2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include "dm-uevent.h"
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
34 #define DM_MSG_PREFIX "core"
37 * Cookies are numeric values sent with CHANGE and REMOVE
38 * uevents while resuming, removing or renaming the device.
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
44 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
45 * dm_io into one list, and reuse bio->bi_private as the list head. Before
46 * ending this fs bio, we will recover its ->bi_private.
48 #define REQ_DM_POLL_LIST REQ_DRV
50 static const char *_name = DM_NAME;
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
55 static DEFINE_IDR(_minor_idr);
57 static DEFINE_SPINLOCK(_minor_lock);
59 static void do_deferred_remove(struct work_struct *w);
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
63 static struct workqueue_struct *deferred_remove_workqueue;
65 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
68 void dm_issue_global_event(void)
70 atomic_inc(&dm_global_event_nr);
71 wake_up(&dm_global_eventq);
74 DEFINE_STATIC_KEY_FALSE(stats_enabled);
75 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
76 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
79 * One of these is allocated (on-stack) per original bio.
86 unsigned sector_count;
87 bool is_abnormal_io:1;
88 bool submit_as_polled:1;
91 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
93 return container_of(clone, struct dm_target_io, clone);
96 void *dm_per_bio_data(struct bio *bio, size_t data_size)
98 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
99 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
100 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
102 EXPORT_SYMBOL_GPL(dm_per_bio_data);
104 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
106 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
107 if (io->magic == DM_IO_MAGIC)
108 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
109 BUG_ON(io->magic != DM_TIO_MAGIC);
110 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
112 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
114 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
116 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
118 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
120 #define MINOR_ALLOCED ((void *)-1)
122 #define DM_NUMA_NODE NUMA_NO_NODE
123 static int dm_numa_node = DM_NUMA_NODE;
125 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
126 static int swap_bios = DEFAULT_SWAP_BIOS;
127 static int get_swap_bios(void)
129 int latch = READ_ONCE(swap_bios);
130 if (unlikely(latch <= 0))
131 latch = DEFAULT_SWAP_BIOS;
135 struct table_device {
136 struct list_head list;
138 struct dm_dev dm_dev;
142 * Bio-based DM's mempools' reserved IOs set by the user.
144 #define RESERVED_BIO_BASED_IOS 16
145 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
147 static int __dm_get_module_param_int(int *module_param, int min, int max)
149 int param = READ_ONCE(*module_param);
150 int modified_param = 0;
151 bool modified = true;
154 modified_param = min;
155 else if (param > max)
156 modified_param = max;
161 (void)cmpxchg(module_param, param, modified_param);
162 param = modified_param;
168 unsigned __dm_get_module_param(unsigned *module_param,
169 unsigned def, unsigned max)
171 unsigned param = READ_ONCE(*module_param);
172 unsigned modified_param = 0;
175 modified_param = def;
176 else if (param > max)
177 modified_param = max;
179 if (modified_param) {
180 (void)cmpxchg(module_param, param, modified_param);
181 param = modified_param;
187 unsigned dm_get_reserved_bio_based_ios(void)
189 return __dm_get_module_param(&reserved_bio_based_ios,
190 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
192 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
194 static unsigned dm_get_numa_node(void)
196 return __dm_get_module_param_int(&dm_numa_node,
197 DM_NUMA_NODE, num_online_nodes() - 1);
200 static int __init local_init(void)
204 r = dm_uevent_init();
208 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
209 if (!deferred_remove_workqueue) {
211 goto out_uevent_exit;
215 r = register_blkdev(_major, _name);
217 goto out_free_workqueue;
225 destroy_workqueue(deferred_remove_workqueue);
232 static void local_exit(void)
234 flush_scheduled_work();
235 destroy_workqueue(deferred_remove_workqueue);
237 unregister_blkdev(_major, _name);
242 DMINFO("cleaned up");
245 static int (*_inits[])(void) __initdata = {
256 static void (*_exits[])(void) = {
267 static int __init dm_init(void)
269 const int count = ARRAY_SIZE(_inits);
272 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
273 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
274 " Duplicate IMA measurements will not be recorded in the IMA log.");
277 for (i = 0; i < count; i++) {
291 static void __exit dm_exit(void)
293 int i = ARRAY_SIZE(_exits);
299 * Should be empty by this point.
301 idr_destroy(&_minor_idr);
305 * Block device functions
307 int dm_deleting_md(struct mapped_device *md)
309 return test_bit(DMF_DELETING, &md->flags);
312 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
314 struct mapped_device *md;
316 spin_lock(&_minor_lock);
318 md = bdev->bd_disk->private_data;
322 if (test_bit(DMF_FREEING, &md->flags) ||
323 dm_deleting_md(md)) {
329 atomic_inc(&md->open_count);
331 spin_unlock(&_minor_lock);
333 return md ? 0 : -ENXIO;
336 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
338 struct mapped_device *md;
340 spin_lock(&_minor_lock);
342 md = disk->private_data;
346 if (atomic_dec_and_test(&md->open_count) &&
347 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
348 queue_work(deferred_remove_workqueue, &deferred_remove_work);
352 spin_unlock(&_minor_lock);
355 int dm_open_count(struct mapped_device *md)
357 return atomic_read(&md->open_count);
361 * Guarantees nothing is using the device before it's deleted.
363 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
367 spin_lock(&_minor_lock);
369 if (dm_open_count(md)) {
372 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
373 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
376 set_bit(DMF_DELETING, &md->flags);
378 spin_unlock(&_minor_lock);
383 int dm_cancel_deferred_remove(struct mapped_device *md)
387 spin_lock(&_minor_lock);
389 if (test_bit(DMF_DELETING, &md->flags))
392 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
394 spin_unlock(&_minor_lock);
399 static void do_deferred_remove(struct work_struct *w)
401 dm_deferred_remove();
404 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
406 struct mapped_device *md = bdev->bd_disk->private_data;
408 return dm_get_geometry(md, geo);
411 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
412 struct block_device **bdev)
414 struct dm_target *ti;
415 struct dm_table *map;
420 map = dm_get_live_table(md, srcu_idx);
421 if (!map || !dm_table_get_size(map))
424 /* We only support devices that have a single target */
425 if (map->num_targets != 1)
428 ti = dm_table_get_target(map, 0);
429 if (!ti->type->prepare_ioctl)
432 if (dm_suspended_md(md))
435 r = ti->type->prepare_ioctl(ti, bdev);
436 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
437 dm_put_live_table(md, *srcu_idx);
445 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
447 dm_put_live_table(md, srcu_idx);
450 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
451 unsigned int cmd, unsigned long arg)
453 struct mapped_device *md = bdev->bd_disk->private_data;
456 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
462 * Target determined this ioctl is being issued against a
463 * subset of the parent bdev; require extra privileges.
465 if (!capable(CAP_SYS_RAWIO)) {
467 "%s: sending ioctl %x to DM device without required privilege.",
474 if (!bdev->bd_disk->fops->ioctl)
477 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
479 dm_unprepare_ioctl(md, srcu_idx);
483 u64 dm_start_time_ns_from_clone(struct bio *bio)
485 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
487 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
489 static bool bio_is_flush_with_data(struct bio *bio)
491 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
494 static void dm_io_acct(struct dm_io *io, bool end)
496 struct dm_stats_aux *stats_aux = &io->stats_aux;
497 unsigned long start_time = io->start_time;
498 struct mapped_device *md = io->md;
499 struct bio *bio = io->orig_bio;
500 unsigned int sectors;
503 * If REQ_PREFLUSH set, don't account payload, it will be
504 * submitted (and accounted) after this flush completes.
506 if (bio_is_flush_with_data(bio))
508 else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
509 sectors = bio_sectors(bio);
511 sectors = io->sectors;
514 bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio),
517 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time);
519 if (static_branch_unlikely(&stats_enabled) &&
520 unlikely(dm_stats_used(&md->stats))) {
523 if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
524 sector = bio->bi_iter.bi_sector;
526 sector = bio_end_sector(bio) - io->sector_offset;
528 dm_stats_account_io(&md->stats, bio_data_dir(bio),
530 end, start_time, stats_aux);
534 static void __dm_start_io_acct(struct dm_io *io)
536 dm_io_acct(io, false);
539 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
542 * Ensure IO accounting is only ever started once.
544 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
547 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
548 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
549 dm_io_set_flag(io, DM_IO_ACCOUNTED);
552 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
553 spin_lock_irqsave(&io->lock, flags);
554 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
555 spin_unlock_irqrestore(&io->lock, flags);
558 dm_io_set_flag(io, DM_IO_ACCOUNTED);
559 spin_unlock_irqrestore(&io->lock, flags);
562 __dm_start_io_acct(io);
565 static void dm_end_io_acct(struct dm_io *io)
567 dm_io_acct(io, true);
570 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
573 struct dm_target_io *tio;
576 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
577 tio = clone_to_tio(clone);
579 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
582 io = container_of(tio, struct dm_io, tio);
583 io->magic = DM_IO_MAGIC;
584 io->status = BLK_STS_OK;
586 /* one ref is for submission, the other is for completion */
587 atomic_set(&io->io_count, 2);
588 this_cpu_inc(*md->pending_io);
591 spin_lock_init(&io->lock);
592 io->start_time = jiffies;
595 if (static_branch_unlikely(&stats_enabled))
596 dm_stats_record_start(&md->stats, &io->stats_aux);
601 static void free_io(struct dm_io *io)
603 bio_put(&io->tio.clone);
606 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
607 unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
609 struct mapped_device *md = ci->io->md;
610 struct dm_target_io *tio;
613 if (!ci->io->tio.io) {
614 /* the dm_target_io embedded in ci->io is available */
616 /* alloc_io() already initialized embedded clone */
619 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
624 /* REQ_DM_POLL_LIST shouldn't be inherited */
625 clone->bi_opf &= ~REQ_DM_POLL_LIST;
627 tio = clone_to_tio(clone);
628 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
631 tio->magic = DM_TIO_MAGIC;
634 tio->target_bio_nr = target_bio_nr;
638 /* Set default bdev, but target must bio_set_dev() before issuing IO */
639 clone->bi_bdev = md->disk->part0;
640 if (unlikely(ti->needs_bio_set_dev))
641 bio_set_dev(clone, md->disk->part0);
644 clone->bi_iter.bi_size = to_bytes(*len);
645 if (bio_integrity(clone))
646 bio_integrity_trim(clone);
652 static void free_tio(struct bio *clone)
654 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
660 * Add the bio to the list of deferred io.
662 static void queue_io(struct mapped_device *md, struct bio *bio)
666 spin_lock_irqsave(&md->deferred_lock, flags);
667 bio_list_add(&md->deferred, bio);
668 spin_unlock_irqrestore(&md->deferred_lock, flags);
669 queue_work(md->wq, &md->work);
673 * Everyone (including functions in this file), should use this
674 * function to access the md->map field, and make sure they call
675 * dm_put_live_table() when finished.
677 struct dm_table *dm_get_live_table(struct mapped_device *md,
678 int *srcu_idx) __acquires(md->io_barrier)
680 *srcu_idx = srcu_read_lock(&md->io_barrier);
682 return srcu_dereference(md->map, &md->io_barrier);
685 void dm_put_live_table(struct mapped_device *md,
686 int srcu_idx) __releases(md->io_barrier)
688 srcu_read_unlock(&md->io_barrier, srcu_idx);
691 void dm_sync_table(struct mapped_device *md)
693 synchronize_srcu(&md->io_barrier);
694 synchronize_rcu_expedited();
698 * A fast alternative to dm_get_live_table/dm_put_live_table.
699 * The caller must not block between these two functions.
701 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
704 return rcu_dereference(md->map);
707 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
712 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
713 int *srcu_idx, blk_opf_t bio_opf)
715 if (bio_opf & REQ_NOWAIT)
716 return dm_get_live_table_fast(md);
718 return dm_get_live_table(md, srcu_idx);
721 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
724 if (bio_opf & REQ_NOWAIT)
725 dm_put_live_table_fast(md);
727 dm_put_live_table(md, srcu_idx);
730 static char *_dm_claim_ptr = "I belong to device-mapper";
733 * Open a table device so we can use it as a map destination.
735 static int open_table_device(struct table_device *td, dev_t dev,
736 struct mapped_device *md)
738 struct block_device *bdev;
742 BUG_ON(td->dm_dev.bdev);
744 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
746 return PTR_ERR(bdev);
748 r = bd_link_disk_holder(bdev, dm_disk(md));
750 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
754 td->dm_dev.bdev = bdev;
755 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL);
760 * Close a table device that we've been using.
762 static void close_table_device(struct table_device *td, struct mapped_device *md)
764 if (!td->dm_dev.bdev)
767 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
768 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
769 put_dax(td->dm_dev.dax_dev);
770 td->dm_dev.bdev = NULL;
771 td->dm_dev.dax_dev = NULL;
774 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
777 struct table_device *td;
779 list_for_each_entry(td, l, list)
780 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
786 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
787 struct dm_dev **result)
790 struct table_device *td;
792 mutex_lock(&md->table_devices_lock);
793 td = find_table_device(&md->table_devices, dev, mode);
795 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
797 mutex_unlock(&md->table_devices_lock);
801 td->dm_dev.mode = mode;
802 td->dm_dev.bdev = NULL;
804 if ((r = open_table_device(td, dev, md))) {
805 mutex_unlock(&md->table_devices_lock);
810 format_dev_t(td->dm_dev.name, dev);
812 refcount_set(&td->count, 1);
813 list_add(&td->list, &md->table_devices);
815 refcount_inc(&td->count);
817 mutex_unlock(&md->table_devices_lock);
819 *result = &td->dm_dev;
823 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
825 struct table_device *td = container_of(d, struct table_device, dm_dev);
827 mutex_lock(&md->table_devices_lock);
828 if (refcount_dec_and_test(&td->count)) {
829 close_table_device(td, md);
833 mutex_unlock(&md->table_devices_lock);
836 static void free_table_devices(struct list_head *devices)
838 struct list_head *tmp, *next;
840 list_for_each_safe(tmp, next, devices) {
841 struct table_device *td = list_entry(tmp, struct table_device, list);
843 DMWARN("dm_destroy: %s still exists with %d references",
844 td->dm_dev.name, refcount_read(&td->count));
850 * Get the geometry associated with a dm device
852 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
860 * Set the geometry of a device.
862 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
864 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
866 if (geo->start > sz) {
867 DMWARN("Start sector is beyond the geometry limits.");
876 static int __noflush_suspending(struct mapped_device *md)
878 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
881 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
883 struct mapped_device *md = io->md;
886 struct dm_io *next = md->requeue_list;
888 md->requeue_list = io;
891 bio_list_add_head(&md->deferred, io->orig_bio);
895 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
898 queue_work(md->wq, &md->requeue_work);
900 queue_work(md->wq, &md->work);
904 * Return true if the dm_io's original bio is requeued.
905 * io->status is updated with error if requeue disallowed.
907 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
909 struct bio *bio = io->orig_bio;
910 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
911 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
912 (bio->bi_opf & REQ_POLLED));
913 struct mapped_device *md = io->md;
914 bool requeued = false;
916 if (handle_requeue || handle_polled_eagain) {
919 if (bio->bi_opf & REQ_POLLED) {
921 * Upper layer won't help us poll split bio
922 * (io->orig_bio may only reflect a subset of the
923 * pre-split original) so clear REQ_POLLED.
925 bio_clear_polled(bio);
929 * Target requested pushing back the I/O or
930 * polled IO hit BLK_STS_AGAIN.
932 spin_lock_irqsave(&md->deferred_lock, flags);
933 if ((__noflush_suspending(md) &&
934 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
935 handle_polled_eagain || first_stage) {
936 dm_requeue_add_io(io, first_stage);
940 * noflush suspend was interrupted or this is
941 * a write to a zoned target.
943 io->status = BLK_STS_IOERR;
945 spin_unlock_irqrestore(&md->deferred_lock, flags);
949 dm_kick_requeue(md, first_stage);
954 static void __dm_io_complete(struct dm_io *io, bool first_stage)
956 struct bio *bio = io->orig_bio;
957 struct mapped_device *md = io->md;
958 blk_status_t io_error;
961 requeued = dm_handle_requeue(io, first_stage);
962 if (requeued && first_stage)
965 io_error = io->status;
966 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
968 else if (!io_error) {
970 * Must handle target that DM_MAPIO_SUBMITTED only to
971 * then bio_endio() rather than dm_submit_bio_remap()
973 __dm_start_io_acct(io);
978 this_cpu_dec(*md->pending_io);
980 /* nudge anyone waiting on suspend queue */
981 if (unlikely(wq_has_sleeper(&md->wait)))
984 /* Return early if the original bio was requeued */
988 if (bio_is_flush_with_data(bio)) {
990 * Preflush done for flush with data, reissue
991 * without REQ_PREFLUSH.
993 bio->bi_opf &= ~REQ_PREFLUSH;
996 /* done with normal IO or empty flush */
998 bio->bi_status = io_error;
1003 static void dm_wq_requeue_work(struct work_struct *work)
1005 struct mapped_device *md = container_of(work, struct mapped_device,
1007 unsigned long flags;
1010 /* reuse deferred lock to simplify dm_handle_requeue */
1011 spin_lock_irqsave(&md->deferred_lock, flags);
1012 io = md->requeue_list;
1013 md->requeue_list = NULL;
1014 spin_unlock_irqrestore(&md->deferred_lock, flags);
1017 struct dm_io *next = io->next;
1019 dm_io_rewind(io, &md->disk->bio_split);
1022 __dm_io_complete(io, false);
1028 * Two staged requeue:
1030 * 1) io->orig_bio points to the real original bio, and the part mapped to
1031 * this io must be requeued, instead of other parts of the original bio.
1033 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1035 static void dm_io_complete(struct dm_io *io)
1040 * Only dm_io that has been split needs two stage requeue, otherwise
1041 * we may run into long bio clone chain during suspend and OOM could
1044 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1045 * also aren't handled via the first stage requeue.
1047 if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1048 first_requeue = true;
1050 first_requeue = false;
1052 __dm_io_complete(io, first_requeue);
1056 * Decrements the number of outstanding ios that a bio has been
1057 * cloned into, completing the original io if necc.
1059 static inline void __dm_io_dec_pending(struct dm_io *io)
1061 if (atomic_dec_and_test(&io->io_count))
1065 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1067 unsigned long flags;
1069 /* Push-back supersedes any I/O errors */
1070 spin_lock_irqsave(&io->lock, flags);
1071 if (!(io->status == BLK_STS_DM_REQUEUE &&
1072 __noflush_suspending(io->md))) {
1075 spin_unlock_irqrestore(&io->lock, flags);
1078 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1080 if (unlikely(error))
1081 dm_io_set_error(io, error);
1083 __dm_io_dec_pending(io);
1086 void disable_discard(struct mapped_device *md)
1088 struct queue_limits *limits = dm_get_queue_limits(md);
1090 /* device doesn't really support DISCARD, disable it */
1091 limits->max_discard_sectors = 0;
1094 void disable_write_zeroes(struct mapped_device *md)
1096 struct queue_limits *limits = dm_get_queue_limits(md);
1098 /* device doesn't really support WRITE ZEROES, disable it */
1099 limits->max_write_zeroes_sectors = 0;
1102 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1104 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1107 static void clone_endio(struct bio *bio)
1109 blk_status_t error = bio->bi_status;
1110 struct dm_target_io *tio = clone_to_tio(bio);
1111 struct dm_target *ti = tio->ti;
1112 dm_endio_fn endio = ti->type->end_io;
1113 struct dm_io *io = tio->io;
1114 struct mapped_device *md = io->md;
1116 if (unlikely(error == BLK_STS_TARGET)) {
1117 if (bio_op(bio) == REQ_OP_DISCARD &&
1118 !bdev_max_discard_sectors(bio->bi_bdev))
1119 disable_discard(md);
1120 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1121 !bdev_write_zeroes_sectors(bio->bi_bdev))
1122 disable_write_zeroes(md);
1125 if (static_branch_unlikely(&zoned_enabled) &&
1126 unlikely(bdev_is_zoned(bio->bi_bdev)))
1127 dm_zone_endio(io, bio);
1130 int r = endio(ti, bio, &error);
1132 case DM_ENDIO_REQUEUE:
1133 if (static_branch_unlikely(&zoned_enabled)) {
1135 * Requeuing writes to a sequential zone of a zoned
1136 * target will break the sequential write pattern:
1139 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1140 error = BLK_STS_IOERR;
1142 error = BLK_STS_DM_REQUEUE;
1144 error = BLK_STS_DM_REQUEUE;
1148 case DM_ENDIO_INCOMPLETE:
1149 /* The target will handle the io */
1152 DMWARN("unimplemented target endio return value: %d", r);
1157 if (static_branch_unlikely(&swap_bios_enabled) &&
1158 unlikely(swap_bios_limit(ti, bio)))
1159 up(&md->swap_bios_semaphore);
1162 dm_io_dec_pending(io, error);
1166 * Return maximum size of I/O possible at the supplied sector up to the current
1169 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1170 sector_t target_offset)
1172 return ti->len - target_offset;
1175 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1177 sector_t target_offset = dm_target_offset(ti, sector);
1178 sector_t len = max_io_len_target_boundary(ti, target_offset);
1181 * Does the target need to split IO even further?
1182 * - varied (per target) IO splitting is a tenet of DM; this
1183 * explains why stacked chunk_sectors based splitting via
1184 * bio_split_to_limits() isn't possible here.
1186 if (!ti->max_io_len)
1188 return min_t(sector_t, len,
1189 min(queue_max_sectors(ti->table->md->queue),
1190 blk_chunk_sectors_left(target_offset, ti->max_io_len)));
1193 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1195 if (len > UINT_MAX) {
1196 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1197 (unsigned long long)len, UINT_MAX);
1198 ti->error = "Maximum size of target IO is too large";
1202 ti->max_io_len = (uint32_t) len;
1206 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1208 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1209 sector_t sector, int *srcu_idx)
1210 __acquires(md->io_barrier)
1212 struct dm_table *map;
1213 struct dm_target *ti;
1215 map = dm_get_live_table(md, srcu_idx);
1219 ti = dm_table_find_target(map, sector);
1226 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1227 long nr_pages, enum dax_access_mode mode, void **kaddr,
1230 struct mapped_device *md = dax_get_private(dax_dev);
1231 sector_t sector = pgoff * PAGE_SECTORS;
1232 struct dm_target *ti;
1233 long len, ret = -EIO;
1236 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1240 if (!ti->type->direct_access)
1242 len = max_io_len(ti, sector) / PAGE_SECTORS;
1245 nr_pages = min(len, nr_pages);
1246 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1249 dm_put_live_table(md, srcu_idx);
1254 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1257 struct mapped_device *md = dax_get_private(dax_dev);
1258 sector_t sector = pgoff * PAGE_SECTORS;
1259 struct dm_target *ti;
1263 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1267 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1269 * ->zero_page_range() is mandatory dax operation. If we are
1270 * here, something is wrong.
1274 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1276 dm_put_live_table(md, srcu_idx);
1281 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1282 void *addr, size_t bytes, struct iov_iter *i)
1284 struct mapped_device *md = dax_get_private(dax_dev);
1285 sector_t sector = pgoff * PAGE_SECTORS;
1286 struct dm_target *ti;
1290 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1291 if (!ti || !ti->type->dax_recovery_write)
1294 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1296 dm_put_live_table(md, srcu_idx);
1301 * A target may call dm_accept_partial_bio only from the map routine. It is
1302 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1303 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1304 * __send_duplicate_bios().
1306 * dm_accept_partial_bio informs the dm that the target only wants to process
1307 * additional n_sectors sectors of the bio and the rest of the data should be
1308 * sent in a next bio.
1310 * A diagram that explains the arithmetics:
1311 * +--------------------+---------------+-------+
1313 * +--------------------+---------------+-------+
1315 * <-------------- *tio->len_ptr --------------->
1316 * <----- bio_sectors ----->
1319 * Region 1 was already iterated over with bio_advance or similar function.
1320 * (it may be empty if the target doesn't use bio_advance)
1321 * Region 2 is the remaining bio size that the target wants to process.
1322 * (it may be empty if region 1 is non-empty, although there is no reason
1324 * The target requires that region 3 is to be sent in the next bio.
1326 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1327 * the partially processed part (the sum of regions 1+2) must be the same for all
1328 * copies of the bio.
1330 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1332 struct dm_target_io *tio = clone_to_tio(bio);
1333 struct dm_io *io = tio->io;
1334 unsigned bio_sectors = bio_sectors(bio);
1336 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1337 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1338 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1339 BUG_ON(bio_sectors > *tio->len_ptr);
1340 BUG_ON(n_sectors > bio_sectors);
1342 *tio->len_ptr -= bio_sectors - n_sectors;
1343 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1346 * __split_and_process_bio() may have already saved mapped part
1347 * for accounting but it is being reduced so update accordingly.
1349 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1350 io->sectors = n_sectors;
1351 io->sector_offset = bio_sectors(io->orig_bio);
1353 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1356 * @clone: clone bio that DM core passed to target's .map function
1357 * @tgt_clone: clone of @clone bio that target needs submitted
1359 * Targets should use this interface to submit bios they take
1360 * ownership of when returning DM_MAPIO_SUBMITTED.
1362 * Target should also enable ti->accounts_remapped_io
1364 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1366 struct dm_target_io *tio = clone_to_tio(clone);
1367 struct dm_io *io = tio->io;
1369 /* establish bio that will get submitted */
1374 * Account io->origin_bio to DM dev on behalf of target
1375 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1377 dm_start_io_acct(io, clone);
1379 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1381 submit_bio_noacct(tgt_clone);
1383 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1385 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1387 mutex_lock(&md->swap_bios_lock);
1388 while (latch < md->swap_bios) {
1390 down(&md->swap_bios_semaphore);
1393 while (latch > md->swap_bios) {
1395 up(&md->swap_bios_semaphore);
1398 mutex_unlock(&md->swap_bios_lock);
1401 static void __map_bio(struct bio *clone)
1403 struct dm_target_io *tio = clone_to_tio(clone);
1404 struct dm_target *ti = tio->ti;
1405 struct dm_io *io = tio->io;
1406 struct mapped_device *md = io->md;
1409 clone->bi_end_io = clone_endio;
1414 tio->old_sector = clone->bi_iter.bi_sector;
1416 if (static_branch_unlikely(&swap_bios_enabled) &&
1417 unlikely(swap_bios_limit(ti, clone))) {
1418 int latch = get_swap_bios();
1419 if (unlikely(latch != md->swap_bios))
1420 __set_swap_bios_limit(md, latch);
1421 down(&md->swap_bios_semaphore);
1424 if (static_branch_unlikely(&zoned_enabled)) {
1426 * Check if the IO needs a special mapping due to zone append
1427 * emulation on zoned target. In this case, dm_zone_map_bio()
1428 * calls the target map operation.
1430 if (unlikely(dm_emulate_zone_append(md)))
1431 r = dm_zone_map_bio(tio);
1433 r = ti->type->map(ti, clone);
1435 r = ti->type->map(ti, clone);
1438 case DM_MAPIO_SUBMITTED:
1439 /* target has assumed ownership of this io */
1440 if (!ti->accounts_remapped_io)
1441 dm_start_io_acct(io, clone);
1443 case DM_MAPIO_REMAPPED:
1444 dm_submit_bio_remap(clone, NULL);
1447 case DM_MAPIO_REQUEUE:
1448 if (static_branch_unlikely(&swap_bios_enabled) &&
1449 unlikely(swap_bios_limit(ti, clone)))
1450 up(&md->swap_bios_semaphore);
1452 if (r == DM_MAPIO_KILL)
1453 dm_io_dec_pending(io, BLK_STS_IOERR);
1455 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1458 DMWARN("unimplemented target map return value: %d", r);
1463 static void setup_split_accounting(struct clone_info *ci, unsigned len)
1465 struct dm_io *io = ci->io;
1467 if (ci->sector_count > len) {
1469 * Split needed, save the mapped part for accounting.
1470 * NOTE: dm_accept_partial_bio() will update accordingly.
1472 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1474 io->sector_offset = bio_sectors(ci->bio);
1478 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1479 struct dm_target *ti, unsigned num_bios)
1484 for (try = 0; try < 2; try++) {
1488 mutex_lock(&ci->io->md->table_devices_lock);
1489 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1490 bio = alloc_tio(ci, ti, bio_nr, NULL,
1491 try ? GFP_NOIO : GFP_NOWAIT);
1495 bio_list_add(blist, bio);
1498 mutex_unlock(&ci->io->md->table_devices_lock);
1499 if (bio_nr == num_bios)
1502 while ((bio = bio_list_pop(blist)))
1507 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1508 unsigned int num_bios, unsigned *len)
1510 struct bio_list blist = BIO_EMPTY_LIST;
1512 unsigned int ret = 0;
1519 setup_split_accounting(ci, *len);
1520 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1525 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1526 alloc_multiple_bios(&blist, ci, ti, num_bios);
1527 while ((clone = bio_list_pop(&blist))) {
1528 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1538 static void __send_empty_flush(struct clone_info *ci)
1540 struct dm_table *t = ci->map;
1541 struct bio flush_bio;
1544 * Use an on-stack bio for this, it's safe since we don't
1545 * need to reference it after submit. It's just used as
1546 * the basis for the clone(s).
1548 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1549 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1551 ci->bio = &flush_bio;
1552 ci->sector_count = 0;
1553 ci->io->tio.clone.bi_iter.bi_size = 0;
1555 for (unsigned int i = 0; i < t->num_targets; i++) {
1557 struct dm_target *ti = dm_table_get_target(t, i);
1559 atomic_add(ti->num_flush_bios, &ci->io->io_count);
1560 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1561 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1565 * alloc_io() takes one extra reference for submission, so the
1566 * reference won't reach 0 without the following subtraction
1568 atomic_sub(1, &ci->io->io_count);
1570 bio_uninit(ci->bio);
1573 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1579 len = min_t(sector_t, ci->sector_count,
1580 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1582 atomic_add(num_bios, &ci->io->io_count);
1583 bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1585 * alloc_io() takes one extra reference for submission, so the
1586 * reference won't reach 0 without the following (+1) subtraction
1588 atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1591 ci->sector_count -= len;
1594 static bool is_abnormal_io(struct bio *bio)
1596 enum req_op op = bio_op(bio);
1598 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1600 case REQ_OP_DISCARD:
1601 case REQ_OP_SECURE_ERASE:
1602 case REQ_OP_WRITE_ZEROES:
1612 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1613 struct dm_target *ti)
1615 unsigned num_bios = 0;
1617 switch (bio_op(ci->bio)) {
1618 case REQ_OP_DISCARD:
1619 num_bios = ti->num_discard_bios;
1621 case REQ_OP_SECURE_ERASE:
1622 num_bios = ti->num_secure_erase_bios;
1624 case REQ_OP_WRITE_ZEROES:
1625 num_bios = ti->num_write_zeroes_bios;
1632 * Even though the device advertised support for this type of
1633 * request, that does not mean every target supports it, and
1634 * reconfiguration might also have changed that since the
1635 * check was performed.
1637 if (unlikely(!num_bios))
1638 return BLK_STS_NOTSUPP;
1640 __send_changing_extent_only(ci, ti, num_bios);
1645 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1646 * associated with this bio, and this bio's bi_private needs to be
1647 * stored in dm_io->data before the reuse.
1649 * bio->bi_private is owned by fs or upper layer, so block layer won't
1650 * touch it after splitting. Meantime it won't be changed by anyone after
1651 * bio is submitted. So this reuse is safe.
1653 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1655 return (struct dm_io **)&bio->bi_private;
1658 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1660 struct dm_io **head = dm_poll_list_head(bio);
1662 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1663 bio->bi_opf |= REQ_DM_POLL_LIST;
1665 * Save .bi_private into dm_io, so that we can reuse
1666 * .bi_private as dm_io list head for storing dm_io list
1668 io->data = bio->bi_private;
1670 /* tell block layer to poll for completion */
1671 bio->bi_cookie = ~BLK_QC_T_NONE;
1676 * bio recursed due to split, reuse original poll list,
1677 * and save bio->bi_private too.
1679 io->data = (*head)->data;
1687 * Select the correct strategy for processing a non-flush bio.
1689 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1692 struct dm_target *ti;
1695 ti = dm_table_find_target(ci->map, ci->sector);
1697 return BLK_STS_IOERR;
1699 if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1700 unlikely(!dm_target_supports_nowait(ti->type)))
1701 return BLK_STS_NOTSUPP;
1703 if (unlikely(ci->is_abnormal_io))
1704 return __process_abnormal_io(ci, ti);
1707 * Only support bio polling for normal IO, and the target io is
1708 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1710 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1712 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1713 setup_split_accounting(ci, len);
1714 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1718 ci->sector_count -= len;
1723 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1724 struct dm_table *map, struct bio *bio, bool is_abnormal)
1727 ci->io = alloc_io(md, bio);
1729 ci->is_abnormal_io = is_abnormal;
1730 ci->submit_as_polled = false;
1731 ci->sector = bio->bi_iter.bi_sector;
1732 ci->sector_count = bio_sectors(bio);
1734 /* Shouldn't happen but sector_count was being set to 0 so... */
1735 if (static_branch_unlikely(&zoned_enabled) &&
1736 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1737 ci->sector_count = 0;
1741 * Entry point to split a bio into clones and submit them to the targets.
1743 static void dm_split_and_process_bio(struct mapped_device *md,
1744 struct dm_table *map, struct bio *bio)
1746 struct clone_info ci;
1748 blk_status_t error = BLK_STS_OK;
1751 is_abnormal = is_abnormal_io(bio);
1752 if (unlikely(is_abnormal)) {
1754 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1755 * otherwise associated queue_limits won't be imposed.
1757 bio = bio_split_to_limits(bio);
1760 init_clone_info(&ci, md, map, bio, is_abnormal);
1763 if (bio->bi_opf & REQ_PREFLUSH) {
1764 __send_empty_flush(&ci);
1765 /* dm_io_complete submits any data associated with flush */
1769 error = __split_and_process_bio(&ci);
1770 if (error || !ci.sector_count)
1773 * Remainder must be passed to submit_bio_noacct() so it gets handled
1774 * *after* bios already submitted have been completely processed.
1776 bio_trim(bio, io->sectors, ci.sector_count);
1777 trace_block_split(bio, bio->bi_iter.bi_sector);
1778 bio_inc_remaining(bio);
1779 submit_bio_noacct(bio);
1782 * Drop the extra reference count for non-POLLED bio, and hold one
1783 * reference for POLLED bio, which will be released in dm_poll_bio
1785 * Add every dm_io instance into the dm_io list head which is stored
1786 * in bio->bi_private, so that dm_poll_bio can poll them all.
1788 if (error || !ci.submit_as_polled) {
1790 * In case of submission failure, the extra reference for
1791 * submitting io isn't consumed yet
1794 atomic_dec(&io->io_count);
1795 dm_io_dec_pending(io, error);
1797 dm_queue_poll_io(bio, io);
1800 static void dm_submit_bio(struct bio *bio)
1802 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1804 struct dm_table *map;
1805 blk_opf_t bio_opf = bio->bi_opf;
1807 map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
1809 /* If suspended, or map not yet available, queue this IO for later */
1810 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1812 if (bio->bi_opf & REQ_NOWAIT)
1813 bio_wouldblock_error(bio);
1814 else if (bio->bi_opf & REQ_RAHEAD)
1821 dm_split_and_process_bio(md, map, bio);
1823 dm_put_live_table_bio(md, srcu_idx, bio_opf);
1826 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1829 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1831 /* don't poll if the mapped io is done */
1832 if (atomic_read(&io->io_count) > 1)
1833 bio_poll(&io->tio.clone, iob, flags);
1835 /* bio_poll holds the last reference */
1836 return atomic_read(&io->io_count) == 1;
1839 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1842 struct dm_io **head = dm_poll_list_head(bio);
1843 struct dm_io *list = *head;
1844 struct dm_io *tmp = NULL;
1845 struct dm_io *curr, *next;
1847 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1848 if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1851 WARN_ON_ONCE(!list);
1854 * Restore .bi_private before possibly completing dm_io.
1856 * bio_poll() is only possible once @bio has been completely
1857 * submitted via submit_bio_noacct()'s depth-first submission.
1858 * So there is no dm_queue_poll_io() race associated with
1859 * clearing REQ_DM_POLL_LIST here.
1861 bio->bi_opf &= ~REQ_DM_POLL_LIST;
1862 bio->bi_private = list->data;
1864 for (curr = list, next = curr->next; curr; curr = next, next =
1865 curr ? curr->next : NULL) {
1866 if (dm_poll_dm_io(curr, iob, flags)) {
1868 * clone_endio() has already occurred, so no
1869 * error handling is needed here.
1871 __dm_io_dec_pending(curr);
1880 bio->bi_opf |= REQ_DM_POLL_LIST;
1881 /* Reset bio->bi_private to dm_io list head */
1888 /*-----------------------------------------------------------------
1889 * An IDR is used to keep track of allocated minor numbers.
1890 *---------------------------------------------------------------*/
1891 static void free_minor(int minor)
1893 spin_lock(&_minor_lock);
1894 idr_remove(&_minor_idr, minor);
1895 spin_unlock(&_minor_lock);
1899 * See if the device with a specific minor # is free.
1901 static int specific_minor(int minor)
1905 if (minor >= (1 << MINORBITS))
1908 idr_preload(GFP_KERNEL);
1909 spin_lock(&_minor_lock);
1911 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1913 spin_unlock(&_minor_lock);
1916 return r == -ENOSPC ? -EBUSY : r;
1920 static int next_free_minor(int *minor)
1924 idr_preload(GFP_KERNEL);
1925 spin_lock(&_minor_lock);
1927 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1929 spin_unlock(&_minor_lock);
1937 static const struct block_device_operations dm_blk_dops;
1938 static const struct block_device_operations dm_rq_blk_dops;
1939 static const struct dax_operations dm_dax_ops;
1941 static void dm_wq_work(struct work_struct *work);
1943 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1944 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1946 dm_destroy_crypto_profile(q->crypto_profile);
1949 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1951 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1954 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1956 static void cleanup_mapped_device(struct mapped_device *md)
1959 destroy_workqueue(md->wq);
1960 dm_free_md_mempools(md->mempools);
1963 dax_remove_host(md->disk);
1964 kill_dax(md->dax_dev);
1965 put_dax(md->dax_dev);
1969 dm_cleanup_zoned_dev(md);
1971 spin_lock(&_minor_lock);
1972 md->disk->private_data = NULL;
1973 spin_unlock(&_minor_lock);
1974 if (dm_get_md_type(md) != DM_TYPE_NONE) {
1976 del_gendisk(md->disk);
1978 dm_queue_destroy_crypto_profile(md->queue);
1982 if (md->pending_io) {
1983 free_percpu(md->pending_io);
1984 md->pending_io = NULL;
1987 cleanup_srcu_struct(&md->io_barrier);
1989 mutex_destroy(&md->suspend_lock);
1990 mutex_destroy(&md->type_lock);
1991 mutex_destroy(&md->table_devices_lock);
1992 mutex_destroy(&md->swap_bios_lock);
1994 dm_mq_cleanup_mapped_device(md);
1998 * Allocate and initialise a blank device with a given minor.
2000 static struct mapped_device *alloc_dev(int minor)
2002 int r, numa_node_id = dm_get_numa_node();
2003 struct mapped_device *md;
2006 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2008 DMWARN("unable to allocate device, out of memory.");
2012 if (!try_module_get(THIS_MODULE))
2013 goto bad_module_get;
2015 /* get a minor number for the dev */
2016 if (minor == DM_ANY_MINOR)
2017 r = next_free_minor(&minor);
2019 r = specific_minor(minor);
2023 r = init_srcu_struct(&md->io_barrier);
2025 goto bad_io_barrier;
2027 md->numa_node_id = numa_node_id;
2028 md->init_tio_pdu = false;
2029 md->type = DM_TYPE_NONE;
2030 mutex_init(&md->suspend_lock);
2031 mutex_init(&md->type_lock);
2032 mutex_init(&md->table_devices_lock);
2033 spin_lock_init(&md->deferred_lock);
2034 atomic_set(&md->holders, 1);
2035 atomic_set(&md->open_count, 0);
2036 atomic_set(&md->event_nr, 0);
2037 atomic_set(&md->uevent_seq, 0);
2038 INIT_LIST_HEAD(&md->uevent_list);
2039 INIT_LIST_HEAD(&md->table_devices);
2040 spin_lock_init(&md->uevent_lock);
2043 * default to bio-based until DM table is loaded and md->type
2044 * established. If request-based table is loaded: blk-mq will
2045 * override accordingly.
2047 md->disk = blk_alloc_disk(md->numa_node_id);
2050 md->queue = md->disk->queue;
2052 init_waitqueue_head(&md->wait);
2053 INIT_WORK(&md->work, dm_wq_work);
2054 INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2055 init_waitqueue_head(&md->eventq);
2056 init_completion(&md->kobj_holder.completion);
2058 md->requeue_list = NULL;
2059 md->swap_bios = get_swap_bios();
2060 sema_init(&md->swap_bios_semaphore, md->swap_bios);
2061 mutex_init(&md->swap_bios_lock);
2063 md->disk->major = _major;
2064 md->disk->first_minor = minor;
2065 md->disk->minors = 1;
2066 md->disk->flags |= GENHD_FL_NO_PART;
2067 md->disk->fops = &dm_blk_dops;
2068 md->disk->queue = md->queue;
2069 md->disk->private_data = md;
2070 sprintf(md->disk->disk_name, "dm-%d", minor);
2072 if (IS_ENABLED(CONFIG_FS_DAX)) {
2073 md->dax_dev = alloc_dax(md, &dm_dax_ops);
2074 if (IS_ERR(md->dax_dev)) {
2078 set_dax_nocache(md->dax_dev);
2079 set_dax_nomc(md->dax_dev);
2080 if (dax_add_host(md->dax_dev, md->disk))
2084 format_dev_t(md->name, MKDEV(_major, minor));
2086 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2090 md->pending_io = alloc_percpu(unsigned long);
2091 if (!md->pending_io)
2094 dm_stats_init(&md->stats);
2096 /* Populate the mapping, nobody knows we exist yet */
2097 spin_lock(&_minor_lock);
2098 old_md = idr_replace(&_minor_idr, md, minor);
2099 spin_unlock(&_minor_lock);
2101 BUG_ON(old_md != MINOR_ALLOCED);
2106 cleanup_mapped_device(md);
2110 module_put(THIS_MODULE);
2116 static void unlock_fs(struct mapped_device *md);
2118 static void free_dev(struct mapped_device *md)
2120 int minor = MINOR(disk_devt(md->disk));
2124 cleanup_mapped_device(md);
2126 free_table_devices(&md->table_devices);
2127 dm_stats_cleanup(&md->stats);
2130 module_put(THIS_MODULE);
2135 * Bind a table to the device.
2137 static void event_callback(void *context)
2139 unsigned long flags;
2141 struct mapped_device *md = (struct mapped_device *) context;
2143 spin_lock_irqsave(&md->uevent_lock, flags);
2144 list_splice_init(&md->uevent_list, &uevents);
2145 spin_unlock_irqrestore(&md->uevent_lock, flags);
2147 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2149 atomic_inc(&md->event_nr);
2150 wake_up(&md->eventq);
2151 dm_issue_global_event();
2155 * Returns old map, which caller must destroy.
2157 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2158 struct queue_limits *limits)
2160 struct dm_table *old_map;
2164 lockdep_assert_held(&md->suspend_lock);
2166 size = dm_table_get_size(t);
2169 * Wipe any geometry if the size of the table changed.
2171 if (size != dm_get_size(md))
2172 memset(&md->geometry, 0, sizeof(md->geometry));
2174 if (!get_capacity(md->disk))
2175 set_capacity(md->disk, size);
2177 set_capacity_and_notify(md->disk, size);
2179 dm_table_event_callback(t, event_callback, md);
2181 if (dm_table_request_based(t)) {
2183 * Leverage the fact that request-based DM targets are
2184 * immutable singletons - used to optimize dm_mq_queue_rq.
2186 md->immutable_target = dm_table_get_immutable_target(t);
2189 * There is no need to reload with request-based dm because the
2190 * size of front_pad doesn't change.
2192 * Note for future: If you are to reload bioset, prep-ed
2193 * requests in the queue may refer to bio from the old bioset,
2194 * so you must walk through the queue to unprep.
2196 if (!md->mempools) {
2197 md->mempools = t->mempools;
2202 * The md may already have mempools that need changing.
2203 * If so, reload bioset because front_pad may have changed
2204 * because a different table was loaded.
2206 dm_free_md_mempools(md->mempools);
2207 md->mempools = t->mempools;
2211 ret = dm_table_set_restrictions(t, md->queue, limits);
2213 old_map = ERR_PTR(ret);
2217 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2218 rcu_assign_pointer(md->map, (void *)t);
2219 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2228 * Returns unbound table for the caller to free.
2230 static struct dm_table *__unbind(struct mapped_device *md)
2232 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2237 dm_table_event_callback(map, NULL, NULL);
2238 RCU_INIT_POINTER(md->map, NULL);
2245 * Constructor for a new device.
2247 int dm_create(int minor, struct mapped_device **result)
2249 struct mapped_device *md;
2251 md = alloc_dev(minor);
2255 dm_ima_reset_data(md);
2262 * Functions to manage md->type.
2263 * All are required to hold md->type_lock.
2265 void dm_lock_md_type(struct mapped_device *md)
2267 mutex_lock(&md->type_lock);
2270 void dm_unlock_md_type(struct mapped_device *md)
2272 mutex_unlock(&md->type_lock);
2275 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2277 BUG_ON(!mutex_is_locked(&md->type_lock));
2281 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2286 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2288 return md->immutable_target_type;
2292 * The queue_limits are only valid as long as you have a reference
2295 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2297 BUG_ON(!atomic_read(&md->holders));
2298 return &md->queue->limits;
2300 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2303 * Setup the DM device's queue based on md's type
2305 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2307 enum dm_queue_mode type = dm_table_get_type(t);
2308 struct queue_limits limits;
2312 case DM_TYPE_REQUEST_BASED:
2313 md->disk->fops = &dm_rq_blk_dops;
2314 r = dm_mq_init_request_queue(md, t);
2316 DMERR("Cannot initialize queue for request-based dm mapped device");
2320 case DM_TYPE_BIO_BASED:
2321 case DM_TYPE_DAX_BIO_BASED:
2328 r = dm_calculate_queue_limits(t, &limits);
2330 DMERR("Cannot calculate initial queue limits");
2333 r = dm_table_set_restrictions(t, md->queue, &limits);
2337 r = add_disk(md->disk);
2341 r = dm_sysfs_init(md);
2343 del_gendisk(md->disk);
2350 struct mapped_device *dm_get_md(dev_t dev)
2352 struct mapped_device *md;
2353 unsigned minor = MINOR(dev);
2355 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2358 spin_lock(&_minor_lock);
2360 md = idr_find(&_minor_idr, minor);
2361 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2362 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2368 spin_unlock(&_minor_lock);
2372 EXPORT_SYMBOL_GPL(dm_get_md);
2374 void *dm_get_mdptr(struct mapped_device *md)
2376 return md->interface_ptr;
2379 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2381 md->interface_ptr = ptr;
2384 void dm_get(struct mapped_device *md)
2386 atomic_inc(&md->holders);
2387 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2390 int dm_hold(struct mapped_device *md)
2392 spin_lock(&_minor_lock);
2393 if (test_bit(DMF_FREEING, &md->flags)) {
2394 spin_unlock(&_minor_lock);
2398 spin_unlock(&_minor_lock);
2401 EXPORT_SYMBOL_GPL(dm_hold);
2403 const char *dm_device_name(struct mapped_device *md)
2407 EXPORT_SYMBOL_GPL(dm_device_name);
2409 static void __dm_destroy(struct mapped_device *md, bool wait)
2411 struct dm_table *map;
2416 spin_lock(&_minor_lock);
2417 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2418 set_bit(DMF_FREEING, &md->flags);
2419 spin_unlock(&_minor_lock);
2421 blk_mark_disk_dead(md->disk);
2424 * Take suspend_lock so that presuspend and postsuspend methods
2425 * do not race with internal suspend.
2427 mutex_lock(&md->suspend_lock);
2428 map = dm_get_live_table(md, &srcu_idx);
2429 if (!dm_suspended_md(md)) {
2430 dm_table_presuspend_targets(map);
2431 set_bit(DMF_SUSPENDED, &md->flags);
2432 set_bit(DMF_POST_SUSPENDING, &md->flags);
2433 dm_table_postsuspend_targets(map);
2435 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2436 dm_put_live_table(md, srcu_idx);
2437 mutex_unlock(&md->suspend_lock);
2440 * Rare, but there may be I/O requests still going to complete,
2441 * for example. Wait for all references to disappear.
2442 * No one should increment the reference count of the mapped_device,
2443 * after the mapped_device state becomes DMF_FREEING.
2446 while (atomic_read(&md->holders))
2448 else if (atomic_read(&md->holders))
2449 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2450 dm_device_name(md), atomic_read(&md->holders));
2452 dm_table_destroy(__unbind(md));
2456 void dm_destroy(struct mapped_device *md)
2458 __dm_destroy(md, true);
2461 void dm_destroy_immediate(struct mapped_device *md)
2463 __dm_destroy(md, false);
2466 void dm_put(struct mapped_device *md)
2468 atomic_dec(&md->holders);
2470 EXPORT_SYMBOL_GPL(dm_put);
2472 static bool dm_in_flight_bios(struct mapped_device *md)
2475 unsigned long sum = 0;
2477 for_each_possible_cpu(cpu)
2478 sum += *per_cpu_ptr(md->pending_io, cpu);
2483 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2489 prepare_to_wait(&md->wait, &wait, task_state);
2491 if (!dm_in_flight_bios(md))
2494 if (signal_pending_state(task_state, current)) {
2501 finish_wait(&md->wait, &wait);
2508 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2512 if (!queue_is_mq(md->queue))
2513 return dm_wait_for_bios_completion(md, task_state);
2516 if (!blk_mq_queue_inflight(md->queue))
2519 if (signal_pending_state(task_state, current)) {
2531 * Process the deferred bios
2533 static void dm_wq_work(struct work_struct *work)
2535 struct mapped_device *md = container_of(work, struct mapped_device, work);
2538 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2539 spin_lock_irq(&md->deferred_lock);
2540 bio = bio_list_pop(&md->deferred);
2541 spin_unlock_irq(&md->deferred_lock);
2546 submit_bio_noacct(bio);
2550 static void dm_queue_flush(struct mapped_device *md)
2552 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2553 smp_mb__after_atomic();
2554 queue_work(md->wq, &md->work);
2558 * Swap in a new table, returning the old one for the caller to destroy.
2560 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2562 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2563 struct queue_limits limits;
2566 mutex_lock(&md->suspend_lock);
2568 /* device must be suspended */
2569 if (!dm_suspended_md(md))
2573 * If the new table has no data devices, retain the existing limits.
2574 * This helps multipath with queue_if_no_path if all paths disappear,
2575 * then new I/O is queued based on these limits, and then some paths
2578 if (dm_table_has_no_data_devices(table)) {
2579 live_map = dm_get_live_table_fast(md);
2581 limits = md->queue->limits;
2582 dm_put_live_table_fast(md);
2586 r = dm_calculate_queue_limits(table, &limits);
2593 map = __bind(md, table, &limits);
2594 dm_issue_global_event();
2597 mutex_unlock(&md->suspend_lock);
2602 * Functions to lock and unlock any filesystem running on the
2605 static int lock_fs(struct mapped_device *md)
2609 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2611 r = freeze_bdev(md->disk->part0);
2613 set_bit(DMF_FROZEN, &md->flags);
2617 static void unlock_fs(struct mapped_device *md)
2619 if (!test_bit(DMF_FROZEN, &md->flags))
2621 thaw_bdev(md->disk->part0);
2622 clear_bit(DMF_FROZEN, &md->flags);
2626 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2627 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2628 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2630 * If __dm_suspend returns 0, the device is completely quiescent
2631 * now. There is no request-processing activity. All new requests
2632 * are being added to md->deferred list.
2634 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2635 unsigned suspend_flags, unsigned int task_state,
2636 int dmf_suspended_flag)
2638 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2639 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2642 lockdep_assert_held(&md->suspend_lock);
2645 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2646 * This flag is cleared before dm_suspend returns.
2649 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2651 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2654 * This gets reverted if there's an error later and the targets
2655 * provide the .presuspend_undo hook.
2657 dm_table_presuspend_targets(map);
2660 * Flush I/O to the device.
2661 * Any I/O submitted after lock_fs() may not be flushed.
2662 * noflush takes precedence over do_lockfs.
2663 * (lock_fs() flushes I/Os and waits for them to complete.)
2665 if (!noflush && do_lockfs) {
2668 dm_table_presuspend_undo_targets(map);
2674 * Here we must make sure that no processes are submitting requests
2675 * to target drivers i.e. no one may be executing
2676 * dm_split_and_process_bio from dm_submit_bio.
2678 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2679 * we take the write lock. To prevent any process from reentering
2680 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2681 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2682 * flush_workqueue(md->wq).
2684 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2686 synchronize_srcu(&md->io_barrier);
2689 * Stop md->queue before flushing md->wq in case request-based
2690 * dm defers requests to md->wq from md->queue.
2692 if (dm_request_based(md))
2693 dm_stop_queue(md->queue);
2695 flush_workqueue(md->wq);
2698 * At this point no more requests are entering target request routines.
2699 * We call dm_wait_for_completion to wait for all existing requests
2702 r = dm_wait_for_completion(md, task_state);
2704 set_bit(dmf_suspended_flag, &md->flags);
2707 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2709 synchronize_srcu(&md->io_barrier);
2711 /* were we interrupted ? */
2715 if (dm_request_based(md))
2716 dm_start_queue(md->queue);
2719 dm_table_presuspend_undo_targets(map);
2720 /* pushback list is already flushed, so skip flush */
2727 * We need to be able to change a mapping table under a mounted
2728 * filesystem. For example we might want to move some data in
2729 * the background. Before the table can be swapped with
2730 * dm_bind_table, dm_suspend must be called to flush any in
2731 * flight bios and ensure that any further io gets deferred.
2734 * Suspend mechanism in request-based dm.
2736 * 1. Flush all I/Os by lock_fs() if needed.
2737 * 2. Stop dispatching any I/O by stopping the request_queue.
2738 * 3. Wait for all in-flight I/Os to be completed or requeued.
2740 * To abort suspend, start the request_queue.
2742 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2744 struct dm_table *map = NULL;
2748 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2750 if (dm_suspended_md(md)) {
2755 if (dm_suspended_internally_md(md)) {
2756 /* already internally suspended, wait for internal resume */
2757 mutex_unlock(&md->suspend_lock);
2758 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2764 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2766 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2770 set_bit(DMF_POST_SUSPENDING, &md->flags);
2771 dm_table_postsuspend_targets(map);
2772 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2775 mutex_unlock(&md->suspend_lock);
2779 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2782 int r = dm_table_resume_targets(map);
2790 * Flushing deferred I/Os must be done after targets are resumed
2791 * so that mapping of targets can work correctly.
2792 * Request-based dm is queueing the deferred I/Os in its request_queue.
2794 if (dm_request_based(md))
2795 dm_start_queue(md->queue);
2802 int dm_resume(struct mapped_device *md)
2805 struct dm_table *map = NULL;
2809 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2811 if (!dm_suspended_md(md))
2814 if (dm_suspended_internally_md(md)) {
2815 /* already internally suspended, wait for internal resume */
2816 mutex_unlock(&md->suspend_lock);
2817 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2823 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2824 if (!map || !dm_table_get_size(map))
2827 r = __dm_resume(md, map);
2831 clear_bit(DMF_SUSPENDED, &md->flags);
2833 mutex_unlock(&md->suspend_lock);
2839 * Internal suspend/resume works like userspace-driven suspend. It waits
2840 * until all bios finish and prevents issuing new bios to the target drivers.
2841 * It may be used only from the kernel.
2844 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2846 struct dm_table *map = NULL;
2848 lockdep_assert_held(&md->suspend_lock);
2850 if (md->internal_suspend_count++)
2851 return; /* nested internal suspend */
2853 if (dm_suspended_md(md)) {
2854 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2855 return; /* nest suspend */
2858 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2861 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2862 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2863 * would require changing .presuspend to return an error -- avoid this
2864 * until there is a need for more elaborate variants of internal suspend.
2866 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2867 DMF_SUSPENDED_INTERNALLY);
2869 set_bit(DMF_POST_SUSPENDING, &md->flags);
2870 dm_table_postsuspend_targets(map);
2871 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2874 static void __dm_internal_resume(struct mapped_device *md)
2876 BUG_ON(!md->internal_suspend_count);
2878 if (--md->internal_suspend_count)
2879 return; /* resume from nested internal suspend */
2881 if (dm_suspended_md(md))
2882 goto done; /* resume from nested suspend */
2885 * NOTE: existing callers don't need to call dm_table_resume_targets
2886 * (which may fail -- so best to avoid it for now by passing NULL map)
2888 (void) __dm_resume(md, NULL);
2891 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2892 smp_mb__after_atomic();
2893 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2896 void dm_internal_suspend_noflush(struct mapped_device *md)
2898 mutex_lock(&md->suspend_lock);
2899 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2900 mutex_unlock(&md->suspend_lock);
2902 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2904 void dm_internal_resume(struct mapped_device *md)
2906 mutex_lock(&md->suspend_lock);
2907 __dm_internal_resume(md);
2908 mutex_unlock(&md->suspend_lock);
2910 EXPORT_SYMBOL_GPL(dm_internal_resume);
2913 * Fast variants of internal suspend/resume hold md->suspend_lock,
2914 * which prevents interaction with userspace-driven suspend.
2917 void dm_internal_suspend_fast(struct mapped_device *md)
2919 mutex_lock(&md->suspend_lock);
2920 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2923 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2924 synchronize_srcu(&md->io_barrier);
2925 flush_workqueue(md->wq);
2926 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2928 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2930 void dm_internal_resume_fast(struct mapped_device *md)
2932 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2938 mutex_unlock(&md->suspend_lock);
2940 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2942 /*-----------------------------------------------------------------
2943 * Event notification.
2944 *---------------------------------------------------------------*/
2945 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2950 char udev_cookie[DM_COOKIE_LENGTH];
2951 char *envp[] = { udev_cookie, NULL };
2953 noio_flag = memalloc_noio_save();
2956 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2958 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2959 DM_COOKIE_ENV_VAR_NAME, cookie);
2960 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2964 memalloc_noio_restore(noio_flag);
2969 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2971 return atomic_add_return(1, &md->uevent_seq);
2974 uint32_t dm_get_event_nr(struct mapped_device *md)
2976 return atomic_read(&md->event_nr);
2979 int dm_wait_event(struct mapped_device *md, int event_nr)
2981 return wait_event_interruptible(md->eventq,
2982 (event_nr != atomic_read(&md->event_nr)));
2985 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2987 unsigned long flags;
2989 spin_lock_irqsave(&md->uevent_lock, flags);
2990 list_add(elist, &md->uevent_list);
2991 spin_unlock_irqrestore(&md->uevent_lock, flags);
2995 * The gendisk is only valid as long as you have a reference
2998 struct gendisk *dm_disk(struct mapped_device *md)
3002 EXPORT_SYMBOL_GPL(dm_disk);
3004 struct kobject *dm_kobject(struct mapped_device *md)
3006 return &md->kobj_holder.kobj;
3009 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3011 struct mapped_device *md;
3013 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3015 spin_lock(&_minor_lock);
3016 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3022 spin_unlock(&_minor_lock);
3027 int dm_suspended_md(struct mapped_device *md)
3029 return test_bit(DMF_SUSPENDED, &md->flags);
3032 static int dm_post_suspending_md(struct mapped_device *md)
3034 return test_bit(DMF_POST_SUSPENDING, &md->flags);
3037 int dm_suspended_internally_md(struct mapped_device *md)
3039 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3042 int dm_test_deferred_remove_flag(struct mapped_device *md)
3044 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3047 int dm_suspended(struct dm_target *ti)
3049 return dm_suspended_md(ti->table->md);
3051 EXPORT_SYMBOL_GPL(dm_suspended);
3053 int dm_post_suspending(struct dm_target *ti)
3055 return dm_post_suspending_md(ti->table->md);
3057 EXPORT_SYMBOL_GPL(dm_post_suspending);
3059 int dm_noflush_suspending(struct dm_target *ti)
3061 return __noflush_suspending(ti->table->md);
3063 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3065 void dm_free_md_mempools(struct dm_md_mempools *pools)
3070 bioset_exit(&pools->bs);
3071 bioset_exit(&pools->io_bs);
3086 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3089 struct mapped_device *md = bdev->bd_disk->private_data;
3090 struct dm_table *table;
3091 struct dm_target *ti;
3092 int ret = -ENOTTY, srcu_idx;
3094 table = dm_get_live_table(md, &srcu_idx);
3095 if (!table || !dm_table_get_size(table))
3098 /* We only support devices that have a single target */
3099 if (table->num_targets != 1)
3101 ti = dm_table_get_target(table, 0);
3103 if (dm_suspended_md(md)) {
3109 if (!ti->type->iterate_devices)
3112 ti->type->iterate_devices(ti, fn, pr);
3115 dm_put_live_table(md, srcu_idx);
3120 * For register / unregister we need to manually call out to every path.
3122 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3123 sector_t start, sector_t len, void *data)
3125 struct dm_pr *pr = data;
3126 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3129 if (!ops || !ops->pr_register) {
3130 pr->ret = -EOPNOTSUPP;
3134 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3147 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3159 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3161 /* Didn't even get to register a path */
3172 /* unregister all paths if we failed to register any path */
3173 pr.old_key = new_key;
3176 pr.fail_early = false;
3177 (void) dm_call_pr(bdev, __dm_pr_register, &pr);
3182 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3183 sector_t start, sector_t len, void *data)
3185 struct dm_pr *pr = data;
3186 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3188 if (!ops || !ops->pr_reserve) {
3189 pr->ret = -EOPNOTSUPP;
3193 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3200 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3207 .fail_early = false,
3212 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3220 * If there is a non-All Registrants type of reservation, the release must be
3221 * sent down the holding path. For the cases where there is no reservation or
3222 * the path is not the holder the device will also return success, so we must
3223 * try each path to make sure we got the correct path.
3225 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3226 sector_t start, sector_t len, void *data)
3228 struct dm_pr *pr = data;
3229 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3231 if (!ops || !ops->pr_release) {
3232 pr->ret = -EOPNOTSUPP;
3236 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3243 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3248 .fail_early = false,
3252 ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3259 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3260 sector_t start, sector_t len, void *data)
3262 struct dm_pr *pr = data;
3263 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3265 if (!ops || !ops->pr_preempt) {
3266 pr->ret = -EOPNOTSUPP;
3270 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3278 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3279 enum pr_type type, bool abort)
3285 .fail_early = false,
3289 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3296 static int dm_pr_clear(struct block_device *bdev, u64 key)
3298 struct mapped_device *md = bdev->bd_disk->private_data;
3299 const struct pr_ops *ops;
3302 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3306 ops = bdev->bd_disk->fops->pr_ops;
3307 if (ops && ops->pr_clear)
3308 r = ops->pr_clear(bdev, key);
3312 dm_unprepare_ioctl(md, srcu_idx);
3316 static const struct pr_ops dm_pr_ops = {
3317 .pr_register = dm_pr_register,
3318 .pr_reserve = dm_pr_reserve,
3319 .pr_release = dm_pr_release,
3320 .pr_preempt = dm_pr_preempt,
3321 .pr_clear = dm_pr_clear,
3324 static const struct block_device_operations dm_blk_dops = {
3325 .submit_bio = dm_submit_bio,
3326 .poll_bio = dm_poll_bio,
3327 .open = dm_blk_open,
3328 .release = dm_blk_close,
3329 .ioctl = dm_blk_ioctl,
3330 .getgeo = dm_blk_getgeo,
3331 .report_zones = dm_blk_report_zones,
3332 .pr_ops = &dm_pr_ops,
3333 .owner = THIS_MODULE
3336 static const struct block_device_operations dm_rq_blk_dops = {
3337 .open = dm_blk_open,
3338 .release = dm_blk_close,
3339 .ioctl = dm_blk_ioctl,
3340 .getgeo = dm_blk_getgeo,
3341 .pr_ops = &dm_pr_ops,
3342 .owner = THIS_MODULE
3345 static const struct dax_operations dm_dax_ops = {
3346 .direct_access = dm_dax_direct_access,
3347 .zero_page_range = dm_dax_zero_page_range,
3348 .recovery_write = dm_dax_recovery_write,
3354 module_init(dm_init);
3355 module_exit(dm_exit);
3357 module_param(major, uint, 0);
3358 MODULE_PARM_DESC(major, "The major number of the device mapper");
3360 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3361 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3363 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3364 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3366 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3367 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3369 MODULE_DESCRIPTION(DM_NAME " driver");
3370 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3371 MODULE_LICENSE("GPL");