2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
27 #include <linux/refcount.h>
29 #define DM_MSG_PREFIX "core"
32 * Cookies are numeric values sent with CHANGE and REMOVE
33 * uevents while resuming, removing or renaming the device.
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
38 static const char *_name = DM_NAME;
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
43 static DEFINE_IDR(_minor_idr);
45 static DEFINE_SPINLOCK(_minor_lock);
47 static void do_deferred_remove(struct work_struct *w);
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
51 static struct workqueue_struct *deferred_remove_workqueue;
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
56 void dm_issue_global_event(void)
58 atomic_inc(&dm_global_event_nr);
59 wake_up(&dm_global_eventq);
63 * One of these is allocated (on-stack) per original bio.
70 unsigned sector_count;
74 * One of these is allocated per clone bio.
76 #define DM_TIO_MAGIC 7282014
81 unsigned target_bio_nr;
88 * One of these is allocated per original bio.
89 * It contains the first clone used for that original.
91 #define DM_IO_MAGIC 5191977
94 struct mapped_device *md;
98 unsigned long start_time;
99 spinlock_t endio_lock;
100 struct dm_stats_aux stats_aux;
101 /* last member of dm_target_io is 'struct bio' */
102 struct dm_target_io tio;
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 if (!tio->inside_dm_io)
109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
116 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 if (io->magic == DM_IO_MAGIC)
118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 BUG_ON(io->magic != DM_TIO_MAGIC);
120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
130 #define MINOR_ALLOCED ((void *)-1)
133 * Bits for the md->flags field.
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
148 * For mempools pre-allocation at the table loading time.
150 struct dm_md_mempools {
152 struct bio_set io_bs;
155 struct table_device {
156 struct list_head list;
158 struct dm_dev dm_dev;
162 * Bio-based DM's mempools' reserved IOs set by the user.
164 #define RESERVED_BIO_BASED_IOS 16
165 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
167 static int __dm_get_module_param_int(int *module_param, int min, int max)
169 int param = READ_ONCE(*module_param);
170 int modified_param = 0;
171 bool modified = true;
174 modified_param = min;
175 else if (param > max)
176 modified_param = max;
181 (void)cmpxchg(module_param, param, modified_param);
182 param = modified_param;
188 unsigned __dm_get_module_param(unsigned *module_param,
189 unsigned def, unsigned max)
191 unsigned param = READ_ONCE(*module_param);
192 unsigned modified_param = 0;
195 modified_param = def;
196 else if (param > max)
197 modified_param = max;
199 if (modified_param) {
200 (void)cmpxchg(module_param, param, modified_param);
201 param = modified_param;
207 unsigned dm_get_reserved_bio_based_ios(void)
209 return __dm_get_module_param(&reserved_bio_based_ios,
210 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
212 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
214 static unsigned dm_get_numa_node(void)
216 return __dm_get_module_param_int(&dm_numa_node,
217 DM_NUMA_NODE, num_online_nodes() - 1);
220 static int __init local_init(void)
224 r = dm_uevent_init();
228 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
229 if (!deferred_remove_workqueue) {
231 goto out_uevent_exit;
235 r = register_blkdev(_major, _name);
237 goto out_free_workqueue;
245 destroy_workqueue(deferred_remove_workqueue);
252 static void local_exit(void)
254 flush_scheduled_work();
255 destroy_workqueue(deferred_remove_workqueue);
257 unregister_blkdev(_major, _name);
262 DMINFO("cleaned up");
265 static int (*_inits[])(void) __initdata = {
276 static void (*_exits[])(void) = {
287 static int __init dm_init(void)
289 const int count = ARRAY_SIZE(_inits);
293 for (i = 0; i < count; i++) {
308 static void __exit dm_exit(void)
310 int i = ARRAY_SIZE(_exits);
316 * Should be empty by this point.
318 idr_destroy(&_minor_idr);
322 * Block device functions
324 int dm_deleting_md(struct mapped_device *md)
326 return test_bit(DMF_DELETING, &md->flags);
329 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
331 struct mapped_device *md;
333 spin_lock(&_minor_lock);
335 md = bdev->bd_disk->private_data;
339 if (test_bit(DMF_FREEING, &md->flags) ||
340 dm_deleting_md(md)) {
346 atomic_inc(&md->open_count);
348 spin_unlock(&_minor_lock);
350 return md ? 0 : -ENXIO;
353 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
355 struct mapped_device *md;
357 spin_lock(&_minor_lock);
359 md = disk->private_data;
363 if (atomic_dec_and_test(&md->open_count) &&
364 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
365 queue_work(deferred_remove_workqueue, &deferred_remove_work);
369 spin_unlock(&_minor_lock);
372 int dm_open_count(struct mapped_device *md)
374 return atomic_read(&md->open_count);
378 * Guarantees nothing is using the device before it's deleted.
380 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
384 spin_lock(&_minor_lock);
386 if (dm_open_count(md)) {
389 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
390 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
393 set_bit(DMF_DELETING, &md->flags);
395 spin_unlock(&_minor_lock);
400 int dm_cancel_deferred_remove(struct mapped_device *md)
404 spin_lock(&_minor_lock);
406 if (test_bit(DMF_DELETING, &md->flags))
409 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
411 spin_unlock(&_minor_lock);
416 static void do_deferred_remove(struct work_struct *w)
418 dm_deferred_remove();
421 sector_t dm_get_size(struct mapped_device *md)
423 return get_capacity(md->disk);
426 struct request_queue *dm_get_md_queue(struct mapped_device *md)
431 struct dm_stats *dm_get_stats(struct mapped_device *md)
436 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
438 struct mapped_device *md = bdev->bd_disk->private_data;
440 return dm_get_geometry(md, geo);
443 #ifdef CONFIG_BLK_DEV_ZONED
444 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
446 struct dm_report_zones_args *args = data;
447 sector_t sector_diff = args->tgt->begin - args->start;
450 * Ignore zones beyond the target range.
452 if (zone->start >= args->start + args->tgt->len)
456 * Remap the start sector and write pointer position of the zone
457 * to match its position in the target range.
459 zone->start += sector_diff;
460 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
461 if (zone->cond == BLK_ZONE_COND_FULL)
462 zone->wp = zone->start + zone->len;
463 else if (zone->cond == BLK_ZONE_COND_EMPTY)
464 zone->wp = zone->start;
466 zone->wp += sector_diff;
469 args->next_sector = zone->start + zone->len;
470 return args->orig_cb(zone, args->zone_idx++, args->orig_data);
472 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
474 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
475 unsigned int nr_zones, report_zones_cb cb, void *data)
477 struct mapped_device *md = disk->private_data;
478 struct dm_table *map;
480 struct dm_report_zones_args args = {
481 .next_sector = sector,
486 if (dm_suspended_md(md))
489 map = dm_get_live_table(md, &srcu_idx);
494 struct dm_target *tgt;
496 tgt = dm_table_find_target(map, args.next_sector);
497 if (WARN_ON_ONCE(!tgt->type->report_zones)) {
503 ret = tgt->type->report_zones(tgt, &args, nr_zones);
506 } while (args.zone_idx < nr_zones &&
507 args.next_sector < get_capacity(disk));
511 dm_put_live_table(md, srcu_idx);
515 #define dm_blk_report_zones NULL
516 #endif /* CONFIG_BLK_DEV_ZONED */
518 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
519 struct block_device **bdev)
520 __acquires(md->io_barrier)
522 struct dm_target *tgt;
523 struct dm_table *map;
528 map = dm_get_live_table(md, srcu_idx);
529 if (!map || !dm_table_get_size(map))
532 /* We only support devices that have a single target */
533 if (dm_table_get_num_targets(map) != 1)
536 tgt = dm_table_get_target(map, 0);
537 if (!tgt->type->prepare_ioctl)
540 if (dm_suspended_md(md))
543 r = tgt->type->prepare_ioctl(tgt, bdev);
544 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
545 dm_put_live_table(md, *srcu_idx);
553 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
554 __releases(md->io_barrier)
556 dm_put_live_table(md, srcu_idx);
559 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
560 unsigned int cmd, unsigned long arg)
562 struct mapped_device *md = bdev->bd_disk->private_data;
565 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
571 * Target determined this ioctl is being issued against a
572 * subset of the parent bdev; require extra privileges.
574 if (!capable(CAP_SYS_RAWIO)) {
576 "%s: sending ioctl %x to DM device without required privilege.",
583 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
585 dm_unprepare_ioctl(md, srcu_idx);
589 static void start_io_acct(struct dm_io *io);
591 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
594 struct dm_target_io *tio;
597 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
601 tio = container_of(clone, struct dm_target_io, clone);
602 tio->inside_dm_io = true;
605 io = container_of(tio, struct dm_io, tio);
606 io->magic = DM_IO_MAGIC;
608 atomic_set(&io->io_count, 1);
611 spin_lock_init(&io->endio_lock);
618 static void free_io(struct mapped_device *md, struct dm_io *io)
620 bio_put(&io->tio.clone);
623 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
624 unsigned target_bio_nr, gfp_t gfp_mask)
626 struct dm_target_io *tio;
628 if (!ci->io->tio.io) {
629 /* the dm_target_io embedded in ci->io is available */
632 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
636 tio = container_of(clone, struct dm_target_io, clone);
637 tio->inside_dm_io = false;
640 tio->magic = DM_TIO_MAGIC;
643 tio->target_bio_nr = target_bio_nr;
648 static void free_tio(struct dm_target_io *tio)
650 if (tio->inside_dm_io)
652 bio_put(&tio->clone);
655 static bool md_in_flight_bios(struct mapped_device *md)
658 struct hd_struct *part = &dm_disk(md)->part0;
661 for_each_possible_cpu(cpu) {
662 sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
663 sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
669 static bool md_in_flight(struct mapped_device *md)
671 if (queue_is_mq(md->queue))
672 return blk_mq_queue_inflight(md->queue);
674 return md_in_flight_bios(md);
677 static void start_io_acct(struct dm_io *io)
679 struct mapped_device *md = io->md;
680 struct bio *bio = io->orig_bio;
682 io->start_time = jiffies;
684 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
685 &dm_disk(md)->part0);
687 if (unlikely(dm_stats_used(&md->stats)))
688 dm_stats_account_io(&md->stats, bio_data_dir(bio),
689 bio->bi_iter.bi_sector, bio_sectors(bio),
690 false, 0, &io->stats_aux);
693 static void end_io_acct(struct dm_io *io)
695 struct mapped_device *md = io->md;
696 struct bio *bio = io->orig_bio;
697 unsigned long duration = jiffies - io->start_time;
699 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
702 if (unlikely(dm_stats_used(&md->stats)))
703 dm_stats_account_io(&md->stats, bio_data_dir(bio),
704 bio->bi_iter.bi_sector, bio_sectors(bio),
705 true, duration, &io->stats_aux);
707 /* nudge anyone waiting on suspend queue */
708 if (unlikely(wq_has_sleeper(&md->wait)))
713 * Add the bio to the list of deferred io.
715 static void queue_io(struct mapped_device *md, struct bio *bio)
719 spin_lock_irqsave(&md->deferred_lock, flags);
720 bio_list_add(&md->deferred, bio);
721 spin_unlock_irqrestore(&md->deferred_lock, flags);
722 queue_work(md->wq, &md->work);
726 * Everyone (including functions in this file), should use this
727 * function to access the md->map field, and make sure they call
728 * dm_put_live_table() when finished.
730 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
732 *srcu_idx = srcu_read_lock(&md->io_barrier);
734 return srcu_dereference(md->map, &md->io_barrier);
737 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
739 srcu_read_unlock(&md->io_barrier, srcu_idx);
742 void dm_sync_table(struct mapped_device *md)
744 synchronize_srcu(&md->io_barrier);
745 synchronize_rcu_expedited();
749 * A fast alternative to dm_get_live_table/dm_put_live_table.
750 * The caller must not block between these two functions.
752 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
755 return rcu_dereference(md->map);
758 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
763 static char *_dm_claim_ptr = "I belong to device-mapper";
766 * Open a table device so we can use it as a map destination.
768 static int open_table_device(struct table_device *td, dev_t dev,
769 struct mapped_device *md)
771 struct block_device *bdev;
775 BUG_ON(td->dm_dev.bdev);
777 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
779 return PTR_ERR(bdev);
781 r = bd_link_disk_holder(bdev, dm_disk(md));
783 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
787 td->dm_dev.bdev = bdev;
788 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
793 * Close a table device that we've been using.
795 static void close_table_device(struct table_device *td, struct mapped_device *md)
797 if (!td->dm_dev.bdev)
800 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
801 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
802 put_dax(td->dm_dev.dax_dev);
803 td->dm_dev.bdev = NULL;
804 td->dm_dev.dax_dev = NULL;
807 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
810 struct table_device *td;
812 list_for_each_entry(td, l, list)
813 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
819 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
820 struct dm_dev **result)
823 struct table_device *td;
825 mutex_lock(&md->table_devices_lock);
826 td = find_table_device(&md->table_devices, dev, mode);
828 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
830 mutex_unlock(&md->table_devices_lock);
834 td->dm_dev.mode = mode;
835 td->dm_dev.bdev = NULL;
837 if ((r = open_table_device(td, dev, md))) {
838 mutex_unlock(&md->table_devices_lock);
843 format_dev_t(td->dm_dev.name, dev);
845 refcount_set(&td->count, 1);
846 list_add(&td->list, &md->table_devices);
848 refcount_inc(&td->count);
850 mutex_unlock(&md->table_devices_lock);
852 *result = &td->dm_dev;
855 EXPORT_SYMBOL_GPL(dm_get_table_device);
857 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
859 struct table_device *td = container_of(d, struct table_device, dm_dev);
861 mutex_lock(&md->table_devices_lock);
862 if (refcount_dec_and_test(&td->count)) {
863 close_table_device(td, md);
867 mutex_unlock(&md->table_devices_lock);
869 EXPORT_SYMBOL(dm_put_table_device);
871 static void free_table_devices(struct list_head *devices)
873 struct list_head *tmp, *next;
875 list_for_each_safe(tmp, next, devices) {
876 struct table_device *td = list_entry(tmp, struct table_device, list);
878 DMWARN("dm_destroy: %s still exists with %d references",
879 td->dm_dev.name, refcount_read(&td->count));
885 * Get the geometry associated with a dm device
887 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
895 * Set the geometry of a device.
897 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
899 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
901 if (geo->start > sz) {
902 DMWARN("Start sector is beyond the geometry limits.");
911 static int __noflush_suspending(struct mapped_device *md)
913 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
917 * Decrements the number of outstanding ios that a bio has been
918 * cloned into, completing the original io if necc.
920 static void dec_pending(struct dm_io *io, blk_status_t error)
923 blk_status_t io_error;
925 struct mapped_device *md = io->md;
927 /* Push-back supersedes any I/O errors */
928 if (unlikely(error)) {
929 spin_lock_irqsave(&io->endio_lock, flags);
930 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
932 spin_unlock_irqrestore(&io->endio_lock, flags);
935 if (atomic_dec_and_test(&io->io_count)) {
936 if (io->status == BLK_STS_DM_REQUEUE) {
938 * Target requested pushing back the I/O.
940 spin_lock_irqsave(&md->deferred_lock, flags);
941 if (__noflush_suspending(md))
942 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
943 bio_list_add_head(&md->deferred, io->orig_bio);
945 /* noflush suspend was interrupted. */
946 io->status = BLK_STS_IOERR;
947 spin_unlock_irqrestore(&md->deferred_lock, flags);
950 io_error = io->status;
955 if (io_error == BLK_STS_DM_REQUEUE)
958 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
960 * Preflush done for flush with data, reissue
961 * without REQ_PREFLUSH.
963 bio->bi_opf &= ~REQ_PREFLUSH;
966 /* done with normal IO or empty flush */
968 bio->bi_status = io_error;
974 void disable_discard(struct mapped_device *md)
976 struct queue_limits *limits = dm_get_queue_limits(md);
978 /* device doesn't really support DISCARD, disable it */
979 limits->max_discard_sectors = 0;
980 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
983 void disable_write_same(struct mapped_device *md)
985 struct queue_limits *limits = dm_get_queue_limits(md);
987 /* device doesn't really support WRITE SAME, disable it */
988 limits->max_write_same_sectors = 0;
991 void disable_write_zeroes(struct mapped_device *md)
993 struct queue_limits *limits = dm_get_queue_limits(md);
995 /* device doesn't really support WRITE ZEROES, disable it */
996 limits->max_write_zeroes_sectors = 0;
999 static void clone_endio(struct bio *bio)
1001 blk_status_t error = bio->bi_status;
1002 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1003 struct dm_io *io = tio->io;
1004 struct mapped_device *md = tio->io->md;
1005 dm_endio_fn endio = tio->ti->type->end_io;
1007 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
1008 if (bio_op(bio) == REQ_OP_DISCARD &&
1009 !bio->bi_disk->queue->limits.max_discard_sectors)
1010 disable_discard(md);
1011 else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1012 !bio->bi_disk->queue->limits.max_write_same_sectors)
1013 disable_write_same(md);
1014 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1015 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1016 disable_write_zeroes(md);
1020 int r = endio(tio->ti, bio, &error);
1022 case DM_ENDIO_REQUEUE:
1023 error = BLK_STS_DM_REQUEUE;
1027 case DM_ENDIO_INCOMPLETE:
1028 /* The target will handle the io */
1031 DMWARN("unimplemented target endio return value: %d", r);
1037 dec_pending(io, error);
1041 * Return maximum size of I/O possible at the supplied sector up to the current
1044 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1046 sector_t target_offset = dm_target_offset(ti, sector);
1048 return ti->len - target_offset;
1051 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1053 sector_t len = max_io_len_target_boundary(sector, ti);
1054 sector_t offset, max_len;
1057 * Does the target need to split even further?
1059 if (ti->max_io_len) {
1060 offset = dm_target_offset(ti, sector);
1061 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1062 max_len = sector_div(offset, ti->max_io_len);
1064 max_len = offset & (ti->max_io_len - 1);
1065 max_len = ti->max_io_len - max_len;
1074 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1076 if (len > UINT_MAX) {
1077 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1078 (unsigned long long)len, UINT_MAX);
1079 ti->error = "Maximum size of target IO is too large";
1083 ti->max_io_len = (uint32_t) len;
1087 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1089 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1090 sector_t sector, int *srcu_idx)
1091 __acquires(md->io_barrier)
1093 struct dm_table *map;
1094 struct dm_target *ti;
1096 map = dm_get_live_table(md, srcu_idx);
1100 ti = dm_table_find_target(map, sector);
1107 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1108 long nr_pages, void **kaddr, pfn_t *pfn)
1110 struct mapped_device *md = dax_get_private(dax_dev);
1111 sector_t sector = pgoff * PAGE_SECTORS;
1112 struct dm_target *ti;
1113 long len, ret = -EIO;
1116 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1120 if (!ti->type->direct_access)
1122 len = max_io_len(sector, ti) / PAGE_SECTORS;
1125 nr_pages = min(len, nr_pages);
1126 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1129 dm_put_live_table(md, srcu_idx);
1134 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1135 int blocksize, sector_t start, sector_t len)
1137 struct mapped_device *md = dax_get_private(dax_dev);
1138 struct dm_table *map;
1142 map = dm_get_live_table(md, &srcu_idx);
1146 ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1148 dm_put_live_table(md, srcu_idx);
1153 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1154 void *addr, size_t bytes, struct iov_iter *i)
1156 struct mapped_device *md = dax_get_private(dax_dev);
1157 sector_t sector = pgoff * PAGE_SECTORS;
1158 struct dm_target *ti;
1162 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1166 if (!ti->type->dax_copy_from_iter) {
1167 ret = copy_from_iter(addr, bytes, i);
1170 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1172 dm_put_live_table(md, srcu_idx);
1177 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1178 void *addr, size_t bytes, struct iov_iter *i)
1180 struct mapped_device *md = dax_get_private(dax_dev);
1181 sector_t sector = pgoff * PAGE_SECTORS;
1182 struct dm_target *ti;
1186 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1190 if (!ti->type->dax_copy_to_iter) {
1191 ret = copy_to_iter(addr, bytes, i);
1194 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1196 dm_put_live_table(md, srcu_idx);
1202 * A target may call dm_accept_partial_bio only from the map routine. It is
1203 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1204 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1206 * dm_accept_partial_bio informs the dm that the target only wants to process
1207 * additional n_sectors sectors of the bio and the rest of the data should be
1208 * sent in a next bio.
1210 * A diagram that explains the arithmetics:
1211 * +--------------------+---------------+-------+
1213 * +--------------------+---------------+-------+
1215 * <-------------- *tio->len_ptr --------------->
1216 * <------- bi_size ------->
1219 * Region 1 was already iterated over with bio_advance or similar function.
1220 * (it may be empty if the target doesn't use bio_advance)
1221 * Region 2 is the remaining bio size that the target wants to process.
1222 * (it may be empty if region 1 is non-empty, although there is no reason
1224 * The target requires that region 3 is to be sent in the next bio.
1226 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1227 * the partially processed part (the sum of regions 1+2) must be the same for all
1228 * copies of the bio.
1230 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1232 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1233 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1234 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1235 BUG_ON(bi_size > *tio->len_ptr);
1236 BUG_ON(n_sectors > bi_size);
1237 *tio->len_ptr -= bi_size - n_sectors;
1238 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1240 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1242 static blk_qc_t __map_bio(struct dm_target_io *tio)
1246 struct bio *clone = &tio->clone;
1247 struct dm_io *io = tio->io;
1248 struct mapped_device *md = io->md;
1249 struct dm_target *ti = tio->ti;
1250 blk_qc_t ret = BLK_QC_T_NONE;
1252 clone->bi_end_io = clone_endio;
1255 * Map the clone. If r == 0 we don't need to do
1256 * anything, the target has assumed ownership of
1259 atomic_inc(&io->io_count);
1260 sector = clone->bi_iter.bi_sector;
1262 r = ti->type->map(ti, clone);
1264 case DM_MAPIO_SUBMITTED:
1266 case DM_MAPIO_REMAPPED:
1267 /* the bio has been remapped so dispatch it */
1268 trace_block_bio_remap(clone->bi_disk->queue, clone,
1269 bio_dev(io->orig_bio), sector);
1270 if (md->type == DM_TYPE_NVME_BIO_BASED)
1271 ret = direct_make_request(clone);
1273 ret = generic_make_request(clone);
1277 dec_pending(io, BLK_STS_IOERR);
1279 case DM_MAPIO_REQUEUE:
1281 dec_pending(io, BLK_STS_DM_REQUEUE);
1284 DMWARN("unimplemented target map return value: %d", r);
1291 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1293 bio->bi_iter.bi_sector = sector;
1294 bio->bi_iter.bi_size = to_bytes(len);
1298 * Creates a bio that consists of range of complete bvecs.
1300 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1301 sector_t sector, unsigned len)
1303 struct bio *clone = &tio->clone;
1305 __bio_clone_fast(clone, bio);
1307 if (bio_integrity(bio)) {
1310 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1311 !dm_target_passes_integrity(tio->ti->type))) {
1312 DMWARN("%s: the target %s doesn't support integrity data.",
1313 dm_device_name(tio->io->md),
1314 tio->ti->type->name);
1318 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1323 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1324 clone->bi_iter.bi_size = to_bytes(len);
1326 if (bio_integrity(bio))
1327 bio_integrity_trim(clone);
1332 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1333 struct dm_target *ti, unsigned num_bios)
1335 struct dm_target_io *tio;
1341 if (num_bios == 1) {
1342 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1343 bio_list_add(blist, &tio->clone);
1347 for (try = 0; try < 2; try++) {
1352 mutex_lock(&ci->io->md->table_devices_lock);
1353 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1354 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1358 bio_list_add(blist, &tio->clone);
1361 mutex_unlock(&ci->io->md->table_devices_lock);
1362 if (bio_nr == num_bios)
1365 while ((bio = bio_list_pop(blist))) {
1366 tio = container_of(bio, struct dm_target_io, clone);
1372 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1373 struct dm_target_io *tio, unsigned *len)
1375 struct bio *clone = &tio->clone;
1379 __bio_clone_fast(clone, ci->bio);
1381 bio_setup_sector(clone, ci->sector, *len);
1383 return __map_bio(tio);
1386 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1387 unsigned num_bios, unsigned *len)
1389 struct bio_list blist = BIO_EMPTY_LIST;
1391 struct dm_target_io *tio;
1393 alloc_multiple_bios(&blist, ci, ti, num_bios);
1395 while ((bio = bio_list_pop(&blist))) {
1396 tio = container_of(bio, struct dm_target_io, clone);
1397 (void) __clone_and_map_simple_bio(ci, tio, len);
1401 static int __send_empty_flush(struct clone_info *ci)
1403 unsigned target_nr = 0;
1404 struct dm_target *ti;
1407 * Empty flush uses a statically initialized bio, as the base for
1408 * cloning. However, blkg association requires that a bdev is
1409 * associated with a gendisk, which doesn't happen until the bdev is
1410 * opened. So, blkg association is done at issue time of the flush
1411 * rather than when the device is created in alloc_dev().
1413 bio_set_dev(ci->bio, ci->io->md->bdev);
1415 BUG_ON(bio_has_data(ci->bio));
1416 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1417 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1419 bio_disassociate_blkg(ci->bio);
1424 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1425 sector_t sector, unsigned *len)
1427 struct bio *bio = ci->bio;
1428 struct dm_target_io *tio;
1431 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1433 r = clone_bio(tio, bio, sector, *len);
1438 (void) __map_bio(tio);
1443 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1445 static unsigned get_num_discard_bios(struct dm_target *ti)
1447 return ti->num_discard_bios;
1450 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1452 return ti->num_secure_erase_bios;
1455 static unsigned get_num_write_same_bios(struct dm_target *ti)
1457 return ti->num_write_same_bios;
1460 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1462 return ti->num_write_zeroes_bios;
1465 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1471 * Even though the device advertised support for this type of
1472 * request, that does not mean every target supports it, and
1473 * reconfiguration might also have changed that since the
1474 * check was performed.
1479 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1481 __send_duplicate_bios(ci, ti, num_bios, &len);
1484 ci->sector_count -= len;
1489 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1491 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1494 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1496 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1499 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1501 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1504 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1506 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1509 static bool is_abnormal_io(struct bio *bio)
1513 switch (bio_op(bio)) {
1514 case REQ_OP_DISCARD:
1515 case REQ_OP_SECURE_ERASE:
1516 case REQ_OP_WRITE_SAME:
1517 case REQ_OP_WRITE_ZEROES:
1525 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1528 struct bio *bio = ci->bio;
1530 if (bio_op(bio) == REQ_OP_DISCARD)
1531 *result = __send_discard(ci, ti);
1532 else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1533 *result = __send_secure_erase(ci, ti);
1534 else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1535 *result = __send_write_same(ci, ti);
1536 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1537 *result = __send_write_zeroes(ci, ti);
1545 * Select the correct strategy for processing a non-flush bio.
1547 static int __split_and_process_non_flush(struct clone_info *ci)
1549 struct dm_target *ti;
1553 ti = dm_table_find_target(ci->map, ci->sector);
1557 if (__process_abnormal_io(ci, ti, &r))
1560 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1562 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1567 ci->sector_count -= len;
1572 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1573 struct dm_table *map, struct bio *bio)
1576 ci->io = alloc_io(md, bio);
1577 ci->sector = bio->bi_iter.bi_sector;
1580 #define __dm_part_stat_sub(part, field, subnd) \
1581 (part_stat_get(part, field) -= (subnd))
1584 * Entry point to split a bio into clones and submit them to the targets.
1586 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1587 struct dm_table *map, struct bio *bio)
1589 struct clone_info ci;
1590 blk_qc_t ret = BLK_QC_T_NONE;
1593 init_clone_info(&ci, md, map, bio);
1595 if (bio->bi_opf & REQ_PREFLUSH) {
1596 struct bio flush_bio;
1599 * Use an on-stack bio for this, it's safe since we don't
1600 * need to reference it after submit. It's just used as
1601 * the basis for the clone(s).
1603 bio_init(&flush_bio, NULL, 0);
1604 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1605 ci.bio = &flush_bio;
1606 ci.sector_count = 0;
1607 error = __send_empty_flush(&ci);
1608 /* dec_pending submits any data associated with flush */
1609 } else if (op_is_zone_mgmt(bio_op(bio))) {
1611 ci.sector_count = 0;
1612 error = __split_and_process_non_flush(&ci);
1615 ci.sector_count = bio_sectors(bio);
1616 while (ci.sector_count && !error) {
1617 error = __split_and_process_non_flush(&ci);
1618 if (current->bio_list && ci.sector_count && !error) {
1620 * Remainder must be passed to generic_make_request()
1621 * so that it gets handled *after* bios already submitted
1622 * have been completely processed.
1623 * We take a clone of the original to store in
1624 * ci.io->orig_bio to be used by end_io_acct() and
1625 * for dec_pending to use for completion handling.
1627 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1628 GFP_NOIO, &md->queue->bio_split);
1629 ci.io->orig_bio = b;
1632 * Adjust IO stats for each split, otherwise upon queue
1633 * reentry there will be redundant IO accounting.
1634 * NOTE: this is a stop-gap fix, a proper fix involves
1635 * significant refactoring of DM core's bio splitting
1636 * (by eliminating DM's splitting and just using bio_split)
1639 __dm_part_stat_sub(&dm_disk(md)->part0,
1640 sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1644 trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1645 ret = generic_make_request(bio);
1651 /* drop the extra reference count */
1652 dec_pending(ci.io, errno_to_blk_status(error));
1657 * Optimized variant of __split_and_process_bio that leverages the
1658 * fact that targets that use it do _not_ have a need to split bios.
1660 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1661 struct bio *bio, struct dm_target *ti)
1663 struct clone_info ci;
1664 blk_qc_t ret = BLK_QC_T_NONE;
1667 init_clone_info(&ci, md, map, bio);
1669 if (bio->bi_opf & REQ_PREFLUSH) {
1670 struct bio flush_bio;
1673 * Use an on-stack bio for this, it's safe since we don't
1674 * need to reference it after submit. It's just used as
1675 * the basis for the clone(s).
1677 bio_init(&flush_bio, NULL, 0);
1678 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1679 ci.bio = &flush_bio;
1680 ci.sector_count = 0;
1681 error = __send_empty_flush(&ci);
1682 /* dec_pending submits any data associated with flush */
1684 struct dm_target_io *tio;
1687 ci.sector_count = bio_sectors(bio);
1688 if (__process_abnormal_io(&ci, ti, &error))
1691 tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1692 ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1695 /* drop the extra reference count */
1696 dec_pending(ci.io, errno_to_blk_status(error));
1700 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
1702 unsigned len, sector_count;
1704 sector_count = bio_sectors(*bio);
1705 len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
1707 if (sector_count > len) {
1708 struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
1710 bio_chain(split, *bio);
1711 trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1712 generic_make_request(*bio);
1717 static blk_qc_t dm_process_bio(struct mapped_device *md,
1718 struct dm_table *map, struct bio *bio)
1720 blk_qc_t ret = BLK_QC_T_NONE;
1721 struct dm_target *ti = md->immutable_target;
1723 if (unlikely(!map)) {
1729 ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1730 if (unlikely(!ti)) {
1737 * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1738 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1741 if (current->bio_list) {
1742 blk_queue_split(md->queue, &bio);
1743 if (!is_abnormal_io(bio))
1744 dm_queue_split(md, ti, &bio);
1747 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1748 return __process_bio(md, map, bio, ti);
1750 return __split_and_process_bio(md, map, bio);
1753 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1755 struct mapped_device *md = q->queuedata;
1756 blk_qc_t ret = BLK_QC_T_NONE;
1758 struct dm_table *map;
1760 map = dm_get_live_table(md, &srcu_idx);
1762 /* if we're suspended, we have to queue this io for later */
1763 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1764 dm_put_live_table(md, srcu_idx);
1766 if (!(bio->bi_opf & REQ_RAHEAD))
1773 ret = dm_process_bio(md, map, bio);
1775 dm_put_live_table(md, srcu_idx);
1779 static int dm_any_congested(void *congested_data, int bdi_bits)
1782 struct mapped_device *md = congested_data;
1783 struct dm_table *map;
1785 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1786 if (dm_request_based(md)) {
1788 * With request-based DM we only need to check the
1789 * top-level queue for congestion.
1791 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1793 map = dm_get_live_table_fast(md);
1795 r = dm_table_any_congested(map, bdi_bits);
1796 dm_put_live_table_fast(md);
1803 /*-----------------------------------------------------------------
1804 * An IDR is used to keep track of allocated minor numbers.
1805 *---------------------------------------------------------------*/
1806 static void free_minor(int minor)
1808 spin_lock(&_minor_lock);
1809 idr_remove(&_minor_idr, minor);
1810 spin_unlock(&_minor_lock);
1814 * See if the device with a specific minor # is free.
1816 static int specific_minor(int minor)
1820 if (minor >= (1 << MINORBITS))
1823 idr_preload(GFP_KERNEL);
1824 spin_lock(&_minor_lock);
1826 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1828 spin_unlock(&_minor_lock);
1831 return r == -ENOSPC ? -EBUSY : r;
1835 static int next_free_minor(int *minor)
1839 idr_preload(GFP_KERNEL);
1840 spin_lock(&_minor_lock);
1842 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1844 spin_unlock(&_minor_lock);
1852 static const struct block_device_operations dm_blk_dops;
1853 static const struct dax_operations dm_dax_ops;
1855 static void dm_wq_work(struct work_struct *work);
1857 static void dm_init_normal_md_queue(struct mapped_device *md)
1860 * Initialize aspects of queue that aren't relevant for blk-mq
1862 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1865 static void cleanup_mapped_device(struct mapped_device *md)
1868 destroy_workqueue(md->wq);
1869 bioset_exit(&md->bs);
1870 bioset_exit(&md->io_bs);
1873 kill_dax(md->dax_dev);
1874 put_dax(md->dax_dev);
1879 spin_lock(&_minor_lock);
1880 md->disk->private_data = NULL;
1881 spin_unlock(&_minor_lock);
1882 del_gendisk(md->disk);
1887 blk_cleanup_queue(md->queue);
1889 cleanup_srcu_struct(&md->io_barrier);
1896 mutex_destroy(&md->suspend_lock);
1897 mutex_destroy(&md->type_lock);
1898 mutex_destroy(&md->table_devices_lock);
1900 dm_mq_cleanup_mapped_device(md);
1904 * Allocate and initialise a blank device with a given minor.
1906 static struct mapped_device *alloc_dev(int minor)
1908 int r, numa_node_id = dm_get_numa_node();
1909 struct mapped_device *md;
1912 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1914 DMWARN("unable to allocate device, out of memory.");
1918 if (!try_module_get(THIS_MODULE))
1919 goto bad_module_get;
1921 /* get a minor number for the dev */
1922 if (minor == DM_ANY_MINOR)
1923 r = next_free_minor(&minor);
1925 r = specific_minor(minor);
1929 r = init_srcu_struct(&md->io_barrier);
1931 goto bad_io_barrier;
1933 md->numa_node_id = numa_node_id;
1934 md->init_tio_pdu = false;
1935 md->type = DM_TYPE_NONE;
1936 mutex_init(&md->suspend_lock);
1937 mutex_init(&md->type_lock);
1938 mutex_init(&md->table_devices_lock);
1939 spin_lock_init(&md->deferred_lock);
1940 atomic_set(&md->holders, 1);
1941 atomic_set(&md->open_count, 0);
1942 atomic_set(&md->event_nr, 0);
1943 atomic_set(&md->uevent_seq, 0);
1944 INIT_LIST_HEAD(&md->uevent_list);
1945 INIT_LIST_HEAD(&md->table_devices);
1946 spin_lock_init(&md->uevent_lock);
1948 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1951 md->queue->queuedata = md;
1952 md->queue->backing_dev_info->congested_data = md;
1954 md->disk = alloc_disk_node(1, md->numa_node_id);
1958 init_waitqueue_head(&md->wait);
1959 INIT_WORK(&md->work, dm_wq_work);
1960 init_waitqueue_head(&md->eventq);
1961 init_completion(&md->kobj_holder.completion);
1963 md->disk->major = _major;
1964 md->disk->first_minor = minor;
1965 md->disk->fops = &dm_blk_dops;
1966 md->disk->queue = md->queue;
1967 md->disk->private_data = md;
1968 sprintf(md->disk->disk_name, "dm-%d", minor);
1970 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1971 md->dax_dev = alloc_dax(md, md->disk->disk_name,
1977 add_disk_no_queue_reg(md->disk);
1978 format_dev_t(md->name, MKDEV(_major, minor));
1980 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1984 md->bdev = bdget_disk(md->disk, 0);
1988 dm_stats_init(&md->stats);
1990 /* Populate the mapping, nobody knows we exist yet */
1991 spin_lock(&_minor_lock);
1992 old_md = idr_replace(&_minor_idr, md, minor);
1993 spin_unlock(&_minor_lock);
1995 BUG_ON(old_md != MINOR_ALLOCED);
2000 cleanup_mapped_device(md);
2004 module_put(THIS_MODULE);
2010 static void unlock_fs(struct mapped_device *md);
2012 static void free_dev(struct mapped_device *md)
2014 int minor = MINOR(disk_devt(md->disk));
2018 cleanup_mapped_device(md);
2020 free_table_devices(&md->table_devices);
2021 dm_stats_cleanup(&md->stats);
2024 module_put(THIS_MODULE);
2028 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2030 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2033 if (dm_table_bio_based(t)) {
2035 * The md may already have mempools that need changing.
2036 * If so, reload bioset because front_pad may have changed
2037 * because a different table was loaded.
2039 bioset_exit(&md->bs);
2040 bioset_exit(&md->io_bs);
2042 } else if (bioset_initialized(&md->bs)) {
2044 * There's no need to reload with request-based dm
2045 * because the size of front_pad doesn't change.
2046 * Note for future: If you are to reload bioset,
2047 * prep-ed requests in the queue may refer
2048 * to bio from the old bioset, so you must walk
2049 * through the queue to unprep.
2055 bioset_initialized(&md->bs) ||
2056 bioset_initialized(&md->io_bs));
2058 ret = bioset_init_from_src(&md->bs, &p->bs);
2061 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2063 bioset_exit(&md->bs);
2065 /* mempool bind completed, no longer need any mempools in the table */
2066 dm_table_free_md_mempools(t);
2071 * Bind a table to the device.
2073 static void event_callback(void *context)
2075 unsigned long flags;
2077 struct mapped_device *md = (struct mapped_device *) context;
2079 spin_lock_irqsave(&md->uevent_lock, flags);
2080 list_splice_init(&md->uevent_list, &uevents);
2081 spin_unlock_irqrestore(&md->uevent_lock, flags);
2083 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2085 atomic_inc(&md->event_nr);
2086 wake_up(&md->eventq);
2087 dm_issue_global_event();
2091 * Protected by md->suspend_lock obtained by dm_swap_table().
2093 static void __set_size(struct mapped_device *md, sector_t size)
2095 lockdep_assert_held(&md->suspend_lock);
2097 set_capacity(md->disk, size);
2099 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2103 * Returns old map, which caller must destroy.
2105 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2106 struct queue_limits *limits)
2108 struct dm_table *old_map;
2109 struct request_queue *q = md->queue;
2110 bool request_based = dm_table_request_based(t);
2114 lockdep_assert_held(&md->suspend_lock);
2116 size = dm_table_get_size(t);
2119 * Wipe any geometry if the size of the table changed.
2121 if (size != dm_get_size(md))
2122 memset(&md->geometry, 0, sizeof(md->geometry));
2124 __set_size(md, size);
2126 dm_table_event_callback(t, event_callback, md);
2129 * The queue hasn't been stopped yet, if the old table type wasn't
2130 * for request-based during suspension. So stop it to prevent
2131 * I/O mapping before resume.
2132 * This must be done before setting the queue restrictions,
2133 * because request-based dm may be run just after the setting.
2138 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2140 * Leverage the fact that request-based DM targets and
2141 * NVMe bio based targets are immutable singletons
2142 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2143 * and __process_bio.
2145 md->immutable_target = dm_table_get_immutable_target(t);
2148 ret = __bind_mempools(md, t);
2150 old_map = ERR_PTR(ret);
2154 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2155 rcu_assign_pointer(md->map, (void *)t);
2156 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2158 dm_table_set_restrictions(t, q, limits);
2167 * Returns unbound table for the caller to free.
2169 static struct dm_table *__unbind(struct mapped_device *md)
2171 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2176 dm_table_event_callback(map, NULL, NULL);
2177 RCU_INIT_POINTER(md->map, NULL);
2184 * Constructor for a new device.
2186 int dm_create(int minor, struct mapped_device **result)
2189 struct mapped_device *md;
2191 md = alloc_dev(minor);
2195 r = dm_sysfs_init(md);
2206 * Functions to manage md->type.
2207 * All are required to hold md->type_lock.
2209 void dm_lock_md_type(struct mapped_device *md)
2211 mutex_lock(&md->type_lock);
2214 void dm_unlock_md_type(struct mapped_device *md)
2216 mutex_unlock(&md->type_lock);
2219 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2221 BUG_ON(!mutex_is_locked(&md->type_lock));
2225 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2230 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2232 return md->immutable_target_type;
2236 * The queue_limits are only valid as long as you have a reference
2239 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2241 BUG_ON(!atomic_read(&md->holders));
2242 return &md->queue->limits;
2244 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2247 * Setup the DM device's queue based on md's type
2249 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2252 struct queue_limits limits;
2253 enum dm_queue_mode type = dm_get_md_type(md);
2256 case DM_TYPE_REQUEST_BASED:
2257 r = dm_mq_init_request_queue(md, t);
2259 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2263 case DM_TYPE_BIO_BASED:
2264 case DM_TYPE_DAX_BIO_BASED:
2265 case DM_TYPE_NVME_BIO_BASED:
2266 dm_init_normal_md_queue(md);
2267 blk_queue_make_request(md->queue, dm_make_request);
2274 r = dm_calculate_queue_limits(t, &limits);
2276 DMERR("Cannot calculate initial queue limits");
2279 dm_table_set_restrictions(t, md->queue, &limits);
2280 blk_register_queue(md->disk);
2285 struct mapped_device *dm_get_md(dev_t dev)
2287 struct mapped_device *md;
2288 unsigned minor = MINOR(dev);
2290 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2293 spin_lock(&_minor_lock);
2295 md = idr_find(&_minor_idr, minor);
2296 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2297 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2303 spin_unlock(&_minor_lock);
2307 EXPORT_SYMBOL_GPL(dm_get_md);
2309 void *dm_get_mdptr(struct mapped_device *md)
2311 return md->interface_ptr;
2314 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2316 md->interface_ptr = ptr;
2319 void dm_get(struct mapped_device *md)
2321 atomic_inc(&md->holders);
2322 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2325 int dm_hold(struct mapped_device *md)
2327 spin_lock(&_minor_lock);
2328 if (test_bit(DMF_FREEING, &md->flags)) {
2329 spin_unlock(&_minor_lock);
2333 spin_unlock(&_minor_lock);
2336 EXPORT_SYMBOL_GPL(dm_hold);
2338 const char *dm_device_name(struct mapped_device *md)
2342 EXPORT_SYMBOL_GPL(dm_device_name);
2344 static void __dm_destroy(struct mapped_device *md, bool wait)
2346 struct dm_table *map;
2351 spin_lock(&_minor_lock);
2352 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2353 set_bit(DMF_FREEING, &md->flags);
2354 spin_unlock(&_minor_lock);
2356 blk_set_queue_dying(md->queue);
2359 * Take suspend_lock so that presuspend and postsuspend methods
2360 * do not race with internal suspend.
2362 mutex_lock(&md->suspend_lock);
2363 map = dm_get_live_table(md, &srcu_idx);
2364 if (!dm_suspended_md(md)) {
2365 dm_table_presuspend_targets(map);
2366 dm_table_postsuspend_targets(map);
2368 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2369 dm_put_live_table(md, srcu_idx);
2370 mutex_unlock(&md->suspend_lock);
2373 * Rare, but there may be I/O requests still going to complete,
2374 * for example. Wait for all references to disappear.
2375 * No one should increment the reference count of the mapped_device,
2376 * after the mapped_device state becomes DMF_FREEING.
2379 while (atomic_read(&md->holders))
2381 else if (atomic_read(&md->holders))
2382 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2383 dm_device_name(md), atomic_read(&md->holders));
2386 dm_table_destroy(__unbind(md));
2390 void dm_destroy(struct mapped_device *md)
2392 __dm_destroy(md, true);
2395 void dm_destroy_immediate(struct mapped_device *md)
2397 __dm_destroy(md, false);
2400 void dm_put(struct mapped_device *md)
2402 atomic_dec(&md->holders);
2404 EXPORT_SYMBOL_GPL(dm_put);
2406 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2412 prepare_to_wait(&md->wait, &wait, task_state);
2414 if (!md_in_flight(md))
2417 if (signal_pending_state(task_state, current)) {
2424 finish_wait(&md->wait, &wait);
2430 * Process the deferred bios
2432 static void dm_wq_work(struct work_struct *work)
2434 struct mapped_device *md = container_of(work, struct mapped_device,
2438 struct dm_table *map;
2440 map = dm_get_live_table(md, &srcu_idx);
2442 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2443 spin_lock_irq(&md->deferred_lock);
2444 c = bio_list_pop(&md->deferred);
2445 spin_unlock_irq(&md->deferred_lock);
2450 if (dm_request_based(md))
2451 (void) generic_make_request(c);
2453 (void) dm_process_bio(md, map, c);
2456 dm_put_live_table(md, srcu_idx);
2459 static void dm_queue_flush(struct mapped_device *md)
2461 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2462 smp_mb__after_atomic();
2463 queue_work(md->wq, &md->work);
2467 * Swap in a new table, returning the old one for the caller to destroy.
2469 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2471 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2472 struct queue_limits limits;
2475 mutex_lock(&md->suspend_lock);
2477 /* device must be suspended */
2478 if (!dm_suspended_md(md))
2482 * If the new table has no data devices, retain the existing limits.
2483 * This helps multipath with queue_if_no_path if all paths disappear,
2484 * then new I/O is queued based on these limits, and then some paths
2487 if (dm_table_has_no_data_devices(table)) {
2488 live_map = dm_get_live_table_fast(md);
2490 limits = md->queue->limits;
2491 dm_put_live_table_fast(md);
2495 r = dm_calculate_queue_limits(table, &limits);
2502 map = __bind(md, table, &limits);
2503 dm_issue_global_event();
2506 mutex_unlock(&md->suspend_lock);
2511 * Functions to lock and unlock any filesystem running on the
2514 static int lock_fs(struct mapped_device *md)
2518 WARN_ON(md->frozen_sb);
2520 md->frozen_sb = freeze_bdev(md->bdev);
2521 if (IS_ERR(md->frozen_sb)) {
2522 r = PTR_ERR(md->frozen_sb);
2523 md->frozen_sb = NULL;
2527 set_bit(DMF_FROZEN, &md->flags);
2532 static void unlock_fs(struct mapped_device *md)
2534 if (!test_bit(DMF_FROZEN, &md->flags))
2537 thaw_bdev(md->bdev, md->frozen_sb);
2538 md->frozen_sb = NULL;
2539 clear_bit(DMF_FROZEN, &md->flags);
2543 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2544 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2545 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2547 * If __dm_suspend returns 0, the device is completely quiescent
2548 * now. There is no request-processing activity. All new requests
2549 * are being added to md->deferred list.
2551 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2552 unsigned suspend_flags, long task_state,
2553 int dmf_suspended_flag)
2555 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2556 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2559 lockdep_assert_held(&md->suspend_lock);
2562 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2563 * This flag is cleared before dm_suspend returns.
2566 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2568 pr_debug("%s: suspending with flush\n", dm_device_name(md));
2571 * This gets reverted if there's an error later and the targets
2572 * provide the .presuspend_undo hook.
2574 dm_table_presuspend_targets(map);
2577 * Flush I/O to the device.
2578 * Any I/O submitted after lock_fs() may not be flushed.
2579 * noflush takes precedence over do_lockfs.
2580 * (lock_fs() flushes I/Os and waits for them to complete.)
2582 if (!noflush && do_lockfs) {
2585 dm_table_presuspend_undo_targets(map);
2591 * Here we must make sure that no processes are submitting requests
2592 * to target drivers i.e. no one may be executing
2593 * __split_and_process_bio. This is called from dm_request and
2596 * To get all processes out of __split_and_process_bio in dm_request,
2597 * we take the write lock. To prevent any process from reentering
2598 * __split_and_process_bio from dm_request and quiesce the thread
2599 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2600 * flush_workqueue(md->wq).
2602 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2604 synchronize_srcu(&md->io_barrier);
2607 * Stop md->queue before flushing md->wq in case request-based
2608 * dm defers requests to md->wq from md->queue.
2610 if (dm_request_based(md))
2611 dm_stop_queue(md->queue);
2613 flush_workqueue(md->wq);
2616 * At this point no more requests are entering target request routines.
2617 * We call dm_wait_for_completion to wait for all existing requests
2620 r = dm_wait_for_completion(md, task_state);
2622 set_bit(dmf_suspended_flag, &md->flags);
2625 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2627 synchronize_srcu(&md->io_barrier);
2629 /* were we interrupted ? */
2633 if (dm_request_based(md))
2634 dm_start_queue(md->queue);
2637 dm_table_presuspend_undo_targets(map);
2638 /* pushback list is already flushed, so skip flush */
2645 * We need to be able to change a mapping table under a mounted
2646 * filesystem. For example we might want to move some data in
2647 * the background. Before the table can be swapped with
2648 * dm_bind_table, dm_suspend must be called to flush any in
2649 * flight bios and ensure that any further io gets deferred.
2652 * Suspend mechanism in request-based dm.
2654 * 1. Flush all I/Os by lock_fs() if needed.
2655 * 2. Stop dispatching any I/O by stopping the request_queue.
2656 * 3. Wait for all in-flight I/Os to be completed or requeued.
2658 * To abort suspend, start the request_queue.
2660 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2662 struct dm_table *map = NULL;
2666 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2668 if (dm_suspended_md(md)) {
2673 if (dm_suspended_internally_md(md)) {
2674 /* already internally suspended, wait for internal resume */
2675 mutex_unlock(&md->suspend_lock);
2676 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2682 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2684 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2688 dm_table_postsuspend_targets(map);
2691 mutex_unlock(&md->suspend_lock);
2695 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2698 int r = dm_table_resume_targets(map);
2706 * Flushing deferred I/Os must be done after targets are resumed
2707 * so that mapping of targets can work correctly.
2708 * Request-based dm is queueing the deferred I/Os in its request_queue.
2710 if (dm_request_based(md))
2711 dm_start_queue(md->queue);
2718 int dm_resume(struct mapped_device *md)
2721 struct dm_table *map = NULL;
2725 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2727 if (!dm_suspended_md(md))
2730 if (dm_suspended_internally_md(md)) {
2731 /* already internally suspended, wait for internal resume */
2732 mutex_unlock(&md->suspend_lock);
2733 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2739 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2740 if (!map || !dm_table_get_size(map))
2743 r = __dm_resume(md, map);
2747 clear_bit(DMF_SUSPENDED, &md->flags);
2749 mutex_unlock(&md->suspend_lock);
2755 * Internal suspend/resume works like userspace-driven suspend. It waits
2756 * until all bios finish and prevents issuing new bios to the target drivers.
2757 * It may be used only from the kernel.
2760 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2762 struct dm_table *map = NULL;
2764 lockdep_assert_held(&md->suspend_lock);
2766 if (md->internal_suspend_count++)
2767 return; /* nested internal suspend */
2769 if (dm_suspended_md(md)) {
2770 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2771 return; /* nest suspend */
2774 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2777 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2778 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2779 * would require changing .presuspend to return an error -- avoid this
2780 * until there is a need for more elaborate variants of internal suspend.
2782 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2783 DMF_SUSPENDED_INTERNALLY);
2785 dm_table_postsuspend_targets(map);
2788 static void __dm_internal_resume(struct mapped_device *md)
2790 BUG_ON(!md->internal_suspend_count);
2792 if (--md->internal_suspend_count)
2793 return; /* resume from nested internal suspend */
2795 if (dm_suspended_md(md))
2796 goto done; /* resume from nested suspend */
2799 * NOTE: existing callers don't need to call dm_table_resume_targets
2800 * (which may fail -- so best to avoid it for now by passing NULL map)
2802 (void) __dm_resume(md, NULL);
2805 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2806 smp_mb__after_atomic();
2807 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2810 void dm_internal_suspend_noflush(struct mapped_device *md)
2812 mutex_lock(&md->suspend_lock);
2813 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2814 mutex_unlock(&md->suspend_lock);
2816 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2818 void dm_internal_resume(struct mapped_device *md)
2820 mutex_lock(&md->suspend_lock);
2821 __dm_internal_resume(md);
2822 mutex_unlock(&md->suspend_lock);
2824 EXPORT_SYMBOL_GPL(dm_internal_resume);
2827 * Fast variants of internal suspend/resume hold md->suspend_lock,
2828 * which prevents interaction with userspace-driven suspend.
2831 void dm_internal_suspend_fast(struct mapped_device *md)
2833 mutex_lock(&md->suspend_lock);
2834 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2837 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2838 synchronize_srcu(&md->io_barrier);
2839 flush_workqueue(md->wq);
2840 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2842 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2844 void dm_internal_resume_fast(struct mapped_device *md)
2846 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2852 mutex_unlock(&md->suspend_lock);
2854 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2856 /*-----------------------------------------------------------------
2857 * Event notification.
2858 *---------------------------------------------------------------*/
2859 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2862 char udev_cookie[DM_COOKIE_LENGTH];
2863 char *envp[] = { udev_cookie, NULL };
2866 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2868 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2869 DM_COOKIE_ENV_VAR_NAME, cookie);
2870 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2875 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2877 return atomic_add_return(1, &md->uevent_seq);
2880 uint32_t dm_get_event_nr(struct mapped_device *md)
2882 return atomic_read(&md->event_nr);
2885 int dm_wait_event(struct mapped_device *md, int event_nr)
2887 return wait_event_interruptible(md->eventq,
2888 (event_nr != atomic_read(&md->event_nr)));
2891 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2893 unsigned long flags;
2895 spin_lock_irqsave(&md->uevent_lock, flags);
2896 list_add(elist, &md->uevent_list);
2897 spin_unlock_irqrestore(&md->uevent_lock, flags);
2901 * The gendisk is only valid as long as you have a reference
2904 struct gendisk *dm_disk(struct mapped_device *md)
2908 EXPORT_SYMBOL_GPL(dm_disk);
2910 struct kobject *dm_kobject(struct mapped_device *md)
2912 return &md->kobj_holder.kobj;
2915 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2917 struct mapped_device *md;
2919 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2921 spin_lock(&_minor_lock);
2922 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2928 spin_unlock(&_minor_lock);
2933 int dm_suspended_md(struct mapped_device *md)
2935 return test_bit(DMF_SUSPENDED, &md->flags);
2938 int dm_suspended_internally_md(struct mapped_device *md)
2940 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2943 int dm_test_deferred_remove_flag(struct mapped_device *md)
2945 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2948 int dm_suspended(struct dm_target *ti)
2950 return dm_suspended_md(dm_table_get_md(ti->table));
2952 EXPORT_SYMBOL_GPL(dm_suspended);
2954 int dm_noflush_suspending(struct dm_target *ti)
2956 return __noflush_suspending(dm_table_get_md(ti->table));
2958 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2960 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2961 unsigned integrity, unsigned per_io_data_size,
2962 unsigned min_pool_size)
2964 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2965 unsigned int pool_size = 0;
2966 unsigned int front_pad, io_front_pad;
2973 case DM_TYPE_BIO_BASED:
2974 case DM_TYPE_DAX_BIO_BASED:
2975 case DM_TYPE_NVME_BIO_BASED:
2976 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2977 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2978 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2979 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2982 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2985 case DM_TYPE_REQUEST_BASED:
2986 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2987 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2988 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2994 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2998 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3004 dm_free_md_mempools(pools);
3009 void dm_free_md_mempools(struct dm_md_mempools *pools)
3014 bioset_exit(&pools->bs);
3015 bioset_exit(&pools->io_bs);
3027 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3030 struct mapped_device *md = bdev->bd_disk->private_data;
3031 struct dm_table *table;
3032 struct dm_target *ti;
3033 int ret = -ENOTTY, srcu_idx;
3035 table = dm_get_live_table(md, &srcu_idx);
3036 if (!table || !dm_table_get_size(table))
3039 /* We only support devices that have a single target */
3040 if (dm_table_get_num_targets(table) != 1)
3042 ti = dm_table_get_target(table, 0);
3045 if (!ti->type->iterate_devices)
3048 ret = ti->type->iterate_devices(ti, fn, data);
3050 dm_put_live_table(md, srcu_idx);
3055 * For register / unregister we need to manually call out to every path.
3057 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3058 sector_t start, sector_t len, void *data)
3060 struct dm_pr *pr = data;
3061 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3063 if (!ops || !ops->pr_register)
3065 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3068 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3079 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3080 if (ret && new_key) {
3081 /* unregister all paths if we failed to register any path */
3082 pr.old_key = new_key;
3085 pr.fail_early = false;
3086 dm_call_pr(bdev, __dm_pr_register, &pr);
3092 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3095 struct mapped_device *md = bdev->bd_disk->private_data;
3096 const struct pr_ops *ops;
3099 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3103 ops = bdev->bd_disk->fops->pr_ops;
3104 if (ops && ops->pr_reserve)
3105 r = ops->pr_reserve(bdev, key, type, flags);
3109 dm_unprepare_ioctl(md, srcu_idx);
3113 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3115 struct mapped_device *md = bdev->bd_disk->private_data;
3116 const struct pr_ops *ops;
3119 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3123 ops = bdev->bd_disk->fops->pr_ops;
3124 if (ops && ops->pr_release)
3125 r = ops->pr_release(bdev, key, type);
3129 dm_unprepare_ioctl(md, srcu_idx);
3133 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3134 enum pr_type type, bool abort)
3136 struct mapped_device *md = bdev->bd_disk->private_data;
3137 const struct pr_ops *ops;
3140 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3144 ops = bdev->bd_disk->fops->pr_ops;
3145 if (ops && ops->pr_preempt)
3146 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3150 dm_unprepare_ioctl(md, srcu_idx);
3154 static int dm_pr_clear(struct block_device *bdev, u64 key)
3156 struct mapped_device *md = bdev->bd_disk->private_data;
3157 const struct pr_ops *ops;
3160 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3164 ops = bdev->bd_disk->fops->pr_ops;
3165 if (ops && ops->pr_clear)
3166 r = ops->pr_clear(bdev, key);
3170 dm_unprepare_ioctl(md, srcu_idx);
3174 static const struct pr_ops dm_pr_ops = {
3175 .pr_register = dm_pr_register,
3176 .pr_reserve = dm_pr_reserve,
3177 .pr_release = dm_pr_release,
3178 .pr_preempt = dm_pr_preempt,
3179 .pr_clear = dm_pr_clear,
3182 static const struct block_device_operations dm_blk_dops = {
3183 .open = dm_blk_open,
3184 .release = dm_blk_close,
3185 .ioctl = dm_blk_ioctl,
3186 .getgeo = dm_blk_getgeo,
3187 .report_zones = dm_blk_report_zones,
3188 .pr_ops = &dm_pr_ops,
3189 .owner = THIS_MODULE
3192 static const struct dax_operations dm_dax_ops = {
3193 .direct_access = dm_dax_direct_access,
3194 .dax_supported = dm_dax_supported,
3195 .copy_from_iter = dm_dax_copy_from_iter,
3196 .copy_to_iter = dm_dax_copy_to_iter,
3202 module_init(dm_init);
3203 module_exit(dm_exit);
3205 module_param(major, uint, 0);
3206 MODULE_PARM_DESC(major, "The major number of the device mapper");
3208 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3209 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3211 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3212 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3214 MODULE_DESCRIPTION(DM_NAME " driver");
3215 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3216 MODULE_LICENSE("GPL");