Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-exynos.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
72
73 static int remove_and_add_spares(struct mddev *mddev,
74                                  struct md_rdev *this);
75
76 /*
77  * Default number of read corrections we'll attempt on an rdev
78  * before ejecting it from the array. We divide the read error
79  * count by 2 for every hour elapsed between read errors.
80  */
81 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
82 /*
83  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
84  * is 1000 KB/sec, so the extra system load does not show up that much.
85  * Increase it if you want to have more _guaranteed_ speed. Note that
86  * the RAID driver will use the maximum available bandwidth if the IO
87  * subsystem is idle. There is also an 'absolute maximum' reconstruction
88  * speed limit - in case reconstruction slows down your system despite
89  * idle IO detection.
90  *
91  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
92  * or /sys/block/mdX/md/sync_speed_{min,max}
93  */
94
95 static int sysctl_speed_limit_min = 1000;
96 static int sysctl_speed_limit_max = 200000;
97 static inline int speed_min(struct mddev *mddev)
98 {
99         return mddev->sync_speed_min ?
100                 mddev->sync_speed_min : sysctl_speed_limit_min;
101 }
102
103 static inline int speed_max(struct mddev *mddev)
104 {
105         return mddev->sync_speed_max ?
106                 mddev->sync_speed_max : sysctl_speed_limit_max;
107 }
108
109 static struct ctl_table_header *raid_table_header;
110
111 static struct ctl_table raid_table[] = {
112         {
113                 .procname       = "speed_limit_min",
114                 .data           = &sysctl_speed_limit_min,
115                 .maxlen         = sizeof(int),
116                 .mode           = S_IRUGO|S_IWUSR,
117                 .proc_handler   = proc_dointvec,
118         },
119         {
120                 .procname       = "speed_limit_max",
121                 .data           = &sysctl_speed_limit_max,
122                 .maxlen         = sizeof(int),
123                 .mode           = S_IRUGO|S_IWUSR,
124                 .proc_handler   = proc_dointvec,
125         },
126         { }
127 };
128
129 static struct ctl_table raid_dir_table[] = {
130         {
131                 .procname       = "raid",
132                 .maxlen         = 0,
133                 .mode           = S_IRUGO|S_IXUGO,
134                 .child          = raid_table,
135         },
136         { }
137 };
138
139 static struct ctl_table raid_root_table[] = {
140         {
141                 .procname       = "dev",
142                 .maxlen         = 0,
143                 .mode           = 0555,
144                 .child          = raid_dir_table,
145         },
146         {  }
147 };
148
149 static const struct block_device_operations md_fops;
150
151 static int start_readonly;
152
153 /* bio_clone_mddev
154  * like bio_clone, but with a local bio set
155  */
156
157 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
158                             struct mddev *mddev)
159 {
160         struct bio *b;
161
162         if (!mddev || !mddev->bio_set)
163                 return bio_alloc(gfp_mask, nr_iovecs);
164
165         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
166         if (!b)
167                 return NULL;
168         return b;
169 }
170 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
171
172 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
173                             struct mddev *mddev)
174 {
175         if (!mddev || !mddev->bio_set)
176                 return bio_clone(bio, gfp_mask);
177
178         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
179 }
180 EXPORT_SYMBOL_GPL(bio_clone_mddev);
181
182 /*
183  * We have a system wide 'event count' that is incremented
184  * on any 'interesting' event, and readers of /proc/mdstat
185  * can use 'poll' or 'select' to find out when the event
186  * count increases.
187  *
188  * Events are:
189  *  start array, stop array, error, add device, remove device,
190  *  start build, activate spare
191  */
192 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
193 static atomic_t md_event_count;
194 void md_new_event(struct mddev *mddev)
195 {
196         atomic_inc(&md_event_count);
197         wake_up(&md_event_waiters);
198 }
199 EXPORT_SYMBOL_GPL(md_new_event);
200
201 /* Alternate version that can be called from interrupts
202  * when calling sysfs_notify isn't needed.
203  */
204 static void md_new_event_inintr(struct mddev *mddev)
205 {
206         atomic_inc(&md_event_count);
207         wake_up(&md_event_waiters);
208 }
209
210 /*
211  * Enables to iterate over all existing md arrays
212  * all_mddevs_lock protects this list.
213  */
214 static LIST_HEAD(all_mddevs);
215 static DEFINE_SPINLOCK(all_mddevs_lock);
216
217 /*
218  * iterates through all used mddevs in the system.
219  * We take care to grab the all_mddevs_lock whenever navigating
220  * the list, and to always hold a refcount when unlocked.
221  * Any code which breaks out of this loop while own
222  * a reference to the current mddev and must mddev_put it.
223  */
224 #define for_each_mddev(_mddev,_tmp)                                     \
225                                                                         \
226         for (({ spin_lock(&all_mddevs_lock);                            \
227                 _tmp = all_mddevs.next;                                 \
228                 _mddev = NULL;});                                       \
229              ({ if (_tmp != &all_mddevs)                                \
230                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
231                 spin_unlock(&all_mddevs_lock);                          \
232                 if (_mddev) mddev_put(_mddev);                          \
233                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
234                 _tmp != &all_mddevs;});                                 \
235              ({ spin_lock(&all_mddevs_lock);                            \
236                 _tmp = _tmp->next;})                                    \
237                 )
238
239 /* Rather than calling directly into the personality make_request function,
240  * IO requests come here first so that we can check if the device is
241  * being suspended pending a reconfiguration.
242  * We hold a refcount over the call to ->make_request.  By the time that
243  * call has finished, the bio has been linked into some internal structure
244  * and so is visible to ->quiesce(), so we don't need the refcount any more.
245  */
246 static void md_make_request(struct request_queue *q, struct bio *bio)
247 {
248         const int rw = bio_data_dir(bio);
249         struct mddev *mddev = q->queuedata;
250         unsigned int sectors;
251
252         if (mddev == NULL || mddev->pers == NULL
253             || !mddev->ready) {
254                 bio_io_error(bio);
255                 return;
256         }
257         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
258                 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
259                 return;
260         }
261         smp_rmb(); /* Ensure implications of  'active' are visible */
262         rcu_read_lock();
263         if (mddev->suspended) {
264                 DEFINE_WAIT(__wait);
265                 for (;;) {
266                         prepare_to_wait(&mddev->sb_wait, &__wait,
267                                         TASK_UNINTERRUPTIBLE);
268                         if (!mddev->suspended)
269                                 break;
270                         rcu_read_unlock();
271                         schedule();
272                         rcu_read_lock();
273                 }
274                 finish_wait(&mddev->sb_wait, &__wait);
275         }
276         atomic_inc(&mddev->active_io);
277         rcu_read_unlock();
278
279         /*
280          * save the sectors now since our bio can
281          * go away inside make_request
282          */
283         sectors = bio_sectors(bio);
284         mddev->pers->make_request(mddev, bio);
285
286         generic_start_io_acct(rw, sectors, &mddev->gendisk->part0);
287
288         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
289                 wake_up(&mddev->sb_wait);
290 }
291
292 /* mddev_suspend makes sure no new requests are submitted
293  * to the device, and that any requests that have been submitted
294  * are completely handled.
295  * Once ->stop is called and completes, the module will be completely
296  * unused.
297  */
298 void mddev_suspend(struct mddev *mddev)
299 {
300         BUG_ON(mddev->suspended);
301         mddev->suspended = 1;
302         synchronize_rcu();
303         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
304         mddev->pers->quiesce(mddev, 1);
305
306         del_timer_sync(&mddev->safemode_timer);
307 }
308 EXPORT_SYMBOL_GPL(mddev_suspend);
309
310 void mddev_resume(struct mddev *mddev)
311 {
312         mddev->suspended = 0;
313         wake_up(&mddev->sb_wait);
314         mddev->pers->quiesce(mddev, 0);
315
316         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
317         md_wakeup_thread(mddev->thread);
318         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
319 }
320 EXPORT_SYMBOL_GPL(mddev_resume);
321
322 int mddev_congested(struct mddev *mddev, int bits)
323 {
324         return mddev->suspended;
325 }
326 EXPORT_SYMBOL(mddev_congested);
327
328 /*
329  * Generic flush handling for md
330  */
331
332 static void md_end_flush(struct bio *bio, int err)
333 {
334         struct md_rdev *rdev = bio->bi_private;
335         struct mddev *mddev = rdev->mddev;
336
337         rdev_dec_pending(rdev, mddev);
338
339         if (atomic_dec_and_test(&mddev->flush_pending)) {
340                 /* The pre-request flush has finished */
341                 queue_work(md_wq, &mddev->flush_work);
342         }
343         bio_put(bio);
344 }
345
346 static void md_submit_flush_data(struct work_struct *ws);
347
348 static void submit_flushes(struct work_struct *ws)
349 {
350         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
351         struct md_rdev *rdev;
352
353         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
354         atomic_set(&mddev->flush_pending, 1);
355         rcu_read_lock();
356         rdev_for_each_rcu(rdev, mddev)
357                 if (rdev->raid_disk >= 0 &&
358                     !test_bit(Faulty, &rdev->flags)) {
359                         /* Take two references, one is dropped
360                          * when request finishes, one after
361                          * we reclaim rcu_read_lock
362                          */
363                         struct bio *bi;
364                         atomic_inc(&rdev->nr_pending);
365                         atomic_inc(&rdev->nr_pending);
366                         rcu_read_unlock();
367                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
368                         bi->bi_end_io = md_end_flush;
369                         bi->bi_private = rdev;
370                         bi->bi_bdev = rdev->bdev;
371                         atomic_inc(&mddev->flush_pending);
372                         submit_bio(WRITE_FLUSH, bi);
373                         rcu_read_lock();
374                         rdev_dec_pending(rdev, mddev);
375                 }
376         rcu_read_unlock();
377         if (atomic_dec_and_test(&mddev->flush_pending))
378                 queue_work(md_wq, &mddev->flush_work);
379 }
380
381 static void md_submit_flush_data(struct work_struct *ws)
382 {
383         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
384         struct bio *bio = mddev->flush_bio;
385
386         if (bio->bi_iter.bi_size == 0)
387                 /* an empty barrier - all done */
388                 bio_endio(bio, 0);
389         else {
390                 bio->bi_rw &= ~REQ_FLUSH;
391                 mddev->pers->make_request(mddev, bio);
392         }
393
394         mddev->flush_bio = NULL;
395         wake_up(&mddev->sb_wait);
396 }
397
398 void md_flush_request(struct mddev *mddev, struct bio *bio)
399 {
400         spin_lock_irq(&mddev->write_lock);
401         wait_event_lock_irq(mddev->sb_wait,
402                             !mddev->flush_bio,
403                             mddev->write_lock);
404         mddev->flush_bio = bio;
405         spin_unlock_irq(&mddev->write_lock);
406
407         INIT_WORK(&mddev->flush_work, submit_flushes);
408         queue_work(md_wq, &mddev->flush_work);
409 }
410 EXPORT_SYMBOL(md_flush_request);
411
412 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
413 {
414         struct mddev *mddev = cb->data;
415         md_wakeup_thread(mddev->thread);
416         kfree(cb);
417 }
418 EXPORT_SYMBOL(md_unplug);
419
420 static inline struct mddev *mddev_get(struct mddev *mddev)
421 {
422         atomic_inc(&mddev->active);
423         return mddev;
424 }
425
426 static void mddev_delayed_delete(struct work_struct *ws);
427
428 static void mddev_put(struct mddev *mddev)
429 {
430         struct bio_set *bs = NULL;
431
432         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
433                 return;
434         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
435             mddev->ctime == 0 && !mddev->hold_active) {
436                 /* Array is not configured at all, and not held active,
437                  * so destroy it */
438                 list_del_init(&mddev->all_mddevs);
439                 bs = mddev->bio_set;
440                 mddev->bio_set = NULL;
441                 if (mddev->gendisk) {
442                         /* We did a probe so need to clean up.  Call
443                          * queue_work inside the spinlock so that
444                          * flush_workqueue() after mddev_find will
445                          * succeed in waiting for the work to be done.
446                          */
447                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
448                         queue_work(md_misc_wq, &mddev->del_work);
449                 } else
450                         kfree(mddev);
451         }
452         spin_unlock(&all_mddevs_lock);
453         if (bs)
454                 bioset_free(bs);
455 }
456
457 void mddev_init(struct mddev *mddev)
458 {
459         mutex_init(&mddev->open_mutex);
460         mutex_init(&mddev->reconfig_mutex);
461         mutex_init(&mddev->bitmap_info.mutex);
462         INIT_LIST_HEAD(&mddev->disks);
463         INIT_LIST_HEAD(&mddev->all_mddevs);
464         init_timer(&mddev->safemode_timer);
465         atomic_set(&mddev->active, 1);
466         atomic_set(&mddev->openers, 0);
467         atomic_set(&mddev->active_io, 0);
468         spin_lock_init(&mddev->write_lock);
469         atomic_set(&mddev->flush_pending, 0);
470         init_waitqueue_head(&mddev->sb_wait);
471         init_waitqueue_head(&mddev->recovery_wait);
472         mddev->reshape_position = MaxSector;
473         mddev->reshape_backwards = 0;
474         mddev->last_sync_action = "none";
475         mddev->resync_min = 0;
476         mddev->resync_max = MaxSector;
477         mddev->level = LEVEL_NONE;
478 }
479 EXPORT_SYMBOL_GPL(mddev_init);
480
481 static struct mddev *mddev_find(dev_t unit)
482 {
483         struct mddev *mddev, *new = NULL;
484
485         if (unit && MAJOR(unit) != MD_MAJOR)
486                 unit &= ~((1<<MdpMinorShift)-1);
487
488  retry:
489         spin_lock(&all_mddevs_lock);
490
491         if (unit) {
492                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
493                         if (mddev->unit == unit) {
494                                 mddev_get(mddev);
495                                 spin_unlock(&all_mddevs_lock);
496                                 kfree(new);
497                                 return mddev;
498                         }
499
500                 if (new) {
501                         list_add(&new->all_mddevs, &all_mddevs);
502                         spin_unlock(&all_mddevs_lock);
503                         new->hold_active = UNTIL_IOCTL;
504                         return new;
505                 }
506         } else if (new) {
507                 /* find an unused unit number */
508                 static int next_minor = 512;
509                 int start = next_minor;
510                 int is_free = 0;
511                 int dev = 0;
512                 while (!is_free) {
513                         dev = MKDEV(MD_MAJOR, next_minor);
514                         next_minor++;
515                         if (next_minor > MINORMASK)
516                                 next_minor = 0;
517                         if (next_minor == start) {
518                                 /* Oh dear, all in use. */
519                                 spin_unlock(&all_mddevs_lock);
520                                 kfree(new);
521                                 return NULL;
522                         }
523
524                         is_free = 1;
525                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
526                                 if (mddev->unit == dev) {
527                                         is_free = 0;
528                                         break;
529                                 }
530                 }
531                 new->unit = dev;
532                 new->md_minor = MINOR(dev);
533                 new->hold_active = UNTIL_STOP;
534                 list_add(&new->all_mddevs, &all_mddevs);
535                 spin_unlock(&all_mddevs_lock);
536                 return new;
537         }
538         spin_unlock(&all_mddevs_lock);
539
540         new = kzalloc(sizeof(*new), GFP_KERNEL);
541         if (!new)
542                 return NULL;
543
544         new->unit = unit;
545         if (MAJOR(unit) == MD_MAJOR)
546                 new->md_minor = MINOR(unit);
547         else
548                 new->md_minor = MINOR(unit) >> MdpMinorShift;
549
550         mddev_init(new);
551
552         goto retry;
553 }
554
555 static inline int __must_check mddev_lock(struct mddev *mddev)
556 {
557         return mutex_lock_interruptible(&mddev->reconfig_mutex);
558 }
559
560 /* Sometimes we need to take the lock in a situation where
561  * failure due to interrupts is not acceptable.
562  */
563 static inline void mddev_lock_nointr(struct mddev *mddev)
564 {
565         mutex_lock(&mddev->reconfig_mutex);
566 }
567
568 static inline int mddev_is_locked(struct mddev *mddev)
569 {
570         return mutex_is_locked(&mddev->reconfig_mutex);
571 }
572
573 static inline int mddev_trylock(struct mddev *mddev)
574 {
575         return mutex_trylock(&mddev->reconfig_mutex);
576 }
577
578 static struct attribute_group md_redundancy_group;
579
580 static void mddev_unlock(struct mddev *mddev)
581 {
582         if (mddev->to_remove) {
583                 /* These cannot be removed under reconfig_mutex as
584                  * an access to the files will try to take reconfig_mutex
585                  * while holding the file unremovable, which leads to
586                  * a deadlock.
587                  * So hold set sysfs_active while the remove in happeing,
588                  * and anything else which might set ->to_remove or my
589                  * otherwise change the sysfs namespace will fail with
590                  * -EBUSY if sysfs_active is still set.
591                  * We set sysfs_active under reconfig_mutex and elsewhere
592                  * test it under the same mutex to ensure its correct value
593                  * is seen.
594                  */
595                 struct attribute_group *to_remove = mddev->to_remove;
596                 mddev->to_remove = NULL;
597                 mddev->sysfs_active = 1;
598                 mutex_unlock(&mddev->reconfig_mutex);
599
600                 if (mddev->kobj.sd) {
601                         if (to_remove != &md_redundancy_group)
602                                 sysfs_remove_group(&mddev->kobj, to_remove);
603                         if (mddev->pers == NULL ||
604                             mddev->pers->sync_request == NULL) {
605                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
606                                 if (mddev->sysfs_action)
607                                         sysfs_put(mddev->sysfs_action);
608                                 mddev->sysfs_action = NULL;
609                         }
610                 }
611                 mddev->sysfs_active = 0;
612         } else
613                 mutex_unlock(&mddev->reconfig_mutex);
614
615         /* As we've dropped the mutex we need a spinlock to
616          * make sure the thread doesn't disappear
617          */
618         spin_lock(&pers_lock);
619         md_wakeup_thread(mddev->thread);
620         spin_unlock(&pers_lock);
621 }
622
623 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
624 {
625         struct md_rdev *rdev;
626
627         rdev_for_each_rcu(rdev, mddev)
628                 if (rdev->desc_nr == nr)
629                         return rdev;
630
631         return NULL;
632 }
633
634 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
635 {
636         struct md_rdev *rdev;
637
638         rdev_for_each(rdev, mddev)
639                 if (rdev->bdev->bd_dev == dev)
640                         return rdev;
641
642         return NULL;
643 }
644
645 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
646 {
647         struct md_rdev *rdev;
648
649         rdev_for_each_rcu(rdev, mddev)
650                 if (rdev->bdev->bd_dev == dev)
651                         return rdev;
652
653         return NULL;
654 }
655
656 static struct md_personality *find_pers(int level, char *clevel)
657 {
658         struct md_personality *pers;
659         list_for_each_entry(pers, &pers_list, list) {
660                 if (level != LEVEL_NONE && pers->level == level)
661                         return pers;
662                 if (strcmp(pers->name, clevel)==0)
663                         return pers;
664         }
665         return NULL;
666 }
667
668 /* return the offset of the super block in 512byte sectors */
669 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
670 {
671         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
672         return MD_NEW_SIZE_SECTORS(num_sectors);
673 }
674
675 static int alloc_disk_sb(struct md_rdev *rdev)
676 {
677         rdev->sb_page = alloc_page(GFP_KERNEL);
678         if (!rdev->sb_page) {
679                 printk(KERN_ALERT "md: out of memory.\n");
680                 return -ENOMEM;
681         }
682
683         return 0;
684 }
685
686 void md_rdev_clear(struct md_rdev *rdev)
687 {
688         if (rdev->sb_page) {
689                 put_page(rdev->sb_page);
690                 rdev->sb_loaded = 0;
691                 rdev->sb_page = NULL;
692                 rdev->sb_start = 0;
693                 rdev->sectors = 0;
694         }
695         if (rdev->bb_page) {
696                 put_page(rdev->bb_page);
697                 rdev->bb_page = NULL;
698         }
699         kfree(rdev->badblocks.page);
700         rdev->badblocks.page = NULL;
701 }
702 EXPORT_SYMBOL_GPL(md_rdev_clear);
703
704 static void super_written(struct bio *bio, int error)
705 {
706         struct md_rdev *rdev = bio->bi_private;
707         struct mddev *mddev = rdev->mddev;
708
709         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
710                 printk("md: super_written gets error=%d, uptodate=%d\n",
711                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
712                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
713                 md_error(mddev, rdev);
714         }
715
716         if (atomic_dec_and_test(&mddev->pending_writes))
717                 wake_up(&mddev->sb_wait);
718         bio_put(bio);
719 }
720
721 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
722                    sector_t sector, int size, struct page *page)
723 {
724         /* write first size bytes of page to sector of rdev
725          * Increment mddev->pending_writes before returning
726          * and decrement it on completion, waking up sb_wait
727          * if zero is reached.
728          * If an error occurred, call md_error
729          */
730         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
731
732         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
733         bio->bi_iter.bi_sector = sector;
734         bio_add_page(bio, page, size, 0);
735         bio->bi_private = rdev;
736         bio->bi_end_io = super_written;
737
738         atomic_inc(&mddev->pending_writes);
739         submit_bio(WRITE_FLUSH_FUA, bio);
740 }
741
742 void md_super_wait(struct mddev *mddev)
743 {
744         /* wait for all superblock writes that were scheduled to complete */
745         wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
746 }
747
748 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
749                  struct page *page, int rw, bool metadata_op)
750 {
751         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
752         int ret;
753
754         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
755                 rdev->meta_bdev : rdev->bdev;
756         if (metadata_op)
757                 bio->bi_iter.bi_sector = sector + rdev->sb_start;
758         else if (rdev->mddev->reshape_position != MaxSector &&
759                  (rdev->mddev->reshape_backwards ==
760                   (sector >= rdev->mddev->reshape_position)))
761                 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
762         else
763                 bio->bi_iter.bi_sector = sector + rdev->data_offset;
764         bio_add_page(bio, page, size, 0);
765         submit_bio_wait(rw, bio);
766
767         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
768         bio_put(bio);
769         return ret;
770 }
771 EXPORT_SYMBOL_GPL(sync_page_io);
772
773 static int read_disk_sb(struct md_rdev *rdev, int size)
774 {
775         char b[BDEVNAME_SIZE];
776
777         if (rdev->sb_loaded)
778                 return 0;
779
780         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
781                 goto fail;
782         rdev->sb_loaded = 1;
783         return 0;
784
785 fail:
786         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
787                 bdevname(rdev->bdev,b));
788         return -EINVAL;
789 }
790
791 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
792 {
793         return  sb1->set_uuid0 == sb2->set_uuid0 &&
794                 sb1->set_uuid1 == sb2->set_uuid1 &&
795                 sb1->set_uuid2 == sb2->set_uuid2 &&
796                 sb1->set_uuid3 == sb2->set_uuid3;
797 }
798
799 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
800 {
801         int ret;
802         mdp_super_t *tmp1, *tmp2;
803
804         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
805         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
806
807         if (!tmp1 || !tmp2) {
808                 ret = 0;
809                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
810                 goto abort;
811         }
812
813         *tmp1 = *sb1;
814         *tmp2 = *sb2;
815
816         /*
817          * nr_disks is not constant
818          */
819         tmp1->nr_disks = 0;
820         tmp2->nr_disks = 0;
821
822         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
823 abort:
824         kfree(tmp1);
825         kfree(tmp2);
826         return ret;
827 }
828
829 static u32 md_csum_fold(u32 csum)
830 {
831         csum = (csum & 0xffff) + (csum >> 16);
832         return (csum & 0xffff) + (csum >> 16);
833 }
834
835 static unsigned int calc_sb_csum(mdp_super_t *sb)
836 {
837         u64 newcsum = 0;
838         u32 *sb32 = (u32*)sb;
839         int i;
840         unsigned int disk_csum, csum;
841
842         disk_csum = sb->sb_csum;
843         sb->sb_csum = 0;
844
845         for (i = 0; i < MD_SB_BYTES/4 ; i++)
846                 newcsum += sb32[i];
847         csum = (newcsum & 0xffffffff) + (newcsum>>32);
848
849 #ifdef CONFIG_ALPHA
850         /* This used to use csum_partial, which was wrong for several
851          * reasons including that different results are returned on
852          * different architectures.  It isn't critical that we get exactly
853          * the same return value as before (we always csum_fold before
854          * testing, and that removes any differences).  However as we
855          * know that csum_partial always returned a 16bit value on
856          * alphas, do a fold to maximise conformity to previous behaviour.
857          */
858         sb->sb_csum = md_csum_fold(disk_csum);
859 #else
860         sb->sb_csum = disk_csum;
861 #endif
862         return csum;
863 }
864
865 /*
866  * Handle superblock details.
867  * We want to be able to handle multiple superblock formats
868  * so we have a common interface to them all, and an array of
869  * different handlers.
870  * We rely on user-space to write the initial superblock, and support
871  * reading and updating of superblocks.
872  * Interface methods are:
873  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
874  *      loads and validates a superblock on dev.
875  *      if refdev != NULL, compare superblocks on both devices
876  *    Return:
877  *      0 - dev has a superblock that is compatible with refdev
878  *      1 - dev has a superblock that is compatible and newer than refdev
879  *          so dev should be used as the refdev in future
880  *     -EINVAL superblock incompatible or invalid
881  *     -othererror e.g. -EIO
882  *
883  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
884  *      Verify that dev is acceptable into mddev.
885  *       The first time, mddev->raid_disks will be 0, and data from
886  *       dev should be merged in.  Subsequent calls check that dev
887  *       is new enough.  Return 0 or -EINVAL
888  *
889  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
890  *     Update the superblock for rdev with data in mddev
891  *     This does not write to disc.
892  *
893  */
894
895 struct super_type  {
896         char                *name;
897         struct module       *owner;
898         int                 (*load_super)(struct md_rdev *rdev,
899                                           struct md_rdev *refdev,
900                                           int minor_version);
901         int                 (*validate_super)(struct mddev *mddev,
902                                               struct md_rdev *rdev);
903         void                (*sync_super)(struct mddev *mddev,
904                                           struct md_rdev *rdev);
905         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
906                                                 sector_t num_sectors);
907         int                 (*allow_new_offset)(struct md_rdev *rdev,
908                                                 unsigned long long new_offset);
909 };
910
911 /*
912  * Check that the given mddev has no bitmap.
913  *
914  * This function is called from the run method of all personalities that do not
915  * support bitmaps. It prints an error message and returns non-zero if mddev
916  * has a bitmap. Otherwise, it returns 0.
917  *
918  */
919 int md_check_no_bitmap(struct mddev *mddev)
920 {
921         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
922                 return 0;
923         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
924                 mdname(mddev), mddev->pers->name);
925         return 1;
926 }
927 EXPORT_SYMBOL(md_check_no_bitmap);
928
929 /*
930  * load_super for 0.90.0
931  */
932 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
933 {
934         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
935         mdp_super_t *sb;
936         int ret;
937
938         /*
939          * Calculate the position of the superblock (512byte sectors),
940          * it's at the end of the disk.
941          *
942          * It also happens to be a multiple of 4Kb.
943          */
944         rdev->sb_start = calc_dev_sboffset(rdev);
945
946         ret = read_disk_sb(rdev, MD_SB_BYTES);
947         if (ret) return ret;
948
949         ret = -EINVAL;
950
951         bdevname(rdev->bdev, b);
952         sb = page_address(rdev->sb_page);
953
954         if (sb->md_magic != MD_SB_MAGIC) {
955                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
956                        b);
957                 goto abort;
958         }
959
960         if (sb->major_version != 0 ||
961             sb->minor_version < 90 ||
962             sb->minor_version > 91) {
963                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
964                         sb->major_version, sb->minor_version,
965                         b);
966                 goto abort;
967         }
968
969         if (sb->raid_disks <= 0)
970                 goto abort;
971
972         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
973                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
974                         b);
975                 goto abort;
976         }
977
978         rdev->preferred_minor = sb->md_minor;
979         rdev->data_offset = 0;
980         rdev->new_data_offset = 0;
981         rdev->sb_size = MD_SB_BYTES;
982         rdev->badblocks.shift = -1;
983
984         if (sb->level == LEVEL_MULTIPATH)
985                 rdev->desc_nr = -1;
986         else
987                 rdev->desc_nr = sb->this_disk.number;
988
989         if (!refdev) {
990                 ret = 1;
991         } else {
992                 __u64 ev1, ev2;
993                 mdp_super_t *refsb = page_address(refdev->sb_page);
994                 if (!uuid_equal(refsb, sb)) {
995                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
996                                 b, bdevname(refdev->bdev,b2));
997                         goto abort;
998                 }
999                 if (!sb_equal(refsb, sb)) {
1000                         printk(KERN_WARNING "md: %s has same UUID"
1001                                " but different superblock to %s\n",
1002                                b, bdevname(refdev->bdev, b2));
1003                         goto abort;
1004                 }
1005                 ev1 = md_event(sb);
1006                 ev2 = md_event(refsb);
1007                 if (ev1 > ev2)
1008                         ret = 1;
1009                 else
1010                         ret = 0;
1011         }
1012         rdev->sectors = rdev->sb_start;
1013         /* Limit to 4TB as metadata cannot record more than that.
1014          * (not needed for Linear and RAID0 as metadata doesn't
1015          * record this size)
1016          */
1017         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1018                 rdev->sectors = (2ULL << 32) - 2;
1019
1020         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1021                 /* "this cannot possibly happen" ... */
1022                 ret = -EINVAL;
1023
1024  abort:
1025         return ret;
1026 }
1027
1028 /*
1029  * validate_super for 0.90.0
1030  */
1031 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1032 {
1033         mdp_disk_t *desc;
1034         mdp_super_t *sb = page_address(rdev->sb_page);
1035         __u64 ev1 = md_event(sb);
1036
1037         rdev->raid_disk = -1;
1038         clear_bit(Faulty, &rdev->flags);
1039         clear_bit(In_sync, &rdev->flags);
1040         clear_bit(Bitmap_sync, &rdev->flags);
1041         clear_bit(WriteMostly, &rdev->flags);
1042
1043         if (mddev->raid_disks == 0) {
1044                 mddev->major_version = 0;
1045                 mddev->minor_version = sb->minor_version;
1046                 mddev->patch_version = sb->patch_version;
1047                 mddev->external = 0;
1048                 mddev->chunk_sectors = sb->chunk_size >> 9;
1049                 mddev->ctime = sb->ctime;
1050                 mddev->utime = sb->utime;
1051                 mddev->level = sb->level;
1052                 mddev->clevel[0] = 0;
1053                 mddev->layout = sb->layout;
1054                 mddev->raid_disks = sb->raid_disks;
1055                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1056                 mddev->events = ev1;
1057                 mddev->bitmap_info.offset = 0;
1058                 mddev->bitmap_info.space = 0;
1059                 /* bitmap can use 60 K after the 4K superblocks */
1060                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1061                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1062                 mddev->reshape_backwards = 0;
1063
1064                 if (mddev->minor_version >= 91) {
1065                         mddev->reshape_position = sb->reshape_position;
1066                         mddev->delta_disks = sb->delta_disks;
1067                         mddev->new_level = sb->new_level;
1068                         mddev->new_layout = sb->new_layout;
1069                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1070                         if (mddev->delta_disks < 0)
1071                                 mddev->reshape_backwards = 1;
1072                 } else {
1073                         mddev->reshape_position = MaxSector;
1074                         mddev->delta_disks = 0;
1075                         mddev->new_level = mddev->level;
1076                         mddev->new_layout = mddev->layout;
1077                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1078                 }
1079
1080                 if (sb->state & (1<<MD_SB_CLEAN))
1081                         mddev->recovery_cp = MaxSector;
1082                 else {
1083                         if (sb->events_hi == sb->cp_events_hi &&
1084                                 sb->events_lo == sb->cp_events_lo) {
1085                                 mddev->recovery_cp = sb->recovery_cp;
1086                         } else
1087                                 mddev->recovery_cp = 0;
1088                 }
1089
1090                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1091                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1092                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1093                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1094
1095                 mddev->max_disks = MD_SB_DISKS;
1096
1097                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1098                     mddev->bitmap_info.file == NULL) {
1099                         mddev->bitmap_info.offset =
1100                                 mddev->bitmap_info.default_offset;
1101                         mddev->bitmap_info.space =
1102                                 mddev->bitmap_info.default_space;
1103                 }
1104
1105         } else if (mddev->pers == NULL) {
1106                 /* Insist on good event counter while assembling, except
1107                  * for spares (which don't need an event count) */
1108                 ++ev1;
1109                 if (sb->disks[rdev->desc_nr].state & (
1110                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1111                         if (ev1 < mddev->events)
1112                                 return -EINVAL;
1113         } else if (mddev->bitmap) {
1114                 /* if adding to array with a bitmap, then we can accept an
1115                  * older device ... but not too old.
1116                  */
1117                 if (ev1 < mddev->bitmap->events_cleared)
1118                         return 0;
1119                 if (ev1 < mddev->events)
1120                         set_bit(Bitmap_sync, &rdev->flags);
1121         } else {
1122                 if (ev1 < mddev->events)
1123                         /* just a hot-add of a new device, leave raid_disk at -1 */
1124                         return 0;
1125         }
1126
1127         if (mddev->level != LEVEL_MULTIPATH) {
1128                 desc = sb->disks + rdev->desc_nr;
1129
1130                 if (desc->state & (1<<MD_DISK_FAULTY))
1131                         set_bit(Faulty, &rdev->flags);
1132                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1133                             desc->raid_disk < mddev->raid_disks */) {
1134                         set_bit(In_sync, &rdev->flags);
1135                         rdev->raid_disk = desc->raid_disk;
1136                         rdev->saved_raid_disk = desc->raid_disk;
1137                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1138                         /* active but not in sync implies recovery up to
1139                          * reshape position.  We don't know exactly where
1140                          * that is, so set to zero for now */
1141                         if (mddev->minor_version >= 91) {
1142                                 rdev->recovery_offset = 0;
1143                                 rdev->raid_disk = desc->raid_disk;
1144                         }
1145                 }
1146                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1147                         set_bit(WriteMostly, &rdev->flags);
1148         } else /* MULTIPATH are always insync */
1149                 set_bit(In_sync, &rdev->flags);
1150         return 0;
1151 }
1152
1153 /*
1154  * sync_super for 0.90.0
1155  */
1156 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1157 {
1158         mdp_super_t *sb;
1159         struct md_rdev *rdev2;
1160         int next_spare = mddev->raid_disks;
1161
1162         /* make rdev->sb match mddev data..
1163          *
1164          * 1/ zero out disks
1165          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1166          * 3/ any empty disks < next_spare become removed
1167          *
1168          * disks[0] gets initialised to REMOVED because
1169          * we cannot be sure from other fields if it has
1170          * been initialised or not.
1171          */
1172         int i;
1173         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1174
1175         rdev->sb_size = MD_SB_BYTES;
1176
1177         sb = page_address(rdev->sb_page);
1178
1179         memset(sb, 0, sizeof(*sb));
1180
1181         sb->md_magic = MD_SB_MAGIC;
1182         sb->major_version = mddev->major_version;
1183         sb->patch_version = mddev->patch_version;
1184         sb->gvalid_words  = 0; /* ignored */
1185         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1186         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1187         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1188         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1189
1190         sb->ctime = mddev->ctime;
1191         sb->level = mddev->level;
1192         sb->size = mddev->dev_sectors / 2;
1193         sb->raid_disks = mddev->raid_disks;
1194         sb->md_minor = mddev->md_minor;
1195         sb->not_persistent = 0;
1196         sb->utime = mddev->utime;
1197         sb->state = 0;
1198         sb->events_hi = (mddev->events>>32);
1199         sb->events_lo = (u32)mddev->events;
1200
1201         if (mddev->reshape_position == MaxSector)
1202                 sb->minor_version = 90;
1203         else {
1204                 sb->minor_version = 91;
1205                 sb->reshape_position = mddev->reshape_position;
1206                 sb->new_level = mddev->new_level;
1207                 sb->delta_disks = mddev->delta_disks;
1208                 sb->new_layout = mddev->new_layout;
1209                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1210         }
1211         mddev->minor_version = sb->minor_version;
1212         if (mddev->in_sync)
1213         {
1214                 sb->recovery_cp = mddev->recovery_cp;
1215                 sb->cp_events_hi = (mddev->events>>32);
1216                 sb->cp_events_lo = (u32)mddev->events;
1217                 if (mddev->recovery_cp == MaxSector)
1218                         sb->state = (1<< MD_SB_CLEAN);
1219         } else
1220                 sb->recovery_cp = 0;
1221
1222         sb->layout = mddev->layout;
1223         sb->chunk_size = mddev->chunk_sectors << 9;
1224
1225         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1226                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1227
1228         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1229         rdev_for_each(rdev2, mddev) {
1230                 mdp_disk_t *d;
1231                 int desc_nr;
1232                 int is_active = test_bit(In_sync, &rdev2->flags);
1233
1234                 if (rdev2->raid_disk >= 0 &&
1235                     sb->minor_version >= 91)
1236                         /* we have nowhere to store the recovery_offset,
1237                          * but if it is not below the reshape_position,
1238                          * we can piggy-back on that.
1239                          */
1240                         is_active = 1;
1241                 if (rdev2->raid_disk < 0 ||
1242                     test_bit(Faulty, &rdev2->flags))
1243                         is_active = 0;
1244                 if (is_active)
1245                         desc_nr = rdev2->raid_disk;
1246                 else
1247                         desc_nr = next_spare++;
1248                 rdev2->desc_nr = desc_nr;
1249                 d = &sb->disks[rdev2->desc_nr];
1250                 nr_disks++;
1251                 d->number = rdev2->desc_nr;
1252                 d->major = MAJOR(rdev2->bdev->bd_dev);
1253                 d->minor = MINOR(rdev2->bdev->bd_dev);
1254                 if (is_active)
1255                         d->raid_disk = rdev2->raid_disk;
1256                 else
1257                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1258                 if (test_bit(Faulty, &rdev2->flags))
1259                         d->state = (1<<MD_DISK_FAULTY);
1260                 else if (is_active) {
1261                         d->state = (1<<MD_DISK_ACTIVE);
1262                         if (test_bit(In_sync, &rdev2->flags))
1263                                 d->state |= (1<<MD_DISK_SYNC);
1264                         active++;
1265                         working++;
1266                 } else {
1267                         d->state = 0;
1268                         spare++;
1269                         working++;
1270                 }
1271                 if (test_bit(WriteMostly, &rdev2->flags))
1272                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1273         }
1274         /* now set the "removed" and "faulty" bits on any missing devices */
1275         for (i=0 ; i < mddev->raid_disks ; i++) {
1276                 mdp_disk_t *d = &sb->disks[i];
1277                 if (d->state == 0 && d->number == 0) {
1278                         d->number = i;
1279                         d->raid_disk = i;
1280                         d->state = (1<<MD_DISK_REMOVED);
1281                         d->state |= (1<<MD_DISK_FAULTY);
1282                         failed++;
1283                 }
1284         }
1285         sb->nr_disks = nr_disks;
1286         sb->active_disks = active;
1287         sb->working_disks = working;
1288         sb->failed_disks = failed;
1289         sb->spare_disks = spare;
1290
1291         sb->this_disk = sb->disks[rdev->desc_nr];
1292         sb->sb_csum = calc_sb_csum(sb);
1293 }
1294
1295 /*
1296  * rdev_size_change for 0.90.0
1297  */
1298 static unsigned long long
1299 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1300 {
1301         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1302                 return 0; /* component must fit device */
1303         if (rdev->mddev->bitmap_info.offset)
1304                 return 0; /* can't move bitmap */
1305         rdev->sb_start = calc_dev_sboffset(rdev);
1306         if (!num_sectors || num_sectors > rdev->sb_start)
1307                 num_sectors = rdev->sb_start;
1308         /* Limit to 4TB as metadata cannot record more than that.
1309          * 4TB == 2^32 KB, or 2*2^32 sectors.
1310          */
1311         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1312                 num_sectors = (2ULL << 32) - 2;
1313         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1314                        rdev->sb_page);
1315         md_super_wait(rdev->mddev);
1316         return num_sectors;
1317 }
1318
1319 static int
1320 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1321 {
1322         /* non-zero offset changes not possible with v0.90 */
1323         return new_offset == 0;
1324 }
1325
1326 /*
1327  * version 1 superblock
1328  */
1329
1330 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1331 {
1332         __le32 disk_csum;
1333         u32 csum;
1334         unsigned long long newcsum;
1335         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1336         __le32 *isuper = (__le32*)sb;
1337
1338         disk_csum = sb->sb_csum;
1339         sb->sb_csum = 0;
1340         newcsum = 0;
1341         for (; size >= 4; size -= 4)
1342                 newcsum += le32_to_cpu(*isuper++);
1343
1344         if (size == 2)
1345                 newcsum += le16_to_cpu(*(__le16*) isuper);
1346
1347         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1348         sb->sb_csum = disk_csum;
1349         return cpu_to_le32(csum);
1350 }
1351
1352 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1353                             int acknowledged);
1354 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1355 {
1356         struct mdp_superblock_1 *sb;
1357         int ret;
1358         sector_t sb_start;
1359         sector_t sectors;
1360         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1361         int bmask;
1362
1363         /*
1364          * Calculate the position of the superblock in 512byte sectors.
1365          * It is always aligned to a 4K boundary and
1366          * depeding on minor_version, it can be:
1367          * 0: At least 8K, but less than 12K, from end of device
1368          * 1: At start of device
1369          * 2: 4K from start of device.
1370          */
1371         switch(minor_version) {
1372         case 0:
1373                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1374                 sb_start -= 8*2;
1375                 sb_start &= ~(sector_t)(4*2-1);
1376                 break;
1377         case 1:
1378                 sb_start = 0;
1379                 break;
1380         case 2:
1381                 sb_start = 8;
1382                 break;
1383         default:
1384                 return -EINVAL;
1385         }
1386         rdev->sb_start = sb_start;
1387
1388         /* superblock is rarely larger than 1K, but it can be larger,
1389          * and it is safe to read 4k, so we do that
1390          */
1391         ret = read_disk_sb(rdev, 4096);
1392         if (ret) return ret;
1393
1394         sb = page_address(rdev->sb_page);
1395
1396         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1397             sb->major_version != cpu_to_le32(1) ||
1398             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1399             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1400             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1401                 return -EINVAL;
1402
1403         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1404                 printk("md: invalid superblock checksum on %s\n",
1405                         bdevname(rdev->bdev,b));
1406                 return -EINVAL;
1407         }
1408         if (le64_to_cpu(sb->data_size) < 10) {
1409                 printk("md: data_size too small on %s\n",
1410                        bdevname(rdev->bdev,b));
1411                 return -EINVAL;
1412         }
1413         if (sb->pad0 ||
1414             sb->pad3[0] ||
1415             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1416                 /* Some padding is non-zero, might be a new feature */
1417                 return -EINVAL;
1418
1419         rdev->preferred_minor = 0xffff;
1420         rdev->data_offset = le64_to_cpu(sb->data_offset);
1421         rdev->new_data_offset = rdev->data_offset;
1422         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1423             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1424                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1425         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1426
1427         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1428         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1429         if (rdev->sb_size & bmask)
1430                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1431
1432         if (minor_version
1433             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1434                 return -EINVAL;
1435         if (minor_version
1436             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1437                 return -EINVAL;
1438
1439         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1440                 rdev->desc_nr = -1;
1441         else
1442                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1443
1444         if (!rdev->bb_page) {
1445                 rdev->bb_page = alloc_page(GFP_KERNEL);
1446                 if (!rdev->bb_page)
1447                         return -ENOMEM;
1448         }
1449         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1450             rdev->badblocks.count == 0) {
1451                 /* need to load the bad block list.
1452                  * Currently we limit it to one page.
1453                  */
1454                 s32 offset;
1455                 sector_t bb_sector;
1456                 u64 *bbp;
1457                 int i;
1458                 int sectors = le16_to_cpu(sb->bblog_size);
1459                 if (sectors > (PAGE_SIZE / 512))
1460                         return -EINVAL;
1461                 offset = le32_to_cpu(sb->bblog_offset);
1462                 if (offset == 0)
1463                         return -EINVAL;
1464                 bb_sector = (long long)offset;
1465                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1466                                   rdev->bb_page, READ, true))
1467                         return -EIO;
1468                 bbp = (u64 *)page_address(rdev->bb_page);
1469                 rdev->badblocks.shift = sb->bblog_shift;
1470                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1471                         u64 bb = le64_to_cpu(*bbp);
1472                         int count = bb & (0x3ff);
1473                         u64 sector = bb >> 10;
1474                         sector <<= sb->bblog_shift;
1475                         count <<= sb->bblog_shift;
1476                         if (bb + 1 == 0)
1477                                 break;
1478                         if (md_set_badblocks(&rdev->badblocks,
1479                                              sector, count, 1) == 0)
1480                                 return -EINVAL;
1481                 }
1482         } else if (sb->bblog_offset != 0)
1483                 rdev->badblocks.shift = 0;
1484
1485         if (!refdev) {
1486                 ret = 1;
1487         } else {
1488                 __u64 ev1, ev2;
1489                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1490
1491                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1492                     sb->level != refsb->level ||
1493                     sb->layout != refsb->layout ||
1494                     sb->chunksize != refsb->chunksize) {
1495                         printk(KERN_WARNING "md: %s has strangely different"
1496                                 " superblock to %s\n",
1497                                 bdevname(rdev->bdev,b),
1498                                 bdevname(refdev->bdev,b2));
1499                         return -EINVAL;
1500                 }
1501                 ev1 = le64_to_cpu(sb->events);
1502                 ev2 = le64_to_cpu(refsb->events);
1503
1504                 if (ev1 > ev2)
1505                         ret = 1;
1506                 else
1507                         ret = 0;
1508         }
1509         if (minor_version) {
1510                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1511                 sectors -= rdev->data_offset;
1512         } else
1513                 sectors = rdev->sb_start;
1514         if (sectors < le64_to_cpu(sb->data_size))
1515                 return -EINVAL;
1516         rdev->sectors = le64_to_cpu(sb->data_size);
1517         return ret;
1518 }
1519
1520 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1521 {
1522         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1523         __u64 ev1 = le64_to_cpu(sb->events);
1524
1525         rdev->raid_disk = -1;
1526         clear_bit(Faulty, &rdev->flags);
1527         clear_bit(In_sync, &rdev->flags);
1528         clear_bit(Bitmap_sync, &rdev->flags);
1529         clear_bit(WriteMostly, &rdev->flags);
1530
1531         if (mddev->raid_disks == 0) {
1532                 mddev->major_version = 1;
1533                 mddev->patch_version = 0;
1534                 mddev->external = 0;
1535                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1536                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1537                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1538                 mddev->level = le32_to_cpu(sb->level);
1539                 mddev->clevel[0] = 0;
1540                 mddev->layout = le32_to_cpu(sb->layout);
1541                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1542                 mddev->dev_sectors = le64_to_cpu(sb->size);
1543                 mddev->events = ev1;
1544                 mddev->bitmap_info.offset = 0;
1545                 mddev->bitmap_info.space = 0;
1546                 /* Default location for bitmap is 1K after superblock
1547                  * using 3K - total of 4K
1548                  */
1549                 mddev->bitmap_info.default_offset = 1024 >> 9;
1550                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1551                 mddev->reshape_backwards = 0;
1552
1553                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1554                 memcpy(mddev->uuid, sb->set_uuid, 16);
1555
1556                 mddev->max_disks =  (4096-256)/2;
1557
1558                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1559                     mddev->bitmap_info.file == NULL) {
1560                         mddev->bitmap_info.offset =
1561                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1562                         /* Metadata doesn't record how much space is available.
1563                          * For 1.0, we assume we can use up to the superblock
1564                          * if before, else to 4K beyond superblock.
1565                          * For others, assume no change is possible.
1566                          */
1567                         if (mddev->minor_version > 0)
1568                                 mddev->bitmap_info.space = 0;
1569                         else if (mddev->bitmap_info.offset > 0)
1570                                 mddev->bitmap_info.space =
1571                                         8 - mddev->bitmap_info.offset;
1572                         else
1573                                 mddev->bitmap_info.space =
1574                                         -mddev->bitmap_info.offset;
1575                 }
1576
1577                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1578                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1579                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1580                         mddev->new_level = le32_to_cpu(sb->new_level);
1581                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1582                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1583                         if (mddev->delta_disks < 0 ||
1584                             (mddev->delta_disks == 0 &&
1585                              (le32_to_cpu(sb->feature_map)
1586                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1587                                 mddev->reshape_backwards = 1;
1588                 } else {
1589                         mddev->reshape_position = MaxSector;
1590                         mddev->delta_disks = 0;
1591                         mddev->new_level = mddev->level;
1592                         mddev->new_layout = mddev->layout;
1593                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1594                 }
1595
1596         } else if (mddev->pers == NULL) {
1597                 /* Insist of good event counter while assembling, except for
1598                  * spares (which don't need an event count) */
1599                 ++ev1;
1600                 if (rdev->desc_nr >= 0 &&
1601                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1602                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1603                         if (ev1 < mddev->events)
1604                                 return -EINVAL;
1605         } else if (mddev->bitmap) {
1606                 /* If adding to array with a bitmap, then we can accept an
1607                  * older device, but not too old.
1608                  */
1609                 if (ev1 < mddev->bitmap->events_cleared)
1610                         return 0;
1611                 if (ev1 < mddev->events)
1612                         set_bit(Bitmap_sync, &rdev->flags);
1613         } else {
1614                 if (ev1 < mddev->events)
1615                         /* just a hot-add of a new device, leave raid_disk at -1 */
1616                         return 0;
1617         }
1618         if (mddev->level != LEVEL_MULTIPATH) {
1619                 int role;
1620                 if (rdev->desc_nr < 0 ||
1621                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1622                         role = 0xffff;
1623                         rdev->desc_nr = -1;
1624                 } else
1625                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1626                 switch(role) {
1627                 case 0xffff: /* spare */
1628                         break;
1629                 case 0xfffe: /* faulty */
1630                         set_bit(Faulty, &rdev->flags);
1631                         break;
1632                 default:
1633                         rdev->saved_raid_disk = role;
1634                         if ((le32_to_cpu(sb->feature_map) &
1635                              MD_FEATURE_RECOVERY_OFFSET)) {
1636                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1637                                 if (!(le32_to_cpu(sb->feature_map) &
1638                                       MD_FEATURE_RECOVERY_BITMAP))
1639                                         rdev->saved_raid_disk = -1;
1640                         } else
1641                                 set_bit(In_sync, &rdev->flags);
1642                         rdev->raid_disk = role;
1643                         break;
1644                 }
1645                 if (sb->devflags & WriteMostly1)
1646                         set_bit(WriteMostly, &rdev->flags);
1647                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1648                         set_bit(Replacement, &rdev->flags);
1649         } else /* MULTIPATH are always insync */
1650                 set_bit(In_sync, &rdev->flags);
1651
1652         return 0;
1653 }
1654
1655 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1656 {
1657         struct mdp_superblock_1 *sb;
1658         struct md_rdev *rdev2;
1659         int max_dev, i;
1660         /* make rdev->sb match mddev and rdev data. */
1661
1662         sb = page_address(rdev->sb_page);
1663
1664         sb->feature_map = 0;
1665         sb->pad0 = 0;
1666         sb->recovery_offset = cpu_to_le64(0);
1667         memset(sb->pad3, 0, sizeof(sb->pad3));
1668
1669         sb->utime = cpu_to_le64((__u64)mddev->utime);
1670         sb->events = cpu_to_le64(mddev->events);
1671         if (mddev->in_sync)
1672                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1673         else
1674                 sb->resync_offset = cpu_to_le64(0);
1675
1676         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1677
1678         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1679         sb->size = cpu_to_le64(mddev->dev_sectors);
1680         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1681         sb->level = cpu_to_le32(mddev->level);
1682         sb->layout = cpu_to_le32(mddev->layout);
1683
1684         if (test_bit(WriteMostly, &rdev->flags))
1685                 sb->devflags |= WriteMostly1;
1686         else
1687                 sb->devflags &= ~WriteMostly1;
1688         sb->data_offset = cpu_to_le64(rdev->data_offset);
1689         sb->data_size = cpu_to_le64(rdev->sectors);
1690
1691         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1692                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1693                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1694         }
1695
1696         if (rdev->raid_disk >= 0 &&
1697             !test_bit(In_sync, &rdev->flags)) {
1698                 sb->feature_map |=
1699                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1700                 sb->recovery_offset =
1701                         cpu_to_le64(rdev->recovery_offset);
1702                 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1703                         sb->feature_map |=
1704                                 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1705         }
1706         if (test_bit(Replacement, &rdev->flags))
1707                 sb->feature_map |=
1708                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1709
1710         if (mddev->reshape_position != MaxSector) {
1711                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1712                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1713                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1714                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1715                 sb->new_level = cpu_to_le32(mddev->new_level);
1716                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1717                 if (mddev->delta_disks == 0 &&
1718                     mddev->reshape_backwards)
1719                         sb->feature_map
1720                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1721                 if (rdev->new_data_offset != rdev->data_offset) {
1722                         sb->feature_map
1723                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1724                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1725                                                              - rdev->data_offset));
1726                 }
1727         }
1728
1729         if (rdev->badblocks.count == 0)
1730                 /* Nothing to do for bad blocks*/ ;
1731         else if (sb->bblog_offset == 0)
1732                 /* Cannot record bad blocks on this device */
1733                 md_error(mddev, rdev);
1734         else {
1735                 struct badblocks *bb = &rdev->badblocks;
1736                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1737                 u64 *p = bb->page;
1738                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1739                 if (bb->changed) {
1740                         unsigned seq;
1741
1742 retry:
1743                         seq = read_seqbegin(&bb->lock);
1744
1745                         memset(bbp, 0xff, PAGE_SIZE);
1746
1747                         for (i = 0 ; i < bb->count ; i++) {
1748                                 u64 internal_bb = p[i];
1749                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1750                                                 | BB_LEN(internal_bb));
1751                                 bbp[i] = cpu_to_le64(store_bb);
1752                         }
1753                         bb->changed = 0;
1754                         if (read_seqretry(&bb->lock, seq))
1755                                 goto retry;
1756
1757                         bb->sector = (rdev->sb_start +
1758                                       (int)le32_to_cpu(sb->bblog_offset));
1759                         bb->size = le16_to_cpu(sb->bblog_size);
1760                 }
1761         }
1762
1763         max_dev = 0;
1764         rdev_for_each(rdev2, mddev)
1765                 if (rdev2->desc_nr+1 > max_dev)
1766                         max_dev = rdev2->desc_nr+1;
1767
1768         if (max_dev > le32_to_cpu(sb->max_dev)) {
1769                 int bmask;
1770                 sb->max_dev = cpu_to_le32(max_dev);
1771                 rdev->sb_size = max_dev * 2 + 256;
1772                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1773                 if (rdev->sb_size & bmask)
1774                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1775         } else
1776                 max_dev = le32_to_cpu(sb->max_dev);
1777
1778         for (i=0; i<max_dev;i++)
1779                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1780
1781         rdev_for_each(rdev2, mddev) {
1782                 i = rdev2->desc_nr;
1783                 if (test_bit(Faulty, &rdev2->flags))
1784                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1785                 else if (test_bit(In_sync, &rdev2->flags))
1786                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1787                 else if (rdev2->raid_disk >= 0)
1788                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1789                 else
1790                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1791         }
1792
1793         sb->sb_csum = calc_sb_1_csum(sb);
1794 }
1795
1796 static unsigned long long
1797 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1798 {
1799         struct mdp_superblock_1 *sb;
1800         sector_t max_sectors;
1801         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1802                 return 0; /* component must fit device */
1803         if (rdev->data_offset != rdev->new_data_offset)
1804                 return 0; /* too confusing */
1805         if (rdev->sb_start < rdev->data_offset) {
1806                 /* minor versions 1 and 2; superblock before data */
1807                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1808                 max_sectors -= rdev->data_offset;
1809                 if (!num_sectors || num_sectors > max_sectors)
1810                         num_sectors = max_sectors;
1811         } else if (rdev->mddev->bitmap_info.offset) {
1812                 /* minor version 0 with bitmap we can't move */
1813                 return 0;
1814         } else {
1815                 /* minor version 0; superblock after data */
1816                 sector_t sb_start;
1817                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1818                 sb_start &= ~(sector_t)(4*2 - 1);
1819                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1820                 if (!num_sectors || num_sectors > max_sectors)
1821                         num_sectors = max_sectors;
1822                 rdev->sb_start = sb_start;
1823         }
1824         sb = page_address(rdev->sb_page);
1825         sb->data_size = cpu_to_le64(num_sectors);
1826         sb->super_offset = rdev->sb_start;
1827         sb->sb_csum = calc_sb_1_csum(sb);
1828         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1829                        rdev->sb_page);
1830         md_super_wait(rdev->mddev);
1831         return num_sectors;
1832
1833 }
1834
1835 static int
1836 super_1_allow_new_offset(struct md_rdev *rdev,
1837                          unsigned long long new_offset)
1838 {
1839         /* All necessary checks on new >= old have been done */
1840         struct bitmap *bitmap;
1841         if (new_offset >= rdev->data_offset)
1842                 return 1;
1843
1844         /* with 1.0 metadata, there is no metadata to tread on
1845          * so we can always move back */
1846         if (rdev->mddev->minor_version == 0)
1847                 return 1;
1848
1849         /* otherwise we must be sure not to step on
1850          * any metadata, so stay:
1851          * 36K beyond start of superblock
1852          * beyond end of badblocks
1853          * beyond write-intent bitmap
1854          */
1855         if (rdev->sb_start + (32+4)*2 > new_offset)
1856                 return 0;
1857         bitmap = rdev->mddev->bitmap;
1858         if (bitmap && !rdev->mddev->bitmap_info.file &&
1859             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1860             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1861                 return 0;
1862         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1863                 return 0;
1864
1865         return 1;
1866 }
1867
1868 static struct super_type super_types[] = {
1869         [0] = {
1870                 .name   = "0.90.0",
1871                 .owner  = THIS_MODULE,
1872                 .load_super         = super_90_load,
1873                 .validate_super     = super_90_validate,
1874                 .sync_super         = super_90_sync,
1875                 .rdev_size_change   = super_90_rdev_size_change,
1876                 .allow_new_offset   = super_90_allow_new_offset,
1877         },
1878         [1] = {
1879                 .name   = "md-1",
1880                 .owner  = THIS_MODULE,
1881                 .load_super         = super_1_load,
1882                 .validate_super     = super_1_validate,
1883                 .sync_super         = super_1_sync,
1884                 .rdev_size_change   = super_1_rdev_size_change,
1885                 .allow_new_offset   = super_1_allow_new_offset,
1886         },
1887 };
1888
1889 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1890 {
1891         if (mddev->sync_super) {
1892                 mddev->sync_super(mddev, rdev);
1893                 return;
1894         }
1895
1896         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1897
1898         super_types[mddev->major_version].sync_super(mddev, rdev);
1899 }
1900
1901 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1902 {
1903         struct md_rdev *rdev, *rdev2;
1904
1905         rcu_read_lock();
1906         rdev_for_each_rcu(rdev, mddev1)
1907                 rdev_for_each_rcu(rdev2, mddev2)
1908                         if (rdev->bdev->bd_contains ==
1909                             rdev2->bdev->bd_contains) {
1910                                 rcu_read_unlock();
1911                                 return 1;
1912                         }
1913         rcu_read_unlock();
1914         return 0;
1915 }
1916
1917 static LIST_HEAD(pending_raid_disks);
1918
1919 /*
1920  * Try to register data integrity profile for an mddev
1921  *
1922  * This is called when an array is started and after a disk has been kicked
1923  * from the array. It only succeeds if all working and active component devices
1924  * are integrity capable with matching profiles.
1925  */
1926 int md_integrity_register(struct mddev *mddev)
1927 {
1928         struct md_rdev *rdev, *reference = NULL;
1929
1930         if (list_empty(&mddev->disks))
1931                 return 0; /* nothing to do */
1932         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1933                 return 0; /* shouldn't register, or already is */
1934         rdev_for_each(rdev, mddev) {
1935                 /* skip spares and non-functional disks */
1936                 if (test_bit(Faulty, &rdev->flags))
1937                         continue;
1938                 if (rdev->raid_disk < 0)
1939                         continue;
1940                 if (!reference) {
1941                         /* Use the first rdev as the reference */
1942                         reference = rdev;
1943                         continue;
1944                 }
1945                 /* does this rdev's profile match the reference profile? */
1946                 if (blk_integrity_compare(reference->bdev->bd_disk,
1947                                 rdev->bdev->bd_disk) < 0)
1948                         return -EINVAL;
1949         }
1950         if (!reference || !bdev_get_integrity(reference->bdev))
1951                 return 0;
1952         /*
1953          * All component devices are integrity capable and have matching
1954          * profiles, register the common profile for the md device.
1955          */
1956         if (blk_integrity_register(mddev->gendisk,
1957                         bdev_get_integrity(reference->bdev)) != 0) {
1958                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1959                         mdname(mddev));
1960                 return -EINVAL;
1961         }
1962         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1963         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1964                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1965                        mdname(mddev));
1966                 return -EINVAL;
1967         }
1968         return 0;
1969 }
1970 EXPORT_SYMBOL(md_integrity_register);
1971
1972 /* Disable data integrity if non-capable/non-matching disk is being added */
1973 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1974 {
1975         struct blk_integrity *bi_rdev;
1976         struct blk_integrity *bi_mddev;
1977
1978         if (!mddev->gendisk)
1979                 return;
1980
1981         bi_rdev = bdev_get_integrity(rdev->bdev);
1982         bi_mddev = blk_get_integrity(mddev->gendisk);
1983
1984         if (!bi_mddev) /* nothing to do */
1985                 return;
1986         if (rdev->raid_disk < 0) /* skip spares */
1987                 return;
1988         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1989                                              rdev->bdev->bd_disk) >= 0)
1990                 return;
1991         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1992         blk_integrity_unregister(mddev->gendisk);
1993 }
1994 EXPORT_SYMBOL(md_integrity_add_rdev);
1995
1996 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
1997 {
1998         char b[BDEVNAME_SIZE];
1999         struct kobject *ko;
2000         char *s;
2001         int err;
2002
2003         /* prevent duplicates */
2004         if (find_rdev(mddev, rdev->bdev->bd_dev))
2005                 return -EEXIST;
2006
2007         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2008         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2009                         rdev->sectors < mddev->dev_sectors)) {
2010                 if (mddev->pers) {
2011                         /* Cannot change size, so fail
2012                          * If mddev->level <= 0, then we don't care
2013                          * about aligning sizes (e.g. linear)
2014                          */
2015                         if (mddev->level > 0)
2016                                 return -ENOSPC;
2017                 } else
2018                         mddev->dev_sectors = rdev->sectors;
2019         }
2020
2021         /* Verify rdev->desc_nr is unique.
2022          * If it is -1, assign a free number, else
2023          * check number is not in use
2024          */
2025         rcu_read_lock();
2026         if (rdev->desc_nr < 0) {
2027                 int choice = 0;
2028                 if (mddev->pers)
2029                         choice = mddev->raid_disks;
2030                 while (find_rdev_nr_rcu(mddev, choice))
2031                         choice++;
2032                 rdev->desc_nr = choice;
2033         } else {
2034                 if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2035                         rcu_read_unlock();
2036                         return -EBUSY;
2037                 }
2038         }
2039         rcu_read_unlock();
2040         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2041                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2042                        mdname(mddev), mddev->max_disks);
2043                 return -EBUSY;
2044         }
2045         bdevname(rdev->bdev,b);
2046         while ( (s=strchr(b, '/')) != NULL)
2047                 *s = '!';
2048
2049         rdev->mddev = mddev;
2050         printk(KERN_INFO "md: bind<%s>\n", b);
2051
2052         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2053                 goto fail;
2054
2055         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2056         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2057                 /* failure here is OK */;
2058         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2059
2060         list_add_rcu(&rdev->same_set, &mddev->disks);
2061         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2062
2063         /* May as well allow recovery to be retried once */
2064         mddev->recovery_disabled++;
2065
2066         return 0;
2067
2068  fail:
2069         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2070                b, mdname(mddev));
2071         return err;
2072 }
2073
2074 static void md_delayed_delete(struct work_struct *ws)
2075 {
2076         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2077         kobject_del(&rdev->kobj);
2078         kobject_put(&rdev->kobj);
2079 }
2080
2081 static void unbind_rdev_from_array(struct md_rdev *rdev)
2082 {
2083         char b[BDEVNAME_SIZE];
2084
2085         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2086         list_del_rcu(&rdev->same_set);
2087         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2088         rdev->mddev = NULL;
2089         sysfs_remove_link(&rdev->kobj, "block");
2090         sysfs_put(rdev->sysfs_state);
2091         rdev->sysfs_state = NULL;
2092         rdev->badblocks.count = 0;
2093         /* We need to delay this, otherwise we can deadlock when
2094          * writing to 'remove' to "dev/state".  We also need
2095          * to delay it due to rcu usage.
2096          */
2097         synchronize_rcu();
2098         INIT_WORK(&rdev->del_work, md_delayed_delete);
2099         kobject_get(&rdev->kobj);
2100         queue_work(md_misc_wq, &rdev->del_work);
2101 }
2102
2103 /*
2104  * prevent the device from being mounted, repartitioned or
2105  * otherwise reused by a RAID array (or any other kernel
2106  * subsystem), by bd_claiming the device.
2107  */
2108 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2109 {
2110         int err = 0;
2111         struct block_device *bdev;
2112         char b[BDEVNAME_SIZE];
2113
2114         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2115                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2116         if (IS_ERR(bdev)) {
2117                 printk(KERN_ERR "md: could not open %s.\n",
2118                         __bdevname(dev, b));
2119                 return PTR_ERR(bdev);
2120         }
2121         rdev->bdev = bdev;
2122         return err;
2123 }
2124
2125 static void unlock_rdev(struct md_rdev *rdev)
2126 {
2127         struct block_device *bdev = rdev->bdev;
2128         rdev->bdev = NULL;
2129         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2130 }
2131
2132 void md_autodetect_dev(dev_t dev);
2133
2134 static void export_rdev(struct md_rdev *rdev)
2135 {
2136         char b[BDEVNAME_SIZE];
2137
2138         printk(KERN_INFO "md: export_rdev(%s)\n",
2139                 bdevname(rdev->bdev,b));
2140         md_rdev_clear(rdev);
2141 #ifndef MODULE
2142         if (test_bit(AutoDetected, &rdev->flags))
2143                 md_autodetect_dev(rdev->bdev->bd_dev);
2144 #endif
2145         unlock_rdev(rdev);
2146         kobject_put(&rdev->kobj);
2147 }
2148
2149 static void kick_rdev_from_array(struct md_rdev *rdev)
2150 {
2151         unbind_rdev_from_array(rdev);
2152         export_rdev(rdev);
2153 }
2154
2155 static void export_array(struct mddev *mddev)
2156 {
2157         struct md_rdev *rdev;
2158
2159         while (!list_empty(&mddev->disks)) {
2160                 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2161                                         same_set);
2162                 kick_rdev_from_array(rdev);
2163         }
2164         mddev->raid_disks = 0;
2165         mddev->major_version = 0;
2166 }
2167
2168 static void sync_sbs(struct mddev *mddev, int nospares)
2169 {
2170         /* Update each superblock (in-memory image), but
2171          * if we are allowed to, skip spares which already
2172          * have the right event counter, or have one earlier
2173          * (which would mean they aren't being marked as dirty
2174          * with the rest of the array)
2175          */
2176         struct md_rdev *rdev;
2177         rdev_for_each(rdev, mddev) {
2178                 if (rdev->sb_events == mddev->events ||
2179                     (nospares &&
2180                      rdev->raid_disk < 0 &&
2181                      rdev->sb_events+1 == mddev->events)) {
2182                         /* Don't update this superblock */
2183                         rdev->sb_loaded = 2;
2184                 } else {
2185                         sync_super(mddev, rdev);
2186                         rdev->sb_loaded = 1;
2187                 }
2188         }
2189 }
2190
2191 static void md_update_sb(struct mddev *mddev, int force_change)
2192 {
2193         struct md_rdev *rdev;
2194         int sync_req;
2195         int nospares = 0;
2196         int any_badblocks_changed = 0;
2197
2198         if (mddev->ro) {
2199                 if (force_change)
2200                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2201                 return;
2202         }
2203 repeat:
2204         /* First make sure individual recovery_offsets are correct */
2205         rdev_for_each(rdev, mddev) {
2206                 if (rdev->raid_disk >= 0 &&
2207                     mddev->delta_disks >= 0 &&
2208                     !test_bit(In_sync, &rdev->flags) &&
2209                     mddev->curr_resync_completed > rdev->recovery_offset)
2210                                 rdev->recovery_offset = mddev->curr_resync_completed;
2211
2212         }
2213         if (!mddev->persistent) {
2214                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2215                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2216                 if (!mddev->external) {
2217                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2218                         rdev_for_each(rdev, mddev) {
2219                                 if (rdev->badblocks.changed) {
2220                                         rdev->badblocks.changed = 0;
2221                                         md_ack_all_badblocks(&rdev->badblocks);
2222                                         md_error(mddev, rdev);
2223                                 }
2224                                 clear_bit(Blocked, &rdev->flags);
2225                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2226                                 wake_up(&rdev->blocked_wait);
2227                         }
2228                 }
2229                 wake_up(&mddev->sb_wait);
2230                 return;
2231         }
2232
2233         spin_lock_irq(&mddev->write_lock);
2234
2235         mddev->utime = get_seconds();
2236
2237         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2238                 force_change = 1;
2239         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2240                 /* just a clean<-> dirty transition, possibly leave spares alone,
2241                  * though if events isn't the right even/odd, we will have to do
2242                  * spares after all
2243                  */
2244                 nospares = 1;
2245         if (force_change)
2246                 nospares = 0;
2247         if (mddev->degraded)
2248                 /* If the array is degraded, then skipping spares is both
2249                  * dangerous and fairly pointless.
2250                  * Dangerous because a device that was removed from the array
2251                  * might have a event_count that still looks up-to-date,
2252                  * so it can be re-added without a resync.
2253                  * Pointless because if there are any spares to skip,
2254                  * then a recovery will happen and soon that array won't
2255                  * be degraded any more and the spare can go back to sleep then.
2256                  */
2257                 nospares = 0;
2258
2259         sync_req = mddev->in_sync;
2260
2261         /* If this is just a dirty<->clean transition, and the array is clean
2262          * and 'events' is odd, we can roll back to the previous clean state */
2263         if (nospares
2264             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2265             && mddev->can_decrease_events
2266             && mddev->events != 1) {
2267                 mddev->events--;
2268                 mddev->can_decrease_events = 0;
2269         } else {
2270                 /* otherwise we have to go forward and ... */
2271                 mddev->events ++;
2272                 mddev->can_decrease_events = nospares;
2273         }
2274
2275         /*
2276          * This 64-bit counter should never wrap.
2277          * Either we are in around ~1 trillion A.C., assuming
2278          * 1 reboot per second, or we have a bug...
2279          */
2280         WARN_ON(mddev->events == 0);
2281
2282         rdev_for_each(rdev, mddev) {
2283                 if (rdev->badblocks.changed)
2284                         any_badblocks_changed++;
2285                 if (test_bit(Faulty, &rdev->flags))
2286                         set_bit(FaultRecorded, &rdev->flags);
2287         }
2288
2289         sync_sbs(mddev, nospares);
2290         spin_unlock_irq(&mddev->write_lock);
2291
2292         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2293                  mdname(mddev), mddev->in_sync);
2294
2295         bitmap_update_sb(mddev->bitmap);
2296         rdev_for_each(rdev, mddev) {
2297                 char b[BDEVNAME_SIZE];
2298
2299                 if (rdev->sb_loaded != 1)
2300                         continue; /* no noise on spare devices */
2301
2302                 if (!test_bit(Faulty, &rdev->flags)) {
2303                         md_super_write(mddev,rdev,
2304                                        rdev->sb_start, rdev->sb_size,
2305                                        rdev->sb_page);
2306                         pr_debug("md: (write) %s's sb offset: %llu\n",
2307                                  bdevname(rdev->bdev, b),
2308                                  (unsigned long long)rdev->sb_start);
2309                         rdev->sb_events = mddev->events;
2310                         if (rdev->badblocks.size) {
2311                                 md_super_write(mddev, rdev,
2312                                                rdev->badblocks.sector,
2313                                                rdev->badblocks.size << 9,
2314                                                rdev->bb_page);
2315                                 rdev->badblocks.size = 0;
2316                         }
2317
2318                 } else
2319                         pr_debug("md: %s (skipping faulty)\n",
2320                                  bdevname(rdev->bdev, b));
2321
2322                 if (mddev->level == LEVEL_MULTIPATH)
2323                         /* only need to write one superblock... */
2324                         break;
2325         }
2326         md_super_wait(mddev);
2327         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2328
2329         spin_lock_irq(&mddev->write_lock);
2330         if (mddev->in_sync != sync_req ||
2331             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2332                 /* have to write it out again */
2333                 spin_unlock_irq(&mddev->write_lock);
2334                 goto repeat;
2335         }
2336         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2337         spin_unlock_irq(&mddev->write_lock);
2338         wake_up(&mddev->sb_wait);
2339         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2340                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2341
2342         rdev_for_each(rdev, mddev) {
2343                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2344                         clear_bit(Blocked, &rdev->flags);
2345
2346                 if (any_badblocks_changed)
2347                         md_ack_all_badblocks(&rdev->badblocks);
2348                 clear_bit(BlockedBadBlocks, &rdev->flags);
2349                 wake_up(&rdev->blocked_wait);
2350         }
2351 }
2352
2353 /* words written to sysfs files may, or may not, be \n terminated.
2354  * We want to accept with case. For this we use cmd_match.
2355  */
2356 static int cmd_match(const char *cmd, const char *str)
2357 {
2358         /* See if cmd, written into a sysfs file, matches
2359          * str.  They must either be the same, or cmd can
2360          * have a trailing newline
2361          */
2362         while (*cmd && *str && *cmd == *str) {
2363                 cmd++;
2364                 str++;
2365         }
2366         if (*cmd == '\n')
2367                 cmd++;
2368         if (*str || *cmd)
2369                 return 0;
2370         return 1;
2371 }
2372
2373 struct rdev_sysfs_entry {
2374         struct attribute attr;
2375         ssize_t (*show)(struct md_rdev *, char *);
2376         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2377 };
2378
2379 static ssize_t
2380 state_show(struct md_rdev *rdev, char *page)
2381 {
2382         char *sep = "";
2383         size_t len = 0;
2384
2385         if (test_bit(Faulty, &rdev->flags) ||
2386             rdev->badblocks.unacked_exist) {
2387                 len+= sprintf(page+len, "%sfaulty",sep);
2388                 sep = ",";
2389         }
2390         if (test_bit(In_sync, &rdev->flags)) {
2391                 len += sprintf(page+len, "%sin_sync",sep);
2392                 sep = ",";
2393         }
2394         if (test_bit(WriteMostly, &rdev->flags)) {
2395                 len += sprintf(page+len, "%swrite_mostly",sep);
2396                 sep = ",";
2397         }
2398         if (test_bit(Blocked, &rdev->flags) ||
2399             (rdev->badblocks.unacked_exist
2400              && !test_bit(Faulty, &rdev->flags))) {
2401                 len += sprintf(page+len, "%sblocked", sep);
2402                 sep = ",";
2403         }
2404         if (!test_bit(Faulty, &rdev->flags) &&
2405             !test_bit(In_sync, &rdev->flags)) {
2406                 len += sprintf(page+len, "%sspare", sep);
2407                 sep = ",";
2408         }
2409         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2410                 len += sprintf(page+len, "%swrite_error", sep);
2411                 sep = ",";
2412         }
2413         if (test_bit(WantReplacement, &rdev->flags)) {
2414                 len += sprintf(page+len, "%swant_replacement", sep);
2415                 sep = ",";
2416         }
2417         if (test_bit(Replacement, &rdev->flags)) {
2418                 len += sprintf(page+len, "%sreplacement", sep);
2419                 sep = ",";
2420         }
2421
2422         return len+sprintf(page+len, "\n");
2423 }
2424
2425 static ssize_t
2426 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2427 {
2428         /* can write
2429          *  faulty  - simulates an error
2430          *  remove  - disconnects the device
2431          *  writemostly - sets write_mostly
2432          *  -writemostly - clears write_mostly
2433          *  blocked - sets the Blocked flags
2434          *  -blocked - clears the Blocked and possibly simulates an error
2435          *  insync - sets Insync providing device isn't active
2436          *  -insync - clear Insync for a device with a slot assigned,
2437          *            so that it gets rebuilt based on bitmap
2438          *  write_error - sets WriteErrorSeen
2439          *  -write_error - clears WriteErrorSeen
2440          */
2441         int err = -EINVAL;
2442         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2443                 md_error(rdev->mddev, rdev);
2444                 if (test_bit(Faulty, &rdev->flags))
2445                         err = 0;
2446                 else
2447                         err = -EBUSY;
2448         } else if (cmd_match(buf, "remove")) {
2449                 if (rdev->raid_disk >= 0)
2450                         err = -EBUSY;
2451                 else {
2452                         struct mddev *mddev = rdev->mddev;
2453                         kick_rdev_from_array(rdev);
2454                         if (mddev->pers)
2455                                 md_update_sb(mddev, 1);
2456                         md_new_event(mddev);
2457                         err = 0;
2458                 }
2459         } else if (cmd_match(buf, "writemostly")) {
2460                 set_bit(WriteMostly, &rdev->flags);
2461                 err = 0;
2462         } else if (cmd_match(buf, "-writemostly")) {
2463                 clear_bit(WriteMostly, &rdev->flags);
2464                 err = 0;
2465         } else if (cmd_match(buf, "blocked")) {
2466                 set_bit(Blocked, &rdev->flags);
2467                 err = 0;
2468         } else if (cmd_match(buf, "-blocked")) {
2469                 if (!test_bit(Faulty, &rdev->flags) &&
2470                     rdev->badblocks.unacked_exist) {
2471                         /* metadata handler doesn't understand badblocks,
2472                          * so we need to fail the device
2473                          */
2474                         md_error(rdev->mddev, rdev);
2475                 }
2476                 clear_bit(Blocked, &rdev->flags);
2477                 clear_bit(BlockedBadBlocks, &rdev->flags);
2478                 wake_up(&rdev->blocked_wait);
2479                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2480                 md_wakeup_thread(rdev->mddev->thread);
2481
2482                 err = 0;
2483         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2484                 set_bit(In_sync, &rdev->flags);
2485                 err = 0;
2486         } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2487                 if (rdev->mddev->pers == NULL) {
2488                         clear_bit(In_sync, &rdev->flags);
2489                         rdev->saved_raid_disk = rdev->raid_disk;
2490                         rdev->raid_disk = -1;
2491                         err = 0;
2492                 }
2493         } else if (cmd_match(buf, "write_error")) {
2494                 set_bit(WriteErrorSeen, &rdev->flags);
2495                 err = 0;
2496         } else if (cmd_match(buf, "-write_error")) {
2497                 clear_bit(WriteErrorSeen, &rdev->flags);
2498                 err = 0;
2499         } else if (cmd_match(buf, "want_replacement")) {
2500                 /* Any non-spare device that is not a replacement can
2501                  * become want_replacement at any time, but we then need to
2502                  * check if recovery is needed.
2503                  */
2504                 if (rdev->raid_disk >= 0 &&
2505                     !test_bit(Replacement, &rdev->flags))
2506                         set_bit(WantReplacement, &rdev->flags);
2507                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2508                 md_wakeup_thread(rdev->mddev->thread);
2509                 err = 0;
2510         } else if (cmd_match(buf, "-want_replacement")) {
2511                 /* Clearing 'want_replacement' is always allowed.
2512                  * Once replacements starts it is too late though.
2513                  */
2514                 err = 0;
2515                 clear_bit(WantReplacement, &rdev->flags);
2516         } else if (cmd_match(buf, "replacement")) {
2517                 /* Can only set a device as a replacement when array has not
2518                  * yet been started.  Once running, replacement is automatic
2519                  * from spares, or by assigning 'slot'.
2520                  */
2521                 if (rdev->mddev->pers)
2522                         err = -EBUSY;
2523                 else {
2524                         set_bit(Replacement, &rdev->flags);
2525                         err = 0;
2526                 }
2527         } else if (cmd_match(buf, "-replacement")) {
2528                 /* Similarly, can only clear Replacement before start */
2529                 if (rdev->mddev->pers)
2530                         err = -EBUSY;
2531                 else {
2532                         clear_bit(Replacement, &rdev->flags);
2533                         err = 0;
2534                 }
2535         }
2536         if (!err)
2537                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2538         return err ? err : len;
2539 }
2540 static struct rdev_sysfs_entry rdev_state =
2541 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2542
2543 static ssize_t
2544 errors_show(struct md_rdev *rdev, char *page)
2545 {
2546         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2547 }
2548
2549 static ssize_t
2550 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2551 {
2552         char *e;
2553         unsigned long n = simple_strtoul(buf, &e, 10);
2554         if (*buf && (*e == 0 || *e == '\n')) {
2555                 atomic_set(&rdev->corrected_errors, n);
2556                 return len;
2557         }
2558         return -EINVAL;
2559 }
2560 static struct rdev_sysfs_entry rdev_errors =
2561 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2562
2563 static ssize_t
2564 slot_show(struct md_rdev *rdev, char *page)
2565 {
2566         if (rdev->raid_disk < 0)
2567                 return sprintf(page, "none\n");
2568         else
2569                 return sprintf(page, "%d\n", rdev->raid_disk);
2570 }
2571
2572 static ssize_t
2573 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2574 {
2575         char *e;
2576         int err;
2577         int slot = simple_strtoul(buf, &e, 10);
2578         if (strncmp(buf, "none", 4)==0)
2579                 slot = -1;
2580         else if (e==buf || (*e && *e!= '\n'))
2581                 return -EINVAL;
2582         if (rdev->mddev->pers && slot == -1) {
2583                 /* Setting 'slot' on an active array requires also
2584                  * updating the 'rd%d' link, and communicating
2585                  * with the personality with ->hot_*_disk.
2586                  * For now we only support removing
2587                  * failed/spare devices.  This normally happens automatically,
2588                  * but not when the metadata is externally managed.
2589                  */
2590                 if (rdev->raid_disk == -1)
2591                         return -EEXIST;
2592                 /* personality does all needed checks */
2593                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2594                         return -EINVAL;
2595                 clear_bit(Blocked, &rdev->flags);
2596                 remove_and_add_spares(rdev->mddev, rdev);
2597                 if (rdev->raid_disk >= 0)
2598                         return -EBUSY;
2599                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2600                 md_wakeup_thread(rdev->mddev->thread);
2601         } else if (rdev->mddev->pers) {
2602                 /* Activating a spare .. or possibly reactivating
2603                  * if we ever get bitmaps working here.
2604                  */
2605
2606                 if (rdev->raid_disk != -1)
2607                         return -EBUSY;
2608
2609                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2610                         return -EBUSY;
2611
2612                 if (rdev->mddev->pers->hot_add_disk == NULL)
2613                         return -EINVAL;
2614
2615                 if (slot >= rdev->mddev->raid_disks &&
2616                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2617                         return -ENOSPC;
2618
2619                 rdev->raid_disk = slot;
2620                 if (test_bit(In_sync, &rdev->flags))
2621                         rdev->saved_raid_disk = slot;
2622                 else
2623                         rdev->saved_raid_disk = -1;
2624                 clear_bit(In_sync, &rdev->flags);
2625                 clear_bit(Bitmap_sync, &rdev->flags);
2626                 err = rdev->mddev->pers->
2627                         hot_add_disk(rdev->mddev, rdev);
2628                 if (err) {
2629                         rdev->raid_disk = -1;
2630                         return err;
2631                 } else
2632                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2633                 if (sysfs_link_rdev(rdev->mddev, rdev))
2634                         /* failure here is OK */;
2635                 /* don't wakeup anyone, leave that to userspace. */
2636         } else {
2637                 if (slot >= rdev->mddev->raid_disks &&
2638                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2639                         return -ENOSPC;
2640                 rdev->raid_disk = slot;
2641                 /* assume it is working */
2642                 clear_bit(Faulty, &rdev->flags);
2643                 clear_bit(WriteMostly, &rdev->flags);
2644                 set_bit(In_sync, &rdev->flags);
2645                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2646         }
2647         return len;
2648 }
2649
2650 static struct rdev_sysfs_entry rdev_slot =
2651 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2652
2653 static ssize_t
2654 offset_show(struct md_rdev *rdev, char *page)
2655 {
2656         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2657 }
2658
2659 static ssize_t
2660 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2661 {
2662         unsigned long long offset;
2663         if (kstrtoull(buf, 10, &offset) < 0)
2664                 return -EINVAL;
2665         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2666                 return -EBUSY;
2667         if (rdev->sectors && rdev->mddev->external)
2668                 /* Must set offset before size, so overlap checks
2669                  * can be sane */
2670                 return -EBUSY;
2671         rdev->data_offset = offset;
2672         rdev->new_data_offset = offset;
2673         return len;
2674 }
2675
2676 static struct rdev_sysfs_entry rdev_offset =
2677 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2678
2679 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2680 {
2681         return sprintf(page, "%llu\n",
2682                        (unsigned long long)rdev->new_data_offset);
2683 }
2684
2685 static ssize_t new_offset_store(struct md_rdev *rdev,
2686                                 const char *buf, size_t len)
2687 {
2688         unsigned long long new_offset;
2689         struct mddev *mddev = rdev->mddev;
2690
2691         if (kstrtoull(buf, 10, &new_offset) < 0)
2692                 return -EINVAL;
2693
2694         if (mddev->sync_thread)
2695                 return -EBUSY;
2696         if (new_offset == rdev->data_offset)
2697                 /* reset is always permitted */
2698                 ;
2699         else if (new_offset > rdev->data_offset) {
2700                 /* must not push array size beyond rdev_sectors */
2701                 if (new_offset - rdev->data_offset
2702                     + mddev->dev_sectors > rdev->sectors)
2703                                 return -E2BIG;
2704         }
2705         /* Metadata worries about other space details. */
2706
2707         /* decreasing the offset is inconsistent with a backwards
2708          * reshape.
2709          */
2710         if (new_offset < rdev->data_offset &&
2711             mddev->reshape_backwards)
2712                 return -EINVAL;
2713         /* Increasing offset is inconsistent with forwards
2714          * reshape.  reshape_direction should be set to
2715          * 'backwards' first.
2716          */
2717         if (new_offset > rdev->data_offset &&
2718             !mddev->reshape_backwards)
2719                 return -EINVAL;
2720
2721         if (mddev->pers && mddev->persistent &&
2722             !super_types[mddev->major_version]
2723             .allow_new_offset(rdev, new_offset))
2724                 return -E2BIG;
2725         rdev->new_data_offset = new_offset;
2726         if (new_offset > rdev->data_offset)
2727                 mddev->reshape_backwards = 1;
2728         else if (new_offset < rdev->data_offset)
2729                 mddev->reshape_backwards = 0;
2730
2731         return len;
2732 }
2733 static struct rdev_sysfs_entry rdev_new_offset =
2734 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2735
2736 static ssize_t
2737 rdev_size_show(struct md_rdev *rdev, char *page)
2738 {
2739         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2740 }
2741
2742 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2743 {
2744         /* check if two start/length pairs overlap */
2745         if (s1+l1 <= s2)
2746                 return 0;
2747         if (s2+l2 <= s1)
2748                 return 0;
2749         return 1;
2750 }
2751
2752 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2753 {
2754         unsigned long long blocks;
2755         sector_t new;
2756
2757         if (kstrtoull(buf, 10, &blocks) < 0)
2758                 return -EINVAL;
2759
2760         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2761                 return -EINVAL; /* sector conversion overflow */
2762
2763         new = blocks * 2;
2764         if (new != blocks * 2)
2765                 return -EINVAL; /* unsigned long long to sector_t overflow */
2766
2767         *sectors = new;
2768         return 0;
2769 }
2770
2771 static ssize_t
2772 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2773 {
2774         struct mddev *my_mddev = rdev->mddev;
2775         sector_t oldsectors = rdev->sectors;
2776         sector_t sectors;
2777
2778         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2779                 return -EINVAL;
2780         if (rdev->data_offset != rdev->new_data_offset)
2781                 return -EINVAL; /* too confusing */
2782         if (my_mddev->pers && rdev->raid_disk >= 0) {
2783                 if (my_mddev->persistent) {
2784                         sectors = super_types[my_mddev->major_version].
2785                                 rdev_size_change(rdev, sectors);
2786                         if (!sectors)
2787                                 return -EBUSY;
2788                 } else if (!sectors)
2789                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2790                                 rdev->data_offset;
2791                 if (!my_mddev->pers->resize)
2792                         /* Cannot change size for RAID0 or Linear etc */
2793                         return -EINVAL;
2794         }
2795         if (sectors < my_mddev->dev_sectors)
2796                 return -EINVAL; /* component must fit device */
2797
2798         rdev->sectors = sectors;
2799         if (sectors > oldsectors && my_mddev->external) {
2800                 /* Need to check that all other rdevs with the same
2801                  * ->bdev do not overlap.  'rcu' is sufficient to walk
2802                  * the rdev lists safely.
2803                  * This check does not provide a hard guarantee, it
2804                  * just helps avoid dangerous mistakes.
2805                  */
2806                 struct mddev *mddev;
2807                 int overlap = 0;
2808                 struct list_head *tmp;
2809
2810                 rcu_read_lock();
2811                 for_each_mddev(mddev, tmp) {
2812                         struct md_rdev *rdev2;
2813
2814                         rdev_for_each(rdev2, mddev)
2815                                 if (rdev->bdev == rdev2->bdev &&
2816                                     rdev != rdev2 &&
2817                                     overlaps(rdev->data_offset, rdev->sectors,
2818                                              rdev2->data_offset,
2819                                              rdev2->sectors)) {
2820                                         overlap = 1;
2821                                         break;
2822                                 }
2823                         if (overlap) {
2824                                 mddev_put(mddev);
2825                                 break;
2826                         }
2827                 }
2828                 rcu_read_unlock();
2829                 if (overlap) {
2830                         /* Someone else could have slipped in a size
2831                          * change here, but doing so is just silly.
2832                          * We put oldsectors back because we *know* it is
2833                          * safe, and trust userspace not to race with
2834                          * itself
2835                          */
2836                         rdev->sectors = oldsectors;
2837                         return -EBUSY;
2838                 }
2839         }
2840         return len;
2841 }
2842
2843 static struct rdev_sysfs_entry rdev_size =
2844 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2845
2846 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2847 {
2848         unsigned long long recovery_start = rdev->recovery_offset;
2849
2850         if (test_bit(In_sync, &rdev->flags) ||
2851             recovery_start == MaxSector)
2852                 return sprintf(page, "none\n");
2853
2854         return sprintf(page, "%llu\n", recovery_start);
2855 }
2856
2857 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2858 {
2859         unsigned long long recovery_start;
2860
2861         if (cmd_match(buf, "none"))
2862                 recovery_start = MaxSector;
2863         else if (kstrtoull(buf, 10, &recovery_start))
2864                 return -EINVAL;
2865
2866         if (rdev->mddev->pers &&
2867             rdev->raid_disk >= 0)
2868                 return -EBUSY;
2869
2870         rdev->recovery_offset = recovery_start;
2871         if (recovery_start == MaxSector)
2872                 set_bit(In_sync, &rdev->flags);
2873         else
2874                 clear_bit(In_sync, &rdev->flags);
2875         return len;
2876 }
2877
2878 static struct rdev_sysfs_entry rdev_recovery_start =
2879 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2880
2881 static ssize_t
2882 badblocks_show(struct badblocks *bb, char *page, int unack);
2883 static ssize_t
2884 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2885
2886 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2887 {
2888         return badblocks_show(&rdev->badblocks, page, 0);
2889 }
2890 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2891 {
2892         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2893         /* Maybe that ack was all we needed */
2894         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2895                 wake_up(&rdev->blocked_wait);
2896         return rv;
2897 }
2898 static struct rdev_sysfs_entry rdev_bad_blocks =
2899 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2900
2901 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2902 {
2903         return badblocks_show(&rdev->badblocks, page, 1);
2904 }
2905 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2906 {
2907         return badblocks_store(&rdev->badblocks, page, len, 1);
2908 }
2909 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2910 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2911
2912 static struct attribute *rdev_default_attrs[] = {
2913         &rdev_state.attr,
2914         &rdev_errors.attr,
2915         &rdev_slot.attr,
2916         &rdev_offset.attr,
2917         &rdev_new_offset.attr,
2918         &rdev_size.attr,
2919         &rdev_recovery_start.attr,
2920         &rdev_bad_blocks.attr,
2921         &rdev_unack_bad_blocks.attr,
2922         NULL,
2923 };
2924 static ssize_t
2925 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2926 {
2927         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2928         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2929         struct mddev *mddev = rdev->mddev;
2930         ssize_t rv;
2931
2932         if (!entry->show)
2933                 return -EIO;
2934
2935         rv = mddev ? mddev_lock(mddev) : -EBUSY;
2936         if (!rv) {
2937                 if (rdev->mddev == NULL)
2938                         rv = -EBUSY;
2939                 else
2940                         rv = entry->show(rdev, page);
2941                 mddev_unlock(mddev);
2942         }
2943         return rv;
2944 }
2945
2946 static ssize_t
2947 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2948               const char *page, size_t length)
2949 {
2950         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2951         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2952         ssize_t rv;
2953         struct mddev *mddev = rdev->mddev;
2954
2955         if (!entry->store)
2956                 return -EIO;
2957         if (!capable(CAP_SYS_ADMIN))
2958                 return -EACCES;
2959         rv = mddev ? mddev_lock(mddev): -EBUSY;
2960         if (!rv) {
2961                 if (rdev->mddev == NULL)
2962                         rv = -EBUSY;
2963                 else
2964                         rv = entry->store(rdev, page, length);
2965                 mddev_unlock(mddev);
2966         }
2967         return rv;
2968 }
2969
2970 static void rdev_free(struct kobject *ko)
2971 {
2972         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
2973         kfree(rdev);
2974 }
2975 static const struct sysfs_ops rdev_sysfs_ops = {
2976         .show           = rdev_attr_show,
2977         .store          = rdev_attr_store,
2978 };
2979 static struct kobj_type rdev_ktype = {
2980         .release        = rdev_free,
2981         .sysfs_ops      = &rdev_sysfs_ops,
2982         .default_attrs  = rdev_default_attrs,
2983 };
2984
2985 int md_rdev_init(struct md_rdev *rdev)
2986 {
2987         rdev->desc_nr = -1;
2988         rdev->saved_raid_disk = -1;
2989         rdev->raid_disk = -1;
2990         rdev->flags = 0;
2991         rdev->data_offset = 0;
2992         rdev->new_data_offset = 0;
2993         rdev->sb_events = 0;
2994         rdev->last_read_error.tv_sec  = 0;
2995         rdev->last_read_error.tv_nsec = 0;
2996         rdev->sb_loaded = 0;
2997         rdev->bb_page = NULL;
2998         atomic_set(&rdev->nr_pending, 0);
2999         atomic_set(&rdev->read_errors, 0);
3000         atomic_set(&rdev->corrected_errors, 0);
3001
3002         INIT_LIST_HEAD(&rdev->same_set);
3003         init_waitqueue_head(&rdev->blocked_wait);
3004
3005         /* Add space to store bad block list.
3006          * This reserves the space even on arrays where it cannot
3007          * be used - I wonder if that matters
3008          */
3009         rdev->badblocks.count = 0;
3010         rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3011         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3012         seqlock_init(&rdev->badblocks.lock);
3013         if (rdev->badblocks.page == NULL)
3014                 return -ENOMEM;
3015
3016         return 0;
3017 }
3018 EXPORT_SYMBOL_GPL(md_rdev_init);
3019 /*
3020  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3021  *
3022  * mark the device faulty if:
3023  *
3024  *   - the device is nonexistent (zero size)
3025  *   - the device has no valid superblock
3026  *
3027  * a faulty rdev _never_ has rdev->sb set.
3028  */
3029 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3030 {
3031         char b[BDEVNAME_SIZE];
3032         int err;
3033         struct md_rdev *rdev;
3034         sector_t size;
3035
3036         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3037         if (!rdev) {
3038                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3039                 return ERR_PTR(-ENOMEM);
3040         }
3041
3042         err = md_rdev_init(rdev);
3043         if (err)
3044                 goto abort_free;
3045         err = alloc_disk_sb(rdev);
3046         if (err)
3047                 goto abort_free;
3048
3049         err = lock_rdev(rdev, newdev, super_format == -2);
3050         if (err)
3051                 goto abort_free;
3052
3053         kobject_init(&rdev->kobj, &rdev_ktype);
3054
3055         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3056         if (!size) {
3057                 printk(KERN_WARNING
3058                         "md: %s has zero or unknown size, marking faulty!\n",
3059                         bdevname(rdev->bdev,b));
3060                 err = -EINVAL;
3061                 goto abort_free;
3062         }
3063
3064         if (super_format >= 0) {
3065                 err = super_types[super_format].
3066                         load_super(rdev, NULL, super_minor);
3067                 if (err == -EINVAL) {
3068                         printk(KERN_WARNING
3069                                 "md: %s does not have a valid v%d.%d "
3070                                "superblock, not importing!\n",
3071                                 bdevname(rdev->bdev,b),
3072                                super_format, super_minor);
3073                         goto abort_free;
3074                 }
3075                 if (err < 0) {
3076                         printk(KERN_WARNING
3077                                 "md: could not read %s's sb, not importing!\n",
3078                                 bdevname(rdev->bdev,b));
3079                         goto abort_free;
3080                 }
3081         }
3082
3083         return rdev;
3084
3085 abort_free:
3086         if (rdev->bdev)
3087                 unlock_rdev(rdev);
3088         md_rdev_clear(rdev);
3089         kfree(rdev);
3090         return ERR_PTR(err);
3091 }
3092
3093 /*
3094  * Check a full RAID array for plausibility
3095  */
3096
3097 static void analyze_sbs(struct mddev *mddev)
3098 {
3099         int i;
3100         struct md_rdev *rdev, *freshest, *tmp;
3101         char b[BDEVNAME_SIZE];
3102
3103         freshest = NULL;
3104         rdev_for_each_safe(rdev, tmp, mddev)
3105                 switch (super_types[mddev->major_version].
3106                         load_super(rdev, freshest, mddev->minor_version)) {
3107                 case 1:
3108                         freshest = rdev;
3109                         break;
3110                 case 0:
3111                         break;
3112                 default:
3113                         printk( KERN_ERR \
3114                                 "md: fatal superblock inconsistency in %s"
3115                                 " -- removing from array\n",
3116                                 bdevname(rdev->bdev,b));
3117                         kick_rdev_from_array(rdev);
3118                 }
3119
3120         super_types[mddev->major_version].
3121                 validate_super(mddev, freshest);
3122
3123         i = 0;
3124         rdev_for_each_safe(rdev, tmp, mddev) {
3125                 if (mddev->max_disks &&
3126                     (rdev->desc_nr >= mddev->max_disks ||
3127                      i > mddev->max_disks)) {
3128                         printk(KERN_WARNING
3129                                "md: %s: %s: only %d devices permitted\n",
3130                                mdname(mddev), bdevname(rdev->bdev, b),
3131                                mddev->max_disks);
3132                         kick_rdev_from_array(rdev);
3133                         continue;
3134                 }
3135                 if (rdev != freshest)
3136                         if (super_types[mddev->major_version].
3137                             validate_super(mddev, rdev)) {
3138                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3139                                         " from array!\n",
3140                                         bdevname(rdev->bdev,b));
3141                                 kick_rdev_from_array(rdev);
3142                                 continue;
3143                         }
3144                 if (mddev->level == LEVEL_MULTIPATH) {
3145                         rdev->desc_nr = i++;
3146                         rdev->raid_disk = rdev->desc_nr;
3147                         set_bit(In_sync, &rdev->flags);
3148                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3149                         rdev->raid_disk = -1;
3150                         clear_bit(In_sync, &rdev->flags);
3151                 }
3152         }
3153 }
3154
3155 /* Read a fixed-point number.
3156  * Numbers in sysfs attributes should be in "standard" units where
3157  * possible, so time should be in seconds.
3158  * However we internally use a a much smaller unit such as
3159  * milliseconds or jiffies.
3160  * This function takes a decimal number with a possible fractional
3161  * component, and produces an integer which is the result of
3162  * multiplying that number by 10^'scale'.
3163  * all without any floating-point arithmetic.
3164  */
3165 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3166 {
3167         unsigned long result = 0;
3168         long decimals = -1;
3169         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3170                 if (*cp == '.')
3171                         decimals = 0;
3172                 else if (decimals < scale) {
3173                         unsigned int value;
3174                         value = *cp - '0';
3175                         result = result * 10 + value;
3176                         if (decimals >= 0)
3177                                 decimals++;
3178                 }
3179                 cp++;
3180         }
3181         if (*cp == '\n')
3182                 cp++;
3183         if (*cp)
3184                 return -EINVAL;
3185         if (decimals < 0)
3186                 decimals = 0;
3187         while (decimals < scale) {
3188                 result *= 10;
3189                 decimals ++;
3190         }
3191         *res = result;
3192         return 0;
3193 }
3194
3195 static void md_safemode_timeout(unsigned long data);
3196
3197 static ssize_t
3198 safe_delay_show(struct mddev *mddev, char *page)
3199 {
3200         int msec = (mddev->safemode_delay*1000)/HZ;
3201         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3202 }
3203 static ssize_t
3204 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3205 {
3206         unsigned long msec;
3207
3208         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3209                 return -EINVAL;
3210         if (msec == 0)
3211                 mddev->safemode_delay = 0;
3212         else {
3213                 unsigned long old_delay = mddev->safemode_delay;
3214                 mddev->safemode_delay = (msec*HZ)/1000;
3215                 if (mddev->safemode_delay == 0)
3216                         mddev->safemode_delay = 1;
3217                 if (mddev->safemode_delay < old_delay || old_delay == 0)
3218                         md_safemode_timeout((unsigned long)mddev);
3219         }
3220         return len;
3221 }
3222 static struct md_sysfs_entry md_safe_delay =
3223 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3224
3225 static ssize_t
3226 level_show(struct mddev *mddev, char *page)
3227 {
3228         struct md_personality *p = mddev->pers;
3229         if (p)
3230                 return sprintf(page, "%s\n", p->name);
3231         else if (mddev->clevel[0])
3232                 return sprintf(page, "%s\n", mddev->clevel);
3233         else if (mddev->level != LEVEL_NONE)
3234                 return sprintf(page, "%d\n", mddev->level);
3235         else
3236                 return 0;
3237 }
3238
3239 static ssize_t
3240 level_store(struct mddev *mddev, const char *buf, size_t len)
3241 {
3242         char clevel[16];
3243         ssize_t rv = len;
3244         struct md_personality *pers;
3245         long level;
3246         void *priv;
3247         struct md_rdev *rdev;
3248
3249         if (mddev->pers == NULL) {
3250                 if (len == 0)
3251                         return 0;
3252                 if (len >= sizeof(mddev->clevel))
3253                         return -ENOSPC;
3254                 strncpy(mddev->clevel, buf, len);
3255                 if (mddev->clevel[len-1] == '\n')
3256                         len--;
3257                 mddev->clevel[len] = 0;
3258                 mddev->level = LEVEL_NONE;
3259                 return rv;
3260         }
3261         if (mddev->ro)
3262                 return  -EROFS;
3263
3264         /* request to change the personality.  Need to ensure:
3265          *  - array is not engaged in resync/recovery/reshape
3266          *  - old personality can be suspended
3267          *  - new personality will access other array.
3268          */
3269
3270         if (mddev->sync_thread ||
3271             mddev->reshape_position != MaxSector ||
3272             mddev->sysfs_active)
3273                 return -EBUSY;
3274
3275         if (!mddev->pers->quiesce) {
3276                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3277                        mdname(mddev), mddev->pers->name);
3278                 return -EINVAL;
3279         }
3280
3281         /* Now find the new personality */
3282         if (len == 0 || len >= sizeof(clevel))
3283                 return -EINVAL;
3284         strncpy(clevel, buf, len);
3285         if (clevel[len-1] == '\n')
3286                 len--;
3287         clevel[len] = 0;
3288         if (kstrtol(clevel, 10, &level))
3289                 level = LEVEL_NONE;
3290
3291         if (request_module("md-%s", clevel) != 0)
3292                 request_module("md-level-%s", clevel);
3293         spin_lock(&pers_lock);
3294         pers = find_pers(level, clevel);
3295         if (!pers || !try_module_get(pers->owner)) {
3296                 spin_unlock(&pers_lock);
3297                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3298                 return -EINVAL;
3299         }
3300         spin_unlock(&pers_lock);
3301
3302         if (pers == mddev->pers) {
3303                 /* Nothing to do! */
3304                 module_put(pers->owner);
3305                 return rv;
3306         }
3307         if (!pers->takeover) {
3308                 module_put(pers->owner);
3309                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3310                        mdname(mddev), clevel);
3311                 return -EINVAL;
3312         }
3313
3314         rdev_for_each(rdev, mddev)
3315                 rdev->new_raid_disk = rdev->raid_disk;
3316
3317         /* ->takeover must set new_* and/or delta_disks
3318          * if it succeeds, and may set them when it fails.
3319          */
3320         priv = pers->takeover(mddev);
3321         if (IS_ERR(priv)) {
3322                 mddev->new_level = mddev->level;
3323                 mddev->new_layout = mddev->layout;
3324                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3325                 mddev->raid_disks -= mddev->delta_disks;
3326                 mddev->delta_disks = 0;
3327                 mddev->reshape_backwards = 0;
3328                 module_put(pers->owner);
3329                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3330                        mdname(mddev), clevel);
3331                 return PTR_ERR(priv);
3332         }
3333
3334         /* Looks like we have a winner */
3335         mddev_suspend(mddev);
3336         mddev->pers->stop(mddev);
3337
3338         if (mddev->pers->sync_request == NULL &&
3339             pers->sync_request != NULL) {
3340                 /* need to add the md_redundancy_group */
3341                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3342                         printk(KERN_WARNING
3343                                "md: cannot register extra attributes for %s\n",
3344                                mdname(mddev));
3345                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3346         }
3347         if (mddev->pers->sync_request != NULL &&
3348             pers->sync_request == NULL) {
3349                 /* need to remove the md_redundancy_group */
3350                 if (mddev->to_remove == NULL)
3351                         mddev->to_remove = &md_redundancy_group;
3352         }
3353
3354         if (mddev->pers->sync_request == NULL &&
3355             mddev->external) {
3356                 /* We are converting from a no-redundancy array
3357                  * to a redundancy array and metadata is managed
3358                  * externally so we need to be sure that writes
3359                  * won't block due to a need to transition
3360                  *      clean->dirty
3361                  * until external management is started.
3362                  */
3363                 mddev->in_sync = 0;
3364                 mddev->safemode_delay = 0;
3365                 mddev->safemode = 0;
3366         }
3367
3368         rdev_for_each(rdev, mddev) {
3369                 if (rdev->raid_disk < 0)
3370                         continue;
3371                 if (rdev->new_raid_disk >= mddev->raid_disks)
3372                         rdev->new_raid_disk = -1;
3373                 if (rdev->new_raid_disk == rdev->raid_disk)
3374                         continue;
3375                 sysfs_unlink_rdev(mddev, rdev);
3376         }
3377         rdev_for_each(rdev, mddev) {
3378                 if (rdev->raid_disk < 0)
3379                         continue;
3380                 if (rdev->new_raid_disk == rdev->raid_disk)
3381                         continue;
3382                 rdev->raid_disk = rdev->new_raid_disk;
3383                 if (rdev->raid_disk < 0)
3384                         clear_bit(In_sync, &rdev->flags);
3385                 else {
3386                         if (sysfs_link_rdev(mddev, rdev))
3387                                 printk(KERN_WARNING "md: cannot register rd%d"
3388                                        " for %s after level change\n",
3389                                        rdev->raid_disk, mdname(mddev));
3390                 }
3391         }
3392
3393         module_put(mddev->pers->owner);
3394         mddev->pers = pers;
3395         mddev->private = priv;
3396         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3397         mddev->level = mddev->new_level;
3398         mddev->layout = mddev->new_layout;
3399         mddev->chunk_sectors = mddev->new_chunk_sectors;
3400         mddev->delta_disks = 0;
3401         mddev->reshape_backwards = 0;
3402         mddev->degraded = 0;
3403         if (mddev->pers->sync_request == NULL) {
3404                 /* this is now an array without redundancy, so
3405                  * it must always be in_sync
3406                  */
3407                 mddev->in_sync = 1;
3408                 del_timer_sync(&mddev->safemode_timer);
3409         }
3410         blk_set_stacking_limits(&mddev->queue->limits);
3411         pers->run(mddev);
3412         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3413         mddev_resume(mddev);
3414         if (!mddev->thread)
3415                 md_update_sb(mddev, 1);
3416         sysfs_notify(&mddev->kobj, NULL, "level");
3417         md_new_event(mddev);
3418         return rv;
3419 }
3420
3421 static struct md_sysfs_entry md_level =
3422 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3423
3424 static ssize_t
3425 layout_show(struct mddev *mddev, char *page)
3426 {
3427         /* just a number, not meaningful for all levels */
3428         if (mddev->reshape_position != MaxSector &&
3429             mddev->layout != mddev->new_layout)
3430                 return sprintf(page, "%d (%d)\n",
3431                                mddev->new_layout, mddev->layout);
3432         return sprintf(page, "%d\n", mddev->layout);
3433 }
3434
3435 static ssize_t
3436 layout_store(struct mddev *mddev, const char *buf, size_t len)
3437 {
3438         char *e;
3439         unsigned long n = simple_strtoul(buf, &e, 10);
3440
3441         if (!*buf || (*e && *e != '\n'))
3442                 return -EINVAL;
3443
3444         if (mddev->pers) {
3445                 int err;
3446                 if (mddev->pers->check_reshape == NULL)
3447                         return -EBUSY;
3448                 if (mddev->ro)
3449                         return -EROFS;
3450                 mddev->new_layout = n;
3451                 err = mddev->pers->check_reshape(mddev);
3452                 if (err) {
3453                         mddev->new_layout = mddev->layout;
3454                         return err;
3455                 }
3456         } else {
3457                 mddev->new_layout = n;
3458                 if (mddev->reshape_position == MaxSector)
3459                         mddev->layout = n;
3460         }
3461         return len;
3462 }
3463 static struct md_sysfs_entry md_layout =
3464 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3465
3466 static ssize_t
3467 raid_disks_show(struct mddev *mddev, char *page)
3468 {
3469         if (mddev->raid_disks == 0)
3470                 return 0;
3471         if (mddev->reshape_position != MaxSector &&
3472             mddev->delta_disks != 0)
3473                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3474                                mddev->raid_disks - mddev->delta_disks);
3475         return sprintf(page, "%d\n", mddev->raid_disks);
3476 }
3477
3478 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3479
3480 static ssize_t
3481 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3482 {
3483         char *e;
3484         int rv = 0;
3485         unsigned long n = simple_strtoul(buf, &e, 10);
3486
3487         if (!*buf || (*e && *e != '\n'))
3488                 return -EINVAL;
3489
3490         if (mddev->pers)
3491                 rv = update_raid_disks(mddev, n);
3492         else if (mddev->reshape_position != MaxSector) {
3493                 struct md_rdev *rdev;
3494                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3495
3496                 rdev_for_each(rdev, mddev) {
3497                         if (olddisks < n &&
3498                             rdev->data_offset < rdev->new_data_offset)
3499                                 return -EINVAL;
3500                         if (olddisks > n &&
3501                             rdev->data_offset > rdev->new_data_offset)
3502                                 return -EINVAL;
3503                 }
3504                 mddev->delta_disks = n - olddisks;
3505                 mddev->raid_disks = n;
3506                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3507         } else
3508                 mddev->raid_disks = n;
3509         return rv ? rv : len;
3510 }
3511 static struct md_sysfs_entry md_raid_disks =
3512 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3513
3514 static ssize_t
3515 chunk_size_show(struct mddev *mddev, char *page)
3516 {
3517         if (mddev->reshape_position != MaxSector &&
3518             mddev->chunk_sectors != mddev->new_chunk_sectors)
3519                 return sprintf(page, "%d (%d)\n",
3520                                mddev->new_chunk_sectors << 9,
3521                                mddev->chunk_sectors << 9);
3522         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3523 }
3524
3525 static ssize_t
3526 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3527 {
3528         char *e;
3529         unsigned long n = simple_strtoul(buf, &e, 10);
3530
3531         if (!*buf || (*e && *e != '\n'))
3532                 return -EINVAL;
3533
3534         if (mddev->pers) {
3535                 int err;
3536                 if (mddev->pers->check_reshape == NULL)
3537                         return -EBUSY;
3538                 if (mddev->ro)
3539                         return -EROFS;
3540                 mddev->new_chunk_sectors = n >> 9;
3541                 err = mddev->pers->check_reshape(mddev);
3542                 if (err) {
3543                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3544                         return err;
3545                 }
3546         } else {
3547                 mddev->new_chunk_sectors = n >> 9;
3548                 if (mddev->reshape_position == MaxSector)
3549                         mddev->chunk_sectors = n >> 9;
3550         }
3551         return len;
3552 }
3553 static struct md_sysfs_entry md_chunk_size =
3554 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3555
3556 static ssize_t
3557 resync_start_show(struct mddev *mddev, char *page)
3558 {
3559         if (mddev->recovery_cp == MaxSector)
3560                 return sprintf(page, "none\n");
3561         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3562 }
3563
3564 static ssize_t
3565 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3566 {
3567         char *e;
3568         unsigned long long n = simple_strtoull(buf, &e, 10);
3569
3570         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3571                 return -EBUSY;
3572         if (cmd_match(buf, "none"))
3573                 n = MaxSector;
3574         else if (!*buf || (*e && *e != '\n'))
3575                 return -EINVAL;
3576
3577         mddev->recovery_cp = n;
3578         if (mddev->pers)
3579                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3580         return len;
3581 }
3582 static struct md_sysfs_entry md_resync_start =
3583 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3584
3585 /*
3586  * The array state can be:
3587  *
3588  * clear
3589  *     No devices, no size, no level
3590  *     Equivalent to STOP_ARRAY ioctl
3591  * inactive
3592  *     May have some settings, but array is not active
3593  *        all IO results in error
3594  *     When written, doesn't tear down array, but just stops it
3595  * suspended (not supported yet)
3596  *     All IO requests will block. The array can be reconfigured.
3597  *     Writing this, if accepted, will block until array is quiescent
3598  * readonly
3599  *     no resync can happen.  no superblocks get written.
3600  *     write requests fail
3601  * read-auto
3602  *     like readonly, but behaves like 'clean' on a write request.
3603  *
3604  * clean - no pending writes, but otherwise active.
3605  *     When written to inactive array, starts without resync
3606  *     If a write request arrives then
3607  *       if metadata is known, mark 'dirty' and switch to 'active'.
3608  *       if not known, block and switch to write-pending
3609  *     If written to an active array that has pending writes, then fails.
3610  * active
3611  *     fully active: IO and resync can be happening.
3612  *     When written to inactive array, starts with resync
3613  *
3614  * write-pending
3615  *     clean, but writes are blocked waiting for 'active' to be written.
3616  *
3617  * active-idle
3618  *     like active, but no writes have been seen for a while (100msec).
3619  *
3620  */
3621 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3622                    write_pending, active_idle, bad_word};
3623 static char *array_states[] = {
3624         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3625         "write-pending", "active-idle", NULL };
3626
3627 static int match_word(const char *word, char **list)
3628 {
3629         int n;
3630         for (n=0; list[n]; n++)
3631                 if (cmd_match(word, list[n]))
3632                         break;
3633         return n;
3634 }
3635
3636 static ssize_t
3637 array_state_show(struct mddev *mddev, char *page)
3638 {
3639         enum array_state st = inactive;
3640
3641         if (mddev->pers)
3642                 switch(mddev->ro) {
3643                 case 1:
3644                         st = readonly;
3645                         break;
3646                 case 2:
3647                         st = read_auto;
3648                         break;
3649                 case 0:
3650                         if (mddev->in_sync)
3651                                 st = clean;
3652                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3653                                 st = write_pending;
3654                         else if (mddev->safemode)
3655                                 st = active_idle;
3656                         else
3657                                 st = active;
3658                 }
3659         else {
3660                 if (list_empty(&mddev->disks) &&
3661                     mddev->raid_disks == 0 &&
3662                     mddev->dev_sectors == 0)
3663                         st = clear;
3664                 else
3665                         st = inactive;
3666         }
3667         return sprintf(page, "%s\n", array_states[st]);
3668 }
3669
3670 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3671 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3672 static int do_md_run(struct mddev *mddev);
3673 static int restart_array(struct mddev *mddev);
3674
3675 static ssize_t
3676 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3677 {
3678         int err = -EINVAL;
3679         enum array_state st = match_word(buf, array_states);
3680         switch(st) {
3681         case bad_word:
3682                 break;
3683         case clear:
3684                 /* stopping an active array */
3685                 err = do_md_stop(mddev, 0, NULL);
3686                 break;
3687         case inactive:
3688                 /* stopping an active array */
3689                 if (mddev->pers)
3690                         err = do_md_stop(mddev, 2, NULL);
3691                 else
3692                         err = 0; /* already inactive */
3693                 break;
3694         case suspended:
3695                 break; /* not supported yet */
3696         case readonly:
3697                 if (mddev->pers)
3698                         err = md_set_readonly(mddev, NULL);
3699                 else {
3700                         mddev->ro = 1;
3701                         set_disk_ro(mddev->gendisk, 1);
3702                         err = do_md_run(mddev);
3703                 }
3704                 break;
3705         case read_auto:
3706                 if (mddev->pers) {
3707                         if (mddev->ro == 0)
3708                                 err = md_set_readonly(mddev, NULL);
3709                         else if (mddev->ro == 1)
3710                                 err = restart_array(mddev);
3711                         if (err == 0) {
3712                                 mddev->ro = 2;
3713                                 set_disk_ro(mddev->gendisk, 0);
3714                         }
3715                 } else {
3716                         mddev->ro = 2;
3717                         err = do_md_run(mddev);
3718                 }
3719                 break;
3720         case clean:
3721                 if (mddev->pers) {
3722                         restart_array(mddev);
3723                         spin_lock_irq(&mddev->write_lock);
3724                         if (atomic_read(&mddev->writes_pending) == 0) {
3725                                 if (mddev->in_sync == 0) {
3726                                         mddev->in_sync = 1;
3727                                         if (mddev->safemode == 1)
3728                                                 mddev->safemode = 0;
3729                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3730                                 }
3731                                 err = 0;
3732                         } else
3733                                 err = -EBUSY;
3734                         spin_unlock_irq(&mddev->write_lock);
3735                 } else
3736                         err = -EINVAL;
3737                 break;
3738         case active:
3739                 if (mddev->pers) {
3740                         restart_array(mddev);
3741                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3742                         wake_up(&mddev->sb_wait);
3743                         err = 0;
3744                 } else {
3745                         mddev->ro = 0;
3746                         set_disk_ro(mddev->gendisk, 0);
3747                         err = do_md_run(mddev);
3748                 }
3749                 break;
3750         case write_pending:
3751         case active_idle:
3752                 /* these cannot be set */
3753                 break;
3754         }
3755         if (err)
3756                 return err;
3757         else {
3758                 if (mddev->hold_active == UNTIL_IOCTL)
3759                         mddev->hold_active = 0;
3760                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3761                 return len;
3762         }
3763 }
3764 static struct md_sysfs_entry md_array_state =
3765 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3766
3767 static ssize_t
3768 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3769         return sprintf(page, "%d\n",
3770                        atomic_read(&mddev->max_corr_read_errors));
3771 }
3772
3773 static ssize_t
3774 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3775 {
3776         char *e;
3777         unsigned long n = simple_strtoul(buf, &e, 10);
3778
3779         if (*buf && (*e == 0 || *e == '\n')) {
3780                 atomic_set(&mddev->max_corr_read_errors, n);
3781                 return len;
3782         }
3783         return -EINVAL;
3784 }
3785
3786 static struct md_sysfs_entry max_corr_read_errors =
3787 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3788         max_corrected_read_errors_store);
3789
3790 static ssize_t
3791 null_show(struct mddev *mddev, char *page)
3792 {
3793         return -EINVAL;
3794 }
3795
3796 static ssize_t
3797 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3798 {
3799         /* buf must be %d:%d\n? giving major and minor numbers */
3800         /* The new device is added to the array.
3801          * If the array has a persistent superblock, we read the
3802          * superblock to initialise info and check validity.
3803          * Otherwise, only checking done is that in bind_rdev_to_array,
3804          * which mainly checks size.
3805          */
3806         char *e;
3807         int major = simple_strtoul(buf, &e, 10);
3808         int minor;
3809         dev_t dev;
3810         struct md_rdev *rdev;
3811         int err;
3812
3813         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3814                 return -EINVAL;
3815         minor = simple_strtoul(e+1, &e, 10);
3816         if (*e && *e != '\n')
3817                 return -EINVAL;
3818         dev = MKDEV(major, minor);
3819         if (major != MAJOR(dev) ||
3820             minor != MINOR(dev))
3821                 return -EOVERFLOW;
3822
3823         if (mddev->persistent) {
3824                 rdev = md_import_device(dev, mddev->major_version,
3825                                         mddev->minor_version);
3826                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3827                         struct md_rdev *rdev0
3828                                 = list_entry(mddev->disks.next,
3829                                              struct md_rdev, same_set);
3830                         err = super_types[mddev->major_version]
3831                                 .load_super(rdev, rdev0, mddev->minor_version);
3832                         if (err < 0)
3833                                 goto out;
3834                 }
3835         } else if (mddev->external)
3836                 rdev = md_import_device(dev, -2, -1);
3837         else
3838                 rdev = md_import_device(dev, -1, -1);
3839
3840         if (IS_ERR(rdev))
3841                 return PTR_ERR(rdev);
3842         err = bind_rdev_to_array(rdev, mddev);
3843  out:
3844         if (err)
3845                 export_rdev(rdev);
3846         return err ? err : len;
3847 }
3848
3849 static struct md_sysfs_entry md_new_device =
3850 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3851
3852 static ssize_t
3853 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3854 {
3855         char *end;
3856         unsigned long chunk, end_chunk;
3857
3858         if (!mddev->bitmap)
3859                 goto out;
3860         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3861         while (*buf) {
3862                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3863                 if (buf == end) break;
3864                 if (*end == '-') { /* range */
3865                         buf = end + 1;
3866                         end_chunk = simple_strtoul(buf, &end, 0);
3867                         if (buf == end) break;
3868                 }
3869                 if (*end && !isspace(*end)) break;
3870                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3871                 buf = skip_spaces(end);
3872         }
3873         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3874 out:
3875         return len;
3876 }
3877
3878 static struct md_sysfs_entry md_bitmap =
3879 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3880
3881 static ssize_t
3882 size_show(struct mddev *mddev, char *page)
3883 {
3884         return sprintf(page, "%llu\n",
3885                 (unsigned long long)mddev->dev_sectors / 2);
3886 }
3887
3888 static int update_size(struct mddev *mddev, sector_t num_sectors);
3889
3890 static ssize_t
3891 size_store(struct mddev *mddev, const char *buf, size_t len)
3892 {
3893         /* If array is inactive, we can reduce the component size, but
3894          * not increase it (except from 0).
3895          * If array is active, we can try an on-line resize
3896          */
3897         sector_t sectors;
3898         int err = strict_blocks_to_sectors(buf, &sectors);
3899
3900         if (err < 0)
3901                 return err;
3902         if (mddev->pers) {
3903                 err = update_size(mddev, sectors);
3904                 md_update_sb(mddev, 1);
3905         } else {
3906                 if (mddev->dev_sectors == 0 ||
3907                     mddev->dev_sectors > sectors)
3908                         mddev->dev_sectors = sectors;
3909                 else
3910                         err = -ENOSPC;
3911         }
3912         return err ? err : len;
3913 }
3914
3915 static struct md_sysfs_entry md_size =
3916 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3917
3918 /* Metadata version.
3919  * This is one of
3920  *   'none' for arrays with no metadata (good luck...)
3921  *   'external' for arrays with externally managed metadata,
3922  * or N.M for internally known formats
3923  */
3924 static ssize_t
3925 metadata_show(struct mddev *mddev, char *page)
3926 {
3927         if (mddev->persistent)
3928                 return sprintf(page, "%d.%d\n",
3929                                mddev->major_version, mddev->minor_version);
3930         else if (mddev->external)
3931                 return sprintf(page, "external:%s\n", mddev->metadata_type);
3932         else
3933                 return sprintf(page, "none\n");
3934 }
3935
3936 static ssize_t
3937 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3938 {
3939         int major, minor;
3940         char *e;
3941         /* Changing the details of 'external' metadata is
3942          * always permitted.  Otherwise there must be
3943          * no devices attached to the array.
3944          */
3945         if (mddev->external && strncmp(buf, "external:", 9) == 0)
3946                 ;
3947         else if (!list_empty(&mddev->disks))
3948                 return -EBUSY;
3949
3950         if (cmd_match(buf, "none")) {
3951                 mddev->persistent = 0;
3952                 mddev->external = 0;
3953                 mddev->major_version = 0;
3954                 mddev->minor_version = 90;
3955                 return len;
3956         }
3957         if (strncmp(buf, "external:", 9) == 0) {
3958                 size_t namelen = len-9;
3959                 if (namelen >= sizeof(mddev->metadata_type))
3960                         namelen = sizeof(mddev->metadata_type)-1;
3961                 strncpy(mddev->metadata_type, buf+9, namelen);
3962                 mddev->metadata_type[namelen] = 0;
3963                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3964                         mddev->metadata_type[--namelen] = 0;
3965                 mddev->persistent = 0;
3966                 mddev->external = 1;
3967                 mddev->major_version = 0;
3968                 mddev->minor_version = 90;
3969                 return len;
3970         }
3971         major = simple_strtoul(buf, &e, 10);
3972         if (e==buf || *e != '.')
3973                 return -EINVAL;
3974         buf = e+1;
3975         minor = simple_strtoul(buf, &e, 10);
3976         if (e==buf || (*e && *e != '\n') )
3977                 return -EINVAL;
3978         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3979                 return -ENOENT;
3980         mddev->major_version = major;
3981         mddev->minor_version = minor;
3982         mddev->persistent = 1;
3983         mddev->external = 0;
3984         return len;
3985 }
3986
3987 static struct md_sysfs_entry md_metadata =
3988 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3989
3990 static ssize_t
3991 action_show(struct mddev *mddev, char *page)
3992 {
3993         char *type = "idle";
3994         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3995                 type = "frozen";
3996         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3997             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3998                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3999                         type = "reshape";
4000                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4001                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4002                                 type = "resync";
4003                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4004                                 type = "check";
4005                         else
4006                                 type = "repair";
4007                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4008                         type = "recover";
4009         }
4010         return sprintf(page, "%s\n", type);
4011 }
4012
4013 static ssize_t
4014 action_store(struct mddev *mddev, const char *page, size_t len)
4015 {
4016         if (!mddev->pers || !mddev->pers->sync_request)
4017                 return -EINVAL;
4018
4019         if (cmd_match(page, "frozen"))
4020                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4021         else
4022                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4023
4024         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4025                 if (mddev->sync_thread) {
4026                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4027                         md_reap_sync_thread(mddev);
4028                 }
4029         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4030                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4031                 return -EBUSY;
4032         else if (cmd_match(page, "resync"))
4033                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4034         else if (cmd_match(page, "recover")) {
4035                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4036                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4037         } else if (cmd_match(page, "reshape")) {
4038                 int err;
4039                 if (mddev->pers->start_reshape == NULL)
4040                         return -EINVAL;
4041                 err = mddev->pers->start_reshape(mddev);
4042                 if (err)
4043                         return err;
4044                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4045         } else {
4046                 if (cmd_match(page, "check"))
4047                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4048                 else if (!cmd_match(page, "repair"))
4049                         return -EINVAL;
4050                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4051                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4052         }
4053         if (mddev->ro == 2) {
4054                 /* A write to sync_action is enough to justify
4055                  * canceling read-auto mode
4056                  */
4057                 mddev->ro = 0;
4058                 md_wakeup_thread(mddev->sync_thread);
4059         }
4060         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4061         md_wakeup_thread(mddev->thread);
4062         sysfs_notify_dirent_safe(mddev->sysfs_action);
4063         return len;
4064 }
4065
4066 static struct md_sysfs_entry md_scan_mode =
4067 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4068
4069 static ssize_t
4070 last_sync_action_show(struct mddev *mddev, char *page)
4071 {
4072         return sprintf(page, "%s\n", mddev->last_sync_action);
4073 }
4074
4075 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4076
4077 static ssize_t
4078 mismatch_cnt_show(struct mddev *mddev, char *page)
4079 {
4080         return sprintf(page, "%llu\n",
4081                        (unsigned long long)
4082                        atomic64_read(&mddev->resync_mismatches));
4083 }
4084
4085 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4086
4087 static ssize_t
4088 sync_min_show(struct mddev *mddev, char *page)
4089 {
4090         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4091                        mddev->sync_speed_min ? "local": "system");
4092 }
4093
4094 static ssize_t
4095 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4096 {
4097         int min;
4098         char *e;
4099         if (strncmp(buf, "system", 6)==0) {
4100                 mddev->sync_speed_min = 0;
4101                 return len;
4102         }
4103         min = simple_strtoul(buf, &e, 10);
4104         if (buf == e || (*e && *e != '\n') || min <= 0)
4105                 return -EINVAL;
4106         mddev->sync_speed_min = min;
4107         return len;
4108 }
4109
4110 static struct md_sysfs_entry md_sync_min =
4111 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4112
4113 static ssize_t
4114 sync_max_show(struct mddev *mddev, char *page)
4115 {
4116         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4117                        mddev->sync_speed_max ? "local": "system");
4118 }
4119
4120 static ssize_t
4121 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4122 {
4123         int max;
4124         char *e;
4125         if (strncmp(buf, "system", 6)==0) {
4126                 mddev->sync_speed_max = 0;
4127                 return len;
4128         }
4129         max = simple_strtoul(buf, &e, 10);
4130         if (buf == e || (*e && *e != '\n') || max <= 0)
4131                 return -EINVAL;
4132         mddev->sync_speed_max = max;
4133         return len;
4134 }
4135
4136 static struct md_sysfs_entry md_sync_max =
4137 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4138
4139 static ssize_t
4140 degraded_show(struct mddev *mddev, char *page)
4141 {
4142         return sprintf(page, "%d\n", mddev->degraded);
4143 }
4144 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4145
4146 static ssize_t
4147 sync_force_parallel_show(struct mddev *mddev, char *page)
4148 {
4149         return sprintf(page, "%d\n", mddev->parallel_resync);
4150 }
4151
4152 static ssize_t
4153 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4154 {
4155         long n;
4156
4157         if (kstrtol(buf, 10, &n))
4158                 return -EINVAL;
4159
4160         if (n != 0 && n != 1)
4161                 return -EINVAL;
4162
4163         mddev->parallel_resync = n;
4164
4165         if (mddev->sync_thread)
4166                 wake_up(&resync_wait);
4167
4168         return len;
4169 }
4170
4171 /* force parallel resync, even with shared block devices */
4172 static struct md_sysfs_entry md_sync_force_parallel =
4173 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4174        sync_force_parallel_show, sync_force_parallel_store);
4175
4176 static ssize_t
4177 sync_speed_show(struct mddev *mddev, char *page)
4178 {
4179         unsigned long resync, dt, db;
4180         if (mddev->curr_resync == 0)
4181                 return sprintf(page, "none\n");
4182         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4183         dt = (jiffies - mddev->resync_mark) / HZ;
4184         if (!dt) dt++;
4185         db = resync - mddev->resync_mark_cnt;
4186         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4187 }
4188
4189 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4190
4191 static ssize_t
4192 sync_completed_show(struct mddev *mddev, char *page)
4193 {
4194         unsigned long long max_sectors, resync;
4195
4196         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4197                 return sprintf(page, "none\n");
4198
4199         if (mddev->curr_resync == 1 ||
4200             mddev->curr_resync == 2)
4201                 return sprintf(page, "delayed\n");
4202
4203         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4204             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4205                 max_sectors = mddev->resync_max_sectors;
4206         else
4207                 max_sectors = mddev->dev_sectors;
4208
4209         resync = mddev->curr_resync_completed;
4210         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4211 }
4212
4213 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4214
4215 static ssize_t
4216 min_sync_show(struct mddev *mddev, char *page)
4217 {
4218         return sprintf(page, "%llu\n",
4219                        (unsigned long long)mddev->resync_min);
4220 }
4221 static ssize_t
4222 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4223 {
4224         unsigned long long min;
4225         if (kstrtoull(buf, 10, &min))
4226                 return -EINVAL;
4227         if (min > mddev->resync_max)
4228                 return -EINVAL;
4229         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4230                 return -EBUSY;
4231
4232         /* Must be a multiple of chunk_size */
4233         if (mddev->chunk_sectors) {
4234                 sector_t temp = min;
4235                 if (sector_div(temp, mddev->chunk_sectors))
4236                         return -EINVAL;
4237         }
4238         mddev->resync_min = min;
4239
4240         return len;
4241 }
4242
4243 static struct md_sysfs_entry md_min_sync =
4244 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4245
4246 static ssize_t
4247 max_sync_show(struct mddev *mddev, char *page)
4248 {
4249         if (mddev->resync_max == MaxSector)
4250                 return sprintf(page, "max\n");
4251         else
4252                 return sprintf(page, "%llu\n",
4253                                (unsigned long long)mddev->resync_max);
4254 }
4255 static ssize_t
4256 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4257 {
4258         if (strncmp(buf, "max", 3) == 0)
4259                 mddev->resync_max = MaxSector;
4260         else {
4261                 unsigned long long max;
4262                 if (kstrtoull(buf, 10, &max))
4263                         return -EINVAL;
4264                 if (max < mddev->resync_min)
4265                         return -EINVAL;
4266                 if (max < mddev->resync_max &&
4267                     mddev->ro == 0 &&
4268                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4269                         return -EBUSY;
4270
4271                 /* Must be a multiple of chunk_size */
4272                 if (mddev->chunk_sectors) {
4273                         sector_t temp = max;
4274                         if (sector_div(temp, mddev->chunk_sectors))
4275                                 return -EINVAL;
4276                 }
4277                 mddev->resync_max = max;
4278         }
4279         wake_up(&mddev->recovery_wait);
4280         return len;
4281 }
4282
4283 static struct md_sysfs_entry md_max_sync =
4284 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4285
4286 static ssize_t
4287 suspend_lo_show(struct mddev *mddev, char *page)
4288 {
4289         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4290 }
4291
4292 static ssize_t
4293 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4294 {
4295         char *e;
4296         unsigned long long new = simple_strtoull(buf, &e, 10);
4297         unsigned long long old = mddev->suspend_lo;
4298
4299         if (mddev->pers == NULL ||
4300             mddev->pers->quiesce == NULL)
4301                 return -EINVAL;
4302         if (buf == e || (*e && *e != '\n'))
4303                 return -EINVAL;
4304
4305         mddev->suspend_lo = new;
4306         if (new >= old)
4307                 /* Shrinking suspended region */
4308                 mddev->pers->quiesce(mddev, 2);
4309         else {
4310                 /* Expanding suspended region - need to wait */
4311                 mddev->pers->quiesce(mddev, 1);
4312                 mddev->pers->quiesce(mddev, 0);
4313         }
4314         return len;
4315 }
4316 static struct md_sysfs_entry md_suspend_lo =
4317 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4318
4319 static ssize_t
4320 suspend_hi_show(struct mddev *mddev, char *page)
4321 {
4322         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4323 }
4324
4325 static ssize_t
4326 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4327 {
4328         char *e;
4329         unsigned long long new = simple_strtoull(buf, &e, 10);
4330         unsigned long long old = mddev->suspend_hi;
4331
4332         if (mddev->pers == NULL ||
4333             mddev->pers->quiesce == NULL)
4334                 return -EINVAL;
4335         if (buf == e || (*e && *e != '\n'))
4336                 return -EINVAL;
4337
4338         mddev->suspend_hi = new;
4339         if (new <= old)
4340                 /* Shrinking suspended region */
4341                 mddev->pers->quiesce(mddev, 2);
4342         else {
4343                 /* Expanding suspended region - need to wait */
4344                 mddev->pers->quiesce(mddev, 1);
4345                 mddev->pers->quiesce(mddev, 0);
4346         }
4347         return len;
4348 }
4349 static struct md_sysfs_entry md_suspend_hi =
4350 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4351
4352 static ssize_t
4353 reshape_position_show(struct mddev *mddev, char *page)
4354 {
4355         if (mddev->reshape_position != MaxSector)
4356                 return sprintf(page, "%llu\n",
4357                                (unsigned long long)mddev->reshape_position);
4358         strcpy(page, "none\n");
4359         return 5;
4360 }
4361
4362 static ssize_t
4363 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4364 {
4365         struct md_rdev *rdev;
4366         char *e;
4367         unsigned long long new = simple_strtoull(buf, &e, 10);
4368         if (mddev->pers)
4369                 return -EBUSY;
4370         if (buf == e || (*e && *e != '\n'))
4371                 return -EINVAL;
4372         mddev->reshape_position = new;
4373         mddev->delta_disks = 0;
4374         mddev->reshape_backwards = 0;
4375         mddev->new_level = mddev->level;
4376         mddev->new_layout = mddev->layout;
4377         mddev->new_chunk_sectors = mddev->chunk_sectors;
4378         rdev_for_each(rdev, mddev)
4379                 rdev->new_data_offset = rdev->data_offset;
4380         return len;
4381 }
4382
4383 static struct md_sysfs_entry md_reshape_position =
4384 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4385        reshape_position_store);
4386
4387 static ssize_t
4388 reshape_direction_show(struct mddev *mddev, char *page)
4389 {
4390         return sprintf(page, "%s\n",
4391                        mddev->reshape_backwards ? "backwards" : "forwards");
4392 }
4393
4394 static ssize_t
4395 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4396 {
4397         int backwards = 0;
4398         if (cmd_match(buf, "forwards"))
4399                 backwards = 0;
4400         else if (cmd_match(buf, "backwards"))
4401                 backwards = 1;
4402         else
4403                 return -EINVAL;
4404         if (mddev->reshape_backwards == backwards)
4405                 return len;
4406
4407         /* check if we are allowed to change */
4408         if (mddev->delta_disks)
4409                 return -EBUSY;
4410
4411         if (mddev->persistent &&
4412             mddev->major_version == 0)
4413                 return -EINVAL;
4414
4415         mddev->reshape_backwards = backwards;
4416         return len;
4417 }
4418
4419 static struct md_sysfs_entry md_reshape_direction =
4420 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4421        reshape_direction_store);
4422
4423 static ssize_t
4424 array_size_show(struct mddev *mddev, char *page)
4425 {
4426         if (mddev->external_size)
4427                 return sprintf(page, "%llu\n",
4428                                (unsigned long long)mddev->array_sectors/2);
4429         else
4430                 return sprintf(page, "default\n");
4431 }
4432
4433 static ssize_t
4434 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4435 {
4436         sector_t sectors;
4437
4438         if (strncmp(buf, "default", 7) == 0) {
4439                 if (mddev->pers)
4440                         sectors = mddev->pers->size(mddev, 0, 0);
4441                 else
4442                         sectors = mddev->array_sectors;
4443
4444                 mddev->external_size = 0;
4445         } else {
4446                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4447                         return -EINVAL;
4448                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4449                         return -E2BIG;
4450
4451                 mddev->external_size = 1;
4452         }
4453
4454         mddev->array_sectors = sectors;
4455         if (mddev->pers) {
4456                 set_capacity(mddev->gendisk, mddev->array_sectors);
4457                 revalidate_disk(mddev->gendisk);
4458         }
4459         return len;
4460 }
4461
4462 static struct md_sysfs_entry md_array_size =
4463 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4464        array_size_store);
4465
4466 static struct attribute *md_default_attrs[] = {
4467         &md_level.attr,
4468         &md_layout.attr,
4469         &md_raid_disks.attr,
4470         &md_chunk_size.attr,
4471         &md_size.attr,
4472         &md_resync_start.attr,
4473         &md_metadata.attr,
4474         &md_new_device.attr,
4475         &md_safe_delay.attr,
4476         &md_array_state.attr,
4477         &md_reshape_position.attr,
4478         &md_reshape_direction.attr,
4479         &md_array_size.attr,
4480         &max_corr_read_errors.attr,
4481         NULL,
4482 };
4483
4484 static struct attribute *md_redundancy_attrs[] = {
4485         &md_scan_mode.attr,
4486         &md_last_scan_mode.attr,
4487         &md_mismatches.attr,
4488         &md_sync_min.attr,
4489         &md_sync_max.attr,
4490         &md_sync_speed.attr,
4491         &md_sync_force_parallel.attr,
4492         &md_sync_completed.attr,
4493         &md_min_sync.attr,
4494         &md_max_sync.attr,
4495         &md_suspend_lo.attr,
4496         &md_suspend_hi.attr,
4497         &md_bitmap.attr,
4498         &md_degraded.attr,
4499         NULL,
4500 };
4501 static struct attribute_group md_redundancy_group = {
4502         .name = NULL,
4503         .attrs = md_redundancy_attrs,
4504 };
4505
4506 static ssize_t
4507 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4508 {
4509         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4510         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4511         ssize_t rv;
4512
4513         if (!entry->show)
4514                 return -EIO;
4515         spin_lock(&all_mddevs_lock);
4516         if (list_empty(&mddev->all_mddevs)) {
4517                 spin_unlock(&all_mddevs_lock);
4518                 return -EBUSY;
4519         }
4520         mddev_get(mddev);
4521         spin_unlock(&all_mddevs_lock);
4522
4523         rv = mddev_lock(mddev);
4524         if (!rv) {
4525                 rv = entry->show(mddev, page);
4526                 mddev_unlock(mddev);
4527         }
4528         mddev_put(mddev);
4529         return rv;
4530 }
4531
4532 static ssize_t
4533 md_attr_store(struct kobject *kobj, struct attribute *attr,
4534               const char *page, size_t length)
4535 {
4536         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4537         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4538         ssize_t rv;
4539
4540         if (!entry->store)
4541                 return -EIO;
4542         if (!capable(CAP_SYS_ADMIN))
4543                 return -EACCES;
4544         spin_lock(&all_mddevs_lock);
4545         if (list_empty(&mddev->all_mddevs)) {
4546                 spin_unlock(&all_mddevs_lock);
4547                 return -EBUSY;
4548         }
4549         mddev_get(mddev);
4550         spin_unlock(&all_mddevs_lock);
4551         if (entry->store == new_dev_store)
4552                 flush_workqueue(md_misc_wq);
4553         rv = mddev_lock(mddev);
4554         if (!rv) {
4555                 rv = entry->store(mddev, page, length);
4556                 mddev_unlock(mddev);
4557         }
4558         mddev_put(mddev);
4559         return rv;
4560 }
4561
4562 static void md_free(struct kobject *ko)
4563 {
4564         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4565
4566         if (mddev->sysfs_state)
4567                 sysfs_put(mddev->sysfs_state);
4568
4569         if (mddev->gendisk) {
4570                 del_gendisk(mddev->gendisk);
4571                 put_disk(mddev->gendisk);
4572         }
4573         if (mddev->queue)
4574                 blk_cleanup_queue(mddev->queue);
4575
4576         kfree(mddev);
4577 }
4578
4579 static const struct sysfs_ops md_sysfs_ops = {
4580         .show   = md_attr_show,
4581         .store  = md_attr_store,
4582 };
4583 static struct kobj_type md_ktype = {
4584         .release        = md_free,
4585         .sysfs_ops      = &md_sysfs_ops,
4586         .default_attrs  = md_default_attrs,
4587 };
4588
4589 int mdp_major = 0;
4590
4591 static void mddev_delayed_delete(struct work_struct *ws)
4592 {
4593         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4594
4595         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4596         kobject_del(&mddev->kobj);
4597         kobject_put(&mddev->kobj);
4598 }
4599
4600 static int md_alloc(dev_t dev, char *name)
4601 {
4602         static DEFINE_MUTEX(disks_mutex);
4603         struct mddev *mddev = mddev_find(dev);
4604         struct gendisk *disk;
4605         int partitioned;
4606         int shift;
4607         int unit;
4608         int error;
4609
4610         if (!mddev)
4611                 return -ENODEV;
4612
4613         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4614         shift = partitioned ? MdpMinorShift : 0;
4615         unit = MINOR(mddev->unit) >> shift;
4616
4617         /* wait for any previous instance of this device to be
4618          * completely removed (mddev_delayed_delete).
4619          */
4620         flush_workqueue(md_misc_wq);
4621
4622         mutex_lock(&disks_mutex);
4623         error = -EEXIST;
4624         if (mddev->gendisk)
4625                 goto abort;
4626
4627         if (name) {
4628                 /* Need to ensure that 'name' is not a duplicate.
4629                  */
4630                 struct mddev *mddev2;
4631                 spin_lock(&all_mddevs_lock);
4632
4633                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4634                         if (mddev2->gendisk &&
4635                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4636                                 spin_unlock(&all_mddevs_lock);
4637                                 goto abort;
4638                         }
4639                 spin_unlock(&all_mddevs_lock);
4640         }
4641
4642         error = -ENOMEM;
4643         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4644         if (!mddev->queue)
4645                 goto abort;
4646         mddev->queue->queuedata = mddev;
4647
4648         blk_queue_make_request(mddev->queue, md_make_request);
4649         blk_set_stacking_limits(&mddev->queue->limits);
4650
4651         disk = alloc_disk(1 << shift);
4652         if (!disk) {
4653                 blk_cleanup_queue(mddev->queue);
4654                 mddev->queue = NULL;
4655                 goto abort;
4656         }
4657         disk->major = MAJOR(mddev->unit);
4658         disk->first_minor = unit << shift;
4659         if (name)
4660                 strcpy(disk->disk_name, name);
4661         else if (partitioned)
4662                 sprintf(disk->disk_name, "md_d%d", unit);
4663         else
4664                 sprintf(disk->disk_name, "md%d", unit);
4665         disk->fops = &md_fops;
4666         disk->private_data = mddev;
4667         disk->queue = mddev->queue;
4668         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4669         /* Allow extended partitions.  This makes the
4670          * 'mdp' device redundant, but we can't really
4671          * remove it now.
4672          */
4673         disk->flags |= GENHD_FL_EXT_DEVT;
4674         mddev->gendisk = disk;
4675         /* As soon as we call add_disk(), another thread could get
4676          * through to md_open, so make sure it doesn't get too far
4677          */
4678         mutex_lock(&mddev->open_mutex);
4679         add_disk(disk);
4680
4681         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4682                                      &disk_to_dev(disk)->kobj, "%s", "md");
4683         if (error) {
4684                 /* This isn't possible, but as kobject_init_and_add is marked
4685                  * __must_check, we must do something with the result
4686                  */
4687                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4688                        disk->disk_name);
4689                 error = 0;
4690         }
4691         if (mddev->kobj.sd &&
4692             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4693                 printk(KERN_DEBUG "pointless warning\n");
4694         mutex_unlock(&mddev->open_mutex);
4695  abort:
4696         mutex_unlock(&disks_mutex);
4697         if (!error && mddev->kobj.sd) {
4698                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4699                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4700         }
4701         mddev_put(mddev);
4702         return error;
4703 }
4704
4705 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4706 {
4707         md_alloc(dev, NULL);
4708         return NULL;
4709 }
4710
4711 static int add_named_array(const char *val, struct kernel_param *kp)
4712 {
4713         /* val must be "md_*" where * is not all digits.
4714          * We allocate an array with a large free minor number, and
4715          * set the name to val.  val must not already be an active name.
4716          */
4717         int len = strlen(val);
4718         char buf[DISK_NAME_LEN];
4719
4720         while (len && val[len-1] == '\n')
4721                 len--;
4722         if (len >= DISK_NAME_LEN)
4723                 return -E2BIG;
4724         strlcpy(buf, val, len+1);
4725         if (strncmp(buf, "md_", 3) != 0)
4726                 return -EINVAL;
4727         return md_alloc(0, buf);
4728 }
4729
4730 static void md_safemode_timeout(unsigned long data)
4731 {
4732         struct mddev *mddev = (struct mddev *) data;
4733
4734         if (!atomic_read(&mddev->writes_pending)) {
4735                 mddev->safemode = 1;
4736                 if (mddev->external)
4737                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4738         }
4739         md_wakeup_thread(mddev->thread);
4740 }
4741
4742 static int start_dirty_degraded;
4743
4744 int md_run(struct mddev *mddev)
4745 {
4746         int err;
4747         struct md_rdev *rdev;
4748         struct md_personality *pers;
4749
4750         if (list_empty(&mddev->disks))
4751                 /* cannot run an array with no devices.. */
4752                 return -EINVAL;
4753
4754         if (mddev->pers)
4755                 return -EBUSY;
4756         /* Cannot run until previous stop completes properly */
4757         if (mddev->sysfs_active)
4758                 return -EBUSY;
4759
4760         /*
4761          * Analyze all RAID superblock(s)
4762          */
4763         if (!mddev->raid_disks) {
4764                 if (!mddev->persistent)
4765                         return -EINVAL;
4766                 analyze_sbs(mddev);
4767         }
4768
4769         if (mddev->level != LEVEL_NONE)
4770                 request_module("md-level-%d", mddev->level);
4771         else if (mddev->clevel[0])
4772                 request_module("md-%s", mddev->clevel);
4773
4774         /*
4775          * Drop all container device buffers, from now on
4776          * the only valid external interface is through the md
4777          * device.
4778          */
4779         rdev_for_each(rdev, mddev) {
4780                 if (test_bit(Faulty, &rdev->flags))
4781                         continue;
4782                 sync_blockdev(rdev->bdev);
4783                 invalidate_bdev(rdev->bdev);
4784
4785                 /* perform some consistency tests on the device.
4786                  * We don't want the data to overlap the metadata,
4787                  * Internal Bitmap issues have been handled elsewhere.
4788                  */
4789                 if (rdev->meta_bdev) {
4790                         /* Nothing to check */;
4791                 } else if (rdev->data_offset < rdev->sb_start) {
4792                         if (mddev->dev_sectors &&
4793                             rdev->data_offset + mddev->dev_sectors
4794                             > rdev->sb_start) {
4795                                 printk("md: %s: data overlaps metadata\n",
4796                                        mdname(mddev));
4797                                 return -EINVAL;
4798                         }
4799                 } else {
4800                         if (rdev->sb_start + rdev->sb_size/512
4801                             > rdev->data_offset) {
4802                                 printk("md: %s: metadata overlaps data\n",
4803                                        mdname(mddev));
4804                                 return -EINVAL;
4805                         }
4806                 }
4807                 sysfs_notify_dirent_safe(rdev->sysfs_state);
4808         }
4809
4810         if (mddev->bio_set == NULL)
4811                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
4812
4813         spin_lock(&pers_lock);
4814         pers = find_pers(mddev->level, mddev->clevel);
4815         if (!pers || !try_module_get(pers->owner)) {
4816                 spin_unlock(&pers_lock);
4817                 if (mddev->level != LEVEL_NONE)
4818                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4819                                mddev->level);
4820                 else
4821                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4822                                mddev->clevel);
4823                 return -EINVAL;
4824         }
4825         mddev->pers = pers;
4826         spin_unlock(&pers_lock);
4827         if (mddev->level != pers->level) {
4828                 mddev->level = pers->level;
4829                 mddev->new_level = pers->level;
4830         }
4831         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4832
4833         if (mddev->reshape_position != MaxSector &&
4834             pers->start_reshape == NULL) {
4835                 /* This personality cannot handle reshaping... */
4836                 mddev->pers = NULL;
4837                 module_put(pers->owner);
4838                 return -EINVAL;
4839         }
4840
4841         if (pers->sync_request) {
4842                 /* Warn if this is a potentially silly
4843                  * configuration.
4844                  */
4845                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4846                 struct md_rdev *rdev2;
4847                 int warned = 0;
4848
4849                 rdev_for_each(rdev, mddev)
4850                         rdev_for_each(rdev2, mddev) {
4851                                 if (rdev < rdev2 &&
4852                                     rdev->bdev->bd_contains ==
4853                                     rdev2->bdev->bd_contains) {
4854                                         printk(KERN_WARNING
4855                                                "%s: WARNING: %s appears to be"
4856                                                " on the same physical disk as"
4857                                                " %s.\n",
4858                                                mdname(mddev),
4859                                                bdevname(rdev->bdev,b),
4860                                                bdevname(rdev2->bdev,b2));
4861                                         warned = 1;
4862                                 }
4863                         }
4864
4865                 if (warned)
4866                         printk(KERN_WARNING
4867                                "True protection against single-disk"
4868                                " failure might be compromised.\n");
4869         }
4870
4871         mddev->recovery = 0;
4872         /* may be over-ridden by personality */
4873         mddev->resync_max_sectors = mddev->dev_sectors;
4874
4875         mddev->ok_start_degraded = start_dirty_degraded;
4876
4877         if (start_readonly && mddev->ro == 0)
4878                 mddev->ro = 2; /* read-only, but switch on first write */
4879
4880         err = mddev->pers->run(mddev);
4881         if (err)
4882                 printk(KERN_ERR "md: pers->run() failed ...\n");
4883         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4884                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4885                           " but 'external_size' not in effect?\n", __func__);
4886                 printk(KERN_ERR
4887                        "md: invalid array_size %llu > default size %llu\n",
4888                        (unsigned long long)mddev->array_sectors / 2,
4889                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4890                 err = -EINVAL;
4891                 mddev->pers->stop(mddev);
4892         }
4893         if (err == 0 && mddev->pers->sync_request &&
4894             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
4895                 err = bitmap_create(mddev);
4896                 if (err) {
4897                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4898                                mdname(mddev), err);
4899                         mddev->pers->stop(mddev);
4900                 }
4901         }
4902         if (err) {
4903                 module_put(mddev->pers->owner);
4904                 mddev->pers = NULL;
4905                 bitmap_destroy(mddev);
4906                 return err;
4907         }
4908         if (mddev->pers->sync_request) {
4909                 if (mddev->kobj.sd &&
4910                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4911                         printk(KERN_WARNING
4912                                "md: cannot register extra attributes for %s\n",
4913                                mdname(mddev));
4914                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4915         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4916                 mddev->ro = 0;
4917
4918         atomic_set(&mddev->writes_pending,0);
4919         atomic_set(&mddev->max_corr_read_errors,
4920                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4921         mddev->safemode = 0;
4922         mddev->safemode_timer.function = md_safemode_timeout;
4923         mddev->safemode_timer.data = (unsigned long) mddev;
4924         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4925         mddev->in_sync = 1;
4926         smp_wmb();
4927         mddev->ready = 1;
4928         rdev_for_each(rdev, mddev)
4929                 if (rdev->raid_disk >= 0)
4930                         if (sysfs_link_rdev(mddev, rdev))
4931                                 /* failure here is OK */;
4932
4933         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4934
4935         if (mddev->flags & MD_UPDATE_SB_FLAGS)
4936                 md_update_sb(mddev, 0);
4937
4938         md_new_event(mddev);
4939         sysfs_notify_dirent_safe(mddev->sysfs_state);
4940         sysfs_notify_dirent_safe(mddev->sysfs_action);
4941         sysfs_notify(&mddev->kobj, NULL, "degraded");
4942         return 0;
4943 }
4944 EXPORT_SYMBOL_GPL(md_run);
4945
4946 static int do_md_run(struct mddev *mddev)
4947 {
4948         int err;
4949
4950         err = md_run(mddev);
4951         if (err)
4952                 goto out;
4953         err = bitmap_load(mddev);
4954         if (err) {
4955                 bitmap_destroy(mddev);
4956                 goto out;
4957         }
4958
4959         md_wakeup_thread(mddev->thread);
4960         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4961
4962         set_capacity(mddev->gendisk, mddev->array_sectors);
4963         revalidate_disk(mddev->gendisk);
4964         mddev->changed = 1;
4965         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4966 out:
4967         return err;
4968 }
4969
4970 static int restart_array(struct mddev *mddev)
4971 {
4972         struct gendisk *disk = mddev->gendisk;
4973
4974         /* Complain if it has no devices */
4975         if (list_empty(&mddev->disks))
4976                 return -ENXIO;
4977         if (!mddev->pers)
4978                 return -EINVAL;
4979         if (!mddev->ro)
4980                 return -EBUSY;
4981         mddev->safemode = 0;
4982         mddev->ro = 0;
4983         set_disk_ro(disk, 0);
4984         printk(KERN_INFO "md: %s switched to read-write mode.\n",
4985                 mdname(mddev));
4986         /* Kick recovery or resync if necessary */
4987         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4988         md_wakeup_thread(mddev->thread);
4989         md_wakeup_thread(mddev->sync_thread);
4990         sysfs_notify_dirent_safe(mddev->sysfs_state);
4991         return 0;
4992 }
4993
4994 static void md_clean(struct mddev *mddev)
4995 {
4996         mddev->array_sectors = 0;
4997         mddev->external_size = 0;
4998         mddev->dev_sectors = 0;
4999         mddev->raid_disks = 0;
5000         mddev->recovery_cp = 0;
5001         mddev->resync_min = 0;
5002         mddev->resync_max = MaxSector;
5003         mddev->reshape_position = MaxSector;
5004         mddev->external = 0;
5005         mddev->persistent = 0;
5006         mddev->level = LEVEL_NONE;
5007         mddev->clevel[0] = 0;
5008         mddev->flags = 0;
5009         mddev->ro = 0;
5010         mddev->metadata_type[0] = 0;
5011         mddev->chunk_sectors = 0;
5012         mddev->ctime = mddev->utime = 0;
5013         mddev->layout = 0;
5014         mddev->max_disks = 0;
5015         mddev->events = 0;
5016         mddev->can_decrease_events = 0;
5017         mddev->delta_disks = 0;
5018         mddev->reshape_backwards = 0;
5019         mddev->new_level = LEVEL_NONE;
5020         mddev->new_layout = 0;
5021         mddev->new_chunk_sectors = 0;
5022         mddev->curr_resync = 0;
5023         atomic64_set(&mddev->resync_mismatches, 0);
5024         mddev->suspend_lo = mddev->suspend_hi = 0;
5025         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5026         mddev->recovery = 0;
5027         mddev->in_sync = 0;
5028         mddev->changed = 0;
5029         mddev->degraded = 0;
5030         mddev->safemode = 0;
5031         mddev->merge_check_needed = 0;
5032         mddev->bitmap_info.offset = 0;
5033         mddev->bitmap_info.default_offset = 0;
5034         mddev->bitmap_info.default_space = 0;
5035         mddev->bitmap_info.chunksize = 0;
5036         mddev->bitmap_info.daemon_sleep = 0;
5037         mddev->bitmap_info.max_write_behind = 0;
5038 }
5039
5040 static void __md_stop_writes(struct mddev *mddev)
5041 {
5042         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5043         if (mddev->sync_thread) {
5044                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5045                 md_reap_sync_thread(mddev);
5046         }
5047
5048         del_timer_sync(&mddev->safemode_timer);
5049
5050         bitmap_flush(mddev);
5051         md_super_wait(mddev);
5052
5053         if (mddev->ro == 0 &&
5054             (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5055                 /* mark array as shutdown cleanly */
5056                 mddev->in_sync = 1;
5057                 md_update_sb(mddev, 1);
5058         }
5059 }
5060
5061 void md_stop_writes(struct mddev *mddev)
5062 {
5063         mddev_lock_nointr(mddev);
5064         __md_stop_writes(mddev);
5065         mddev_unlock(mddev);
5066 }
5067 EXPORT_SYMBOL_GPL(md_stop_writes);
5068
5069 static void __md_stop(struct mddev *mddev)
5070 {
5071         mddev->ready = 0;
5072         mddev->pers->stop(mddev);
5073         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5074                 mddev->to_remove = &md_redundancy_group;
5075         module_put(mddev->pers->owner);
5076         mddev->pers = NULL;
5077         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5078 }
5079
5080 void md_stop(struct mddev *mddev)
5081 {
5082         /* stop the array and free an attached data structures.
5083          * This is called from dm-raid
5084          */
5085         __md_stop(mddev);
5086         bitmap_destroy(mddev);
5087         if (mddev->bio_set)
5088                 bioset_free(mddev->bio_set);
5089 }
5090
5091 EXPORT_SYMBOL_GPL(md_stop);
5092
5093 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5094 {
5095         int err = 0;
5096         int did_freeze = 0;
5097
5098         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5099                 did_freeze = 1;
5100                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5101                 md_wakeup_thread(mddev->thread);
5102         }
5103         if (mddev->sync_thread) {
5104                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5105                 /* Thread might be blocked waiting for metadata update
5106                  * which will now never happen */
5107                 wake_up_process(mddev->sync_thread->tsk);
5108         }
5109         mddev_unlock(mddev);
5110         wait_event(resync_wait, mddev->sync_thread == NULL);
5111         mddev_lock_nointr(mddev);
5112
5113         mutex_lock(&mddev->open_mutex);
5114         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5115             mddev->sync_thread ||
5116             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5117                 printk("md: %s still in use.\n",mdname(mddev));
5118                 if (did_freeze) {
5119                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5120                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5121                         md_wakeup_thread(mddev->thread);
5122                 }
5123                 err = -EBUSY;
5124                 goto out;
5125         }
5126         if (mddev->pers) {
5127                 __md_stop_writes(mddev);
5128
5129                 err  = -ENXIO;
5130                 if (mddev->ro==1)
5131                         goto out;
5132                 mddev->ro = 1;
5133                 set_disk_ro(mddev->gendisk, 1);
5134                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5135                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5136                 md_wakeup_thread(mddev->thread);
5137                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5138                 err = 0;
5139         }
5140 out:
5141         mutex_unlock(&mddev->open_mutex);
5142         return err;
5143 }
5144
5145 /* mode:
5146  *   0 - completely stop and dis-assemble array
5147  *   2 - stop but do not disassemble array
5148  */
5149 static int do_md_stop(struct mddev *mddev, int mode,
5150                       struct block_device *bdev)
5151 {
5152         struct gendisk *disk = mddev->gendisk;
5153         struct md_rdev *rdev;
5154         int did_freeze = 0;
5155
5156         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5157                 did_freeze = 1;
5158                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5159                 md_wakeup_thread(mddev->thread);
5160         }
5161         if (mddev->sync_thread) {
5162                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5163                 /* Thread might be blocked waiting for metadata update
5164                  * which will now never happen */
5165                 wake_up_process(mddev->sync_thread->tsk);
5166         }
5167         mddev_unlock(mddev);
5168         wait_event(resync_wait, mddev->sync_thread == NULL);
5169         mddev_lock_nointr(mddev);
5170
5171         mutex_lock(&mddev->open_mutex);
5172         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5173             mddev->sysfs_active ||
5174             mddev->sync_thread ||
5175             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5176                 printk("md: %s still in use.\n",mdname(mddev));
5177                 mutex_unlock(&mddev->open_mutex);
5178                 if (did_freeze) {
5179                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5180                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5181                         md_wakeup_thread(mddev->thread);
5182                 }
5183                 return -EBUSY;
5184         }
5185         if (mddev->pers) {
5186                 if (mddev->ro)
5187                         set_disk_ro(disk, 0);
5188
5189                 __md_stop_writes(mddev);
5190                 __md_stop(mddev);
5191                 mddev->queue->merge_bvec_fn = NULL;
5192                 mddev->queue->backing_dev_info.congested_fn = NULL;
5193
5194                 /* tell userspace to handle 'inactive' */
5195                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5196
5197                 rdev_for_each(rdev, mddev)
5198                         if (rdev->raid_disk >= 0)
5199                                 sysfs_unlink_rdev(mddev, rdev);
5200
5201                 set_capacity(disk, 0);
5202                 mutex_unlock(&mddev->open_mutex);
5203                 mddev->changed = 1;
5204                 revalidate_disk(disk);
5205
5206                 if (mddev->ro)
5207                         mddev->ro = 0;
5208         } else
5209                 mutex_unlock(&mddev->open_mutex);
5210         /*
5211          * Free resources if final stop
5212          */
5213         if (mode == 0) {
5214                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5215
5216                 bitmap_destroy(mddev);
5217                 if (mddev->bitmap_info.file) {
5218                         fput(mddev->bitmap_info.file);
5219                         mddev->bitmap_info.file = NULL;
5220                 }
5221                 mddev->bitmap_info.offset = 0;
5222
5223                 export_array(mddev);
5224
5225                 md_clean(mddev);
5226                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5227                 if (mddev->hold_active == UNTIL_STOP)
5228                         mddev->hold_active = 0;
5229         }
5230         blk_integrity_unregister(disk);
5231         md_new_event(mddev);
5232         sysfs_notify_dirent_safe(mddev->sysfs_state);
5233         return 0;
5234 }
5235
5236 #ifndef MODULE
5237 static void autorun_array(struct mddev *mddev)
5238 {
5239         struct md_rdev *rdev;
5240         int err;
5241
5242         if (list_empty(&mddev->disks))
5243                 return;
5244
5245         printk(KERN_INFO "md: running: ");
5246
5247         rdev_for_each(rdev, mddev) {
5248                 char b[BDEVNAME_SIZE];
5249                 printk("<%s>", bdevname(rdev->bdev,b));
5250         }
5251         printk("\n");
5252
5253         err = do_md_run(mddev);
5254         if (err) {
5255                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5256                 do_md_stop(mddev, 0, NULL);
5257         }
5258 }
5259
5260 /*
5261  * lets try to run arrays based on all disks that have arrived
5262  * until now. (those are in pending_raid_disks)
5263  *
5264  * the method: pick the first pending disk, collect all disks with
5265  * the same UUID, remove all from the pending list and put them into
5266  * the 'same_array' list. Then order this list based on superblock
5267  * update time (freshest comes first), kick out 'old' disks and
5268  * compare superblocks. If everything's fine then run it.
5269  *
5270  * If "unit" is allocated, then bump its reference count
5271  */
5272 static void autorun_devices(int part)
5273 {
5274         struct md_rdev *rdev0, *rdev, *tmp;
5275         struct mddev *mddev;
5276         char b[BDEVNAME_SIZE];
5277
5278         printk(KERN_INFO "md: autorun ...\n");
5279         while (!list_empty(&pending_raid_disks)) {
5280                 int unit;
5281                 dev_t dev;
5282                 LIST_HEAD(candidates);
5283                 rdev0 = list_entry(pending_raid_disks.next,
5284                                          struct md_rdev, same_set);
5285
5286                 printk(KERN_INFO "md: considering %s ...\n",
5287                         bdevname(rdev0->bdev,b));
5288                 INIT_LIST_HEAD(&candidates);
5289                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5290                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5291                                 printk(KERN_INFO "md:  adding %s ...\n",
5292                                         bdevname(rdev->bdev,b));
5293                                 list_move(&rdev->same_set, &candidates);
5294                         }
5295                 /*
5296                  * now we have a set of devices, with all of them having
5297                  * mostly sane superblocks. It's time to allocate the
5298                  * mddev.
5299                  */
5300                 if (part) {
5301                         dev = MKDEV(mdp_major,
5302                                     rdev0->preferred_minor << MdpMinorShift);
5303                         unit = MINOR(dev) >> MdpMinorShift;
5304                 } else {
5305                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5306                         unit = MINOR(dev);
5307                 }
5308                 if (rdev0->preferred_minor != unit) {
5309                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5310                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5311                         break;
5312                 }
5313
5314                 md_probe(dev, NULL, NULL);
5315                 mddev = mddev_find(dev);
5316                 if (!mddev || !mddev->gendisk) {
5317                         if (mddev)
5318                                 mddev_put(mddev);
5319                         printk(KERN_ERR
5320                                 "md: cannot allocate memory for md drive.\n");
5321                         break;
5322                 }
5323                 if (mddev_lock(mddev))
5324                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5325                                mdname(mddev));
5326                 else if (mddev->raid_disks || mddev->major_version
5327                          || !list_empty(&mddev->disks)) {
5328                         printk(KERN_WARNING
5329                                 "md: %s already running, cannot run %s\n",
5330                                 mdname(mddev), bdevname(rdev0->bdev,b));
5331                         mddev_unlock(mddev);
5332                 } else {
5333                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5334                         mddev->persistent = 1;
5335                         rdev_for_each_list(rdev, tmp, &candidates) {
5336                                 list_del_init(&rdev->same_set);
5337                                 if (bind_rdev_to_array(rdev, mddev))
5338                                         export_rdev(rdev);
5339                         }
5340                         autorun_array(mddev);
5341                         mddev_unlock(mddev);
5342                 }
5343                 /* on success, candidates will be empty, on error
5344                  * it won't...
5345                  */
5346                 rdev_for_each_list(rdev, tmp, &candidates) {
5347                         list_del_init(&rdev->same_set);
5348                         export_rdev(rdev);
5349                 }
5350                 mddev_put(mddev);
5351         }
5352         printk(KERN_INFO "md: ... autorun DONE.\n");
5353 }
5354 #endif /* !MODULE */
5355
5356 static int get_version(void __user *arg)
5357 {
5358         mdu_version_t ver;
5359
5360         ver.major = MD_MAJOR_VERSION;
5361         ver.minor = MD_MINOR_VERSION;
5362         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5363
5364         if (copy_to_user(arg, &ver, sizeof(ver)))
5365                 return -EFAULT;
5366
5367         return 0;
5368 }
5369
5370 static int get_array_info(struct mddev *mddev, void __user *arg)
5371 {
5372         mdu_array_info_t info;
5373         int nr,working,insync,failed,spare;
5374         struct md_rdev *rdev;
5375
5376         nr = working = insync = failed = spare = 0;
5377         rcu_read_lock();
5378         rdev_for_each_rcu(rdev, mddev) {
5379                 nr++;
5380                 if (test_bit(Faulty, &rdev->flags))
5381                         failed++;
5382                 else {
5383                         working++;
5384                         if (test_bit(In_sync, &rdev->flags))
5385                                 insync++;
5386                         else
5387                                 spare++;
5388                 }
5389         }
5390         rcu_read_unlock();
5391
5392         info.major_version = mddev->major_version;
5393         info.minor_version = mddev->minor_version;
5394         info.patch_version = MD_PATCHLEVEL_VERSION;
5395         info.ctime         = mddev->ctime;
5396         info.level         = mddev->level;
5397         info.size          = mddev->dev_sectors / 2;
5398         if (info.size != mddev->dev_sectors / 2) /* overflow */
5399                 info.size = -1;
5400         info.nr_disks      = nr;
5401         info.raid_disks    = mddev->raid_disks;
5402         info.md_minor      = mddev->md_minor;
5403         info.not_persistent= !mddev->persistent;
5404
5405         info.utime         = mddev->utime;
5406         info.state         = 0;
5407         if (mddev->in_sync)
5408                 info.state = (1<<MD_SB_CLEAN);
5409         if (mddev->bitmap && mddev->bitmap_info.offset)
5410                 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5411         info.active_disks  = insync;
5412         info.working_disks = working;
5413         info.failed_disks  = failed;
5414         info.spare_disks   = spare;
5415
5416         info.layout        = mddev->layout;
5417         info.chunk_size    = mddev->chunk_sectors << 9;
5418
5419         if (copy_to_user(arg, &info, sizeof(info)))
5420                 return -EFAULT;
5421
5422         return 0;
5423 }
5424
5425 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5426 {
5427         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5428         char *ptr, *buf = NULL;
5429         int err = -ENOMEM;
5430
5431         file = kmalloc(sizeof(*file), GFP_NOIO);
5432
5433         if (!file)
5434                 goto out;
5435
5436         /* bitmap disabled, zero the first byte and copy out */
5437         if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5438                 file->pathname[0] = '\0';
5439                 goto copy_out;
5440         }
5441
5442         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5443         if (!buf)
5444                 goto out;
5445
5446         ptr = d_path(&mddev->bitmap->storage.file->f_path,
5447                      buf, sizeof(file->pathname));
5448         if (IS_ERR(ptr))
5449                 goto out;
5450
5451         strcpy(file->pathname, ptr);
5452
5453 copy_out:
5454         err = 0;
5455         if (copy_to_user(arg, file, sizeof(*file)))
5456                 err = -EFAULT;
5457 out:
5458         kfree(buf);
5459         kfree(file);
5460         return err;
5461 }
5462
5463 static int get_disk_info(struct mddev *mddev, void __user * arg)
5464 {
5465         mdu_disk_info_t info;
5466         struct md_rdev *rdev;
5467
5468         if (copy_from_user(&info, arg, sizeof(info)))
5469                 return -EFAULT;
5470
5471         rcu_read_lock();
5472         rdev = find_rdev_nr_rcu(mddev, info.number);
5473         if (rdev) {
5474                 info.major = MAJOR(rdev->bdev->bd_dev);
5475                 info.minor = MINOR(rdev->bdev->bd_dev);
5476                 info.raid_disk = rdev->raid_disk;
5477                 info.state = 0;
5478                 if (test_bit(Faulty, &rdev->flags))
5479                         info.state |= (1<<MD_DISK_FAULTY);
5480                 else if (test_bit(In_sync, &rdev->flags)) {
5481                         info.state |= (1<<MD_DISK_ACTIVE);
5482                         info.state |= (1<<MD_DISK_SYNC);
5483                 }
5484                 if (test_bit(WriteMostly, &rdev->flags))
5485                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5486         } else {
5487                 info.major = info.minor = 0;
5488                 info.raid_disk = -1;
5489                 info.state = (1<<MD_DISK_REMOVED);
5490         }
5491         rcu_read_unlock();
5492
5493         if (copy_to_user(arg, &info, sizeof(info)))
5494                 return -EFAULT;
5495
5496         return 0;
5497 }
5498
5499 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5500 {
5501         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5502         struct md_rdev *rdev;
5503         dev_t dev = MKDEV(info->major,info->minor);
5504
5505         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5506                 return -EOVERFLOW;
5507
5508         if (!mddev->raid_disks) {
5509                 int err;
5510                 /* expecting a device which has a superblock */
5511                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5512                 if (IS_ERR(rdev)) {
5513                         printk(KERN_WARNING
5514                                 "md: md_import_device returned %ld\n",
5515                                 PTR_ERR(rdev));
5516                         return PTR_ERR(rdev);
5517                 }
5518                 if (!list_empty(&mddev->disks)) {
5519                         struct md_rdev *rdev0
5520                                 = list_entry(mddev->disks.next,
5521                                              struct md_rdev, same_set);
5522                         err = super_types[mddev->major_version]
5523                                 .load_super(rdev, rdev0, mddev->minor_version);
5524                         if (err < 0) {
5525                                 printk(KERN_WARNING
5526                                         "md: %s has different UUID to %s\n",
5527                                         bdevname(rdev->bdev,b),
5528                                         bdevname(rdev0->bdev,b2));
5529                                 export_rdev(rdev);
5530                                 return -EINVAL;
5531                         }
5532                 }
5533                 err = bind_rdev_to_array(rdev, mddev);
5534                 if (err)
5535                         export_rdev(rdev);
5536                 return err;
5537         }
5538
5539         /*
5540          * add_new_disk can be used once the array is assembled
5541          * to add "hot spares".  They must already have a superblock
5542          * written
5543          */
5544         if (mddev->pers) {
5545                 int err;
5546                 if (!mddev->pers->hot_add_disk) {
5547                         printk(KERN_WARNING
5548                                 "%s: personality does not support diskops!\n",
5549                                mdname(mddev));
5550                         return -EINVAL;
5551                 }
5552                 if (mddev->persistent)
5553                         rdev = md_import_device(dev, mddev->major_version,
5554                                                 mddev->minor_version);
5555                 else
5556                         rdev = md_import_device(dev, -1, -1);
5557                 if (IS_ERR(rdev)) {
5558                         printk(KERN_WARNING
5559                                 "md: md_import_device returned %ld\n",
5560                                 PTR_ERR(rdev));
5561                         return PTR_ERR(rdev);
5562                 }
5563                 /* set saved_raid_disk if appropriate */
5564                 if (!mddev->persistent) {
5565                         if (info->state & (1<<MD_DISK_SYNC)  &&
5566                             info->raid_disk < mddev->raid_disks) {
5567                                 rdev->raid_disk = info->raid_disk;
5568                                 set_bit(In_sync, &rdev->flags);
5569                                 clear_bit(Bitmap_sync, &rdev->flags);
5570                         } else
5571                                 rdev->raid_disk = -1;
5572                         rdev->saved_raid_disk = rdev->raid_disk;
5573                 } else
5574                         super_types[mddev->major_version].
5575                                 validate_super(mddev, rdev);
5576                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5577                      rdev->raid_disk != info->raid_disk) {
5578                         /* This was a hot-add request, but events doesn't
5579                          * match, so reject it.
5580                          */
5581                         export_rdev(rdev);
5582                         return -EINVAL;
5583                 }
5584
5585                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5586                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5587                         set_bit(WriteMostly, &rdev->flags);
5588                 else
5589                         clear_bit(WriteMostly, &rdev->flags);
5590
5591                 rdev->raid_disk = -1;
5592                 err = bind_rdev_to_array(rdev, mddev);
5593                 if (!err && !mddev->pers->hot_remove_disk) {
5594                         /* If there is hot_add_disk but no hot_remove_disk
5595                          * then added disks for geometry changes,
5596                          * and should be added immediately.
5597                          */
5598                         super_types[mddev->major_version].
5599                                 validate_super(mddev, rdev);
5600                         err = mddev->pers->hot_add_disk(mddev, rdev);
5601                         if (err)
5602                                 unbind_rdev_from_array(rdev);
5603                 }
5604                 if (err)
5605                         export_rdev(rdev);
5606                 else
5607                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5608
5609                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5610                 if (mddev->degraded)
5611                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5612                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5613                 if (!err)
5614                         md_new_event(mddev);
5615                 md_wakeup_thread(mddev->thread);
5616                 return err;
5617         }
5618
5619         /* otherwise, add_new_disk is only allowed
5620          * for major_version==0 superblocks
5621          */
5622         if (mddev->major_version != 0) {
5623                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5624                        mdname(mddev));
5625                 return -EINVAL;
5626         }
5627
5628         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5629                 int err;
5630                 rdev = md_import_device(dev, -1, 0);
5631                 if (IS_ERR(rdev)) {
5632                         printk(KERN_WARNING
5633                                 "md: error, md_import_device() returned %ld\n",
5634                                 PTR_ERR(rdev));
5635                         return PTR_ERR(rdev);
5636                 }
5637                 rdev->desc_nr = info->number;
5638                 if (info->raid_disk < mddev->raid_disks)
5639                         rdev->raid_disk = info->raid_disk;
5640                 else
5641                         rdev->raid_disk = -1;
5642
5643                 if (rdev->raid_disk < mddev->raid_disks)
5644                         if (info->state & (1<<MD_DISK_SYNC))
5645                                 set_bit(In_sync, &rdev->flags);
5646
5647                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5648                         set_bit(WriteMostly, &rdev->flags);
5649
5650                 if (!mddev->persistent) {
5651                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5652                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5653                 } else
5654                         rdev->sb_start = calc_dev_sboffset(rdev);
5655                 rdev->sectors = rdev->sb_start;
5656
5657                 err = bind_rdev_to_array(rdev, mddev);
5658                 if (err) {
5659                         export_rdev(rdev);
5660                         return err;
5661                 }
5662         }
5663
5664         return 0;
5665 }
5666
5667 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5668 {
5669         char b[BDEVNAME_SIZE];
5670         struct md_rdev *rdev;
5671
5672         rdev = find_rdev(mddev, dev);
5673         if (!rdev)
5674                 return -ENXIO;
5675
5676         clear_bit(Blocked, &rdev->flags);
5677         remove_and_add_spares(mddev, rdev);
5678
5679         if (rdev->raid_disk >= 0)
5680                 goto busy;
5681
5682         kick_rdev_from_array(rdev);
5683         md_update_sb(mddev, 1);
5684         md_new_event(mddev);
5685
5686         return 0;
5687 busy:
5688         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5689                 bdevname(rdev->bdev,b), mdname(mddev));
5690         return -EBUSY;
5691 }
5692
5693 static int hot_add_disk(struct mddev *mddev, dev_t dev)
5694 {
5695         char b[BDEVNAME_SIZE];
5696         int err;
5697         struct md_rdev *rdev;
5698
5699         if (!mddev->pers)
5700                 return -ENODEV;
5701
5702         if (mddev->major_version != 0) {
5703                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5704                         " version-0 superblocks.\n",
5705                         mdname(mddev));
5706                 return -EINVAL;
5707         }
5708         if (!mddev->pers->hot_add_disk) {
5709                 printk(KERN_WARNING
5710                         "%s: personality does not support diskops!\n",
5711                         mdname(mddev));
5712                 return -EINVAL;
5713         }
5714
5715         rdev = md_import_device(dev, -1, 0);
5716         if (IS_ERR(rdev)) {
5717                 printk(KERN_WARNING
5718                         "md: error, md_import_device() returned %ld\n",
5719                         PTR_ERR(rdev));
5720                 return -EINVAL;
5721         }
5722
5723         if (mddev->persistent)
5724                 rdev->sb_start = calc_dev_sboffset(rdev);
5725         else
5726                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5727
5728         rdev->sectors = rdev->sb_start;
5729
5730         if (test_bit(Faulty, &rdev->flags)) {
5731                 printk(KERN_WARNING
5732                         "md: can not hot-add faulty %s disk to %s!\n",
5733                         bdevname(rdev->bdev,b), mdname(mddev));
5734                 err = -EINVAL;
5735                 goto abort_export;
5736         }
5737         clear_bit(In_sync, &rdev->flags);
5738         rdev->desc_nr = -1;
5739         rdev->saved_raid_disk = -1;
5740         err = bind_rdev_to_array(rdev, mddev);
5741         if (err)
5742                 goto abort_export;
5743
5744         /*
5745          * The rest should better be atomic, we can have disk failures
5746          * noticed in interrupt contexts ...
5747          */
5748
5749         rdev->raid_disk = -1;
5750
5751         md_update_sb(mddev, 1);
5752
5753         /*
5754          * Kick recovery, maybe this spare has to be added to the
5755          * array immediately.
5756          */
5757         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5758         md_wakeup_thread(mddev->thread);
5759         md_new_event(mddev);
5760         return 0;
5761
5762 abort_export:
5763         export_rdev(rdev);
5764         return err;
5765 }
5766
5767 static int set_bitmap_file(struct mddev *mddev, int fd)
5768 {
5769         int err = 0;
5770
5771         if (mddev->pers) {
5772                 if (!mddev->pers->quiesce || !mddev->thread)
5773                         return -EBUSY;
5774                 if (mddev->recovery || mddev->sync_thread)
5775                         return -EBUSY;
5776                 /* we should be able to change the bitmap.. */
5777         }
5778
5779         if (fd >= 0) {
5780                 struct inode *inode;
5781                 if (mddev->bitmap)
5782                         return -EEXIST; /* cannot add when bitmap is present */
5783                 mddev->bitmap_info.file = fget(fd);
5784
5785                 if (mddev->bitmap_info.file == NULL) {
5786                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5787                                mdname(mddev));
5788                         return -EBADF;
5789                 }
5790
5791                 inode = mddev->bitmap_info.file->f_mapping->host;
5792                 if (!S_ISREG(inode->i_mode)) {
5793                         printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
5794                                mdname(mddev));
5795                         err = -EBADF;
5796                 } else if (!(mddev->bitmap_info.file->f_mode & FMODE_WRITE)) {
5797                         printk(KERN_ERR "%s: error: bitmap file must open for write\n",
5798                                mdname(mddev));
5799                         err = -EBADF;
5800                 } else if (atomic_read(&inode->i_writecount) != 1) {
5801                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5802                                mdname(mddev));
5803                         err = -EBUSY;
5804                 }
5805                 if (err) {
5806                         fput(mddev->bitmap_info.file);
5807                         mddev->bitmap_info.file = NULL;
5808                         return err;
5809                 }
5810                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5811         } else if (mddev->bitmap == NULL)
5812                 return -ENOENT; /* cannot remove what isn't there */
5813         err = 0;
5814         if (mddev->pers) {
5815                 mddev->pers->quiesce(mddev, 1);
5816                 if (fd >= 0) {
5817                         err = bitmap_create(mddev);
5818                         if (!err)
5819                                 err = bitmap_load(mddev);
5820                 }
5821                 if (fd < 0 || err) {
5822                         bitmap_destroy(mddev);
5823                         fd = -1; /* make sure to put the file */
5824                 }
5825                 mddev->pers->quiesce(mddev, 0);
5826         }
5827         if (fd < 0) {
5828                 if (mddev->bitmap_info.file)
5829                         fput(mddev->bitmap_info.file);
5830                 mddev->bitmap_info.file = NULL;
5831         }
5832
5833         return err;
5834 }
5835
5836 /*
5837  * set_array_info is used two different ways
5838  * The original usage is when creating a new array.
5839  * In this usage, raid_disks is > 0 and it together with
5840  *  level, size, not_persistent,layout,chunksize determine the
5841  *  shape of the array.
5842  *  This will always create an array with a type-0.90.0 superblock.
5843  * The newer usage is when assembling an array.
5844  *  In this case raid_disks will be 0, and the major_version field is
5845  *  use to determine which style super-blocks are to be found on the devices.
5846  *  The minor and patch _version numbers are also kept incase the
5847  *  super_block handler wishes to interpret them.
5848  */
5849 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
5850 {
5851
5852         if (info->raid_disks == 0) {
5853                 /* just setting version number for superblock loading */
5854                 if (info->major_version < 0 ||
5855                     info->major_version >= ARRAY_SIZE(super_types) ||
5856                     super_types[info->major_version].name == NULL) {
5857                         /* maybe try to auto-load a module? */
5858                         printk(KERN_INFO
5859                                 "md: superblock version %d not known\n",
5860                                 info->major_version);
5861                         return -EINVAL;
5862                 }
5863                 mddev->major_version = info->major_version;
5864                 mddev->minor_version = info->minor_version;
5865                 mddev->patch_version = info->patch_version;
5866                 mddev->persistent = !info->not_persistent;
5867                 /* ensure mddev_put doesn't delete this now that there
5868                  * is some minimal configuration.
5869                  */
5870                 mddev->ctime         = get_seconds();
5871                 return 0;
5872         }
5873         mddev->major_version = MD_MAJOR_VERSION;
5874         mddev->minor_version = MD_MINOR_VERSION;
5875         mddev->patch_version = MD_PATCHLEVEL_VERSION;
5876         mddev->ctime         = get_seconds();
5877
5878         mddev->level         = info->level;
5879         mddev->clevel[0]     = 0;
5880         mddev->dev_sectors   = 2 * (sector_t)info->size;
5881         mddev->raid_disks    = info->raid_disks;
5882         /* don't set md_minor, it is determined by which /dev/md* was
5883          * openned
5884          */
5885         if (info->state & (1<<MD_SB_CLEAN))
5886                 mddev->recovery_cp = MaxSector;
5887         else
5888                 mddev->recovery_cp = 0;
5889         mddev->persistent    = ! info->not_persistent;
5890         mddev->external      = 0;
5891
5892         mddev->layout        = info->layout;
5893         mddev->chunk_sectors = info->chunk_size >> 9;
5894
5895         mddev->max_disks     = MD_SB_DISKS;
5896
5897         if (mddev->persistent)
5898                 mddev->flags         = 0;
5899         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5900
5901         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5902         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
5903         mddev->bitmap_info.offset = 0;
5904
5905         mddev->reshape_position = MaxSector;
5906
5907         /*
5908          * Generate a 128 bit UUID
5909          */
5910         get_random_bytes(mddev->uuid, 16);
5911
5912         mddev->new_level = mddev->level;
5913         mddev->new_chunk_sectors = mddev->chunk_sectors;
5914         mddev->new_layout = mddev->layout;
5915         mddev->delta_disks = 0;
5916         mddev->reshape_backwards = 0;
5917
5918         return 0;
5919 }
5920
5921 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5922 {
5923         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5924
5925         if (mddev->external_size)
5926                 return;
5927
5928         mddev->array_sectors = array_sectors;
5929 }
5930 EXPORT_SYMBOL(md_set_array_sectors);
5931
5932 static int update_size(struct mddev *mddev, sector_t num_sectors)
5933 {
5934         struct md_rdev *rdev;
5935         int rv;
5936         int fit = (num_sectors == 0);
5937
5938         if (mddev->pers->resize == NULL)
5939                 return -EINVAL;
5940         /* The "num_sectors" is the number of sectors of each device that
5941          * is used.  This can only make sense for arrays with redundancy.
5942          * linear and raid0 always use whatever space is available. We can only
5943          * consider changing this number if no resync or reconstruction is
5944          * happening, and if the new size is acceptable. It must fit before the
5945          * sb_start or, if that is <data_offset, it must fit before the size
5946          * of each device.  If num_sectors is zero, we find the largest size
5947          * that fits.
5948          */
5949         if (mddev->sync_thread)
5950                 return -EBUSY;
5951         if (mddev->ro)
5952                 return -EROFS;
5953
5954         rdev_for_each(rdev, mddev) {
5955                 sector_t avail = rdev->sectors;
5956
5957                 if (fit && (num_sectors == 0 || num_sectors > avail))
5958                         num_sectors = avail;
5959                 if (avail < num_sectors)
5960                         return -ENOSPC;
5961         }
5962         rv = mddev->pers->resize(mddev, num_sectors);
5963         if (!rv)
5964                 revalidate_disk(mddev->gendisk);
5965         return rv;
5966 }
5967
5968 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5969 {
5970         int rv;
5971         struct md_rdev *rdev;
5972         /* change the number of raid disks */
5973         if (mddev->pers->check_reshape == NULL)
5974                 return -EINVAL;
5975         if (mddev->ro)
5976                 return -EROFS;
5977         if (raid_disks <= 0 ||
5978             (mddev->max_disks && raid_disks >= mddev->max_disks))
5979                 return -EINVAL;
5980         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5981                 return -EBUSY;
5982
5983         rdev_for_each(rdev, mddev) {
5984                 if (mddev->raid_disks < raid_disks &&
5985                     rdev->data_offset < rdev->new_data_offset)
5986                         return -EINVAL;
5987                 if (mddev->raid_disks > raid_disks &&
5988                     rdev->data_offset > rdev->new_data_offset)
5989                         return -EINVAL;
5990         }
5991
5992         mddev->delta_disks = raid_disks - mddev->raid_disks;
5993         if (mddev->delta_disks < 0)
5994                 mddev->reshape_backwards = 1;
5995         else if (mddev->delta_disks > 0)
5996                 mddev->reshape_backwards = 0;
5997
5998         rv = mddev->pers->check_reshape(mddev);
5999         if (rv < 0) {
6000                 mddev->delta_disks = 0;
6001                 mddev->reshape_backwards = 0;
6002         }
6003         return rv;
6004 }
6005
6006 /*
6007  * update_array_info is used to change the configuration of an
6008  * on-line array.
6009  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6010  * fields in the info are checked against the array.
6011  * Any differences that cannot be handled will cause an error.
6012  * Normally, only one change can be managed at a time.
6013  */
6014 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6015 {
6016         int rv = 0;
6017         int cnt = 0;
6018         int state = 0;
6019
6020         /* calculate expected state,ignoring low bits */
6021         if (mddev->bitmap && mddev->bitmap_info.offset)
6022                 state |= (1 << MD_SB_BITMAP_PRESENT);
6023
6024         if (mddev->major_version != info->major_version ||
6025             mddev->minor_version != info->minor_version ||
6026 /*          mddev->patch_version != info->patch_version || */
6027             mddev->ctime         != info->ctime         ||
6028             mddev->level         != info->level         ||
6029 /*          mddev->layout        != info->layout        || */
6030             !mddev->persistent   != info->not_persistent||
6031             mddev->chunk_sectors != info->chunk_size >> 9 ||
6032             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6033             ((state^info->state) & 0xfffffe00)
6034                 )
6035                 return -EINVAL;
6036         /* Check there is only one change */
6037         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6038                 cnt++;
6039         if (mddev->raid_disks != info->raid_disks)
6040                 cnt++;
6041         if (mddev->layout != info->layout)
6042                 cnt++;
6043         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6044                 cnt++;
6045         if (cnt == 0)
6046                 return 0;
6047         if (cnt > 1)
6048                 return -EINVAL;
6049
6050         if (mddev->layout != info->layout) {
6051                 /* Change layout
6052                  * we don't need to do anything at the md level, the
6053                  * personality will take care of it all.
6054                  */
6055                 if (mddev->pers->check_reshape == NULL)
6056                         return -EINVAL;
6057                 else {
6058                         mddev->new_layout = info->layout;
6059                         rv = mddev->pers->check_reshape(mddev);
6060                         if (rv)
6061                                 mddev->new_layout = mddev->layout;
6062                         return rv;
6063                 }
6064         }
6065         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6066                 rv = update_size(mddev, (sector_t)info->size * 2);
6067
6068         if (mddev->raid_disks    != info->raid_disks)
6069                 rv = update_raid_disks(mddev, info->raid_disks);
6070
6071         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6072                 if (mddev->pers->quiesce == NULL || mddev->thread == NULL)
6073                         return -EINVAL;
6074                 if (mddev->recovery || mddev->sync_thread)
6075                         return -EBUSY;
6076                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6077                         /* add the bitmap */
6078                         if (mddev->bitmap)
6079                                 return -EEXIST;
6080                         if (mddev->bitmap_info.default_offset == 0)
6081                                 return -EINVAL;
6082                         mddev->bitmap_info.offset =
6083                                 mddev->bitmap_info.default_offset;
6084                         mddev->bitmap_info.space =
6085                                 mddev->bitmap_info.default_space;
6086                         mddev->pers->quiesce(mddev, 1);
6087                         rv = bitmap_create(mddev);
6088                         if (!rv)
6089                                 rv = bitmap_load(mddev);
6090                         if (rv)
6091                                 bitmap_destroy(mddev);
6092                         mddev->pers->quiesce(mddev, 0);
6093                 } else {
6094                         /* remove the bitmap */
6095                         if (!mddev->bitmap)
6096                                 return -ENOENT;
6097                         if (mddev->bitmap->storage.file)
6098                                 return -EINVAL;
6099                         mddev->pers->quiesce(mddev, 1);
6100                         bitmap_destroy(mddev);
6101                         mddev->pers->quiesce(mddev, 0);
6102                         mddev->bitmap_info.offset = 0;
6103                 }
6104         }
6105         md_update_sb(mddev, 1);
6106         return rv;
6107 }
6108
6109 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6110 {
6111         struct md_rdev *rdev;
6112         int err = 0;
6113
6114         if (mddev->pers == NULL)
6115                 return -ENODEV;
6116
6117         rcu_read_lock();
6118         rdev = find_rdev_rcu(mddev, dev);
6119         if (!rdev)
6120                 err =  -ENODEV;
6121         else {
6122                 md_error(mddev, rdev);
6123                 if (!test_bit(Faulty, &rdev->flags))
6124                         err = -EBUSY;
6125         }
6126         rcu_read_unlock();
6127         return err;
6128 }
6129
6130 /*
6131  * We have a problem here : there is no easy way to give a CHS
6132  * virtual geometry. We currently pretend that we have a 2 heads
6133  * 4 sectors (with a BIG number of cylinders...). This drives
6134  * dosfs just mad... ;-)
6135  */
6136 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6137 {
6138         struct mddev *mddev = bdev->bd_disk->private_data;
6139
6140         geo->heads = 2;
6141         geo->sectors = 4;
6142         geo->cylinders = mddev->array_sectors / 8;
6143         return 0;
6144 }
6145
6146 static inline bool md_ioctl_valid(unsigned int cmd)
6147 {
6148         switch (cmd) {
6149         case ADD_NEW_DISK:
6150         case BLKROSET:
6151         case GET_ARRAY_INFO:
6152         case GET_BITMAP_FILE:
6153         case GET_DISK_INFO:
6154         case HOT_ADD_DISK:
6155         case HOT_REMOVE_DISK:
6156         case RAID_AUTORUN:
6157         case RAID_VERSION:
6158         case RESTART_ARRAY_RW:
6159         case RUN_ARRAY:
6160         case SET_ARRAY_INFO:
6161         case SET_BITMAP_FILE:
6162         case SET_DISK_FAULTY:
6163         case STOP_ARRAY:
6164         case STOP_ARRAY_RO:
6165                 return true;
6166         default:
6167                 return false;
6168         }
6169 }
6170
6171 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6172                         unsigned int cmd, unsigned long arg)
6173 {
6174         int err = 0;
6175         void __user *argp = (void __user *)arg;
6176         struct mddev *mddev = NULL;
6177         int ro;
6178
6179         if (!md_ioctl_valid(cmd))
6180                 return -ENOTTY;
6181
6182         switch (cmd) {
6183         case RAID_VERSION:
6184         case GET_ARRAY_INFO:
6185         case GET_DISK_INFO:
6186                 break;
6187         default:
6188                 if (!capable(CAP_SYS_ADMIN))
6189                         return -EACCES;
6190         }
6191
6192         /*
6193          * Commands dealing with the RAID driver but not any
6194          * particular array:
6195          */
6196         switch (cmd) {
6197         case RAID_VERSION:
6198                 err = get_version(argp);
6199                 goto out;
6200
6201 #ifndef MODULE
6202         case RAID_AUTORUN:
6203                 err = 0;
6204                 autostart_arrays(arg);
6205                 goto out;
6206 #endif
6207         default:;
6208         }
6209
6210         /*
6211          * Commands creating/starting a new array:
6212          */
6213
6214         mddev = bdev->bd_disk->private_data;
6215
6216         if (!mddev) {
6217                 BUG();
6218                 goto out;
6219         }
6220
6221         /* Some actions do not requires the mutex */
6222         switch (cmd) {
6223         case GET_ARRAY_INFO:
6224                 if (!mddev->raid_disks && !mddev->external)
6225                         err = -ENODEV;
6226                 else
6227                         err = get_array_info(mddev, argp);
6228                 goto out;
6229
6230         case GET_DISK_INFO:
6231                 if (!mddev->raid_disks && !mddev->external)
6232                         err = -ENODEV;
6233                 else
6234                         err = get_disk_info(mddev, argp);
6235                 goto out;
6236
6237         case SET_DISK_FAULTY:
6238                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6239                 goto out;
6240         }
6241
6242         if (cmd == ADD_NEW_DISK)
6243                 /* need to ensure md_delayed_delete() has completed */
6244                 flush_workqueue(md_misc_wq);
6245
6246         if (cmd == HOT_REMOVE_DISK)
6247                 /* need to ensure recovery thread has run */
6248                 wait_event_interruptible_timeout(mddev->sb_wait,
6249                                                  !test_bit(MD_RECOVERY_NEEDED,
6250                                                            &mddev->flags),
6251                                                  msecs_to_jiffies(5000));
6252         if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6253                 /* Need to flush page cache, and ensure no-one else opens
6254                  * and writes
6255                  */
6256                 mutex_lock(&mddev->open_mutex);
6257                 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6258                         mutex_unlock(&mddev->open_mutex);
6259                         err = -EBUSY;
6260                         goto out;
6261                 }
6262                 set_bit(MD_STILL_CLOSED, &mddev->flags);
6263                 mutex_unlock(&mddev->open_mutex);
6264                 sync_blockdev(bdev);
6265         }
6266         err = mddev_lock(mddev);
6267         if (err) {
6268                 printk(KERN_INFO
6269                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6270                         err, cmd);
6271                 goto out;
6272         }
6273
6274         if (cmd == SET_ARRAY_INFO) {
6275                 mdu_array_info_t info;
6276                 if (!arg)
6277                         memset(&info, 0, sizeof(info));
6278                 else if (copy_from_user(&info, argp, sizeof(info))) {
6279                         err = -EFAULT;
6280                         goto unlock;
6281                 }
6282                 if (mddev->pers) {
6283                         err = update_array_info(mddev, &info);
6284                         if (err) {
6285                                 printk(KERN_WARNING "md: couldn't update"
6286                                        " array info. %d\n", err);
6287                                 goto unlock;
6288                         }
6289                         goto unlock;
6290                 }
6291                 if (!list_empty(&mddev->disks)) {
6292                         printk(KERN_WARNING
6293                                "md: array %s already has disks!\n",
6294                                mdname(mddev));
6295                         err = -EBUSY;
6296                         goto unlock;
6297                 }
6298                 if (mddev->raid_disks) {
6299                         printk(KERN_WARNING
6300                                "md: array %s already initialised!\n",
6301                                mdname(mddev));
6302                         err = -EBUSY;
6303                         goto unlock;
6304                 }
6305                 err = set_array_info(mddev, &info);
6306                 if (err) {
6307                         printk(KERN_WARNING "md: couldn't set"
6308                                " array info. %d\n", err);
6309                         goto unlock;
6310                 }
6311                 goto unlock;
6312         }
6313
6314         /*
6315          * Commands querying/configuring an existing array:
6316          */
6317         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6318          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6319         if ((!mddev->raid_disks && !mddev->external)
6320             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6321             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6322             && cmd != GET_BITMAP_FILE) {
6323                 err = -ENODEV;
6324                 goto unlock;
6325         }
6326
6327         /*
6328          * Commands even a read-only array can execute:
6329          */
6330         switch (cmd) {
6331         case GET_BITMAP_FILE:
6332                 err = get_bitmap_file(mddev, argp);
6333                 goto unlock;
6334
6335         case RESTART_ARRAY_RW:
6336                 err = restart_array(mddev);
6337                 goto unlock;
6338
6339         case STOP_ARRAY:
6340                 err = do_md_stop(mddev, 0, bdev);
6341                 goto unlock;
6342
6343         case STOP_ARRAY_RO:
6344                 err = md_set_readonly(mddev, bdev);
6345                 goto unlock;
6346
6347         case HOT_REMOVE_DISK:
6348                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6349                 goto unlock;
6350
6351         case ADD_NEW_DISK:
6352                 /* We can support ADD_NEW_DISK on read-only arrays
6353                  * on if we are re-adding a preexisting device.
6354                  * So require mddev->pers and MD_DISK_SYNC.
6355                  */
6356                 if (mddev->pers) {
6357                         mdu_disk_info_t info;
6358                         if (copy_from_user(&info, argp, sizeof(info)))
6359                                 err = -EFAULT;
6360                         else if (!(info.state & (1<<MD_DISK_SYNC)))
6361                                 /* Need to clear read-only for this */
6362                                 break;
6363                         else
6364                                 err = add_new_disk(mddev, &info);
6365                         goto unlock;
6366                 }
6367                 break;
6368
6369         case BLKROSET:
6370                 if (get_user(ro, (int __user *)(arg))) {
6371                         err = -EFAULT;
6372                         goto unlock;
6373                 }
6374                 err = -EINVAL;
6375
6376                 /* if the bdev is going readonly the value of mddev->ro
6377                  * does not matter, no writes are coming
6378                  */
6379                 if (ro)
6380                         goto unlock;
6381
6382                 /* are we are already prepared for writes? */
6383                 if (mddev->ro != 1)
6384                         goto unlock;
6385
6386                 /* transitioning to readauto need only happen for
6387                  * arrays that call md_write_start
6388                  */
6389                 if (mddev->pers) {
6390                         err = restart_array(mddev);
6391                         if (err == 0) {
6392                                 mddev->ro = 2;
6393                                 set_disk_ro(mddev->gendisk, 0);
6394                         }
6395                 }
6396                 goto unlock;
6397         }
6398
6399         /*
6400          * The remaining ioctls are changing the state of the
6401          * superblock, so we do not allow them on read-only arrays.
6402          */
6403         if (mddev->ro && mddev->pers) {
6404                 if (mddev->ro == 2) {
6405                         mddev->ro = 0;
6406                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6407                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6408                         /* mddev_unlock will wake thread */
6409                         /* If a device failed while we were read-only, we
6410                          * need to make sure the metadata is updated now.
6411                          */
6412                         if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6413                                 mddev_unlock(mddev);
6414                                 wait_event(mddev->sb_wait,
6415                                            !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6416                                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6417                                 mddev_lock_nointr(mddev);
6418                         }
6419                 } else {
6420                         err = -EROFS;
6421                         goto unlock;
6422                 }
6423         }
6424
6425         switch (cmd) {
6426         case ADD_NEW_DISK:
6427         {
6428                 mdu_disk_info_t info;
6429                 if (copy_from_user(&info, argp, sizeof(info)))
6430                         err = -EFAULT;
6431                 else
6432                         err = add_new_disk(mddev, &info);
6433                 goto unlock;
6434         }
6435
6436         case HOT_ADD_DISK:
6437                 err = hot_add_disk(mddev, new_decode_dev(arg));
6438                 goto unlock;
6439
6440         case RUN_ARRAY:
6441                 err = do_md_run(mddev);
6442                 goto unlock;
6443
6444         case SET_BITMAP_FILE:
6445                 err = set_bitmap_file(mddev, (int)arg);
6446                 goto unlock;
6447
6448         default:
6449                 err = -EINVAL;
6450                 goto unlock;
6451         }
6452
6453 unlock:
6454         if (mddev->hold_active == UNTIL_IOCTL &&
6455             err != -EINVAL)
6456                 mddev->hold_active = 0;
6457         mddev_unlock(mddev);
6458 out:
6459         return err;
6460 }
6461 #ifdef CONFIG_COMPAT
6462 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6463                     unsigned int cmd, unsigned long arg)
6464 {
6465         switch (cmd) {
6466         case HOT_REMOVE_DISK:
6467         case HOT_ADD_DISK:
6468         case SET_DISK_FAULTY:
6469         case SET_BITMAP_FILE:
6470                 /* These take in integer arg, do not convert */
6471                 break;
6472         default:
6473                 arg = (unsigned long)compat_ptr(arg);
6474                 break;
6475         }
6476
6477         return md_ioctl(bdev, mode, cmd, arg);
6478 }
6479 #endif /* CONFIG_COMPAT */
6480
6481 static int md_open(struct block_device *bdev, fmode_t mode)
6482 {
6483         /*
6484          * Succeed if we can lock the mddev, which confirms that
6485          * it isn't being stopped right now.
6486          */
6487         struct mddev *mddev = mddev_find(bdev->bd_dev);
6488         int err;
6489
6490         if (!mddev)
6491                 return -ENODEV;
6492
6493         if (mddev->gendisk != bdev->bd_disk) {
6494                 /* we are racing with mddev_put which is discarding this
6495                  * bd_disk.
6496                  */
6497                 mddev_put(mddev);
6498                 /* Wait until bdev->bd_disk is definitely gone */
6499                 flush_workqueue(md_misc_wq);
6500                 /* Then retry the open from the top */
6501                 return -ERESTARTSYS;
6502         }
6503         BUG_ON(mddev != bdev->bd_disk->private_data);
6504
6505         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6506                 goto out;
6507
6508         err = 0;
6509         atomic_inc(&mddev->openers);
6510         clear_bit(MD_STILL_CLOSED, &mddev->flags);
6511         mutex_unlock(&mddev->open_mutex);
6512
6513         check_disk_change(bdev);
6514  out:
6515         return err;
6516 }
6517
6518 static void md_release(struct gendisk *disk, fmode_t mode)
6519 {
6520         struct mddev *mddev = disk->private_data;
6521
6522         BUG_ON(!mddev);
6523         atomic_dec(&mddev->openers);
6524         mddev_put(mddev);
6525 }
6526
6527 static int md_media_changed(struct gendisk *disk)
6528 {
6529         struct mddev *mddev = disk->private_data;
6530
6531         return mddev->changed;
6532 }
6533
6534 static int md_revalidate(struct gendisk *disk)
6535 {
6536         struct mddev *mddev = disk->private_data;
6537
6538         mddev->changed = 0;
6539         return 0;
6540 }
6541 static const struct block_device_operations md_fops =
6542 {
6543         .owner          = THIS_MODULE,
6544         .open           = md_open,
6545         .release        = md_release,
6546         .ioctl          = md_ioctl,
6547 #ifdef CONFIG_COMPAT
6548         .compat_ioctl   = md_compat_ioctl,
6549 #endif
6550         .getgeo         = md_getgeo,
6551         .media_changed  = md_media_changed,
6552         .revalidate_disk= md_revalidate,
6553 };
6554
6555 static int md_thread(void *arg)
6556 {
6557         struct md_thread *thread = arg;
6558
6559         /*
6560          * md_thread is a 'system-thread', it's priority should be very
6561          * high. We avoid resource deadlocks individually in each
6562          * raid personality. (RAID5 does preallocation) We also use RR and
6563          * the very same RT priority as kswapd, thus we will never get
6564          * into a priority inversion deadlock.
6565          *
6566          * we definitely have to have equal or higher priority than
6567          * bdflush, otherwise bdflush will deadlock if there are too
6568          * many dirty RAID5 blocks.
6569          */
6570
6571         allow_signal(SIGKILL);
6572         while (!kthread_should_stop()) {
6573
6574                 /* We need to wait INTERRUPTIBLE so that
6575                  * we don't add to the load-average.
6576                  * That means we need to be sure no signals are
6577                  * pending
6578                  */
6579                 if (signal_pending(current))
6580                         flush_signals(current);
6581
6582                 wait_event_interruptible_timeout
6583                         (thread->wqueue,
6584                          test_bit(THREAD_WAKEUP, &thread->flags)
6585                          || kthread_should_stop(),
6586                          thread->timeout);
6587
6588                 clear_bit(THREAD_WAKEUP, &thread->flags);
6589                 if (!kthread_should_stop())
6590                         thread->run(thread);
6591         }
6592
6593         return 0;
6594 }
6595
6596 void md_wakeup_thread(struct md_thread *thread)
6597 {
6598         if (thread) {
6599                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6600                 set_bit(THREAD_WAKEUP, &thread->flags);
6601                 wake_up(&thread->wqueue);
6602         }
6603 }
6604 EXPORT_SYMBOL(md_wakeup_thread);
6605
6606 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6607                 struct mddev *mddev, const char *name)
6608 {
6609         struct md_thread *thread;
6610
6611         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6612         if (!thread)
6613                 return NULL;
6614
6615         init_waitqueue_head(&thread->wqueue);
6616
6617         thread->run = run;
6618         thread->mddev = mddev;
6619         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6620         thread->tsk = kthread_run(md_thread, thread,
6621                                   "%s_%s",
6622                                   mdname(thread->mddev),
6623                                   name);
6624         if (IS_ERR(thread->tsk)) {
6625                 kfree(thread);
6626                 return NULL;
6627         }
6628         return thread;
6629 }
6630 EXPORT_SYMBOL(md_register_thread);
6631
6632 void md_unregister_thread(struct md_thread **threadp)
6633 {
6634         struct md_thread *thread = *threadp;
6635         if (!thread)
6636                 return;
6637         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6638         /* Locking ensures that mddev_unlock does not wake_up a
6639          * non-existent thread
6640          */
6641         spin_lock(&pers_lock);
6642         *threadp = NULL;
6643         spin_unlock(&pers_lock);
6644
6645         kthread_stop(thread->tsk);
6646         kfree(thread);
6647 }
6648 EXPORT_SYMBOL(md_unregister_thread);
6649
6650 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6651 {
6652         if (!rdev || test_bit(Faulty, &rdev->flags))
6653                 return;
6654
6655         if (!mddev->pers || !mddev->pers->error_handler)
6656                 return;
6657         mddev->pers->error_handler(mddev,rdev);
6658         if (mddev->degraded)
6659                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6660         sysfs_notify_dirent_safe(rdev->sysfs_state);
6661         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6662         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6663         md_wakeup_thread(mddev->thread);
6664         if (mddev->event_work.func)
6665                 queue_work(md_misc_wq, &mddev->event_work);
6666         md_new_event_inintr(mddev);
6667 }
6668 EXPORT_SYMBOL(md_error);
6669
6670 /* seq_file implementation /proc/mdstat */
6671
6672 static void status_unused(struct seq_file *seq)
6673 {
6674         int i = 0;
6675         struct md_rdev *rdev;
6676
6677         seq_printf(seq, "unused devices: ");
6678
6679         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6680                 char b[BDEVNAME_SIZE];
6681                 i++;
6682                 seq_printf(seq, "%s ",
6683                               bdevname(rdev->bdev,b));
6684         }
6685         if (!i)
6686                 seq_printf(seq, "<none>");
6687
6688         seq_printf(seq, "\n");
6689 }
6690
6691 static void status_resync(struct seq_file *seq, struct mddev *mddev)
6692 {
6693         sector_t max_sectors, resync, res;
6694         unsigned long dt, db;
6695         sector_t rt;
6696         int scale;
6697         unsigned int per_milli;
6698
6699         if (mddev->curr_resync <= 3)
6700                 resync = 0;
6701         else
6702                 resync = mddev->curr_resync
6703                         - atomic_read(&mddev->recovery_active);
6704
6705         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6706             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6707                 max_sectors = mddev->resync_max_sectors;
6708         else
6709                 max_sectors = mddev->dev_sectors;
6710
6711         WARN_ON(max_sectors == 0);
6712         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6713          * in a sector_t, and (max_sectors>>scale) will fit in a
6714          * u32, as those are the requirements for sector_div.
6715          * Thus 'scale' must be at least 10
6716          */
6717         scale = 10;
6718         if (sizeof(sector_t) > sizeof(unsigned long)) {
6719                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6720                         scale++;
6721         }
6722         res = (resync>>scale)*1000;
6723         sector_div(res, (u32)((max_sectors>>scale)+1));
6724
6725         per_milli = res;
6726         {
6727                 int i, x = per_milli/50, y = 20-x;
6728                 seq_printf(seq, "[");
6729                 for (i = 0; i < x; i++)
6730                         seq_printf(seq, "=");
6731                 seq_printf(seq, ">");
6732                 for (i = 0; i < y; i++)
6733                         seq_printf(seq, ".");
6734                 seq_printf(seq, "] ");
6735         }
6736         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6737                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6738                     "reshape" :
6739                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6740                      "check" :
6741                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6742                       "resync" : "recovery"))),
6743                    per_milli/10, per_milli % 10,
6744                    (unsigned long long) resync/2,
6745                    (unsigned long long) max_sectors/2);
6746
6747         /*
6748          * dt: time from mark until now
6749          * db: blocks written from mark until now
6750          * rt: remaining time
6751          *
6752          * rt is a sector_t, so could be 32bit or 64bit.
6753          * So we divide before multiply in case it is 32bit and close
6754          * to the limit.
6755          * We scale the divisor (db) by 32 to avoid losing precision
6756          * near the end of resync when the number of remaining sectors
6757          * is close to 'db'.
6758          * We then divide rt by 32 after multiplying by db to compensate.
6759          * The '+1' avoids division by zero if db is very small.
6760          */
6761         dt = ((jiffies - mddev->resync_mark) / HZ);
6762         if (!dt) dt++;
6763         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6764                 - mddev->resync_mark_cnt;
6765
6766         rt = max_sectors - resync;    /* number of remaining sectors */
6767         sector_div(rt, db/32+1);
6768         rt *= dt;
6769         rt >>= 5;
6770
6771         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6772                    ((unsigned long)rt % 60)/6);
6773
6774         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6775 }
6776
6777 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6778 {
6779         struct list_head *tmp;
6780         loff_t l = *pos;
6781         struct mddev *mddev;
6782
6783         if (l >= 0x10000)
6784                 return NULL;
6785         if (!l--)
6786                 /* header */
6787                 return (void*)1;
6788
6789         spin_lock(&all_mddevs_lock);
6790         list_for_each(tmp,&all_mddevs)
6791                 if (!l--) {
6792                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6793                         mddev_get(mddev);
6794                         spin_unlock(&all_mddevs_lock);
6795                         return mddev;
6796                 }
6797         spin_unlock(&all_mddevs_lock);
6798         if (!l--)
6799                 return (void*)2;/* tail */
6800         return NULL;
6801 }
6802
6803 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6804 {
6805         struct list_head *tmp;
6806         struct mddev *next_mddev, *mddev = v;
6807
6808         ++*pos;
6809         if (v == (void*)2)
6810                 return NULL;
6811
6812         spin_lock(&all_mddevs_lock);
6813         if (v == (void*)1)
6814                 tmp = all_mddevs.next;
6815         else
6816                 tmp = mddev->all_mddevs.next;
6817         if (tmp != &all_mddevs)
6818                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6819         else {
6820                 next_mddev = (void*)2;
6821                 *pos = 0x10000;
6822         }
6823         spin_unlock(&all_mddevs_lock);
6824
6825         if (v != (void*)1)
6826                 mddev_put(mddev);
6827         return next_mddev;
6828
6829 }
6830
6831 static void md_seq_stop(struct seq_file *seq, void *v)
6832 {
6833         struct mddev *mddev = v;
6834
6835         if (mddev && v != (void*)1 && v != (void*)2)
6836                 mddev_put(mddev);
6837 }
6838
6839 static int md_seq_show(struct seq_file *seq, void *v)
6840 {
6841         struct mddev *mddev = v;
6842         sector_t sectors;
6843         struct md_rdev *rdev;
6844
6845         if (v == (void*)1) {
6846                 struct md_personality *pers;
6847                 seq_printf(seq, "Personalities : ");
6848                 spin_lock(&pers_lock);
6849                 list_for_each_entry(pers, &pers_list, list)
6850                         seq_printf(seq, "[%s] ", pers->name);
6851
6852                 spin_unlock(&pers_lock);
6853                 seq_printf(seq, "\n");
6854                 seq->poll_event = atomic_read(&md_event_count);
6855                 return 0;
6856         }
6857         if (v == (void*)2) {
6858                 status_unused(seq);
6859                 return 0;
6860         }
6861
6862         if (mddev_lock(mddev) < 0)
6863                 return -EINTR;
6864
6865         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6866                 seq_printf(seq, "%s : %sactive", mdname(mddev),
6867                                                 mddev->pers ? "" : "in");
6868                 if (mddev->pers) {
6869                         if (mddev->ro==1)
6870                                 seq_printf(seq, " (read-only)");
6871                         if (mddev->ro==2)
6872                                 seq_printf(seq, " (auto-read-only)");
6873                         seq_printf(seq, " %s", mddev->pers->name);
6874                 }
6875
6876                 sectors = 0;
6877                 rdev_for_each(rdev, mddev) {
6878                         char b[BDEVNAME_SIZE];
6879                         seq_printf(seq, " %s[%d]",
6880                                 bdevname(rdev->bdev,b), rdev->desc_nr);
6881                         if (test_bit(WriteMostly, &rdev->flags))
6882                                 seq_printf(seq, "(W)");
6883                         if (test_bit(Faulty, &rdev->flags)) {
6884                                 seq_printf(seq, "(F)");
6885                                 continue;
6886                         }
6887                         if (rdev->raid_disk < 0)
6888                                 seq_printf(seq, "(S)"); /* spare */
6889                         if (test_bit(Replacement, &rdev->flags))
6890                                 seq_printf(seq, "(R)");
6891                         sectors += rdev->sectors;
6892                 }
6893
6894                 if (!list_empty(&mddev->disks)) {
6895                         if (mddev->pers)
6896                                 seq_printf(seq, "\n      %llu blocks",
6897                                            (unsigned long long)
6898                                            mddev->array_sectors / 2);
6899                         else
6900                                 seq_printf(seq, "\n      %llu blocks",
6901                                            (unsigned long long)sectors / 2);
6902                 }
6903                 if (mddev->persistent) {
6904                         if (mddev->major_version != 0 ||
6905                             mddev->minor_version != 90) {
6906                                 seq_printf(seq," super %d.%d",
6907                                            mddev->major_version,
6908                                            mddev->minor_version);
6909                         }
6910                 } else if (mddev->external)
6911                         seq_printf(seq, " super external:%s",
6912                                    mddev->metadata_type);
6913                 else
6914                         seq_printf(seq, " super non-persistent");
6915
6916                 if (mddev->pers) {
6917                         mddev->pers->status(seq, mddev);
6918                         seq_printf(seq, "\n      ");
6919                         if (mddev->pers->sync_request) {
6920                                 if (mddev->curr_resync > 2) {
6921                                         status_resync(seq, mddev);
6922                                         seq_printf(seq, "\n      ");
6923                                 } else if (mddev->curr_resync >= 1)
6924                                         seq_printf(seq, "\tresync=DELAYED\n      ");
6925                                 else if (mddev->recovery_cp < MaxSector)
6926                                         seq_printf(seq, "\tresync=PENDING\n      ");
6927                         }
6928                 } else
6929                         seq_printf(seq, "\n       ");
6930
6931                 bitmap_status(seq, mddev->bitmap);
6932
6933                 seq_printf(seq, "\n");
6934         }
6935         mddev_unlock(mddev);
6936
6937         return 0;
6938 }
6939
6940 static const struct seq_operations md_seq_ops = {
6941         .start  = md_seq_start,
6942         .next   = md_seq_next,
6943         .stop   = md_seq_stop,
6944         .show   = md_seq_show,
6945 };
6946
6947 static int md_seq_open(struct inode *inode, struct file *file)
6948 {
6949         struct seq_file *seq;
6950         int error;
6951
6952         error = seq_open(file, &md_seq_ops);
6953         if (error)
6954                 return error;
6955
6956         seq = file->private_data;
6957         seq->poll_event = atomic_read(&md_event_count);
6958         return error;
6959 }
6960
6961 static int md_unloading;
6962 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6963 {
6964         struct seq_file *seq = filp->private_data;
6965         int mask;
6966
6967         if (md_unloading)
6968                 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;;
6969         poll_wait(filp, &md_event_waiters, wait);
6970
6971         /* always allow read */
6972         mask = POLLIN | POLLRDNORM;
6973
6974         if (seq->poll_event != atomic_read(&md_event_count))
6975                 mask |= POLLERR | POLLPRI;
6976         return mask;
6977 }
6978
6979 static const struct file_operations md_seq_fops = {
6980         .owner          = THIS_MODULE,
6981         .open           = md_seq_open,
6982         .read           = seq_read,
6983         .llseek         = seq_lseek,
6984         .release        = seq_release_private,
6985         .poll           = mdstat_poll,
6986 };
6987
6988 int register_md_personality(struct md_personality *p)
6989 {
6990         printk(KERN_INFO "md: %s personality registered for level %d\n",
6991                                                 p->name, p->level);
6992         spin_lock(&pers_lock);
6993         list_add_tail(&p->list, &pers_list);
6994         spin_unlock(&pers_lock);
6995         return 0;
6996 }
6997 EXPORT_SYMBOL(register_md_personality);
6998
6999 int unregister_md_personality(struct md_personality *p)
7000 {
7001         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7002         spin_lock(&pers_lock);
7003         list_del_init(&p->list);
7004         spin_unlock(&pers_lock);
7005         return 0;
7006 }
7007 EXPORT_SYMBOL(unregister_md_personality);
7008
7009 static int is_mddev_idle(struct mddev *mddev, int init)
7010 {
7011         struct md_rdev *rdev;
7012         int idle;
7013         int curr_events;
7014
7015         idle = 1;
7016         rcu_read_lock();
7017         rdev_for_each_rcu(rdev, mddev) {
7018                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7019                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7020                               (int)part_stat_read(&disk->part0, sectors[1]) -
7021                               atomic_read(&disk->sync_io);
7022                 /* sync IO will cause sync_io to increase before the disk_stats
7023                  * as sync_io is counted when a request starts, and
7024                  * disk_stats is counted when it completes.
7025                  * So resync activity will cause curr_events to be smaller than
7026                  * when there was no such activity.
7027                  * non-sync IO will cause disk_stat to increase without
7028                  * increasing sync_io so curr_events will (eventually)
7029                  * be larger than it was before.  Once it becomes
7030                  * substantially larger, the test below will cause
7031                  * the array to appear non-idle, and resync will slow
7032                  * down.
7033                  * If there is a lot of outstanding resync activity when
7034                  * we set last_event to curr_events, then all that activity
7035                  * completing might cause the array to appear non-idle
7036                  * and resync will be slowed down even though there might
7037                  * not have been non-resync activity.  This will only
7038                  * happen once though.  'last_events' will soon reflect
7039                  * the state where there is little or no outstanding
7040                  * resync requests, and further resync activity will
7041                  * always make curr_events less than last_events.
7042                  *
7043                  */
7044                 if (init || curr_events - rdev->last_events > 64) {
7045                         rdev->last_events = curr_events;
7046                         idle = 0;
7047                 }
7048         }
7049         rcu_read_unlock();
7050         return idle;
7051 }
7052
7053 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7054 {
7055         /* another "blocks" (512byte) blocks have been synced */
7056         atomic_sub(blocks, &mddev->recovery_active);
7057         wake_up(&mddev->recovery_wait);
7058         if (!ok) {
7059                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7060                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7061                 md_wakeup_thread(mddev->thread);
7062                 // stop recovery, signal do_sync ....
7063         }
7064 }
7065 EXPORT_SYMBOL(md_done_sync);
7066
7067 /* md_write_start(mddev, bi)
7068  * If we need to update some array metadata (e.g. 'active' flag
7069  * in superblock) before writing, schedule a superblock update
7070  * and wait for it to complete.
7071  */
7072 void md_write_start(struct mddev *mddev, struct bio *bi)
7073 {
7074         int did_change = 0;
7075         if (bio_data_dir(bi) != WRITE)
7076                 return;
7077
7078         BUG_ON(mddev->ro == 1);
7079         if (mddev->ro == 2) {
7080                 /* need to switch to read/write */
7081                 mddev->ro = 0;
7082                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7083                 md_wakeup_thread(mddev->thread);
7084                 md_wakeup_thread(mddev->sync_thread);
7085                 did_change = 1;
7086         }
7087         atomic_inc(&mddev->writes_pending);
7088         if (mddev->safemode == 1)
7089                 mddev->safemode = 0;
7090         if (mddev->in_sync) {
7091                 spin_lock_irq(&mddev->write_lock);
7092                 if (mddev->in_sync) {
7093                         mddev->in_sync = 0;
7094                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7095                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7096                         md_wakeup_thread(mddev->thread);
7097                         did_change = 1;
7098                 }
7099                 spin_unlock_irq(&mddev->write_lock);
7100         }
7101         if (did_change)
7102                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7103         wait_event(mddev->sb_wait,
7104                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7105 }
7106 EXPORT_SYMBOL(md_write_start);
7107
7108 void md_write_end(struct mddev *mddev)
7109 {
7110         if (atomic_dec_and_test(&mddev->writes_pending)) {
7111                 if (mddev->safemode == 2)
7112                         md_wakeup_thread(mddev->thread);
7113                 else if (mddev->safemode_delay)
7114                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7115         }
7116 }
7117 EXPORT_SYMBOL(md_write_end);
7118
7119 /* md_allow_write(mddev)
7120  * Calling this ensures that the array is marked 'active' so that writes
7121  * may proceed without blocking.  It is important to call this before
7122  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7123  * Must be called with mddev_lock held.
7124  *
7125  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7126  * is dropped, so return -EAGAIN after notifying userspace.
7127  */
7128 int md_allow_write(struct mddev *mddev)
7129 {
7130         if (!mddev->pers)
7131                 return 0;
7132         if (mddev->ro)
7133                 return 0;
7134         if (!mddev->pers->sync_request)
7135                 return 0;
7136
7137         spin_lock_irq(&mddev->write_lock);
7138         if (mddev->in_sync) {
7139                 mddev->in_sync = 0;
7140                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7141                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7142                 if (mddev->safemode_delay &&
7143                     mddev->safemode == 0)
7144                         mddev->safemode = 1;
7145                 spin_unlock_irq(&mddev->write_lock);
7146                 md_update_sb(mddev, 0);
7147                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7148         } else
7149                 spin_unlock_irq(&mddev->write_lock);
7150
7151         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7152                 return -EAGAIN;
7153         else
7154                 return 0;
7155 }
7156 EXPORT_SYMBOL_GPL(md_allow_write);
7157
7158 #define SYNC_MARKS      10
7159 #define SYNC_MARK_STEP  (3*HZ)
7160 #define UPDATE_FREQUENCY (5*60*HZ)
7161 void md_do_sync(struct md_thread *thread)
7162 {
7163         struct mddev *mddev = thread->mddev;
7164         struct mddev *mddev2;
7165         unsigned int currspeed = 0,
7166                  window;
7167         sector_t max_sectors,j, io_sectors, recovery_done;
7168         unsigned long mark[SYNC_MARKS];
7169         unsigned long update_time;
7170         sector_t mark_cnt[SYNC_MARKS];
7171         int last_mark,m;
7172         struct list_head *tmp;
7173         sector_t last_check;
7174         int skipped = 0;
7175         struct md_rdev *rdev;
7176         char *desc, *action = NULL;
7177         struct blk_plug plug;
7178
7179         /* just incase thread restarts... */
7180         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7181                 return;
7182         if (mddev->ro) {/* never try to sync a read-only array */
7183                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7184                 return;
7185         }
7186
7187         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7188                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7189                         desc = "data-check";
7190                         action = "check";
7191                 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7192                         desc = "requested-resync";
7193                         action = "repair";
7194                 } else
7195                         desc = "resync";
7196         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7197                 desc = "reshape";
7198         else
7199                 desc = "recovery";
7200
7201         mddev->last_sync_action = action ?: desc;
7202
7203         /* we overload curr_resync somewhat here.
7204          * 0 == not engaged in resync at all
7205          * 2 == checking that there is no conflict with another sync
7206          * 1 == like 2, but have yielded to allow conflicting resync to
7207          *              commense
7208          * other == active in resync - this many blocks
7209          *
7210          * Before starting a resync we must have set curr_resync to
7211          * 2, and then checked that every "conflicting" array has curr_resync
7212          * less than ours.  When we find one that is the same or higher
7213          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7214          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7215          * This will mean we have to start checking from the beginning again.
7216          *
7217          */
7218
7219         do {
7220                 mddev->curr_resync = 2;
7221
7222         try_again:
7223                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7224                         goto skip;
7225                 for_each_mddev(mddev2, tmp) {
7226                         if (mddev2 == mddev)
7227                                 continue;
7228                         if (!mddev->parallel_resync
7229                         &&  mddev2->curr_resync
7230                         &&  match_mddev_units(mddev, mddev2)) {
7231                                 DEFINE_WAIT(wq);
7232                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7233                                         /* arbitrarily yield */
7234                                         mddev->curr_resync = 1;
7235                                         wake_up(&resync_wait);
7236                                 }
7237                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7238                                         /* no need to wait here, we can wait the next
7239                                          * time 'round when curr_resync == 2
7240                                          */
7241                                         continue;
7242                                 /* We need to wait 'interruptible' so as not to
7243                                  * contribute to the load average, and not to
7244                                  * be caught by 'softlockup'
7245                                  */
7246                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7247                                 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7248                                     mddev2->curr_resync >= mddev->curr_resync) {
7249                                         printk(KERN_INFO "md: delaying %s of %s"
7250                                                " until %s has finished (they"
7251                                                " share one or more physical units)\n",
7252                                                desc, mdname(mddev), mdname(mddev2));
7253                                         mddev_put(mddev2);
7254                                         if (signal_pending(current))
7255                                                 flush_signals(current);
7256                                         schedule();
7257                                         finish_wait(&resync_wait, &wq);
7258                                         goto try_again;
7259                                 }
7260                                 finish_wait(&resync_wait, &wq);
7261                         }
7262                 }
7263         } while (mddev->curr_resync < 2);
7264
7265         j = 0;
7266         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7267                 /* resync follows the size requested by the personality,
7268                  * which defaults to physical size, but can be virtual size
7269                  */
7270                 max_sectors = mddev->resync_max_sectors;
7271                 atomic64_set(&mddev->resync_mismatches, 0);
7272                 /* we don't use the checkpoint if there's a bitmap */
7273                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7274                         j = mddev->resync_min;
7275                 else if (!mddev->bitmap)
7276                         j = mddev->recovery_cp;
7277
7278         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7279                 max_sectors = mddev->resync_max_sectors;
7280         else {
7281                 /* recovery follows the physical size of devices */
7282                 max_sectors = mddev->dev_sectors;
7283                 j = MaxSector;
7284                 rcu_read_lock();
7285                 rdev_for_each_rcu(rdev, mddev)
7286                         if (rdev->raid_disk >= 0 &&
7287                             !test_bit(Faulty, &rdev->flags) &&
7288                             !test_bit(In_sync, &rdev->flags) &&
7289                             rdev->recovery_offset < j)
7290                                 j = rdev->recovery_offset;
7291                 rcu_read_unlock();
7292
7293                 /* If there is a bitmap, we need to make sure all
7294                  * writes that started before we added a spare
7295                  * complete before we start doing a recovery.
7296                  * Otherwise the write might complete and (via
7297                  * bitmap_endwrite) set a bit in the bitmap after the
7298                  * recovery has checked that bit and skipped that
7299                  * region.
7300                  */
7301                 if (mddev->bitmap) {
7302                         mddev->pers->quiesce(mddev, 1);
7303                         mddev->pers->quiesce(mddev, 0);
7304                 }
7305         }
7306
7307         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7308         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7309                 " %d KB/sec/disk.\n", speed_min(mddev));
7310         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7311                "(but not more than %d KB/sec) for %s.\n",
7312                speed_max(mddev), desc);
7313
7314         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7315
7316         io_sectors = 0;
7317         for (m = 0; m < SYNC_MARKS; m++) {
7318                 mark[m] = jiffies;
7319                 mark_cnt[m] = io_sectors;
7320         }
7321         last_mark = 0;
7322         mddev->resync_mark = mark[last_mark];
7323         mddev->resync_mark_cnt = mark_cnt[last_mark];
7324
7325         /*
7326          * Tune reconstruction:
7327          */
7328         window = 32*(PAGE_SIZE/512);
7329         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7330                 window/2, (unsigned long long)max_sectors/2);
7331
7332         atomic_set(&mddev->recovery_active, 0);
7333         last_check = 0;
7334
7335         if (j>2) {
7336                 printk(KERN_INFO
7337                        "md: resuming %s of %s from checkpoint.\n",
7338                        desc, mdname(mddev));
7339                 mddev->curr_resync = j;
7340         } else
7341                 mddev->curr_resync = 3; /* no longer delayed */
7342         mddev->curr_resync_completed = j;
7343         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7344         md_new_event(mddev);
7345         update_time = jiffies;
7346
7347         blk_start_plug(&plug);
7348         while (j < max_sectors) {
7349                 sector_t sectors;
7350
7351                 skipped = 0;
7352
7353                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7354                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7355                       (mddev->curr_resync - mddev->curr_resync_completed)
7356                       > (max_sectors >> 4)) ||
7357                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7358                      (j - mddev->curr_resync_completed)*2
7359                      >= mddev->resync_max - mddev->curr_resync_completed
7360                             )) {
7361                         /* time to update curr_resync_completed */
7362                         wait_event(mddev->recovery_wait,
7363                                    atomic_read(&mddev->recovery_active) == 0);
7364                         mddev->curr_resync_completed = j;
7365                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7366                             j > mddev->recovery_cp)
7367                                 mddev->recovery_cp = j;
7368                         update_time = jiffies;
7369                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7370                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7371                 }
7372
7373                 while (j >= mddev->resync_max &&
7374                        !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7375                         /* As this condition is controlled by user-space,
7376                          * we can block indefinitely, so use '_interruptible'
7377                          * to avoid triggering warnings.
7378                          */
7379                         flush_signals(current); /* just in case */
7380                         wait_event_interruptible(mddev->recovery_wait,
7381                                                  mddev->resync_max > j
7382                                                  || test_bit(MD_RECOVERY_INTR,
7383                                                              &mddev->recovery));
7384                 }
7385
7386                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7387                         break;
7388
7389                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7390                                                   currspeed < speed_min(mddev));
7391                 if (sectors == 0) {
7392                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7393                         break;
7394                 }
7395
7396                 if (!skipped) { /* actual IO requested */
7397                         io_sectors += sectors;
7398                         atomic_add(sectors, &mddev->recovery_active);
7399                 }
7400
7401                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7402                         break;
7403
7404                 j += sectors;
7405                 if (j > 2)
7406                         mddev->curr_resync = j;
7407                 mddev->curr_mark_cnt = io_sectors;
7408                 if (last_check == 0)
7409                         /* this is the earliest that rebuild will be
7410                          * visible in /proc/mdstat
7411                          */
7412                         md_new_event(mddev);
7413
7414                 if (last_check + window > io_sectors || j == max_sectors)
7415                         continue;
7416
7417                 last_check = io_sectors;
7418         repeat:
7419                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7420                         /* step marks */
7421                         int next = (last_mark+1) % SYNC_MARKS;
7422
7423                         mddev->resync_mark = mark[next];
7424                         mddev->resync_mark_cnt = mark_cnt[next];
7425                         mark[next] = jiffies;
7426                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7427                         last_mark = next;
7428                 }
7429
7430                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7431                         break;
7432
7433                 /*
7434                  * this loop exits only if either when we are slower than
7435                  * the 'hard' speed limit, or the system was IO-idle for
7436                  * a jiffy.
7437                  * the system might be non-idle CPU-wise, but we only care
7438                  * about not overloading the IO subsystem. (things like an
7439                  * e2fsck being done on the RAID array should execute fast)
7440                  */
7441                 cond_resched();
7442
7443                 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7444                 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7445                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7446
7447                 if (currspeed > speed_min(mddev)) {
7448                         if ((currspeed > speed_max(mddev)) ||
7449                                         !is_mddev_idle(mddev, 0)) {
7450                                 msleep(500);
7451                                 goto repeat;
7452                         }
7453                 }
7454         }
7455         printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7456                test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7457                ? "interrupted" : "done");
7458         /*
7459          * this also signals 'finished resyncing' to md_stop
7460          */
7461         blk_finish_plug(&plug);
7462         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7463
7464         /* tell personality that we are finished */
7465         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7466
7467         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7468             mddev->curr_resync > 2) {
7469                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7470                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7471                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7472                                         printk(KERN_INFO
7473                                                "md: checkpointing %s of %s.\n",
7474                                                desc, mdname(mddev));
7475                                         if (test_bit(MD_RECOVERY_ERROR,
7476                                                 &mddev->recovery))
7477                                                 mddev->recovery_cp =
7478                                                         mddev->curr_resync_completed;
7479                                         else
7480                                                 mddev->recovery_cp =
7481                                                         mddev->curr_resync;
7482                                 }
7483                         } else
7484                                 mddev->recovery_cp = MaxSector;
7485                 } else {
7486                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7487                                 mddev->curr_resync = MaxSector;
7488                         rcu_read_lock();
7489                         rdev_for_each_rcu(rdev, mddev)
7490                                 if (rdev->raid_disk >= 0 &&
7491                                     mddev->delta_disks >= 0 &&
7492                                     !test_bit(Faulty, &rdev->flags) &&
7493                                     !test_bit(In_sync, &rdev->flags) &&
7494                                     rdev->recovery_offset < mddev->curr_resync)
7495                                         rdev->recovery_offset = mddev->curr_resync;
7496                         rcu_read_unlock();
7497                 }
7498         }
7499  skip:
7500         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7501
7502         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7503                 /* We completed so min/max setting can be forgotten if used. */
7504                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7505                         mddev->resync_min = 0;
7506                 mddev->resync_max = MaxSector;
7507         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7508                 mddev->resync_min = mddev->curr_resync_completed;
7509         mddev->curr_resync = 0;
7510         wake_up(&resync_wait);
7511         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7512         md_wakeup_thread(mddev->thread);
7513         return;
7514 }
7515 EXPORT_SYMBOL_GPL(md_do_sync);
7516
7517 static int remove_and_add_spares(struct mddev *mddev,
7518                                  struct md_rdev *this)
7519 {
7520         struct md_rdev *rdev;
7521         int spares = 0;
7522         int removed = 0;
7523
7524         rdev_for_each(rdev, mddev)
7525                 if ((this == NULL || rdev == this) &&
7526                     rdev->raid_disk >= 0 &&
7527                     !test_bit(Blocked, &rdev->flags) &&
7528                     (test_bit(Faulty, &rdev->flags) ||
7529                      ! test_bit(In_sync, &rdev->flags)) &&
7530                     atomic_read(&rdev->nr_pending)==0) {
7531                         if (mddev->pers->hot_remove_disk(
7532                                     mddev, rdev) == 0) {
7533                                 sysfs_unlink_rdev(mddev, rdev);
7534                                 rdev->raid_disk = -1;
7535                                 removed++;
7536                         }
7537                 }
7538         if (removed && mddev->kobj.sd)
7539                 sysfs_notify(&mddev->kobj, NULL, "degraded");
7540
7541         if (this)
7542                 goto no_add;
7543
7544         rdev_for_each(rdev, mddev) {
7545                 if (rdev->raid_disk >= 0 &&
7546                     !test_bit(In_sync, &rdev->flags) &&
7547                     !test_bit(Faulty, &rdev->flags))
7548                         spares++;
7549                 if (rdev->raid_disk >= 0)
7550                         continue;
7551                 if (test_bit(Faulty, &rdev->flags))
7552                         continue;
7553                 if (mddev->ro &&
7554                     ! (rdev->saved_raid_disk >= 0 &&
7555                        !test_bit(Bitmap_sync, &rdev->flags)))
7556                         continue;
7557
7558                 if (rdev->saved_raid_disk < 0)
7559                         rdev->recovery_offset = 0;
7560                 if (mddev->pers->
7561                     hot_add_disk(mddev, rdev) == 0) {
7562                         if (sysfs_link_rdev(mddev, rdev))
7563                                 /* failure here is OK */;
7564                         spares++;
7565                         md_new_event(mddev);
7566                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7567                 }
7568         }
7569 no_add:
7570         if (removed)
7571                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7572         return spares;
7573 }
7574
7575 static void md_start_sync(struct work_struct *ws)
7576 {
7577         struct mddev *mddev = container_of(ws, struct mddev, del_work);
7578
7579         mddev->sync_thread = md_register_thread(md_do_sync,
7580                                                 mddev,
7581                                                 "resync");
7582         if (!mddev->sync_thread) {
7583                 printk(KERN_ERR "%s: could not start resync"
7584                        " thread...\n",
7585                        mdname(mddev));
7586                 /* leave the spares where they are, it shouldn't hurt */
7587                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7588                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7589                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7590                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7591                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7592                 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7593                                        &mddev->recovery))
7594                         if (mddev->sysfs_action)
7595                                 sysfs_notify_dirent_safe(mddev->sysfs_action);
7596         } else
7597                 md_wakeup_thread(mddev->sync_thread);
7598         sysfs_notify_dirent_safe(mddev->sysfs_action);
7599         md_new_event(mddev);
7600 }
7601
7602 /*
7603  * This routine is regularly called by all per-raid-array threads to
7604  * deal with generic issues like resync and super-block update.
7605  * Raid personalities that don't have a thread (linear/raid0) do not
7606  * need this as they never do any recovery or update the superblock.
7607  *
7608  * It does not do any resync itself, but rather "forks" off other threads
7609  * to do that as needed.
7610  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7611  * "->recovery" and create a thread at ->sync_thread.
7612  * When the thread finishes it sets MD_RECOVERY_DONE
7613  * and wakeups up this thread which will reap the thread and finish up.
7614  * This thread also removes any faulty devices (with nr_pending == 0).
7615  *
7616  * The overall approach is:
7617  *  1/ if the superblock needs updating, update it.
7618  *  2/ If a recovery thread is running, don't do anything else.
7619  *  3/ If recovery has finished, clean up, possibly marking spares active.
7620  *  4/ If there are any faulty devices, remove them.
7621  *  5/ If array is degraded, try to add spares devices
7622  *  6/ If array has spares or is not in-sync, start a resync thread.
7623  */
7624 void md_check_recovery(struct mddev *mddev)
7625 {
7626         if (mddev->suspended)
7627                 return;
7628
7629         if (mddev->bitmap)
7630                 bitmap_daemon_work(mddev);
7631
7632         if (signal_pending(current)) {
7633                 if (mddev->pers->sync_request && !mddev->external) {
7634                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7635                                mdname(mddev));
7636                         mddev->safemode = 2;
7637                 }
7638                 flush_signals(current);
7639         }
7640
7641         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7642                 return;
7643         if ( ! (
7644                 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7645                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7646                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7647                 (mddev->external == 0 && mddev->safemode == 1) ||
7648                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7649                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7650                 ))
7651                 return;
7652
7653         if (mddev_trylock(mddev)) {
7654                 int spares = 0;
7655
7656                 if (mddev->ro) {
7657                         /* On a read-only array we can:
7658                          * - remove failed devices
7659                          * - add already-in_sync devices if the array itself
7660                          *   is in-sync.
7661                          * As we only add devices that are already in-sync,
7662                          * we can activate the spares immediately.
7663                          */
7664                         remove_and_add_spares(mddev, NULL);
7665                         /* There is no thread, but we need to call
7666                          * ->spare_active and clear saved_raid_disk
7667                          */
7668                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7669                         md_reap_sync_thread(mddev);
7670                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7671                         goto unlock;
7672                 }
7673
7674                 if (!mddev->external) {
7675                         int did_change = 0;
7676                         spin_lock_irq(&mddev->write_lock);
7677                         if (mddev->safemode &&
7678                             !atomic_read(&mddev->writes_pending) &&
7679                             !mddev->in_sync &&
7680                             mddev->recovery_cp == MaxSector) {
7681                                 mddev->in_sync = 1;
7682                                 did_change = 1;
7683                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7684                         }
7685                         if (mddev->safemode == 1)
7686                                 mddev->safemode = 0;
7687                         spin_unlock_irq(&mddev->write_lock);
7688                         if (did_change)
7689                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7690                 }
7691
7692                 if (mddev->flags & MD_UPDATE_SB_FLAGS)
7693                         md_update_sb(mddev, 0);
7694
7695                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7696                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7697                         /* resync/recovery still happening */
7698                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7699                         goto unlock;
7700                 }
7701                 if (mddev->sync_thread) {
7702                         md_reap_sync_thread(mddev);
7703                         goto unlock;
7704                 }
7705                 /* Set RUNNING before clearing NEEDED to avoid
7706                  * any transients in the value of "sync_action".
7707                  */
7708                 mddev->curr_resync_completed = 0;
7709                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7710                 /* Clear some bits that don't mean anything, but
7711                  * might be left set
7712                  */
7713                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7714                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7715
7716                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7717                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7718                         goto not_running;
7719                 /* no recovery is running.
7720                  * remove any failed drives, then
7721                  * add spares if possible.
7722                  * Spares are also removed and re-added, to allow
7723                  * the personality to fail the re-add.
7724                  */
7725
7726                 if (mddev->reshape_position != MaxSector) {
7727                         if (mddev->pers->check_reshape == NULL ||
7728                             mddev->pers->check_reshape(mddev) != 0)
7729                                 /* Cannot proceed */
7730                                 goto not_running;
7731                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7732                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7733                 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7734                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7735                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7736                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7737                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7738                 } else if (mddev->recovery_cp < MaxSector) {
7739                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7740                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7741                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7742                         /* nothing to be done ... */
7743                         goto not_running;
7744
7745                 if (mddev->pers->sync_request) {
7746                         if (spares) {
7747                                 /* We are adding a device or devices to an array
7748                                  * which has the bitmap stored on all devices.
7749                                  * So make sure all bitmap pages get written
7750                                  */
7751                                 bitmap_write_all(mddev->bitmap);
7752                         }
7753                         INIT_WORK(&mddev->del_work, md_start_sync);
7754                         queue_work(md_misc_wq, &mddev->del_work);
7755                         goto unlock;
7756                 }
7757         not_running:
7758                 if (!mddev->sync_thread) {
7759                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7760                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7761                                                &mddev->recovery))
7762                                 if (mddev->sysfs_action)
7763                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7764                 }
7765         unlock:
7766                 wake_up(&mddev->sb_wait);
7767                 mddev_unlock(mddev);
7768         }
7769 }
7770 EXPORT_SYMBOL(md_check_recovery);
7771
7772 void md_reap_sync_thread(struct mddev *mddev)
7773 {
7774         struct md_rdev *rdev;
7775
7776         /* resync has finished, collect result */
7777         md_unregister_thread(&mddev->sync_thread);
7778         wake_up(&resync_wait);
7779         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7780             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7781                 /* success...*/
7782                 /* activate any spares */
7783                 if (mddev->pers->spare_active(mddev)) {
7784                         sysfs_notify(&mddev->kobj, NULL,
7785                                      "degraded");
7786                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7787                 }
7788         }
7789         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7790             mddev->pers->finish_reshape)
7791                 mddev->pers->finish_reshape(mddev);
7792
7793         /* If array is no-longer degraded, then any saved_raid_disk
7794          * information must be scrapped.
7795          */
7796         if (!mddev->degraded)
7797                 rdev_for_each(rdev, mddev)
7798                         rdev->saved_raid_disk = -1;
7799
7800         md_update_sb(mddev, 1);
7801         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7802         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7803         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7804         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7805         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7806         /* flag recovery needed just to double check */
7807         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7808         sysfs_notify_dirent_safe(mddev->sysfs_action);
7809         md_new_event(mddev);
7810         if (mddev->event_work.func)
7811                 queue_work(md_misc_wq, &mddev->event_work);
7812 }
7813 EXPORT_SYMBOL(md_reap_sync_thread);
7814
7815 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7816 {
7817         sysfs_notify_dirent_safe(rdev->sysfs_state);
7818         wait_event_timeout(rdev->blocked_wait,
7819                            !test_bit(Blocked, &rdev->flags) &&
7820                            !test_bit(BlockedBadBlocks, &rdev->flags),
7821                            msecs_to_jiffies(5000));
7822         rdev_dec_pending(rdev, mddev);
7823 }
7824 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7825
7826 void md_finish_reshape(struct mddev *mddev)
7827 {
7828         /* called be personality module when reshape completes. */
7829         struct md_rdev *rdev;
7830
7831         rdev_for_each(rdev, mddev) {
7832                 if (rdev->data_offset > rdev->new_data_offset)
7833                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7834                 else
7835                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7836                 rdev->data_offset = rdev->new_data_offset;
7837         }
7838 }
7839 EXPORT_SYMBOL(md_finish_reshape);
7840
7841 /* Bad block management.
7842  * We can record which blocks on each device are 'bad' and so just
7843  * fail those blocks, or that stripe, rather than the whole device.
7844  * Entries in the bad-block table are 64bits wide.  This comprises:
7845  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7846  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7847  *  A 'shift' can be set so that larger blocks are tracked and
7848  *  consequently larger devices can be covered.
7849  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7850  *
7851  * Locking of the bad-block table uses a seqlock so md_is_badblock
7852  * might need to retry if it is very unlucky.
7853  * We will sometimes want to check for bad blocks in a bi_end_io function,
7854  * so we use the write_seqlock_irq variant.
7855  *
7856  * When looking for a bad block we specify a range and want to
7857  * know if any block in the range is bad.  So we binary-search
7858  * to the last range that starts at-or-before the given endpoint,
7859  * (or "before the sector after the target range")
7860  * then see if it ends after the given start.
7861  * We return
7862  *  0 if there are no known bad blocks in the range
7863  *  1 if there are known bad block which are all acknowledged
7864  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7865  * plus the start/length of the first bad section we overlap.
7866  */
7867 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7868                    sector_t *first_bad, int *bad_sectors)
7869 {
7870         int hi;
7871         int lo;
7872         u64 *p = bb->page;
7873         int rv;
7874         sector_t target = s + sectors;
7875         unsigned seq;
7876
7877         if (bb->shift > 0) {
7878                 /* round the start down, and the end up */
7879                 s >>= bb->shift;
7880                 target += (1<<bb->shift) - 1;
7881                 target >>= bb->shift;
7882                 sectors = target - s;
7883         }
7884         /* 'target' is now the first block after the bad range */
7885
7886 retry:
7887         seq = read_seqbegin(&bb->lock);
7888         lo = 0;
7889         rv = 0;
7890         hi = bb->count;
7891
7892         /* Binary search between lo and hi for 'target'
7893          * i.e. for the last range that starts before 'target'
7894          */
7895         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7896          * are known not to be the last range before target.
7897          * VARIANT: hi-lo is the number of possible
7898          * ranges, and decreases until it reaches 1
7899          */
7900         while (hi - lo > 1) {
7901                 int mid = (lo + hi) / 2;
7902                 sector_t a = BB_OFFSET(p[mid]);
7903                 if (a < target)
7904                         /* This could still be the one, earlier ranges
7905                          * could not. */
7906                         lo = mid;
7907                 else
7908                         /* This and later ranges are definitely out. */
7909                         hi = mid;
7910         }
7911         /* 'lo' might be the last that started before target, but 'hi' isn't */
7912         if (hi > lo) {
7913                 /* need to check all range that end after 's' to see if
7914                  * any are unacknowledged.
7915                  */
7916                 while (lo >= 0 &&
7917                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7918                         if (BB_OFFSET(p[lo]) < target) {
7919                                 /* starts before the end, and finishes after
7920                                  * the start, so they must overlap
7921                                  */
7922                                 if (rv != -1 && BB_ACK(p[lo]))
7923                                         rv = 1;
7924                                 else
7925                                         rv = -1;
7926                                 *first_bad = BB_OFFSET(p[lo]);
7927                                 *bad_sectors = BB_LEN(p[lo]);
7928                         }
7929                         lo--;
7930                 }
7931         }
7932
7933         if (read_seqretry(&bb->lock, seq))
7934                 goto retry;
7935
7936         return rv;
7937 }
7938 EXPORT_SYMBOL_GPL(md_is_badblock);
7939
7940 /*
7941  * Add a range of bad blocks to the table.
7942  * This might extend the table, or might contract it
7943  * if two adjacent ranges can be merged.
7944  * We binary-search to find the 'insertion' point, then
7945  * decide how best to handle it.
7946  */
7947 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7948                             int acknowledged)
7949 {
7950         u64 *p;
7951         int lo, hi;
7952         int rv = 1;
7953         unsigned long flags;
7954
7955         if (bb->shift < 0)
7956                 /* badblocks are disabled */
7957                 return 0;
7958
7959         if (bb->shift) {
7960                 /* round the start down, and the end up */
7961                 sector_t next = s + sectors;
7962                 s >>= bb->shift;
7963                 next += (1<<bb->shift) - 1;
7964                 next >>= bb->shift;
7965                 sectors = next - s;
7966         }
7967
7968         write_seqlock_irqsave(&bb->lock, flags);
7969
7970         p = bb->page;
7971         lo = 0;
7972         hi = bb->count;
7973         /* Find the last range that starts at-or-before 's' */
7974         while (hi - lo > 1) {
7975                 int mid = (lo + hi) / 2;
7976                 sector_t a = BB_OFFSET(p[mid]);
7977                 if (a <= s)
7978                         lo = mid;
7979                 else
7980                         hi = mid;
7981         }
7982         if (hi > lo && BB_OFFSET(p[lo]) > s)
7983                 hi = lo;
7984
7985         if (hi > lo) {
7986                 /* we found a range that might merge with the start
7987                  * of our new range
7988                  */
7989                 sector_t a = BB_OFFSET(p[lo]);
7990                 sector_t e = a + BB_LEN(p[lo]);
7991                 int ack = BB_ACK(p[lo]);
7992                 if (e >= s) {
7993                         /* Yes, we can merge with a previous range */
7994                         if (s == a && s + sectors >= e)
7995                                 /* new range covers old */
7996                                 ack = acknowledged;
7997                         else
7998                                 ack = ack && acknowledged;
7999
8000                         if (e < s + sectors)
8001                                 e = s + sectors;
8002                         if (e - a <= BB_MAX_LEN) {
8003                                 p[lo] = BB_MAKE(a, e-a, ack);
8004                                 s = e;
8005                         } else {
8006                                 /* does not all fit in one range,
8007                                  * make p[lo] maximal
8008                                  */
8009                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8010                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8011                                 s = a + BB_MAX_LEN;
8012                         }
8013                         sectors = e - s;
8014                 }
8015         }
8016         if (sectors && hi < bb->count) {
8017                 /* 'hi' points to the first range that starts after 's'.
8018                  * Maybe we can merge with the start of that range */
8019                 sector_t a = BB_OFFSET(p[hi]);
8020                 sector_t e = a + BB_LEN(p[hi]);
8021                 int ack = BB_ACK(p[hi]);
8022                 if (a <= s + sectors) {
8023                         /* merging is possible */
8024                         if (e <= s + sectors) {
8025                                 /* full overlap */
8026                                 e = s + sectors;
8027                                 ack = acknowledged;
8028                         } else
8029                                 ack = ack && acknowledged;
8030
8031                         a = s;
8032                         if (e - a <= BB_MAX_LEN) {
8033                                 p[hi] = BB_MAKE(a, e-a, ack);
8034                                 s = e;
8035                         } else {
8036                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8037                                 s = a + BB_MAX_LEN;
8038                         }
8039                         sectors = e - s;
8040                         lo = hi;
8041                         hi++;
8042                 }
8043         }
8044         if (sectors == 0 && hi < bb->count) {
8045                 /* we might be able to combine lo and hi */
8046                 /* Note: 's' is at the end of 'lo' */
8047                 sector_t a = BB_OFFSET(p[hi]);
8048                 int lolen = BB_LEN(p[lo]);
8049                 int hilen = BB_LEN(p[hi]);
8050                 int newlen = lolen + hilen - (s - a);
8051                 if (s >= a && newlen < BB_MAX_LEN) {
8052                         /* yes, we can combine them */
8053                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8054                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8055                         memmove(p + hi, p + hi + 1,
8056                                 (bb->count - hi - 1) * 8);
8057                         bb->count--;
8058                 }
8059         }
8060         while (sectors) {
8061                 /* didn't merge (it all).
8062                  * Need to add a range just before 'hi' */
8063                 if (bb->count >= MD_MAX_BADBLOCKS) {
8064                         /* No room for more */
8065                         rv = 0;
8066                         break;
8067                 } else {
8068                         int this_sectors = sectors;
8069                         memmove(p + hi + 1, p + hi,
8070                                 (bb->count - hi) * 8);
8071                         bb->count++;
8072
8073                         if (this_sectors > BB_MAX_LEN)
8074                                 this_sectors = BB_MAX_LEN;
8075                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8076                         sectors -= this_sectors;
8077                         s += this_sectors;
8078                 }
8079         }
8080
8081         bb->changed = 1;
8082         if (!acknowledged)
8083                 bb->unacked_exist = 1;
8084         write_sequnlock_irqrestore(&bb->lock, flags);
8085
8086         return rv;
8087 }
8088
8089 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8090                        int is_new)
8091 {
8092         int rv;
8093         if (is_new)
8094                 s += rdev->new_data_offset;
8095         else
8096                 s += rdev->data_offset;
8097         rv = md_set_badblocks(&rdev->badblocks,
8098                               s, sectors, 0);
8099         if (rv) {
8100                 /* Make sure they get written out promptly */
8101                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8102                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8103                 md_wakeup_thread(rdev->mddev->thread);
8104         }
8105         return rv;
8106 }
8107 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8108
8109 /*
8110  * Remove a range of bad blocks from the table.
8111  * This may involve extending the table if we spilt a region,
8112  * but it must not fail.  So if the table becomes full, we just
8113  * drop the remove request.
8114  */
8115 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8116 {
8117         u64 *p;
8118         int lo, hi;
8119         sector_t target = s + sectors;
8120         int rv = 0;
8121
8122         if (bb->shift > 0) {
8123                 /* When clearing we round the start up and the end down.
8124                  * This should not matter as the shift should align with
8125                  * the block size and no rounding should ever be needed.
8126                  * However it is better the think a block is bad when it
8127                  * isn't than to think a block is not bad when it is.
8128                  */
8129                 s += (1<<bb->shift) - 1;
8130                 s >>= bb->shift;
8131                 target >>= bb->shift;
8132                 sectors = target - s;
8133         }
8134
8135         write_seqlock_irq(&bb->lock);
8136
8137         p = bb->page;
8138         lo = 0;
8139         hi = bb->count;
8140         /* Find the last range that starts before 'target' */
8141         while (hi - lo > 1) {
8142                 int mid = (lo + hi) / 2;
8143                 sector_t a = BB_OFFSET(p[mid]);
8144                 if (a < target)
8145                         lo = mid;
8146                 else
8147                         hi = mid;
8148         }
8149         if (hi > lo) {
8150                 /* p[lo] is the last range that could overlap the
8151                  * current range.  Earlier ranges could also overlap,
8152                  * but only this one can overlap the end of the range.
8153                  */
8154                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8155                         /* Partial overlap, leave the tail of this range */
8156                         int ack = BB_ACK(p[lo]);
8157                         sector_t a = BB_OFFSET(p[lo]);
8158                         sector_t end = a + BB_LEN(p[lo]);
8159
8160                         if (a < s) {
8161                                 /* we need to split this range */
8162                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8163                                         rv = -ENOSPC;
8164                                         goto out;
8165                                 }
8166                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8167                                 bb->count++;
8168                                 p[lo] = BB_MAKE(a, s-a, ack);
8169                                 lo++;
8170                         }
8171                         p[lo] = BB_MAKE(target, end - target, ack);
8172                         /* there is no longer an overlap */
8173                         hi = lo;
8174                         lo--;
8175                 }
8176                 while (lo >= 0 &&
8177                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8178                         /* This range does overlap */
8179                         if (BB_OFFSET(p[lo]) < s) {
8180                                 /* Keep the early parts of this range. */
8181                                 int ack = BB_ACK(p[lo]);
8182                                 sector_t start = BB_OFFSET(p[lo]);
8183                                 p[lo] = BB_MAKE(start, s - start, ack);
8184                                 /* now low doesn't overlap, so.. */
8185                                 break;
8186                         }
8187                         lo--;
8188                 }
8189                 /* 'lo' is strictly before, 'hi' is strictly after,
8190                  * anything between needs to be discarded
8191                  */
8192                 if (hi - lo > 1) {
8193                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8194                         bb->count -= (hi - lo - 1);
8195                 }
8196         }
8197
8198         bb->changed = 1;
8199 out:
8200         write_sequnlock_irq(&bb->lock);
8201         return rv;
8202 }
8203
8204 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8205                          int is_new)
8206 {
8207         if (is_new)
8208                 s += rdev->new_data_offset;
8209         else
8210                 s += rdev->data_offset;
8211         return md_clear_badblocks(&rdev->badblocks,
8212                                   s, sectors);
8213 }
8214 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8215
8216 /*
8217  * Acknowledge all bad blocks in a list.
8218  * This only succeeds if ->changed is clear.  It is used by
8219  * in-kernel metadata updates
8220  */
8221 void md_ack_all_badblocks(struct badblocks *bb)
8222 {
8223         if (bb->page == NULL || bb->changed)
8224                 /* no point even trying */
8225                 return;
8226         write_seqlock_irq(&bb->lock);
8227
8228         if (bb->changed == 0 && bb->unacked_exist) {
8229                 u64 *p = bb->page;
8230                 int i;
8231                 for (i = 0; i < bb->count ; i++) {
8232                         if (!BB_ACK(p[i])) {
8233                                 sector_t start = BB_OFFSET(p[i]);
8234                                 int len = BB_LEN(p[i]);
8235                                 p[i] = BB_MAKE(start, len, 1);
8236                         }
8237                 }
8238                 bb->unacked_exist = 0;
8239         }
8240         write_sequnlock_irq(&bb->lock);
8241 }
8242 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8243
8244 /* sysfs access to bad-blocks list.
8245  * We present two files.
8246  * 'bad-blocks' lists sector numbers and lengths of ranges that
8247  *    are recorded as bad.  The list is truncated to fit within
8248  *    the one-page limit of sysfs.
8249  *    Writing "sector length" to this file adds an acknowledged
8250  *    bad block list.
8251  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8252  *    been acknowledged.  Writing to this file adds bad blocks
8253  *    without acknowledging them.  This is largely for testing.
8254  */
8255
8256 static ssize_t
8257 badblocks_show(struct badblocks *bb, char *page, int unack)
8258 {
8259         size_t len;
8260         int i;
8261         u64 *p = bb->page;
8262         unsigned seq;
8263
8264         if (bb->shift < 0)
8265                 return 0;
8266
8267 retry:
8268         seq = read_seqbegin(&bb->lock);
8269
8270         len = 0;
8271         i = 0;
8272
8273         while (len < PAGE_SIZE && i < bb->count) {
8274                 sector_t s = BB_OFFSET(p[i]);
8275                 unsigned int length = BB_LEN(p[i]);
8276                 int ack = BB_ACK(p[i]);
8277                 i++;
8278
8279                 if (unack && ack)
8280                         continue;
8281
8282                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8283                                 (unsigned long long)s << bb->shift,
8284                                 length << bb->shift);
8285         }
8286         if (unack && len == 0)
8287                 bb->unacked_exist = 0;
8288
8289         if (read_seqretry(&bb->lock, seq))
8290                 goto retry;
8291
8292         return len;
8293 }
8294
8295 #define DO_DEBUG 1
8296
8297 static ssize_t
8298 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8299 {
8300         unsigned long long sector;
8301         int length;
8302         char newline;
8303 #ifdef DO_DEBUG
8304         /* Allow clearing via sysfs *only* for testing/debugging.
8305          * Normally only a successful write may clear a badblock
8306          */
8307         int clear = 0;
8308         if (page[0] == '-') {
8309                 clear = 1;
8310                 page++;
8311         }
8312 #endif /* DO_DEBUG */
8313
8314         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8315         case 3:
8316                 if (newline != '\n')
8317                         return -EINVAL;
8318         case 2:
8319                 if (length <= 0)
8320                         return -EINVAL;
8321                 break;
8322         default:
8323                 return -EINVAL;
8324         }
8325
8326 #ifdef DO_DEBUG
8327         if (clear) {
8328                 md_clear_badblocks(bb, sector, length);
8329                 return len;
8330         }
8331 #endif /* DO_DEBUG */
8332         if (md_set_badblocks(bb, sector, length, !unack))
8333                 return len;
8334         else
8335                 return -ENOSPC;
8336 }
8337
8338 static int md_notify_reboot(struct notifier_block *this,
8339                             unsigned long code, void *x)
8340 {
8341         struct list_head *tmp;
8342         struct mddev *mddev;
8343         int need_delay = 0;
8344
8345         for_each_mddev(mddev, tmp) {
8346                 if (mddev_trylock(mddev)) {
8347                         if (mddev->pers)
8348                                 __md_stop_writes(mddev);
8349                         if (mddev->persistent)
8350                                 mddev->safemode = 2;
8351                         mddev_unlock(mddev);
8352                 }
8353                 need_delay = 1;
8354         }
8355         /*
8356          * certain more exotic SCSI devices are known to be
8357          * volatile wrt too early system reboots. While the
8358          * right place to handle this issue is the given
8359          * driver, we do want to have a safe RAID driver ...
8360          */
8361         if (need_delay)
8362                 mdelay(1000*1);
8363
8364         return NOTIFY_DONE;
8365 }
8366
8367 static struct notifier_block md_notifier = {
8368         .notifier_call  = md_notify_reboot,
8369         .next           = NULL,
8370         .priority       = INT_MAX, /* before any real devices */
8371 };
8372
8373 static void md_geninit(void)
8374 {
8375         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8376
8377         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8378 }
8379
8380 static int __init md_init(void)
8381 {
8382         int ret = -ENOMEM;
8383
8384         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8385         if (!md_wq)
8386                 goto err_wq;
8387
8388         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8389         if (!md_misc_wq)
8390                 goto err_misc_wq;
8391
8392         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8393                 goto err_md;
8394
8395         if ((ret = register_blkdev(0, "mdp")) < 0)
8396                 goto err_mdp;
8397         mdp_major = ret;
8398
8399         blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8400                             md_probe, NULL, NULL);
8401         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8402                             md_probe, NULL, NULL);
8403
8404         register_reboot_notifier(&md_notifier);
8405         raid_table_header = register_sysctl_table(raid_root_table);
8406
8407         md_geninit();
8408         return 0;
8409
8410 err_mdp:
8411         unregister_blkdev(MD_MAJOR, "md");
8412 err_md:
8413         destroy_workqueue(md_misc_wq);
8414 err_misc_wq:
8415         destroy_workqueue(md_wq);
8416 err_wq:
8417         return ret;
8418 }
8419
8420 #ifndef MODULE
8421
8422 /*
8423  * Searches all registered partitions for autorun RAID arrays
8424  * at boot time.
8425  */
8426
8427 static LIST_HEAD(all_detected_devices);
8428 struct detected_devices_node {
8429         struct list_head list;
8430         dev_t dev;
8431 };
8432
8433 void md_autodetect_dev(dev_t dev)
8434 {
8435         struct detected_devices_node *node_detected_dev;
8436
8437         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8438         if (node_detected_dev) {
8439                 node_detected_dev->dev = dev;
8440                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8441         } else {
8442                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8443                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8444         }
8445 }
8446
8447 static void autostart_arrays(int part)
8448 {
8449         struct md_rdev *rdev;
8450         struct detected_devices_node *node_detected_dev;
8451         dev_t dev;
8452         int i_scanned, i_passed;
8453
8454         i_scanned = 0;
8455         i_passed = 0;
8456
8457         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8458
8459         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8460                 i_scanned++;
8461                 node_detected_dev = list_entry(all_detected_devices.next,
8462                                         struct detected_devices_node, list);
8463                 list_del(&node_detected_dev->list);
8464                 dev = node_detected_dev->dev;
8465                 kfree(node_detected_dev);
8466                 rdev = md_import_device(dev,0, 90);
8467                 if (IS_ERR(rdev))
8468                         continue;
8469
8470                 if (test_bit(Faulty, &rdev->flags))
8471                         continue;
8472
8473                 set_bit(AutoDetected, &rdev->flags);
8474                 list_add(&rdev->same_set, &pending_raid_disks);
8475                 i_passed++;
8476         }
8477
8478         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8479                                                 i_scanned, i_passed);
8480
8481         autorun_devices(part);
8482 }
8483
8484 #endif /* !MODULE */
8485
8486 static __exit void md_exit(void)
8487 {
8488         struct mddev *mddev;
8489         struct list_head *tmp;
8490         int delay = 1;
8491
8492         blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8493         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8494
8495         unregister_blkdev(MD_MAJOR,"md");
8496         unregister_blkdev(mdp_major, "mdp");
8497         unregister_reboot_notifier(&md_notifier);
8498         unregister_sysctl_table(raid_table_header);
8499
8500         /* We cannot unload the modules while some process is
8501          * waiting for us in select() or poll() - wake them up
8502          */
8503         md_unloading = 1;
8504         while (waitqueue_active(&md_event_waiters)) {
8505                 /* not safe to leave yet */
8506                 wake_up(&md_event_waiters);
8507                 msleep(delay);
8508                 delay += delay;
8509         }
8510         remove_proc_entry("mdstat", NULL);
8511
8512         for_each_mddev(mddev, tmp) {
8513                 export_array(mddev);
8514                 mddev->hold_active = 0;
8515         }
8516         destroy_workqueue(md_misc_wq);
8517         destroy_workqueue(md_wq);
8518 }
8519
8520 subsys_initcall(md_init);
8521 module_exit(md_exit)
8522
8523 static int get_ro(char *buffer, struct kernel_param *kp)
8524 {
8525         return sprintf(buffer, "%d", start_readonly);
8526 }
8527 static int set_ro(const char *val, struct kernel_param *kp)
8528 {
8529         char *e;
8530         int num = simple_strtoul(val, &e, 10);
8531         if (*val && (*e == '\0' || *e == '\n')) {
8532                 start_readonly = num;
8533                 return 0;
8534         }
8535         return -EINVAL;
8536 }
8537
8538 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8539 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8540 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8541
8542 MODULE_LICENSE("GPL");
8543 MODULE_DESCRIPTION("MD RAID framework");
8544 MODULE_ALIAS("md");
8545 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);