2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include "dm-uevent.h"
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
34 #define DM_MSG_PREFIX "core"
37 * Cookies are numeric values sent with CHANGE and REMOVE
38 * uevents while resuming, removing or renaming the device.
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
44 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
45 * dm_io into one list, and reuse bio->bi_private as the list head. Before
46 * ending this fs bio, we will recover its ->bi_private.
48 #define REQ_DM_POLL_LIST REQ_DRV
50 static const char *_name = DM_NAME;
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
55 static DEFINE_IDR(_minor_idr);
57 static DEFINE_SPINLOCK(_minor_lock);
59 static void do_deferred_remove(struct work_struct *w);
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
63 static struct workqueue_struct *deferred_remove_workqueue;
65 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
68 void dm_issue_global_event(void)
70 atomic_inc(&dm_global_event_nr);
71 wake_up(&dm_global_eventq);
74 DEFINE_STATIC_KEY_FALSE(stats_enabled);
75 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
76 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
79 * One of these is allocated (on-stack) per original bio.
86 unsigned sector_count;
87 bool is_abnormal_io:1;
88 bool submit_as_polled:1;
91 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
92 #define DM_IO_BIO_OFFSET \
93 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
95 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
97 return container_of(clone, struct dm_target_io, clone);
100 void *dm_per_bio_data(struct bio *bio, size_t data_size)
102 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
103 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
104 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
106 EXPORT_SYMBOL_GPL(dm_per_bio_data);
108 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
110 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
111 if (io->magic == DM_IO_MAGIC)
112 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
113 BUG_ON(io->magic != DM_TIO_MAGIC);
114 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
116 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
118 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
120 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
122 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
124 #define MINOR_ALLOCED ((void *)-1)
126 #define DM_NUMA_NODE NUMA_NO_NODE
127 static int dm_numa_node = DM_NUMA_NODE;
129 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
130 static int swap_bios = DEFAULT_SWAP_BIOS;
131 static int get_swap_bios(void)
133 int latch = READ_ONCE(swap_bios);
134 if (unlikely(latch <= 0))
135 latch = DEFAULT_SWAP_BIOS;
139 struct table_device {
140 struct list_head list;
142 struct dm_dev dm_dev;
146 * Bio-based DM's mempools' reserved IOs set by the user.
148 #define RESERVED_BIO_BASED_IOS 16
149 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
151 static int __dm_get_module_param_int(int *module_param, int min, int max)
153 int param = READ_ONCE(*module_param);
154 int modified_param = 0;
155 bool modified = true;
158 modified_param = min;
159 else if (param > max)
160 modified_param = max;
165 (void)cmpxchg(module_param, param, modified_param);
166 param = modified_param;
172 unsigned __dm_get_module_param(unsigned *module_param,
173 unsigned def, unsigned max)
175 unsigned param = READ_ONCE(*module_param);
176 unsigned modified_param = 0;
179 modified_param = def;
180 else if (param > max)
181 modified_param = max;
183 if (modified_param) {
184 (void)cmpxchg(module_param, param, modified_param);
185 param = modified_param;
191 unsigned dm_get_reserved_bio_based_ios(void)
193 return __dm_get_module_param(&reserved_bio_based_ios,
194 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
196 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
198 static unsigned dm_get_numa_node(void)
200 return __dm_get_module_param_int(&dm_numa_node,
201 DM_NUMA_NODE, num_online_nodes() - 1);
204 static int __init local_init(void)
208 r = dm_uevent_init();
212 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
213 if (!deferred_remove_workqueue) {
215 goto out_uevent_exit;
219 r = register_blkdev(_major, _name);
221 goto out_free_workqueue;
229 destroy_workqueue(deferred_remove_workqueue);
236 static void local_exit(void)
238 flush_scheduled_work();
239 destroy_workqueue(deferred_remove_workqueue);
241 unregister_blkdev(_major, _name);
246 DMINFO("cleaned up");
249 static int (*_inits[])(void) __initdata = {
260 static void (*_exits[])(void) = {
271 static int __init dm_init(void)
273 const int count = ARRAY_SIZE(_inits);
276 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
277 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
278 " Duplicate IMA measurements will not be recorded in the IMA log.");
281 for (i = 0; i < count; i++) {
295 static void __exit dm_exit(void)
297 int i = ARRAY_SIZE(_exits);
303 * Should be empty by this point.
305 idr_destroy(&_minor_idr);
309 * Block device functions
311 int dm_deleting_md(struct mapped_device *md)
313 return test_bit(DMF_DELETING, &md->flags);
316 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
318 struct mapped_device *md;
320 spin_lock(&_minor_lock);
322 md = bdev->bd_disk->private_data;
326 if (test_bit(DMF_FREEING, &md->flags) ||
327 dm_deleting_md(md)) {
333 atomic_inc(&md->open_count);
335 spin_unlock(&_minor_lock);
337 return md ? 0 : -ENXIO;
340 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
342 struct mapped_device *md;
344 spin_lock(&_minor_lock);
346 md = disk->private_data;
350 if (atomic_dec_and_test(&md->open_count) &&
351 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
352 queue_work(deferred_remove_workqueue, &deferred_remove_work);
356 spin_unlock(&_minor_lock);
359 int dm_open_count(struct mapped_device *md)
361 return atomic_read(&md->open_count);
365 * Guarantees nothing is using the device before it's deleted.
367 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
371 spin_lock(&_minor_lock);
373 if (dm_open_count(md)) {
376 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
377 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
380 set_bit(DMF_DELETING, &md->flags);
382 spin_unlock(&_minor_lock);
387 int dm_cancel_deferred_remove(struct mapped_device *md)
391 spin_lock(&_minor_lock);
393 if (test_bit(DMF_DELETING, &md->flags))
396 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
398 spin_unlock(&_minor_lock);
403 static void do_deferred_remove(struct work_struct *w)
405 dm_deferred_remove();
408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
410 struct mapped_device *md = bdev->bd_disk->private_data;
412 return dm_get_geometry(md, geo);
415 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
416 struct block_device **bdev)
418 struct dm_target *tgt;
419 struct dm_table *map;
424 map = dm_get_live_table(md, srcu_idx);
425 if (!map || !dm_table_get_size(map))
428 /* We only support devices that have a single target */
429 if (dm_table_get_num_targets(map) != 1)
432 tgt = dm_table_get_target(map, 0);
433 if (!tgt->type->prepare_ioctl)
436 if (dm_suspended_md(md))
439 r = tgt->type->prepare_ioctl(tgt, bdev);
440 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
441 dm_put_live_table(md, *srcu_idx);
449 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
451 dm_put_live_table(md, srcu_idx);
454 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
455 unsigned int cmd, unsigned long arg)
457 struct mapped_device *md = bdev->bd_disk->private_data;
460 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
466 * Target determined this ioctl is being issued against a
467 * subset of the parent bdev; require extra privileges.
469 if (!capable(CAP_SYS_RAWIO)) {
471 "%s: sending ioctl %x to DM device without required privilege.",
478 if (!bdev->bd_disk->fops->ioctl)
481 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
483 dm_unprepare_ioctl(md, srcu_idx);
487 u64 dm_start_time_ns_from_clone(struct bio *bio)
489 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
491 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
493 static bool bio_is_flush_with_data(struct bio *bio)
495 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
498 static void dm_io_acct(struct dm_io *io, bool end)
500 struct dm_stats_aux *stats_aux = &io->stats_aux;
501 unsigned long start_time = io->start_time;
502 struct mapped_device *md = io->md;
503 struct bio *bio = io->orig_bio;
504 unsigned int sectors;
507 * If REQ_PREFLUSH set, don't account payload, it will be
508 * submitted (and accounted) after this flush completes.
510 if (bio_is_flush_with_data(bio))
512 else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
513 sectors = bio_sectors(bio);
515 sectors = io->sectors;
518 bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio),
521 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time);
523 if (static_branch_unlikely(&stats_enabled) &&
524 unlikely(dm_stats_used(&md->stats))) {
527 if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
528 sector = bio->bi_iter.bi_sector;
530 sector = bio_end_sector(bio) - io->sector_offset;
532 dm_stats_account_io(&md->stats, bio_data_dir(bio),
534 end, start_time, stats_aux);
538 static void __dm_start_io_acct(struct dm_io *io)
540 dm_io_acct(io, false);
543 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
546 * Ensure IO accounting is only ever started once.
548 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
551 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
552 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
553 dm_io_set_flag(io, DM_IO_ACCOUNTED);
556 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
557 spin_lock_irqsave(&io->lock, flags);
558 dm_io_set_flag(io, DM_IO_ACCOUNTED);
559 spin_unlock_irqrestore(&io->lock, flags);
562 __dm_start_io_acct(io);
565 static void dm_end_io_acct(struct dm_io *io)
567 dm_io_acct(io, true);
570 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
573 struct dm_target_io *tio;
576 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
577 /* Set default bdev, but target must bio_set_dev() before issuing IO */
578 clone->bi_bdev = md->disk->part0;
580 tio = clone_to_tio(clone);
582 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
585 io = container_of(tio, struct dm_io, tio);
586 io->magic = DM_IO_MAGIC;
587 io->status = BLK_STS_OK;
589 /* one ref is for submission, the other is for completion */
590 atomic_set(&io->io_count, 2);
591 this_cpu_inc(*md->pending_io);
594 spin_lock_init(&io->lock);
595 io->start_time = jiffies;
598 if (static_branch_unlikely(&stats_enabled))
599 dm_stats_record_start(&md->stats, &io->stats_aux);
604 static void free_io(struct dm_io *io)
606 bio_put(&io->tio.clone);
609 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
610 unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
612 struct dm_target_io *tio;
615 if (!ci->io->tio.io) {
616 /* the dm_target_io embedded in ci->io is available */
618 /* alloc_io() already initialized embedded clone */
621 struct mapped_device *md = ci->io->md;
623 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
627 /* Set default bdev, but target must bio_set_dev() before issuing IO */
628 clone->bi_bdev = md->disk->part0;
630 /* REQ_DM_POLL_LIST shouldn't be inherited */
631 clone->bi_opf &= ~REQ_DM_POLL_LIST;
633 tio = clone_to_tio(clone);
634 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
637 tio->magic = DM_TIO_MAGIC;
640 tio->target_bio_nr = target_bio_nr;
645 clone->bi_iter.bi_size = to_bytes(*len);
646 if (bio_integrity(clone))
647 bio_integrity_trim(clone);
653 static void free_tio(struct bio *clone)
655 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
661 * Add the bio to the list of deferred io.
663 static void queue_io(struct mapped_device *md, struct bio *bio)
667 spin_lock_irqsave(&md->deferred_lock, flags);
668 bio_list_add(&md->deferred, bio);
669 spin_unlock_irqrestore(&md->deferred_lock, flags);
670 queue_work(md->wq, &md->work);
674 * Everyone (including functions in this file), should use this
675 * function to access the md->map field, and make sure they call
676 * dm_put_live_table() when finished.
678 struct dm_table *dm_get_live_table(struct mapped_device *md,
679 int *srcu_idx) __acquires(md->io_barrier)
681 *srcu_idx = srcu_read_lock(&md->io_barrier);
683 return srcu_dereference(md->map, &md->io_barrier);
686 void dm_put_live_table(struct mapped_device *md,
687 int srcu_idx) __releases(md->io_barrier)
689 srcu_read_unlock(&md->io_barrier, srcu_idx);
692 void dm_sync_table(struct mapped_device *md)
694 synchronize_srcu(&md->io_barrier);
695 synchronize_rcu_expedited();
699 * A fast alternative to dm_get_live_table/dm_put_live_table.
700 * The caller must not block between these two functions.
702 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
705 return rcu_dereference(md->map);
708 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
713 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
714 int *srcu_idx, struct bio *bio)
716 if (bio->bi_opf & REQ_NOWAIT)
717 return dm_get_live_table_fast(md);
719 return dm_get_live_table(md, srcu_idx);
722 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
725 if (bio->bi_opf & REQ_NOWAIT)
726 dm_put_live_table_fast(md);
728 dm_put_live_table(md, srcu_idx);
731 static char *_dm_claim_ptr = "I belong to device-mapper";
734 * Open a table device so we can use it as a map destination.
736 static int open_table_device(struct table_device *td, dev_t dev,
737 struct mapped_device *md)
739 struct block_device *bdev;
743 BUG_ON(td->dm_dev.bdev);
745 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
747 return PTR_ERR(bdev);
749 r = bd_link_disk_holder(bdev, dm_disk(md));
751 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
755 td->dm_dev.bdev = bdev;
756 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off);
761 * Close a table device that we've been using.
763 static void close_table_device(struct table_device *td, struct mapped_device *md)
765 if (!td->dm_dev.bdev)
768 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
769 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
770 put_dax(td->dm_dev.dax_dev);
771 td->dm_dev.bdev = NULL;
772 td->dm_dev.dax_dev = NULL;
775 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
778 struct table_device *td;
780 list_for_each_entry(td, l, list)
781 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
787 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
788 struct dm_dev **result)
791 struct table_device *td;
793 mutex_lock(&md->table_devices_lock);
794 td = find_table_device(&md->table_devices, dev, mode);
796 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
798 mutex_unlock(&md->table_devices_lock);
802 td->dm_dev.mode = mode;
803 td->dm_dev.bdev = NULL;
805 if ((r = open_table_device(td, dev, md))) {
806 mutex_unlock(&md->table_devices_lock);
811 format_dev_t(td->dm_dev.name, dev);
813 refcount_set(&td->count, 1);
814 list_add(&td->list, &md->table_devices);
816 refcount_inc(&td->count);
818 mutex_unlock(&md->table_devices_lock);
820 *result = &td->dm_dev;
824 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
826 struct table_device *td = container_of(d, struct table_device, dm_dev);
828 mutex_lock(&md->table_devices_lock);
829 if (refcount_dec_and_test(&td->count)) {
830 close_table_device(td, md);
834 mutex_unlock(&md->table_devices_lock);
837 static void free_table_devices(struct list_head *devices)
839 struct list_head *tmp, *next;
841 list_for_each_safe(tmp, next, devices) {
842 struct table_device *td = list_entry(tmp, struct table_device, list);
844 DMWARN("dm_destroy: %s still exists with %d references",
845 td->dm_dev.name, refcount_read(&td->count));
851 * Get the geometry associated with a dm device
853 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
861 * Set the geometry of a device.
863 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
865 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
867 if (geo->start > sz) {
868 DMWARN("Start sector is beyond the geometry limits.");
877 static int __noflush_suspending(struct mapped_device *md)
879 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
882 static void dm_io_complete(struct dm_io *io)
884 blk_status_t io_error;
885 struct mapped_device *md = io->md;
886 struct bio *bio = io->orig_bio;
888 if (io->status == BLK_STS_DM_REQUEUE) {
891 * Target requested pushing back the I/O.
893 spin_lock_irqsave(&md->deferred_lock, flags);
894 if (__noflush_suspending(md) &&
895 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
896 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
897 bio_list_add_head(&md->deferred, bio);
900 * noflush suspend was interrupted or this is
901 * a write to a zoned target.
903 io->status = BLK_STS_IOERR;
905 spin_unlock_irqrestore(&md->deferred_lock, flags);
908 io_error = io->status;
909 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
911 else if (!io_error) {
913 * Must handle target that DM_MAPIO_SUBMITTED only to
914 * then bio_endio() rather than dm_submit_bio_remap()
916 __dm_start_io_acct(io);
921 this_cpu_dec(*md->pending_io);
923 /* nudge anyone waiting on suspend queue */
924 if (unlikely(wq_has_sleeper(&md->wait)))
927 if (io_error == BLK_STS_DM_REQUEUE || io_error == BLK_STS_AGAIN) {
928 if (bio->bi_opf & REQ_POLLED) {
930 * Upper layer won't help us poll split bio (io->orig_bio
931 * may only reflect a subset of the pre-split original)
932 * so clear REQ_POLLED in case of requeue.
934 bio_clear_polled(bio);
935 if (io_error == BLK_STS_AGAIN) {
936 /* io_uring doesn't handle BLK_STS_AGAIN (yet) */
943 if (bio_is_flush_with_data(bio)) {
945 * Preflush done for flush with data, reissue
946 * without REQ_PREFLUSH.
948 bio->bi_opf &= ~REQ_PREFLUSH;
951 /* done with normal IO or empty flush */
953 bio->bi_status = io_error;
959 * Decrements the number of outstanding ios that a bio has been
960 * cloned into, completing the original io if necc.
962 static inline void __dm_io_dec_pending(struct dm_io *io)
964 if (atomic_dec_and_test(&io->io_count))
968 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
972 /* Push-back supersedes any I/O errors */
973 spin_lock_irqsave(&io->lock, flags);
974 if (!(io->status == BLK_STS_DM_REQUEUE &&
975 __noflush_suspending(io->md))) {
978 spin_unlock_irqrestore(&io->lock, flags);
981 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
984 dm_io_set_error(io, error);
986 __dm_io_dec_pending(io);
989 void disable_discard(struct mapped_device *md)
991 struct queue_limits *limits = dm_get_queue_limits(md);
993 /* device doesn't really support DISCARD, disable it */
994 limits->max_discard_sectors = 0;
997 void disable_write_zeroes(struct mapped_device *md)
999 struct queue_limits *limits = dm_get_queue_limits(md);
1001 /* device doesn't really support WRITE ZEROES, disable it */
1002 limits->max_write_zeroes_sectors = 0;
1005 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1007 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1010 static void clone_endio(struct bio *bio)
1012 blk_status_t error = bio->bi_status;
1013 struct dm_target_io *tio = clone_to_tio(bio);
1014 struct dm_target *ti = tio->ti;
1015 dm_endio_fn endio = ti->type->end_io;
1016 struct dm_io *io = tio->io;
1017 struct mapped_device *md = io->md;
1019 if (unlikely(error == BLK_STS_TARGET)) {
1020 if (bio_op(bio) == REQ_OP_DISCARD &&
1021 !bdev_max_discard_sectors(bio->bi_bdev))
1022 disable_discard(md);
1023 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1024 !bdev_write_zeroes_sectors(bio->bi_bdev))
1025 disable_write_zeroes(md);
1028 if (static_branch_unlikely(&zoned_enabled) &&
1029 unlikely(blk_queue_is_zoned(bdev_get_queue(bio->bi_bdev))))
1030 dm_zone_endio(io, bio);
1033 int r = endio(ti, bio, &error);
1035 case DM_ENDIO_REQUEUE:
1036 if (static_branch_unlikely(&zoned_enabled)) {
1038 * Requeuing writes to a sequential zone of a zoned
1039 * target will break the sequential write pattern:
1042 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1043 error = BLK_STS_IOERR;
1045 error = BLK_STS_DM_REQUEUE;
1047 error = BLK_STS_DM_REQUEUE;
1051 case DM_ENDIO_INCOMPLETE:
1052 /* The target will handle the io */
1055 DMWARN("unimplemented target endio return value: %d", r);
1060 if (static_branch_unlikely(&swap_bios_enabled) &&
1061 unlikely(swap_bios_limit(ti, bio)))
1062 up(&md->swap_bios_semaphore);
1065 dm_io_dec_pending(io, error);
1069 * Return maximum size of I/O possible at the supplied sector up to the current
1072 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1073 sector_t target_offset)
1075 return ti->len - target_offset;
1078 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1080 sector_t target_offset = dm_target_offset(ti, sector);
1081 sector_t len = max_io_len_target_boundary(ti, target_offset);
1085 * Does the target need to split IO even further?
1086 * - varied (per target) IO splitting is a tenet of DM; this
1087 * explains why stacked chunk_sectors based splitting via
1088 * blk_max_size_offset() isn't possible here. So pass in
1089 * ti->max_io_len to override stacked chunk_sectors.
1091 if (ti->max_io_len) {
1092 max_len = blk_max_size_offset(ti->table->md->queue,
1093 target_offset, ti->max_io_len);
1101 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1103 if (len > UINT_MAX) {
1104 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1105 (unsigned long long)len, UINT_MAX);
1106 ti->error = "Maximum size of target IO is too large";
1110 ti->max_io_len = (uint32_t) len;
1114 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1116 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1117 sector_t sector, int *srcu_idx)
1118 __acquires(md->io_barrier)
1120 struct dm_table *map;
1121 struct dm_target *ti;
1123 map = dm_get_live_table(md, srcu_idx);
1127 ti = dm_table_find_target(map, sector);
1134 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1135 long nr_pages, enum dax_access_mode mode, void **kaddr,
1138 struct mapped_device *md = dax_get_private(dax_dev);
1139 sector_t sector = pgoff * PAGE_SECTORS;
1140 struct dm_target *ti;
1141 long len, ret = -EIO;
1144 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1148 if (!ti->type->direct_access)
1150 len = max_io_len(ti, sector) / PAGE_SECTORS;
1153 nr_pages = min(len, nr_pages);
1154 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1157 dm_put_live_table(md, srcu_idx);
1162 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1165 struct mapped_device *md = dax_get_private(dax_dev);
1166 sector_t sector = pgoff * PAGE_SECTORS;
1167 struct dm_target *ti;
1171 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1175 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1177 * ->zero_page_range() is mandatory dax operation. If we are
1178 * here, something is wrong.
1182 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1184 dm_put_live_table(md, srcu_idx);
1189 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1190 void *addr, size_t bytes, struct iov_iter *i)
1192 struct mapped_device *md = dax_get_private(dax_dev);
1193 sector_t sector = pgoff * PAGE_SECTORS;
1194 struct dm_target *ti;
1198 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1199 if (!ti || !ti->type->dax_recovery_write)
1202 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1204 dm_put_live_table(md, srcu_idx);
1209 * A target may call dm_accept_partial_bio only from the map routine. It is
1210 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1211 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1212 * __send_duplicate_bios().
1214 * dm_accept_partial_bio informs the dm that the target only wants to process
1215 * additional n_sectors sectors of the bio and the rest of the data should be
1216 * sent in a next bio.
1218 * A diagram that explains the arithmetics:
1219 * +--------------------+---------------+-------+
1221 * +--------------------+---------------+-------+
1223 * <-------------- *tio->len_ptr --------------->
1224 * <----- bio_sectors ----->
1227 * Region 1 was already iterated over with bio_advance or similar function.
1228 * (it may be empty if the target doesn't use bio_advance)
1229 * Region 2 is the remaining bio size that the target wants to process.
1230 * (it may be empty if region 1 is non-empty, although there is no reason
1232 * The target requires that region 3 is to be sent in the next bio.
1234 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1235 * the partially processed part (the sum of regions 1+2) must be the same for all
1236 * copies of the bio.
1238 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1240 struct dm_target_io *tio = clone_to_tio(bio);
1241 unsigned bio_sectors = bio_sectors(bio);
1243 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1244 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1245 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1246 BUG_ON(bio_sectors > *tio->len_ptr);
1247 BUG_ON(n_sectors > bio_sectors);
1249 *tio->len_ptr -= bio_sectors - n_sectors;
1250 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1253 * __split_and_process_bio() may have already saved mapped part
1254 * for accounting but it is being reduced so update accordingly.
1256 dm_io_set_flag(tio->io, DM_IO_WAS_SPLIT);
1257 tio->io->sectors = n_sectors;
1259 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1262 * @clone: clone bio that DM core passed to target's .map function
1263 * @tgt_clone: clone of @clone bio that target needs submitted
1265 * Targets should use this interface to submit bios they take
1266 * ownership of when returning DM_MAPIO_SUBMITTED.
1268 * Target should also enable ti->accounts_remapped_io
1270 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1272 struct dm_target_io *tio = clone_to_tio(clone);
1273 struct dm_io *io = tio->io;
1275 /* establish bio that will get submitted */
1280 * Account io->origin_bio to DM dev on behalf of target
1281 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1283 dm_start_io_acct(io, clone);
1285 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1287 submit_bio_noacct(tgt_clone);
1289 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1291 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1293 mutex_lock(&md->swap_bios_lock);
1294 while (latch < md->swap_bios) {
1296 down(&md->swap_bios_semaphore);
1299 while (latch > md->swap_bios) {
1301 up(&md->swap_bios_semaphore);
1304 mutex_unlock(&md->swap_bios_lock);
1307 static void __map_bio(struct bio *clone)
1309 struct dm_target_io *tio = clone_to_tio(clone);
1310 struct dm_target *ti = tio->ti;
1311 struct dm_io *io = tio->io;
1312 struct mapped_device *md = io->md;
1315 clone->bi_end_io = clone_endio;
1320 tio->old_sector = clone->bi_iter.bi_sector;
1322 if (static_branch_unlikely(&swap_bios_enabled) &&
1323 unlikely(swap_bios_limit(ti, clone))) {
1324 int latch = get_swap_bios();
1325 if (unlikely(latch != md->swap_bios))
1326 __set_swap_bios_limit(md, latch);
1327 down(&md->swap_bios_semaphore);
1330 if (static_branch_unlikely(&zoned_enabled)) {
1332 * Check if the IO needs a special mapping due to zone append
1333 * emulation on zoned target. In this case, dm_zone_map_bio()
1334 * calls the target map operation.
1336 if (unlikely(dm_emulate_zone_append(md)))
1337 r = dm_zone_map_bio(tio);
1339 r = ti->type->map(ti, clone);
1341 r = ti->type->map(ti, clone);
1344 case DM_MAPIO_SUBMITTED:
1345 /* target has assumed ownership of this io */
1346 if (!ti->accounts_remapped_io)
1347 dm_start_io_acct(io, clone);
1349 case DM_MAPIO_REMAPPED:
1350 dm_submit_bio_remap(clone, NULL);
1353 case DM_MAPIO_REQUEUE:
1354 if (static_branch_unlikely(&swap_bios_enabled) &&
1355 unlikely(swap_bios_limit(ti, clone)))
1356 up(&md->swap_bios_semaphore);
1358 if (r == DM_MAPIO_KILL)
1359 dm_io_dec_pending(io, BLK_STS_IOERR);
1361 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1364 DMWARN("unimplemented target map return value: %d", r);
1369 static void setup_split_accounting(struct clone_info *ci, unsigned len)
1371 struct dm_io *io = ci->io;
1373 if (ci->sector_count > len) {
1375 * Split needed, save the mapped part for accounting.
1376 * NOTE: dm_accept_partial_bio() will update accordingly.
1378 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1382 if (static_branch_unlikely(&stats_enabled) &&
1383 unlikely(dm_stats_used(&io->md->stats))) {
1385 * Save bi_sector in terms of its offset from end of
1386 * original bio, only needed for DM-stats' benefit.
1387 * - saved regardless of whether split needed so that
1388 * dm_accept_partial_bio() doesn't need to.
1390 io->sector_offset = bio_end_sector(ci->bio) - ci->sector;
1394 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1395 struct dm_target *ti, unsigned num_bios)
1400 for (try = 0; try < 2; try++) {
1404 mutex_lock(&ci->io->md->table_devices_lock);
1405 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1406 bio = alloc_tio(ci, ti, bio_nr, NULL,
1407 try ? GFP_NOIO : GFP_NOWAIT);
1411 bio_list_add(blist, bio);
1414 mutex_unlock(&ci->io->md->table_devices_lock);
1415 if (bio_nr == num_bios)
1418 while ((bio = bio_list_pop(blist)))
1423 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1424 unsigned num_bios, unsigned *len)
1426 struct bio_list blist = BIO_EMPTY_LIST;
1435 setup_split_accounting(ci, *len);
1436 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1441 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1442 alloc_multiple_bios(&blist, ci, ti, num_bios);
1443 while ((clone = bio_list_pop(&blist))) {
1444 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1454 static void __send_empty_flush(struct clone_info *ci)
1456 unsigned target_nr = 0;
1457 struct dm_target *ti;
1458 struct bio flush_bio;
1461 * Use an on-stack bio for this, it's safe since we don't
1462 * need to reference it after submit. It's just used as
1463 * the basis for the clone(s).
1465 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1466 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1468 ci->bio = &flush_bio;
1469 ci->sector_count = 0;
1470 ci->io->tio.clone.bi_iter.bi_size = 0;
1472 while ((ti = dm_table_get_target(ci->map, target_nr++))) {
1475 atomic_add(ti->num_flush_bios, &ci->io->io_count);
1476 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1477 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1481 * alloc_io() takes one extra reference for submission, so the
1482 * reference won't reach 0 without the following subtraction
1484 atomic_sub(1, &ci->io->io_count);
1486 bio_uninit(ci->bio);
1489 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1495 len = min_t(sector_t, ci->sector_count,
1496 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1498 atomic_add(num_bios, &ci->io->io_count);
1499 bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1501 * alloc_io() takes one extra reference for submission, so the
1502 * reference won't reach 0 without the following (+1) subtraction
1504 atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1507 ci->sector_count -= len;
1510 static bool is_abnormal_io(struct bio *bio)
1512 unsigned int op = bio_op(bio);
1514 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1516 case REQ_OP_DISCARD:
1517 case REQ_OP_SECURE_ERASE:
1518 case REQ_OP_WRITE_ZEROES:
1528 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1529 struct dm_target *ti)
1531 unsigned num_bios = 0;
1533 switch (bio_op(ci->bio)) {
1534 case REQ_OP_DISCARD:
1535 num_bios = ti->num_discard_bios;
1537 case REQ_OP_SECURE_ERASE:
1538 num_bios = ti->num_secure_erase_bios;
1540 case REQ_OP_WRITE_ZEROES:
1541 num_bios = ti->num_write_zeroes_bios;
1546 * Even though the device advertised support for this type of
1547 * request, that does not mean every target supports it, and
1548 * reconfiguration might also have changed that since the
1549 * check was performed.
1551 if (unlikely(!num_bios))
1552 return BLK_STS_NOTSUPP;
1554 __send_changing_extent_only(ci, ti, num_bios);
1559 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1560 * associated with this bio, and this bio's bi_private needs to be
1561 * stored in dm_io->data before the reuse.
1563 * bio->bi_private is owned by fs or upper layer, so block layer won't
1564 * touch it after splitting. Meantime it won't be changed by anyone after
1565 * bio is submitted. So this reuse is safe.
1567 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1569 return (struct dm_io **)&bio->bi_private;
1572 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1574 struct dm_io **head = dm_poll_list_head(bio);
1576 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1577 bio->bi_opf |= REQ_DM_POLL_LIST;
1579 * Save .bi_private into dm_io, so that we can reuse
1580 * .bi_private as dm_io list head for storing dm_io list
1582 io->data = bio->bi_private;
1584 /* tell block layer to poll for completion */
1585 bio->bi_cookie = ~BLK_QC_T_NONE;
1590 * bio recursed due to split, reuse original poll list,
1591 * and save bio->bi_private too.
1593 io->data = (*head)->data;
1601 * Select the correct strategy for processing a non-flush bio.
1603 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1606 struct dm_target *ti;
1609 ti = dm_table_find_target(ci->map, ci->sector);
1611 return BLK_STS_IOERR;
1612 else if (unlikely(ci->is_abnormal_io))
1613 return __process_abnormal_io(ci, ti);
1616 * Only support bio polling for normal IO, and the target io is
1617 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1619 ci->submit_as_polled = ci->bio->bi_opf & REQ_POLLED;
1621 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1622 setup_split_accounting(ci, len);
1623 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1627 ci->sector_count -= len;
1632 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1633 struct dm_table *map, struct bio *bio, bool is_abnormal)
1636 ci->io = alloc_io(md, bio);
1638 ci->is_abnormal_io = is_abnormal;
1639 ci->submit_as_polled = false;
1640 ci->sector = bio->bi_iter.bi_sector;
1641 ci->sector_count = bio_sectors(bio);
1643 /* Shouldn't happen but sector_count was being set to 0 so... */
1644 if (static_branch_unlikely(&zoned_enabled) &&
1645 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1646 ci->sector_count = 0;
1650 * Entry point to split a bio into clones and submit them to the targets.
1652 static void dm_split_and_process_bio(struct mapped_device *md,
1653 struct dm_table *map, struct bio *bio)
1655 struct clone_info ci;
1657 blk_status_t error = BLK_STS_OK;
1660 is_abnormal = is_abnormal_io(bio);
1661 if (unlikely(is_abnormal)) {
1663 * Use blk_queue_split() for abnormal IO (e.g. discard, etc)
1664 * otherwise associated queue_limits won't be imposed.
1666 blk_queue_split(&bio);
1669 init_clone_info(&ci, md, map, bio, is_abnormal);
1672 if (bio->bi_opf & REQ_PREFLUSH) {
1673 __send_empty_flush(&ci);
1674 /* dm_io_complete submits any data associated with flush */
1678 error = __split_and_process_bio(&ci);
1679 if (error || !ci.sector_count)
1682 * Remainder must be passed to submit_bio_noacct() so it gets handled
1683 * *after* bios already submitted have been completely processed.
1685 bio_trim(bio, io->sectors, ci.sector_count);
1686 trace_block_split(bio, bio->bi_iter.bi_sector);
1687 bio_inc_remaining(bio);
1688 submit_bio_noacct(bio);
1691 * Drop the extra reference count for non-POLLED bio, and hold one
1692 * reference for POLLED bio, which will be released in dm_poll_bio
1694 * Add every dm_io instance into the dm_io list head which is stored
1695 * in bio->bi_private, so that dm_poll_bio can poll them all.
1697 if (error || !ci.submit_as_polled) {
1699 * In case of submission failure, the extra reference for
1700 * submitting io isn't consumed yet
1703 atomic_dec(&io->io_count);
1704 dm_io_dec_pending(io, error);
1706 dm_queue_poll_io(bio, io);
1709 static void dm_submit_bio(struct bio *bio)
1711 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1713 struct dm_table *map;
1715 map = dm_get_live_table_bio(md, &srcu_idx, bio);
1717 /* If suspended, or map not yet available, queue this IO for later */
1718 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1720 if (bio->bi_opf & REQ_NOWAIT)
1721 bio_wouldblock_error(bio);
1722 else if (bio->bi_opf & REQ_RAHEAD)
1729 dm_split_and_process_bio(md, map, bio);
1731 dm_put_live_table_bio(md, srcu_idx, bio);
1734 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1737 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1739 /* don't poll if the mapped io is done */
1740 if (atomic_read(&io->io_count) > 1)
1741 bio_poll(&io->tio.clone, iob, flags);
1743 /* bio_poll holds the last reference */
1744 return atomic_read(&io->io_count) == 1;
1747 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1750 struct dm_io **head = dm_poll_list_head(bio);
1751 struct dm_io *list = *head;
1752 struct dm_io *tmp = NULL;
1753 struct dm_io *curr, *next;
1755 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1756 if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1759 WARN_ON_ONCE(!list);
1762 * Restore .bi_private before possibly completing dm_io.
1764 * bio_poll() is only possible once @bio has been completely
1765 * submitted via submit_bio_noacct()'s depth-first submission.
1766 * So there is no dm_queue_poll_io() race associated with
1767 * clearing REQ_DM_POLL_LIST here.
1769 bio->bi_opf &= ~REQ_DM_POLL_LIST;
1770 bio->bi_private = list->data;
1772 for (curr = list, next = curr->next; curr; curr = next, next =
1773 curr ? curr->next : NULL) {
1774 if (dm_poll_dm_io(curr, iob, flags)) {
1776 * clone_endio() has already occurred, so no
1777 * error handling is needed here.
1779 __dm_io_dec_pending(curr);
1788 bio->bi_opf |= REQ_DM_POLL_LIST;
1789 /* Reset bio->bi_private to dm_io list head */
1796 /*-----------------------------------------------------------------
1797 * An IDR is used to keep track of allocated minor numbers.
1798 *---------------------------------------------------------------*/
1799 static void free_minor(int minor)
1801 spin_lock(&_minor_lock);
1802 idr_remove(&_minor_idr, minor);
1803 spin_unlock(&_minor_lock);
1807 * See if the device with a specific minor # is free.
1809 static int specific_minor(int minor)
1813 if (minor >= (1 << MINORBITS))
1816 idr_preload(GFP_KERNEL);
1817 spin_lock(&_minor_lock);
1819 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1821 spin_unlock(&_minor_lock);
1824 return r == -ENOSPC ? -EBUSY : r;
1828 static int next_free_minor(int *minor)
1832 idr_preload(GFP_KERNEL);
1833 spin_lock(&_minor_lock);
1835 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1837 spin_unlock(&_minor_lock);
1845 static const struct block_device_operations dm_blk_dops;
1846 static const struct block_device_operations dm_rq_blk_dops;
1847 static const struct dax_operations dm_dax_ops;
1849 static void dm_wq_work(struct work_struct *work);
1851 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1852 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1854 dm_destroy_crypto_profile(q->crypto_profile);
1857 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1859 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1862 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1864 static void cleanup_mapped_device(struct mapped_device *md)
1867 destroy_workqueue(md->wq);
1868 dm_free_md_mempools(md->mempools);
1871 dax_remove_host(md->disk);
1872 kill_dax(md->dax_dev);
1873 put_dax(md->dax_dev);
1877 dm_cleanup_zoned_dev(md);
1879 spin_lock(&_minor_lock);
1880 md->disk->private_data = NULL;
1881 spin_unlock(&_minor_lock);
1882 if (dm_get_md_type(md) != DM_TYPE_NONE) {
1884 del_gendisk(md->disk);
1886 dm_queue_destroy_crypto_profile(md->queue);
1887 blk_cleanup_disk(md->disk);
1890 if (md->pending_io) {
1891 free_percpu(md->pending_io);
1892 md->pending_io = NULL;
1895 cleanup_srcu_struct(&md->io_barrier);
1897 mutex_destroy(&md->suspend_lock);
1898 mutex_destroy(&md->type_lock);
1899 mutex_destroy(&md->table_devices_lock);
1900 mutex_destroy(&md->swap_bios_lock);
1902 dm_mq_cleanup_mapped_device(md);
1906 * Allocate and initialise a blank device with a given minor.
1908 static struct mapped_device *alloc_dev(int minor)
1910 int r, numa_node_id = dm_get_numa_node();
1911 struct mapped_device *md;
1914 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1916 DMWARN("unable to allocate device, out of memory.");
1920 if (!try_module_get(THIS_MODULE))
1921 goto bad_module_get;
1923 /* get a minor number for the dev */
1924 if (minor == DM_ANY_MINOR)
1925 r = next_free_minor(&minor);
1927 r = specific_minor(minor);
1931 r = init_srcu_struct(&md->io_barrier);
1933 goto bad_io_barrier;
1935 md->numa_node_id = numa_node_id;
1936 md->init_tio_pdu = false;
1937 md->type = DM_TYPE_NONE;
1938 mutex_init(&md->suspend_lock);
1939 mutex_init(&md->type_lock);
1940 mutex_init(&md->table_devices_lock);
1941 spin_lock_init(&md->deferred_lock);
1942 atomic_set(&md->holders, 1);
1943 atomic_set(&md->open_count, 0);
1944 atomic_set(&md->event_nr, 0);
1945 atomic_set(&md->uevent_seq, 0);
1946 INIT_LIST_HEAD(&md->uevent_list);
1947 INIT_LIST_HEAD(&md->table_devices);
1948 spin_lock_init(&md->uevent_lock);
1951 * default to bio-based until DM table is loaded and md->type
1952 * established. If request-based table is loaded: blk-mq will
1953 * override accordingly.
1955 md->disk = blk_alloc_disk(md->numa_node_id);
1958 md->queue = md->disk->queue;
1960 init_waitqueue_head(&md->wait);
1961 INIT_WORK(&md->work, dm_wq_work);
1962 init_waitqueue_head(&md->eventq);
1963 init_completion(&md->kobj_holder.completion);
1965 md->swap_bios = get_swap_bios();
1966 sema_init(&md->swap_bios_semaphore, md->swap_bios);
1967 mutex_init(&md->swap_bios_lock);
1969 md->disk->major = _major;
1970 md->disk->first_minor = minor;
1971 md->disk->minors = 1;
1972 md->disk->flags |= GENHD_FL_NO_PART;
1973 md->disk->fops = &dm_blk_dops;
1974 md->disk->queue = md->queue;
1975 md->disk->private_data = md;
1976 sprintf(md->disk->disk_name, "dm-%d", minor);
1978 if (IS_ENABLED(CONFIG_FS_DAX)) {
1979 md->dax_dev = alloc_dax(md, &dm_dax_ops);
1980 if (IS_ERR(md->dax_dev)) {
1984 set_dax_nocache(md->dax_dev);
1985 set_dax_nomc(md->dax_dev);
1986 if (dax_add_host(md->dax_dev, md->disk))
1990 format_dev_t(md->name, MKDEV(_major, minor));
1992 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
1996 md->pending_io = alloc_percpu(unsigned long);
1997 if (!md->pending_io)
2000 dm_stats_init(&md->stats);
2002 /* Populate the mapping, nobody knows we exist yet */
2003 spin_lock(&_minor_lock);
2004 old_md = idr_replace(&_minor_idr, md, minor);
2005 spin_unlock(&_minor_lock);
2007 BUG_ON(old_md != MINOR_ALLOCED);
2012 cleanup_mapped_device(md);
2016 module_put(THIS_MODULE);
2022 static void unlock_fs(struct mapped_device *md);
2024 static void free_dev(struct mapped_device *md)
2026 int minor = MINOR(disk_devt(md->disk));
2030 cleanup_mapped_device(md);
2032 free_table_devices(&md->table_devices);
2033 dm_stats_cleanup(&md->stats);
2036 module_put(THIS_MODULE);
2041 * Bind a table to the device.
2043 static void event_callback(void *context)
2045 unsigned long flags;
2047 struct mapped_device *md = (struct mapped_device *) context;
2049 spin_lock_irqsave(&md->uevent_lock, flags);
2050 list_splice_init(&md->uevent_list, &uevents);
2051 spin_unlock_irqrestore(&md->uevent_lock, flags);
2053 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2055 atomic_inc(&md->event_nr);
2056 wake_up(&md->eventq);
2057 dm_issue_global_event();
2061 * Returns old map, which caller must destroy.
2063 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2064 struct queue_limits *limits)
2066 struct dm_table *old_map;
2070 lockdep_assert_held(&md->suspend_lock);
2072 size = dm_table_get_size(t);
2075 * Wipe any geometry if the size of the table changed.
2077 if (size != dm_get_size(md))
2078 memset(&md->geometry, 0, sizeof(md->geometry));
2080 if (!get_capacity(md->disk))
2081 set_capacity(md->disk, size);
2083 set_capacity_and_notify(md->disk, size);
2085 dm_table_event_callback(t, event_callback, md);
2087 if (dm_table_request_based(t)) {
2089 * Leverage the fact that request-based DM targets are
2090 * immutable singletons - used to optimize dm_mq_queue_rq.
2092 md->immutable_target = dm_table_get_immutable_target(t);
2095 * There is no need to reload with request-based dm because the
2096 * size of front_pad doesn't change.
2098 * Note for future: If you are to reload bioset, prep-ed
2099 * requests in the queue may refer to bio from the old bioset,
2100 * so you must walk through the queue to unprep.
2102 if (!md->mempools) {
2103 md->mempools = t->mempools;
2108 * The md may already have mempools that need changing.
2109 * If so, reload bioset because front_pad may have changed
2110 * because a different table was loaded.
2112 dm_free_md_mempools(md->mempools);
2113 md->mempools = t->mempools;
2117 ret = dm_table_set_restrictions(t, md->queue, limits);
2119 old_map = ERR_PTR(ret);
2123 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2124 rcu_assign_pointer(md->map, (void *)t);
2125 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2134 * Returns unbound table for the caller to free.
2136 static struct dm_table *__unbind(struct mapped_device *md)
2138 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2143 dm_table_event_callback(map, NULL, NULL);
2144 RCU_INIT_POINTER(md->map, NULL);
2151 * Constructor for a new device.
2153 int dm_create(int minor, struct mapped_device **result)
2155 struct mapped_device *md;
2157 md = alloc_dev(minor);
2161 dm_ima_reset_data(md);
2168 * Functions to manage md->type.
2169 * All are required to hold md->type_lock.
2171 void dm_lock_md_type(struct mapped_device *md)
2173 mutex_lock(&md->type_lock);
2176 void dm_unlock_md_type(struct mapped_device *md)
2178 mutex_unlock(&md->type_lock);
2181 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2183 BUG_ON(!mutex_is_locked(&md->type_lock));
2187 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2192 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2194 return md->immutable_target_type;
2198 * The queue_limits are only valid as long as you have a reference
2201 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2203 BUG_ON(!atomic_read(&md->holders));
2204 return &md->queue->limits;
2206 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2209 * Setup the DM device's queue based on md's type
2211 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2213 enum dm_queue_mode type = dm_table_get_type(t);
2214 struct queue_limits limits;
2218 case DM_TYPE_REQUEST_BASED:
2219 md->disk->fops = &dm_rq_blk_dops;
2220 r = dm_mq_init_request_queue(md, t);
2222 DMERR("Cannot initialize queue for request-based dm mapped device");
2226 case DM_TYPE_BIO_BASED:
2227 case DM_TYPE_DAX_BIO_BASED:
2234 r = dm_calculate_queue_limits(t, &limits);
2236 DMERR("Cannot calculate initial queue limits");
2239 r = dm_table_set_restrictions(t, md->queue, &limits);
2243 r = add_disk(md->disk);
2247 r = dm_sysfs_init(md);
2249 del_gendisk(md->disk);
2256 struct mapped_device *dm_get_md(dev_t dev)
2258 struct mapped_device *md;
2259 unsigned minor = MINOR(dev);
2261 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2264 spin_lock(&_minor_lock);
2266 md = idr_find(&_minor_idr, minor);
2267 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2268 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2274 spin_unlock(&_minor_lock);
2278 EXPORT_SYMBOL_GPL(dm_get_md);
2280 void *dm_get_mdptr(struct mapped_device *md)
2282 return md->interface_ptr;
2285 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2287 md->interface_ptr = ptr;
2290 void dm_get(struct mapped_device *md)
2292 atomic_inc(&md->holders);
2293 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2296 int dm_hold(struct mapped_device *md)
2298 spin_lock(&_minor_lock);
2299 if (test_bit(DMF_FREEING, &md->flags)) {
2300 spin_unlock(&_minor_lock);
2304 spin_unlock(&_minor_lock);
2307 EXPORT_SYMBOL_GPL(dm_hold);
2309 const char *dm_device_name(struct mapped_device *md)
2313 EXPORT_SYMBOL_GPL(dm_device_name);
2315 static void __dm_destroy(struct mapped_device *md, bool wait)
2317 struct dm_table *map;
2322 spin_lock(&_minor_lock);
2323 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2324 set_bit(DMF_FREEING, &md->flags);
2325 spin_unlock(&_minor_lock);
2327 blk_mark_disk_dead(md->disk);
2330 * Take suspend_lock so that presuspend and postsuspend methods
2331 * do not race with internal suspend.
2333 mutex_lock(&md->suspend_lock);
2334 map = dm_get_live_table(md, &srcu_idx);
2335 if (!dm_suspended_md(md)) {
2336 dm_table_presuspend_targets(map);
2337 set_bit(DMF_SUSPENDED, &md->flags);
2338 set_bit(DMF_POST_SUSPENDING, &md->flags);
2339 dm_table_postsuspend_targets(map);
2341 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2342 dm_put_live_table(md, srcu_idx);
2343 mutex_unlock(&md->suspend_lock);
2346 * Rare, but there may be I/O requests still going to complete,
2347 * for example. Wait for all references to disappear.
2348 * No one should increment the reference count of the mapped_device,
2349 * after the mapped_device state becomes DMF_FREEING.
2352 while (atomic_read(&md->holders))
2354 else if (atomic_read(&md->holders))
2355 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2356 dm_device_name(md), atomic_read(&md->holders));
2358 dm_table_destroy(__unbind(md));
2362 void dm_destroy(struct mapped_device *md)
2364 __dm_destroy(md, true);
2367 void dm_destroy_immediate(struct mapped_device *md)
2369 __dm_destroy(md, false);
2372 void dm_put(struct mapped_device *md)
2374 atomic_dec(&md->holders);
2376 EXPORT_SYMBOL_GPL(dm_put);
2378 static bool dm_in_flight_bios(struct mapped_device *md)
2381 unsigned long sum = 0;
2383 for_each_possible_cpu(cpu)
2384 sum += *per_cpu_ptr(md->pending_io, cpu);
2389 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2395 prepare_to_wait(&md->wait, &wait, task_state);
2397 if (!dm_in_flight_bios(md))
2400 if (signal_pending_state(task_state, current)) {
2407 finish_wait(&md->wait, &wait);
2414 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2418 if (!queue_is_mq(md->queue))
2419 return dm_wait_for_bios_completion(md, task_state);
2422 if (!blk_mq_queue_inflight(md->queue))
2425 if (signal_pending_state(task_state, current)) {
2437 * Process the deferred bios
2439 static void dm_wq_work(struct work_struct *work)
2441 struct mapped_device *md = container_of(work, struct mapped_device, work);
2444 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2445 spin_lock_irq(&md->deferred_lock);
2446 bio = bio_list_pop(&md->deferred);
2447 spin_unlock_irq(&md->deferred_lock);
2452 submit_bio_noacct(bio);
2456 static void dm_queue_flush(struct mapped_device *md)
2458 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2459 smp_mb__after_atomic();
2460 queue_work(md->wq, &md->work);
2464 * Swap in a new table, returning the old one for the caller to destroy.
2466 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2468 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2469 struct queue_limits limits;
2472 mutex_lock(&md->suspend_lock);
2474 /* device must be suspended */
2475 if (!dm_suspended_md(md))
2479 * If the new table has no data devices, retain the existing limits.
2480 * This helps multipath with queue_if_no_path if all paths disappear,
2481 * then new I/O is queued based on these limits, and then some paths
2484 if (dm_table_has_no_data_devices(table)) {
2485 live_map = dm_get_live_table_fast(md);
2487 limits = md->queue->limits;
2488 dm_put_live_table_fast(md);
2492 r = dm_calculate_queue_limits(table, &limits);
2499 map = __bind(md, table, &limits);
2500 dm_issue_global_event();
2503 mutex_unlock(&md->suspend_lock);
2508 * Functions to lock and unlock any filesystem running on the
2511 static int lock_fs(struct mapped_device *md)
2515 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2517 r = freeze_bdev(md->disk->part0);
2519 set_bit(DMF_FROZEN, &md->flags);
2523 static void unlock_fs(struct mapped_device *md)
2525 if (!test_bit(DMF_FROZEN, &md->flags))
2527 thaw_bdev(md->disk->part0);
2528 clear_bit(DMF_FROZEN, &md->flags);
2532 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2533 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2534 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2536 * If __dm_suspend returns 0, the device is completely quiescent
2537 * now. There is no request-processing activity. All new requests
2538 * are being added to md->deferred list.
2540 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2541 unsigned suspend_flags, unsigned int task_state,
2542 int dmf_suspended_flag)
2544 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2545 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2548 lockdep_assert_held(&md->suspend_lock);
2551 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2552 * This flag is cleared before dm_suspend returns.
2555 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2557 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2560 * This gets reverted if there's an error later and the targets
2561 * provide the .presuspend_undo hook.
2563 dm_table_presuspend_targets(map);
2566 * Flush I/O to the device.
2567 * Any I/O submitted after lock_fs() may not be flushed.
2568 * noflush takes precedence over do_lockfs.
2569 * (lock_fs() flushes I/Os and waits for them to complete.)
2571 if (!noflush && do_lockfs) {
2574 dm_table_presuspend_undo_targets(map);
2580 * Here we must make sure that no processes are submitting requests
2581 * to target drivers i.e. no one may be executing
2582 * dm_split_and_process_bio from dm_submit_bio.
2584 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2585 * we take the write lock. To prevent any process from reentering
2586 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2587 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2588 * flush_workqueue(md->wq).
2590 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2592 synchronize_srcu(&md->io_barrier);
2595 * Stop md->queue before flushing md->wq in case request-based
2596 * dm defers requests to md->wq from md->queue.
2598 if (dm_request_based(md))
2599 dm_stop_queue(md->queue);
2601 flush_workqueue(md->wq);
2604 * At this point no more requests are entering target request routines.
2605 * We call dm_wait_for_completion to wait for all existing requests
2608 r = dm_wait_for_completion(md, task_state);
2610 set_bit(dmf_suspended_flag, &md->flags);
2613 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2615 synchronize_srcu(&md->io_barrier);
2617 /* were we interrupted ? */
2621 if (dm_request_based(md))
2622 dm_start_queue(md->queue);
2625 dm_table_presuspend_undo_targets(map);
2626 /* pushback list is already flushed, so skip flush */
2633 * We need to be able to change a mapping table under a mounted
2634 * filesystem. For example we might want to move some data in
2635 * the background. Before the table can be swapped with
2636 * dm_bind_table, dm_suspend must be called to flush any in
2637 * flight bios and ensure that any further io gets deferred.
2640 * Suspend mechanism in request-based dm.
2642 * 1. Flush all I/Os by lock_fs() if needed.
2643 * 2. Stop dispatching any I/O by stopping the request_queue.
2644 * 3. Wait for all in-flight I/Os to be completed or requeued.
2646 * To abort suspend, start the request_queue.
2648 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2650 struct dm_table *map = NULL;
2654 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2656 if (dm_suspended_md(md)) {
2661 if (dm_suspended_internally_md(md)) {
2662 /* already internally suspended, wait for internal resume */
2663 mutex_unlock(&md->suspend_lock);
2664 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2670 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2672 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2676 set_bit(DMF_POST_SUSPENDING, &md->flags);
2677 dm_table_postsuspend_targets(map);
2678 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2681 mutex_unlock(&md->suspend_lock);
2685 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2688 int r = dm_table_resume_targets(map);
2696 * Flushing deferred I/Os must be done after targets are resumed
2697 * so that mapping of targets can work correctly.
2698 * Request-based dm is queueing the deferred I/Os in its request_queue.
2700 if (dm_request_based(md))
2701 dm_start_queue(md->queue);
2708 int dm_resume(struct mapped_device *md)
2711 struct dm_table *map = NULL;
2715 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2717 if (!dm_suspended_md(md))
2720 if (dm_suspended_internally_md(md)) {
2721 /* already internally suspended, wait for internal resume */
2722 mutex_unlock(&md->suspend_lock);
2723 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2729 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2730 if (!map || !dm_table_get_size(map))
2733 r = __dm_resume(md, map);
2737 clear_bit(DMF_SUSPENDED, &md->flags);
2739 mutex_unlock(&md->suspend_lock);
2745 * Internal suspend/resume works like userspace-driven suspend. It waits
2746 * until all bios finish and prevents issuing new bios to the target drivers.
2747 * It may be used only from the kernel.
2750 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2752 struct dm_table *map = NULL;
2754 lockdep_assert_held(&md->suspend_lock);
2756 if (md->internal_suspend_count++)
2757 return; /* nested internal suspend */
2759 if (dm_suspended_md(md)) {
2760 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2761 return; /* nest suspend */
2764 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2767 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2768 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2769 * would require changing .presuspend to return an error -- avoid this
2770 * until there is a need for more elaborate variants of internal suspend.
2772 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2773 DMF_SUSPENDED_INTERNALLY);
2775 set_bit(DMF_POST_SUSPENDING, &md->flags);
2776 dm_table_postsuspend_targets(map);
2777 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2780 static void __dm_internal_resume(struct mapped_device *md)
2782 BUG_ON(!md->internal_suspend_count);
2784 if (--md->internal_suspend_count)
2785 return; /* resume from nested internal suspend */
2787 if (dm_suspended_md(md))
2788 goto done; /* resume from nested suspend */
2791 * NOTE: existing callers don't need to call dm_table_resume_targets
2792 * (which may fail -- so best to avoid it for now by passing NULL map)
2794 (void) __dm_resume(md, NULL);
2797 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2798 smp_mb__after_atomic();
2799 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2802 void dm_internal_suspend_noflush(struct mapped_device *md)
2804 mutex_lock(&md->suspend_lock);
2805 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2806 mutex_unlock(&md->suspend_lock);
2808 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2810 void dm_internal_resume(struct mapped_device *md)
2812 mutex_lock(&md->suspend_lock);
2813 __dm_internal_resume(md);
2814 mutex_unlock(&md->suspend_lock);
2816 EXPORT_SYMBOL_GPL(dm_internal_resume);
2819 * Fast variants of internal suspend/resume hold md->suspend_lock,
2820 * which prevents interaction with userspace-driven suspend.
2823 void dm_internal_suspend_fast(struct mapped_device *md)
2825 mutex_lock(&md->suspend_lock);
2826 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2829 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2830 synchronize_srcu(&md->io_barrier);
2831 flush_workqueue(md->wq);
2832 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2834 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2836 void dm_internal_resume_fast(struct mapped_device *md)
2838 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2844 mutex_unlock(&md->suspend_lock);
2846 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2848 /*-----------------------------------------------------------------
2849 * Event notification.
2850 *---------------------------------------------------------------*/
2851 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2856 char udev_cookie[DM_COOKIE_LENGTH];
2857 char *envp[] = { udev_cookie, NULL };
2859 noio_flag = memalloc_noio_save();
2862 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2864 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2865 DM_COOKIE_ENV_VAR_NAME, cookie);
2866 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2870 memalloc_noio_restore(noio_flag);
2875 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2877 return atomic_add_return(1, &md->uevent_seq);
2880 uint32_t dm_get_event_nr(struct mapped_device *md)
2882 return atomic_read(&md->event_nr);
2885 int dm_wait_event(struct mapped_device *md, int event_nr)
2887 return wait_event_interruptible(md->eventq,
2888 (event_nr != atomic_read(&md->event_nr)));
2891 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2893 unsigned long flags;
2895 spin_lock_irqsave(&md->uevent_lock, flags);
2896 list_add(elist, &md->uevent_list);
2897 spin_unlock_irqrestore(&md->uevent_lock, flags);
2901 * The gendisk is only valid as long as you have a reference
2904 struct gendisk *dm_disk(struct mapped_device *md)
2908 EXPORT_SYMBOL_GPL(dm_disk);
2910 struct kobject *dm_kobject(struct mapped_device *md)
2912 return &md->kobj_holder.kobj;
2915 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2917 struct mapped_device *md;
2919 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2921 spin_lock(&_minor_lock);
2922 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2928 spin_unlock(&_minor_lock);
2933 int dm_suspended_md(struct mapped_device *md)
2935 return test_bit(DMF_SUSPENDED, &md->flags);
2938 static int dm_post_suspending_md(struct mapped_device *md)
2940 return test_bit(DMF_POST_SUSPENDING, &md->flags);
2943 int dm_suspended_internally_md(struct mapped_device *md)
2945 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2948 int dm_test_deferred_remove_flag(struct mapped_device *md)
2950 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2953 int dm_suspended(struct dm_target *ti)
2955 return dm_suspended_md(ti->table->md);
2957 EXPORT_SYMBOL_GPL(dm_suspended);
2959 int dm_post_suspending(struct dm_target *ti)
2961 return dm_post_suspending_md(ti->table->md);
2963 EXPORT_SYMBOL_GPL(dm_post_suspending);
2965 int dm_noflush_suspending(struct dm_target *ti)
2967 return __noflush_suspending(ti->table->md);
2969 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2971 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2972 unsigned per_io_data_size, unsigned min_pool_size,
2973 bool integrity, bool poll)
2975 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2976 unsigned int pool_size = 0;
2977 unsigned int front_pad, io_front_pad;
2984 case DM_TYPE_BIO_BASED:
2985 case DM_TYPE_DAX_BIO_BASED:
2986 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2987 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2988 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2989 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, poll ? BIOSET_PERCPU_CACHE : 0);
2992 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2995 case DM_TYPE_REQUEST_BASED:
2996 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2997 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2998 /* per_io_data_size is used for blk-mq pdu at queue allocation */
3004 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3008 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3014 dm_free_md_mempools(pools);
3019 void dm_free_md_mempools(struct dm_md_mempools *pools)
3024 bioset_exit(&pools->bs);
3025 bioset_exit(&pools->io_bs);
3037 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3040 struct mapped_device *md = bdev->bd_disk->private_data;
3041 struct dm_table *table;
3042 struct dm_target *ti;
3043 int ret = -ENOTTY, srcu_idx;
3045 table = dm_get_live_table(md, &srcu_idx);
3046 if (!table || !dm_table_get_size(table))
3049 /* We only support devices that have a single target */
3050 if (dm_table_get_num_targets(table) != 1)
3052 ti = dm_table_get_target(table, 0);
3055 if (!ti->type->iterate_devices)
3058 ret = ti->type->iterate_devices(ti, fn, data);
3060 dm_put_live_table(md, srcu_idx);
3065 * For register / unregister we need to manually call out to every path.
3067 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3068 sector_t start, sector_t len, void *data)
3070 struct dm_pr *pr = data;
3071 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3073 if (!ops || !ops->pr_register)
3075 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3078 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3089 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3090 if (ret && new_key) {
3091 /* unregister all paths if we failed to register any path */
3092 pr.old_key = new_key;
3095 pr.fail_early = false;
3096 dm_call_pr(bdev, __dm_pr_register, &pr);
3102 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3105 struct mapped_device *md = bdev->bd_disk->private_data;
3106 const struct pr_ops *ops;
3109 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3113 ops = bdev->bd_disk->fops->pr_ops;
3114 if (ops && ops->pr_reserve)
3115 r = ops->pr_reserve(bdev, key, type, flags);
3119 dm_unprepare_ioctl(md, srcu_idx);
3123 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3125 struct mapped_device *md = bdev->bd_disk->private_data;
3126 const struct pr_ops *ops;
3129 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3133 ops = bdev->bd_disk->fops->pr_ops;
3134 if (ops && ops->pr_release)
3135 r = ops->pr_release(bdev, key, type);
3139 dm_unprepare_ioctl(md, srcu_idx);
3143 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3144 enum pr_type type, bool abort)
3146 struct mapped_device *md = bdev->bd_disk->private_data;
3147 const struct pr_ops *ops;
3150 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3154 ops = bdev->bd_disk->fops->pr_ops;
3155 if (ops && ops->pr_preempt)
3156 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3160 dm_unprepare_ioctl(md, srcu_idx);
3164 static int dm_pr_clear(struct block_device *bdev, u64 key)
3166 struct mapped_device *md = bdev->bd_disk->private_data;
3167 const struct pr_ops *ops;
3170 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3174 ops = bdev->bd_disk->fops->pr_ops;
3175 if (ops && ops->pr_clear)
3176 r = ops->pr_clear(bdev, key);
3180 dm_unprepare_ioctl(md, srcu_idx);
3184 static const struct pr_ops dm_pr_ops = {
3185 .pr_register = dm_pr_register,
3186 .pr_reserve = dm_pr_reserve,
3187 .pr_release = dm_pr_release,
3188 .pr_preempt = dm_pr_preempt,
3189 .pr_clear = dm_pr_clear,
3192 static const struct block_device_operations dm_blk_dops = {
3193 .submit_bio = dm_submit_bio,
3194 .poll_bio = dm_poll_bio,
3195 .open = dm_blk_open,
3196 .release = dm_blk_close,
3197 .ioctl = dm_blk_ioctl,
3198 .getgeo = dm_blk_getgeo,
3199 .report_zones = dm_blk_report_zones,
3200 .pr_ops = &dm_pr_ops,
3201 .owner = THIS_MODULE
3204 static const struct block_device_operations dm_rq_blk_dops = {
3205 .open = dm_blk_open,
3206 .release = dm_blk_close,
3207 .ioctl = dm_blk_ioctl,
3208 .getgeo = dm_blk_getgeo,
3209 .pr_ops = &dm_pr_ops,
3210 .owner = THIS_MODULE
3213 static const struct dax_operations dm_dax_ops = {
3214 .direct_access = dm_dax_direct_access,
3215 .zero_page_range = dm_dax_zero_page_range,
3216 .recovery_write = dm_dax_recovery_write,
3222 module_init(dm_init);
3223 module_exit(dm_exit);
3225 module_param(major, uint, 0);
3226 MODULE_PARM_DESC(major, "The major number of the device mapper");
3228 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3229 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3231 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3232 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3234 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3235 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3237 MODULE_DESCRIPTION(DM_NAME " driver");
3238 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3239 MODULE_LICENSE("GPL");