dm: requeue IO if mapping table not yet available
[platform/kernel/linux-rpi.git] / drivers / md / dm-zoned-target.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2017 Western Digital Corporation or its affiliates.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm-zoned.h"
9
10 #include <linux/module.h>
11
12 #define DM_MSG_PREFIX           "zoned"
13
14 #define DMZ_MIN_BIOS            8192
15
16 /*
17  * Zone BIO context.
18  */
19 struct dmz_bioctx {
20         struct dmz_dev          *dev;
21         struct dm_zone          *zone;
22         struct bio              *bio;
23         refcount_t              ref;
24 };
25
26 /*
27  * Chunk work descriptor.
28  */
29 struct dm_chunk_work {
30         struct work_struct      work;
31         refcount_t              refcount;
32         struct dmz_target       *target;
33         unsigned int            chunk;
34         struct bio_list         bio_list;
35 };
36
37 /*
38  * Target descriptor.
39  */
40 struct dmz_target {
41         struct dm_dev           **ddev;
42         unsigned int            nr_ddevs;
43
44         unsigned int            flags;
45
46         /* Zoned block device information */
47         struct dmz_dev          *dev;
48
49         /* For metadata handling */
50         struct dmz_metadata     *metadata;
51
52         /* For chunk work */
53         struct radix_tree_root  chunk_rxtree;
54         struct workqueue_struct *chunk_wq;
55         struct mutex            chunk_lock;
56
57         /* For cloned BIOs to zones */
58         struct bio_set          bio_set;
59
60         /* For flush */
61         spinlock_t              flush_lock;
62         struct bio_list         flush_list;
63         struct delayed_work     flush_work;
64         struct workqueue_struct *flush_wq;
65 };
66
67 /*
68  * Flush intervals (seconds).
69  */
70 #define DMZ_FLUSH_PERIOD        (10 * HZ)
71
72 /*
73  * Target BIO completion.
74  */
75 static inline void dmz_bio_endio(struct bio *bio, blk_status_t status)
76 {
77         struct dmz_bioctx *bioctx =
78                 dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
79
80         if (status != BLK_STS_OK && bio->bi_status == BLK_STS_OK)
81                 bio->bi_status = status;
82         if (bioctx->dev && bio->bi_status != BLK_STS_OK)
83                 bioctx->dev->flags |= DMZ_CHECK_BDEV;
84
85         if (refcount_dec_and_test(&bioctx->ref)) {
86                 struct dm_zone *zone = bioctx->zone;
87
88                 if (zone) {
89                         if (bio->bi_status != BLK_STS_OK &&
90                             bio_op(bio) == REQ_OP_WRITE &&
91                             dmz_is_seq(zone))
92                                 set_bit(DMZ_SEQ_WRITE_ERR, &zone->flags);
93                         dmz_deactivate_zone(zone);
94                 }
95                 bio_endio(bio);
96         }
97 }
98
99 /*
100  * Completion callback for an internally cloned target BIO. This terminates the
101  * target BIO when there are no more references to its context.
102  */
103 static void dmz_clone_endio(struct bio *clone)
104 {
105         struct dmz_bioctx *bioctx = clone->bi_private;
106         blk_status_t status = clone->bi_status;
107
108         bio_put(clone);
109         dmz_bio_endio(bioctx->bio, status);
110 }
111
112 /*
113  * Issue a clone of a target BIO. The clone may only partially process the
114  * original target BIO.
115  */
116 static int dmz_submit_bio(struct dmz_target *dmz, struct dm_zone *zone,
117                           struct bio *bio, sector_t chunk_block,
118                           unsigned int nr_blocks)
119 {
120         struct dmz_bioctx *bioctx =
121                 dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
122         struct dmz_dev *dev = zone->dev;
123         struct bio *clone;
124
125         if (dev->flags & DMZ_BDEV_DYING)
126                 return -EIO;
127
128         clone = bio_clone_fast(bio, GFP_NOIO, &dmz->bio_set);
129         if (!clone)
130                 return -ENOMEM;
131
132         bio_set_dev(clone, dev->bdev);
133         bioctx->dev = dev;
134         clone->bi_iter.bi_sector =
135                 dmz_start_sect(dmz->metadata, zone) + dmz_blk2sect(chunk_block);
136         clone->bi_iter.bi_size = dmz_blk2sect(nr_blocks) << SECTOR_SHIFT;
137         clone->bi_end_io = dmz_clone_endio;
138         clone->bi_private = bioctx;
139
140         bio_advance(bio, clone->bi_iter.bi_size);
141
142         refcount_inc(&bioctx->ref);
143         submit_bio_noacct(clone);
144
145         if (bio_op(bio) == REQ_OP_WRITE && dmz_is_seq(zone))
146                 zone->wp_block += nr_blocks;
147
148         return 0;
149 }
150
151 /*
152  * Zero out pages of discarded blocks accessed by a read BIO.
153  */
154 static void dmz_handle_read_zero(struct dmz_target *dmz, struct bio *bio,
155                                  sector_t chunk_block, unsigned int nr_blocks)
156 {
157         unsigned int size = nr_blocks << DMZ_BLOCK_SHIFT;
158
159         /* Clear nr_blocks */
160         swap(bio->bi_iter.bi_size, size);
161         zero_fill_bio(bio);
162         swap(bio->bi_iter.bi_size, size);
163
164         bio_advance(bio, size);
165 }
166
167 /*
168  * Process a read BIO.
169  */
170 static int dmz_handle_read(struct dmz_target *dmz, struct dm_zone *zone,
171                            struct bio *bio)
172 {
173         struct dmz_metadata *zmd = dmz->metadata;
174         sector_t chunk_block = dmz_chunk_block(zmd, dmz_bio_block(bio));
175         unsigned int nr_blocks = dmz_bio_blocks(bio);
176         sector_t end_block = chunk_block + nr_blocks;
177         struct dm_zone *rzone, *bzone;
178         int ret;
179
180         /* Read into unmapped chunks need only zeroing the BIO buffer */
181         if (!zone) {
182                 zero_fill_bio(bio);
183                 return 0;
184         }
185
186         DMDEBUG("(%s): READ chunk %llu -> %s zone %u, block %llu, %u blocks",
187                 dmz_metadata_label(zmd),
188                 (unsigned long long)dmz_bio_chunk(zmd, bio),
189                 (dmz_is_rnd(zone) ? "RND" :
190                  (dmz_is_cache(zone) ? "CACHE" : "SEQ")),
191                 zone->id,
192                 (unsigned long long)chunk_block, nr_blocks);
193
194         /* Check block validity to determine the read location */
195         bzone = zone->bzone;
196         while (chunk_block < end_block) {
197                 nr_blocks = 0;
198                 if (dmz_is_rnd(zone) || dmz_is_cache(zone) ||
199                     chunk_block < zone->wp_block) {
200                         /* Test block validity in the data zone */
201                         ret = dmz_block_valid(zmd, zone, chunk_block);
202                         if (ret < 0)
203                                 return ret;
204                         if (ret > 0) {
205                                 /* Read data zone blocks */
206                                 nr_blocks = ret;
207                                 rzone = zone;
208                         }
209                 }
210
211                 /*
212                  * No valid blocks found in the data zone.
213                  * Check the buffer zone, if there is one.
214                  */
215                 if (!nr_blocks && bzone) {
216                         ret = dmz_block_valid(zmd, bzone, chunk_block);
217                         if (ret < 0)
218                                 return ret;
219                         if (ret > 0) {
220                                 /* Read buffer zone blocks */
221                                 nr_blocks = ret;
222                                 rzone = bzone;
223                         }
224                 }
225
226                 if (nr_blocks) {
227                         /* Valid blocks found: read them */
228                         nr_blocks = min_t(unsigned int, nr_blocks,
229                                           end_block - chunk_block);
230                         ret = dmz_submit_bio(dmz, rzone, bio,
231                                              chunk_block, nr_blocks);
232                         if (ret)
233                                 return ret;
234                         chunk_block += nr_blocks;
235                 } else {
236                         /* No valid block: zeroout the current BIO block */
237                         dmz_handle_read_zero(dmz, bio, chunk_block, 1);
238                         chunk_block++;
239                 }
240         }
241
242         return 0;
243 }
244
245 /*
246  * Write blocks directly in a data zone, at the write pointer.
247  * If a buffer zone is assigned, invalidate the blocks written
248  * in place.
249  */
250 static int dmz_handle_direct_write(struct dmz_target *dmz,
251                                    struct dm_zone *zone, struct bio *bio,
252                                    sector_t chunk_block,
253                                    unsigned int nr_blocks)
254 {
255         struct dmz_metadata *zmd = dmz->metadata;
256         struct dm_zone *bzone = zone->bzone;
257         int ret;
258
259         if (dmz_is_readonly(zone))
260                 return -EROFS;
261
262         /* Submit write */
263         ret = dmz_submit_bio(dmz, zone, bio, chunk_block, nr_blocks);
264         if (ret)
265                 return ret;
266
267         /*
268          * Validate the blocks in the data zone and invalidate
269          * in the buffer zone, if there is one.
270          */
271         ret = dmz_validate_blocks(zmd, zone, chunk_block, nr_blocks);
272         if (ret == 0 && bzone)
273                 ret = dmz_invalidate_blocks(zmd, bzone, chunk_block, nr_blocks);
274
275         return ret;
276 }
277
278 /*
279  * Write blocks in the buffer zone of @zone.
280  * If no buffer zone is assigned yet, get one.
281  * Called with @zone write locked.
282  */
283 static int dmz_handle_buffered_write(struct dmz_target *dmz,
284                                      struct dm_zone *zone, struct bio *bio,
285                                      sector_t chunk_block,
286                                      unsigned int nr_blocks)
287 {
288         struct dmz_metadata *zmd = dmz->metadata;
289         struct dm_zone *bzone;
290         int ret;
291
292         /* Get the buffer zone. One will be allocated if needed */
293         bzone = dmz_get_chunk_buffer(zmd, zone);
294         if (IS_ERR(bzone))
295                 return PTR_ERR(bzone);
296
297         if (dmz_is_readonly(bzone))
298                 return -EROFS;
299
300         /* Submit write */
301         ret = dmz_submit_bio(dmz, bzone, bio, chunk_block, nr_blocks);
302         if (ret)
303                 return ret;
304
305         /*
306          * Validate the blocks in the buffer zone
307          * and invalidate in the data zone.
308          */
309         ret = dmz_validate_blocks(zmd, bzone, chunk_block, nr_blocks);
310         if (ret == 0 && chunk_block < zone->wp_block)
311                 ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
312
313         return ret;
314 }
315
316 /*
317  * Process a write BIO.
318  */
319 static int dmz_handle_write(struct dmz_target *dmz, struct dm_zone *zone,
320                             struct bio *bio)
321 {
322         struct dmz_metadata *zmd = dmz->metadata;
323         sector_t chunk_block = dmz_chunk_block(zmd, dmz_bio_block(bio));
324         unsigned int nr_blocks = dmz_bio_blocks(bio);
325
326         if (!zone)
327                 return -ENOSPC;
328
329         DMDEBUG("(%s): WRITE chunk %llu -> %s zone %u, block %llu, %u blocks",
330                 dmz_metadata_label(zmd),
331                 (unsigned long long)dmz_bio_chunk(zmd, bio),
332                 (dmz_is_rnd(zone) ? "RND" :
333                  (dmz_is_cache(zone) ? "CACHE" : "SEQ")),
334                 zone->id,
335                 (unsigned long long)chunk_block, nr_blocks);
336
337         if (dmz_is_rnd(zone) || dmz_is_cache(zone) ||
338             chunk_block == zone->wp_block) {
339                 /*
340                  * zone is a random zone or it is a sequential zone
341                  * and the BIO is aligned to the zone write pointer:
342                  * direct write the zone.
343                  */
344                 return dmz_handle_direct_write(dmz, zone, bio,
345                                                chunk_block, nr_blocks);
346         }
347
348         /*
349          * This is an unaligned write in a sequential zone:
350          * use buffered write.
351          */
352         return dmz_handle_buffered_write(dmz, zone, bio, chunk_block, nr_blocks);
353 }
354
355 /*
356  * Process a discard BIO.
357  */
358 static int dmz_handle_discard(struct dmz_target *dmz, struct dm_zone *zone,
359                               struct bio *bio)
360 {
361         struct dmz_metadata *zmd = dmz->metadata;
362         sector_t block = dmz_bio_block(bio);
363         unsigned int nr_blocks = dmz_bio_blocks(bio);
364         sector_t chunk_block = dmz_chunk_block(zmd, block);
365         int ret = 0;
366
367         /* For unmapped chunks, there is nothing to do */
368         if (!zone)
369                 return 0;
370
371         if (dmz_is_readonly(zone))
372                 return -EROFS;
373
374         DMDEBUG("(%s): DISCARD chunk %llu -> zone %u, block %llu, %u blocks",
375                 dmz_metadata_label(dmz->metadata),
376                 (unsigned long long)dmz_bio_chunk(zmd, bio),
377                 zone->id,
378                 (unsigned long long)chunk_block, nr_blocks);
379
380         /*
381          * Invalidate blocks in the data zone and its
382          * buffer zone if one is mapped.
383          */
384         if (dmz_is_rnd(zone) || dmz_is_cache(zone) ||
385             chunk_block < zone->wp_block)
386                 ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
387         if (ret == 0 && zone->bzone)
388                 ret = dmz_invalidate_blocks(zmd, zone->bzone,
389                                             chunk_block, nr_blocks);
390         return ret;
391 }
392
393 /*
394  * Process a BIO.
395  */
396 static void dmz_handle_bio(struct dmz_target *dmz, struct dm_chunk_work *cw,
397                            struct bio *bio)
398 {
399         struct dmz_bioctx *bioctx =
400                 dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
401         struct dmz_metadata *zmd = dmz->metadata;
402         struct dm_zone *zone;
403         int ret;
404
405         dmz_lock_metadata(zmd);
406
407         /*
408          * Get the data zone mapping the chunk. There may be no
409          * mapping for read and discard. If a mapping is obtained,
410          + the zone returned will be set to active state.
411          */
412         zone = dmz_get_chunk_mapping(zmd, dmz_bio_chunk(zmd, bio),
413                                      bio_op(bio));
414         if (IS_ERR(zone)) {
415                 ret = PTR_ERR(zone);
416                 goto out;
417         }
418
419         /* Process the BIO */
420         if (zone) {
421                 dmz_activate_zone(zone);
422                 bioctx->zone = zone;
423                 dmz_reclaim_bio_acc(zone->dev->reclaim);
424         }
425
426         switch (bio_op(bio)) {
427         case REQ_OP_READ:
428                 ret = dmz_handle_read(dmz, zone, bio);
429                 break;
430         case REQ_OP_WRITE:
431                 ret = dmz_handle_write(dmz, zone, bio);
432                 break;
433         case REQ_OP_DISCARD:
434         case REQ_OP_WRITE_ZEROES:
435                 ret = dmz_handle_discard(dmz, zone, bio);
436                 break;
437         default:
438                 DMERR("(%s): Unsupported BIO operation 0x%x",
439                       dmz_metadata_label(dmz->metadata), bio_op(bio));
440                 ret = -EIO;
441         }
442
443         /*
444          * Release the chunk mapping. This will check that the mapping
445          * is still valid, that is, that the zone used still has valid blocks.
446          */
447         if (zone)
448                 dmz_put_chunk_mapping(zmd, zone);
449 out:
450         dmz_bio_endio(bio, errno_to_blk_status(ret));
451
452         dmz_unlock_metadata(zmd);
453 }
454
455 /*
456  * Increment a chunk reference counter.
457  */
458 static inline void dmz_get_chunk_work(struct dm_chunk_work *cw)
459 {
460         refcount_inc(&cw->refcount);
461 }
462
463 /*
464  * Decrement a chunk work reference count and
465  * free it if it becomes 0.
466  */
467 static void dmz_put_chunk_work(struct dm_chunk_work *cw)
468 {
469         if (refcount_dec_and_test(&cw->refcount)) {
470                 WARN_ON(!bio_list_empty(&cw->bio_list));
471                 radix_tree_delete(&cw->target->chunk_rxtree, cw->chunk);
472                 kfree(cw);
473         }
474 }
475
476 /*
477  * Chunk BIO work function.
478  */
479 static void dmz_chunk_work(struct work_struct *work)
480 {
481         struct dm_chunk_work *cw = container_of(work, struct dm_chunk_work, work);
482         struct dmz_target *dmz = cw->target;
483         struct bio *bio;
484
485         mutex_lock(&dmz->chunk_lock);
486
487         /* Process the chunk BIOs */
488         while ((bio = bio_list_pop(&cw->bio_list))) {
489                 mutex_unlock(&dmz->chunk_lock);
490                 dmz_handle_bio(dmz, cw, bio);
491                 mutex_lock(&dmz->chunk_lock);
492                 dmz_put_chunk_work(cw);
493         }
494
495         /* Queueing the work incremented the work refcount */
496         dmz_put_chunk_work(cw);
497
498         mutex_unlock(&dmz->chunk_lock);
499 }
500
501 /*
502  * Flush work.
503  */
504 static void dmz_flush_work(struct work_struct *work)
505 {
506         struct dmz_target *dmz = container_of(work, struct dmz_target, flush_work.work);
507         struct bio *bio;
508         int ret;
509
510         /* Flush dirty metadata blocks */
511         ret = dmz_flush_metadata(dmz->metadata);
512         if (ret)
513                 DMDEBUG("(%s): Metadata flush failed, rc=%d",
514                         dmz_metadata_label(dmz->metadata), ret);
515
516         /* Process queued flush requests */
517         while (1) {
518                 spin_lock(&dmz->flush_lock);
519                 bio = bio_list_pop(&dmz->flush_list);
520                 spin_unlock(&dmz->flush_lock);
521
522                 if (!bio)
523                         break;
524
525                 dmz_bio_endio(bio, errno_to_blk_status(ret));
526         }
527
528         queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
529 }
530
531 /*
532  * Get a chunk work and start it to process a new BIO.
533  * If the BIO chunk has no work yet, create one.
534  */
535 static int dmz_queue_chunk_work(struct dmz_target *dmz, struct bio *bio)
536 {
537         unsigned int chunk = dmz_bio_chunk(dmz->metadata, bio);
538         struct dm_chunk_work *cw;
539         int ret = 0;
540
541         mutex_lock(&dmz->chunk_lock);
542
543         /* Get the BIO chunk work. If one is not active yet, create one */
544         cw = radix_tree_lookup(&dmz->chunk_rxtree, chunk);
545         if (cw) {
546                 dmz_get_chunk_work(cw);
547         } else {
548                 /* Create a new chunk work */
549                 cw = kmalloc(sizeof(struct dm_chunk_work), GFP_NOIO);
550                 if (unlikely(!cw)) {
551                         ret = -ENOMEM;
552                         goto out;
553                 }
554
555                 INIT_WORK(&cw->work, dmz_chunk_work);
556                 refcount_set(&cw->refcount, 1);
557                 cw->target = dmz;
558                 cw->chunk = chunk;
559                 bio_list_init(&cw->bio_list);
560
561                 ret = radix_tree_insert(&dmz->chunk_rxtree, chunk, cw);
562                 if (unlikely(ret)) {
563                         kfree(cw);
564                         goto out;
565                 }
566         }
567
568         bio_list_add(&cw->bio_list, bio);
569
570         if (queue_work(dmz->chunk_wq, &cw->work))
571                 dmz_get_chunk_work(cw);
572 out:
573         mutex_unlock(&dmz->chunk_lock);
574         return ret;
575 }
576
577 /*
578  * Check if the backing device is being removed. If it's on the way out,
579  * start failing I/O. Reclaim and metadata components also call this
580  * function to cleanly abort operation in the event of such failure.
581  */
582 bool dmz_bdev_is_dying(struct dmz_dev *dmz_dev)
583 {
584         if (dmz_dev->flags & DMZ_BDEV_DYING)
585                 return true;
586
587         if (dmz_dev->flags & DMZ_CHECK_BDEV)
588                 return !dmz_check_bdev(dmz_dev);
589
590         if (blk_queue_dying(bdev_get_queue(dmz_dev->bdev))) {
591                 dmz_dev_warn(dmz_dev, "Backing device queue dying");
592                 dmz_dev->flags |= DMZ_BDEV_DYING;
593         }
594
595         return dmz_dev->flags & DMZ_BDEV_DYING;
596 }
597
598 /*
599  * Check the backing device availability. This detects such events as
600  * backing device going offline due to errors, media removals, etc.
601  * This check is less efficient than dmz_bdev_is_dying() and should
602  * only be performed as a part of error handling.
603  */
604 bool dmz_check_bdev(struct dmz_dev *dmz_dev)
605 {
606         struct gendisk *disk;
607
608         dmz_dev->flags &= ~DMZ_CHECK_BDEV;
609
610         if (dmz_bdev_is_dying(dmz_dev))
611                 return false;
612
613         disk = dmz_dev->bdev->bd_disk;
614         if (disk->fops->check_events &&
615             disk->fops->check_events(disk, 0) & DISK_EVENT_MEDIA_CHANGE) {
616                 dmz_dev_warn(dmz_dev, "Backing device offline");
617                 dmz_dev->flags |= DMZ_BDEV_DYING;
618         }
619
620         return !(dmz_dev->flags & DMZ_BDEV_DYING);
621 }
622
623 /*
624  * Process a new BIO.
625  */
626 static int dmz_map(struct dm_target *ti, struct bio *bio)
627 {
628         struct dmz_target *dmz = ti->private;
629         struct dmz_metadata *zmd = dmz->metadata;
630         struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
631         sector_t sector = bio->bi_iter.bi_sector;
632         unsigned int nr_sectors = bio_sectors(bio);
633         sector_t chunk_sector;
634         int ret;
635
636         if (dmz_dev_is_dying(zmd))
637                 return DM_MAPIO_KILL;
638
639         DMDEBUG("(%s): BIO op %d sector %llu + %u => chunk %llu, block %llu, %u blocks",
640                 dmz_metadata_label(zmd),
641                 bio_op(bio), (unsigned long long)sector, nr_sectors,
642                 (unsigned long long)dmz_bio_chunk(zmd, bio),
643                 (unsigned long long)dmz_chunk_block(zmd, dmz_bio_block(bio)),
644                 (unsigned int)dmz_bio_blocks(bio));
645
646         if (!nr_sectors && bio_op(bio) != REQ_OP_WRITE)
647                 return DM_MAPIO_REMAPPED;
648
649         /* The BIO should be block aligned */
650         if ((nr_sectors & DMZ_BLOCK_SECTORS_MASK) || (sector & DMZ_BLOCK_SECTORS_MASK))
651                 return DM_MAPIO_KILL;
652
653         /* Initialize the BIO context */
654         bioctx->dev = NULL;
655         bioctx->zone = NULL;
656         bioctx->bio = bio;
657         refcount_set(&bioctx->ref, 1);
658
659         /* Set the BIO pending in the flush list */
660         if (!nr_sectors && bio_op(bio) == REQ_OP_WRITE) {
661                 spin_lock(&dmz->flush_lock);
662                 bio_list_add(&dmz->flush_list, bio);
663                 spin_unlock(&dmz->flush_lock);
664                 mod_delayed_work(dmz->flush_wq, &dmz->flush_work, 0);
665                 return DM_MAPIO_SUBMITTED;
666         }
667
668         /* Split zone BIOs to fit entirely into a zone */
669         chunk_sector = sector & (dmz_zone_nr_sectors(zmd) - 1);
670         if (chunk_sector + nr_sectors > dmz_zone_nr_sectors(zmd))
671                 dm_accept_partial_bio(bio, dmz_zone_nr_sectors(zmd) - chunk_sector);
672
673         /* Now ready to handle this BIO */
674         ret = dmz_queue_chunk_work(dmz, bio);
675         if (ret) {
676                 DMDEBUG("(%s): BIO op %d, can't process chunk %llu, err %i",
677                         dmz_metadata_label(zmd),
678                         bio_op(bio), (u64)dmz_bio_chunk(zmd, bio),
679                         ret);
680                 return DM_MAPIO_REQUEUE;
681         }
682
683         return DM_MAPIO_SUBMITTED;
684 }
685
686 /*
687  * Get zoned device information.
688  */
689 static int dmz_get_zoned_device(struct dm_target *ti, char *path,
690                                 int idx, int nr_devs)
691 {
692         struct dmz_target *dmz = ti->private;
693         struct dm_dev *ddev;
694         struct dmz_dev *dev;
695         int ret;
696         struct block_device *bdev;
697
698         /* Get the target device */
699         ret = dm_get_device(ti, path, dm_table_get_mode(ti->table), &ddev);
700         if (ret) {
701                 ti->error = "Get target device failed";
702                 return ret;
703         }
704
705         bdev = ddev->bdev;
706         if (bdev_zoned_model(bdev) == BLK_ZONED_NONE) {
707                 if (nr_devs == 1) {
708                         ti->error = "Invalid regular device";
709                         goto err;
710                 }
711                 if (idx != 0) {
712                         ti->error = "First device must be a regular device";
713                         goto err;
714                 }
715                 if (dmz->ddev[0]) {
716                         ti->error = "Too many regular devices";
717                         goto err;
718                 }
719                 dev = &dmz->dev[idx];
720                 dev->flags = DMZ_BDEV_REGULAR;
721         } else {
722                 if (dmz->ddev[idx]) {
723                         ti->error = "Too many zoned devices";
724                         goto err;
725                 }
726                 if (nr_devs > 1 && idx == 0) {
727                         ti->error = "First device must be a regular device";
728                         goto err;
729                 }
730                 dev = &dmz->dev[idx];
731         }
732         dev->bdev = bdev;
733         dev->dev_idx = idx;
734         (void)bdevname(dev->bdev, dev->name);
735
736         dev->capacity = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
737         if (ti->begin) {
738                 ti->error = "Partial mapping is not supported";
739                 goto err;
740         }
741
742         dmz->ddev[idx] = ddev;
743
744         return 0;
745 err:
746         dm_put_device(ti, ddev);
747         return -EINVAL;
748 }
749
750 /*
751  * Cleanup zoned device information.
752  */
753 static void dmz_put_zoned_device(struct dm_target *ti)
754 {
755         struct dmz_target *dmz = ti->private;
756         int i;
757
758         for (i = 0; i < dmz->nr_ddevs; i++) {
759                 if (dmz->ddev[i]) {
760                         dm_put_device(ti, dmz->ddev[i]);
761                         dmz->ddev[i] = NULL;
762                 }
763         }
764 }
765
766 static int dmz_fixup_devices(struct dm_target *ti)
767 {
768         struct dmz_target *dmz = ti->private;
769         struct dmz_dev *reg_dev, *zoned_dev;
770         struct request_queue *q;
771         sector_t zone_nr_sectors = 0;
772         int i;
773
774         /*
775          * When we have more than on devices, the first one must be a
776          * regular block device and the others zoned block devices.
777          */
778         if (dmz->nr_ddevs > 1) {
779                 reg_dev = &dmz->dev[0];
780                 if (!(reg_dev->flags & DMZ_BDEV_REGULAR)) {
781                         ti->error = "Primary disk is not a regular device";
782                         return -EINVAL;
783                 }
784                 for (i = 1; i < dmz->nr_ddevs; i++) {
785                         zoned_dev = &dmz->dev[i];
786                         if (zoned_dev->flags & DMZ_BDEV_REGULAR) {
787                                 ti->error = "Secondary disk is not a zoned device";
788                                 return -EINVAL;
789                         }
790                         q = bdev_get_queue(zoned_dev->bdev);
791                         if (zone_nr_sectors &&
792                             zone_nr_sectors != blk_queue_zone_sectors(q)) {
793                                 ti->error = "Zone nr sectors mismatch";
794                                 return -EINVAL;
795                         }
796                         zone_nr_sectors = blk_queue_zone_sectors(q);
797                         zoned_dev->zone_nr_sectors = zone_nr_sectors;
798                         zoned_dev->nr_zones =
799                                 blkdev_nr_zones(zoned_dev->bdev->bd_disk);
800                 }
801         } else {
802                 reg_dev = NULL;
803                 zoned_dev = &dmz->dev[0];
804                 if (zoned_dev->flags & DMZ_BDEV_REGULAR) {
805                         ti->error = "Disk is not a zoned device";
806                         return -EINVAL;
807                 }
808                 q = bdev_get_queue(zoned_dev->bdev);
809                 zoned_dev->zone_nr_sectors = blk_queue_zone_sectors(q);
810                 zoned_dev->nr_zones = blkdev_nr_zones(zoned_dev->bdev->bd_disk);
811         }
812
813         if (reg_dev) {
814                 sector_t zone_offset;
815
816                 reg_dev->zone_nr_sectors = zone_nr_sectors;
817                 reg_dev->nr_zones =
818                         DIV_ROUND_UP_SECTOR_T(reg_dev->capacity,
819                                               reg_dev->zone_nr_sectors);
820                 reg_dev->zone_offset = 0;
821                 zone_offset = reg_dev->nr_zones;
822                 for (i = 1; i < dmz->nr_ddevs; i++) {
823                         dmz->dev[i].zone_offset = zone_offset;
824                         zone_offset += dmz->dev[i].nr_zones;
825                 }
826         }
827         return 0;
828 }
829
830 /*
831  * Setup target.
832  */
833 static int dmz_ctr(struct dm_target *ti, unsigned int argc, char **argv)
834 {
835         struct dmz_target *dmz;
836         int ret, i;
837
838         /* Check arguments */
839         if (argc < 1) {
840                 ti->error = "Invalid argument count";
841                 return -EINVAL;
842         }
843
844         /* Allocate and initialize the target descriptor */
845         dmz = kzalloc(sizeof(struct dmz_target), GFP_KERNEL);
846         if (!dmz) {
847                 ti->error = "Unable to allocate the zoned target descriptor";
848                 return -ENOMEM;
849         }
850         dmz->dev = kcalloc(argc, sizeof(struct dmz_dev), GFP_KERNEL);
851         if (!dmz->dev) {
852                 ti->error = "Unable to allocate the zoned device descriptors";
853                 kfree(dmz);
854                 return -ENOMEM;
855         }
856         dmz->ddev = kcalloc(argc, sizeof(struct dm_dev *), GFP_KERNEL);
857         if (!dmz->ddev) {
858                 ti->error = "Unable to allocate the dm device descriptors";
859                 ret = -ENOMEM;
860                 goto err;
861         }
862         dmz->nr_ddevs = argc;
863
864         ti->private = dmz;
865
866         /* Get the target zoned block device */
867         for (i = 0; i < argc; i++) {
868                 ret = dmz_get_zoned_device(ti, argv[i], i, argc);
869                 if (ret)
870                         goto err_dev;
871         }
872         ret = dmz_fixup_devices(ti);
873         if (ret)
874                 goto err_dev;
875
876         /* Initialize metadata */
877         ret = dmz_ctr_metadata(dmz->dev, argc, &dmz->metadata,
878                                dm_table_device_name(ti->table));
879         if (ret) {
880                 ti->error = "Metadata initialization failed";
881                 goto err_dev;
882         }
883
884         /* Set target (no write same support) */
885         ti->max_io_len = dmz_zone_nr_sectors(dmz->metadata);
886         ti->num_flush_bios = 1;
887         ti->num_discard_bios = 1;
888         ti->num_write_zeroes_bios = 1;
889         ti->per_io_data_size = sizeof(struct dmz_bioctx);
890         ti->flush_supported = true;
891         ti->discards_supported = true;
892
893         /* The exposed capacity is the number of chunks that can be mapped */
894         ti->len = (sector_t)dmz_nr_chunks(dmz->metadata) <<
895                 dmz_zone_nr_sectors_shift(dmz->metadata);
896
897         /* Zone BIO */
898         ret = bioset_init(&dmz->bio_set, DMZ_MIN_BIOS, 0, 0);
899         if (ret) {
900                 ti->error = "Create BIO set failed";
901                 goto err_meta;
902         }
903
904         /* Chunk BIO work */
905         mutex_init(&dmz->chunk_lock);
906         INIT_RADIX_TREE(&dmz->chunk_rxtree, GFP_NOIO);
907         dmz->chunk_wq = alloc_workqueue("dmz_cwq_%s",
908                                         WQ_MEM_RECLAIM | WQ_UNBOUND, 0,
909                                         dmz_metadata_label(dmz->metadata));
910         if (!dmz->chunk_wq) {
911                 ti->error = "Create chunk workqueue failed";
912                 ret = -ENOMEM;
913                 goto err_bio;
914         }
915
916         /* Flush work */
917         spin_lock_init(&dmz->flush_lock);
918         bio_list_init(&dmz->flush_list);
919         INIT_DELAYED_WORK(&dmz->flush_work, dmz_flush_work);
920         dmz->flush_wq = alloc_ordered_workqueue("dmz_fwq_%s", WQ_MEM_RECLAIM,
921                                                 dmz_metadata_label(dmz->metadata));
922         if (!dmz->flush_wq) {
923                 ti->error = "Create flush workqueue failed";
924                 ret = -ENOMEM;
925                 goto err_cwq;
926         }
927         mod_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
928
929         /* Initialize reclaim */
930         for (i = 0; i < dmz->nr_ddevs; i++) {
931                 ret = dmz_ctr_reclaim(dmz->metadata, &dmz->dev[i].reclaim, i);
932                 if (ret) {
933                         ti->error = "Zone reclaim initialization failed";
934                         goto err_fwq;
935                 }
936         }
937
938         DMINFO("(%s): Target device: %llu 512-byte logical sectors (%llu blocks)",
939                dmz_metadata_label(dmz->metadata),
940                (unsigned long long)ti->len,
941                (unsigned long long)dmz_sect2blk(ti->len));
942
943         return 0;
944 err_fwq:
945         destroy_workqueue(dmz->flush_wq);
946 err_cwq:
947         destroy_workqueue(dmz->chunk_wq);
948 err_bio:
949         mutex_destroy(&dmz->chunk_lock);
950         bioset_exit(&dmz->bio_set);
951 err_meta:
952         dmz_dtr_metadata(dmz->metadata);
953 err_dev:
954         dmz_put_zoned_device(ti);
955 err:
956         kfree(dmz->dev);
957         kfree(dmz);
958
959         return ret;
960 }
961
962 /*
963  * Cleanup target.
964  */
965 static void dmz_dtr(struct dm_target *ti)
966 {
967         struct dmz_target *dmz = ti->private;
968         int i;
969
970         flush_workqueue(dmz->chunk_wq);
971         destroy_workqueue(dmz->chunk_wq);
972
973         for (i = 0; i < dmz->nr_ddevs; i++)
974                 dmz_dtr_reclaim(dmz->dev[i].reclaim);
975
976         cancel_delayed_work_sync(&dmz->flush_work);
977         destroy_workqueue(dmz->flush_wq);
978
979         (void) dmz_flush_metadata(dmz->metadata);
980
981         dmz_dtr_metadata(dmz->metadata);
982
983         bioset_exit(&dmz->bio_set);
984
985         dmz_put_zoned_device(ti);
986
987         mutex_destroy(&dmz->chunk_lock);
988
989         kfree(dmz->dev);
990         kfree(dmz);
991 }
992
993 /*
994  * Setup target request queue limits.
995  */
996 static void dmz_io_hints(struct dm_target *ti, struct queue_limits *limits)
997 {
998         struct dmz_target *dmz = ti->private;
999         unsigned int chunk_sectors = dmz_zone_nr_sectors(dmz->metadata);
1000
1001         limits->logical_block_size = DMZ_BLOCK_SIZE;
1002         limits->physical_block_size = DMZ_BLOCK_SIZE;
1003
1004         blk_limits_io_min(limits, DMZ_BLOCK_SIZE);
1005         blk_limits_io_opt(limits, DMZ_BLOCK_SIZE);
1006
1007         limits->discard_alignment = DMZ_BLOCK_SIZE;
1008         limits->discard_granularity = DMZ_BLOCK_SIZE;
1009         limits->max_discard_sectors = chunk_sectors;
1010         limits->max_hw_discard_sectors = chunk_sectors;
1011         limits->max_write_zeroes_sectors = chunk_sectors;
1012
1013         /* FS hint to try to align to the device zone size */
1014         limits->chunk_sectors = chunk_sectors;
1015         limits->max_sectors = chunk_sectors;
1016
1017         /* We are exposing a drive-managed zoned block device */
1018         limits->zoned = BLK_ZONED_NONE;
1019 }
1020
1021 /*
1022  * Pass on ioctl to the backend device.
1023  */
1024 static int dmz_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
1025 {
1026         struct dmz_target *dmz = ti->private;
1027         struct dmz_dev *dev = &dmz->dev[0];
1028
1029         if (!dmz_check_bdev(dev))
1030                 return -EIO;
1031
1032         *bdev = dev->bdev;
1033
1034         return 0;
1035 }
1036
1037 /*
1038  * Stop works on suspend.
1039  */
1040 static void dmz_suspend(struct dm_target *ti)
1041 {
1042         struct dmz_target *dmz = ti->private;
1043         int i;
1044
1045         flush_workqueue(dmz->chunk_wq);
1046         for (i = 0; i < dmz->nr_ddevs; i++)
1047                 dmz_suspend_reclaim(dmz->dev[i].reclaim);
1048         cancel_delayed_work_sync(&dmz->flush_work);
1049 }
1050
1051 /*
1052  * Restart works on resume or if suspend failed.
1053  */
1054 static void dmz_resume(struct dm_target *ti)
1055 {
1056         struct dmz_target *dmz = ti->private;
1057         int i;
1058
1059         queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
1060         for (i = 0; i < dmz->nr_ddevs; i++)
1061                 dmz_resume_reclaim(dmz->dev[i].reclaim);
1062 }
1063
1064 static int dmz_iterate_devices(struct dm_target *ti,
1065                                iterate_devices_callout_fn fn, void *data)
1066 {
1067         struct dmz_target *dmz = ti->private;
1068         unsigned int zone_nr_sectors = dmz_zone_nr_sectors(dmz->metadata);
1069         sector_t capacity;
1070         int i, r;
1071
1072         for (i = 0; i < dmz->nr_ddevs; i++) {
1073                 capacity = dmz->dev[i].capacity & ~(zone_nr_sectors - 1);
1074                 r = fn(ti, dmz->ddev[i], 0, capacity, data);
1075                 if (r)
1076                         break;
1077         }
1078         return r;
1079 }
1080
1081 static void dmz_status(struct dm_target *ti, status_type_t type,
1082                        unsigned int status_flags, char *result,
1083                        unsigned int maxlen)
1084 {
1085         struct dmz_target *dmz = ti->private;
1086         ssize_t sz = 0;
1087         char buf[BDEVNAME_SIZE];
1088         struct dmz_dev *dev;
1089         int i;
1090
1091         switch (type) {
1092         case STATUSTYPE_INFO:
1093                 DMEMIT("%u zones %u/%u cache",
1094                        dmz_nr_zones(dmz->metadata),
1095                        dmz_nr_unmap_cache_zones(dmz->metadata),
1096                        dmz_nr_cache_zones(dmz->metadata));
1097                 for (i = 0; i < dmz->nr_ddevs; i++) {
1098                         /*
1099                          * For a multi-device setup the first device
1100                          * contains only cache zones.
1101                          */
1102                         if ((i == 0) &&
1103                             (dmz_nr_cache_zones(dmz->metadata) > 0))
1104                                 continue;
1105                         DMEMIT(" %u/%u random %u/%u sequential",
1106                                dmz_nr_unmap_rnd_zones(dmz->metadata, i),
1107                                dmz_nr_rnd_zones(dmz->metadata, i),
1108                                dmz_nr_unmap_seq_zones(dmz->metadata, i),
1109                                dmz_nr_seq_zones(dmz->metadata, i));
1110                 }
1111                 break;
1112         case STATUSTYPE_TABLE:
1113                 dev = &dmz->dev[0];
1114                 format_dev_t(buf, dev->bdev->bd_dev);
1115                 DMEMIT("%s", buf);
1116                 for (i = 1; i < dmz->nr_ddevs; i++) {
1117                         dev = &dmz->dev[i];
1118                         format_dev_t(buf, dev->bdev->bd_dev);
1119                         DMEMIT(" %s", buf);
1120                 }
1121                 break;
1122         case STATUSTYPE_IMA:
1123                 *result = '\0';
1124                 break;
1125         }
1126         return;
1127 }
1128
1129 static int dmz_message(struct dm_target *ti, unsigned int argc, char **argv,
1130                        char *result, unsigned int maxlen)
1131 {
1132         struct dmz_target *dmz = ti->private;
1133         int r = -EINVAL;
1134
1135         if (!strcasecmp(argv[0], "reclaim")) {
1136                 int i;
1137
1138                 for (i = 0; i < dmz->nr_ddevs; i++)
1139                         dmz_schedule_reclaim(dmz->dev[i].reclaim);
1140                 r = 0;
1141         } else
1142                 DMERR("unrecognized message %s", argv[0]);
1143         return r;
1144 }
1145
1146 static struct target_type dmz_type = {
1147         .name            = "zoned",
1148         .version         = {2, 0, 0},
1149         .features        = DM_TARGET_SINGLETON | DM_TARGET_MIXED_ZONED_MODEL,
1150         .module          = THIS_MODULE,
1151         .ctr             = dmz_ctr,
1152         .dtr             = dmz_dtr,
1153         .map             = dmz_map,
1154         .io_hints        = dmz_io_hints,
1155         .prepare_ioctl   = dmz_prepare_ioctl,
1156         .postsuspend     = dmz_suspend,
1157         .resume          = dmz_resume,
1158         .iterate_devices = dmz_iterate_devices,
1159         .status          = dmz_status,
1160         .message         = dmz_message,
1161 };
1162
1163 static int __init dmz_init(void)
1164 {
1165         return dm_register_target(&dmz_type);
1166 }
1167
1168 static void __exit dmz_exit(void)
1169 {
1170         dm_unregister_target(&dmz_type);
1171 }
1172
1173 module_init(dmz_init);
1174 module_exit(dmz_exit);
1175
1176 MODULE_DESCRIPTION(DM_NAME " target for zoned block devices");
1177 MODULE_AUTHOR("Damien Le Moal <damien.lemoal@wdc.com>");
1178 MODULE_LICENSE("GPL");