sb);
1880         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1881                        rdev->sb_page);
1882         md_super_wait(rdev->mddev);
1883         return num_sectors;
1884 }
1885
1886 static struct super_type super_types[] = {
1887         [0] = {
1888                 .name   = "0.90.0",
1889                 .owner  = THIS_MODULE,
1890                 .load_super         = super_90_load,
1891                 .validate_super     = super_90_validate,
1892                 .sync_super         = super_90_sync,
1893                 .rdev_size_change   = super_90_rdev_size_change,
1894         },
1895         [1] = {
1896                 .name   = "md-1",
1897                 .owner  = THIS_MODULE,
1898                 .load_super         = super_1_load,
1899                 .validate_super     = super_1_validate,
1900                 .sync_super         = super_1_sync,
1901                 .rdev_size_change   = super_1_rdev_size_change,
1902         },
1903 };
1904
1905 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1906 {
1907         if (mddev->sync_super) {
1908                 mddev->sync_super(mddev, rdev);
1909                 return;
1910         }
1911
1912         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1913
1914         super_types[mddev->major_version].sync_super(mddev, rdev);
1915 }
1916
1917 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1918 {
1919         struct md_rdev *rdev, *rdev2;
1920
1921         rcu_read_lock();
1922         rdev_for_each_rcu(rdev, mddev1)
1923                 rdev_for_each_rcu(rdev2, mddev2)
1924                         if (rdev->bdev->bd_contains ==
1925                             rdev2->bdev->bd_contains) {
1926                                 rcu_read_unlock();
1927                                 return 1;
1928                         }
1929         rcu_read_unlock();
1930         return 0;
1931 }
1932
1933 static LIST_HEAD(pending_raid_disks);
1934
1935 /*
1936  * Try to register data integrity profile for an mddev
1937  *
1938  * This is called when an array is started and after a disk has been kicked
1939  * from the array. It only succeeds if all working and active component devices
1940  * are integrity capable with matching profiles.
1941  */
1942 int md_integrity_register(struct mddev *mddev)
1943 {
1944         struct md_rdev *rdev, *reference = NULL;
1945
1946         if (list_empty(&mddev->disks))
1947                 return 0; /* nothing to do */
1948         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1949                 return 0; /* shouldn't register, or already is */
1950         list_for_each_entry(rdev, &mddev->disks, same_set) {
1951                 /* skip spares and non-functional disks */
1952                 if (test_bit(Faulty, &rdev->flags))
1953                         continue;
1954                 if (rdev->raid_disk < 0)
1955                         continue;
1956                 if (!reference) {
1957                         /* Use the first rdev as the reference */
1958                         reference = rdev;
1959                         continue;
1960                 }
1961                 /* does this rdev's profile match the reference profile? */
1962                 if (blk_integrity_compare(reference->bdev->bd_disk,
1963                                 rdev->bdev->bd_disk) < 0)
1964                         return -EINVAL;
1965         }
1966         if (!reference || !bdev_get_integrity(reference->bdev))
1967                 return 0;
1968         /*
1969          * All component devices are integrity capable and have matching
1970          * profiles, register the common profile for the md device.
1971          */
1972         if (blk_integrity_register(mddev->gendisk,
1973                         bdev_get_integrity(reference->bdev)) != 0) {
1974                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1975                         mdname(mddev));
1976                 return -EINVAL;
1977         }
1978         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1979         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1980                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1981                        mdname(mddev));
1982                 return -EINVAL;
1983         }
1984         return 0;
1985 }
1986 EXPORT_SYMBOL(md_integrity_register);
1987
1988 /* Disable data integrity if non-capable/non-matching disk is being added */
1989 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1990 {
1991         struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1992         struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1993
1994         if (!bi_mddev) /* nothing to do */
1995                 return;
1996         if (rdev->raid_disk < 0) /* skip spares */
1997                 return;
1998         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1999                                              rdev->bdev->bd_disk) >= 0)
2000                 return;
2001         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2002         blk_integrity_unregister(mddev->gendisk);
2003 }
2004 EXPORT_SYMBOL(md_integrity_add_rdev);
2005
2006 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2007 {
2008         char b[BDEVNAME_SIZE];
2009         struct kobject *ko;
2010         char *s;
2011         int err;
2012
2013         if (rdev->mddev) {
2014                 MD_BUG();
2015                 return -EINVAL;
2016         }
2017
2018         /* prevent duplicates */
2019         if (find_rdev(mddev, rdev->bdev->bd_dev))
2020                 return -EEXIST;
2021
2022         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2023         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2024                         rdev->sectors < mddev->dev_sectors)) {
2025                 if (mddev->pers) {
2026                         /* Cannot change size, so fail
2027                          * If mddev->level <= 0, then we don't care
2028                          * about aligning sizes (e.g. linear)
2029                          */
2030                         if (mddev->level > 0)
2031                                 return -ENOSPC;
2032                 } else
2033                         mddev->dev_sectors = rdev->sectors;
2034         }
2035
2036         /* Verify rdev->desc_nr is unique.
2037          * If it is -1, assign a free number, else
2038          * check number is not in use
2039          */
2040         if (rdev->desc_nr < 0) {
2041                 int choice = 0;
2042                 if (mddev->pers) choice = mddev->raid_disks;
2043                 while (find_rdev_nr(mddev, choice))
2044                         choice++;
2045                 rdev->desc_nr = choice;
2046         } else {
2047                 if (find_rdev_nr(mddev, rdev->desc_nr))
2048                         return -EBUSY;
2049         }
2050         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2051                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2052                        mdname(mddev), mddev->max_disks);
2053                 return -EBUSY;
2054         }
2055         bdevname(rdev->bdev,b);
2056         while ( (s=strchr(b, '/')) != NULL)
2057                 *s = '!';
2058
2059         rdev->mddev = mddev;
2060         printk(KERN_INFO "md: bind<%s>\n", b);
2061
2062         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2063                 goto fail;
2064
2065         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2066         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2067                 /* failure here is OK */;
2068         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2069
2070         list_add_rcu(&rdev->same_set, &mddev->disks);
2071         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2072
2073         /* May as well allow recovery to be retried once */
2074         mddev->recovery_disabled++;
2075
2076         return 0;
2077
2078  fail:
2079         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2080                b, mdname(mddev));
2081         return err;
2082 }
2083
2084 static void md_delayed_delete(struct work_struct *ws)
2085 {
2086         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2087         kobject_del(&rdev->kobj);
2088         kobject_put(&rdev->kobj);
2089 }
2090
2091 static void unbind_rdev_from_array(struct md_rdev * rdev)
2092 {
2093         char b[BDEVNAME_SIZE];
2094         if (!rdev->mddev) {
2095                 MD_BUG();
2096                 return;
2097         }
2098         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2099         list_del_rcu(&rdev->same_set);
2100         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2101         rdev->mddev = NULL;
2102         sysfs_remove_link(&rdev->kobj, "block");
2103         sysfs_put(rdev->sysfs_state);
2104         rdev->sysfs_state = NULL;
2105         kfree(rdev->badblocks.page);
2106         rdev->badblocks.count = 0;
2107         rdev->badblocks.page = NULL;
2108         /* We need to delay this, otherwise we can deadlock when
2109          * writing to 'remove' to "dev/state".  We also need
2110          * to delay it due to rcu usage.
2111          */
2112         synchronize_rcu();
2113         INIT_WORK(&rdev->del_work, md_delayed_delete);
2114         kobject_get(&rdev->kobj);
2115         queue_work(md_misc_wq, &rdev->del_work);
2116 }
2117
2118 /*
2119  * prevent the device from being mounted, repartitioned or
2120  * otherwise reused by a RAID array (or any other kernel
2121  * subsystem), by bd_claiming the device.
2122  */
2123 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2124 {
2125         int err = 0;
2126         struct block_device *bdev;
2127         char b[BDEVNAME_SIZE];
2128
2129         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2130                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2131         if (IS_ERR(bdev)) {
2132                 printk(KERN_ERR "md: could not open %s.\n",
2133                         __bdevname(dev, b));
2134                 return PTR_ERR(bdev);
2135         }
2136         rdev->bdev = bdev;
2137         return err;
2138 }
2139
2140 static void unlock_rdev(struct md_rdev *rdev)
2141 {
2142         struct block_device *bdev = rdev->bdev;
2143         rdev->bdev = NULL;
2144         if (!bdev)
2145                 MD_BUG();
2146         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2147 }
2148
2149 void md_autodetect_dev(dev_t dev);
2150
2151 static void export_rdev(struct md_rdev * rdev)
2152 {
2153         char b[BDEVNAME_SIZE];
2154         printk(KERN_INFO "md: export_rdev(%s)\n",
2155                 bdevname(rdev->bdev,b));
2156         if (rdev->mddev)
2157                 MD_BUG();
2158         free_disk_sb(rdev);
2159 #ifndef MODULE
2160         if (test_bit(AutoDetected, &rdev->flags))
2161                 md_autodetect_dev(rdev->bdev->bd_dev);
2162 #endif
2163         unlock_rdev(rdev);
2164         kobject_put(&rdev->kobj);
2165 }
2166
2167 static void kick_rdev_from_array(struct md_rdev * rdev)
2168 {
2169         unbind_rdev_from_array(rdev);
2170         export_rdev(rdev);
2171 }
2172
2173 static void export_array(struct mddev *mddev)
2174 {
2175         struct md_rdev *rdev, *tmp;
2176
2177         rdev_for_each(rdev, tmp, mddev) {
2178                 if (!rdev->mddev) {
2179                         MD_BUG();
2180                         continue;
2181                 }
2182                 kick_rdev_from_array(rdev);
2183         }
2184         if (!list_empty(&mddev->disks))
2185                 MD_BUG();
2186         mddev->raid_disks = 0;
2187         mddev->major_version = 0;
2188 }
2189
2190 static void print_desc(mdp_disk_t *desc)
2191 {
2192         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2193                 desc->major,desc->minor,desc->raid_disk,desc->state);
2194 }
2195
2196 static void print_sb_90(mdp_super_t *sb)
2197 {
2198         int i;
2199
2200         printk(KERN_INFO 
2201                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2202                 sb->major_version, sb->minor_version, sb->patch_version,
2203                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2204                 sb->ctime);
2205         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2206                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2207                 sb->md_minor, sb->layout, sb->chunk_size);
2208         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2209                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2210                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2211                 sb->failed_disks, sb->spare_disks,
2212                 sb->sb_csum, (unsigned long)sb->events_lo);
2213
2214         printk(KERN_INFO);
2215         for (i = 0; i < MD_SB_DISKS; i++) {
2216                 mdp_disk_t *desc;
2217
2218                 desc = sb->disks + i;
2219                 if (desc->number || desc->major || desc->minor ||
2220                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2221                         printk("     D %2d: ", i);
2222                         print_desc(desc);
2223                 }
2224         }
2225         printk(KERN_INFO "md:     THIS: ");
2226         print_desc(&sb->this_disk);
2227 }
2228
2229 static void print_sb_1(struct mdp_superblock_1 *sb)
2230 {
2231         __u8 *uuid;
2232
2233         uuid = sb->set_uuid;
2234         printk(KERN_INFO
2235                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2236                "md:    Name: \"%s\" CT:%llu\n",
2237                 le32_to_cpu(sb->major_version),
2238                 le32_to_cpu(sb->feature_map),
2239                 uuid,
2240                 sb->set_name,
2241                 (unsigned long long)le64_to_cpu(sb->ctime)
2242                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2243
2244         uuid = sb->device_uuid;
2245         printk(KERN_INFO
2246                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2247                         " RO:%llu\n"
2248                "md:     Dev:%08x UUID: %pU\n"
2249                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2250                "md:         (MaxDev:%u) \n",
2251                 le32_to_cpu(sb->level),
2252                 (unsigned long long)le64_to_cpu(sb->size),
2253                 le32_to_cpu(sb->raid_disks),
2254                 le32_to_cpu(sb->layout),
2255                 le32_to_cpu(sb->chunksize),
2256                 (unsigned long long)le64_to_cpu(sb->data_offset),
2257                 (unsigned long long)le64_to_cpu(sb->data_size),
2258                 (unsigned long long)le64_to_cpu(sb->super_offset),
2259                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2260                 le32_to_cpu(sb->dev_number),
2261                 uuid,
2262                 sb->devflags,
2263                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2264                 (unsigned long long)le64_to_cpu(sb->events),
2265                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2266                 le32_to_cpu(sb->sb_csum),
2267                 le32_to_cpu(sb->max_dev)
2268                 );
2269 }
2270
2271 static void print_rdev(struct md_rdev *rdev, int major_version)
2272 {
2273         char b[BDEVNAME_SIZE];
2274         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2275                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2276                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2277                 rdev->desc_nr);
2278         if (rdev->sb_loaded) {
2279                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2280                 switch (major_version) {
2281                 case 0:
2282                         print_sb_90(page_address(rdev->sb_page));
2283                         break;
2284                 case 1:
2285                         print_sb_1(page_address(rdev->sb_page));
2286                         break;
2287                 }
2288         } else
2289                 printk(KERN_INFO "md: no rdev superblock!\n");
2290 }
2291
2292 static void md_print_devices(void)
2293 {
2294         struct list_head *tmp;
2295         struct md_rdev *rdev;
2296         struct mddev *mddev;
2297         char b[BDEVNAME_SIZE];
2298
2299         printk("\n");
2300         printk("md:     **********************************\n");
2301         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2302         printk("md:     **********************************\n");
2303         for_each_mddev(mddev, tmp) {
2304
2305                 if (mddev->bitmap)
2306                         bitmap_print_sb(mddev->bitmap);
2307                 else
2308                         printk("%s: ", mdname(mddev));
2309                 list_for_each_entry(rdev, &mddev->disks, same_set)
2310                         printk("<%s>", bdevname(rdev->bdev,b));
2311                 printk("\n");
2312
2313                 list_for_each_entry(rdev, &mddev->disks, same_set)
2314                         print_rdev(rdev, mddev->major_version);
2315         }
2316         printk("md:     **********************************\n");
2317         printk("\n");
2318 }
2319
2320
2321 static void sync_sbs(struct mddev * mddev, int nospares)
2322 {
2323         /* Update each superblock (in-memory image), but
2324          * if we are allowed to, skip spares which already
2325          * have the right event counter, or have one earlier
2326          * (which would mean they aren't being marked as dirty
2327          * with the rest of the array)
2328          */
2329         struct md_rdev *rdev;
2330         list_for_each_entry(rdev, &mddev->disks, same_set) {
2331                 if (rdev->sb_events == mddev->events ||
2332                     (nospares &&
2333                      rdev->raid_disk < 0 &&
2334                      rdev->sb_events+1 == mddev->events)) {
2335                         /* Don't update this superblock */
2336                         rdev->sb_loaded = 2;
2337                 } else {
2338                         sync_super(mddev, rdev);
2339                         rdev->sb_loaded = 1;
2340                 }
2341         }
2342 }
2343
2344 static void md_update_sb(struct mddev * mddev, int force_change)
2345 {
2346         struct md_rdev *rdev;
2347         int sync_req;
2348         int nospares = 0;
2349         int any_badblocks_changed = 0;
2350
2351 repeat:
2352         /* First make sure individual recovery_offsets are correct */
2353         list_for_each_entry(rdev, &mddev->disks, same_set) {
2354                 if (rdev->raid_disk >= 0 &&
2355                     mddev->delta_disks >= 0 &&
2356                     !test_bit(In_sync, &rdev->flags) &&
2357                     mddev->curr_resync_completed > rdev->recovery_offset)
2358                                 rdev->recovery_offset = mddev->curr_resync_completed;
2359
2360         }       
2361         if (!mddev->persistent) {
2362                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2363                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2364                 if (!mddev->external) {
2365                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2366                         list_for_each_entry(rdev, &mddev->disks, same_set) {
2367                                 if (rdev->badblocks.changed) {
2368                                         md_ack_all_badblocks(&rdev->badblocks);
2369                                         md_error(mddev, rdev);
2370                                 }
2371                                 clear_bit(Blocked, &rdev->flags);
2372                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2373                                 wake_up(&rdev->blocked_wait);
2374                         }
2375                 }
2376                 wake_up(&mddev->sb_wait);
2377                 return;
2378         }
2379
2380         spin_lock_irq(&mddev->write_lock);
2381
2382         mddev->utime = get_seconds();
2383
2384         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2385                 force_change = 1;
2386         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2387                 /* just a clean<-> dirty transition, possibly leave spares alone,
2388                  * though if events isn't the right even/odd, we will have to do
2389                  * spares after all
2390                  */
2391                 nospares = 1;
2392         if (force_change)
2393                 nospares = 0;
2394         if (mddev->degraded)
2395                 /* If the array is degraded, then skipping spares is both
2396                  * dangerous and fairly pointless.
2397                  * Dangerous because a device that was removed from the array
2398                  * might have a event_count that still looks up-to-date,
2399                  * so it can be re-added without a resync.
2400                  * Pointless because if there are any spares to skip,
2401                  * then a recovery will happen and soon that array won't
2402                  * be degraded any more and the spare can go back to sleep then.
2403                  */
2404                 nospares = 0;
2405
2406         sync_req = mddev->in_sync;
2407
2408         /* If this is just a dirty<->clean transition, and the array is clean
2409          * and 'events' is odd, we can roll back to the previous clean state */
2410         if (nospares
2411             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2412             && mddev->can_decrease_events
2413             && mddev->events != 1) {
2414                 mddev->events--;
2415                 mddev->can_decrease_events = 0;
2416         } else {
2417                 /* otherwise we have to go forward and ... */
2418                 mddev->events ++;
2419                 mddev->can_decrease_events = nospares;
2420         }
2421
2422         if (!mddev->events) {
2423                 /*
2424                  * oops, this 64-bit counter should never wrap.
2425                  * Either we are in around ~1 trillion A.C., assuming
2426                  * 1 reboot per second, or we have a bug:
2427                  */
2428                 MD_BUG();
2429                 mddev->events --;
2430         }
2431
2432         list_for_each_entry(rdev, &mddev->disks, same_set) {
2433                 if (rdev->badblocks.changed)
2434                         any_badblocks_changed++;
2435                 if (test_bit(Faulty, &rdev->flags))
2436                         set_bit(FaultRecorded, &rdev->flags);
2437         }
2438
2439         sync_sbs(mddev, nospares);
2440         spin_unlock_irq(&mddev->write_lock);
2441
2442         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2443                  mdname(mddev), mddev->in_sync);
2444
2445         bitmap_update_sb(mddev->bitmap);
2446         list_for_each_entry(rdev, &mddev->disks, same_set) {
2447                 char b[BDEVNAME_SIZE];
2448
2449                 if (rdev->sb_loaded != 1)
2450                         continue; /* no noise on spare devices */
2451
2452                 if (!test_bit(Faulty, &rdev->flags) &&
2453                     rdev->saved_raid_disk == -1) {
2454                         md_super_write(mddev,rdev,
2455                                        rdev->sb_start, rdev->sb_size,
2456                                        rdev->sb_page);
2457                         pr_debug("md: (write) %s's sb offset: %llu\n",
2458                                  bdevname(rdev->bdev, b),
2459                                  (unsigned long long)rdev->sb_start);
2460                         rdev->sb_events = mddev->events;
2461                         if (rdev->badblocks.size) {
2462                                 md_super_write(mddev, rdev,
2463                                                rdev->badblocks.sector,
2464                                                rdev->badblocks.size << 9,
2465                                                rdev->bb_page);
2466                                 rdev->badblocks.size = 0;
2467                         }
2468
2469                 } else if (test_bit(Faulty, &rdev->flags))
2470                         pr_debug("md: %s (skipping faulty)\n",
2471                                  bdevname(rdev->bdev, b));
2472                 else
2473                         pr_debug("(skipping incremental s/r ");
2474
2475                 if (mddev->level == LEVEL_MULTIPATH)
2476                         /* only need to write one superblock... */
2477                         break;
2478         }
2479         md_super_wait(mddev);
2480         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2481
2482         spin_lock_irq(&mddev->write_lock);
2483         if (mddev->in_sync != sync_req ||
2484             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2485                 /* have to write it out again */
2486                 spin_unlock_irq(&mddev->write_lock);
2487                 goto repeat;
2488         }
2489         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2490         spin_unlock_irq(&mddev->write_lock);
2491         wake_up(&mddev->sb_wait);
2492         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2493                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2494
2495         list_for_each_entry(rdev, &mddev->disks, same_set) {
2496                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2497                         clear_bit(Blocked, &rdev->flags);
2498
2499                 if (any_badblocks_changed)
2500                         md_ack_all_badblocks(&rdev->badblocks);
2501                 clear_bit(BlockedBadBlocks, &rdev->flags);
2502                 wake_up(&rdev->blocked_wait);
2503         }
2504 }
2505
2506 /* words written to sysfs files may, or may not, be \n terminated.
2507  * We want to accept with case. For this we use cmd_match.
2508  */
2509 static int cmd_match(const char *cmd, const char *str)
2510 {
2511         /* See if cmd, written into a sysfs file, matches
2512          * str.  They must either be the same, or cmd can
2513          * have a trailing newline
2514          */
2515         while (*cmd && *str && *cmd == *str) {
2516                 cmd++;
2517                 str++;
2518         }
2519         if (*cmd == '\n')
2520                 cmd++;
2521         if (*str || *cmd)
2522                 return 0;
2523         return 1;
2524 }
2525
2526 struct rdev_sysfs_entry {
2527         struct attribute attr;
2528         ssize_t (*show)(struct md_rdev *, char *);
2529         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2530 };
2531
2532 static ssize_t
2533 state_show(struct md_rdev *rdev, char *page)
2534 {
2535         char *sep = "";
2536         size_t len = 0;
2537
2538         if (test_bit(Faulty, &rdev->flags) ||
2539             rdev->badblocks.unacked_exist) {
2540                 len+= sprintf(page+len, "%sfaulty",sep);
2541                 sep = ",";
2542         }
2543         if (test_bit(In_sync, &rdev->flags)) {
2544                 len += sprintf(page+len, "%sin_sync",sep);
2545                 sep = ",";
2546         }
2547         if (test_bit(WriteMostly, &rdev->flags)) {
2548                 len += sprintf(page+len, "%swrite_mostly",sep);
2549                 sep = ",";
2550         }
2551         if (test_bit(Blocked, &rdev->flags) ||
2552             rdev->badblocks.unacked_exist) {
2553                 len += sprintf(page+len, "%sblocked", sep);
2554                 sep = ",";
2555         }
2556         if (!test_bit(Faulty, &rdev->flags) &&
2557             !test_bit(In_sync, &rdev->flags)) {
2558                 len += sprintf(page+len, "%sspare", sep);
2559                 sep = ",";
2560         }
2561         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2562                 len += sprintf(page+len, "%swrite_error", sep);
2563                 sep = ",";
2564         }
2565         return len+sprintf(page+len, "\n");
2566 }
2567
2568 static ssize_t
2569 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2570 {
2571         /* can write
2572          *  faulty  - simulates an error
2573          *  remove  - disconnects the device
2574          *  writemostly - sets write_mostly
2575          *  -writemostly - clears write_mostly
2576          *  blocked - sets the Blocked flags
2577          *  -blocked - clears the Blocked and possibly simulates an error
2578          *  insync - sets Insync providing device isn't active
2579          *  write_error - sets WriteErrorSeen
2580          *  -write_error - clears WriteErrorSeen
2581          */
2582         int err = -EINVAL;
2583         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2584                 md_error(rdev->mddev, rdev);
2585                 if (test_bit(Faulty, &rdev->flags))
2586                         err = 0;
2587                 else
2588                         err = -EBUSY;
2589         } else if (cmd_match(buf, "remove")) {
2590                 if (rdev->raid_disk >= 0)
2591                         err = -EBUSY;
2592                 else {
2593                         struct mddev *mddev = rdev->mddev;
2594                         kick_rdev_from_array(rdev);
2595                         if (mddev->pers)
2596                                 md_update_sb(mddev, 1);
2597                         md_new_event(mddev);
2598                         err = 0;
2599                 }
2600         } else if (cmd_match(buf, "writemostly")) {
2601                 set_bit(WriteMostly, &rdev->flags);
2602                 err = 0;
2603         } else if (cmd_match(buf, "-writemostly")) {
2604                 clear_bit(WriteMostly, &rdev->flags);
2605                 err = 0;
2606         } else if (cmd_match(buf, "blocked")) {
2607                 set_bit(Blocked, &rdev->flags);
2608                 err = 0;
2609         } else if (cmd_match(buf, "-blocked")) {
2610                 if (!test_bit(Faulty, &rdev->flags) &&
2611                     rdev->badblocks.unacked_exist) {
2612                         /* metadata handler doesn't understand badblocks,
2613                          * so we need to fail the device
2614                          */
2615                         md_error(rdev->mddev, rdev);
2616                 }
2617                 clear_bit(Blocked, &rdev->flags);
2618                 clear_bit(BlockedBadBlocks, &rdev->flags);
2619                 wake_up(&rdev->blocked_wait);
2620                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2621                 md_wakeup_thread(rdev->mddev->thread);
2622
2623                 err = 0;
2624         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2625                 set_bit(In_sync, &rdev->flags);
2626                 err = 0;
2627         } else if (cmd_match(buf, "write_error")) {
2628                 set_bit(WriteErrorSeen, &rdev->flags);
2629                 err = 0;
2630         } else if (cmd_match(buf, "-write_error")) {
2631                 clear_bit(WriteErrorSeen, &rdev->flags);
2632                 err = 0;
2633         }
2634         if (!err)
2635                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2636         return err ? err : len;
2637 }
2638 static struct rdev_sysfs_entry rdev_state =
2639 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2640
2641 static ssize_t
2642 errors_show(struct md_rdev *rdev, char *page)
2643 {
2644         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2645 }
2646
2647 static ssize_t
2648 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2649 {
2650         char *e;
2651         unsigned long n = simple_strtoul(buf, &e, 10);
2652         if (*buf && (*e == 0 || *e == '\n')) {
2653                 atomic_set(&rdev->corrected_errors, n);
2654                 return len;
2655         }
2656         return -EINVAL;
2657 }
2658 static struct rdev_sysfs_entry rdev_errors =
2659 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2660
2661 static ssize_t
2662 slot_show(struct md_rdev *rdev, char *page)
2663 {
2664         if (rdev->raid_disk < 0)
2665                 return sprintf(page, "none\n");
2666         else
2667                 return sprintf(page, "%d\n", rdev->raid_disk);
2668 }
2669
2670 static ssize_t
2671 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2672 {
2673         char *e;
2674         int err;
2675         int slot = simple_strtoul(buf, &e, 10);
2676         if (strncmp(buf, "none", 4)==0)
2677                 slot = -1;
2678         else if (e==buf || (*e && *e!= '\n'))
2679                 return -EINVAL;
2680         if (rdev->mddev->pers && slot == -1) {
2681                 /* Setting 'slot' on an active array requires also
2682                  * updating the 'rd%d' link, and communicating
2683                  * with the personality with ->hot_*_disk.
2684                  * For now we only support removing
2685                  * failed/spare devices.  This normally happens automatically,
2686                  * but not when the metadata is externally managed.
2687                  */
2688                 if (rdev->raid_disk == -1)
2689                         return -EEXIST;
2690                 /* personality does all needed checks */
2691                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2692                         return -EINVAL;
2693                 err = rdev->mddev->pers->
2694                         hot_remove_disk(rdev->mddev, rdev->raid_disk);
2695                 if (err)
2696                         return err;
2697                 sysfs_unlink_rdev(rdev->mddev, rdev);
2698                 rdev->raid_disk = -1;
2699                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2700                 md_wakeup_thread(rdev->mddev->thread);
2701         } else if (rdev->mddev->pers) {
2702                 struct md_rdev *rdev2;
2703                 /* Activating a spare .. or possibly reactivating
2704                  * if we ever get bitmaps working here.
2705                  */
2706
2707                 if (rdev->raid_disk != -1)
2708                         return -EBUSY;
2709
2710                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2711                         return -EBUSY;
2712
2713                 if (rdev->mddev->pers->hot_add_disk == NULL)
2714                         return -EINVAL;
2715
2716                 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2717                         if (rdev2->raid_disk == slot)
2718                                 return -EEXIST;
2719
2720                 if (slot >= rdev->mddev->raid_disks &&
2721                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2722                         return -ENOSPC;
2723
2724                 rdev->raid_disk = slot;
2725                 if (test_bit(In_sync, &rdev->flags))
2726                         rdev->saved_raid_disk = slot;
2727                 else
2728                         rdev->saved_raid_disk = -1;
2729                 clear_bit(In_sync, &rdev->flags);
2730                 err = rdev->mddev->pers->
2731                         hot_add_disk(rdev->mddev, rdev);
2732                 if (err) {
2733                         rdev->raid_disk = -1;
2734                         return err;
2735                 } else
2736                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2737                 if (sysfs_link_rdev(rdev->mddev, rdev))
2738                         /* failure here is OK */;
2739                 /* don't wakeup anyone, leave that to userspace. */
2740         } else {
2741                 if (slot >= rdev->mddev->raid_disks &&
2742                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2743                         return -ENOSPC;
2744                 rdev->raid_disk = slot;
2745                 /* assume it is working */
2746                 clear_bit(Faulty, &rdev->flags);
2747                 clear_bit(WriteMostly, &rdev->flags);
2748                 set_bit(In_sync, &rdev->flags);
2749                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2750         }
2751         return len;
2752 }
2753
2754
2755 static struct rdev_sysfs_entry rdev_slot =
2756 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2757
2758 static ssize_t
2759 offset_show(struct md_rdev *rdev, char *page)
2760 {
2761         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2762 }
2763
2764 static ssize_t
2765 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2766 {
2767         char *e;
2768         unsigned long long offset = simple_strtoull(buf, &e, 10);
2769         if (e==buf || (*e && *e != '\n'))
2770                 return -EINVAL;
2771         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2772                 return -EBUSY;
2773         if (rdev->sectors && rdev->mddev->external)
2774                 /* Must set offset before size, so overlap checks
2775                  * can be sane */
2776                 return -EBUSY;
2777         rdev->data_offset = offset;
2778         return len;
2779 }
2780
2781 static struct rdev_sysfs_entry rdev_offset =
2782 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2783
2784 static ssize_t
2785 rdev_size_show(struct md_rdev *rdev, char *page)
2786 {
2787         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2788 }
2789
2790 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2791 {
2792         /* check if two start/length pairs overlap */
2793         if (s1+l1 <= s2)
2794                 return 0;
2795         if (s2+l2 <= s1)
2796                 return 0;
2797         return 1;
2798 }
2799
2800 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2801 {
2802         unsigned long long blocks;
2803         sector_t new;
2804
2805         if (strict_strtoull(buf, 10, &blocks) < 0)
2806                 return -EINVAL;
2807
2808         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2809                 return -EINVAL; /* sector conversion overflow */
2810
2811         new = blocks * 2;
2812         if (new != blocks * 2)
2813                 return -EINVAL; /* unsigned long long to sector_t overflow */
2814
2815         *sectors = new;
2816         return 0;
2817 }
2818
2819 static ssize_t
2820 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2821 {
2822         struct mddev *my_mddev = rdev->mddev;
2823         sector_t oldsectors = rdev->sectors;
2824         sector_t sectors;
2825
2826         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2827                 return -EINVAL;
2828         if (my_mddev->pers && rdev->raid_disk >= 0) {
2829                 if (my_mddev->persistent) {
2830                         sectors = super_types[my_mddev->major_version].
2831                                 rdev_size_change(rdev, sectors);
2832                         if (!sectors)
2833                                 return -EBUSY;
2834                 } else if (!sectors)
2835                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2836                                 rdev->data_offset;
2837         }
2838         if (sectors < my_mddev->dev_sectors)
2839                 return -EINVAL; /* component must fit device */
2840
2841         rdev->sectors = sectors;
2842         if (sectors > oldsectors && my_mddev->external) {
2843                 /* need to check that all other rdevs with the same ->bdev
2844                  * do not overlap.  We need to unlock the mddev to avoid
2845                  * a deadlock.  We have already changed rdev->sectors, and if
2846                  * we have to change it back, we will have the lock again.
2847                  */
2848                 struct mddev *mddev;
2849                 int overlap = 0;
2850                 struct list_head *tmp;
2851
2852                 mddev_unlock(my_mddev);
2853                 for_each_mddev(mddev, tmp) {
2854                         struct md_rdev *rdev2;
2855
2856                         mddev_lock(mddev);
2857                         list_for_each_entry(rdev2, &mddev->disks, same_set)
2858                                 if (rdev->bdev == rdev2->bdev &&
2859                                     rdev != rdev2 &&
2860                                     overlaps(rdev->data_offset, rdev->sectors,
2861                                              rdev2->data_offset,
2862                                              rdev2->sectors)) {
2863                                         overlap = 1;
2864                                         break;
2865                                 }
2866                         mddev_unlock(mddev);
2867                         if (overlap) {
2868                                 mddev_put(mddev);
2869                                 break;
2870                         }
2871                 }
2872                 mddev_lock(my_mddev);
2873                 if (overlap) {
2874                         /* Someone else could have slipped in a size
2875                          * change here, but doing so is just silly.
2876                          * We put oldsectors back because we *know* it is
2877                          * safe, and trust userspace not to race with
2878                          * itself
2879                          */
2880                         rdev->sectors = oldsectors;
2881                         return -EBUSY;
2882                 }
2883         }
2884         return len;
2885 }
2886
2887 static struct rdev_sysfs_entry rdev_size =
2888 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2889
2890
2891 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2892 {
2893         unsigned long long recovery_start = rdev->recovery_offset;
2894
2895         if (test_bit(In_sync, &rdev->flags) ||
2896             recovery_start == MaxSector)
2897                 return sprintf(page, "none\n");
2898
2899         return sprintf(page, "%llu\n", recovery_start);
2900 }
2901
2902 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2903 {
2904         unsigned long long recovery_start;
2905
2906         if (cmd_match(buf, "none"))
2907                 recovery_start = MaxSector;
2908         else if (strict_strtoull(buf, 10, &recovery_start))
2909                 return -EINVAL;
2910
2911         if (rdev->mddev->pers &&
2912             rdev->raid_disk >= 0)
2913                 return -EBUSY;
2914
2915         rdev->recovery_offset = recovery_start;
2916         if (recovery_start == MaxSector)
2917                 set_bit(In_sync, &rdev->flags);
2918         else
2919                 clear_bit(In_sync, &rdev->flags);
2920         return len;
2921 }
2922
2923 static struct rdev_sysfs_entry rdev_recovery_start =
2924 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2925
2926
2927 static ssize_t
2928 badblocks_show(struct badblocks *bb, char *page, int unack);
2929 static ssize_t
2930 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2931
2932 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2933 {
2934         return badblocks_show(&rdev->badblocks, page, 0);
2935 }
2936 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2937 {
2938         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2939         /* Maybe that ack was all we needed */
2940         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2941                 wake_up(&rdev->blocked_wait);
2942         return rv;
2943 }
2944 static struct rdev_sysfs_entry rdev_bad_blocks =
2945 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2946
2947
2948 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2949 {
2950         return badblocks_show(&rdev->badblocks, page, 1);
2951 }
2952 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2953 {
2954         return badblocks_store(&rdev->badblocks, page, len, 1);
2955 }
2956 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2957 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2958
2959 static struct attribute *rdev_default_attrs[] = {
2960         &rdev_state.attr,
2961         &rdev_errors.attr,
2962         &rdev_slot.attr,
2963         &rdev_offset.attr,
2964         &rdev_size.attr,
2965         &rdev_recovery_start.attr,
2966         &rdev_bad_blocks.attr,
2967         &rdev_unack_bad_blocks.attr,
2968         NULL,
2969 };
2970 static ssize_t
2971 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2972 {
2973         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2974         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2975         struct mddev *mddev = rdev->mddev;
2976         ssize_t rv;
2977
2978         if (!entry->show)
2979                 return -EIO;
2980
2981         rv = mddev ? mddev_lock(mddev) : -EBUSY;
2982         if (!rv) {
2983                 if (rdev->mddev == NULL)
2984                         rv = -EBUSY;
2985                 else
2986                         rv = entry->show(rdev, page);
2987                 mddev_unlock(mddev);
2988         }
2989         return rv;
2990 }
2991
2992 static ssize_t
2993 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2994               const char *page, size_t length)
2995 {
2996         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2997         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2998         ssize_t rv;
2999         struct mddev *mddev = rdev->mddev;
3000
3001         if (!entry->store)
3002                 return -EIO;
3003         if (!capable(CAP_SYS_ADMIN))
3004                 return -EACCES;
3005         rv = mddev ? mddev_lock(mddev): -EBUSY;
3006         if (!rv) {
3007                 if (rdev->mddev == NULL)
3008                         rv = -EBUSY;
3009                 else
3010                         rv = entry->store(rdev, page, length);
3011                 mddev_unlock(mddev);
3012         }
3013         return rv;
3014 }
3015
3016 static void rdev_free(struct kobject *ko)
3017 {
3018         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3019         kfree(rdev);
3020 }
3021 static const struct sysfs_ops rdev_sysfs_ops = {
3022         .show           = rdev_attr_show,
3023         .store          = rdev_attr_store,
3024 };
3025 static struct kobj_type rdev_ktype = {
3026         .release        = rdev_free,
3027         .sysfs_ops      = &rdev_sysfs_ops,
3028         .default_attrs  = rdev_default_attrs,
3029 };
3030
3031 int md_rdev_init(struct md_rdev *rdev)
3032 {
3033         rdev->desc_nr = -1;
3034         rdev->saved_raid_disk = -1;
3035         rdev->raid_disk = -1;
3036         rdev->flags = 0;
3037         rdev->data_offset = 0;
3038         rdev->sb_events = 0;
3039         rdev->last_read_error.tv_sec  = 0;
3040         rdev->last_read_error.tv_nsec = 0;
3041         rdev->sb_loaded = 0;
3042         rdev->bb_page = NULL;
3043         atomic_set(&rdev->nr_pending, 0);
3044         atomic_set(&rdev->read_errors, 0);
3045         atomic_set(&rdev->corrected_errors, 0);
3046
3047         INIT_LIST_HEAD(&rdev->same_set);
3048         init_waitqueue_head(&rdev->blocked_wait);
3049
3050         /* Add space to store bad block list.
3051          * This reserves the space even on arrays where it cannot
3052          * be used - I wonder if that matters
3053          */
3054         rdev->badblocks.count = 0;
3055         rdev->badblocks.shift = 0;
3056         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3057         seqlock_init(&rdev->badblocks.lock);
3058         if (rdev->badblocks.page == NULL)
3059                 return -ENOMEM;
3060
3061         return 0;
3062 }
3063 EXPORT_SYMBOL_GPL(md_rdev_init);
3064 /*
3065  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3066  *
3067  * mark the device faulty if:
3068  *
3069  *   - the device is nonexistent (zero size)
3070  *   - the device has no valid superblock
3071  *
3072  * a faulty rdev _never_ has rdev->sb set.
3073  */
3074 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3075 {
3076         char b[BDEVNAME_SIZE];
3077         int err;
3078         struct md_rdev *rdev;
3079         sector_t size;
3080
3081         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3082         if (!rdev) {
3083                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3084                 return ERR_PTR(-ENOMEM);
3085         }
3086
3087         err = md_rdev_init(rdev);
3088         if (err)
3089                 goto abort_free;
3090         err = alloc_disk_sb(rdev);
3091         if (err)
3092                 goto abort_free;
3093
3094         err = lock_rdev(rdev, newdev, super_format == -2);
3095         if (err)
3096                 goto abort_free;
3097
3098         kobject_init(&rdev->kobj, &rdev_ktype);
3099
3100         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3101         if (!size) {
3102                 printk(KERN_WARNING 
3103                         "md: %s has zero or unknown size, marking faulty!\n",
3104                         bdevname(rdev->bdev,b));
3105                 err = -EINVAL;
3106                 goto abort_free;
3107         }
3108
3109         if (super_format >= 0) {
3110                 err = super_types[super_format].
3111                         load_super(rdev, NULL, super_minor);
3112                 if (err == -EINVAL) {
3113                         printk(KERN_WARNING
3114                                 "md: %s does not have a valid v%d.%d "
3115                                "superblock, not importing!\n",
3116                                 bdevname(rdev->bdev,b),
3117                                super_format, super_minor);
3118                         goto abort_free;
3119                 }
3120                 if (err < 0) {
3121                         printk(KERN_WARNING 
3122                                 "md: could not read %s's sb, not importing!\n",
3123                                 bdevname(rdev->bdev,b));
3124                         goto abort_free;
3125                 }
3126         }
3127         if (super_format == -1)
3128                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3129                 rdev->badblocks.shift = -1;
3130
3131         return rdev;
3132
3133 abort_free:
3134         if (rdev->bdev)
3135                 unlock_rdev(rdev);
3136         free_disk_sb(rdev);
3137         kfree(rdev->badblocks.page);
3138         kfree(rdev);
3139         return ERR_PTR(err);
3140 }
3141
3142 /*
3143  * Check a full RAID array for plausibility
3144  */
3145
3146
3147 static void analyze_sbs(struct mddev * mddev)
3148 {
3149         int i;
3150         struct md_rdev *rdev, *freshest, *tmp;
3151         char b[BDEVNAME_SIZE];
3152
3153         freshest = NULL;
3154         rdev_for_each(rdev, tmp, mddev)
3155                 switch (super_types[mddev->major_version].
3156                         load_super(rdev, freshest, mddev->minor_version)) {
3157                 case 1:
3158                         freshest = rdev;
3159                         break;
3160                 case 0:
3161                         break;
3162                 default:
3163                         printk( KERN_ERR \
3164                                 "md: fatal superblock inconsistency in %s"
3165                                 " -- removing from array\n", 
3166                                 bdevname(rdev->bdev,b));
3167                         kick_rdev_from_array(rdev);
3168                 }
3169
3170
3171         super_types[mddev->major_version].
3172                 validate_super(mddev, freshest);
3173
3174         i = 0;
3175         rdev_for_each(rdev, tmp, mddev) {
3176                 if (mddev->max_disks &&
3177                     (rdev->desc_nr >= mddev->max_disks ||
3178                      i > mddev->max_disks)) {
3179                         printk(KERN_WARNING
3180                                "md: %s: %s: only %d devices permitted\n",
3181                                mdname(mddev), bdevname(rdev->bdev, b),
3182                                mddev->max_disks);
3183                         kick_rdev_from_array(rdev);
3184                         continue;
3185                 }
3186                 if (rdev != freshest)
3187                         if (super_types[mddev->major_version].
3188                             validate_super(mddev, rdev)) {
3189                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3190                                         " from array!\n",
3191                                         bdevname(rdev->bdev,b));
3192                                 kick_rdev_from_array(rdev);
3193                                 continue;
3194                         }
3195                 if (mddev->level == LEVEL_MULTIPATH) {
3196                         rdev->desc_nr = i++;
3197                         rdev->raid_disk = rdev->desc_nr;
3198                         set_bit(In_sync, &rdev->flags);
3199                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3200                         rdev->raid_disk = -1;
3201                         clear_bit(In_sync, &rdev->flags);
3202                 }
3203         }
3204 }
3205
3206 /* Read a fixed-point number.
3207  * Numbers in sysfs attributes should be in "standard" units where
3208  * possible, so time should be in seconds.
3209  * However we internally use a a much smaller unit such as 
3210  * milliseconds or jiffies.
3211  * This function takes a decimal number with a possible fractional
3212  * component, and produces an integer which is the result of
3213  * multiplying that number by 10^'scale'.
3214  * all without any floating-point arithmetic.
3215  */
3216 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3217 {
3218         unsigned long result = 0;
3219         long decimals = -1;
3220         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3221                 if (*cp == '.')
3222                         decimals = 0;
3223                 else if (decimals < scale) {
3224                         unsigned int value;
3225                         value = *cp - '0';
3226                         result = result * 10 + value;
3227                         if (decimals >= 0)
3228                                 decimals++;
3229                 }
3230                 cp++;
3231         }
3232         if (*cp == '\n')
3233                 cp++;
3234         if (*cp)
3235                 return -EINVAL;
3236         if (decimals < 0)
3237                 decimals = 0;
3238         while (decimals < scale) {
3239                 result *= 10;
3240                 decimals ++;
3241         }
3242         *res = result;
3243         return 0;
3244 }
3245
3246
3247 static void md_safemode_timeout(unsigned long data);
3248
3249 static ssize_t
3250 safe_delay_show(struct mddev *mddev, char *page)
3251 {
3252         int msec = (mddev->safemode_delay*1000)/HZ;
3253         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3254 }
3255 static ssize_t
3256 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3257 {
3258         unsigned long msec;
3259
3260         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3261                 return -EINVAL;
3262         if (msec == 0)
3263                 mddev->safemode_delay = 0;
3264         else {
3265                 unsigned long old_delay = mddev->safemode_delay;
3266                 mddev->safemode_delay = (msec*HZ)/1000;
3267                 if (mddev->safemode_delay == 0)
3268                         mddev->safemode_delay = 1;
3269                 if (mddev->safemode_delay < old_delay)
3270                         md_safemode_timeout((unsigned long)mddev);
3271         }
3272         return len;
3273 }
3274 static struct md_sysfs_entry md_safe_delay =
3275 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3276
3277 static ssize_t
3278 level_show(struct mddev *mddev, char *page)
3279 {
3280         struct md_personality *p = mddev->pers;
3281         if (p)
3282                 return sprintf(page, "%s\n", p->name);
3283         else if (mddev->clevel[0])
3284                 return sprintf(page, "%s\n", mddev->clevel);
3285         else if (mddev->level != LEVEL_NONE)
3286                 return sprintf(page, "%d\n", mddev->level);
3287         else
3288                 return 0;
3289 }
3290
3291 static ssize_t
3292 level_store(struct mddev *mddev, const char *buf, size_t len)
3293 {
3294         char clevel[16];
3295         ssize_t rv = len;
3296         struct md_personality *pers;
3297         long level;
3298         void *priv;
3299         struct md_rdev *rdev;
3300
3301         if (mddev->pers == NULL) {
3302                 if (len == 0)
3303                         return 0;
3304                 if (len >= sizeof(mddev->clevel))
3305                         return -ENOSPC;
3306                 strncpy(mddev->clevel, buf, len);
3307                 if (mddev->clevel[len-1] == '\n')
3308                         len--;
3309                 mddev->clevel[len] = 0;
3310                 mddev->level = LEVEL_NONE;
3311                 return rv;
3312         }
3313
3314         /* request to change the personality.  Need to ensure:
3315          *  - array is not engaged in resync/recovery/reshape
3316          *  - old personality can be suspended
3317          *  - new personality will access other array.
3318          */
3319
3320         if (mddev->sync_thread ||
3321             mddev->reshape_position != MaxSector ||
3322             mddev->sysfs_active)
3323                 return -EBUSY;
3324
3325         if (!mddev->pers->quiesce) {
3326                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3327                        mdname(mddev), mddev->pers->name);
3328                 return -EINVAL;
3329         }
3330
3331         /* Now find the new personality */
3332         if (len == 0 || len >= sizeof(clevel))
3333                 return -EINVAL;
3334         strncpy(clevel, buf, len);
3335         if (clevel[len-1] == '\n')
3336                 len--;
3337         clevel[len] = 0;
3338         if (strict_strtol(clevel, 10, &level))
3339                 level = LEVEL_NONE;
3340
3341         if (request_module("md-%s", clevel) != 0)
3342                 request_module("md-level-%s", clevel);
3343         spin_lock(&pers_lock);
3344         pers = find_pers(level, clevel);
3345         if (!pers || !try_module_get(pers->owner)) {
3346                 spin_unlock(&pers_lock);
3347                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3348                 return -EINVAL;
3349         }
3350         spin_unlock(&pers_lock);
3351
3352         if (pers == mddev->pers) {
3353                 /* Nothing to do! */
3354                 module_put(pers->owner);
3355                 return rv;
3356         }
3357         if (!pers->takeover) {
3358                 module_put(pers->owner);
3359                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3360                        mdname(mddev), clevel);
3361                 return -EINVAL;
3362         }
3363
3364         list_for_each_entry(rdev, &mddev->disks, same_set)
3365                 rdev->new_raid_disk = rdev->raid_disk;
3366
3367         /* ->takeover must set new_* and/or delta_disks
3368          * if it succeeds, and may set them when it fails.
3369          */
3370         priv = pers->takeover(mddev);
3371         if (IS_ERR(priv)) {
3372                 mddev->new_level = mddev->level;
3373                 mddev->new_layout = mddev->layout;
3374                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3375                 mddev->raid_disks -= mddev->delta_disks;
3376                 mddev->delta_disks = 0;
3377                 module_put(pers->owner);
3378                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3379                        mdname(mddev), clevel);
3380                 return PTR_ERR(priv);
3381         }
3382
3383         /* Looks like we have a winner */
3384         mddev_suspend(mddev);
3385         mddev->pers->stop(mddev);
3386         
3387         if (mddev->pers->sync_request == NULL &&
3388             pers->sync_request != NULL) {
3389                 /* need to add the md_redundancy_group */
3390                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3391                         printk(KERN_WARNING
3392                                "md: cannot register extra attributes for %s\n",
3393                                mdname(mddev));
3394                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3395         }               
3396         if (mddev->pers->sync_request != NULL &&
3397             pers->sync_request == NULL) {
3398                 /* need to remove the md_redundancy_group */
3399                 if (mddev->to_remove == NULL)
3400                         mddev->to_remove = &md_redundancy_group;
3401         }
3402
3403         if (mddev->pers->sync_request == NULL &&
3404             mddev->external) {
3405                 /* We are converting from a no-redundancy array
3406                  * to a redundancy array and metadata is managed
3407                  * externally so we need to be sure that writes
3408                  * won't block due to a need to transition
3409                  *      clean->dirty
3410                  * until external management is started.
3411                  */
3412                 mddev->in_sync = 0;
3413                 mddev->safemode_delay = 0;
3414                 mddev->safemode = 0;
3415         }
3416
3417         list_for_each_entry(rdev, &mddev->disks, same_set) {
3418                 if (rdev->raid_disk < 0)
3419                         continue;
3420                 if (rdev->new_raid_disk >= mddev->raid_disks)
3421                         rdev->new_raid_disk = -1;
3422                 if (rdev->new_raid_disk == rdev->raid_disk)
3423                         continue;
3424                 sysfs_unlink_rdev(mddev, rdev);
3425         }
3426         list_for_each_entry(rdev, &mddev->disks, same_set) {
3427                 if (rdev->raid_disk < 0)
3428                         continue;
3429                 if (rdev->new_raid_disk == rdev->raid_disk)
3430                         continue;
3431                 rdev->raid_disk = rdev->new_raid_disk;
3432                 if (rdev->raid_disk < 0)
3433                         clear_bit(In_sync, &rdev->flags);
3434                 else {
3435                         if (sysfs_link_rdev(mddev, rdev))
3436                                 printk(KERN_WARNING "md: cannot register rd%d"
3437                                        " for %s after level change\n",
3438                                        rdev->raid_disk, mdname(mddev));
3439                 }
3440         }
3441
3442         module_put(mddev->pers->owner);
3443         mddev->pers = pers;
3444         mddev->private = priv;
3445         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3446         mddev->level = mddev->new_level;
3447         mddev->layout = mddev->new_layout;
3448         mddev->chunk_sectors = mddev->new_chunk_sectors;
3449         mddev->delta_disks = 0;
3450         mddev->degraded = 0;
3451         if (mddev->pers->sync_request == NULL) {
3452                 /* this is now an array without redundancy, so
3453                  * it must always be in_sync
3454                  */
3455                 mddev->in_sync = 1;
3456                 del_timer_sync(&mddev->safemode_timer);
3457         }
3458         pers->run(mddev);
3459         mddev_resume(mddev);
3460         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3461         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3462         md_wakeup_thread(mddev->thread);
3463         sysfs_notify(&mddev->kobj, NULL, "level");
3464         md_new_event(mddev);
3465         return rv;
3466 }
3467
3468 static struct md_sysfs_entry md_level =
3469 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3470
3471
3472 static ssize_t
3473 layout_show(struct mddev *mddev, char *page)
3474 {
3475         /* just a number, not meaningful for all levels */
3476         if (mddev->reshape_position != MaxSector &&
3477             mddev->layout != mddev->new_layout)
3478                 return sprintf(page, "%d (%d)\n",
3479                                mddev->new_layout, mddev->layout);
3480         return sprintf(page, "%d\n", mddev->layout);
3481 }
3482
3483 static ssize_t
3484 layout_store(struct mddev *mddev, const char *buf, size_t len)
3485 {
3486         char *e;
3487         unsigned long n = simple_strtoul(buf, &e, 10);
3488
3489         if (!*buf || (*e && *e != '\n'))
3490                 return -EINVAL;
3491
3492         if (mddev->pers) {
3493                 int err;
3494                 if (mddev->pers->check_reshape == NULL)
3495                         return -EBUSY;
3496                 mddev->new_layout = n;
3497                 err = mddev->pers->check_reshape(mddev);
3498                 if (err) {
3499                         mddev->new_layout = mddev->layout;
3500                         return err;
3501                 }
3502         } else {
3503                 mddev->new_layout = n;
3504                 if (mddev->reshape_position == MaxSector)
3505                         mddev->layout = n;
3506         }
3507         return len;
3508 }
3509 static struct md_sysfs_entry md_layout =
3510 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3511
3512
3513 static ssize_t
3514 raid_disks_show(struct mddev *mddev, char *page)
3515 {
3516         if (mddev->raid_disks == 0)
3517                 return 0;
3518         if (mddev->reshape_position != MaxSector &&
3519             mddev->delta_disks != 0)
3520                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3521                                mddev->raid_disks - mddev->delta_disks);
3522         return sprintf(page, "%d\n", mddev->raid_disks);
3523 }
3524
3525 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3526
3527 static ssize_t
3528 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3529 {
3530         char *e;
3531         int rv = 0;
3532         unsigned long n = simple_strtoul(buf, &e, 10);
3533
3534         if (!*buf || (*e && *e != '\n'))
3535                 return -EINVAL;
3536
3537         if (mddev->pers)
3538                 rv = update_raid_disks(mddev, n);
3539         else if (mddev->reshape_position != MaxSector) {
3540                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3541                 mddev->delta_disks = n - olddisks;
3542                 mddev->raid_disks = n;
3543         } else
3544                 mddev->raid_disks = n;
3545         return rv ? rv : len;
3546 }
3547 static struct md_sysfs_entry md_raid_disks =
3548 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3549
3550 static ssize_t
3551 chunk_size_show(struct mddev *mddev, char *page)
3552 {
3553         if (mddev->reshape_position != MaxSector &&
3554             mddev->chunk_sectors != mddev->new_chunk_sectors)
3555                 return sprintf(page, "%d (%d)\n",
3556                                mddev->new_chunk_sectors << 9,
3557                                mddev->chunk_sectors << 9);
3558         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3559 }
3560
3561 static ssize_t
3562 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3563 {
3564         char *e;
3565         unsigned long n = simple_strtoul(buf, &e, 10);
3566
3567         if (!*buf || (*e && *e != '\n'))
3568                 return -EINVAL;
3569
3570         if (mddev->pers) {
3571                 int err;
3572                 if (mddev->pers->check_reshape == NULL)
3573                         return -EBUSY;
3574                 mddev->new_chunk_sectors = n >> 9;
3575                 err = mddev->pers->check_reshape(mddev);
3576                 if (err) {
3577                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3578                         return err;
3579                 }
3580         } else {
3581                 mddev->new_chunk_sectors = n >> 9;
3582                 if (mddev->reshape_position == MaxSector)
3583                         mddev->chunk_sectors = n >> 9;
3584         }
3585         return len;
3586 }
3587 static struct md_sysfs_entry md_chunk_size =
3588 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3589
3590 static ssize_t
3591 resync_start_show(struct mddev *mddev, char *page)
3592 {
3593         if (mddev->recovery_cp == MaxSector)
3594                 return sprintf(page, "none\n");
3595         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3596 }
3597
3598 static ssize_t
3599 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3600 {
3601         char *e;
3602         unsigned long long n = simple_strtoull(buf, &e, 10);
3603
3604         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3605                 return -EBUSY;
3606         if (cmd_match(buf, "none"))
3607                 n = MaxSector;
3608         else if (!*buf || (*e && *e != '\n'))
3609                 return -EINVAL;
3610
3611         mddev->recovery_cp = n;
3612         return len;
3613 }
3614 static struct md_sysfs_entry md_resync_start =
3615 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3616
3617 /*
3618  * The array state can be:
3619  *
3620  * clear
3621  *     No devices, no size, no level
3622  *     Equivalent to STOP_ARRAY ioctl
3623  * inactive
3624  *     May have some settings, but array is not active
3625  *        all IO results in error
3626  *     When written, doesn't tear down array, but just stops it
3627  * suspended (not supported yet)
3628  *     All IO requests will block. The array can be reconfigured.
3629  *     Writing this, if accepted, will block until array is quiescent
3630  * readonly
3631  *     no resync can happen.  no superblocks get written.
3632  *     write requests fail
3633  * read-auto
3634  *     like readonly, but behaves like 'clean' on a write request.
3635  *
3636  * clean - no pending writes, but otherwise active.
3637  *     When written to inactive array, starts without resync
3638  *     If a write request arrives then
3639  *       if metadata is known, mark 'dirty' and switch to 'active'.
3640  *       if not known, block and switch to write-pending
3641  *     If written to an active array that has pending writes, then fails.
3642  * active
3643  *     fully active: IO and resync can be happening.
3644  *     When written to inactive array, starts with resync
3645  *
3646  * write-pending
3647  *     clean, but writes are blocked waiting for 'active' to be written.
3648  *
3649  * active-idle
3650  *     like active, but no writes have been seen for a while (100msec).
3651  *
3652  */
3653 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3654                    write_pending, active_idle, bad_word};
3655 static char *array_states[] = {
3656         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3657         "write-pending", "active-idle", NULL };
3658
3659 static int match_word(const char *word, char **list)
3660 {
3661         int n;
3662         for (n=0; list[n]; n++)
3663                 if (cmd_match(word, list[n]))
3664                         break;
3665         return n;
3666 }
3667
3668 static ssize_t
3669 array_state_show(struct mddev *mddev, char *page)
3670 {
3671         enum array_state st = inactive;
3672
3673         if (mddev->pers)
3674                 switch(mddev->ro) {
3675                 case 1:
3676                         st = readonly;
3677                         break;
3678                 case 2:
3679                         st = read_auto;
3680                         break;
3681                 case 0:
3682                         if (mddev->in_sync)
3683                                 st = clean;
3684                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3685                                 st = write_pending;
3686                         else if (mddev->safemode)
3687                                 st = active_idle;
3688                         else
3689                                 st = active;
3690                 }
3691         else {
3692                 if (list_empty(&mddev->disks) &&
3693                     mddev->raid_disks == 0 &&
3694                     mddev->dev_sectors == 0)
3695                         st = clear;
3696                 else
3697                         st = inactive;
3698         }
3699         return sprintf(page, "%s\n", array_states[st]);
3700 }
3701
3702 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3703 static int md_set_readonly(struct mddev * mddev, int is_open);
3704 static int do_md_run(struct mddev * mddev);
3705 static int restart_array(struct mddev *mddev);
3706
3707 static ssize_t
3708 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3709 {
3710         int err = -EINVAL;
3711         enum array_state st = match_word(buf, array_states);
3712         switch(st) {
3713         case bad_word:
3714                 break;
3715         case clear:
3716                 /* stopping an active array */
3717                 if (atomic_read(&mddev->openers) > 0)
3718                         return -EBUSY;
3719                 err = do_md_stop(mddev, 0, 0);
3720                 break;
3721         case inactive:
3722                 /* stopping an active array */
3723                 if (mddev->pers) {
3724                         if (atomic_read(&mddev->openers) > 0)
3725                                 return -EBUSY;
3726                         err = do_md_stop(mddev, 2, 0);
3727                 } else
3728                         err = 0; /* already inactive */
3729                 break;
3730         case suspended:
3731                 break; /* not supported yet */
3732         case readonly:
3733                 if (mddev->pers)
3734                         err = md_set_readonly(mddev, 0);
3735                 else {
3736                         mddev->ro = 1;
3737                         set_disk_ro(mddev->gendisk, 1);
3738                         err = do_md_run(mddev);
3739                 }
3740                 break;
3741         case read_auto:
3742                 if (mddev->pers) {
3743                         if (mddev->ro == 0)
3744                                 err = md_set_readonly(mddev, 0);
3745                         else if (mddev->ro == 1)
3746                                 err = restart_array(mddev);
3747                         if (err == 0) {
3748                                 mddev->ro = 2;
3749                                 set_disk_ro(mddev->gendisk, 0);
3750                         }
3751                 } else {
3752                         mddev->ro = 2;
3753                         err = do_md_run(mddev);
3754                 }
3755                 break;
3756         case clean:
3757                 if (mddev->pers) {
3758                         restart_array(mddev);
3759                         spin_lock_irq(&mddev->write_lock);
3760                         if (atomic_read(&mddev->writes_pending) == 0) {
3761                                 if (mddev->in_sync == 0) {
3762                                         mddev->in_sync = 1;
3763                                         if (mddev->safemode == 1)
3764                                                 mddev->safemode = 0;
3765                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3766                                 }
3767                                 err = 0;
3768                         } else
3769                                 err = -EBUSY;
3770                         spin_unlock_irq(&mddev->write_lock);
3771                 } else
3772                         err = -EINVAL;
3773                 break;
3774         case active:
3775                 if (mddev->pers) {
3776                         restart_array(mddev);
3777                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3778                         wake_up(&mddev->sb_wait);
3779                         err = 0;
3780                 } else {
3781                         mddev->ro = 0;
3782                         set_disk_ro(mddev->gendisk, 0);
3783                         err = do_md_run(mddev);
3784                 }
3785                 break;
3786         case write_pending:
3787         case active_idle:
3788                 /* these cannot be set */
3789                 break;
3790         }
3791         if (err)
3792                 return err;
3793         else {
3794                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3795                 return len;
3796         }
3797 }
3798 static struct md_sysfs_entry md_array_state =
3799 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3800
3801 static ssize_t
3802 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3803         return sprintf(page, "%d\n",
3804                        atomic_read(&mddev->max_corr_read_errors));
3805 }
3806
3807 static ssize_t
3808 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3809 {
3810         char *e;
3811         unsigned long n = simple_strtoul(buf, &e, 10);
3812
3813         if (*buf && (*e == 0 || *e == '\n')) {
3814                 atomic_set(&mddev->max_corr_read_errors, n);
3815                 return len;
3816         }
3817         return -EINVAL;
3818 }
3819
3820 static struct md_sysfs_entry max_corr_read_errors =
3821 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3822         max_corrected_read_errors_store);
3823
3824 static ssize_t
3825 null_show(struct mddev *mddev, char *page)
3826 {
3827         return -EINVAL;
3828 }
3829
3830 static ssize_t
3831 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3832 {
3833         /* buf must be %d:%d\n? giving major and minor numbers */
3834         /* The new device is added to the array.
3835          * If the array has a persistent superblock, we read the
3836          * superblock to initialise info and check validity.
3837          * Otherwise, only checking done is that in bind_rdev_to_array,
3838          * which mainly checks size.
3839          */
3840         char *e;
3841         int major = simple_strtoul(buf, &e, 10);
3842         int minor;
3843         dev_t dev;
3844         struct md_rdev *rdev;
3845         int err;
3846
3847         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3848                 return -EINVAL;
3849         minor = simple_strtoul(e+1, &e, 10);
3850         if (*e && *e != '\n')
3851                 return -EINVAL;
3852         dev = MKDEV(major, minor);
3853         if (major != MAJOR(dev) ||
3854             minor != MINOR(dev))
3855                 return -EOVERFLOW;
3856
3857
3858         if (mddev->persistent) {
3859                 rdev = md_import_device(dev, mddev->major_version,
3860                                         mddev->minor_version);
3861                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3862                         struct md_rdev *rdev0
3863                                 = list_entry(mddev->disks.next,
3864                                              struct md_rdev, same_set);
3865                         err = super_types[mddev->major_version]
3866                                 .load_super(rdev, rdev0, mddev->minor_version);
3867                         if (err < 0)
3868                                 goto out;
3869                 }
3870         } else if (mddev->external)
3871                 rdev = md_import_device(dev, -2, -1);
3872         else
3873                 rdev = md_import_device(dev, -1, -1);
3874
3875         if (IS_ERR(rdev))
3876                 return PTR_ERR(rdev);
3877         err = bind_rdev_to_array(rdev, mddev);
3878  out:
3879         if (err)
3880                 export_rdev(rdev);
3881         return err ? err : len;
3882 }
3883
3884 static struct md_sysfs_entry md_new_device =
3885 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3886
3887 static ssize_t
3888 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3889 {
3890         char *end;
3891         unsigned long chunk, end_chunk;
3892
3893         if (!mddev->bitmap)
3894                 goto out;
3895         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3896         while (*buf) {
3897                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3898                 if (buf == end) break;
3899                 if (*end == '-') { /* range */
3900                         buf = end + 1;
3901                         end_chunk = simple_strtoul(buf, &end, 0);
3902                         if (buf == end) break;
3903                 }
3904                 if (*end && !isspace(*end)) break;
3905                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3906                 buf = skip_spaces(end);
3907         }
3908         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3909 out:
3910         return len;
3911 }
3912
3913 static struct md_sysfs_entry md_bitmap =
3914 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3915
3916 static ssize_t
3917 size_show(struct mddev *mddev, char *page)
3918 {
3919         return sprintf(page, "%llu\n",
3920                 (unsigned long long)mddev->dev_sectors / 2);
3921 }
3922
3923 static int update_size(struct mddev *mddev, sector_t num_sectors);
3924
3925 static ssize_t
3926 size_store(struct mddev *mddev, const char *buf, size_t len)
3927 {
3928         /* If array is inactive, we can reduce the component size, but
3929          * not increase it (except from 0).
3930          * If array is active, we can try an on-line resize
3931          */
3932         sector_t sectors;
3933         int err = strict_blocks_to_sectors(buf, &sectors);
3934
3935         if (err < 0)
3936                 return err;
3937         if (mddev->pers) {
3938                 err = update_size(mddev, sectors);
3939                 md_update_sb(mddev, 1);
3940         } else {
3941                 if (mddev->dev_sectors == 0 ||
3942                     mddev->dev_sectors > sectors)
3943                         mddev->dev_sectors = sectors;
3944                 else
3945                         err = -ENOSPC;
3946         }
3947         return err ? err : len;
3948 }
3949
3950 static struct md_sysfs_entry md_size =
3951 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3952
3953
3954 /* Metdata version.
3955  * This is one of
3956  *   'none' for arrays with no metadata (good luck...)
3957  *   'external' for arrays with externally managed metadata,
3958  * or N.M for internally known formats
3959  */
3960 static ssize_t
3961 metadata_show(struct mddev *mddev, char *page)
3962 {
3963         if (mddev->persistent)
3964                 return sprintf(page, "%d.%d\n",
3965                                mddev->major_version, mddev->minor_version);
3966         else if (mddev->external)
3967                 return sprintf(page, "external:%s\n", mddev->metadata_type);
3968         else
3969                 return sprintf(page, "none\n");
3970 }
3971
3972 static ssize_t
3973 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3974 {
3975         int major, minor;
3976         char *e;
3977         /* Changing the details of 'external' metadata is
3978          * always permitted.  Otherwise there must be
3979          * no devices attached to the array.
3980          */
3981         if (mddev->external && strncmp(buf, "external:", 9) == 0)
3982                 ;
3983         else if (!list_empty(&mddev->disks))
3984                 return -EBUSY;
3985
3986         if (cmd_match(buf, "none")) {
3987                 mddev->persistent = 0;
3988                 mddev->external = 0;
3989                 mddev->major_version = 0;
3990                 mddev->minor_version = 90;
3991                 return len;
3992         }
3993         if (strncmp(buf, "external:", 9) == 0) {
3994                 size_t namelen = len-9;
3995                 if (namelen >= sizeof(mddev->metadata_type))
3996                         namelen = sizeof(mddev->metadata_type)-1;
3997                 strncpy(mddev->metadata_type, buf+9, namelen);
3998                 mddev->metadata_type[namelen] = 0;
3999                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4000                         mddev->metadata_type[--namelen] = 0;
4001                 mddev->persistent = 0;
4002                 mddev->external = 1;
4003                 mddev->major_version = 0;
4004                 mddev->minor_version = 90;
4005                 return len;
4006         }
4007         major = simple_strtoul(buf, &e, 10);
4008         if (e==buf || *e != '.')
4009                 return -EINVAL;
4010         buf = e+1;
4011         minor = simple_strtoul(buf, &e, 10);
4012         if (e==buf || (*e && *e != '\n') )
4013                 return -EINVAL;
4014         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4015                 return -ENOENT;
4016         mddev->major_version = major;
4017         mddev->minor_version = minor;
4018         mddev->persistent = 1;
4019         mddev->external = 0;
4020         return len;
4021 }
4022
4023 static struct md_sysfs_entry md_metadata =
4024 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4025
4026 static ssize_t
4027 action_show(struct mddev *mddev, char *page)
4028 {
4029         char *type = "idle";
4030         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4031                 type = "frozen";
4032         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4033             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4034                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4035                         type = "reshape";
4036                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4037                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4038                                 type = "resync";
4039                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4040                                 type = "check";
4041                         else
4042                                 type = "repair";
4043                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4044                         type = "recover";
4045         }
4046         return sprintf(page, "%s\n", type);
4047 }
4048
4049 static void reap_sync_thread(struct mddev *mddev);
4050
4051 static ssize_t
4052 action_store(struct mddev *mddev, const char *page, size_t len)
4053 {
4054         if (!mddev->pers || !mddev->pers->sync_request)
4055                 return -EINVAL;
4056
4057         if (cmd_match(page, "frozen"))
4058                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4059         else
4060                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4061
4062         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4063                 if (mddev->sync_thread) {
4064                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4065                         reap_sync_thread(mddev);
4066                 }
4067         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4068                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4069                 return -EBUSY;
4070         else if (cmd_match(page, "resync"))
4071                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4072         else if (cmd_match(page, "recover")) {
4073                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4074                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4075         } else if (cmd_match(page, "reshape")) {
4076                 int err;
4077                 if (mddev->pers->start_reshape == NULL)
4078                         return -EINVAL;
4079                 err = mddev->pers->start_reshape(mddev);
4080                 if (err)
4081                         return err;
4082                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4083         } else {
4084                 if (cmd_match(page, "check"))
4085                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4086                 else if (!cmd_match(page, "repair"))
4087                         return -EINVAL;
4088                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4089                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4090         }
4091         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4092         md_wakeup_thread(mddev->thread);
4093         sysfs_notify_dirent_safe(mddev->sysfs_action);
4094         return len;
4095 }
4096
4097 static ssize_t
4098 mismatch_cnt_show(struct mddev *mddev, char *page)
4099 {
4100         return sprintf(page, "%llu\n",
4101                        (unsigned long long) mddev->resync_mismatches);
4102 }
4103
4104 static struct md_sysfs_entry md_scan_mode =
4105 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4106
4107
4108 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4109
4110 static ssize_t
4111 sync_min_show(struct mddev *mddev, char *page)
4112 {
4113         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4114                        mddev->sync_speed_min ? "local": "system");
4115 }
4116
4117 static ssize_t
4118 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4119 {
4120         int min;
4121         char *e;
4122         if (strncmp(buf, "system", 6)==0) {
4123                 mddev->sync_speed_min = 0;
4124                 return len;
4125         }
4126         min = simple_strtoul(buf, &e, 10);
4127         if (buf == e || (*e && *e != '\n') || min <= 0)
4128                 return -EINVAL;
4129         mddev->sync_speed_min = min;
4130         return len;
4131 }
4132
4133 static struct md_sysfs_entry md_sync_min =
4134 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4135
4136 static ssize_t
4137 sync_max_show(struct mddev *mddev, char *page)
4138 {
4139         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4140                        mddev->sync_speed_max ? "local": "system");
4141 }
4142
4143 static ssize_t
4144 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4145 {
4146         int max;
4147         char *e;
4148         if (strncmp(buf, "system", 6)==0) {
4149                 mddev->sync_speed_max = 0;
4150                 return len;
4151         }
4152         max = simple_strtoul(buf, &e, 10);
4153         if (buf == e || (*e && *e != '\n') || max <= 0)
4154                 return -EINVAL;
4155         mddev->sync_speed_max = max;
4156         return len;
4157 }
4158
4159 static struct md_sysfs_entry md_sync_max =
4160 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4161
4162 static ssize_t
4163 degraded_show(struct mddev *mddev, char *page)
4164 {
4165         return sprintf(page, "%d\n", mddev->degraded);
4166 }
4167 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4168
4169 static ssize_t
4170 sync_force_parallel_show(struct mddev *mddev, char *page)
4171 {
4172         return sprintf(page, "%d\n", mddev->parallel_resync);
4173 }
4174
4175 static ssize_t
4176 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4177 {
4178         long n;
4179
4180         if (strict_strtol(buf, 10, &n))
4181                 return -EINVAL;
4182
4183         if (n != 0 && n != 1)
4184                 return -EINVAL;
4185
4186         mddev->parallel_resync = n;
4187
4188         if (mddev->sync_thread)
4189                 wake_up(&resync_wait);
4190
4191         return len;
4192 }
4193
4194 /* force parallel resync, even with shared block devices */
4195 static struct md_sysfs_entry md_sync_force_parallel =
4196 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4197        sync_force_parallel_show, sync_force_parallel_store);
4198
4199 static ssize_t
4200 sync_speed_show(struct mddev *mddev, char *page)
4201 {
4202         unsigned long resync, dt, db;
4203         if (mddev->curr_resync == 0)
4204                 return sprintf(page, "none\n");
4205         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4206         dt = (jiffies - mddev->resync_mark) / HZ;
4207         if (!dt) dt++;
4208         db = resync - mddev->resync_mark_cnt;
4209         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4210 }
4211
4212 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4213
4214 static ssize_t
4215 sync_completed_show(struct mddev *mddev, char *page)
4216 {
4217         unsigned long long max_sectors, resync;
4218
4219         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4220                 return sprintf(page, "none\n");
4221
4222         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4223                 max_sectors = mddev->resync_max_sectors;
4224         else
4225                 max_sectors = mddev->dev_sectors;
4226
4227         resync = mddev->curr_resync_completed;
4228         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4229 }
4230
4231 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4232
4233 static ssize_t
4234 min_sync_show(struct mddev *mddev, char *page)
4235 {
4236         return sprintf(page, "%llu\n",
4237                        (unsigned long long)mddev->resync_min);
4238 }
4239 static ssize_t
4240 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4241 {
4242         unsigned long long min;
4243         if (strict_strtoull(buf, 10, &min))
4244                 return -EINVAL;
4245         if (min > mddev->resync_max)
4246                 return -EINVAL;
4247         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4248                 return -EBUSY;
4249
4250         /* Must be a multiple of chunk_size */
4251         if (mddev->chunk_sectors) {
4252                 sector_t temp = min;
4253                 if (sector_div(temp, mddev->chunk_sectors))
4254                         return -EINVAL;
4255         }
4256         mddev->resync_min = min;
4257
4258         return len;
4259 }
4260
4261 static struct md_sysfs_entry md_min_sync =
4262 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4263
4264 static ssize_t
4265 max_sync_show(struct mddev *mddev, char *page)
4266 {
4267         if (mddev->resync_max == MaxSector)
4268                 return sprintf(page, "max\n");
4269         else
4270                 return sprintf(page, "%llu\n",
4271                                (unsigned long long)mddev->resync_max);
4272 }
4273 static ssize_t
4274 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4275 {
4276         if (strncmp(buf, "max", 3) == 0)
4277                 mddev->resync_max = MaxSector;
4278         else {
4279                 unsigned long long max;
4280                 if (strict_strtoull(buf, 10, &max))
4281                         return -EINVAL;
4282                 if (max < mddev->resync_min)
4283                         return -EINVAL;
4284                 if (max < mddev->resync_max &&
4285                     mddev->ro == 0 &&
4286                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4287                         return -EBUSY;
4288
4289                 /* Must be a multiple of chunk_size */
4290                 if (mddev->chunk_sectors) {
4291                         sector_t temp = max;
4292                         if (sector_div(temp, mddev->chunk_sectors))
4293                                 return -EINVAL;
4294                 }
4295                 mddev->resync_max = max;
4296         }
4297         wake_up(&mddev->recovery_wait);
4298         return len;
4299 }
4300
4301 static struct md_sysfs_entry md_max_sync =
4302 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4303
4304 static ssize_t
4305 suspend_lo_show(struct mddev *mddev, char *page)
4306 {
4307         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4308 }
4309
4310 static ssize_t
4311 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4312 {
4313         char *e;
4314         unsigned long long new = simple_strtoull(buf, &e, 10);
4315         unsigned long long old = mddev->suspend_lo;
4316
4317         if (mddev->pers == NULL || 
4318             mddev->pers->quiesce == NULL)
4319                 return -EINVAL;
4320         if (buf == e || (*e && *e != '\n'))
4321                 return -EINVAL;
4322
4323         mddev->suspend_lo = new;
4324         if (new >= old)
4325                 /* Shrinking suspended region */
4326                 mddev->pers->quiesce(mddev, 2);
4327         else {
4328                 /* Expanding suspended region - need to wait */
4329                 mddev->pers->quiesce(mddev, 1);
4330                 mddev->pers->quiesce(mddev, 0);
4331         }
4332         return len;
4333 }
4334 static struct md_sysfs_entry md_suspend_lo =
4335 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4336
4337
4338 static ssize_t
4339 suspend_hi_show(struct mddev *mddev, char *page)
4340 {
4341         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4342 }
4343
4344 static ssize_t
4345 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4346 {
4347         char *e;
4348         unsigned long long new = simple_strtoull(buf, &e, 10);
4349         unsigned long long old = mddev->suspend_hi;
4350
4351         if (mddev->pers == NULL ||
4352             mddev->pers->quiesce == NULL)
4353                 return -EINVAL;
4354         if (buf == e || (*e && *e != '\n'))
4355                 return -EINVAL;
4356
4357         mddev->suspend_hi = new;
4358         if (new <= old)
4359                 /* Shrinking suspended region */
4360                 mddev->pers->quiesce(mddev, 2);
4361         else {
4362                 /* Expanding suspended region - need to wait */
4363                 mddev->pers->quiesce(mddev, 1);
4364                 mddev->pers->quiesce(mddev, 0);
4365         }
4366         return len;
4367 }
4368 static struct md_sysfs_entry md_suspend_hi =
4369 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4370
4371 static ssize_t
4372 reshape_position_show(struct mddev *mddev, char *page)
4373 {
4374         if (mddev->reshape_position != MaxSector)
4375                 return sprintf(page, "%llu\n",
4376                                (unsigned long long)mddev->reshape_position);
4377         strcpy(page, "none\n");
4378         return 5;
4379 }
4380
4381 static ssize_t
4382 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4383 {
4384         char *e;
4385         unsigned long long new = simple_strtoull(buf, &e, 10);
4386         if (mddev->pers)
4387                 return -EBUSY;
4388         if (buf == e || (*e && *e != '\n'))
4389                 return -EINVAL;
4390         mddev->reshape_position = new;
4391         mddev->delta_disks = 0;
4392         mddev->new_level = mddev->level;
4393         mddev->new_layout = mddev->layout;
4394         mddev->new_chunk_sectors = mddev->chunk_sectors;
4395         return len;
4396 }
4397
4398 static struct md_sysfs_entry md_reshape_position =
4399 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4400        reshape_position_store);
4401
4402 static ssize_t
4403 array_size_show(struct mddev *mddev, char *page)
4404 {
4405         if (mddev->external_size)
4406                 return sprintf(page, "%llu\n",
4407                                (unsigned long long)mddev->array_sectors/2);
4408         else
4409                 return sprintf(page, "default\n");
4410 }
4411
4412 static ssize_t
4413 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4414 {
4415         sector_t sectors;
4416
4417         if (strncmp(buf, "default", 7) == 0) {
4418                 if (mddev->pers)
4419                         sectors = mddev->pers->size(mddev, 0, 0);
4420                 else
4421                         sectors = mddev->array_sectors;
4422
4423                 mddev->external_size = 0;
4424         } else {
4425                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4426                         return -EINVAL;
4427                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4428                         return -E2BIG;
4429
4430                 mddev->external_size = 1;
4431         }
4432
4433         mddev->array_sectors = sectors;
4434         if (mddev->pers) {
4435                 set_capacity(mddev->gendisk, mddev->array_sectors);
4436                 revalidate_disk(mddev->gendisk);
4437         }
4438         return len;
4439 }
4440
4441 static struct md_sysfs_entry md_array_size =
4442 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4443        array_size_store);
4444
4445 static struct attribute *md_default_attrs[] = {
4446         &md_level.attr,
4447         &md_layout.attr,
4448         &md_raid_disks.attr,
4449         &md_chunk_size.attr,
4450         &md_size.attr,
4451         &md_resync_start.attr,
4452         &md_metadata.attr,
4453         &md_new_device.attr,
4454         &md_safe_delay.attr,
4455         &md_array_state.attr,
4456         &md_reshape_position.attr,
4457         &md_array_size.attr,
4458         &max_corr_read_errors.attr,
4459         NULL,
4460 };
4461
4462 static struct attribute *md_redundancy_attrs[] = {
4463         &md_scan_mode.attr,
4464         &md_mismatches.attr,
4465         &md_sync_min.attr,
4466         &md_sync_max.attr,
4467         &md_sync_speed.attr,
4468         &md_sync_force_parallel.attr,
4469         &md_sync_completed.attr,
4470         &md_min_sync.attr,
4471         &md_max_sync.attr,
4472         &md_suspend_lo.attr,
4473         &md_suspend_hi.attr,
4474         &md_bitmap.attr,
4475         &md_degraded.attr,
4476         NULL,
4477 };
4478 static struct attribute_group md_redundancy_group = {
4479         .name = NULL,
4480         .attrs = md_redundancy_attrs,
4481 };
4482
4483
4484 static ssize_t
4485 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4486 {
4487         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4488         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4489         ssize_t rv;
4490
4491         if (!entry->show)
4492                 return -EIO;
4493         rv = mddev_lock(mddev);
4494         if (!rv) {
4495                 rv = entry->show(mddev, page);
4496                 mddev_unlock(mddev);
4497         }
4498         return rv;
4499 }
4500
4501 static ssize_t
4502 md_attr_store(struct kobject *kobj, struct attribute *attr,
4503               const char *page, size_t length)
4504 {
4505         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4506         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4507         ssize_t rv;
4508
4509         if (!entry->store)
4510                 return -EIO;
4511         if (!capable(CAP_SYS_ADMIN))
4512                 return -EACCES;
4513         rv = mddev_lock(mddev);
4514         if (mddev->hold_active == UNTIL_IOCTL)
4515                 mddev->hold_active = 0;
4516         if (!rv) {
4517                 rv = entry->store(mddev, page, length);
4518                 mddev_unlock(mddev);
4519         }
4520         return rv;
4521 }
4522
4523 static void md_free(struct kobject *ko)
4524 {
4525         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4526
4527         if (mddev->sysfs_state)
4528                 sysfs_put(mddev->sysfs_state);
4529
4530         if (mddev->gendisk) {
4531                 del_gendisk(mddev->gendisk);
4532                 put_disk(mddev->gendisk);
4533         }
4534         if (mddev->queue)
4535                 blk_cleanup_queue(mddev->queue);
4536
4537         kfree(mddev);
4538 }
4539
4540 static const struct sysfs_ops md_sysfs_ops = {
4541         .show   = md_attr_show,
4542         .store  = md_attr_store,
4543 };
4544 static struct kobj_type md_ktype = {
4545         .release        = md_free,
4546         .sysfs_ops      = &md_sysfs_ops,
4547         .default_attrs  = md_default_attrs,
4548 };
4549
4550 int mdp_major = 0;
4551
4552 static void mddev_delayed_delete(struct work_struct *ws)
4553 {
4554         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4555
4556         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4557         kobject_del(&mddev->kobj);
4558         kobject_put(&mddev->kobj);
4559 }
4560
4561 static int md_alloc(dev_t dev, char *name)
4562 {
4563         static DEFINE_MUTEX(disks_mutex);
4564         struct mddev *mddev = mddev_find(dev);
4565         struct gendisk *disk;
4566         int partitioned;
4567         int shift;
4568         int unit;
4569         int error;
4570
4571         if (!mddev)
4572                 return -ENODEV;
4573
4574         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4575         shift = partitioned ? MdpMinorShift : 0;
4576         unit = MINOR(mddev->unit) >> shift;
4577
4578         /* wait for any previous instance of this device to be
4579          * completely removed (mddev_delayed_delete).
4580          */
4581         flush_workqueue(md_misc_wq);
4582
4583         mutex_lock(&disks_mutex);
4584         error = -EEXIST;
4585         if (mddev->gendisk)
4586                 goto abort;
4587
4588         if (name) {
4589                 /* Need to ensure that 'name' is not a duplicate.
4590                  */
4591                 struct mddev *mddev2;
4592                 spin_lock(&all_mddevs_lock);
4593
4594                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4595                         if (mddev2->gendisk &&
4596                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4597                                 spin_unlock(&all_mddevs_lock);
4598                                 goto abort;
4599                         }
4600                 spin_unlock(&all_mddevs_lock);
4601         }
4602
4603         error = -ENOMEM;
4604         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4605         if (!mddev->queue)
4606                 goto abort;
4607         mddev->queue->queuedata = mddev;
4608
4609         blk_queue_make_request(mddev->queue, md_make_request);
4610
4611         disk = alloc_disk(1 << shift);
4612         if (!disk) {
4613                 blk_cleanup_queue(mddev->queue);
4614                 mddev->queue = NULL;
4615                 goto abort;
4616         }
4617         disk->major = MAJOR(mddev->unit);
4618         disk->first_minor = unit << shift;
4619         if (name)
4620                 strcpy(disk->disk_name, name);
4621         else if (partitioned)
4622                 sprintf(disk->disk_name, "md_d%d", unit);
4623         else
4624                 sprintf(disk->disk_name, "md%d", unit);
4625         disk->fops = &md_fops;
4626         disk->private_data = mddev;
4627         disk->queue = mddev->queue;
4628         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4629         /* Allow extended partitions.  This makes the
4630          * 'mdp' device redundant, but we can't really
4631          * remove it now.
4632          */
4633         disk->flags |= GENHD_FL_EXT_DEVT;
4634         mddev->gendisk = disk;
4635         /* As soon as we call add_disk(), another thread could get
4636          * through to md_open, so make sure it doesn't get too far
4637          */
4638         mutex_lock(&mddev->open_mutex);
4639         add_disk(disk);
4640
4641         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4642                                      &disk_to_dev(disk)->kobj, "%s", "md");
4643         if (error) {
4644                 /* This isn't possible, but as kobject_init_and_add is marked
4645                  * __must_check, we must do something with the result
4646                  */
4647                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4648                        disk->disk_name);
4649                 error = 0;
4650         }
4651         if (mddev->kobj.sd &&
4652             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4653                 printk(KERN_DEBUG "pointless warning\n");
4654         mutex_unlock(&mddev->open_mutex);
4655  abort:
4656         mutex_unlock(&disks_mutex);
4657         if (!error && mddev->kobj.sd) {
4658                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4659                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4660         }
4661         mddev_put(mddev);
4662         return error;
4663 }
4664
4665 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4666 {
4667         md_alloc(dev, NULL);
4668         return NULL;
4669 }
4670
4671 static int add_named_array(const char *val, struct kernel_param *kp)
4672 {
4673         /* val must be "md_*" where * is not all digits.
4674          * We allocate an array with a large free minor number, and
4675          * set the name to val.  val must not already be an active name.
4676          */
4677         int len = strlen(val);
4678         char buf[DISK_NAME_LEN];
4679
4680         while (len && val[len-1] == '\n')
4681                 len--;
4682         if (len >= DISK_NAME_LEN)
4683                 return -E2BIG;
4684         strlcpy(buf, val, len+1);
4685         if (strncmp(buf, "md_", 3) != 0)
4686                 return -EINVAL;
4687         return md_alloc(0, buf);
4688 }
4689
4690 static void md_safemode_timeout(unsigned long data)
4691 {
4692         struct mddev *mddev = (struct mddev *) data;
4693
4694         if (!atomic_read(&mddev->writes_pending)) {
4695                 mddev->safemode = 1;
4696                 if (mddev->external)
4697                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4698         }
4699         md_wakeup_thread(mddev->thread);
4700 }
4701
4702 static int start_dirty_degraded;
4703
4704 int md_run(struct mddev *mddev)
4705 {
4706         int err;
4707         struct md_rdev *rdev;
4708         struct md_personality *pers;
4709
4710         if (list_empty(&mddev->disks))
4711                 /* cannot run an array with no devices.. */
4712                 return -EINVAL;
4713
4714         if (mddev->pers)
4715                 return -EBUSY;
4716         /* Cannot run until previous stop completes properly */
4717         if (mddev->sysfs_active)
4718                 return -EBUSY;
4719
4720         /*
4721          * Analyze all RAID superblock(s)
4722          */
4723         if (!mddev->raid_disks) {
4724                 if (!mddev->persistent)
4725                         return -EINVAL;
4726                 analyze_sbs(mddev);
4727         }
4728
4729         if (mddev->level != LEVEL_NONE)
4730                 request_module("md-level-%d", mddev->level);
4731         else if (mddev->clevel[0])
4732                 request_module("md-%s", mddev->clevel);
4733
4734         /*
4735          * Drop all container device buffers, from now on
4736          * the only valid external interface is through the md
4737          * device.
4738          */
4739         list_for_each_entry(rdev, &mddev->disks, same_set) {
4740                 if (test_bit(Faulty, &rdev->flags))
4741                         continue;
4742                 sync_blockdev(rdev->bdev);
4743                 invalidate_bdev(rdev->bdev);
4744
4745                 /* perform some consistency tests on the device.
4746                  * We don't want the data to overlap the metadata,
4747                  * Internal Bitmap issues have been handled elsewhere.
4748                  */
4749                 if (rdev->meta_bdev) {
4750                         /* Nothing to check */;
4751                 } else if (rdev->data_offset < rdev->sb_start) {
4752                         if (mddev->dev_sectors &&
4753                             rdev->data_offset + mddev->dev_sectors
4754                             > rdev->sb_start) {
4755                                 printk("md: %s: data overlaps metadata\n",
4756                                        mdname(mddev));
4757                                 return -EINVAL;
4758                         }
4759                 } else {
4760                         if (rdev->sb_start + rdev->sb_size/512
4761                             > rdev->data_offset) {
4762                                 printk("md: %s: metadata overlaps data\n",
4763                                        mdname(mddev));
4764                                 return -EINVAL;
4765                         }
4766                 }
4767                 sysfs_notify_dirent_safe(rdev->sysfs_state);
4768         }
4769
4770         if (mddev->bio_set == NULL)
4771                 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4772                                                sizeof(struct mddev *));
4773
4774         spin_lock(&pers_lock);
4775         pers = find_pers(mddev->level, mddev->clevel);
4776         if (!pers || !try_module_get(pers->owner)) {
4777                 spin_unlock(&pers_lock);
4778                 if (mddev->level != LEVEL_NONE)
4779                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4780                                mddev->level);
4781                 else
4782                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4783                                mddev->clevel);
4784                 return -EINVAL;
4785         }
4786         mddev->pers = pers;
4787         spin_unlock(&pers_lock);
4788         if (mddev->level != pers->level) {
4789                 mddev->level = pers->level;
4790                 mddev->new_level = pers->level;
4791         }
4792         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4793
4794         if (mddev->reshape_position != MaxSector &&
4795             pers->start_reshape == NULL) {
4796                 /* This personality cannot handle reshaping... */
4797                 mddev->pers = NULL;
4798                 module_put(pers->owner);
4799                 return -EINVAL;
4800         }
4801
4802         if (pers->sync_request) {
4803                 /* Warn if this is a potentially silly
4804                  * configuration.
4805                  */
4806                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4807                 struct md_rdev *rdev2;
4808                 int warned = 0;
4809
4810                 list_for_each_entry(rdev, &mddev->disks, same_set)
4811                         list_for_each_entry(rdev2, &mddev->disks, same_set) {
4812                                 if (rdev < rdev2 &&
4813                                     rdev->bdev->bd_contains ==
4814                                     rdev2->bdev->bd_contains) {
4815                                         printk(KERN_WARNING
4816                                                "%s: WARNING: %s appears to be"
4817                                                " on the same physical disk as"
4818                                                " %s.\n",
4819                                                mdname(mddev),
4820                                                bdevname(rdev->bdev,b),
4821                                                bdevname(rdev2->bdev,b2));
4822                                         warned = 1;
4823                                 }
4824                         }
4825
4826                 if (warned)
4827                         printk(KERN_WARNING
4828                                "True protection against single-disk"
4829                                " failure might be compromised.\n");
4830         }
4831
4832         mddev->recovery = 0;
4833         /* may be over-ridden by personality */
4834         mddev->resync_max_sectors = mddev->dev_sectors;
4835
4836         mddev->ok_start_degraded = start_dirty_degraded;
4837
4838         if (start_readonly && mddev->ro == 0)
4839                 mddev->ro = 2; /* read-only, but switch on first write */
4840
4841         err = mddev->pers->run(mddev);
4842         if (err)
4843                 printk(KERN_ERR "md: pers->run() failed ...\n");
4844         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4845                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4846                           " but 'external_size' not in effect?\n", __func__);
4847                 printk(KERN_ERR
4848                        "md: invalid array_size %llu > default size %llu\n",
4849                        (unsigned long long)mddev->array_sectors / 2,
4850                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4851                 err = -EINVAL;
4852                 mddev->pers->stop(mddev);
4853         }
4854         if (err == 0 && mddev->pers->sync_request) {
4855                 err = bitmap_create(mddev);
4856                 if (err) {
4857                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4858                                mdname(mddev), err);
4859                         mddev->pers->stop(mddev);
4860                 }
4861         }
4862         if (err) {
4863                 module_put(mddev->pers->owner);
4864                 mddev->pers = NULL;
4865                 bitmap_destroy(mddev);
4866                 return err;
4867         }
4868         if (mddev->pers->sync_request) {
4869                 if (mddev->kobj.sd &&
4870                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4871                         printk(KERN_WARNING
4872                                "md: cannot register extra attributes for %s\n",
4873                                mdname(mddev));
4874                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4875         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4876                 mddev->ro = 0;
4877
4878         atomic_set(&mddev->writes_pending,0);
4879         atomic_set(&mddev->max_corr_read_errors,
4880                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4881         mddev->safemode = 0;
4882         mddev->safemode_timer.function = md_safemode_timeout;
4883         mddev->safemode_timer.data = (unsigned long) mddev;
4884         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4885         mddev->in_sync = 1;
4886         smp_wmb();
4887         mddev->ready = 1;
4888         list_for_each_entry(rdev, &mddev->disks, same_set)
4889                 if (rdev->raid_disk >= 0)
4890                         if (sysfs_link_rdev(mddev, rdev))
4891                                 /* failure here is OK */;
4892         
4893         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4894         
4895         if (mddev->flags)
4896                 md_update_sb(mddev, 0);
4897
4898         md_new_event(mddev);
4899         sysfs_notify_dirent_safe(mddev->sysfs_state);
4900         sysfs_notify_dirent_safe(mddev->sysfs_action);
4901         sysfs_notify(&mddev->kobj, NULL, "degraded");
4902         return 0;
4903 }
4904 EXPORT_SYMBOL_GPL(md_run);
4905
4906 static int do_md_run(struct mddev *mddev)
4907 {
4908         int err;
4909
4910         err = md_run(mddev);
4911         if (err)
4912                 goto out;
4913         err = bitmap_load(mddev);
4914         if (err) {
4915                 bitmap_destroy(mddev);
4916                 goto out;
4917         }
4918
4919         md_wakeup_thread(mddev->thread);
4920         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4921
4922         set_capacity(mddev->gendisk, mddev->array_sectors);
4923         revalidate_disk(mddev->gendisk);
4924         mddev->changed = 1;
4925         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4926 out:
4927         return err;
4928 }
4929
4930 static int restart_array(struct mddev *mddev)
4931 {
4932         struct gendisk *disk = mddev->gendisk;
4933
4934         /* Complain if it has no devices */
4935         if (list_empty(&mddev->disks))
4936                 return -ENXIO;
4937         if (!mddev->pers)
4938                 return -EINVAL;
4939         if (!mddev->ro)
4940                 return -EBUSY;
4941         mddev->safemode = 0;
4942         mddev->ro = 0;
4943         set_disk_ro(disk, 0);
4944         printk(KERN_INFO "md: %s switched to read-write mode.\n",
4945                 mdname(mddev));
4946         /* Kick recovery or resync if necessary */
4947         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4948         md_wakeup_thread(mddev->thread);
4949         md_wakeup_thread(mddev->sync_thread);
4950         sysfs_notify_dirent_safe(mddev->sysfs_state);
4951         return 0;
4952 }
4953
4954 /* similar to deny_write_access, but accounts for our holding a reference
4955  * to the file ourselves */
4956 static int deny_bitmap_write_access(struct file * file)
4957 {
4958         struct inode *inode = file->f_mapping->host;
4959
4960         spin_lock(&inode->i_lock);
4961         if (atomic_read(&inode->i_writecount) > 1) {
4962                 spin_unlock(&inode->i_lock);
4963                 return -ETXTBSY;
4964         }
4965         atomic_set(&inode->i_writecount, -1);
4966         spin_unlock(&inode->i_lock);
4967
4968         return 0;
4969 }
4970
4971 void restore_bitmap_write_access(struct file *file)
4972 {
4973         struct inode *inode = file->f_mapping->host;
4974
4975         spin_lock(&inode->i_lock);
4976         atomic_set(&inode->i_writecount, 1);
4977         spin_unlock(&inode->i_lock);
4978 }
4979
4980 static void md_clean(struct mddev *mddev)
4981 {
4982         mddev->array_sectors = 0;
4983         mddev->external_size = 0;
4984         mddev->dev_sectors = 0;
4985         mddev->raid_disks = 0;
4986         mddev->recovery_cp = 0;
4987         mddev->resync_min = 0;
4988         mddev->resync_max = MaxSector;
4989         mddev->reshape_position = MaxSector;
4990         mddev->external = 0;
4991         mddev->persistent = 0;
4992         mddev->level = LEVEL_NONE;
4993         mddev->clevel[0] = 0;
4994         mddev->flags = 0;
4995         mddev->ro = 0;
4996         mddev->metadata_type[0] = 0;
4997         mddev->chunk_sectors = 0;
4998         mddev->ctime = mddev->utime = 0;
4999         mddev->layout = 0;
5000         mddev->max_disks = 0;
5001         mddev->events = 0;
5002         mddev->can_decrease_events = 0;
5003         mddev->delta_disks = 0;
5004         mddev->new_level = LEVEL_NONE;
5005         mddev->new_layout = 0;
5006         mddev->new_chunk_sectors = 0;
5007         mddev->curr_resync = 0;
5008         mddev->resync_mismatches = 0;
5009         mddev->suspend_lo = mddev->suspend_hi = 0;
5010         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5011         mddev->recovery = 0;
5012         mddev->in_sync = 0;
5013         mddev->changed = 0;
5014         mddev->degraded = 0;
5015         mddev->safemode = 0;
5016         mddev->bitmap_info.offset = 0;
5017         mddev->bitmap_info.default_offset = 0;
5018         mddev->bitmap_info.chunksize = 0;
5019         mddev->bitmap_info.daemon_sleep = 0;
5020         mddev->bitmap_info.max_write_behind = 0;
5021 }
5022
5023 static void __md_stop_writes(struct mddev *mddev)
5024 {
5025         if (mddev->sync_thread) {
5026                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5027                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5028                 reap_sync_thread(mddev);
5029         }
5030
5031         del_timer_sync(&mddev->safemode_timer);
5032
5033         bitmap_flush(mddev);
5034         md_super_wait(mddev);
5035
5036         if (!mddev->in_sync || mddev->flags) {
5037                 /* mark array as shutdown cleanly */
5038                 mddev->in_sync = 1;
5039                 md_update_sb(mddev, 1);
5040         }
5041 }
5042
5043 void md_stop_writes(struct mddev *mddev)
5044 {
5045         mddev_lock(mddev);
5046         __md_stop_writes(mddev);
5047         mddev_unlock(mddev);
5048 }
5049 EXPORT_SYMBOL_GPL(md_stop_writes);
5050
5051 void md_stop(struct mddev *mddev)
5052 {
5053         mddev->ready = 0;
5054         mddev->pers->stop(mddev);
5055         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5056                 mddev->to_remove = &md_redundancy_group;
5057         module_put(mddev->pers->owner);
5058         mddev->pers = NULL;
5059         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5060 }
5061 EXPORT_SYMBOL_GPL(md_stop);
5062
5063 static int md_set_readonly(struct mddev *mddev, int is_open)
5064 {
5065         int err = 0;
5066         mutex_lock(&mddev->open_mutex);
5067         if (atomic_read(&mddev->openers) > is_open) {
5068                 printk("md: %s still in use.\n",mdname(mddev));
5069                 err = -EBUSY;
5070                 goto out;
5071         }
5072         if (mddev->pers) {
5073                 __md_stop_writes(mddev);
5074
5075                 err  = -ENXIO;
5076                 if (mddev->ro==1)
5077                         goto out;
5078                 mddev->ro = 1;
5079                 set_disk_ro(mddev->gendisk, 1);
5080                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5081                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5082                 err = 0;        
5083         }
5084 out:
5085         mutex_unlock(&mddev->open_mutex);
5086         return err;
5087 }
5088
5089 /* mode:
5090  *   0 - completely stop and dis-assemble array
5091  *   2 - stop but do not disassemble array
5092  */
5093 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5094 {
5095         struct gendisk *disk = mddev->gendisk;
5096         struct md_rdev *rdev;
5097
5098         mutex_lock(&mddev->open_mutex);
5099         if (atomic_read(&mddev->openers) > is_open ||
5100             mddev->sysfs_active) {
5101                 printk("md: %s still in use.\n",mdname(mddev));
5102                 mutex_unlock(&mddev->open_mutex);
5103                 return -EBUSY;
5104         }
5105
5106         if (mddev->pers) {
5107                 if (mddev->ro)
5108                         set_disk_ro(disk, 0);
5109
5110                 __md_stop_writes(mddev);
5111                 md_stop(mddev);
5112                 mddev->queue->merge_bvec_fn = NULL;
5113                 mddev->queue->backing_dev_info.congested_fn = NULL;
5114
5115                 /* tell userspace to handle 'inactive' */
5116                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5117
5118                 list_for_each_entry(rdev, &mddev->disks, same_set)
5119                         if (rdev->raid_disk >= 0)
5120                                 sysfs_unlink_rdev(mddev, rdev);
5121
5122                 set_capacity(disk, 0);
5123                 mutex_unlock(&mddev->open_mutex);
5124                 mddev->changed = 1;
5125                 revalidate_disk(disk);
5126
5127                 if (mddev->ro)
5128                         mddev->ro = 0;
5129         } else
5130                 mutex_unlock(&mddev->open_mutex);
5131         /*
5132          * Free resources if final stop
5133          */
5134         if (mode == 0) {
5135                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5136
5137                 bitmap_destroy(mddev);
5138                 if (mddev->bitmap_info.file) {
5139                         restore_bitmap_write_access(mddev->bitmap_info.file);
5140                         fput(mddev->bitmap_info.file);
5141                         mddev->bitmap_info.file = NULL;
5142                 }
5143                 mddev->bitmap_info.offset = 0;
5144
5145                 export_array(mddev);
5146
5147                 md_clean(mddev);
5148                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5149                 if (mddev->hold_active == UNTIL_STOP)
5150                         mddev->hold_active = 0;
5151         }
5152         blk_integrity_unregister(disk);
5153         md_new_event(mddev);
5154         sysfs_notify_dirent_safe(mddev->sysfs_state);
5155         return 0;
5156 }
5157
5158 #ifndef MODULE
5159 static void autorun_array(struct mddev *mddev)
5160 {
5161         struct md_rdev *rdev;
5162         int err;
5163
5164         if (list_empty(&mddev->disks))
5165                 return;
5166
5167         printk(KERN_INFO "md: running: ");
5168
5169         list_for_each_entry(rdev, &mddev->disks, same_set) {
5170                 char b[BDEVNAME_SIZE];
5171                 printk("<%s>", bdevname(rdev->bdev,b));
5172         }
5173         printk("\n");
5174
5175         err = do_md_run(mddev);
5176         if (err) {
5177                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5178                 do_md_stop(mddev, 0, 0);
5179         }
5180 }
5181
5182 /*
5183  * lets try to run arrays based on all disks that have arrived
5184  * until now. (those are in pending_raid_disks)
5185  *
5186  * the method: pick the first pending disk, collect all disks with
5187  * the same UUID, remove all from the pending list and put them into
5188  * the 'same_array' list. Then order this list based on superblock
5189  * update time (freshest comes first), kick out 'old' disks and
5190  * compare superblocks. If everything's fine then run it.
5191  *
5192  * If "unit" is allocated, then bump its reference count
5193  */
5194 static void autorun_devices(int part)
5195 {
5196         struct md_rdev *rdev0, *rdev, *tmp;
5197         struct mddev *mddev;
5198         char b[BDEVNAME_SIZE];
5199
5200         printk(KERN_INFO "md: autorun ...\n");
5201         while (!list_empty(&pending_raid_disks)) {
5202                 int unit;
5203                 dev_t dev;
5204                 LIST_HEAD(candidates);
5205                 rdev0 = list_entry(pending_raid_disks.next,
5206                                          struct md_rdev, same_set);
5207
5208                 printk(KERN_INFO "md: considering %s ...\n",
5209                         bdevname(rdev0->bdev,b));
5210                 INIT_LIST_HEAD(&candidates);
5211                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5212                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5213                                 printk(KERN_INFO "md:  adding %s ...\n",
5214                                         bdevname(rdev->bdev,b));
5215                                 list_move(&rdev->same_set, &candidates);
5216                         }
5217                 /*
5218                  * now we have a set of devices, with all of them having
5219                  * mostly sane superblocks. It's time to allocate the
5220                  * mddev.
5221                  */
5222                 if (part) {
5223                         dev = MKDEV(mdp_major,
5224                                     rdev0->preferred_minor << MdpMinorShift);
5225                         unit = MINOR(dev) >> MdpMinorShift;
5226                 } else {
5227                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5228                         unit = MINOR(dev);
5229                 }
5230                 if (rdev0->preferred_minor != unit) {
5231                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5232                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5233                         break;
5234                 }
5235
5236                 md_probe(dev, NULL, NULL);
5237                 mddev = mddev_find(dev);
5238                 if (!mddev || !mddev->gendisk) {
5239                         if (mddev)
5240                                 mddev_put(mddev);
5241                         printk(KERN_ERR
5242                                 "md: cannot allocate memory for md drive.\n");
5243                         break;
5244                 }
5245                 if (mddev_lock(mddev)) 
5246                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5247                                mdname(mddev));
5248                 else if (mddev->raid_disks || mddev->major_version
5249                          || !list_empty(&mddev->disks)) {
5250                         printk(KERN_WARNING 
5251                                 "md: %s already running, cannot run %s\n",
5252                                 mdname(mddev), bdevname(rdev0->bdev,b));
5253                         mddev_unlock(mddev);
5254                 } else {
5255                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5256                         mddev->persistent = 1;
5257                         rdev_for_each_list(rdev, tmp, &candidates) {
5258                                 list_del_init(&rdev->same_set);
5259                                 if (bind_rdev_to_array(rdev, mddev))
5260                                         export_rdev(rdev);
5261                         }
5262                         autorun_array(mddev);
5263                         mddev_unlock(mddev);
5264                 }
5265                 /* on success, candidates will be empty, on error
5266                  * it won't...
5267                  */
5268                 rdev_for_each_list(rdev, tmp, &candidates) {
5269                         list_del_init(&rdev->same_set);
5270                         export_rdev(rdev);
5271                 }
5272                 mddev_put(mddev);
5273         }
5274         printk(KERN_INFO "md: ... autorun DONE.\n");
5275 }
5276 #endif /* !MODULE */
5277
5278 static int get_version(void __user * arg)
5279 {
5280         mdu_version_t ver;
5281
5282         ver.major = MD_MAJOR_VERSION;
5283         ver.minor = MD_MINOR_VERSION;
5284         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5285
5286         if (copy_to_user(arg, &ver, sizeof(ver)))
5287                 return -EFAULT;
5288
5289         return 0;
5290 }
5291
5292 static int get_array_info(struct mddev * mddev, void __user * arg)
5293 {
5294         mdu_array_info_t info;
5295         int nr,working,insync,failed,spare;
5296         struct md_rdev *rdev;
5297
5298         nr=working=insync=failed=spare=0;
5299         list_for_each_entry(rdev, &mddev->disks, same_set) {
5300                 nr++;
5301                 if (test_bit(Faulty, &rdev->flags))
5302                         failed++;
5303                 else {
5304                         working++;
5305                         if (test_bit(In_sync, &rdev->flags))
5306                                 insync++;       
5307                         else
5308                                 spare++;
5309                 }
5310         }
5311
5312         info.major_version = mddev->major_version;
5313         info.minor_version = mddev->minor_version;
5314         info.patch_version = MD_PATCHLEVEL_VERSION;
5315         info.ctime         = mddev->ctime;
5316         info.level         = mddev->level;
5317         info.size          = mddev->dev_sectors / 2;
5318         if (info.size != mddev->dev_sectors / 2) /* overflow */
5319                 info.size = -1;
5320         info.nr_disks      = nr;
5321         info.raid_disks    = mddev->raid_disks;
5322         info.md_minor      = mddev->md_minor;
5323         info.not_persistent= !mddev->persistent;
5324
5325         info.utime         = mddev->utime;
5326         info.state         = 0;
5327         if (mddev->in_sync)
5328                 info.state = (1<<MD_SB_CLEAN);
5329         if (mddev->bitmap && mddev->bitmap_info.offset)
5330                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5331         info.active_disks  = insync;
5332         info.working_disks = working;
5333         info.failed_disks  = failed;
5334         info.spare_disks   = spare;
5335
5336         info.layout        = mddev->layout;
5337         info.chunk_size    = mddev->chunk_sectors << 9;
5338
5339         if (copy_to_user(arg, &info, sizeof(info)))
5340                 return -EFAULT;
5341
5342         return 0;
5343 }
5344
5345 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5346 {
5347         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5348         char *ptr, *buf = NULL;
5349         int err = -ENOMEM;
5350
5351         if (md_allow_write(mddev))
5352                 file = kmalloc(sizeof(*file), GFP_NOIO);
5353         else
5354                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5355
5356         if (!file)
5357                 goto out;
5358
5359         /* bitmap disabled, zero the first byte and copy out */
5360         if (!mddev->bitmap || !mddev->bitmap->file) {
5361                 file->pathname[0] = '\0';
5362                 goto copy_out;
5363         }
5364
5365         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5366         if (!buf)
5367                 goto out;
5368
5369         ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5370         if (IS_ERR(ptr))
5371                 goto out;
5372
5373         strcpy(file->pathname, ptr);
5374
5375 copy_out:
5376         err = 0;
5377         if (copy_to_user(arg, file, sizeof(*file)))
5378                 err = -EFAULT;
5379 out:
5380         kfree(buf);
5381         kfree(file);
5382         return err;
5383 }
5384
5385 static int get_disk_info(struct mddev * mddev, void __user * arg)
5386 {
5387         mdu_disk_info_t info;
5388         struct md_rdev *rdev;
5389
5390         if (copy_from_user(&info, arg, sizeof(info)))
5391                 return -EFAULT;
5392
5393         rdev = find_rdev_nr(mddev, info.number);
5394         if (rdev) {
5395                 info.major = MAJOR(rdev->bdev->bd_dev);
5396                 info.minor = MINOR(rdev->bdev->bd_dev);
5397                 info.raid_disk = rdev->raid_disk;
5398                 info.state = 0;
5399                 if (test_bit(Faulty, &rdev->flags))
5400                         info.state |= (1<<MD_DISK_FAULTY);
5401                 else if (test_bit(In_sync, &rdev->flags)) {
5402                         info.state |= (1<<MD_DISK_ACTIVE);
5403                         info.state |= (1<<MD_DISK_SYNC);
5404                 }
5405                 if (test_bit(WriteMostly, &rdev->flags))
5406                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5407         } else {
5408                 info.major = info.minor = 0;
5409                 info.raid_disk = -1;
5410                 info.state = (1<<MD_DISK_REMOVED);
5411         }
5412
5413         if (copy_to_user(arg, &info, sizeof(info)))
5414                 return -EFAULT;
5415
5416         return 0;
5417 }
5418
5419 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5420 {
5421         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5422         struct md_rdev *rdev;
5423         dev_t dev = MKDEV(info->major,info->minor);
5424
5425         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5426                 return -EOVERFLOW;
5427
5428         if (!mddev->raid_disks) {
5429                 int err;
5430                 /* expecting a device which has a superblock */
5431                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5432                 if (IS_ERR(rdev)) {
5433                         printk(KERN_WARNING 
5434                                 "md: md_import_device returned %ld\n",
5435                                 PTR_ERR(rdev));
5436                         return PTR_ERR(rdev);
5437                 }
5438                 if (!list_empty(&mddev->disks)) {
5439                         struct md_rdev *rdev0
5440                                 = list_entry(mddev->disks.next,
5441                                              struct md_rdev, same_set);
5442                         err = super_types[mddev->major_version]
5443                                 .load_super(rdev, rdev0, mddev->minor_version);
5444                         if (err < 0) {
5445                                 printk(KERN_WARNING 
5446                                         "md: %s has different UUID to %s\n",
5447                                         bdevname(rdev->bdev,b), 
5448                                         bdevname(rdev0->bdev,b2));
5449                                 export_rdev(rdev);
5450                                 return -EINVAL;
5451                         }
5452                 }
5453                 err = bind_rdev_to_array(rdev, mddev);
5454                 if (err)
5455                         export_rdev(rdev);
5456                 return err;
5457         }
5458
5459         /*
5460          * add_new_disk can be used once the array is assembled
5461          * to add "hot spares".  They must already have a superblock
5462          * written
5463          */
5464         if (mddev->pers) {
5465                 int err;
5466                 if (!mddev->pers->hot_add_disk) {
5467                         printk(KERN_WARNING 
5468                                 "%s: personality does not support diskops!\n",
5469                                mdname(mddev));
5470                         return -EINVAL;
5471                 }
5472                 if (mddev->persistent)
5473                         rdev = md_import_device(dev, mddev->major_version,
5474                                                 mddev->minor_version);
5475                 else
5476                         rdev = md_import_device(dev, -1, -1);
5477                 if (IS_ERR(rdev)) {
5478                         printk(KERN_WARNING 
5479                                 "md: md_import_device returned %ld\n",
5480                                 PTR_ERR(rdev));
5481                         return PTR_ERR(rdev);
5482                 }
5483                 /* set saved_raid_disk if appropriate */
5484                 if (!mddev->persistent) {
5485                         if (info->state & (1<<MD_DISK_SYNC)  &&
5486                             info->raid_disk < mddev->raid_disks) {
5487                                 rdev->raid_disk = info->raid_disk;
5488                                 set_bit(In_sync, &rdev->flags);
5489                         } else
5490                                 rdev->raid_disk = -1;
5491                 } else
5492                         super_types[mddev->major_version].
5493                                 validate_super(mddev, rdev);
5494                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5495                     (!test_bit(In_sync, &rdev->flags) ||
5496                      rdev->raid_disk != info->raid_disk)) {
5497                         /* This was a hot-add request, but events doesn't
5498                          * match, so reject it.
5499                          */
5500                         export_rdev(rdev);
5501                         return -EINVAL;
5502                 }
5503
5504                 if (test_bit(In_sync, &rdev->flags))
5505                         rdev->saved_raid_disk = rdev->raid_disk;
5506                 else
5507                         rdev->saved_raid_disk = -1;
5508
5509                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5510                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5511                         set_bit(WriteMostly, &rdev->flags);
5512                 else
5513                         clear_bit(WriteMostly, &rdev->flags);
5514
5515                 rdev->raid_disk = -1;
5516                 err = bind_rdev_to_array(rdev, mddev);
5517                 if (!err && !mddev->pers->hot_remove_disk) {
5518                         /* If there is hot_add_disk but no hot_remove_disk
5519                          * then added disks for geometry changes,
5520                          * and should be added immediately.
5521                          */
5522                         super_types[mddev->major_version].
5523                                 validate_super(mddev, rdev);
5524                         err = mddev->pers->hot_add_disk(mddev, rdev);
5525                         if (err)
5526                                 unbind_rdev_from_array(rdev);
5527                 }
5528                 if (err)
5529                         export_rdev(rdev);
5530                 else
5531                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5532
5533                 md_update_sb(mddev, 1);
5534                 if (mddev->degraded)
5535                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5536                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5537                 if (!err)
5538                         md_new_event(mddev);
5539                 md_wakeup_thread(mddev->thread);
5540                 return err;
5541         }
5542
5543         /* otherwise, add_new_disk is only allowed
5544          * for major_version==0 superblocks
5545          */
5546         if (mddev->major_version != 0) {
5547                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5548                        mdname(mddev));
5549                 return -EINVAL;
5550         }
5551
5552         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5553                 int err;
5554                 rdev = md_import_device(dev, -1, 0);
5555                 if (IS_ERR(rdev)) {
5556                         printk(KERN_WARNING 
5557                                 "md: error, md_import_device() returned %ld\n",
5558                                 PTR_ERR(rdev));
5559                         return PTR_ERR(rdev);
5560                 }
5561                 rdev->desc_nr = info->number;
5562                 if (info->raid_disk < mddev->raid_disks)
5563                         rdev->raid_disk = info->raid_disk;
5564                 else
5565                         rdev->raid_disk = -1;
5566
5567                 if (rdev->raid_disk < mddev->raid_disks)
5568                         if (info->state & (1<<MD_DISK_SYNC))
5569                                 set_bit(In_sync, &rdev->flags);
5570
5571                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5572                         set_bit(WriteMostly, &rdev->flags);
5573
5574                 if (!mddev->persistent) {
5575                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5576                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5577                 } else
5578                         rdev->sb_start = calc_dev_sboffset(rdev);
5579                 rdev->sectors = rdev->sb_start;
5580
5581                 err = bind_rdev_to_array(rdev, mddev);
5582                 if (err) {
5583                         export_rdev(rdev);
5584                         return err;
5585                 }
5586         }
5587
5588         return 0;
5589 }
5590
5591 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5592 {
5593         char b[BDEVNAME_SIZE];
5594         struct md_rdev *rdev;
5595
5596         rdev = find_rdev(mddev, dev);
5597         if (!rdev)
5598                 return -ENXIO;
5599
5600         if (rdev->raid_disk >= 0)
5601                 goto busy;
5602
5603         kick_rdev_from_array(rdev);
5604         md_update_sb(mddev, 1);
5605         md_new_event(mddev);
5606
5607         return 0;
5608 busy:
5609         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5610                 bdevname(rdev->bdev,b), mdname(mddev));
5611         return -EBUSY;
5612 }
5613
5614 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5615 {
5616         char b[BDEVNAME_SIZE];
5617         int err;
5618         struct md_rdev *rdev;
5619
5620         if (!mddev->pers)
5621                 return -ENODEV;
5622
5623         if (mddev->major_version != 0) {
5624                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5625                         " version-0 superblocks.\n",
5626                         mdname(mddev));
5627                 return -EINVAL;
5628         }
5629         if (!mddev->pers->hot_add_disk) {
5630                 printk(KERN_WARNING 
5631                         "%s: personality does not support diskops!\n",
5632                         mdname(mddev));
5633                 return -EINVAL;
5634         }
5635
5636         rdev = md_import_device(dev, -1, 0);
5637         if (IS_ERR(rdev)) {
5638                 printk(KERN_WARNING 
5639                         "md: error, md_import_device() returned %ld\n",
5640                         PTR_ERR(rdev));
5641                 return -EINVAL;
5642         }
5643
5644         if (mddev->persistent)
5645                 rdev->sb_start = calc_dev_sboffset(rdev);
5646         else
5647                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5648
5649         rdev->sectors = rdev->sb_start;
5650
5651         if (test_bit(Faulty, &rdev->flags)) {
5652                 printk(KERN_WARNING 
5653                         "md: can not hot-add faulty %s disk to %s!\n",
5654                         bdevname(rdev->bdev,b), mdname(mddev));
5655                 err = -EINVAL;
5656                 goto abort_export;
5657         }
5658         clear_bit(In_sync, &rdev->flags);
5659         rdev->desc_nr = -1;
5660         rdev->saved_raid_disk = -1;
5661         err = bind_rdev_to_array(rdev, mddev);
5662         if (err)
5663                 goto abort_export;
5664
5665         /*
5666          * The rest should better be atomic, we can have disk failures
5667          * noticed in interrupt contexts ...
5668          */
5669
5670         rdev->raid_disk = -1;
5671
5672         md_update_sb(mddev, 1);
5673
5674         /*
5675          * Kick recovery, maybe this spare has to be added to the
5676          * array immediately.
5677          */
5678         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5679         md_wakeup_thread(mddev->thread);
5680         md_new_event(mddev);
5681         return 0;
5682
5683 abort_export:
5684         export_rdev(rdev);
5685         return err;
5686 }
5687
5688 static int set_bitmap_file(struct mddev *mddev, int fd)
5689 {
5690         int err;
5691
5692         if (mddev->pers) {
5693                 if (!mddev->pers->quiesce)
5694                         return -EBUSY;
5695                 if (mddev->recovery || mddev->sync_thread)
5696                         return -EBUSY;
5697                 /* we should be able to change the bitmap.. */
5698         }
5699
5700
5701         if (fd >= 0) {
5702                 if (mddev->bitmap)
5703                         return -EEXIST; /* cannot add when bitmap is present */
5704                 mddev->bitmap_info.file = fget(fd);
5705
5706                 if (mddev->bitmap_info.file == NULL) {
5707                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5708                                mdname(mddev));
5709                         return -EBADF;
5710                 }
5711
5712                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5713                 if (err) {
5714                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5715                                mdname(mddev));
5716                         fput(mddev->bitmap_info.file);
5717                         mddev->bitmap_info.file = NULL;
5718                         return err;
5719                 }
5720                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5721         } else if (mddev->bitmap == NULL)
5722                 return -ENOENT; /* cannot remove what isn't there */
5723         err = 0;
5724         if (mddev->pers) {
5725                 mddev->pers->quiesce(mddev, 1);
5726                 if (fd >= 0) {
5727                         err = bitmap_create(mddev);
5728                         if (!err)
5729                                 err = bitmap_load(mddev);
5730                 }
5731                 if (fd < 0 || err) {
5732                         bitmap_destroy(mddev);
5733                         fd = -1; /* make sure to put the file */
5734                 }
5735                 mddev->pers->quiesce(mddev, 0);
5736         }
5737         if (fd < 0) {
5738                 if (mddev->bitmap_info.file) {
5739                         restore_bitmap_write_access(mddev->bitmap_info.file);
5740                         fput(mddev->bitmap_info.file);
5741                 }
5742                 mddev->bitmap_info.file = NULL;
5743         }
5744
5745         return err;
5746 }
5747
5748 /*
5749  * set_array_info is used two different ways
5750  * The original usage is when creating a new array.
5751  * In this usage, raid_disks is > 0 and it together with
5752  *  level, size, not_persistent,layout,chunksize determine the
5753  *  shape of the array.
5754  *  This will always create an array with a type-0.90.0 superblock.
5755  * The newer usage is when assembling an array.
5756  *  In this case raid_disks will be 0, and the major_version field is
5757  *  use to determine which style super-blocks are to be found on the devices.
5758  *  The minor and patch _version numbers are also kept incase the
5759  *  super_block handler wishes to interpret them.
5760  */
5761 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5762 {
5763
5764         if (info->raid_disks == 0) {
5765                 /* just setting version number for superblock loading */
5766                 if (info->major_version < 0 ||
5767                     info->major_version >= ARRAY_SIZE(super_types) ||
5768                     super_types[info->major_version].name == NULL) {
5769                         /* maybe try to auto-load a module? */
5770                         printk(KERN_INFO 
5771                                 "md: superblock version %d not known\n",
5772                                 info->major_version);
5773                         return -EINVAL;
5774                 }
5775                 mddev->major_version = info->major_version;
5776                 mddev->minor_version = info->minor_version;
5777                 mddev->patch_version = info->patch_version;
5778                 mddev->persistent = !info->not_persistent;
5779                 /* ensure mddev_put doesn't delete this now that there
5780                  * is some minimal configuration.
5781                  */
5782                 mddev->ctime         = get_seconds();
5783                 return 0;
5784         }
5785         mddev->major_version = MD_MAJOR_VERSION;
5786         mddev->minor_version = MD_MINOR_VERSION;
5787         mddev->patch_version = MD_PATCHLEVEL_VERSION;
5788         mddev->ctime         = get_seconds();
5789
5790         mddev->level         = info->level;
5791         mddev->clevel[0]     = 0;
5792         mddev->dev_sectors   = 2 * (sector_t)info->size;
5793         mddev->raid_disks    = info->raid_disks;
5794         /* don't set md_minor, it is determined by which /dev/md* was
5795          * openned
5796          */
5797         if (info->state & (1<<MD_SB_CLEAN))
5798                 mddev->recovery_cp = MaxSector;
5799         else
5800                 mddev->recovery_cp = 0;
5801         mddev->persistent    = ! info->not_persistent;
5802         mddev->external      = 0;
5803
5804         mddev->layout        = info->layout;
5805         mddev->chunk_sectors = info->chunk_size >> 9;
5806
5807         mddev->max_disks     = MD_SB_DISKS;
5808
5809         if (mddev->persistent)
5810                 mddev->flags         = 0;
5811         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5812
5813         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5814         mddev->bitmap_info.offset = 0;
5815
5816         mddev->reshape_position = MaxSector;
5817
5818         /*
5819          * Generate a 128 bit UUID
5820          */
5821         get_random_bytes(mddev->uuid, 16);
5822
5823         mddev->new_level = mddev->level;
5824         mddev->new_chunk_sectors = mddev->chunk_sectors;
5825         mddev->new_layout = mddev->layout;
5826         mddev->delta_disks = 0;
5827
5828         return 0;
5829 }
5830
5831 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5832 {
5833         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5834
5835         if (mddev->external_size)
5836                 return;
5837
5838         mddev->array_sectors = array_sectors;
5839 }
5840 EXPORT_SYMBOL(md_set_array_sectors);
5841
5842 static int update_size(struct mddev *mddev, sector_t num_sectors)
5843 {
5844         struct md_rdev *rdev;
5845         int rv;
5846         int fit = (num_sectors == 0);
5847
5848         if (mddev->pers->resize == NULL)
5849                 return -EINVAL;
5850         /* The "num_sectors" is the number of sectors of each device that
5851          * is used.  This can only make sense for arrays with redundancy.
5852          * linear and raid0 always use whatever space is available. We can only
5853          * consider changing this number if no resync or reconstruction is
5854          * happening, and if the new size is acceptable. It must fit before the
5855          * sb_start or, if that is <data_offset, it must fit before the size
5856          * of each device.  If num_sectors is zero, we find the largest size
5857          * that fits.
5858          */
5859         if (mddev->sync_thread)
5860                 return -EBUSY;
5861         if (mddev->bitmap)
5862                 /* Sorry, cannot grow a bitmap yet, just remove it,
5863                  * grow, and re-add.
5864                  */
5865                 return -EBUSY;
5866         list_for_each_entry(rdev, &mddev->disks, same_set) {
5867                 sector_t avail = rdev->sectors;
5868
5869                 if (fit && (num_sectors == 0 || num_sectors > avail))
5870                         num_sectors = avail;
5871                 if (avail < num_sectors)
5872                         return -ENOSPC;
5873         }
5874         rv = mddev->pers->resize(mddev, num_sectors);
5875         if (!rv)
5876                 revalidate_disk(mddev->gendisk);
5877         return rv;
5878 }
5879
5880 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5881 {
5882         int rv;
5883         /* change the number of raid disks */
5884         if (mddev->pers->check_reshape == NULL)
5885                 return -EINVAL;
5886         if (raid_disks <= 0 ||
5887             (mddev->max_disks && raid_disks >= mddev->max_disks))
5888                 return -EINVAL;
5889         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5890                 return -EBUSY;
5891         mddev->delta_disks = raid_disks - mddev->raid_disks;
5892
5893         rv = mddev->pers->check_reshape(mddev);
5894         if (rv < 0)
5895                 mddev->delta_disks = 0;
5896         return rv;
5897 }
5898
5899
5900 /*
5901  * update_array_info is used to change the configuration of an
5902  * on-line array.
5903  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5904  * fields in the info are checked against the array.
5905  * Any differences that cannot be handled will cause an error.
5906  * Normally, only one change can be managed at a time.
5907  */
5908 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5909 {
5910         int rv = 0;
5911         int cnt = 0;
5912         int state = 0;
5913
5914         /* calculate expected state,ignoring low bits */
5915         if (mddev->bitmap && mddev->bitmap_info.offset)
5916                 state |= (1 << MD_SB_BITMAP_PRESENT);
5917
5918         if (mddev->major_version != info->major_version ||
5919             mddev->minor_version != info->minor_version ||
5920 /*          mddev->patch_version != info->patch_version || */
5921             mddev->ctime         != info->ctime         ||
5922             mddev->level         != info->level         ||
5923 /*          mddev->layout        != info->layout        || */
5924             !mddev->persistent   != info->not_persistent||
5925             mddev->chunk_sectors != info->chunk_size >> 9 ||
5926             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5927             ((state^info->state) & 0xfffffe00)
5928                 )
5929                 return -EINVAL;
5930         /* Check there is only one change */
5931         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5932                 cnt++;
5933         if (mddev->raid_disks != info->raid_disks)
5934                 cnt++;
5935         if (mddev->layout != info->layout)
5936                 cnt++;
5937         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5938                 cnt++;
5939         if (cnt == 0)
5940                 return 0;
5941         if (cnt > 1)
5942                 return -EINVAL;
5943
5944         if (mddev->layout != info->layout) {
5945                 /* Change layout
5946                  * we don't need to do anything at the md level, the
5947                  * personality will take care of it all.
5948                  */
5949                 if (mddev->pers->check_reshape == NULL)
5950                         return -EINVAL;
5951                 else {
5952                         mddev->new_layout = info->layout;
5953                         rv = mddev->pers->check_reshape(mddev);
5954                         if (rv)
5955                                 mddev->new_layout = mddev->layout;
5956                         return rv;
5957                 }
5958         }
5959         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5960                 rv = update_size(mddev, (sector_t)info->size * 2);
5961
5962         if (mddev->raid_disks    != info->raid_disks)
5963                 rv = update_raid_disks(mddev, info->raid_disks);
5964
5965         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5966                 if (mddev->pers->quiesce == NULL)
5967                         return -EINVAL;
5968                 if (mddev->recovery || mddev->sync_thread)
5969                         return -EBUSY;
5970                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5971                         /* add the bitmap */
5972                         if (mddev->bitmap)
5973                                 return -EEXIST;
5974                         if (mddev->bitmap_info.default_offset == 0)
5975                                 return -EINVAL;
5976                         mddev->bitmap_info.offset =
5977                                 mddev->bitmap_info.default_offset;
5978                         mddev->pers->quiesce(mddev, 1);
5979                         rv = bitmap_create(mddev);
5980                         if (!rv)
5981                                 rv = bitmap_load(mddev);
5982                         if (rv)
5983                                 bitmap_destroy(mddev);
5984                         mddev->pers->quiesce(mddev, 0);
5985                 } else {
5986                         /* remove the bitmap */
5987                         if (!mddev->bitmap)
5988                                 return -ENOENT;
5989                         if (mddev->bitmap->file)
5990                                 return -EINVAL;
5991                         mddev->pers->quiesce(mddev, 1);
5992                         bitmap_destroy(mddev);
5993                         mddev->pers->quiesce(mddev, 0);
5994                         mddev->bitmap_info.offset = 0;
5995                 }
5996         }
5997         md_update_sb(mddev, 1);
5998         return rv;
5999 }
6000
6001 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6002 {
6003         struct md_rdev *rdev;
6004
6005         if (mddev->pers == NULL)
6006                 return -ENODEV;
6007
6008         rdev = find_rdev(mddev, dev);
6009         if (!rdev)
6010                 return -ENODEV;
6011
6012         md_error(mddev, rdev);
6013         if (!test_bit(Faulty, &rdev->flags))
6014                 return -EBUSY;
6015         return 0;
6016 }
6017
6018 /*
6019  * We have a problem here : there is no easy way to give a CHS
6020  * virtual geometry. We currently pretend that we have a 2 heads
6021  * 4 sectors (with a BIG number of cylinders...). This drives
6022  * dosfs just mad... ;-)
6023  */
6024 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6025 {
6026         struct mddev *mddev = bdev->bd_disk->private_data;
6027
6028         geo->heads = 2;
6029         geo->sectors = 4;
6030         geo->cylinders = mddev->array_sectors / 8;
6031         return 0;
6032 }
6033
6034 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6035                         unsigned int cmd, unsigned long arg)
6036 {
6037         int err = 0;
6038         void __user *argp = (void __user *)arg;
6039         struct mddev *mddev = NULL;
6040         int ro;
6041
6042         if (!capable(CAP_SYS_ADMIN))
6043                 return -EACCES;
6044
6045         /*
6046          * Commands dealing with the RAID driver but not any
6047          * particular array:
6048          */
6049         switch (cmd)
6050         {
6051                 case RAID_VERSION:
6052                         err = get_version(argp);
6053                         goto done;
6054
6055                 case PRINT_RAID_DEBUG:
6056                         err = 0;
6057                         md_print_devices();
6058                         goto done;
6059
6060 #ifndef MODULE
6061                 case RAID_AUTORUN:
6062                         err = 0;
6063                         autostart_arrays(arg);
6064                         goto done;
6065 #endif
6066                 default:;
6067         }
6068
6069         /*
6070          * Commands creating/starting a new array:
6071          */
6072
6073         mddev = bdev->bd_disk->private_data;
6074
6075         if (!mddev) {
6076                 BUG();
6077                 goto abort;
6078         }
6079
6080         err = mddev_lock(mddev);
6081         if (err) {
6082                 printk(KERN_INFO 
6083                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6084                         err, cmd);
6085                 goto abort;
6086         }
6087
6088         switch (cmd)
6089         {
6090                 case SET_ARRAY_INFO:
6091                         {
6092                                 mdu_array_info_t info;
6093                                 if (!arg)
6094                                         memset(&info, 0, sizeof(info));
6095                                 else if (copy_from_user(&info, argp, sizeof(info))) {
6096                                         err = -EFAULT;
6097                                         goto abort_unlock;
6098                                 }
6099                                 if (mddev->pers) {
6100                                         err = update_array_info(mddev, &info);
6101                                         if (err) {
6102                                                 printk(KERN_WARNING "md: couldn't update"
6103                                                        " array info. %d\n", err);
6104                                                 goto abort_unlock;
6105                                         }
6106                                         goto done_unlock;
6107                                 }
6108                                 if (!list_empty(&mddev->disks)) {
6109                                         printk(KERN_WARNING
6110                                                "md: array %s already has disks!\n",
6111                                                mdname(mddev));
6112                                         err = -EBUSY;
6113                                         goto abort_unlock;
6114                                 }
6115                                 if (mddev->raid_disks) {
6116                                         printk(KERN_WARNING
6117                                                "md: array %s already initialised!\n",
6118                                                mdname(mddev));
6119                                         err = -EBUSY;
6120                                         goto abort_unlock;
6121                                 }
6122                                 err = set_array_info(mddev, &info);
6123                                 if (err) {
6124                                         printk(KERN_WARNING "md: couldn't set"
6125                                                " array info. %d\n", err);
6126                                         goto abort_unlock;
6127                                 }
6128                         }
6129                         goto done_unlock;
6130
6131                 default:;
6132         }
6133
6134         /*
6135          * Commands querying/configuring an existing array:
6136          */
6137         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6138          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6139         if ((!mddev->raid_disks && !mddev->external)
6140             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6141             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6142             && cmd != GET_BITMAP_FILE) {
6143                 err = -ENODEV;
6144                 goto abort_unlock;
6145         }
6146
6147         /*
6148          * Commands even a read-only array can execute:
6149          */
6150         switch (cmd)
6151         {
6152                 case GET_ARRAY_INFO:
6153                         err = get_array_info(mddev, argp);
6154                         goto done_unlock;
6155
6156                 case GET_BITMAP_FILE:
6157                         err = get_bitmap_file(mddev, argp);
6158                         goto done_unlock;
6159
6160                 case GET_DISK_INFO:
6161                         err = get_disk_info(mddev, argp);
6162                         goto done_unlock;
6163
6164                 case RESTART_ARRAY_RW:
6165                         err = restart_array(mddev);
6166                         goto done_unlock;
6167
6168                 case STOP_ARRAY:
6169                         err = do_md_stop(mddev, 0, 1);
6170                         goto done_unlock;
6171
6172                 case STOP_ARRAY_RO:
6173                         err = md_set_readonly(mddev, 1);
6174                         goto done_unlock;
6175
6176                 case BLKROSET:
6177                         if (get_user(ro, (int __user *)(arg))) {
6178                                 err = -EFAULT;
6179                                 goto done_unlock;
6180                         }
6181                         err = -EINVAL;
6182
6183                         /* if the bdev is going readonly the value of mddev->ro
6184                          * does not matter, no writes are coming
6185                          */
6186                         if (ro)
6187                                 goto done_unlock;
6188
6189                         /* are we are already prepared for writes? */
6190                         if (mddev->ro != 1)
6191                                 goto done_unlock;
6192
6193                         /* transitioning to readauto need only happen for
6194                          * arrays that call md_write_start
6195                          */
6196                         if (mddev->pers) {
6197                                 err = restart_array(mddev);
6198                                 if (err == 0) {
6199                                         mddev->ro = 2;
6200                                         set_disk_ro(mddev->gendisk, 0);
6201                                 }
6202                         }
6203                         goto done_unlock;
6204         }
6205
6206         /*
6207          * The remaining ioctls are changing the state of the
6208          * superblock, so we do not allow them on read-only arrays.
6209          * However non-MD ioctls (e.g. get-size) will still come through
6210          * here and hit the 'default' below, so only disallow
6211          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6212          */
6213         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6214                 if (mddev->ro == 2) {
6215                         mddev->ro = 0;
6216                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6217                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6218                         md_wakeup_thread(mddev->thread);
6219                 } else {
6220                         err = -EROFS;
6221                         goto abort_unlock;
6222                 }
6223         }
6224
6225         switch (cmd)
6226         {
6227                 case ADD_NEW_DISK:
6228                 {
6229                         mdu_disk_info_t info;
6230                         if (copy_from_user(&info, argp, sizeof(info)))
6231                                 err = -EFAULT;
6232                         else
6233                                 err = add_new_disk(mddev, &info);
6234                         goto done_unlock;
6235                 }
6236
6237                 case HOT_REMOVE_DISK:
6238                         err = hot_remove_disk(mddev, new_decode_dev(arg));
6239                         goto done_unlock;
6240
6241                 case HOT_ADD_DISK:
6242                         err = hot_add_disk(mddev, new_decode_dev(arg));
6243                         goto done_unlock;
6244
6245                 case SET_DISK_FAULTY:
6246                         err = set_disk_faulty(mddev, new_decode_dev(arg));
6247                         goto done_unlock;
6248
6249                 case RUN_ARRAY:
6250                         err = do_md_run(mddev);
6251                         goto done_unlock;
6252
6253                 case SET_BITMAP_FILE:
6254                         err = set_bitmap_file(mddev, (int)arg);
6255                         goto done_unlock;
6256
6257                 default:
6258                         err = -EINVAL;
6259                         goto abort_unlock;
6260         }
6261
6262 done_unlock:
6263 abort_unlock:
6264         if (mddev->hold_active == UNTIL_IOCTL &&
6265             err != -EINVAL)
6266                 mddev->hold_active = 0;
6267         mddev_unlock(mddev);
6268
6269         return err;
6270 done:
6271         if (err)
6272                 MD_BUG();
6273 abort:
6274         return err;
6275 }
6276 #ifdef CONFIG_COMPAT
6277 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6278                     unsigned int cmd, unsigned long arg)
6279 {
6280         switch (cmd) {
6281         case HOT_REMOVE_DISK:
6282         case HOT_ADD_DISK:
6283         case SET_DISK_FAULTY:
6284         case SET_BITMAP_FILE:
6285                 /* These take in integer arg, do not convert */
6286                 break;
6287         default:
6288                 arg = (unsigned long)compat_ptr(arg);
6289                 break;
6290         }
6291
6292         return md_ioctl(bdev, mode, cmd, arg);
6293 }
6294 #endif /* CONFIG_COMPAT */
6295
6296 static int md_open(struct block_device *bdev, fmode_t mode)
6297 {
6298         /*
6299          * Succeed if we can lock the mddev, which confirms that
6300          * it isn't being stopped right now.
6301          */
6302         struct mddev *mddev = mddev_find(bdev->bd_dev);
6303         int err;
6304
6305         if (mddev->gendisk != bdev->bd_disk) {
6306                 /* we are racing with mddev_put which is discarding this
6307                  * bd_disk.
6308                  */
6309                 mddev_put(mddev);
6310                 /* Wait until bdev->bd_disk is definitely gone */
6311                 flush_workqueue(md_misc_wq);
6312                 /* Then retry the open from the top */
6313                 return -ERESTARTSYS;
6314         }
6315         BUG_ON(mddev != bdev->bd_disk->private_data);
6316
6317         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6318                 goto out;
6319
6320         err = 0;
6321         atomic_inc(&mddev->openers);
6322         mutex_unlock(&mddev->open_mutex);
6323
6324         check_disk_change(bdev);
6325  out:
6326         return err;
6327 }
6328
6329 static int md_release(struct gendisk *disk, fmode_t mode)
6330 {
6331         struct mddev *mddev = disk->private_data;
6332
6333         BUG_ON(!mddev);
6334         atomic_dec(&mddev->openers);
6335         mddev_put(mddev);
6336
6337         return 0;
6338 }
6339
6340 static int md_media_changed(struct gendisk *disk)
6341 {
6342         struct mddev *mddev = disk->private_data;
6343
6344         return mddev->changed;
6345 }
6346
6347 static int md_revalidate(struct gendisk *disk)
6348 {
6349         struct mddev *mddev = disk->private_data;
6350
6351         mddev->changed = 0;
6352         return 0;
6353 }
6354 static const struct block_device_operations md_fops =
6355 {
6356         .owner          = THIS_MODULE,
6357         .open           = md_open,
6358         .release        = md_release,
6359         .ioctl          = md_ioctl,
6360 #ifdef CONFIG_COMPAT
6361         .compat_ioctl   = md_compat_ioctl,
6362 #endif
6363         .getgeo         = md_getgeo,
6364         .media_changed  = md_media_changed,
6365         .revalidate_disk= md_revalidate,
6366 };
6367
6368 static int md_thread(void * arg)
6369 {
6370         struct md_thread *thread = arg;
6371
6372         /*
6373          * md_thread is a 'system-thread', it's priority should be very
6374          * high. We avoid resource deadlocks individually in each
6375          * raid personality. (RAID5 does preallocation) We also use RR and
6376          * the very same RT priority as kswapd, thus we will never get
6377          * into a priority inversion deadlock.
6378          *
6379          * we definitely have to have equal or higher priority than
6380          * bdflush, otherwise bdflush will deadlock if there are too
6381          * many dirty RAID5 blocks.
6382          */
6383
6384         allow_signal(SIGKILL);
6385         while (!kthread_should_stop()) {
6386
6387                 /* We need to wait INTERRUPTIBLE so that
6388                  * we don't add to the load-average.
6389                  * That means we need to be sure no signals are
6390                  * pending
6391                  */
6392                 if (signal_pending(current))
6393                         flush_signals(current);
6394
6395                 wait_event_interruptible_timeout
6396                         (thread->wqueue,
6397                          test_bit(THREAD_WAKEUP, &thread->flags)
6398                          || kthread_should_stop(),
6399                          thread->timeout);
6400
6401                 clear_bit(THREAD_WAKEUP, &thread->flags);
6402                 if (!kthread_should_stop())
6403                         thread->run(thread->mddev);
6404         }
6405
6406         return 0;
6407 }
6408
6409 void md_wakeup_thread(struct md_thread *thread)
6410 {
6411         if (thread) {
6412                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6413                 set_bit(THREAD_WAKEUP, &thread->flags);
6414                 wake_up(&thread->wqueue);
6415         }
6416 }
6417
6418 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6419                                  const char *name)
6420 {
6421         struct md_thread *thread;
6422
6423         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6424         if (!thread)
6425                 return NULL;
6426
6427         init_waitqueue_head(&thread->wqueue);
6428
6429         thread->run = run;
6430         thread->mddev = mddev;
6431         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6432         thread->tsk = kthread_run(md_thread, thread,
6433                                   "%s_%s",
6434                                   mdname(thread->mddev),
6435                                   name ?: mddev->pers->name);
6436         if (IS_ERR(thread->tsk)) {
6437                 kfree(thread);
6438                 return NULL;
6439         }
6440         return thread;
6441 }
6442
6443 void md_unregister_thread(struct md_thread **threadp)
6444 {
6445         struct md_thread *thread = *threadp;
6446         if (!thread)
6447                 return;
6448         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6449         /* Locking ensures that mddev_unlock does not wake_up a
6450          * non-existent thread
6451          */
6452         spin_lock(&pers_lock);
6453         *threadp = NULL;
6454         spin_unlock(&pers_lock);
6455
6456         kthread_stop(thread->tsk);
6457         kfree(thread);
6458 }
6459
6460 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6461 {
6462         if (!mddev) {
6463                 MD_BUG();
6464                 return;
6465         }
6466
6467         if (!rdev || test_bit(Faulty, &rdev->flags))
6468                 return;
6469
6470         if (!mddev->pers || !mddev->pers->error_handler)
6471                 return;
6472         mddev->pers->error_handler(mddev,rdev);
6473         if (mddev->degraded)
6474                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6475         sysfs_notify_dirent_safe(rdev->sysfs_state);
6476         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6477         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6478         md_wakeup_thread(mddev->thread);
6479         if (mddev->event_work.func)
6480                 queue_work(md_misc_wq, &mddev->event_work);
6481         md_new_event_inintr(mddev);
6482 }
6483
6484 /* seq_file implementation /proc/mdstat */
6485
6486 static void status_unused(struct seq_file *seq)
6487 {
6488         int i = 0;
6489         struct md_rdev *rdev;
6490
6491         seq_printf(seq, "unused devices: ");
6492
6493         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6494                 char b[BDEVNAME_SIZE];
6495                 i++;
6496                 seq_printf(seq, "%s ",
6497                               bdevname(rdev->bdev,b));
6498         }
6499         if (!i)
6500                 seq_printf(seq, "<none>");
6501
6502         seq_printf(seq, "\n");
6503 }
6504
6505
6506 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6507 {
6508         sector_t max_sectors, resync, res;
6509         unsigned long dt, db;
6510         sector_t rt;
6511         int scale;
6512         unsigned int per_milli;
6513
6514         resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6515
6516         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6517                 max_sectors = mddev->resync_max_sectors;
6518         else
6519                 max_sectors = mddev->dev_sectors;
6520
6521         /*
6522          * Should not happen.
6523          */
6524         if (!max_sectors) {
6525                 MD_BUG();
6526                 return;
6527         }
6528         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6529          * in a sector_t, and (max_sectors>>scale) will fit in a
6530          * u32, as those are the requirements for sector_div.
6531          * Thus 'scale' must be at least 10
6532          */
6533         scale = 10;
6534         if (sizeof(sector_t) > sizeof(unsigned long)) {
6535                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6536                         scale++;
6537         }
6538         res = (resync>>scale)*1000;
6539         sector_div(res, (u32)((max_sectors>>scale)+1));
6540
6541         per_milli = res;
6542         {
6543                 int i, x = per_milli/50, y = 20-x;
6544                 seq_printf(seq, "[");
6545                 for (i = 0; i < x; i++)
6546                         seq_printf(seq, "=");
6547                 seq_printf(seq, ">");
6548                 for (i = 0; i < y; i++)
6549                         seq_printf(seq, ".");
6550                 seq_printf(seq, "] ");
6551         }
6552         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6553                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6554                     "reshape" :
6555                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6556                      "check" :
6557                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6558                       "resync" : "recovery"))),
6559                    per_milli/10, per_milli % 10,
6560                    (unsigned long long) resync/2,
6561                    (unsigned long long) max_sectors/2);
6562
6563         /*
6564          * dt: time from mark until now
6565          * db: blocks written from mark until now
6566          * rt: remaining time
6567          *
6568          * rt is a sector_t, so could be 32bit or 64bit.
6569          * So we divide before multiply in case it is 32bit and close
6570          * to the limit.
6571          * We scale the divisor (db) by 32 to avoid losing precision
6572          * near the end of resync when the number of remaining sectors
6573          * is close to 'db'.
6574          * We then divide rt by 32 after multiplying by db to compensate.
6575          * The '+1' avoids division by zero if db is very small.
6576          */
6577         dt = ((jiffies - mddev->resync_mark) / HZ);
6578         if (!dt) dt++;
6579         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6580                 - mddev->resync_mark_cnt;
6581
6582         rt = max_sectors - resync;    /* number of remaining sectors */
6583         sector_div(rt, db/32+1);
6584         rt *= dt;
6585         rt >>= 5;
6586
6587         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6588                    ((unsigned long)rt % 60)/6);
6589
6590         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6591 }
6592
6593 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6594 {
6595         struct list_head *tmp;
6596         loff_t l = *pos;
6597         struct mddev *mddev;
6598
6599         if (l >= 0x10000)
6600                 return NULL;
6601         if (!l--)
6602                 /* header */
6603                 return (void*)1;
6604
6605         spin_lock(&all_mddevs_lock);
6606         list_for_each(tmp,&all_mddevs)
6607                 if (!l--) {
6608                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6609                         mddev_get(mddev);
6610                         spin_unlock(&all_mddevs_lock);
6611                         return mddev;
6612                 }
6613         spin_unlock(&all_mddevs_lock);
6614         if (!l--)
6615                 return (void*)2;/* tail */
6616         return NULL;
6617 }
6618
6619 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6620 {
6621         struct list_head *tmp;
6622         struct mddev *next_mddev, *mddev = v;
6623         
6624         ++*pos;
6625         if (v == (void*)2)
6626                 return NULL;
6627
6628         spin_lock(&all_mddevs_lock);
6629         if (v == (void*)1)
6630                 tmp = all_mddevs.next;
6631         else
6632                 tmp = mddev->all_mddevs.next;
6633         if (tmp != &all_mddevs)
6634                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6635         else {
6636                 next_mddev = (void*)2;
6637                 *pos = 0x10000;
6638         }               
6639         spin_unlock(&all_mddevs_lock);
6640
6641         if (v != (void*)1)
6642                 mddev_put(mddev);
6643         return next_mddev;
6644
6645 }
6646
6647 static void md_seq_stop(struct seq_file *seq, void *v)
6648 {
6649         struct mddev *mddev = v;
6650
6651         if (mddev && v != (void*)1 && v != (void*)2)
6652                 mddev_put(mddev);
6653 }
6654
6655 static int md_seq_show(struct seq_file *seq, void *v)
6656 {
6657         struct mddev *mddev = v;
6658         sector_t sectors;
6659         struct md_rdev *rdev;
6660         struct bitmap *bitmap;
6661
6662         if (v == (void*)1) {
6663                 struct md_personality *pers;
6664                 seq_printf(seq, "Personalities : ");
6665                 spin_lock(&pers_lock);
6666                 list_for_each_entry(pers, &pers_list, list)
6667                         seq_printf(seq, "[%s] ", pers->name);
6668
6669                 spin_unlock(&pers_lock);
6670                 seq_printf(seq, "\n");
6671                 seq->poll_event = atomic_read(&md_event_count);
6672                 return 0;
6673         }
6674         if (v == (void*)2) {
6675                 status_unused(seq);
6676                 return 0;
6677         }
6678
6679         if (mddev_lock(mddev) < 0)
6680                 return -EINTR;
6681
6682         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6683                 seq_printf(seq, "%s : %sactive", mdname(mddev),
6684                                                 mddev->pers ? "" : "in");
6685                 if (mddev->pers) {
6686                         if (mddev->ro==1)
6687                                 seq_printf(seq, " (read-only)");
6688                         if (mddev->ro==2)
6689                                 seq_printf(seq, " (auto-read-only)");
6690                         seq_printf(seq, " %s", mddev->pers->name);
6691                 }
6692
6693                 sectors = 0;
6694                 list_for_each_entry(rdev, &mddev->disks, same_set) {
6695                         char b[BDEVNAME_SIZE];
6696                         seq_printf(seq, " %s[%d]",
6697                                 bdevname(rdev->bdev,b), rdev->desc_nr);
6698                         if (test_bit(WriteMostly, &rdev->flags))
6699                                 seq_printf(seq, "(W)");
6700                         if (test_bit(Faulty, &rdev->flags)) {
6701                                 seq_printf(seq, "(F)");
6702                                 continue;
6703                         } else if (rdev->raid_disk < 0)
6704                                 seq_printf(seq, "(S)"); /* spare */
6705                         sectors += rdev->sectors;
6706                 }
6707
6708                 if (!list_empty(&mddev->disks)) {
6709                         if (mddev->pers)
6710                                 seq_printf(seq, "\n      %llu blocks",
6711                                            (unsigned long long)
6712                                            mddev->array_sectors / 2);
6713                         else
6714                                 seq_printf(seq, "\n      %llu blocks",
6715                                            (unsigned long long)sectors / 2);
6716                 }
6717                 if (mddev->persistent) {
6718                         if (mddev->major_version != 0 ||
6719                             mddev->minor_version != 90) {
6720                                 seq_printf(seq," super %d.%d",
6721                                            mddev->major_version,
6722                                            mddev->minor_version);
6723                         }
6724                 } else if (mddev->external)
6725                         seq_printf(seq, " super external:%s",
6726                                    mddev->metadata_type);
6727                 else
6728                         seq_printf(seq, " super non-persistent");
6729
6730                 if (mddev->pers) {
6731                         mddev->pers->status(seq, mddev);
6732                         seq_printf(seq, "\n      ");
6733                         if (mddev->pers->sync_request) {
6734                                 if (mddev->curr_resync > 2) {
6735                                         status_resync(seq, mddev);
6736                                         seq_printf(seq, "\n      ");
6737                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6738                                         seq_printf(seq, "\tresync=DELAYED\n      ");
6739                                 else if (mddev->recovery_cp < MaxSector)
6740                                         seq_printf(seq, "\tresync=PENDING\n      ");
6741                         }
6742                 } else
6743                         seq_printf(seq, "\n       ");
6744
6745                 if ((bitmap = mddev->bitmap)) {
6746                         unsigned long chunk_kb;
6747                         unsigned long flags;
6748                         spin_lock_irqsave(&bitmap->lock, flags);
6749                         chunk_kb = mddev->bitmap_info.chunksize >> 10;
6750                         seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6751                                 "%lu%s chunk",
6752                                 bitmap->pages - bitmap->missing_pages,
6753                                 bitmap->pages,
6754                                 (bitmap->pages - bitmap->missing_pages)
6755                                         << (PAGE_SHIFT - 10),
6756                                 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6757                                 chunk_kb ? "KB" : "B");
6758                         if (bitmap->file) {
6759                                 seq_printf(seq, ", file: ");
6760                                 seq_path(seq, &bitmap->file->f_path, " \t\n");
6761                         }
6762
6763                         seq_printf(seq, "\n");
6764                         spin_unlock_irqrestore(&bitmap->lock, flags);
6765                 }
6766
6767                 seq_printf(seq, "\n");
6768         }
6769         mddev_unlock(mddev);
6770         
6771         return 0;
6772 }
6773
6774 static const struct seq_operations md_seq_ops = {
6775         .start  = md_seq_start,
6776         .next   = md_seq_next,
6777         .stop   = md_seq_stop,
6778         .show   = md_seq_show,
6779 };
6780
6781 static int md_seq_open(struct inode *inode, struct file *file)
6782 {
6783         struct seq_file *seq;
6784         int error;
6785
6786         error = seq_open(file, &md_seq_ops);
6787         if (error)
6788                 return error;
6789
6790         seq = file->private_data;
6791         seq->poll_event = atomic_read(&md_event_count);
6792         return error;
6793 }
6794
6795 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6796 {
6797         struct seq_file *seq = filp->private_data;
6798         int mask;
6799
6800         poll_wait(filp, &md_event_waiters, wait);
6801
6802         /* always allow read */
6803         mask = POLLIN | POLLRDNORM;
6804
6805         if (seq->poll_event != atomic_read(&md_event_count))
6806                 mask |= POLLERR | POLLPRI;
6807         return mask;
6808 }
6809
6810 static const struct file_operations md_seq_fops = {
6811         .owner          = THIS_MODULE,
6812         .open           = md_seq_open,
6813         .read           = seq_read,
6814         .llseek         = seq_lseek,
6815         .release        = seq_release_private,
6816         .poll           = mdstat_poll,
6817 };
6818
6819 int register_md_personality(struct md_personality *p)
6820 {
6821         spin_lock(&pers_lock);
6822         list_add_tail(&p->list, &pers_list);
6823         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6824         spin_unlock(&pers_lock);
6825         return 0;
6826 }
6827
6828 int unregister_md_personality(struct md_personality *p)
6829 {
6830         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6831         spin_lock(&pers_lock);
6832         list_del_init(&p->list);
6833         spin_unlock(&pers_lock);
6834         return 0;
6835 }
6836
6837 static int is_mddev_idle(struct mddev *mddev, int init)
6838 {
6839         struct md_rdev * rdev;
6840         int idle;
6841         int curr_events;
6842
6843         idle = 1;
6844         rcu_read_lock();
6845         rdev_for_each_rcu(rdev, mddev) {
6846                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6847                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6848                               (int)part_stat_read(&disk->part0, sectors[1]) -
6849                               atomic_read(&disk->sync_io);
6850                 /* sync IO will cause sync_io to increase before the disk_stats
6851                  * as sync_io is counted when a request starts, and
6852                  * disk_stats is counted when it completes.
6853                  * So resync activity will cause curr_events to be smaller than
6854                  * when there was no such activity.
6855                  * non-sync IO will cause disk_stat to increase without
6856                  * increasing sync_io so curr_events will (eventually)
6857                  * be larger than it was before.  Once it becomes
6858                  * substantially larger, the test below will cause
6859                  * the array to appear non-idle, and resync will slow
6860                  * down.
6861                  * If there is a lot of outstanding resync activity when
6862                  * we set last_event to curr_events, then all that activity
6863                  * completing might cause the array to appear non-idle
6864                  * and resync will be slowed down even though there might
6865                  * not have been non-resync activity.  This will only
6866                  * happen once though.  'last_events' will soon reflect
6867                  * the state where there is little or no outstanding
6868                  * resync requests, and further resync activity will
6869                  * always make curr_events less than last_events.
6870                  *
6871                  */
6872                 if (init || curr_events - rdev->last_events > 64) {
6873                         rdev->last_events = curr_events;
6874                         idle = 0;
6875                 }
6876         }
6877         rcu_read_unlock();
6878         return idle;
6879 }
6880
6881 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6882 {
6883         /* another "blocks" (512byte) blocks have been synced */
6884         atomic_sub(blocks, &mddev->recovery_active);
6885         wake_up(&mddev->recovery_wait);
6886         if (!ok) {
6887                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6888                 md_wakeup_thread(mddev->thread);
6889                 // stop recovery, signal do_sync ....
6890         }
6891 }
6892
6893
6894 /* md_write_start(mddev, bi)
6895  * If we need to update some array metadata (e.g. 'active' flag
6896  * in superblock) before writing, schedule a superblock update
6897  * and wait for it to complete.
6898  */
6899 void md_write_start(struct mddev *mddev, struct bio *bi)
6900 {
6901         int did_change = 0;
6902         if (bio_data_dir(bi) != WRITE)
6903                 return;
6904
6905         BUG_ON(mddev->ro == 1);
6906         if (mddev->ro == 2) {
6907                 /* need to switch to read/write */
6908                 mddev->ro = 0;
6909                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6910                 md_wakeup_thread(mddev->thread);
6911                 md_wakeup_thread(mddev->sync_thread);
6912                 did_change = 1;
6913         }
6914         atomic_inc(&mddev->writes_pending);
6915         if (mddev->safemode == 1)
6916                 mddev->safemode = 0;
6917         if (mddev->in_sync) {
6918                 spin_lock_irq(&mddev->write_lock);
6919                 if (mddev->in_sync) {
6920                         mddev->in_sync = 0;
6921                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6922                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
6923                         md_wakeup_thread(mddev->thread);
6924                         did_change = 1;
6925                 }
6926                 spin_unlock_irq(&mddev->write_lock);
6927         }
6928         if (did_change)
6929                 sysfs_notify_dirent_safe(mddev->sysfs_state);
6930         wait_event(mddev->sb_wait,
6931                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6932 }
6933
6934 void md_write_end(struct mddev *mddev)
6935 {
6936         if (atomic_dec_and_test(&mddev->writes_pending)) {
6937                 if (mddev->safemode == 2)
6938                         md_wakeup_thread(mddev->thread);
6939                 else if (mddev->safemode_delay)
6940                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6941         }
6942 }
6943
6944 /* md_allow_write(mddev)
6945  * Calling this ensures that the array is marked 'active' so that writes
6946  * may proceed without blocking.  It is important to call this before
6947  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6948  * Must be called with mddev_lock held.
6949  *
6950  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6951  * is dropped, so return -EAGAIN after notifying userspace.
6952  */
6953 int md_allow_write(struct mddev *mddev)
6954 {
6955         if (!mddev->pers)
6956                 return 0;
6957         if (mddev->ro)
6958                 return 0;
6959         if (!mddev->pers->sync_request)
6960                 return 0;
6961
6962         spin_lock_irq(&mddev->write_lock);
6963         if (mddev->in_sync) {
6964                 mddev->in_sync = 0;
6965                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6966                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6967                 if (mddev->safemode_delay &&
6968                     mddev->safemode == 0)
6969                         mddev->safemode = 1;
6970                 spin_unlock_irq(&mddev->write_lock);
6971                 md_update_sb(mddev, 0);
6972                 sysfs_notify_dirent_safe(mddev->sysfs_state);
6973         } else
6974                 spin_unlock_irq(&mddev->write_lock);
6975
6976         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6977                 return -EAGAIN;
6978         else
6979                 return 0;
6980 }
6981 EXPORT_SYMBOL_GPL(md_allow_write);
6982
6983 #define SYNC_MARKS      10
6984 #define SYNC_MARK_STEP  (3*HZ)
6985 void md_do_sync(struct mddev *mddev)
6986 {
6987         struct mddev *mddev2;
6988         unsigned int currspeed = 0,
6989                  window;
6990         sector_t max_sectors,j, io_sectors;
6991         unsigned long mark[SYNC_MARKS];
6992         sector_t mark_cnt[SYNC_MARKS];
6993         int last_mark,m;
6994         struct list_head *tmp;
6995         sector_t last_check;
6996         int skipped = 0;
6997         struct md_rdev *rdev;
6998         char *desc;
6999
7000         /* just incase thread restarts... */
7001         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7002                 return;
7003         if (mddev->ro) /* never try to sync a read-only array */
7004                 return;
7005
7006         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7007                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7008                         desc = "data-check";
7009                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7010                         desc = "requested-resync";
7011                 else
7012                         desc = "resync";
7013         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7014                 desc = "reshape";
7015         else
7016                 desc = "recovery";
7017
7018         /* we overload curr_resync somewhat here.
7019          * 0 == not engaged in resync at all
7020          * 2 == checking that there is no conflict with another sync
7021          * 1 == like 2, but have yielded to allow conflicting resync to
7022          *              commense
7023          * other == active in resync - this many blocks
7024          *
7025          * Before starting a resync we must have set curr_resync to
7026          * 2, and then checked that every "conflicting" array has curr_resync
7027          * less than ours.  When we find one that is the same or higher
7028          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7029          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7030          * This will mean we have to start checking from the beginning again.
7031          *
7032          */
7033
7034         do {
7035                 mddev->curr_resync = 2;
7036
7037         try_again:
7038                 if (kthread_should_stop())
7039                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7040
7041                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7042                         goto skip;
7043                 for_each_mddev(mddev2, tmp) {
7044                         if (mddev2 == mddev)
7045                                 continue;
7046                         if (!mddev->parallel_resync
7047                         &&  mddev2->curr_resync
7048                         &&  match_mddev_units(mddev, mddev2)) {
7049                                 DEFINE_WAIT(wq);
7050                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7051                                         /* arbitrarily yield */
7052                                         mddev->curr_resync = 1;
7053                                         wake_up(&resync_wait);
7054                                 }
7055                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7056                                         /* no need to wait here, we can wait the next
7057                                          * time 'round when curr_resync == 2
7058                                          */
7059                                         continue;
7060                                 /* We need to wait 'interruptible' so as not to
7061                                  * contribute to the load average, and not to
7062                                  * be caught by 'softlockup'
7063                                  */
7064                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7065                                 if (!kthread_should_stop() &&
7066                                     mddev2->curr_resync >= mddev->curr_resync) {
7067                                         printk(KERN_INFO "md: delaying %s of %s"
7068                                                " until %s has finished (they"
7069                                                " share one or more physical units)\n",
7070                                                desc, mdname(mddev), mdname(mddev2));
7071                                         mddev_put(mddev2);
7072                                         if (signal_pending(current))
7073                                                 flush_signals(current);
7074                                         schedule();
7075                                         finish_wait(&resync_wait, &wq);
7076                                         goto try_again;
7077                                 }
7078                                 finish_wait(&resync_wait, &wq);
7079                         }
7080                 }
7081         } while (mddev->curr_resync < 2);
7082
7083         j = 0;
7084         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7085                 /* resync follows the size requested by the personality,
7086                  * which defaults to physical size, but can be virtual size
7087                  */
7088                 max_sectors = mddev->resync_max_sectors;
7089                 mddev->resync_mismatches = 0;
7090                 /* we don't use the checkpoint if there's a bitmap */
7091                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7092                         j = mddev->resync_min;
7093                 else if (!mddev->bitmap)
7094                         j = mddev->recovery_cp;
7095
7096         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7097                 max_sectors = mddev->dev_sectors;
7098         else {
7099                 /* recovery follows the physical size of devices */
7100                 max_sectors = mddev->dev_sectors;
7101                 j = MaxSector;
7102                 rcu_read_lock();
7103                 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7104                         if (rdev->raid_disk >= 0 &&
7105                             !test_bit(Faulty, &rdev->flags) &&
7106                             !test_bit(In_sync, &rdev->flags) &&
7107                             rdev->recovery_offset < j)
7108                                 j = rdev->recovery_offset;
7109                 rcu_read_unlock();
7110         }
7111
7112         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7113         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7114                 " %d KB/sec/disk.\n", speed_min(mddev));
7115         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7116                "(but not more than %d KB/sec) for %s.\n",
7117                speed_max(mddev), desc);
7118
7119         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7120
7121         io_sectors = 0;
7122         for (m = 0; m < SYNC_MARKS; m++) {
7123                 mark[m] = jiffies;
7124                 mark_cnt[m] = io_sectors;
7125         }
7126         last_mark = 0;
7127         mddev->resync_mark = mark[last_mark];
7128         mddev->resync_mark_cnt = mark_cnt[last_mark];
7129
7130         /*
7131          * Tune reconstruction:
7132          */
7133         window = 32*(PAGE_SIZE/512);
7134         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7135                 window/2, (unsigned long long)max_sectors/2);
7136
7137         atomic_set(&mddev->recovery_active, 0);
7138         last_check = 0;
7139
7140         if (j>2) {
7141                 printk(KERN_INFO 
7142                        "md: resuming %s of %s from checkpoint.\n",
7143                        desc, mdname(mddev));
7144                 mddev->curr_resync = j;
7145         }
7146         mddev->curr_resync_completed = j;
7147
7148         while (j < max_sectors) {
7149                 sector_t sectors;
7150
7151                 skipped = 0;
7152
7153                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7154                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7155                       (mddev->curr_resync - mddev->curr_resync_completed)
7156                       > (max_sectors >> 4)) ||
7157                      (j - mddev->curr_resync_completed)*2
7158                      >= mddev->resync_max - mddev->curr_resync_completed
7159                             )) {
7160                         /* time to update curr_resync_completed */
7161                         wait_event(mddev->recovery_wait,
7162                                    atomic_read(&mddev->recovery_active) == 0);
7163                         mddev->curr_resync_completed = j;
7164                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7165                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7166                 }
7167
7168                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7169                         /* As this condition is controlled by user-space,
7170                          * we can block indefinitely, so use '_interruptible'
7171                          * to avoid triggering warnings.
7172                          */
7173                         flush_signals(current); /* just in case */
7174                         wait_event_interruptible(mddev->recovery_wait,
7175                                                  mddev->resync_max > j
7176                                                  || kthread_should_stop());
7177                 }
7178
7179                 if (kthread_should_stop())
7180                         goto interrupted;
7181
7182                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7183                                                   currspeed < speed_min(mddev));
7184                 if (sectors == 0) {
7185                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7186                         goto out;
7187                 }
7188
7189                 if (!skipped) { /* actual IO requested */
7190                         io_sectors += sectors;
7191                         atomic_add(sectors, &mddev->recovery_active);
7192                 }
7193
7194                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7195                         break;
7196
7197                 j += sectors;
7198                 if (j>1) mddev->curr_resync = j;
7199                 mddev->curr_mark_cnt = io_sectors;
7200                 if (last_check == 0)
7201                         /* this is the earliest that rebuild will be
7202                          * visible in /proc/mdstat
7203                          */
7204                         md_new_event(mddev);
7205
7206                 if (last_check + window > io_sectors || j == max_sectors)
7207                         continue;
7208
7209                 last_check = io_sectors;
7210         repeat:
7211                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7212                         /* step marks */
7213                         int next = (last_mark+1) % SYNC_MARKS;
7214
7215                         mddev->resync_mark = mark[next];
7216                         mddev->resync_mark_cnt = mark_cnt[next];
7217                         mark[next] = jiffies;
7218                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7219                         last_mark = next;
7220                 }
7221
7222
7223                 if (kthread_should_stop())
7224                         goto interrupted;
7225
7226
7227                 /*
7228                  * this loop exits only if either when we are slower than
7229                  * the 'hard' speed limit, or the system was IO-idle for
7230                  * a jiffy.
7231                  * the system might be non-idle CPU-wise, but we only care
7232                  * about not overloading the IO subsystem. (things like an
7233                  * e2fsck being done on the RAID array should execute fast)
7234                  */
7235                 cond_resched();
7236
7237                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7238                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7239
7240                 if (currspeed > speed_min(mddev)) {
7241                         if ((currspeed > speed_max(mddev)) ||
7242                                         !is_mddev_idle(mddev, 0)) {
7243                                 msleep(500);
7244                                 goto repeat;
7245                         }
7246                 }
7247         }
7248         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7249         /*
7250          * this also signals 'finished resyncing' to md_stop
7251          */
7252  out:
7253         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7254
7255         /* tell personality that we are finished */
7256         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7257
7258         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7259             mddev->curr_resync > 2) {
7260                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7261                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7262                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7263                                         printk(KERN_INFO
7264                                                "md: checkpointing %s of %s.\n",
7265                                                desc, mdname(mddev));
7266                                         mddev->recovery_cp = mddev->curr_resync;
7267                                 }
7268                         } else
7269                                 mddev->recovery_cp = MaxSector;
7270                 } else {
7271                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7272                                 mddev->curr_resync = MaxSector;
7273                         rcu_read_lock();
7274                         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7275                                 if (rdev->raid_disk >= 0 &&
7276                                     mddev->delta_disks >= 0 &&
7277                                     !test_bit(Faulty, &rdev->flags) &&
7278                                     !test_bit(In_sync, &rdev->flags) &&
7279                                     rdev->recovery_offset < mddev->curr_resync)
7280                                         rdev->recovery_offset = mddev->curr_resync;
7281                         rcu_read_unlock();
7282                 }
7283         }
7284         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7285
7286  skip:
7287         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7288                 /* We completed so min/max setting can be forgotten if used. */
7289                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7290                         mddev->resync_min = 0;
7291                 mddev->resync_max = MaxSector;
7292         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7293                 mddev->resync_min = mddev->curr_resync_completed;
7294         mddev->curr_resync = 0;
7295         wake_up(&resync_wait);
7296         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7297         md_wakeup_thread(mddev->thread);
7298         return;
7299
7300  interrupted:
7301         /*
7302          * got a signal, exit.
7303          */
7304         printk(KERN_INFO
7305                "md: md_do_sync() got signal ... exiting\n");
7306         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7307         goto out;
7308
7309 }
7310 EXPORT_SYMBOL_GPL(md_do_sync);
7311
7312 static int remove_and_add_spares(struct mddev *mddev)
7313 {
7314         struct md_rdev *rdev;
7315         int spares = 0;
7316
7317         mddev->curr_resync_completed = 0;
7318
7319         list_for_each_entry(rdev, &mddev->disks, same_set)
7320                 if (rdev->raid_disk >= 0 &&
7321                     !test_bit(Blocked, &rdev->flags) &&
7322                     (test_bit(Faulty, &rdev->flags) ||
7323                      ! test_bit(In_sync, &rdev->flags)) &&
7324                     atomic_read(&rdev->nr_pending)==0) {
7325                         if (mddev->pers->hot_remove_disk(
7326                                     mddev, rdev->raid_disk)==0) {
7327                                 sysfs_unlink_rdev(mddev, rdev);
7328                                 rdev->raid_disk = -1;
7329                         }
7330                 }
7331
7332         if (mddev->degraded) {
7333                 list_for_each_entry(rdev, &mddev->disks, same_set) {
7334                         if (rdev->raid_disk >= 0 &&
7335                             !test_bit(In_sync, &rdev->flags) &&
7336                             !test_bit(Faulty, &rdev->flags))
7337                                 spares++;
7338                         if (rdev->raid_disk < 0
7339                             && !test_bit(Faulty, &rdev->flags)) {
7340                                 rdev->recovery_offset = 0;
7341                                 if (mddev->pers->
7342                                     hot_add_disk(mddev, rdev) == 0) {
7343                                         if (sysfs_link_rdev(mddev, rdev))
7344                                                 /* failure here is OK */;
7345                                         spares++;
7346                                         md_new_event(mddev);
7347                                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7348                                 } else
7349                                         break;
7350                         }
7351                 }
7352         }
7353         return spares;
7354 }
7355
7356 static void reap_sync_thread(struct mddev *mddev)
7357 {
7358         struct md_rdev *rdev;
7359
7360         /* resync has finished, collect result */
7361         md_unregister_thread(&mddev->sync_thread);
7362         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7363             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7364                 /* success...*/
7365                 /* activate any spares */
7366                 if (mddev->pers->spare_active(mddev))
7367                         sysfs_notify(&mddev->kobj, NULL,
7368                                      "degraded");
7369         }
7370         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7371             mddev->pers->finish_reshape)
7372                 mddev->pers->finish_reshape(mddev);
7373
7374         /* If array is no-longer degraded, then any saved_raid_disk
7375          * information must be scrapped.  Also if any device is now
7376          * In_sync we must scrape the saved_raid_disk for that device
7377          * do the superblock for an incrementally recovered device
7378          * written out.
7379          */
7380         list_for_each_entry(rdev, &mddev->disks, same_set)
7381                 if (!mddev->degraded ||
7382                     test_bit(In_sync, &rdev->flags))
7383                         rdev->saved_raid_disk = -1;
7384
7385         md_update_sb(mddev, 1);
7386         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7387         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7388         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7389         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7390         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7391         /* flag recovery needed just to double check */
7392         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7393         sysfs_notify_dirent_safe(mddev->sysfs_action);
7394         md_new_event(mddev);
7395         if (mddev->event_work.func)
7396                 queue_work(md_misc_wq, &mddev->event_work);
7397 }
7398
7399 /*
7400  * This routine is regularly called by all per-raid-array threads to
7401  * deal with generic issues like resync and super-block update.
7402  * Raid personalities that don't have a thread (linear/raid0) do not
7403  * need this as they never do any recovery or update the superblock.
7404  *
7405  * It does not do any resync itself, but rather "forks" off other threads
7406  * to do that as needed.
7407  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7408  * "->recovery" and create a thread at ->sync_thread.
7409  * When the thread finishes it sets MD_RECOVERY_DONE
7410  * and wakeups up this thread which will reap the thread and finish up.
7411  * This thread also removes any faulty devices (with nr_pending == 0).
7412  *
7413  * The overall approach is:
7414  *  1/ if the superblock needs updating, update it.
7415  *  2/ If a recovery thread is running, don't do anything else.
7416  *  3/ If recovery has finished, clean up, possibly marking spares active.
7417  *  4/ If there are any faulty devices, remove them.
7418  *  5/ If array is degraded, try to add spares devices
7419  *  6/ If array has spares or is not in-sync, start a resync thread.
7420  */
7421 void md_check_recovery(struct mddev *mddev)
7422 {
7423         if (mddev->suspended)
7424                 return;
7425
7426         if (mddev->bitmap)
7427                 bitmap_daemon_work(mddev);
7428
7429         if (signal_pending(current)) {
7430                 if (mddev->pers->sync_request && !mddev->external) {
7431                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7432                                mdname(mddev));
7433                         mddev->safemode = 2;
7434                 }
7435                 flush_signals(current);
7436         }
7437
7438         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7439                 return;
7440         if ( ! (
7441                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7442                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7443                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7444                 (mddev->external == 0 && mddev->safemode == 1) ||
7445                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7446                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7447                 ))
7448                 return;
7449
7450         if (mddev_trylock(mddev)) {
7451                 int spares = 0;
7452
7453                 if (mddev->ro) {
7454                         /* Only thing we do on a ro array is remove
7455                          * failed devices.
7456                          */
7457                         struct md_rdev *rdev;
7458                         list_for_each_entry(rdev, &mddev->disks, same_set)
7459                                 if (rdev->raid_disk >= 0 &&
7460                                     !test_bit(Blocked, &rdev->flags) &&
7461                                     test_bit(Faulty, &rdev->flags) &&
7462                                     atomic_read(&rdev->nr_pending)==0) {
7463                                         if (mddev->pers->hot_remove_disk(
7464                                                     mddev, rdev->raid_disk)==0) {
7465                                                 sysfs_unlink_rdev(mddev, rdev);
7466                                                 rdev->raid_disk = -1;
7467                                         }
7468                                 }
7469                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7470                         goto unlock;
7471                 }
7472
7473                 if (!mddev->external) {
7474                         int did_change = 0;
7475                         spin_lock_irq(&mddev->write_lock);
7476                         if (mddev->safemode &&
7477                             !atomic_read(&mddev->writes_pending) &&
7478                             !mddev->in_sync &&
7479                             mddev->recovery_cp == MaxSector) {
7480                                 mddev->in_sync = 1;
7481                                 did_change = 1;
7482                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7483                         }
7484                         if (mddev->safemode == 1)
7485                                 mddev->safemode = 0;
7486                         spin_unlock_irq(&mddev->write_lock);
7487                         if (did_change)
7488                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7489                 }
7490
7491                 if (mddev->flags)
7492                         md_update_sb(mddev, 0);
7493
7494                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7495                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7496                         /* resync/recovery still happening */
7497                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7498                         goto unlock;
7499                 }
7500                 if (mddev->sync_thread) {
7501                         reap_sync_thread(mddev);
7502                         goto unlock;
7503                 }
7504                 /* Set RUNNING before clearing NEEDED to avoid
7505                  * any transients in the value of "sync_action".
7506                  */
7507                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7508                 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7509                 /* Clear some bits that don't mean anything, but
7510                  * might be left set
7511                  */
7512                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7513                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7514
7515                 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7516                         goto unlock;
7517                 /* no recovery is running.
7518                  * remove any failed drives, then
7519                  * add spares if possible.
7520                  * Spare are also removed and re-added, to allow
7521                  * the personality to fail the re-add.
7522                  */
7523
7524                 if (mddev->reshape_position != MaxSector) {
7525                         if (mddev->pers->check_reshape == NULL ||
7526                             mddev->pers->check_reshape(mddev) != 0)
7527                                 /* Cannot proceed */
7528                                 goto unlock;
7529                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7530                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7531                 } else if ((spares = remove_and_add_spares(mddev))) {
7532                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7533                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7534                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7535                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7536                 } else if (mddev->recovery_cp < MaxSector) {
7537                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7538                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7539                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7540                         /* nothing to be done ... */
7541                         goto unlock;
7542
7543                 if (mddev->pers->sync_request) {
7544                         if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7545                                 /* We are adding a device or devices to an array
7546                                  * which has the bitmap stored on all devices.
7547                                  * So make sure all bitmap pages get written
7548                                  */
7549                                 bitmap_write_all(mddev->bitmap);
7550                         }
7551                         mddev->sync_thread = md_register_thread(md_do_sync,
7552                                                                 mddev,
7553                                                                 "resync");
7554                         if (!mddev->sync_thread) {
7555                                 printk(KERN_ERR "%s: could not start resync"
7556                                         " thread...\n", 
7557                                         mdname(mddev));
7558                                 /* leave the spares where they are, it shouldn't hurt */
7559                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7560                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7561                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7562                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7563                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7564                         } else
7565                                 md_wakeup_thread(mddev->sync_thread);
7566                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7567                         md_new_event(mddev);
7568                 }
7569         unlock:
7570                 if (!mddev->sync_thread) {
7571                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7572                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7573                                                &mddev->recovery))
7574                                 if (mddev->sysfs_action)
7575                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7576                 }
7577                 mddev_unlock(mddev);
7578         }
7579 }
7580
7581 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7582 {
7583         sysfs_notify_dirent_safe(rdev->sysfs_state);
7584         wait_event_timeout(rdev->blocked_wait,
7585                            !test_bit(Blocked, &rdev->flags) &&
7586                            !test_bit(BlockedBadBlocks, &rdev->flags),
7587                            msecs_to_jiffies(5000));
7588         rdev_dec_pending(rdev, mddev);
7589 }
7590 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7591
7592
7593 /* Bad block management.
7594  * We can record which blocks on each device are 'bad' and so just
7595  * fail those blocks, or that stripe, rather than the whole device.
7596  * Entries in the bad-block table are 64bits wide.  This comprises:
7597  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7598  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7599  *  A 'shift' can be set so that larger blocks are tracked and
7600  *  consequently larger devices can be covered.
7601  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7602  *
7603  * Locking of the bad-block table uses a seqlock so md_is_badblock
7604  * might need to retry if it is very unlucky.
7605  * We will sometimes want to check for bad blocks in a bi_end_io function,
7606  * so we use the write_seqlock_irq variant.
7607  *
7608  * When looking for a bad block we specify a range and want to
7609  * know if any block in the range is bad.  So we binary-search
7610  * to the last range that starts at-or-before the given endpoint,
7611  * (or "before the sector after the target range")
7612  * then see if it ends after the given start.
7613  * We return
7614  *  0 if there are no known bad blocks in the range
7615  *  1 if there are known bad block which are all acknowledged
7616  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7617  * plus the start/length of the first bad section we overlap.
7618  */
7619 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7620                    sector_t *first_bad, int *bad_sectors)
7621 {
7622         int hi;
7623         int lo = 0;
7624         u64 *p = bb->page;
7625         int rv = 0;
7626         sector_t target = s + sectors;
7627         unsigned seq;
7628
7629         if (bb->shift > 0) {
7630                 /* round the start down, and the end up */
7631                 s >>= bb->shift;
7632                 target += (1<<bb->shift) - 1;
7633                 target >>= bb->shift;
7634                 sectors = target - s;
7635         }
7636         /* 'target' is now the first block after the bad range */
7637
7638 retry:
7639         seq = read_seqbegin(&bb->lock);
7640
7641         hi = bb->count;
7642
7643         /* Binary search between lo and hi for 'target'
7644          * i.e. for the last range that starts before 'target'
7645          */
7646         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7647          * are known not to be the last range before target.
7648          * VARIANT: hi-lo is the number of possible
7649          * ranges, and decreases until it reaches 1
7650          */
7651         while (hi - lo > 1) {
7652                 int mid = (lo + hi) / 2;
7653                 sector_t a = BB_OFFSET(p[mid]);
7654                 if (a < target)
7655                         /* This could still be the one, earlier ranges
7656                          * could not. */
7657                         lo = mid;
7658                 else
7659                         /* This and later ranges are definitely out. */
7660                         hi = mid;
7661         }
7662         /* 'lo' might be the last that started before target, but 'hi' isn't */
7663         if (hi > lo) {
7664                 /* need to check all range that end after 's' to see if
7665                  * any are unacknowledged.
7666                  */
7667                 while (lo >= 0 &&
7668                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7669                         if (BB_OFFSET(p[lo]) < target) {
7670                                 /* starts before the end, and finishes after
7671                                  * the start, so they must overlap
7672                                  */
7673                                 if (rv != -1 && BB_ACK(p[lo]))
7674                                         rv = 1;
7675                                 else
7676                                         rv = -1;
7677                                 *first_bad = BB_OFFSET(p[lo]);
7678                                 *bad_sectors = BB_LEN(p[lo]);
7679                         }
7680                         lo--;
7681                 }
7682         }
7683
7684         if (read_seqretry(&bb->lock, seq))
7685                 goto retry;
7686
7687         return rv;
7688 }
7689 EXPORT_SYMBOL_GPL(md_is_badblock);
7690
7691 /*
7692  * Add a range of bad blocks to the table.
7693  * This might extend the table, or might contract it
7694  * if two adjacent ranges can be merged.
7695  * We binary-search to find the 'insertion' point, then
7696  * decide how best to handle it.
7697  */
7698 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7699                             int acknowledged)
7700 {
7701         u64 *p;
7702         int lo, hi;
7703         int rv = 1;
7704
7705         if (bb->shift < 0)
7706                 /* badblocks are disabled */
7707                 return 0;
7708
7709         if (bb->shift) {
7710                 /* round the start down, and the end up */
7711                 sector_t next = s + sectors;
7712                 s >>= bb->shift;
7713                 next += (1<<bb->shift) - 1;
7714                 next >>= bb->shift;
7715                 sectors = next - s;
7716         }
7717
7718         write_seqlock_irq(&bb->lock);
7719
7720         p = bb->page;
7721         lo = 0;
7722         hi = bb->count;
7723         /* Find the last range that starts at-or-before 's' */
7724         while (hi - lo > 1) {
7725                 int mid = (lo + hi) / 2;
7726                 sector_t a = BB_OFFSET(p[mid]);
7727                 if (a <= s)
7728                         lo = mid;
7729                 else
7730                         hi = mid;
7731         }
7732         if (hi > lo && BB_OFFSET(p[lo]) > s)
7733                 hi = lo;
7734
7735         if (hi > lo) {
7736                 /* we found a range that might merge with the start
7737                  * of our new range
7738                  */
7739                 sector_t a = BB_OFFSET(p[lo]);
7740                 sector_t e = a + BB_LEN(p[lo]);
7741                 int ack = BB_ACK(p[lo]);
7742                 if (e >= s) {
7743                         /* Yes, we can merge with a previous range */
7744                         if (s == a && s + sectors >= e)
7745                                 /* new range covers old */
7746                                 ack = acknowledged;
7747                         else
7748                                 ack = ack && acknowledged;
7749
7750                         if (e < s + sectors)
7751                                 e = s + sectors;
7752                         if (e - a <= BB_MAX_LEN) {
7753                                 p[lo] = BB_MAKE(a, e-a, ack);
7754                                 s = e;
7755                         } else {
7756                                 /* does not all fit in one range,
7757                                  * make p[lo] maximal
7758                                  */
7759                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7760                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7761                                 s = a + BB_MAX_LEN;
7762                         }
7763                         sectors = e - s;
7764                 }
7765         }
7766         if (sectors && hi < bb->count) {
7767                 /* 'hi' points to the first range that starts after 's'.
7768                  * Maybe we can merge with the start of that range */
7769                 sector_t a = BB_OFFSET(p[hi]);
7770                 sector_t e = a + BB_LEN(p[hi]);
7771                 int ack = BB_ACK(p[hi]);
7772                 if (a <= s + sectors) {
7773                         /* merging is possible */
7774                         if (e <= s + sectors) {
7775                                 /* full overlap */
7776                                 e = s + sectors;
7777                                 ack = acknowledged;
7778                         } else
7779                                 ack = ack && acknowledged;
7780
7781                         a = s;
7782                         if (e - a <= BB_MAX_LEN) {
7783                                 p[hi] = BB_MAKE(a, e-a, ack);
7784                                 s = e;
7785                         } else {
7786                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7787                                 s = a + BB_MAX_LEN;
7788                         }
7789                         sectors = e - s;
7790                         lo = hi;
7791                         hi++;
7792                 }
7793         }
7794         if (sectors == 0 && hi < bb->count) {
7795                 /* we might be able to combine lo and hi */
7796                 /* Note: 's' is at the end of 'lo' */
7797                 sector_t a = BB_OFFSET(p[hi]);
7798                 int lolen = BB_LEN(p[lo]);
7799                 int hilen = BB_LEN(p[hi]);
7800                 int newlen = lolen + hilen - (s - a);
7801                 if (s >= a && newlen < BB_MAX_LEN) {
7802                         /* yes, we can combine them */
7803                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7804                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7805                         memmove(p + hi, p + hi + 1,
7806                                 (bb->count - hi - 1) * 8);
7807                         bb->count--;
7808                 }
7809         }
7810         while (sectors) {
7811                 /* didn't merge (it all).
7812                  * Need to add a range just before 'hi' */
7813                 if (bb->count >= MD_MAX_BADBLOCKS) {
7814                         /* No room for more */
7815                         rv = 0;
7816                         break;
7817                 } else {
7818                         int this_sectors = sectors;
7819                         memmove(p + hi + 1, p + hi,
7820                                 (bb->count - hi) * 8);
7821                         bb->count++;
7822
7823                         if (this_sectors > BB_MAX_LEN)
7824                                 this_sectors = BB_MAX_LEN;
7825                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7826                         sectors -= this_sectors;
7827                         s += this_sectors;
7828                 }
7829         }
7830
7831         bb->changed = 1;
7832         if (!acknowledged)
7833                 bb->unacked_exist = 1;
7834         write_sequnlock_irq(&bb->lock);
7835
7836         return rv;
7837 }
7838
7839 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7840                        int acknowledged)
7841 {
7842         int rv = md_set_badblocks(&rdev->badblocks,
7843                                   s + rdev->data_offset, sectors, acknowledged);
7844         if (rv) {
7845                 /* Make sure they get written out promptly */
7846                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7847                 md_wakeup_thread(rdev->mddev->thread);
7848         }
7849         return rv;
7850 }
7851 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7852
7853 /*
7854  * Remove a range of bad blocks from the table.
7855  * This may involve extending the table if we spilt a region,
7856  * but it must not fail.  So if the table becomes full, we just
7857  * drop the remove request.
7858  */
7859 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7860 {
7861         u64 *p;
7862         int lo, hi;
7863         sector_t target = s + sectors;
7864         int rv = 0;
7865
7866         if (bb->shift > 0) {
7867                 /* When clearing we round the start up and the end down.
7868                  * This should not matter as the shift should align with
7869                  * the block size and no rounding should ever be needed.
7870                  * However it is better the think a block is bad when it
7871                  * isn't than to think a block is not bad when it is.
7872                  */
7873                 s += (1<<bb->shift) - 1;
7874                 s >>= bb->shift;
7875                 target >>= bb->shift;
7876                 sectors = target - s;
7877         }
7878
7879         write_seqlock_irq(&bb->lock);
7880
7881         p = bb->page;
7882         lo = 0;
7883         hi = bb->count;
7884         /* Find the last range that starts before 'target' */
7885         while (hi - lo > 1) {
7886                 int mid = (lo + hi) / 2;
7887                 sector_t a = BB_OFFSET(p[mid]);
7888                 if (a < target)
7889                         lo = mid;
7890                 else
7891                         hi = mid;
7892         }
7893         if (hi > lo) {
7894                 /* p[lo] is the last range that could overlap the
7895                  * current range.  Earlier ranges could also overlap,
7896                  * but only this one can overlap the end of the range.
7897                  */
7898                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7899                         /* Partial overlap, leave the tail of this range */
7900                         int ack = BB_ACK(p[lo]);
7901                         sector_t a = BB_OFFSET(p[lo]);
7902                         sector_t end = a + BB_LEN(p[lo]);
7903
7904                         if (a < s) {
7905                                 /* we need to split this range */
7906                                 if (bb->count >= MD_MAX_BADBLOCKS) {
7907                                         rv = 0;
7908                                         goto out;
7909                                 }
7910                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7911                                 bb->count++;
7912                                 p[lo] = BB_MAKE(a, s-a, ack);
7913                                 lo++;
7914                         }
7915                         p[lo] = BB_MAKE(target, end - target, ack);
7916                         /* there is no longer an overlap */
7917                         hi = lo;
7918                         lo--;
7919                 }
7920                 while (lo >= 0 &&
7921                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7922                         /* This range does overlap */
7923                         if (BB_OFFSET(p[lo]) < s) {
7924                                 /* Keep the early parts of this range. */
7925                                 int ack = BB_ACK(p[lo]);
7926                                 sector_t start = BB_OFFSET(p[lo]);
7927                                 p[lo] = BB_MAKE(start, s - start, ack);
7928                                 /* now low doesn't overlap, so.. */
7929                                 break;
7930                         }
7931                         lo--;
7932                 }
7933                 /* 'lo' is strictly before, 'hi' is strictly after,
7934                  * anything between needs to be discarded
7935                  */
7936                 if (hi - lo > 1) {
7937                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7938                         bb->count -= (hi - lo - 1);
7939                 }
7940         }
7941
7942         bb->changed = 1;
7943 out:
7944         write_sequnlock_irq(&bb->lock);
7945         return rv;
7946 }
7947
7948 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
7949 {
7950         return md_clear_badblocks(&rdev->badblocks,
7951                                   s + rdev->data_offset,
7952                                   sectors);
7953 }
7954 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
7955
7956 /*
7957  * Acknowledge all bad blocks in a list.
7958  * This only succeeds if ->changed is clear.  It is used by
7959  * in-kernel metadata updates
7960  */
7961 void md_ack_all_badblocks(struct badblocks *bb)
7962 {
7963         if (bb->page == NULL || bb->changed)
7964                 /* no point even trying */
7965                 return;
7966         write_seqlock_irq(&bb->lock);
7967
7968         if (bb->changed == 0) {
7969                 u64 *p = bb->page;
7970                 int i;
7971                 for (i = 0; i < bb->count ; i++) {
7972                         if (!BB_ACK(p[i])) {
7973                                 sector_t start = BB_OFFSET(p[i]);
7974                                 int len = BB_LEN(p[i]);
7975                                 p[i] = BB_MAKE(start, len, 1);
7976                         }
7977                 }
7978                 bb->unacked_exist = 0;
7979         }
7980         write_sequnlock_irq(&bb->lock);
7981 }
7982 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
7983
7984 /* sysfs access to bad-blocks list.
7985  * We present two files.
7986  * 'bad-blocks' lists sector numbers and lengths of ranges that
7987  *    are recorded as bad.  The list is truncated to fit within
7988  *    the one-page limit of sysfs.
7989  *    Writing "sector length" to this file adds an acknowledged
7990  *    bad block list.
7991  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
7992  *    been acknowledged.  Writing to this file adds bad blocks
7993  *    without acknowledging them.  This is largely for testing.
7994  */
7995
7996 static ssize_t
7997 badblocks_show(struct badblocks *bb, char *page, int unack)
7998 {
7999         size_t len;
8000         int i;
8001         u64 *p = bb->page;
8002         unsigned seq;
8003
8004         if (bb->shift < 0)
8005                 return 0;
8006
8007 retry:
8008         seq = read_seqbegin(&bb->lock);
8009
8010         len = 0;
8011         i = 0;
8012
8013         while (len < PAGE_SIZE && i < bb->count) {
8014                 sector_t s = BB_OFFSET(p[i]);
8015                 unsigned int length = BB_LEN(p[i]);
8016                 int ack = BB_ACK(p[i]);
8017                 i++;
8018
8019                 if (unack && ack)
8020                         continue;
8021
8022                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8023                                 (unsigned long long)s << bb->shift,
8024                                 length << bb->shift);
8025         }
8026         if (unack && len == 0)
8027                 bb->unacked_exist = 0;
8028
8029         if (read_seqretry(&bb->lock, seq))
8030                 goto retry;
8031
8032         return len;
8033 }
8034
8035 #define DO_DEBUG 1
8036
8037 static ssize_t
8038 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8039 {
8040         unsigned long long sector;
8041         int length;
8042         char newline;
8043 #ifdef DO_DEBUG
8044         /* Allow clearing via sysfs *only* for testing/debugging.
8045          * Normally only a successful write may clear a badblock
8046          */
8047         int clear = 0;
8048         if (page[0] == '-') {
8049                 clear = 1;
8050                 page++;
8051         }
8052 #endif /* DO_DEBUG */
8053
8054         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8055         case 3:
8056                 if (newline != '\n')
8057                         return -EINVAL;
8058         case 2:
8059                 if (length <= 0)
8060                         return -EINVAL;
8061                 break;
8062         default:
8063                 return -EINVAL;
8064         }
8065
8066 #ifdef DO_DEBUG
8067         if (clear) {
8068                 md_clear_badblocks(bb, sector, length);
8069                 return len;
8070         }
8071 #endif /* DO_DEBUG */
8072         if (md_set_badblocks(bb, sector, length, !unack))
8073                 return len;
8074         else
8075                 return -ENOSPC;
8076 }
8077
8078 static int md_notify_reboot(struct notifier_block *this,
8079                             unsigned long code, void *x)
8080 {
8081         struct list_head *tmp;
8082         struct mddev *mddev;
8083         int need_delay = 0;
8084
8085         if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8086
8087                 printk(KERN_INFO "md: stopping all md devices.\n");
8088
8089                 for_each_mddev(mddev, tmp) {
8090                         if (mddev_trylock(mddev)) {
8091                                 /* Force a switch to readonly even array
8092                                  * appears to still be in use.  Hence
8093                                  * the '100'.
8094                                  */
8095                                 md_set_readonly(mddev, 100);
8096                                 mddev_unlock(mddev);
8097                         }
8098                         need_delay = 1;
8099                 }
8100                 /*
8101                  * certain more exotic SCSI devices are known to be
8102                  * volatile wrt too early system reboots. While the
8103                  * right place to handle this issue is the given
8104                  * driver, we do want to have a safe RAID driver ...
8105                  */
8106                 if (need_delay)
8107                         mdelay(1000*1);
8108         }
8109         return NOTIFY_DONE;
8110 }
8111
8112 static struct notifier_block md_notifier = {
8113         .notifier_call  = md_notify_reboot,
8114         .next           = NULL,
8115         .priority       = INT_MAX, /* before any real devices */
8116 };
8117
8118 static void md_geninit(void)
8119 {
8120         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8121
8122         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8123 }
8124
8125 static int __init md_init(void)
8126 {
8127         int ret = -ENOMEM;
8128
8129         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8130         if (!md_wq)
8131                 goto err_wq;
8132
8133         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8134         if (!md_misc_wq)
8135                 goto err_misc_wq;
8136
8137         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8138                 goto err_md;
8139
8140         if ((ret = register_blkdev(0, "mdp")) < 0)
8141                 goto err_mdp;
8142         mdp_major = ret;
8143
8144         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8145                             md_probe, NULL, NULL);
8146         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8147                             md_probe, NULL, NULL);
8148
8149         register_reboot_notifier(&md_notifier);
8150         raid_table_header = register_sysctl_table(raid_root_table);
8151
8152         md_geninit();
8153         return 0;
8154
8155 err_mdp:
8156         unregister_blkdev(MD_MAJOR, "md");
8157 err_md:
8158         destroy_workqueue(md_misc_wq);
8159 err_misc_wq:
8160         destroy_workqueue(md_wq);
8161 err_wq:
8162         return ret;
8163 }
8164
8165 #ifndef MODULE
8166
8167 /*
8168  * Searches all registered partitions for autorun RAID arrays
8169  * at boot time.
8170  */
8171
8172 static LIST_HEAD(all_detected_devices);
8173 struct detected_devices_node {
8174         struct list_head list;
8175         dev_t dev;
8176 };
8177
8178 void md_autodetect_dev(dev_t dev)
8179 {
8180         struct detected_devices_node *node_detected_dev;
8181
8182         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8183         if (node_detected_dev) {
8184                 node_detected_dev->dev = dev;
8185                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8186         } else {
8187                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8188                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8189         }
8190 }
8191
8192
8193 static void autostart_arrays(int part)
8194 {
8195         struct md_rdev *rdev;
8196         struct detected_devices_node *node_detected_dev;
8197         dev_t dev;
8198         int i_scanned, i_passed;
8199
8200         i_scanned = 0;
8201         i_passed = 0;
8202
8203         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8204
8205         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8206                 i_scanned++;
8207                 node_detected_dev = list_entry(all_detected_devices.next,
8208                                         struct detected_devices_node, list);
8209                 list_del(&node_detected_dev->list);
8210                 dev = node_detected_dev->dev;
8211                 kfree(node_detected_dev);
8212                 rdev = md_import_device(dev,0, 90);
8213                 if (IS_ERR(rdev))
8214                         continue;
8215
8216                 if (test_bit(Faulty, &rdev->flags)) {
8217                         MD_BUG();
8218                         continue;
8219                 }
8220                 set_bit(AutoDetected, &rdev->flags);
8221                 list_add(&rdev->same_set, &pending_raid_disks);
8222                 i_passed++;
8223         }
8224
8225         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8226                                                 i_scanned, i_passed);
8227
8228         autorun_devices(part);
8229 }
8230
8231 #endif /* !MODULE */
8232
8233 static __exit void md_exit(void)
8234 {
8235         struct mddev *mddev;
8236         struct list_head *tmp;
8237
8238         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8239         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8240
8241         unregister_blkdev(MD_MAJOR,"md");
8242         unregister_blkdev(mdp_major, "mdp");
8243         unregister_reboot_notifier(&md_notifier);
8244         unregister_sysctl_table(raid_table_header);
8245         remove_proc_entry("mdstat", NULL);
8246         for_each_mddev(mddev, tmp) {
8247                 export_array(mddev);
8248                 mddev->hold_active = 0;
8249         }
8250         destroy_workqueue(md_misc_wq);
8251         destroy_workqueue(md_wq);
8252 }
8253
8254 subsys_initcall(md_init);
8255 module_exit(md_exit)
8256
8257 static int get_ro(char *buffer, struct kernel_param *kp)
8258 {
8259         return sprintf(buffer, "%d", start_readonly);
8260 }
8261 static int set_ro(const char *val, struct kernel_param *kp)
8262 {
8263         char *e;
8264         int num = simple_strtoul(val, &e, 10);
8265         if (*val && (*e == '\0' || *e == '\n')) {
8266                 start_readonly = num;
8267                 return 0;
8268         }
8269         return -EINVAL;
8270 }
8271
8272 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8273 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8274
8275 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8276
8277 EXPORT_SYMBOL(register_md_personality);
8278 EXPORT_SYMBOL(unregister_md_personality);
8279 EXPORT_SYMBOL(md_error);
8280 EXPORT_SYMBOL(md_done_sync);
8281 EXPORT_SYMBOL(md_write_start);
8282 EXPORT_SYMBOL(md_write_end);
8283 EXPORT_SYMBOL(md_register_thread);
8284 EXPORT_SYMBOL(md_unregister_thread);
8285 EXPORT_SYMBOL(md_wakeup_thread);
8286 EXPORT_SYMBOL(md_check_recovery);
8287 MODULE_LICENSE("GPL");
8288 MODULE_DESCRIPTION("MD RAID framework");
8289 MODULE_ALIAS("md");
8290 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);