Merge tag 'csky-for-linus-6.0-rc1' of https://github.com/c-sky/csky-linux
[platform/kernel/linux-starfive.git] / drivers / md / dm-zoned-target.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2017 Western Digital Corporation or its affiliates.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm-zoned.h"
9
10 #include <linux/module.h>
11
12 #define DM_MSG_PREFIX           "zoned"
13
14 #define DMZ_MIN_BIOS            8192
15
16 /*
17  * Zone BIO context.
18  */
19 struct dmz_bioctx {
20         struct dmz_dev          *dev;
21         struct dm_zone          *zone;
22         struct bio              *bio;
23         refcount_t              ref;
24 };
25
26 /*
27  * Chunk work descriptor.
28  */
29 struct dm_chunk_work {
30         struct work_struct      work;
31         refcount_t              refcount;
32         struct dmz_target       *target;
33         unsigned int            chunk;
34         struct bio_list         bio_list;
35 };
36
37 /*
38  * Target descriptor.
39  */
40 struct dmz_target {
41         struct dm_dev           **ddev;
42         unsigned int            nr_ddevs;
43
44         unsigned int            flags;
45
46         /* Zoned block device information */
47         struct dmz_dev          *dev;
48
49         /* For metadata handling */
50         struct dmz_metadata     *metadata;
51
52         /* For chunk work */
53         struct radix_tree_root  chunk_rxtree;
54         struct workqueue_struct *chunk_wq;
55         struct mutex            chunk_lock;
56
57         /* For cloned BIOs to zones */
58         struct bio_set          bio_set;
59
60         /* For flush */
61         spinlock_t              flush_lock;
62         struct bio_list         flush_list;
63         struct delayed_work     flush_work;
64         struct workqueue_struct *flush_wq;
65 };
66
67 /*
68  * Flush intervals (seconds).
69  */
70 #define DMZ_FLUSH_PERIOD        (10 * HZ)
71
72 /*
73  * Target BIO completion.
74  */
75 static inline void dmz_bio_endio(struct bio *bio, blk_status_t status)
76 {
77         struct dmz_bioctx *bioctx =
78                 dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
79
80         if (status != BLK_STS_OK && bio->bi_status == BLK_STS_OK)
81                 bio->bi_status = status;
82         if (bioctx->dev && bio->bi_status != BLK_STS_OK)
83                 bioctx->dev->flags |= DMZ_CHECK_BDEV;
84
85         if (refcount_dec_and_test(&bioctx->ref)) {
86                 struct dm_zone *zone = bioctx->zone;
87
88                 if (zone) {
89                         if (bio->bi_status != BLK_STS_OK &&
90                             bio_op(bio) == REQ_OP_WRITE &&
91                             dmz_is_seq(zone))
92                                 set_bit(DMZ_SEQ_WRITE_ERR, &zone->flags);
93                         dmz_deactivate_zone(zone);
94                 }
95                 bio_endio(bio);
96         }
97 }
98
99 /*
100  * Completion callback for an internally cloned target BIO. This terminates the
101  * target BIO when there are no more references to its context.
102  */
103 static void dmz_clone_endio(struct bio *clone)
104 {
105         struct dmz_bioctx *bioctx = clone->bi_private;
106         blk_status_t status = clone->bi_status;
107
108         bio_put(clone);
109         dmz_bio_endio(bioctx->bio, status);
110 }
111
112 /*
113  * Issue a clone of a target BIO. The clone may only partially process the
114  * original target BIO.
115  */
116 static int dmz_submit_bio(struct dmz_target *dmz, struct dm_zone *zone,
117                           struct bio *bio, sector_t chunk_block,
118                           unsigned int nr_blocks)
119 {
120         struct dmz_bioctx *bioctx =
121                 dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
122         struct dmz_dev *dev = zone->dev;
123         struct bio *clone;
124
125         if (dev->flags & DMZ_BDEV_DYING)
126                 return -EIO;
127
128         clone = bio_alloc_clone(dev->bdev, bio, GFP_NOIO, &dmz->bio_set);
129         if (!clone)
130                 return -ENOMEM;
131
132         bioctx->dev = dev;
133         clone->bi_iter.bi_sector =
134                 dmz_start_sect(dmz->metadata, zone) + dmz_blk2sect(chunk_block);
135         clone->bi_iter.bi_size = dmz_blk2sect(nr_blocks) << SECTOR_SHIFT;
136         clone->bi_end_io = dmz_clone_endio;
137         clone->bi_private = bioctx;
138
139         bio_advance(bio, clone->bi_iter.bi_size);
140
141         refcount_inc(&bioctx->ref);
142         submit_bio_noacct(clone);
143
144         if (bio_op(bio) == REQ_OP_WRITE && dmz_is_seq(zone))
145                 zone->wp_block += nr_blocks;
146
147         return 0;
148 }
149
150 /*
151  * Zero out pages of discarded blocks accessed by a read BIO.
152  */
153 static void dmz_handle_read_zero(struct dmz_target *dmz, struct bio *bio,
154                                  sector_t chunk_block, unsigned int nr_blocks)
155 {
156         unsigned int size = nr_blocks << DMZ_BLOCK_SHIFT;
157
158         /* Clear nr_blocks */
159         swap(bio->bi_iter.bi_size, size);
160         zero_fill_bio(bio);
161         swap(bio->bi_iter.bi_size, size);
162
163         bio_advance(bio, size);
164 }
165
166 /*
167  * Process a read BIO.
168  */
169 static int dmz_handle_read(struct dmz_target *dmz, struct dm_zone *zone,
170                            struct bio *bio)
171 {
172         struct dmz_metadata *zmd = dmz->metadata;
173         sector_t chunk_block = dmz_chunk_block(zmd, dmz_bio_block(bio));
174         unsigned int nr_blocks = dmz_bio_blocks(bio);
175         sector_t end_block = chunk_block + nr_blocks;
176         struct dm_zone *rzone, *bzone;
177         int ret;
178
179         /* Read into unmapped chunks need only zeroing the BIO buffer */
180         if (!zone) {
181                 zero_fill_bio(bio);
182                 return 0;
183         }
184
185         DMDEBUG("(%s): READ chunk %llu -> %s zone %u, block %llu, %u blocks",
186                 dmz_metadata_label(zmd),
187                 (unsigned long long)dmz_bio_chunk(zmd, bio),
188                 (dmz_is_rnd(zone) ? "RND" :
189                  (dmz_is_cache(zone) ? "CACHE" : "SEQ")),
190                 zone->id,
191                 (unsigned long long)chunk_block, nr_blocks);
192
193         /* Check block validity to determine the read location */
194         bzone = zone->bzone;
195         while (chunk_block < end_block) {
196                 nr_blocks = 0;
197                 if (dmz_is_rnd(zone) || dmz_is_cache(zone) ||
198                     chunk_block < zone->wp_block) {
199                         /* Test block validity in the data zone */
200                         ret = dmz_block_valid(zmd, zone, chunk_block);
201                         if (ret < 0)
202                                 return ret;
203                         if (ret > 0) {
204                                 /* Read data zone blocks */
205                                 nr_blocks = ret;
206                                 rzone = zone;
207                         }
208                 }
209
210                 /*
211                  * No valid blocks found in the data zone.
212                  * Check the buffer zone, if there is one.
213                  */
214                 if (!nr_blocks && bzone) {
215                         ret = dmz_block_valid(zmd, bzone, chunk_block);
216                         if (ret < 0)
217                                 return ret;
218                         if (ret > 0) {
219                                 /* Read buffer zone blocks */
220                                 nr_blocks = ret;
221                                 rzone = bzone;
222                         }
223                 }
224
225                 if (nr_blocks) {
226                         /* Valid blocks found: read them */
227                         nr_blocks = min_t(unsigned int, nr_blocks,
228                                           end_block - chunk_block);
229                         ret = dmz_submit_bio(dmz, rzone, bio,
230                                              chunk_block, nr_blocks);
231                         if (ret)
232                                 return ret;
233                         chunk_block += nr_blocks;
234                 } else {
235                         /* No valid block: zeroout the current BIO block */
236                         dmz_handle_read_zero(dmz, bio, chunk_block, 1);
237                         chunk_block++;
238                 }
239         }
240
241         return 0;
242 }
243
244 /*
245  * Write blocks directly in a data zone, at the write pointer.
246  * If a buffer zone is assigned, invalidate the blocks written
247  * in place.
248  */
249 static int dmz_handle_direct_write(struct dmz_target *dmz,
250                                    struct dm_zone *zone, struct bio *bio,
251                                    sector_t chunk_block,
252                                    unsigned int nr_blocks)
253 {
254         struct dmz_metadata *zmd = dmz->metadata;
255         struct dm_zone *bzone = zone->bzone;
256         int ret;
257
258         if (dmz_is_readonly(zone))
259                 return -EROFS;
260
261         /* Submit write */
262         ret = dmz_submit_bio(dmz, zone, bio, chunk_block, nr_blocks);
263         if (ret)
264                 return ret;
265
266         /*
267          * Validate the blocks in the data zone and invalidate
268          * in the buffer zone, if there is one.
269          */
270         ret = dmz_validate_blocks(zmd, zone, chunk_block, nr_blocks);
271         if (ret == 0 && bzone)
272                 ret = dmz_invalidate_blocks(zmd, bzone, chunk_block, nr_blocks);
273
274         return ret;
275 }
276
277 /*
278  * Write blocks in the buffer zone of @zone.
279  * If no buffer zone is assigned yet, get one.
280  * Called with @zone write locked.
281  */
282 static int dmz_handle_buffered_write(struct dmz_target *dmz,
283                                      struct dm_zone *zone, struct bio *bio,
284                                      sector_t chunk_block,
285                                      unsigned int nr_blocks)
286 {
287         struct dmz_metadata *zmd = dmz->metadata;
288         struct dm_zone *bzone;
289         int ret;
290
291         /* Get the buffer zone. One will be allocated if needed */
292         bzone = dmz_get_chunk_buffer(zmd, zone);
293         if (IS_ERR(bzone))
294                 return PTR_ERR(bzone);
295
296         if (dmz_is_readonly(bzone))
297                 return -EROFS;
298
299         /* Submit write */
300         ret = dmz_submit_bio(dmz, bzone, bio, chunk_block, nr_blocks);
301         if (ret)
302                 return ret;
303
304         /*
305          * Validate the blocks in the buffer zone
306          * and invalidate in the data zone.
307          */
308         ret = dmz_validate_blocks(zmd, bzone, chunk_block, nr_blocks);
309         if (ret == 0 && chunk_block < zone->wp_block)
310                 ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
311
312         return ret;
313 }
314
315 /*
316  * Process a write BIO.
317  */
318 static int dmz_handle_write(struct dmz_target *dmz, struct dm_zone *zone,
319                             struct bio *bio)
320 {
321         struct dmz_metadata *zmd = dmz->metadata;
322         sector_t chunk_block = dmz_chunk_block(zmd, dmz_bio_block(bio));
323         unsigned int nr_blocks = dmz_bio_blocks(bio);
324
325         if (!zone)
326                 return -ENOSPC;
327
328         DMDEBUG("(%s): WRITE chunk %llu -> %s zone %u, block %llu, %u blocks",
329                 dmz_metadata_label(zmd),
330                 (unsigned long long)dmz_bio_chunk(zmd, bio),
331                 (dmz_is_rnd(zone) ? "RND" :
332                  (dmz_is_cache(zone) ? "CACHE" : "SEQ")),
333                 zone->id,
334                 (unsigned long long)chunk_block, nr_blocks);
335
336         if (dmz_is_rnd(zone) || dmz_is_cache(zone) ||
337             chunk_block == zone->wp_block) {
338                 /*
339                  * zone is a random zone or it is a sequential zone
340                  * and the BIO is aligned to the zone write pointer:
341                  * direct write the zone.
342                  */
343                 return dmz_handle_direct_write(dmz, zone, bio,
344                                                chunk_block, nr_blocks);
345         }
346
347         /*
348          * This is an unaligned write in a sequential zone:
349          * use buffered write.
350          */
351         return dmz_handle_buffered_write(dmz, zone, bio, chunk_block, nr_blocks);
352 }
353
354 /*
355  * Process a discard BIO.
356  */
357 static int dmz_handle_discard(struct dmz_target *dmz, struct dm_zone *zone,
358                               struct bio *bio)
359 {
360         struct dmz_metadata *zmd = dmz->metadata;
361         sector_t block = dmz_bio_block(bio);
362         unsigned int nr_blocks = dmz_bio_blocks(bio);
363         sector_t chunk_block = dmz_chunk_block(zmd, block);
364         int ret = 0;
365
366         /* For unmapped chunks, there is nothing to do */
367         if (!zone)
368                 return 0;
369
370         if (dmz_is_readonly(zone))
371                 return -EROFS;
372
373         DMDEBUG("(%s): DISCARD chunk %llu -> zone %u, block %llu, %u blocks",
374                 dmz_metadata_label(dmz->metadata),
375                 (unsigned long long)dmz_bio_chunk(zmd, bio),
376                 zone->id,
377                 (unsigned long long)chunk_block, nr_blocks);
378
379         /*
380          * Invalidate blocks in the data zone and its
381          * buffer zone if one is mapped.
382          */
383         if (dmz_is_rnd(zone) || dmz_is_cache(zone) ||
384             chunk_block < zone->wp_block)
385                 ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
386         if (ret == 0 && zone->bzone)
387                 ret = dmz_invalidate_blocks(zmd, zone->bzone,
388                                             chunk_block, nr_blocks);
389         return ret;
390 }
391
392 /*
393  * Process a BIO.
394  */
395 static void dmz_handle_bio(struct dmz_target *dmz, struct dm_chunk_work *cw,
396                            struct bio *bio)
397 {
398         struct dmz_bioctx *bioctx =
399                 dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
400         struct dmz_metadata *zmd = dmz->metadata;
401         struct dm_zone *zone;
402         int ret;
403
404         dmz_lock_metadata(zmd);
405
406         /*
407          * Get the data zone mapping the chunk. There may be no
408          * mapping for read and discard. If a mapping is obtained,
409          + the zone returned will be set to active state.
410          */
411         zone = dmz_get_chunk_mapping(zmd, dmz_bio_chunk(zmd, bio),
412                                      bio_op(bio));
413         if (IS_ERR(zone)) {
414                 ret = PTR_ERR(zone);
415                 goto out;
416         }
417
418         /* Process the BIO */
419         if (zone) {
420                 dmz_activate_zone(zone);
421                 bioctx->zone = zone;
422                 dmz_reclaim_bio_acc(zone->dev->reclaim);
423         }
424
425         switch (bio_op(bio)) {
426         case REQ_OP_READ:
427                 ret = dmz_handle_read(dmz, zone, bio);
428                 break;
429         case REQ_OP_WRITE:
430                 ret = dmz_handle_write(dmz, zone, bio);
431                 break;
432         case REQ_OP_DISCARD:
433         case REQ_OP_WRITE_ZEROES:
434                 ret = dmz_handle_discard(dmz, zone, bio);
435                 break;
436         default:
437                 DMERR("(%s): Unsupported BIO operation 0x%x",
438                       dmz_metadata_label(dmz->metadata), bio_op(bio));
439                 ret = -EIO;
440         }
441
442         /*
443          * Release the chunk mapping. This will check that the mapping
444          * is still valid, that is, that the zone used still has valid blocks.
445          */
446         if (zone)
447                 dmz_put_chunk_mapping(zmd, zone);
448 out:
449         dmz_bio_endio(bio, errno_to_blk_status(ret));
450
451         dmz_unlock_metadata(zmd);
452 }
453
454 /*
455  * Increment a chunk reference counter.
456  */
457 static inline void dmz_get_chunk_work(struct dm_chunk_work *cw)
458 {
459         refcount_inc(&cw->refcount);
460 }
461
462 /*
463  * Decrement a chunk work reference count and
464  * free it if it becomes 0.
465  */
466 static void dmz_put_chunk_work(struct dm_chunk_work *cw)
467 {
468         if (refcount_dec_and_test(&cw->refcount)) {
469                 WARN_ON(!bio_list_empty(&cw->bio_list));
470                 radix_tree_delete(&cw->target->chunk_rxtree, cw->chunk);
471                 kfree(cw);
472         }
473 }
474
475 /*
476  * Chunk BIO work function.
477  */
478 static void dmz_chunk_work(struct work_struct *work)
479 {
480         struct dm_chunk_work *cw = container_of(work, struct dm_chunk_work, work);
481         struct dmz_target *dmz = cw->target;
482         struct bio *bio;
483
484         mutex_lock(&dmz->chunk_lock);
485
486         /* Process the chunk BIOs */
487         while ((bio = bio_list_pop(&cw->bio_list))) {
488                 mutex_unlock(&dmz->chunk_lock);
489                 dmz_handle_bio(dmz, cw, bio);
490                 mutex_lock(&dmz->chunk_lock);
491                 dmz_put_chunk_work(cw);
492         }
493
494         /* Queueing the work incremented the work refcount */
495         dmz_put_chunk_work(cw);
496
497         mutex_unlock(&dmz->chunk_lock);
498 }
499
500 /*
501  * Flush work.
502  */
503 static void dmz_flush_work(struct work_struct *work)
504 {
505         struct dmz_target *dmz = container_of(work, struct dmz_target, flush_work.work);
506         struct bio *bio;
507         int ret;
508
509         /* Flush dirty metadata blocks */
510         ret = dmz_flush_metadata(dmz->metadata);
511         if (ret)
512                 DMDEBUG("(%s): Metadata flush failed, rc=%d",
513                         dmz_metadata_label(dmz->metadata), ret);
514
515         /* Process queued flush requests */
516         while (1) {
517                 spin_lock(&dmz->flush_lock);
518                 bio = bio_list_pop(&dmz->flush_list);
519                 spin_unlock(&dmz->flush_lock);
520
521                 if (!bio)
522                         break;
523
524                 dmz_bio_endio(bio, errno_to_blk_status(ret));
525         }
526
527         queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
528 }
529
530 /*
531  * Get a chunk work and start it to process a new BIO.
532  * If the BIO chunk has no work yet, create one.
533  */
534 static int dmz_queue_chunk_work(struct dmz_target *dmz, struct bio *bio)
535 {
536         unsigned int chunk = dmz_bio_chunk(dmz->metadata, bio);
537         struct dm_chunk_work *cw;
538         int ret = 0;
539
540         mutex_lock(&dmz->chunk_lock);
541
542         /* Get the BIO chunk work. If one is not active yet, create one */
543         cw = radix_tree_lookup(&dmz->chunk_rxtree, chunk);
544         if (cw) {
545                 dmz_get_chunk_work(cw);
546         } else {
547                 /* Create a new chunk work */
548                 cw = kmalloc(sizeof(struct dm_chunk_work), GFP_NOIO);
549                 if (unlikely(!cw)) {
550                         ret = -ENOMEM;
551                         goto out;
552                 }
553
554                 INIT_WORK(&cw->work, dmz_chunk_work);
555                 refcount_set(&cw->refcount, 1);
556                 cw->target = dmz;
557                 cw->chunk = chunk;
558                 bio_list_init(&cw->bio_list);
559
560                 ret = radix_tree_insert(&dmz->chunk_rxtree, chunk, cw);
561                 if (unlikely(ret)) {
562                         kfree(cw);
563                         goto out;
564                 }
565         }
566
567         bio_list_add(&cw->bio_list, bio);
568
569         if (queue_work(dmz->chunk_wq, &cw->work))
570                 dmz_get_chunk_work(cw);
571 out:
572         mutex_unlock(&dmz->chunk_lock);
573         return ret;
574 }
575
576 /*
577  * Check if the backing device is being removed. If it's on the way out,
578  * start failing I/O. Reclaim and metadata components also call this
579  * function to cleanly abort operation in the event of such failure.
580  */
581 bool dmz_bdev_is_dying(struct dmz_dev *dmz_dev)
582 {
583         if (dmz_dev->flags & DMZ_BDEV_DYING)
584                 return true;
585
586         if (dmz_dev->flags & DMZ_CHECK_BDEV)
587                 return !dmz_check_bdev(dmz_dev);
588
589         if (blk_queue_dying(bdev_get_queue(dmz_dev->bdev))) {
590                 dmz_dev_warn(dmz_dev, "Backing device queue dying");
591                 dmz_dev->flags |= DMZ_BDEV_DYING;
592         }
593
594         return dmz_dev->flags & DMZ_BDEV_DYING;
595 }
596
597 /*
598  * Check the backing device availability. This detects such events as
599  * backing device going offline due to errors, media removals, etc.
600  * This check is less efficient than dmz_bdev_is_dying() and should
601  * only be performed as a part of error handling.
602  */
603 bool dmz_check_bdev(struct dmz_dev *dmz_dev)
604 {
605         struct gendisk *disk;
606
607         dmz_dev->flags &= ~DMZ_CHECK_BDEV;
608
609         if (dmz_bdev_is_dying(dmz_dev))
610                 return false;
611
612         disk = dmz_dev->bdev->bd_disk;
613         if (disk->fops->check_events &&
614             disk->fops->check_events(disk, 0) & DISK_EVENT_MEDIA_CHANGE) {
615                 dmz_dev_warn(dmz_dev, "Backing device offline");
616                 dmz_dev->flags |= DMZ_BDEV_DYING;
617         }
618
619         return !(dmz_dev->flags & DMZ_BDEV_DYING);
620 }
621
622 /*
623  * Process a new BIO.
624  */
625 static int dmz_map(struct dm_target *ti, struct bio *bio)
626 {
627         struct dmz_target *dmz = ti->private;
628         struct dmz_metadata *zmd = dmz->metadata;
629         struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
630         sector_t sector = bio->bi_iter.bi_sector;
631         unsigned int nr_sectors = bio_sectors(bio);
632         sector_t chunk_sector;
633         int ret;
634
635         if (dmz_dev_is_dying(zmd))
636                 return DM_MAPIO_KILL;
637
638         DMDEBUG("(%s): BIO op %d sector %llu + %u => chunk %llu, block %llu, %u blocks",
639                 dmz_metadata_label(zmd),
640                 bio_op(bio), (unsigned long long)sector, nr_sectors,
641                 (unsigned long long)dmz_bio_chunk(zmd, bio),
642                 (unsigned long long)dmz_chunk_block(zmd, dmz_bio_block(bio)),
643                 (unsigned int)dmz_bio_blocks(bio));
644
645         if (!nr_sectors && bio_op(bio) != REQ_OP_WRITE)
646                 return DM_MAPIO_REMAPPED;
647
648         /* The BIO should be block aligned */
649         if ((nr_sectors & DMZ_BLOCK_SECTORS_MASK) || (sector & DMZ_BLOCK_SECTORS_MASK))
650                 return DM_MAPIO_KILL;
651
652         /* Initialize the BIO context */
653         bioctx->dev = NULL;
654         bioctx->zone = NULL;
655         bioctx->bio = bio;
656         refcount_set(&bioctx->ref, 1);
657
658         /* Set the BIO pending in the flush list */
659         if (!nr_sectors && bio_op(bio) == REQ_OP_WRITE) {
660                 spin_lock(&dmz->flush_lock);
661                 bio_list_add(&dmz->flush_list, bio);
662                 spin_unlock(&dmz->flush_lock);
663                 mod_delayed_work(dmz->flush_wq, &dmz->flush_work, 0);
664                 return DM_MAPIO_SUBMITTED;
665         }
666
667         /* Split zone BIOs to fit entirely into a zone */
668         chunk_sector = sector & (dmz_zone_nr_sectors(zmd) - 1);
669         if (chunk_sector + nr_sectors > dmz_zone_nr_sectors(zmd))
670                 dm_accept_partial_bio(bio, dmz_zone_nr_sectors(zmd) - chunk_sector);
671
672         /* Now ready to handle this BIO */
673         ret = dmz_queue_chunk_work(dmz, bio);
674         if (ret) {
675                 DMDEBUG("(%s): BIO op %d, can't process chunk %llu, err %i",
676                         dmz_metadata_label(zmd),
677                         bio_op(bio), (u64)dmz_bio_chunk(zmd, bio),
678                         ret);
679                 return DM_MAPIO_REQUEUE;
680         }
681
682         return DM_MAPIO_SUBMITTED;
683 }
684
685 /*
686  * Get zoned device information.
687  */
688 static int dmz_get_zoned_device(struct dm_target *ti, char *path,
689                                 int idx, int nr_devs)
690 {
691         struct dmz_target *dmz = ti->private;
692         struct dm_dev *ddev;
693         struct dmz_dev *dev;
694         int ret;
695         struct block_device *bdev;
696
697         /* Get the target device */
698         ret = dm_get_device(ti, path, dm_table_get_mode(ti->table), &ddev);
699         if (ret) {
700                 ti->error = "Get target device failed";
701                 return ret;
702         }
703
704         bdev = ddev->bdev;
705         if (bdev_zoned_model(bdev) == BLK_ZONED_NONE) {
706                 if (nr_devs == 1) {
707                         ti->error = "Invalid regular device";
708                         goto err;
709                 }
710                 if (idx != 0) {
711                         ti->error = "First device must be a regular device";
712                         goto err;
713                 }
714                 if (dmz->ddev[0]) {
715                         ti->error = "Too many regular devices";
716                         goto err;
717                 }
718                 dev = &dmz->dev[idx];
719                 dev->flags = DMZ_BDEV_REGULAR;
720         } else {
721                 if (dmz->ddev[idx]) {
722                         ti->error = "Too many zoned devices";
723                         goto err;
724                 }
725                 if (nr_devs > 1 && idx == 0) {
726                         ti->error = "First device must be a regular device";
727                         goto err;
728                 }
729                 dev = &dmz->dev[idx];
730         }
731         dev->bdev = bdev;
732         dev->dev_idx = idx;
733
734         dev->capacity = bdev_nr_sectors(bdev);
735         if (ti->begin) {
736                 ti->error = "Partial mapping is not supported";
737                 goto err;
738         }
739
740         dmz->ddev[idx] = ddev;
741
742         return 0;
743 err:
744         dm_put_device(ti, ddev);
745         return -EINVAL;
746 }
747
748 /*
749  * Cleanup zoned device information.
750  */
751 static void dmz_put_zoned_device(struct dm_target *ti)
752 {
753         struct dmz_target *dmz = ti->private;
754         int i;
755
756         for (i = 0; i < dmz->nr_ddevs; i++) {
757                 if (dmz->ddev[i]) {
758                         dm_put_device(ti, dmz->ddev[i]);
759                         dmz->ddev[i] = NULL;
760                 }
761         }
762 }
763
764 static int dmz_fixup_devices(struct dm_target *ti)
765 {
766         struct dmz_target *dmz = ti->private;
767         struct dmz_dev *reg_dev = NULL;
768         sector_t zone_nr_sectors = 0;
769         int i;
770
771         /*
772          * When we have more than on devices, the first one must be a
773          * regular block device and the others zoned block devices.
774          */
775         if (dmz->nr_ddevs > 1) {
776                 reg_dev = &dmz->dev[0];
777                 if (!(reg_dev->flags & DMZ_BDEV_REGULAR)) {
778                         ti->error = "Primary disk is not a regular device";
779                         return -EINVAL;
780                 }
781                 for (i = 1; i < dmz->nr_ddevs; i++) {
782                         struct dmz_dev *zoned_dev = &dmz->dev[i];
783                         struct block_device *bdev = zoned_dev->bdev;
784
785                         if (zoned_dev->flags & DMZ_BDEV_REGULAR) {
786                                 ti->error = "Secondary disk is not a zoned device";
787                                 return -EINVAL;
788                         }
789                         if (zone_nr_sectors &&
790                             zone_nr_sectors != bdev_zone_sectors(bdev)) {
791                                 ti->error = "Zone nr sectors mismatch";
792                                 return -EINVAL;
793                         }
794                         zone_nr_sectors = bdev_zone_sectors(bdev);
795                         zoned_dev->zone_nr_sectors = zone_nr_sectors;
796                         zoned_dev->nr_zones = bdev_nr_zones(bdev);
797                 }
798         } else {
799                 struct dmz_dev *zoned_dev = &dmz->dev[0];
800                 struct block_device *bdev = zoned_dev->bdev;
801
802                 if (zoned_dev->flags & DMZ_BDEV_REGULAR) {
803                         ti->error = "Disk is not a zoned device";
804                         return -EINVAL;
805                 }
806                 zoned_dev->zone_nr_sectors = bdev_zone_sectors(bdev);
807                 zoned_dev->nr_zones = bdev_nr_zones(bdev);
808         }
809
810         if (reg_dev) {
811                 sector_t zone_offset;
812
813                 reg_dev->zone_nr_sectors = zone_nr_sectors;
814                 reg_dev->nr_zones =
815                         DIV_ROUND_UP_SECTOR_T(reg_dev->capacity,
816                                               reg_dev->zone_nr_sectors);
817                 reg_dev->zone_offset = 0;
818                 zone_offset = reg_dev->nr_zones;
819                 for (i = 1; i < dmz->nr_ddevs; i++) {
820                         dmz->dev[i].zone_offset = zone_offset;
821                         zone_offset += dmz->dev[i].nr_zones;
822                 }
823         }
824         return 0;
825 }
826
827 /*
828  * Setup target.
829  */
830 static int dmz_ctr(struct dm_target *ti, unsigned int argc, char **argv)
831 {
832         struct dmz_target *dmz;
833         int ret, i;
834
835         /* Check arguments */
836         if (argc < 1) {
837                 ti->error = "Invalid argument count";
838                 return -EINVAL;
839         }
840
841         /* Allocate and initialize the target descriptor */
842         dmz = kzalloc(sizeof(struct dmz_target), GFP_KERNEL);
843         if (!dmz) {
844                 ti->error = "Unable to allocate the zoned target descriptor";
845                 return -ENOMEM;
846         }
847         dmz->dev = kcalloc(argc, sizeof(struct dmz_dev), GFP_KERNEL);
848         if (!dmz->dev) {
849                 ti->error = "Unable to allocate the zoned device descriptors";
850                 kfree(dmz);
851                 return -ENOMEM;
852         }
853         dmz->ddev = kcalloc(argc, sizeof(struct dm_dev *), GFP_KERNEL);
854         if (!dmz->ddev) {
855                 ti->error = "Unable to allocate the dm device descriptors";
856                 ret = -ENOMEM;
857                 goto err;
858         }
859         dmz->nr_ddevs = argc;
860
861         ti->private = dmz;
862
863         /* Get the target zoned block device */
864         for (i = 0; i < argc; i++) {
865                 ret = dmz_get_zoned_device(ti, argv[i], i, argc);
866                 if (ret)
867                         goto err_dev;
868         }
869         ret = dmz_fixup_devices(ti);
870         if (ret)
871                 goto err_dev;
872
873         /* Initialize metadata */
874         ret = dmz_ctr_metadata(dmz->dev, argc, &dmz->metadata,
875                                dm_table_device_name(ti->table));
876         if (ret) {
877                 ti->error = "Metadata initialization failed";
878                 goto err_dev;
879         }
880
881         /* Set target (no write same support) */
882         ti->max_io_len = dmz_zone_nr_sectors(dmz->metadata);
883         ti->num_flush_bios = 1;
884         ti->num_discard_bios = 1;
885         ti->num_write_zeroes_bios = 1;
886         ti->per_io_data_size = sizeof(struct dmz_bioctx);
887         ti->flush_supported = true;
888         ti->discards_supported = true;
889
890         /* The exposed capacity is the number of chunks that can be mapped */
891         ti->len = (sector_t)dmz_nr_chunks(dmz->metadata) <<
892                 dmz_zone_nr_sectors_shift(dmz->metadata);
893
894         /* Zone BIO */
895         ret = bioset_init(&dmz->bio_set, DMZ_MIN_BIOS, 0, 0);
896         if (ret) {
897                 ti->error = "Create BIO set failed";
898                 goto err_meta;
899         }
900
901         /* Chunk BIO work */
902         mutex_init(&dmz->chunk_lock);
903         INIT_RADIX_TREE(&dmz->chunk_rxtree, GFP_NOIO);
904         dmz->chunk_wq = alloc_workqueue("dmz_cwq_%s",
905                                         WQ_MEM_RECLAIM | WQ_UNBOUND, 0,
906                                         dmz_metadata_label(dmz->metadata));
907         if (!dmz->chunk_wq) {
908                 ti->error = "Create chunk workqueue failed";
909                 ret = -ENOMEM;
910                 goto err_bio;
911         }
912
913         /* Flush work */
914         spin_lock_init(&dmz->flush_lock);
915         bio_list_init(&dmz->flush_list);
916         INIT_DELAYED_WORK(&dmz->flush_work, dmz_flush_work);
917         dmz->flush_wq = alloc_ordered_workqueue("dmz_fwq_%s", WQ_MEM_RECLAIM,
918                                                 dmz_metadata_label(dmz->metadata));
919         if (!dmz->flush_wq) {
920                 ti->error = "Create flush workqueue failed";
921                 ret = -ENOMEM;
922                 goto err_cwq;
923         }
924         mod_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
925
926         /* Initialize reclaim */
927         for (i = 0; i < dmz->nr_ddevs; i++) {
928                 ret = dmz_ctr_reclaim(dmz->metadata, &dmz->dev[i].reclaim, i);
929                 if (ret) {
930                         ti->error = "Zone reclaim initialization failed";
931                         goto err_fwq;
932                 }
933         }
934
935         DMINFO("(%s): Target device: %llu 512-byte logical sectors (%llu blocks)",
936                dmz_metadata_label(dmz->metadata),
937                (unsigned long long)ti->len,
938                (unsigned long long)dmz_sect2blk(ti->len));
939
940         return 0;
941 err_fwq:
942         destroy_workqueue(dmz->flush_wq);
943 err_cwq:
944         destroy_workqueue(dmz->chunk_wq);
945 err_bio:
946         mutex_destroy(&dmz->chunk_lock);
947         bioset_exit(&dmz->bio_set);
948 err_meta:
949         dmz_dtr_metadata(dmz->metadata);
950 err_dev:
951         dmz_put_zoned_device(ti);
952 err:
953         kfree(dmz->dev);
954         kfree(dmz);
955
956         return ret;
957 }
958
959 /*
960  * Cleanup target.
961  */
962 static void dmz_dtr(struct dm_target *ti)
963 {
964         struct dmz_target *dmz = ti->private;
965         int i;
966
967         destroy_workqueue(dmz->chunk_wq);
968
969         for (i = 0; i < dmz->nr_ddevs; i++)
970                 dmz_dtr_reclaim(dmz->dev[i].reclaim);
971
972         cancel_delayed_work_sync(&dmz->flush_work);
973         destroy_workqueue(dmz->flush_wq);
974
975         (void) dmz_flush_metadata(dmz->metadata);
976
977         dmz_dtr_metadata(dmz->metadata);
978
979         bioset_exit(&dmz->bio_set);
980
981         dmz_put_zoned_device(ti);
982
983         mutex_destroy(&dmz->chunk_lock);
984
985         kfree(dmz->dev);
986         kfree(dmz);
987 }
988
989 /*
990  * Setup target request queue limits.
991  */
992 static void dmz_io_hints(struct dm_target *ti, struct queue_limits *limits)
993 {
994         struct dmz_target *dmz = ti->private;
995         unsigned int chunk_sectors = dmz_zone_nr_sectors(dmz->metadata);
996
997         limits->logical_block_size = DMZ_BLOCK_SIZE;
998         limits->physical_block_size = DMZ_BLOCK_SIZE;
999
1000         blk_limits_io_min(limits, DMZ_BLOCK_SIZE);
1001         blk_limits_io_opt(limits, DMZ_BLOCK_SIZE);
1002
1003         limits->discard_alignment = 0;
1004         limits->discard_granularity = DMZ_BLOCK_SIZE;
1005         limits->max_discard_sectors = chunk_sectors;
1006         limits->max_hw_discard_sectors = chunk_sectors;
1007         limits->max_write_zeroes_sectors = chunk_sectors;
1008
1009         /* FS hint to try to align to the device zone size */
1010         limits->chunk_sectors = chunk_sectors;
1011         limits->max_sectors = chunk_sectors;
1012
1013         /* We are exposing a drive-managed zoned block device */
1014         limits->zoned = BLK_ZONED_NONE;
1015 }
1016
1017 /*
1018  * Pass on ioctl to the backend device.
1019  */
1020 static int dmz_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
1021 {
1022         struct dmz_target *dmz = ti->private;
1023         struct dmz_dev *dev = &dmz->dev[0];
1024
1025         if (!dmz_check_bdev(dev))
1026                 return -EIO;
1027
1028         *bdev = dev->bdev;
1029
1030         return 0;
1031 }
1032
1033 /*
1034  * Stop works on suspend.
1035  */
1036 static void dmz_suspend(struct dm_target *ti)
1037 {
1038         struct dmz_target *dmz = ti->private;
1039         int i;
1040
1041         flush_workqueue(dmz->chunk_wq);
1042         for (i = 0; i < dmz->nr_ddevs; i++)
1043                 dmz_suspend_reclaim(dmz->dev[i].reclaim);
1044         cancel_delayed_work_sync(&dmz->flush_work);
1045 }
1046
1047 /*
1048  * Restart works on resume or if suspend failed.
1049  */
1050 static void dmz_resume(struct dm_target *ti)
1051 {
1052         struct dmz_target *dmz = ti->private;
1053         int i;
1054
1055         queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
1056         for (i = 0; i < dmz->nr_ddevs; i++)
1057                 dmz_resume_reclaim(dmz->dev[i].reclaim);
1058 }
1059
1060 static int dmz_iterate_devices(struct dm_target *ti,
1061                                iterate_devices_callout_fn fn, void *data)
1062 {
1063         struct dmz_target *dmz = ti->private;
1064         unsigned int zone_nr_sectors = dmz_zone_nr_sectors(dmz->metadata);
1065         sector_t capacity;
1066         int i, r;
1067
1068         for (i = 0; i < dmz->nr_ddevs; i++) {
1069                 capacity = dmz->dev[i].capacity & ~(zone_nr_sectors - 1);
1070                 r = fn(ti, dmz->ddev[i], 0, capacity, data);
1071                 if (r)
1072                         break;
1073         }
1074         return r;
1075 }
1076
1077 static void dmz_status(struct dm_target *ti, status_type_t type,
1078                        unsigned int status_flags, char *result,
1079                        unsigned int maxlen)
1080 {
1081         struct dmz_target *dmz = ti->private;
1082         ssize_t sz = 0;
1083         char buf[BDEVNAME_SIZE];
1084         struct dmz_dev *dev;
1085         int i;
1086
1087         switch (type) {
1088         case STATUSTYPE_INFO:
1089                 DMEMIT("%u zones %u/%u cache",
1090                        dmz_nr_zones(dmz->metadata),
1091                        dmz_nr_unmap_cache_zones(dmz->metadata),
1092                        dmz_nr_cache_zones(dmz->metadata));
1093                 for (i = 0; i < dmz->nr_ddevs; i++) {
1094                         /*
1095                          * For a multi-device setup the first device
1096                          * contains only cache zones.
1097                          */
1098                         if ((i == 0) &&
1099                             (dmz_nr_cache_zones(dmz->metadata) > 0))
1100                                 continue;
1101                         DMEMIT(" %u/%u random %u/%u sequential",
1102                                dmz_nr_unmap_rnd_zones(dmz->metadata, i),
1103                                dmz_nr_rnd_zones(dmz->metadata, i),
1104                                dmz_nr_unmap_seq_zones(dmz->metadata, i),
1105                                dmz_nr_seq_zones(dmz->metadata, i));
1106                 }
1107                 break;
1108         case STATUSTYPE_TABLE:
1109                 dev = &dmz->dev[0];
1110                 format_dev_t(buf, dev->bdev->bd_dev);
1111                 DMEMIT("%s", buf);
1112                 for (i = 1; i < dmz->nr_ddevs; i++) {
1113                         dev = &dmz->dev[i];
1114                         format_dev_t(buf, dev->bdev->bd_dev);
1115                         DMEMIT(" %s", buf);
1116                 }
1117                 break;
1118         case STATUSTYPE_IMA:
1119                 *result = '\0';
1120                 break;
1121         }
1122         return;
1123 }
1124
1125 static int dmz_message(struct dm_target *ti, unsigned int argc, char **argv,
1126                        char *result, unsigned int maxlen)
1127 {
1128         struct dmz_target *dmz = ti->private;
1129         int r = -EINVAL;
1130
1131         if (!strcasecmp(argv[0], "reclaim")) {
1132                 int i;
1133
1134                 for (i = 0; i < dmz->nr_ddevs; i++)
1135                         dmz_schedule_reclaim(dmz->dev[i].reclaim);
1136                 r = 0;
1137         } else
1138                 DMERR("unrecognized message %s", argv[0]);
1139         return r;
1140 }
1141
1142 static struct target_type dmz_type = {
1143         .name            = "zoned",
1144         .version         = {2, 0, 0},
1145         .features        = DM_TARGET_SINGLETON | DM_TARGET_MIXED_ZONED_MODEL,
1146         .module          = THIS_MODULE,
1147         .ctr             = dmz_ctr,
1148         .dtr             = dmz_dtr,
1149         .map             = dmz_map,
1150         .io_hints        = dmz_io_hints,
1151         .prepare_ioctl   = dmz_prepare_ioctl,
1152         .postsuspend     = dmz_suspend,
1153         .resume          = dmz_resume,
1154         .iterate_devices = dmz_iterate_devices,
1155         .status          = dmz_status,
1156         .message         = dmz_message,
1157 };
1158
1159 static int __init dmz_init(void)
1160 {
1161         return dm_register_target(&dmz_type);
1162 }
1163
1164 static void __exit dmz_exit(void)
1165 {
1166         dm_unregister_target(&dmz_type);
1167 }
1168
1169 module_init(dmz_init);
1170 module_exit(dmz_exit);
1171
1172 MODULE_DESCRIPTION(DM_NAME " target for zoned block devices");
1173 MODULE_AUTHOR("Damien Le Moal <damien.lemoal@wdc.com>");
1174 MODULE_LICENSE("GPL");