2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
23 #include <trace/events/block.h>
25 #define DM_MSG_PREFIX "core"
29 * ratelimit state to be used in DMXXX_LIMIT().
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 DEFAULT_RATELIMIT_INTERVAL,
33 DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
44 static const char *_name = DM_NAME;
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
49 static DEFINE_IDR(_minor_idr);
51 static DEFINE_SPINLOCK(_minor_lock);
54 * One of these is allocated per bio.
57 struct mapped_device *md;
61 unsigned long start_time;
62 spinlock_t endio_lock;
66 * For request-based dm.
67 * One of these is allocated per request.
69 struct dm_rq_target_io {
70 struct mapped_device *md;
72 struct request *orig, clone;
78 * For request-based dm - the bio clones we allocate are embedded in these
81 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
82 * the bioset is created - this means the bio has to come at the end of the
85 struct dm_rq_clone_bio_info {
87 struct dm_rq_target_io *tio;
91 union map_info *dm_get_mapinfo(struct bio *bio)
93 if (bio && bio->bi_private)
94 return &((struct dm_target_io *)bio->bi_private)->info;
98 union map_info *dm_get_rq_mapinfo(struct request *rq)
100 if (rq && rq->end_io_data)
101 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
104 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
106 #define MINOR_ALLOCED ((void *)-1)
109 * Bits for the md->flags field.
111 #define DMF_BLOCK_IO_FOR_SUSPEND 0
112 #define DMF_SUSPENDED 1
114 #define DMF_FREEING 3
115 #define DMF_DELETING 4
116 #define DMF_NOFLUSH_SUSPENDING 5
117 #define DMF_MERGE_IS_OPTIONAL 6
120 * Work processed by per-device workqueue.
122 struct mapped_device {
123 struct rw_semaphore io_lock;
124 struct mutex suspend_lock;
131 struct request_queue *queue;
133 /* Protect queue and type against concurrent access. */
134 struct mutex type_lock;
136 struct target_type *immutable_target_type;
138 struct gendisk *disk;
144 * A list of ios that arrived while we were suspended.
147 wait_queue_head_t wait;
148 struct work_struct work;
149 struct bio_list deferred;
150 spinlock_t deferred_lock;
153 * Processing queue (flush)
155 struct workqueue_struct *wq;
158 * The current mapping.
160 struct dm_table *map;
163 * io objects are allocated from here.
174 wait_queue_head_t eventq;
176 struct list_head uevent_list;
177 spinlock_t uevent_lock; /* Protect access to uevent_list */
180 * freeze/thaw support require holding onto a super block
182 struct super_block *frozen_sb;
183 struct block_device *bdev;
185 /* forced geometry settings */
186 struct hd_geometry geometry;
191 /* zero-length flush that will be cloned and submitted to targets */
192 struct bio flush_bio;
196 * For mempools pre-allocation at the table loading time.
198 struct dm_md_mempools {
205 static struct kmem_cache *_io_cache;
206 static struct kmem_cache *_rq_tio_cache;
209 * Unused now, and needs to be deleted. But since io_pool is overloaded and it's
210 * still used for _io_cache, I'm leaving this for a later cleanup
212 static struct kmem_cache *_rq_bio_info_cache;
214 static int __init local_init(void)
218 /* allocate a slab for the dm_ios */
219 _io_cache = KMEM_CACHE(dm_io, 0);
223 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
225 goto out_free_io_cache;
227 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
228 if (!_rq_bio_info_cache)
229 goto out_free_rq_tio_cache;
231 r = dm_uevent_init();
233 goto out_free_rq_bio_info_cache;
236 r = register_blkdev(_major, _name);
238 goto out_uevent_exit;
247 out_free_rq_bio_info_cache:
248 kmem_cache_destroy(_rq_bio_info_cache);
249 out_free_rq_tio_cache:
250 kmem_cache_destroy(_rq_tio_cache);
252 kmem_cache_destroy(_io_cache);
257 static void local_exit(void)
259 kmem_cache_destroy(_rq_bio_info_cache);
260 kmem_cache_destroy(_rq_tio_cache);
261 kmem_cache_destroy(_io_cache);
262 unregister_blkdev(_major, _name);
267 DMINFO("cleaned up");
270 static int (*_inits[])(void) __initdata = {
280 static void (*_exits[])(void) = {
290 static int __init dm_init(void)
292 const int count = ARRAY_SIZE(_inits);
296 for (i = 0; i < count; i++) {
311 static void __exit dm_exit(void)
313 int i = ARRAY_SIZE(_exits);
319 * Should be empty by this point.
321 idr_remove_all(&_minor_idr);
322 idr_destroy(&_minor_idr);
326 * Block device functions
328 int dm_deleting_md(struct mapped_device *md)
330 return test_bit(DMF_DELETING, &md->flags);
333 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
335 struct mapped_device *md;
337 spin_lock(&_minor_lock);
339 md = bdev->bd_disk->private_data;
343 if (test_bit(DMF_FREEING, &md->flags) ||
344 dm_deleting_md(md)) {
350 atomic_inc(&md->open_count);
353 spin_unlock(&_minor_lock);
355 return md ? 0 : -ENXIO;
358 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
360 struct mapped_device *md = disk->private_data;
362 spin_lock(&_minor_lock);
364 atomic_dec(&md->open_count);
367 spin_unlock(&_minor_lock);
372 int dm_open_count(struct mapped_device *md)
374 return atomic_read(&md->open_count);
378 * Guarantees nothing is using the device before it's deleted.
380 int dm_lock_for_deletion(struct mapped_device *md)
384 spin_lock(&_minor_lock);
386 if (dm_open_count(md))
389 set_bit(DMF_DELETING, &md->flags);
391 spin_unlock(&_minor_lock);
396 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
398 struct mapped_device *md = bdev->bd_disk->private_data;
400 return dm_get_geometry(md, geo);
403 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
404 unsigned int cmd, unsigned long arg)
406 struct mapped_device *md = bdev->bd_disk->private_data;
407 struct dm_table *map = dm_get_live_table(md);
408 struct dm_target *tgt;
411 if (!map || !dm_table_get_size(map))
414 /* We only support devices that have a single target */
415 if (dm_table_get_num_targets(map) != 1)
418 tgt = dm_table_get_target(map, 0);
420 if (dm_suspended_md(md)) {
425 if (tgt->type->ioctl)
426 r = tgt->type->ioctl(tgt, cmd, arg);
434 static struct dm_io *alloc_io(struct mapped_device *md)
436 return mempool_alloc(md->io_pool, GFP_NOIO);
439 static void free_io(struct mapped_device *md, struct dm_io *io)
441 mempool_free(io, md->io_pool);
444 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
446 bio_put(&tio->clone);
449 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
452 return mempool_alloc(md->tio_pool, gfp_mask);
455 static void free_rq_tio(struct dm_rq_target_io *tio)
457 mempool_free(tio, tio->md->tio_pool);
460 static int md_in_flight(struct mapped_device *md)
462 return atomic_read(&md->pending[READ]) +
463 atomic_read(&md->pending[WRITE]);
466 static void start_io_acct(struct dm_io *io)
468 struct mapped_device *md = io->md;
470 int rw = bio_data_dir(io->bio);
472 io->start_time = jiffies;
474 cpu = part_stat_lock();
475 part_round_stats(cpu, &dm_disk(md)->part0);
477 atomic_set(&dm_disk(md)->part0.in_flight[rw],
478 atomic_inc_return(&md->pending[rw]));
481 static void end_io_acct(struct dm_io *io)
483 struct mapped_device *md = io->md;
484 struct bio *bio = io->bio;
485 unsigned long duration = jiffies - io->start_time;
487 int rw = bio_data_dir(bio);
489 cpu = part_stat_lock();
490 part_round_stats(cpu, &dm_disk(md)->part0);
491 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
495 * After this is decremented the bio must not be touched if it is
498 pending = atomic_dec_return(&md->pending[rw]);
499 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
500 pending += atomic_read(&md->pending[rw^0x1]);
502 /* nudge anyone waiting on suspend queue */
508 * Add the bio to the list of deferred io.
510 static void queue_io(struct mapped_device *md, struct bio *bio)
514 spin_lock_irqsave(&md->deferred_lock, flags);
515 bio_list_add(&md->deferred, bio);
516 spin_unlock_irqrestore(&md->deferred_lock, flags);
517 queue_work(md->wq, &md->work);
521 * Everyone (including functions in this file), should use this
522 * function to access the md->map field, and make sure they call
523 * dm_table_put() when finished.
525 struct dm_table *dm_get_live_table(struct mapped_device *md)
530 read_lock_irqsave(&md->map_lock, flags);
534 read_unlock_irqrestore(&md->map_lock, flags);
540 * Get the geometry associated with a dm device
542 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
550 * Set the geometry of a device.
552 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
554 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
556 if (geo->start > sz) {
557 DMWARN("Start sector is beyond the geometry limits.");
566 /*-----------------------------------------------------------------
568 * A more elegant soln is in the works that uses the queue
569 * merge fn, unfortunately there are a couple of changes to
570 * the block layer that I want to make for this. So in the
571 * interests of getting something for people to use I give
572 * you this clearly demarcated crap.
573 *---------------------------------------------------------------*/
575 static int __noflush_suspending(struct mapped_device *md)
577 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
581 * Decrements the number of outstanding ios that a bio has been
582 * cloned into, completing the original io if necc.
584 static void dec_pending(struct dm_io *io, int error)
589 struct mapped_device *md = io->md;
591 /* Push-back supersedes any I/O errors */
592 if (unlikely(error)) {
593 spin_lock_irqsave(&io->endio_lock, flags);
594 if (!(io->error > 0 && __noflush_suspending(md)))
596 spin_unlock_irqrestore(&io->endio_lock, flags);
599 if (atomic_dec_and_test(&io->io_count)) {
600 if (io->error == DM_ENDIO_REQUEUE) {
602 * Target requested pushing back the I/O.
604 spin_lock_irqsave(&md->deferred_lock, flags);
605 if (__noflush_suspending(md))
606 bio_list_add_head(&md->deferred, io->bio);
608 /* noflush suspend was interrupted. */
610 spin_unlock_irqrestore(&md->deferred_lock, flags);
613 io_error = io->error;
618 if (io_error == DM_ENDIO_REQUEUE)
621 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
623 * Preflush done for flush with data, reissue
626 bio->bi_rw &= ~REQ_FLUSH;
629 /* done with normal IO or empty flush */
630 trace_block_bio_complete(md->queue, bio, io_error);
631 bio_endio(bio, io_error);
636 static void clone_endio(struct bio *bio, int error)
639 struct dm_target_io *tio = bio->bi_private;
640 struct dm_io *io = tio->io;
641 struct mapped_device *md = tio->io->md;
642 dm_endio_fn endio = tio->ti->type->end_io;
644 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
648 r = endio(tio->ti, bio, error);
649 if (r < 0 || r == DM_ENDIO_REQUEUE)
651 * error and requeue request are handled
655 else if (r == DM_ENDIO_INCOMPLETE)
656 /* The target will handle the io */
659 DMWARN("unimplemented target endio return value: %d", r);
665 dec_pending(io, error);
669 * Partial completion handling for request-based dm
671 static void end_clone_bio(struct bio *clone, int error)
673 struct dm_rq_clone_bio_info *info = clone->bi_private;
674 struct dm_rq_target_io *tio = info->tio;
675 struct bio *bio = info->orig;
676 unsigned int nr_bytes = info->orig->bi_size;
682 * An error has already been detected on the request.
683 * Once error occurred, just let clone->end_io() handle
689 * Don't notice the error to the upper layer yet.
690 * The error handling decision is made by the target driver,
691 * when the request is completed.
698 * I/O for the bio successfully completed.
699 * Notice the data completion to the upper layer.
703 * bios are processed from the head of the list.
704 * So the completing bio should always be rq->bio.
705 * If it's not, something wrong is happening.
707 if (tio->orig->bio != bio)
708 DMERR("bio completion is going in the middle of the request");
711 * Update the original request.
712 * Do not use blk_end_request() here, because it may complete
713 * the original request before the clone, and break the ordering.
715 blk_update_request(tio->orig, 0, nr_bytes);
719 * Don't touch any member of the md after calling this function because
720 * the md may be freed in dm_put() at the end of this function.
721 * Or do dm_get() before calling this function and dm_put() later.
723 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
725 atomic_dec(&md->pending[rw]);
727 /* nudge anyone waiting on suspend queue */
728 if (!md_in_flight(md))
732 * Run this off this callpath, as drivers could invoke end_io while
733 * inside their request_fn (and holding the queue lock). Calling
734 * back into ->request_fn() could deadlock attempting to grab the
738 blk_run_queue_async(md->queue);
741 * dm_put() must be at the end of this function. See the comment above
746 static void free_rq_clone(struct request *clone)
748 struct dm_rq_target_io *tio = clone->end_io_data;
750 blk_rq_unprep_clone(clone);
755 * Complete the clone and the original request.
756 * Must be called without queue lock.
758 static void dm_end_request(struct request *clone, int error)
760 int rw = rq_data_dir(clone);
761 struct dm_rq_target_io *tio = clone->end_io_data;
762 struct mapped_device *md = tio->md;
763 struct request *rq = tio->orig;
765 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
766 rq->errors = clone->errors;
767 rq->resid_len = clone->resid_len;
771 * We are using the sense buffer of the original
773 * So setting the length of the sense data is enough.
775 rq->sense_len = clone->sense_len;
778 free_rq_clone(clone);
779 blk_end_request_all(rq, error);
780 rq_completed(md, rw, true);
783 static void dm_unprep_request(struct request *rq)
785 struct request *clone = rq->special;
788 rq->cmd_flags &= ~REQ_DONTPREP;
790 free_rq_clone(clone);
794 * Requeue the original request of a clone.
796 void dm_requeue_unmapped_request(struct request *clone)
798 int rw = rq_data_dir(clone);
799 struct dm_rq_target_io *tio = clone->end_io_data;
800 struct mapped_device *md = tio->md;
801 struct request *rq = tio->orig;
802 struct request_queue *q = rq->q;
805 dm_unprep_request(rq);
807 spin_lock_irqsave(q->queue_lock, flags);
808 blk_requeue_request(q, rq);
809 spin_unlock_irqrestore(q->queue_lock, flags);
811 rq_completed(md, rw, 0);
813 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
815 static void __stop_queue(struct request_queue *q)
820 static void stop_queue(struct request_queue *q)
824 spin_lock_irqsave(q->queue_lock, flags);
826 spin_unlock_irqrestore(q->queue_lock, flags);
829 static void __start_queue(struct request_queue *q)
831 if (blk_queue_stopped(q))
835 static void start_queue(struct request_queue *q)
839 spin_lock_irqsave(q->queue_lock, flags);
841 spin_unlock_irqrestore(q->queue_lock, flags);
844 static void dm_done(struct request *clone, int error, bool mapped)
847 struct dm_rq_target_io *tio = clone->end_io_data;
848 dm_request_endio_fn rq_end_io = NULL;
851 rq_end_io = tio->ti->type->rq_end_io;
853 if (mapped && rq_end_io)
854 r = rq_end_io(tio->ti, clone, error, &tio->info);
858 /* The target wants to complete the I/O */
859 dm_end_request(clone, r);
860 else if (r == DM_ENDIO_INCOMPLETE)
861 /* The target will handle the I/O */
863 else if (r == DM_ENDIO_REQUEUE)
864 /* The target wants to requeue the I/O */
865 dm_requeue_unmapped_request(clone);
867 DMWARN("unimplemented target endio return value: %d", r);
873 * Request completion handler for request-based dm
875 static void dm_softirq_done(struct request *rq)
878 struct request *clone = rq->completion_data;
879 struct dm_rq_target_io *tio = clone->end_io_data;
881 if (rq->cmd_flags & REQ_FAILED)
884 dm_done(clone, tio->error, mapped);
888 * Complete the clone and the original request with the error status
889 * through softirq context.
891 static void dm_complete_request(struct request *clone, int error)
893 struct dm_rq_target_io *tio = clone->end_io_data;
894 struct request *rq = tio->orig;
897 rq->completion_data = clone;
898 blk_complete_request(rq);
902 * Complete the not-mapped clone and the original request with the error status
903 * through softirq context.
904 * Target's rq_end_io() function isn't called.
905 * This may be used when the target's map_rq() function fails.
907 void dm_kill_unmapped_request(struct request *clone, int error)
909 struct dm_rq_target_io *tio = clone->end_io_data;
910 struct request *rq = tio->orig;
912 rq->cmd_flags |= REQ_FAILED;
913 dm_complete_request(clone, error);
915 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
918 * Called with the queue lock held
920 static void end_clone_request(struct request *clone, int error)
923 * For just cleaning up the information of the queue in which
924 * the clone was dispatched.
925 * The clone is *NOT* freed actually here because it is alloced from
926 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
928 __blk_put_request(clone->q, clone);
931 * Actual request completion is done in a softirq context which doesn't
932 * hold the queue lock. Otherwise, deadlock could occur because:
933 * - another request may be submitted by the upper level driver
934 * of the stacking during the completion
935 * - the submission which requires queue lock may be done
938 dm_complete_request(clone, error);
942 * Return maximum size of I/O possible at the supplied sector up to the current
945 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
947 sector_t target_offset = dm_target_offset(ti, sector);
949 return ti->len - target_offset;
952 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
954 sector_t len = max_io_len_target_boundary(sector, ti);
955 sector_t offset, max_len;
958 * Does the target need to split even further?
960 if (ti->max_io_len) {
961 offset = dm_target_offset(ti, sector);
962 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
963 max_len = sector_div(offset, ti->max_io_len);
965 max_len = offset & (ti->max_io_len - 1);
966 max_len = ti->max_io_len - max_len;
975 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
977 if (len > UINT_MAX) {
978 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
979 (unsigned long long)len, UINT_MAX);
980 ti->error = "Maximum size of target IO is too large";
984 ti->max_io_len = (uint32_t) len;
988 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
990 static void __map_bio(struct dm_target *ti, struct dm_target_io *tio)
994 struct mapped_device *md;
995 struct bio *clone = &tio->clone;
997 clone->bi_end_io = clone_endio;
998 clone->bi_private = tio;
1001 * Map the clone. If r == 0 we don't need to do
1002 * anything, the target has assumed ownership of
1005 atomic_inc(&tio->io->io_count);
1006 sector = clone->bi_sector;
1007 r = ti->type->map(ti, clone);
1008 if (r == DM_MAPIO_REMAPPED) {
1009 /* the bio has been remapped so dispatch it */
1011 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1012 tio->io->bio->bi_bdev->bd_dev, sector);
1014 generic_make_request(clone);
1015 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1016 /* error the io and bail out, or requeue it if needed */
1018 dec_pending(tio->io, r);
1021 DMWARN("unimplemented target map return value: %d", r);
1027 struct mapped_device *md;
1028 struct dm_table *map;
1032 sector_t sector_count;
1037 * Creates a little bio that just does part of a bvec.
1039 static void split_bvec(struct dm_target_io *tio, struct bio *bio,
1040 sector_t sector, unsigned short idx, unsigned int offset,
1041 unsigned int len, struct bio_set *bs)
1043 struct bio *clone = &tio->clone;
1044 struct bio_vec *bv = bio->bi_io_vec + idx;
1046 *clone->bi_io_vec = *bv;
1048 clone->bi_sector = sector;
1049 clone->bi_bdev = bio->bi_bdev;
1050 clone->bi_rw = bio->bi_rw;
1052 clone->bi_size = to_bytes(len);
1053 clone->bi_io_vec->bv_offset = offset;
1054 clone->bi_io_vec->bv_len = clone->bi_size;
1055 clone->bi_flags |= 1 << BIO_CLONED;
1057 if (bio_integrity(bio)) {
1058 bio_integrity_clone(clone, bio, GFP_NOIO);
1059 bio_integrity_trim(clone,
1060 bio_sector_offset(bio, idx, offset), len);
1065 * Creates a bio that consists of range of complete bvecs.
1067 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1068 sector_t sector, unsigned short idx,
1069 unsigned short bv_count, unsigned int len,
1072 struct bio *clone = &tio->clone;
1074 __bio_clone(clone, bio);
1075 clone->bi_sector = sector;
1076 clone->bi_idx = idx;
1077 clone->bi_vcnt = idx + bv_count;
1078 clone->bi_size = to_bytes(len);
1079 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1081 if (bio_integrity(bio)) {
1082 bio_integrity_clone(clone, bio, GFP_NOIO);
1084 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1085 bio_integrity_trim(clone,
1086 bio_sector_offset(bio, idx, 0), len);
1090 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1091 struct dm_target *ti, int nr_iovecs)
1093 struct dm_target_io *tio;
1096 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1097 tio = container_of(clone, struct dm_target_io, clone);
1101 memset(&tio->info, 0, sizeof(tio->info));
1102 tio->target_request_nr = 0;
1107 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1108 unsigned request_nr, sector_t len)
1110 struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs);
1111 struct bio *clone = &tio->clone;
1113 tio->target_request_nr = request_nr;
1116 * Discard requests require the bio's inline iovecs be initialized.
1117 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1118 * and discard, so no need for concern about wasted bvec allocations.
1121 __bio_clone(clone, ci->bio);
1123 clone->bi_sector = ci->sector;
1124 clone->bi_size = to_bytes(len);
1130 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1131 unsigned num_requests, sector_t len)
1133 unsigned request_nr;
1135 for (request_nr = 0; request_nr < num_requests; request_nr++)
1136 __issue_target_request(ci, ti, request_nr, len);
1139 static int __clone_and_map_empty_flush(struct clone_info *ci)
1141 unsigned target_nr = 0;
1142 struct dm_target *ti;
1144 BUG_ON(bio_has_data(ci->bio));
1145 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1146 __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1152 * Perform all io with a single clone.
1154 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1156 struct bio *bio = ci->bio;
1157 struct dm_target_io *tio;
1159 tio = alloc_tio(ci, ti, bio->bi_max_vecs);
1160 clone_bio(tio, bio, ci->sector, ci->idx, bio->bi_vcnt - ci->idx,
1161 ci->sector_count, ci->md->bs);
1163 ci->sector_count = 0;
1166 typedef unsigned (*get_num_requests_fn)(struct dm_target *ti);
1168 static unsigned get_num_discard_requests(struct dm_target *ti)
1170 return ti->num_discard_requests;
1173 static unsigned get_num_write_same_requests(struct dm_target *ti)
1175 return ti->num_write_same_requests;
1178 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1180 static bool is_split_required_for_discard(struct dm_target *ti)
1182 return ti->split_discard_requests;
1185 static int __clone_and_map_changing_extent_only(struct clone_info *ci,
1186 get_num_requests_fn get_num_requests,
1187 is_split_required_fn is_split_required)
1189 struct dm_target *ti;
1191 unsigned num_requests;
1194 ti = dm_table_find_target(ci->map, ci->sector);
1195 if (!dm_target_is_valid(ti))
1199 * Even though the device advertised support for this type of
1200 * request, that does not mean every target supports it, and
1201 * reconfiguration might also have changed that since the
1202 * check was performed.
1204 num_requests = get_num_requests ? get_num_requests(ti) : 0;
1208 if (is_split_required && !is_split_required(ti))
1209 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1211 len = min(ci->sector_count, max_io_len(ci->sector, ti));
1213 __issue_target_requests(ci, ti, num_requests, len);
1216 } while (ci->sector_count -= len);
1221 static int __clone_and_map_discard(struct clone_info *ci)
1223 return __clone_and_map_changing_extent_only(ci, get_num_discard_requests,
1224 is_split_required_for_discard);
1227 static int __clone_and_map_write_same(struct clone_info *ci)
1229 return __clone_and_map_changing_extent_only(ci, get_num_write_same_requests, NULL);
1232 static int __clone_and_map(struct clone_info *ci)
1234 struct bio *bio = ci->bio;
1235 struct dm_target *ti;
1236 sector_t len = 0, max;
1237 struct dm_target_io *tio;
1239 if (unlikely(bio->bi_rw & REQ_DISCARD))
1240 return __clone_and_map_discard(ci);
1241 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1242 return __clone_and_map_write_same(ci);
1244 ti = dm_table_find_target(ci->map, ci->sector);
1245 if (!dm_target_is_valid(ti))
1248 max = max_io_len(ci->sector, ti);
1250 if (ci->sector_count <= max) {
1252 * Optimise for the simple case where we can do all of
1253 * the remaining io with a single clone.
1255 __clone_and_map_simple(ci, ti);
1257 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1259 * There are some bvecs that don't span targets.
1260 * Do as many of these as possible.
1263 sector_t remaining = max;
1266 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1267 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1269 if (bv_len > remaining)
1272 remaining -= bv_len;
1276 tio = alloc_tio(ci, ti, bio->bi_max_vecs);
1277 clone_bio(tio, bio, ci->sector, ci->idx, i - ci->idx, len,
1282 ci->sector_count -= len;
1287 * Handle a bvec that must be split between two or more targets.
1289 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1290 sector_t remaining = to_sector(bv->bv_len);
1291 unsigned int offset = 0;
1295 ti = dm_table_find_target(ci->map, ci->sector);
1296 if (!dm_target_is_valid(ti))
1299 max = max_io_len(ci->sector, ti);
1302 len = min(remaining, max);
1304 tio = alloc_tio(ci, ti, 1);
1305 split_bvec(tio, bio, ci->sector, ci->idx,
1306 bv->bv_offset + offset, len, ci->md->bs);
1311 ci->sector_count -= len;
1312 offset += to_bytes(len);
1313 } while (remaining -= len);
1322 * Split the bio into several clones and submit it to targets.
1324 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1326 struct clone_info ci;
1329 ci.map = dm_get_live_table(md);
1330 if (unlikely(!ci.map)) {
1336 ci.io = alloc_io(md);
1338 atomic_set(&ci.io->io_count, 1);
1341 spin_lock_init(&ci.io->endio_lock);
1342 ci.sector = bio->bi_sector;
1343 ci.idx = bio->bi_idx;
1345 start_io_acct(ci.io);
1346 if (bio->bi_rw & REQ_FLUSH) {
1347 ci.bio = &ci.md->flush_bio;
1348 ci.sector_count = 0;
1349 error = __clone_and_map_empty_flush(&ci);
1350 /* dec_pending submits any data associated with flush */
1353 ci.sector_count = bio_sectors(bio);
1354 while (ci.sector_count && !error)
1355 error = __clone_and_map(&ci);
1358 /* drop the extra reference count */
1359 dec_pending(ci.io, error);
1360 dm_table_put(ci.map);
1362 /*-----------------------------------------------------------------
1364 *---------------------------------------------------------------*/
1366 static int dm_merge_bvec(struct request_queue *q,
1367 struct bvec_merge_data *bvm,
1368 struct bio_vec *biovec)
1370 struct mapped_device *md = q->queuedata;
1371 struct dm_table *map = dm_get_live_table(md);
1372 struct dm_target *ti;
1373 sector_t max_sectors;
1379 ti = dm_table_find_target(map, bvm->bi_sector);
1380 if (!dm_target_is_valid(ti))
1384 * Find maximum amount of I/O that won't need splitting
1386 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1387 (sector_t) BIO_MAX_SECTORS);
1388 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1393 * merge_bvec_fn() returns number of bytes
1394 * it can accept at this offset
1395 * max is precomputed maximal io size
1397 if (max_size && ti->type->merge)
1398 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1400 * If the target doesn't support merge method and some of the devices
1401 * provided their merge_bvec method (we know this by looking at
1402 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1403 * entries. So always set max_size to 0, and the code below allows
1406 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1415 * Always allow an entire first page
1417 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1418 max_size = biovec->bv_len;
1424 * The request function that just remaps the bio built up by
1427 static void _dm_request(struct request_queue *q, struct bio *bio)
1429 int rw = bio_data_dir(bio);
1430 struct mapped_device *md = q->queuedata;
1433 down_read(&md->io_lock);
1435 cpu = part_stat_lock();
1436 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1437 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1440 /* if we're suspended, we have to queue this io for later */
1441 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1442 up_read(&md->io_lock);
1444 if (bio_rw(bio) != READA)
1451 __split_and_process_bio(md, bio);
1452 up_read(&md->io_lock);
1456 static int dm_request_based(struct mapped_device *md)
1458 return blk_queue_stackable(md->queue);
1461 static void dm_request(struct request_queue *q, struct bio *bio)
1463 struct mapped_device *md = q->queuedata;
1465 if (dm_request_based(md))
1466 blk_queue_bio(q, bio);
1468 _dm_request(q, bio);
1471 void dm_dispatch_request(struct request *rq)
1475 if (blk_queue_io_stat(rq->q))
1476 rq->cmd_flags |= REQ_IO_STAT;
1478 rq->start_time = jiffies;
1479 r = blk_insert_cloned_request(rq->q, rq);
1481 dm_complete_request(rq, r);
1483 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1485 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1488 struct dm_rq_target_io *tio = data;
1489 struct dm_rq_clone_bio_info *info =
1490 container_of(bio, struct dm_rq_clone_bio_info, clone);
1492 info->orig = bio_orig;
1494 bio->bi_end_io = end_clone_bio;
1495 bio->bi_private = info;
1500 static int setup_clone(struct request *clone, struct request *rq,
1501 struct dm_rq_target_io *tio)
1505 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1506 dm_rq_bio_constructor, tio);
1510 clone->cmd = rq->cmd;
1511 clone->cmd_len = rq->cmd_len;
1512 clone->sense = rq->sense;
1513 clone->buffer = rq->buffer;
1514 clone->end_io = end_clone_request;
1515 clone->end_io_data = tio;
1520 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1523 struct request *clone;
1524 struct dm_rq_target_io *tio;
1526 tio = alloc_rq_tio(md, gfp_mask);
1534 memset(&tio->info, 0, sizeof(tio->info));
1536 clone = &tio->clone;
1537 if (setup_clone(clone, rq, tio)) {
1547 * Called with the queue lock held.
1549 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1551 struct mapped_device *md = q->queuedata;
1552 struct request *clone;
1554 if (unlikely(rq->special)) {
1555 DMWARN("Already has something in rq->special.");
1556 return BLKPREP_KILL;
1559 clone = clone_rq(rq, md, GFP_ATOMIC);
1561 return BLKPREP_DEFER;
1563 rq->special = clone;
1564 rq->cmd_flags |= REQ_DONTPREP;
1571 * 0 : the request has been processed (not requeued)
1572 * !0 : the request has been requeued
1574 static int map_request(struct dm_target *ti, struct request *clone,
1575 struct mapped_device *md)
1577 int r, requeued = 0;
1578 struct dm_rq_target_io *tio = clone->end_io_data;
1581 r = ti->type->map_rq(ti, clone, &tio->info);
1583 case DM_MAPIO_SUBMITTED:
1584 /* The target has taken the I/O to submit by itself later */
1586 case DM_MAPIO_REMAPPED:
1587 /* The target has remapped the I/O so dispatch it */
1588 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1589 blk_rq_pos(tio->orig));
1590 dm_dispatch_request(clone);
1592 case DM_MAPIO_REQUEUE:
1593 /* The target wants to requeue the I/O */
1594 dm_requeue_unmapped_request(clone);
1599 DMWARN("unimplemented target map return value: %d", r);
1603 /* The target wants to complete the I/O */
1604 dm_kill_unmapped_request(clone, r);
1611 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1613 struct request *clone;
1615 blk_start_request(orig);
1616 clone = orig->special;
1617 atomic_inc(&md->pending[rq_data_dir(clone)]);
1620 * Hold the md reference here for the in-flight I/O.
1621 * We can't rely on the reference count by device opener,
1622 * because the device may be closed during the request completion
1623 * when all bios are completed.
1624 * See the comment in rq_completed() too.
1632 * q->request_fn for request-based dm.
1633 * Called with the queue lock held.
1635 static void dm_request_fn(struct request_queue *q)
1637 struct mapped_device *md = q->queuedata;
1638 struct dm_table *map = dm_get_live_table(md);
1639 struct dm_target *ti;
1640 struct request *rq, *clone;
1644 * For suspend, check blk_queue_stopped() and increment
1645 * ->pending within a single queue_lock not to increment the
1646 * number of in-flight I/Os after the queue is stopped in
1649 while (!blk_queue_stopped(q)) {
1650 rq = blk_peek_request(q);
1654 /* always use block 0 to find the target for flushes for now */
1656 if (!(rq->cmd_flags & REQ_FLUSH))
1657 pos = blk_rq_pos(rq);
1659 ti = dm_table_find_target(map, pos);
1660 if (!dm_target_is_valid(ti)) {
1662 * Must perform setup, that dm_done() requires,
1663 * before calling dm_kill_unmapped_request
1665 DMERR_LIMIT("request attempted access beyond the end of device");
1666 clone = dm_start_request(md, rq);
1667 dm_kill_unmapped_request(clone, -EIO);
1671 if (ti->type->busy && ti->type->busy(ti))
1674 clone = dm_start_request(md, rq);
1676 spin_unlock(q->queue_lock);
1677 if (map_request(ti, clone, md))
1680 BUG_ON(!irqs_disabled());
1681 spin_lock(q->queue_lock);
1687 BUG_ON(!irqs_disabled());
1688 spin_lock(q->queue_lock);
1691 blk_delay_queue(q, HZ / 10);
1696 int dm_underlying_device_busy(struct request_queue *q)
1698 return blk_lld_busy(q);
1700 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1702 static int dm_lld_busy(struct request_queue *q)
1705 struct mapped_device *md = q->queuedata;
1706 struct dm_table *map = dm_get_live_table(md);
1708 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1711 r = dm_table_any_busy_target(map);
1718 static int dm_any_congested(void *congested_data, int bdi_bits)
1721 struct mapped_device *md = congested_data;
1722 struct dm_table *map;
1724 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1725 map = dm_get_live_table(md);
1728 * Request-based dm cares about only own queue for
1729 * the query about congestion status of request_queue
1731 if (dm_request_based(md))
1732 r = md->queue->backing_dev_info.state &
1735 r = dm_table_any_congested(map, bdi_bits);
1744 /*-----------------------------------------------------------------
1745 * An IDR is used to keep track of allocated minor numbers.
1746 *---------------------------------------------------------------*/
1747 static void free_minor(int minor)
1749 spin_lock(&_minor_lock);
1750 idr_remove(&_minor_idr, minor);
1751 spin_unlock(&_minor_lock);
1755 * See if the device with a specific minor # is free.
1757 static int specific_minor(int minor)
1761 if (minor >= (1 << MINORBITS))
1764 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1768 spin_lock(&_minor_lock);
1770 if (idr_find(&_minor_idr, minor)) {
1775 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1780 idr_remove(&_minor_idr, m);
1786 spin_unlock(&_minor_lock);
1790 static int next_free_minor(int *minor)
1794 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1798 spin_lock(&_minor_lock);
1800 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1804 if (m >= (1 << MINORBITS)) {
1805 idr_remove(&_minor_idr, m);
1813 spin_unlock(&_minor_lock);
1817 static const struct block_device_operations dm_blk_dops;
1819 static void dm_wq_work(struct work_struct *work);
1821 static void dm_init_md_queue(struct mapped_device *md)
1824 * Request-based dm devices cannot be stacked on top of bio-based dm
1825 * devices. The type of this dm device has not been decided yet.
1826 * The type is decided at the first table loading time.
1827 * To prevent problematic device stacking, clear the queue flag
1828 * for request stacking support until then.
1830 * This queue is new, so no concurrency on the queue_flags.
1832 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1834 md->queue->queuedata = md;
1835 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1836 md->queue->backing_dev_info.congested_data = md;
1837 blk_queue_make_request(md->queue, dm_request);
1838 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1839 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1843 * Allocate and initialise a blank device with a given minor.
1845 static struct mapped_device *alloc_dev(int minor)
1848 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1852 DMWARN("unable to allocate device, out of memory.");
1856 if (!try_module_get(THIS_MODULE))
1857 goto bad_module_get;
1859 /* get a minor number for the dev */
1860 if (minor == DM_ANY_MINOR)
1861 r = next_free_minor(&minor);
1863 r = specific_minor(minor);
1867 md->type = DM_TYPE_NONE;
1868 init_rwsem(&md->io_lock);
1869 mutex_init(&md->suspend_lock);
1870 mutex_init(&md->type_lock);
1871 spin_lock_init(&md->deferred_lock);
1872 rwlock_init(&md->map_lock);
1873 atomic_set(&md->holders, 1);
1874 atomic_set(&md->open_count, 0);
1875 atomic_set(&md->event_nr, 0);
1876 atomic_set(&md->uevent_seq, 0);
1877 INIT_LIST_HEAD(&md->uevent_list);
1878 spin_lock_init(&md->uevent_lock);
1880 md->queue = blk_alloc_queue(GFP_KERNEL);
1884 dm_init_md_queue(md);
1886 md->disk = alloc_disk(1);
1890 atomic_set(&md->pending[0], 0);
1891 atomic_set(&md->pending[1], 0);
1892 init_waitqueue_head(&md->wait);
1893 INIT_WORK(&md->work, dm_wq_work);
1894 init_waitqueue_head(&md->eventq);
1896 md->disk->major = _major;
1897 md->disk->first_minor = minor;
1898 md->disk->fops = &dm_blk_dops;
1899 md->disk->queue = md->queue;
1900 md->disk->private_data = md;
1901 sprintf(md->disk->disk_name, "dm-%d", minor);
1903 format_dev_t(md->name, MKDEV(_major, minor));
1905 md->wq = alloc_workqueue("kdmflush",
1906 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1910 md->bdev = bdget_disk(md->disk, 0);
1914 bio_init(&md->flush_bio);
1915 md->flush_bio.bi_bdev = md->bdev;
1916 md->flush_bio.bi_rw = WRITE_FLUSH;
1918 /* Populate the mapping, nobody knows we exist yet */
1919 spin_lock(&_minor_lock);
1920 old_md = idr_replace(&_minor_idr, md, minor);
1921 spin_unlock(&_minor_lock);
1923 BUG_ON(old_md != MINOR_ALLOCED);
1928 destroy_workqueue(md->wq);
1930 del_gendisk(md->disk);
1933 blk_cleanup_queue(md->queue);
1937 module_put(THIS_MODULE);
1943 static void unlock_fs(struct mapped_device *md);
1945 static void free_dev(struct mapped_device *md)
1947 int minor = MINOR(disk_devt(md->disk));
1951 destroy_workqueue(md->wq);
1953 mempool_destroy(md->tio_pool);
1955 mempool_destroy(md->io_pool);
1957 bioset_free(md->bs);
1958 blk_integrity_unregister(md->disk);
1959 del_gendisk(md->disk);
1962 spin_lock(&_minor_lock);
1963 md->disk->private_data = NULL;
1964 spin_unlock(&_minor_lock);
1967 blk_cleanup_queue(md->queue);
1968 module_put(THIS_MODULE);
1972 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1974 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1976 if (md->io_pool && (md->tio_pool || dm_table_get_type(t) == DM_TYPE_BIO_BASED) && md->bs) {
1978 * The md already has necessary mempools. Reload just the
1979 * bioset because front_pad may have changed because
1980 * a different table was loaded.
1982 bioset_free(md->bs);
1988 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1990 md->io_pool = p->io_pool;
1992 md->tio_pool = p->tio_pool;
1998 /* mempool bind completed, now no need any mempools in the table */
1999 dm_table_free_md_mempools(t);
2003 * Bind a table to the device.
2005 static void event_callback(void *context)
2007 unsigned long flags;
2009 struct mapped_device *md = (struct mapped_device *) context;
2011 spin_lock_irqsave(&md->uevent_lock, flags);
2012 list_splice_init(&md->uevent_list, &uevents);
2013 spin_unlock_irqrestore(&md->uevent_lock, flags);
2015 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2017 atomic_inc(&md->event_nr);
2018 wake_up(&md->eventq);
2022 * Protected by md->suspend_lock obtained by dm_swap_table().
2024 static void __set_size(struct mapped_device *md, sector_t size)
2026 set_capacity(md->disk, size);
2028 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2032 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2034 * If this function returns 0, then the device is either a non-dm
2035 * device without a merge_bvec_fn, or it is a dm device that is
2036 * able to split any bios it receives that are too big.
2038 int dm_queue_merge_is_compulsory(struct request_queue *q)
2040 struct mapped_device *dev_md;
2042 if (!q->merge_bvec_fn)
2045 if (q->make_request_fn == dm_request) {
2046 dev_md = q->queuedata;
2047 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2054 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2055 struct dm_dev *dev, sector_t start,
2056 sector_t len, void *data)
2058 struct block_device *bdev = dev->bdev;
2059 struct request_queue *q = bdev_get_queue(bdev);
2061 return dm_queue_merge_is_compulsory(q);
2065 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2066 * on the properties of the underlying devices.
2068 static int dm_table_merge_is_optional(struct dm_table *table)
2071 struct dm_target *ti;
2073 while (i < dm_table_get_num_targets(table)) {
2074 ti = dm_table_get_target(table, i++);
2076 if (ti->type->iterate_devices &&
2077 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2085 * Returns old map, which caller must destroy.
2087 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2088 struct queue_limits *limits)
2090 struct dm_table *old_map;
2091 struct request_queue *q = md->queue;
2093 unsigned long flags;
2094 int merge_is_optional;
2096 size = dm_table_get_size(t);
2099 * Wipe any geometry if the size of the table changed.
2101 if (size != get_capacity(md->disk))
2102 memset(&md->geometry, 0, sizeof(md->geometry));
2104 __set_size(md, size);
2106 dm_table_event_callback(t, event_callback, md);
2109 * The queue hasn't been stopped yet, if the old table type wasn't
2110 * for request-based during suspension. So stop it to prevent
2111 * I/O mapping before resume.
2112 * This must be done before setting the queue restrictions,
2113 * because request-based dm may be run just after the setting.
2115 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2118 __bind_mempools(md, t);
2120 merge_is_optional = dm_table_merge_is_optional(t);
2122 write_lock_irqsave(&md->map_lock, flags);
2125 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2127 dm_table_set_restrictions(t, q, limits);
2128 if (merge_is_optional)
2129 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2131 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2132 write_unlock_irqrestore(&md->map_lock, flags);
2138 * Returns unbound table for the caller to free.
2140 static struct dm_table *__unbind(struct mapped_device *md)
2142 struct dm_table *map = md->map;
2143 unsigned long flags;
2148 dm_table_event_callback(map, NULL, NULL);
2149 write_lock_irqsave(&md->map_lock, flags);
2151 write_unlock_irqrestore(&md->map_lock, flags);
2157 * Constructor for a new device.
2159 int dm_create(int minor, struct mapped_device **result)
2161 struct mapped_device *md;
2163 md = alloc_dev(minor);
2174 * Functions to manage md->type.
2175 * All are required to hold md->type_lock.
2177 void dm_lock_md_type(struct mapped_device *md)
2179 mutex_lock(&md->type_lock);
2182 void dm_unlock_md_type(struct mapped_device *md)
2184 mutex_unlock(&md->type_lock);
2187 void dm_set_md_type(struct mapped_device *md, unsigned type)
2192 unsigned dm_get_md_type(struct mapped_device *md)
2197 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2199 return md->immutable_target_type;
2203 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2205 static int dm_init_request_based_queue(struct mapped_device *md)
2207 struct request_queue *q = NULL;
2209 if (md->queue->elevator)
2212 /* Fully initialize the queue */
2213 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2218 dm_init_md_queue(md);
2219 blk_queue_softirq_done(md->queue, dm_softirq_done);
2220 blk_queue_prep_rq(md->queue, dm_prep_fn);
2221 blk_queue_lld_busy(md->queue, dm_lld_busy);
2223 elv_register_queue(md->queue);
2229 * Setup the DM device's queue based on md's type
2231 int dm_setup_md_queue(struct mapped_device *md)
2233 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2234 !dm_init_request_based_queue(md)) {
2235 DMWARN("Cannot initialize queue for request-based mapped device");
2242 static struct mapped_device *dm_find_md(dev_t dev)
2244 struct mapped_device *md;
2245 unsigned minor = MINOR(dev);
2247 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2250 spin_lock(&_minor_lock);
2252 md = idr_find(&_minor_idr, minor);
2253 if (md && (md == MINOR_ALLOCED ||
2254 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2255 dm_deleting_md(md) ||
2256 test_bit(DMF_FREEING, &md->flags))) {
2262 spin_unlock(&_minor_lock);
2267 struct mapped_device *dm_get_md(dev_t dev)
2269 struct mapped_device *md = dm_find_md(dev);
2276 EXPORT_SYMBOL_GPL(dm_get_md);
2278 void *dm_get_mdptr(struct mapped_device *md)
2280 return md->interface_ptr;
2283 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2285 md->interface_ptr = ptr;
2288 void dm_get(struct mapped_device *md)
2290 atomic_inc(&md->holders);
2291 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2294 const char *dm_device_name(struct mapped_device *md)
2298 EXPORT_SYMBOL_GPL(dm_device_name);
2300 static void __dm_destroy(struct mapped_device *md, bool wait)
2302 struct dm_table *map;
2306 spin_lock(&_minor_lock);
2307 map = dm_get_live_table(md);
2308 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2309 set_bit(DMF_FREEING, &md->flags);
2310 spin_unlock(&_minor_lock);
2312 if (!dm_suspended_md(md)) {
2313 dm_table_presuspend_targets(map);
2314 dm_table_postsuspend_targets(map);
2318 * Rare, but there may be I/O requests still going to complete,
2319 * for example. Wait for all references to disappear.
2320 * No one should increment the reference count of the mapped_device,
2321 * after the mapped_device state becomes DMF_FREEING.
2324 while (atomic_read(&md->holders))
2326 else if (atomic_read(&md->holders))
2327 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2328 dm_device_name(md), atomic_read(&md->holders));
2332 dm_table_destroy(__unbind(md));
2336 void dm_destroy(struct mapped_device *md)
2338 __dm_destroy(md, true);
2341 void dm_destroy_immediate(struct mapped_device *md)
2343 __dm_destroy(md, false);
2346 void dm_put(struct mapped_device *md)
2348 atomic_dec(&md->holders);
2350 EXPORT_SYMBOL_GPL(dm_put);
2352 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2355 DECLARE_WAITQUEUE(wait, current);
2357 add_wait_queue(&md->wait, &wait);
2360 set_current_state(interruptible);
2362 if (!md_in_flight(md))
2365 if (interruptible == TASK_INTERRUPTIBLE &&
2366 signal_pending(current)) {
2373 set_current_state(TASK_RUNNING);
2375 remove_wait_queue(&md->wait, &wait);
2381 * Process the deferred bios
2383 static void dm_wq_work(struct work_struct *work)
2385 struct mapped_device *md = container_of(work, struct mapped_device,
2389 down_read(&md->io_lock);
2391 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2392 spin_lock_irq(&md->deferred_lock);
2393 c = bio_list_pop(&md->deferred);
2394 spin_unlock_irq(&md->deferred_lock);
2399 up_read(&md->io_lock);
2401 if (dm_request_based(md))
2402 generic_make_request(c);
2404 __split_and_process_bio(md, c);
2406 down_read(&md->io_lock);
2409 up_read(&md->io_lock);
2412 static void dm_queue_flush(struct mapped_device *md)
2414 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2415 smp_mb__after_clear_bit();
2416 queue_work(md->wq, &md->work);
2420 * Swap in a new table, returning the old one for the caller to destroy.
2422 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2424 struct dm_table *live_map, *map = ERR_PTR(-EINVAL);
2425 struct queue_limits limits;
2428 mutex_lock(&md->suspend_lock);
2430 /* device must be suspended */
2431 if (!dm_suspended_md(md))
2435 * If the new table has no data devices, retain the existing limits.
2436 * This helps multipath with queue_if_no_path if all paths disappear,
2437 * then new I/O is queued based on these limits, and then some paths
2440 if (dm_table_has_no_data_devices(table)) {
2441 live_map = dm_get_live_table(md);
2443 limits = md->queue->limits;
2444 dm_table_put(live_map);
2447 r = dm_calculate_queue_limits(table, &limits);
2453 map = __bind(md, table, &limits);
2456 mutex_unlock(&md->suspend_lock);
2461 * Functions to lock and unlock any filesystem running on the
2464 static int lock_fs(struct mapped_device *md)
2468 WARN_ON(md->frozen_sb);
2470 md->frozen_sb = freeze_bdev(md->bdev);
2471 if (IS_ERR(md->frozen_sb)) {
2472 r = PTR_ERR(md->frozen_sb);
2473 md->frozen_sb = NULL;
2477 set_bit(DMF_FROZEN, &md->flags);
2482 static void unlock_fs(struct mapped_device *md)
2484 if (!test_bit(DMF_FROZEN, &md->flags))
2487 thaw_bdev(md->bdev, md->frozen_sb);
2488 md->frozen_sb = NULL;
2489 clear_bit(DMF_FROZEN, &md->flags);
2493 * We need to be able to change a mapping table under a mounted
2494 * filesystem. For example we might want to move some data in
2495 * the background. Before the table can be swapped with
2496 * dm_bind_table, dm_suspend must be called to flush any in
2497 * flight bios and ensure that any further io gets deferred.
2500 * Suspend mechanism in request-based dm.
2502 * 1. Flush all I/Os by lock_fs() if needed.
2503 * 2. Stop dispatching any I/O by stopping the request_queue.
2504 * 3. Wait for all in-flight I/Os to be completed or requeued.
2506 * To abort suspend, start the request_queue.
2508 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2510 struct dm_table *map = NULL;
2512 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2513 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2515 mutex_lock(&md->suspend_lock);
2517 if (dm_suspended_md(md)) {
2522 map = dm_get_live_table(md);
2525 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2526 * This flag is cleared before dm_suspend returns.
2529 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2531 /* This does not get reverted if there's an error later. */
2532 dm_table_presuspend_targets(map);
2535 * Flush I/O to the device.
2536 * Any I/O submitted after lock_fs() may not be flushed.
2537 * noflush takes precedence over do_lockfs.
2538 * (lock_fs() flushes I/Os and waits for them to complete.)
2540 if (!noflush && do_lockfs) {
2547 * Here we must make sure that no processes are submitting requests
2548 * to target drivers i.e. no one may be executing
2549 * __split_and_process_bio. This is called from dm_request and
2552 * To get all processes out of __split_and_process_bio in dm_request,
2553 * we take the write lock. To prevent any process from reentering
2554 * __split_and_process_bio from dm_request and quiesce the thread
2555 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2556 * flush_workqueue(md->wq).
2558 down_write(&md->io_lock);
2559 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2560 up_write(&md->io_lock);
2563 * Stop md->queue before flushing md->wq in case request-based
2564 * dm defers requests to md->wq from md->queue.
2566 if (dm_request_based(md))
2567 stop_queue(md->queue);
2569 flush_workqueue(md->wq);
2572 * At this point no more requests are entering target request routines.
2573 * We call dm_wait_for_completion to wait for all existing requests
2576 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2578 down_write(&md->io_lock);
2580 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2581 up_write(&md->io_lock);
2583 /* were we interrupted ? */
2587 if (dm_request_based(md))
2588 start_queue(md->queue);
2591 goto out; /* pushback list is already flushed, so skip flush */
2595 * If dm_wait_for_completion returned 0, the device is completely
2596 * quiescent now. There is no request-processing activity. All new
2597 * requests are being added to md->deferred list.
2600 set_bit(DMF_SUSPENDED, &md->flags);
2602 dm_table_postsuspend_targets(map);
2608 mutex_unlock(&md->suspend_lock);
2612 int dm_resume(struct mapped_device *md)
2615 struct dm_table *map = NULL;
2617 mutex_lock(&md->suspend_lock);
2618 if (!dm_suspended_md(md))
2621 map = dm_get_live_table(md);
2622 if (!map || !dm_table_get_size(map))
2625 r = dm_table_resume_targets(map);
2632 * Flushing deferred I/Os must be done after targets are resumed
2633 * so that mapping of targets can work correctly.
2634 * Request-based dm is queueing the deferred I/Os in its request_queue.
2636 if (dm_request_based(md))
2637 start_queue(md->queue);
2641 clear_bit(DMF_SUSPENDED, &md->flags);
2646 mutex_unlock(&md->suspend_lock);
2651 /*-----------------------------------------------------------------
2652 * Event notification.
2653 *---------------------------------------------------------------*/
2654 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2657 char udev_cookie[DM_COOKIE_LENGTH];
2658 char *envp[] = { udev_cookie, NULL };
2661 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2663 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2664 DM_COOKIE_ENV_VAR_NAME, cookie);
2665 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2670 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2672 return atomic_add_return(1, &md->uevent_seq);
2675 uint32_t dm_get_event_nr(struct mapped_device *md)
2677 return atomic_read(&md->event_nr);
2680 int dm_wait_event(struct mapped_device *md, int event_nr)
2682 return wait_event_interruptible(md->eventq,
2683 (event_nr != atomic_read(&md->event_nr)));
2686 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2688 unsigned long flags;
2690 spin_lock_irqsave(&md->uevent_lock, flags);
2691 list_add(elist, &md->uevent_list);
2692 spin_unlock_irqrestore(&md->uevent_lock, flags);
2696 * The gendisk is only valid as long as you have a reference
2699 struct gendisk *dm_disk(struct mapped_device *md)
2704 struct kobject *dm_kobject(struct mapped_device *md)
2710 * struct mapped_device should not be exported outside of dm.c
2711 * so use this check to verify that kobj is part of md structure
2713 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2715 struct mapped_device *md;
2717 md = container_of(kobj, struct mapped_device, kobj);
2718 if (&md->kobj != kobj)
2721 if (test_bit(DMF_FREEING, &md->flags) ||
2729 int dm_suspended_md(struct mapped_device *md)
2731 return test_bit(DMF_SUSPENDED, &md->flags);
2734 int dm_suspended(struct dm_target *ti)
2736 return dm_suspended_md(dm_table_get_md(ti->table));
2738 EXPORT_SYMBOL_GPL(dm_suspended);
2740 int dm_noflush_suspending(struct dm_target *ti)
2742 return __noflush_suspending(dm_table_get_md(ti->table));
2744 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2746 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
2748 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2749 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2754 per_bio_data_size = roundup(per_bio_data_size, __alignof__(struct dm_target_io));
2756 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2757 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2758 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2759 if (!pools->io_pool)
2760 goto free_pools_and_out;
2762 pools->tio_pool = NULL;
2763 if (type == DM_TYPE_REQUEST_BASED) {
2764 pools->tio_pool = mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2765 if (!pools->tio_pool)
2766 goto free_io_pool_and_out;
2769 pools->bs = (type == DM_TYPE_BIO_BASED) ?
2770 bioset_create(pool_size,
2771 per_bio_data_size + offsetof(struct dm_target_io, clone)) :
2772 bioset_create(pool_size,
2773 offsetof(struct dm_rq_clone_bio_info, clone));
2775 goto free_tio_pool_and_out;
2777 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2778 goto free_bioset_and_out;
2782 free_bioset_and_out:
2783 bioset_free(pools->bs);
2785 free_tio_pool_and_out:
2786 if (pools->tio_pool)
2787 mempool_destroy(pools->tio_pool);
2789 free_io_pool_and_out:
2790 mempool_destroy(pools->io_pool);
2798 void dm_free_md_mempools(struct dm_md_mempools *pools)
2804 mempool_destroy(pools->io_pool);
2806 if (pools->tio_pool)
2807 mempool_destroy(pools->tio_pool);
2810 bioset_free(pools->bs);
2815 static const struct block_device_operations dm_blk_dops = {
2816 .open = dm_blk_open,
2817 .release = dm_blk_close,
2818 .ioctl = dm_blk_ioctl,
2819 .getgeo = dm_blk_getgeo,
2820 .owner = THIS_MODULE
2823 EXPORT_SYMBOL(dm_get_mapinfo);
2828 module_init(dm_init);
2829 module_exit(dm_exit);
2831 module_param(major, uint, 0);
2832 MODULE_PARM_DESC(major, "The major number of the device mapper");
2833 MODULE_DESCRIPTION(DM_NAME " driver");
2834 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2835 MODULE_LICENSE("GPL");