1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2018 Red Hat. All rights reserved.
5 * This file is released under the GPL.
8 #include <linux/device-mapper.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/vmalloc.h>
12 #include <linux/kthread.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/dax.h>
16 #include <linux/pfn_t.h>
17 #include <linux/libnvdimm.h>
18 #include <linux/delay.h>
19 #include "dm-io-tracker.h"
21 #define DM_MSG_PREFIX "writecache"
23 #define HIGH_WATERMARK 50
24 #define LOW_WATERMARK 45
25 #define MAX_WRITEBACK_JOBS min(0x10000000 / PAGE_SIZE, totalram_pages() / 16)
26 #define ENDIO_LATENCY 16
27 #define WRITEBACK_LATENCY 64
28 #define AUTOCOMMIT_BLOCKS_SSD 65536
29 #define AUTOCOMMIT_BLOCKS_PMEM 64
30 #define AUTOCOMMIT_MSEC 1000
31 #define MAX_AGE_DIV 16
32 #define MAX_AGE_UNSPECIFIED -1UL
33 #define PAUSE_WRITEBACK (HZ * 3)
35 #define BITMAP_GRANULARITY 65536
36 #if BITMAP_GRANULARITY < PAGE_SIZE
37 #undef BITMAP_GRANULARITY
38 #define BITMAP_GRANULARITY PAGE_SIZE
41 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_FS_DAX)
42 #define DM_WRITECACHE_HAS_PMEM
45 #ifdef DM_WRITECACHE_HAS_PMEM
46 #define pmem_assign(dest, src) \
48 typeof(dest) uniq = (src); \
49 memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \
52 #define pmem_assign(dest, src) ((dest) = (src))
55 #if IS_ENABLED(CONFIG_ARCH_HAS_COPY_MC) && defined(DM_WRITECACHE_HAS_PMEM)
56 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
59 #define MEMORY_SUPERBLOCK_MAGIC 0x23489321
60 #define MEMORY_SUPERBLOCK_VERSION 1
62 struct wc_memory_entry {
63 __le64 original_sector;
67 struct wc_memory_superblock {
79 struct wc_memory_entry entries[];
83 struct rb_node rb_node;
85 unsigned short wc_list_contiguous;
86 bool write_in_progress
87 #if BITS_PER_LONG == 64
92 #if BITS_PER_LONG == 64
97 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
98 uint64_t original_sector;
103 #ifdef DM_WRITECACHE_HAS_PMEM
104 #define WC_MODE_PMEM(wc) ((wc)->pmem_mode)
105 #define WC_MODE_FUA(wc) ((wc)->writeback_fua)
107 #define WC_MODE_PMEM(wc) false
108 #define WC_MODE_FUA(wc) false
110 #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc))
112 struct dm_writecache {
114 struct list_head lru;
116 struct list_head freelist;
118 struct rb_root freetree;
119 struct wc_entry *current_free;
124 size_t freelist_size;
125 size_t writeback_size;
126 size_t freelist_high_watermark;
127 size_t freelist_low_watermark;
128 unsigned long max_age;
131 unsigned uncommitted_blocks;
132 unsigned autocommit_blocks;
133 unsigned max_writeback_jobs;
137 unsigned long autocommit_jiffies;
138 struct timer_list autocommit_timer;
139 struct wait_queue_head freelist_wait;
141 struct timer_list max_age_timer;
143 atomic_t bio_in_progress[2];
144 struct wait_queue_head bio_in_progress_wait[2];
146 struct dm_target *ti;
148 struct dm_dev *ssd_dev;
149 sector_t start_sector;
151 uint64_t memory_map_size;
152 size_t metadata_sectors;
155 sector_t data_device_sectors;
157 struct wc_entry *entries;
159 unsigned char block_size_bits;
162 bool writeback_fua:1;
164 bool overwrote_committed:1;
165 bool memory_vmapped:1;
167 bool start_sector_set:1;
168 bool high_wm_percent_set:1;
169 bool low_wm_percent_set:1;
170 bool max_writeback_jobs_set:1;
171 bool autocommit_blocks_set:1;
172 bool autocommit_time_set:1;
174 bool writeback_fua_set:1;
175 bool flush_on_suspend:1;
178 bool metadata_only:1;
181 unsigned high_wm_percent_value;
182 unsigned low_wm_percent_value;
183 unsigned autocommit_time_value;
184 unsigned max_age_value;
185 unsigned pause_value;
187 unsigned writeback_all;
188 struct workqueue_struct *writeback_wq;
189 struct work_struct writeback_work;
190 struct work_struct flush_work;
192 struct dm_io_tracker iot;
194 struct dm_io_client *dm_io;
196 raw_spinlock_t endio_list_lock;
197 struct list_head endio_list;
198 struct task_struct *endio_thread;
200 struct task_struct *flush_thread;
201 struct bio_list flush_list;
203 struct dm_kcopyd_client *dm_kcopyd;
204 unsigned long *dirty_bitmap;
205 unsigned dirty_bitmap_size;
207 struct bio_set bio_set;
211 unsigned long long reads;
212 unsigned long long read_hits;
213 unsigned long long writes;
214 unsigned long long write_hits_uncommitted;
215 unsigned long long write_hits_committed;
216 unsigned long long writes_around;
217 unsigned long long writes_allocate;
218 unsigned long long writes_blocked_on_freelist;
219 unsigned long long flushes;
220 unsigned long long discards;
224 #define WB_LIST_INLINE 16
226 struct writeback_struct {
227 struct list_head endio_entry;
228 struct dm_writecache *wc;
229 struct wc_entry **wc_list;
231 struct wc_entry *wc_list_inline[WB_LIST_INLINE];
236 struct list_head endio_entry;
237 struct dm_writecache *wc;
243 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
244 "A percentage of time allocated for data copying");
246 static void wc_lock(struct dm_writecache *wc)
248 mutex_lock(&wc->lock);
251 static void wc_unlock(struct dm_writecache *wc)
253 mutex_unlock(&wc->lock);
256 #ifdef DM_WRITECACHE_HAS_PMEM
257 static int persistent_memory_claim(struct dm_writecache *wc)
267 wc->memory_vmapped = false;
269 s = wc->memory_map_size;
275 if (p != s >> PAGE_SHIFT) {
280 offset = get_start_sect(wc->ssd_dev->bdev);
281 if (offset & (PAGE_SIZE / 512 - 1)) {
285 offset >>= PAGE_SHIFT - 9;
287 id = dax_read_lock();
289 da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, DAX_ACCESS,
290 &wc->memory_map, &pfn);
292 wc->memory_map = NULL;
296 if (!pfn_t_has_page(pfn)) {
297 wc->memory_map = NULL;
303 wc->memory_map = NULL;
304 pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
312 daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i,
313 p - i, DAX_ACCESS, NULL, &pfn);
315 r = daa ? daa : -EINVAL;
318 if (!pfn_t_has_page(pfn)) {
322 while (daa-- && i < p) {
323 pages[i++] = pfn_t_to_page(pfn);
329 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
330 if (!wc->memory_map) {
335 wc->memory_vmapped = true;
340 wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
341 wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
352 static int persistent_memory_claim(struct dm_writecache *wc)
358 static void persistent_memory_release(struct dm_writecache *wc)
360 if (wc->memory_vmapped)
361 vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
364 static struct page *persistent_memory_page(void *addr)
366 if (is_vmalloc_addr(addr))
367 return vmalloc_to_page(addr);
369 return virt_to_page(addr);
372 static unsigned persistent_memory_page_offset(void *addr)
374 return (unsigned long)addr & (PAGE_SIZE - 1);
377 static void persistent_memory_flush_cache(void *ptr, size_t size)
379 if (is_vmalloc_addr(ptr))
380 flush_kernel_vmap_range(ptr, size);
383 static void persistent_memory_invalidate_cache(void *ptr, size_t size)
385 if (is_vmalloc_addr(ptr))
386 invalidate_kernel_vmap_range(ptr, size);
389 static struct wc_memory_superblock *sb(struct dm_writecache *wc)
391 return wc->memory_map;
394 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
396 return &sb(wc)->entries[e->index];
399 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
401 return (char *)wc->block_start + (e->index << wc->block_size_bits);
404 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
406 return wc->start_sector + wc->metadata_sectors +
407 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
410 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
412 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
413 return e->original_sector;
415 return le64_to_cpu(memory_entry(wc, e)->original_sector);
419 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
421 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
424 return le64_to_cpu(memory_entry(wc, e)->seq_count);
428 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
430 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
433 pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
436 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
437 uint64_t original_sector, uint64_t seq_count)
439 struct wc_memory_entry me;
440 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
441 e->original_sector = original_sector;
442 e->seq_count = seq_count;
444 me.original_sector = cpu_to_le64(original_sector);
445 me.seq_count = cpu_to_le64(seq_count);
446 pmem_assign(*memory_entry(wc, e), me);
449 #define writecache_error(wc, err, msg, arg...) \
451 if (!cmpxchg(&(wc)->error, 0, err)) \
453 wake_up(&(wc)->freelist_wait); \
456 #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error)))
458 static void writecache_flush_all_metadata(struct dm_writecache *wc)
460 if (!WC_MODE_PMEM(wc))
461 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
464 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
466 if (!WC_MODE_PMEM(wc))
467 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
471 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
474 struct dm_writecache *wc;
479 static void writecache_notify_io(unsigned long error, void *context)
481 struct io_notify *endio = context;
483 if (unlikely(error != 0))
484 writecache_error(endio->wc, -EIO, "error writing metadata");
485 BUG_ON(atomic_read(&endio->count) <= 0);
486 if (atomic_dec_and_test(&endio->count))
490 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
492 wait_event(wc->bio_in_progress_wait[direction],
493 !atomic_read(&wc->bio_in_progress[direction]));
496 static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
498 struct dm_io_region region;
499 struct dm_io_request req;
500 struct io_notify endio = {
502 COMPLETION_INITIALIZER_ONSTACK(endio.c),
505 unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
510 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
511 if (unlikely(i == bitmap_bits))
513 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
515 region.bdev = wc->ssd_dev->bdev;
516 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
517 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
519 if (unlikely(region.sector >= wc->metadata_sectors))
521 if (unlikely(region.sector + region.count > wc->metadata_sectors))
522 region.count = wc->metadata_sectors - region.sector;
524 region.sector += wc->start_sector;
525 atomic_inc(&endio.count);
526 req.bi_opf = REQ_OP_WRITE | REQ_SYNC;
527 req.mem.type = DM_IO_VMA;
528 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
529 req.client = wc->dm_io;
530 req.notify.fn = writecache_notify_io;
531 req.notify.context = &endio;
533 /* writing via async dm-io (implied by notify.fn above) won't return an error */
534 (void) dm_io(&req, 1, ®ion, NULL);
538 writecache_notify_io(0, &endio);
539 wait_for_completion_io(&endio.c);
542 writecache_wait_for_ios(wc, WRITE);
544 writecache_disk_flush(wc, wc->ssd_dev);
546 memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
549 static void ssd_commit_superblock(struct dm_writecache *wc)
552 struct dm_io_region region;
553 struct dm_io_request req;
555 region.bdev = wc->ssd_dev->bdev;
557 region.count = max(4096U, wc->block_size) >> SECTOR_SHIFT;
559 if (unlikely(region.sector + region.count > wc->metadata_sectors))
560 region.count = wc->metadata_sectors - region.sector;
562 region.sector += wc->start_sector;
564 req.bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_FUA;
565 req.mem.type = DM_IO_VMA;
566 req.mem.ptr.vma = (char *)wc->memory_map;
567 req.client = wc->dm_io;
568 req.notify.fn = NULL;
569 req.notify.context = NULL;
571 r = dm_io(&req, 1, ®ion, NULL);
573 writecache_error(wc, r, "error writing superblock");
576 static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
578 if (WC_MODE_PMEM(wc))
581 ssd_commit_flushed(wc, wait_for_ios);
584 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
587 struct dm_io_region region;
588 struct dm_io_request req;
590 region.bdev = dev->bdev;
593 req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
594 req.mem.type = DM_IO_KMEM;
595 req.mem.ptr.addr = NULL;
596 req.client = wc->dm_io;
597 req.notify.fn = NULL;
599 r = dm_io(&req, 1, ®ion, NULL);
601 writecache_error(wc, r, "error flushing metadata: %d", r);
604 #define WFE_RETURN_FOLLOWING 1
605 #define WFE_LOWEST_SEQ 2
607 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
608 uint64_t block, int flags)
611 struct rb_node *node = wc->tree.rb_node;
617 e = container_of(node, struct wc_entry, rb_node);
618 if (read_original_sector(wc, e) == block)
621 node = (read_original_sector(wc, e) >= block ?
622 e->rb_node.rb_left : e->rb_node.rb_right);
623 if (unlikely(!node)) {
624 if (!(flags & WFE_RETURN_FOLLOWING))
626 if (read_original_sector(wc, e) >= block) {
629 node = rb_next(&e->rb_node);
632 e = container_of(node, struct wc_entry, rb_node);
640 if (flags & WFE_LOWEST_SEQ)
641 node = rb_prev(&e->rb_node);
643 node = rb_next(&e->rb_node);
646 e2 = container_of(node, struct wc_entry, rb_node);
647 if (read_original_sector(wc, e2) != block)
653 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
656 struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
659 e = container_of(*node, struct wc_entry, rb_node);
660 parent = &e->rb_node;
661 if (read_original_sector(wc, e) > read_original_sector(wc, ins))
662 node = &parent->rb_left;
664 node = &parent->rb_right;
666 rb_link_node(&ins->rb_node, parent, node);
667 rb_insert_color(&ins->rb_node, &wc->tree);
668 list_add(&ins->lru, &wc->lru);
672 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
675 rb_erase(&e->rb_node, &wc->tree);
678 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
680 if (WC_MODE_SORT_FREELIST(wc)) {
681 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
682 if (unlikely(!*node))
683 wc->current_free = e;
686 if (&e->rb_node < *node)
687 node = &parent->rb_left;
689 node = &parent->rb_right;
691 rb_link_node(&e->rb_node, parent, node);
692 rb_insert_color(&e->rb_node, &wc->freetree);
694 list_add_tail(&e->lru, &wc->freelist);
699 static inline void writecache_verify_watermark(struct dm_writecache *wc)
701 if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
702 queue_work(wc->writeback_wq, &wc->writeback_work);
705 static void writecache_max_age_timer(struct timer_list *t)
707 struct dm_writecache *wc = from_timer(wc, t, max_age_timer);
709 if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) {
710 queue_work(wc->writeback_wq, &wc->writeback_work);
711 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
715 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector)
719 if (WC_MODE_SORT_FREELIST(wc)) {
720 struct rb_node *next;
721 if (unlikely(!wc->current_free))
723 e = wc->current_free;
724 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
726 next = rb_next(&e->rb_node);
727 rb_erase(&e->rb_node, &wc->freetree);
729 next = rb_first(&wc->freetree);
730 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
732 if (unlikely(list_empty(&wc->freelist)))
734 e = container_of(wc->freelist.next, struct wc_entry, lru);
735 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
741 writecache_verify_watermark(wc);
746 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
748 writecache_unlink(wc, e);
749 writecache_add_to_freelist(wc, e);
750 clear_seq_count(wc, e);
751 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
752 if (unlikely(waitqueue_active(&wc->freelist_wait)))
753 wake_up(&wc->freelist_wait);
756 static void writecache_wait_on_freelist(struct dm_writecache *wc)
760 prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
763 finish_wait(&wc->freelist_wait, &wait);
767 static void writecache_poison_lists(struct dm_writecache *wc)
770 * Catch incorrect access to these values while the device is suspended.
772 memset(&wc->tree, -1, sizeof wc->tree);
773 wc->lru.next = LIST_POISON1;
774 wc->lru.prev = LIST_POISON2;
775 wc->freelist.next = LIST_POISON1;
776 wc->freelist.prev = LIST_POISON2;
779 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
781 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
782 if (WC_MODE_PMEM(wc))
783 writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
786 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
788 return read_seq_count(wc, e) < wc->seq_count;
791 static void writecache_flush(struct dm_writecache *wc)
793 struct wc_entry *e, *e2;
794 bool need_flush_after_free;
796 wc->uncommitted_blocks = 0;
797 del_timer(&wc->autocommit_timer);
799 if (list_empty(&wc->lru))
802 e = container_of(wc->lru.next, struct wc_entry, lru);
803 if (writecache_entry_is_committed(wc, e)) {
804 if (wc->overwrote_committed) {
805 writecache_wait_for_ios(wc, WRITE);
806 writecache_disk_flush(wc, wc->ssd_dev);
807 wc->overwrote_committed = false;
812 writecache_flush_entry(wc, e);
813 if (unlikely(e->lru.next == &wc->lru))
815 e2 = container_of(e->lru.next, struct wc_entry, lru);
816 if (writecache_entry_is_committed(wc, e2))
821 writecache_commit_flushed(wc, true);
824 pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
825 if (WC_MODE_PMEM(wc))
826 writecache_commit_flushed(wc, false);
828 ssd_commit_superblock(wc);
830 wc->overwrote_committed = false;
832 need_flush_after_free = false;
834 /* Free another committed entry with lower seq-count */
835 struct rb_node *rb_node = rb_prev(&e->rb_node);
838 e2 = container_of(rb_node, struct wc_entry, rb_node);
839 if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
840 likely(!e2->write_in_progress)) {
841 writecache_free_entry(wc, e2);
842 need_flush_after_free = true;
845 if (unlikely(e->lru.prev == &wc->lru))
847 e = container_of(e->lru.prev, struct wc_entry, lru);
851 if (need_flush_after_free)
852 writecache_commit_flushed(wc, false);
855 static void writecache_flush_work(struct work_struct *work)
857 struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
860 writecache_flush(wc);
864 static void writecache_autocommit_timer(struct timer_list *t)
866 struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
867 if (!writecache_has_error(wc))
868 queue_work(wc->writeback_wq, &wc->flush_work);
871 static void writecache_schedule_autocommit(struct dm_writecache *wc)
873 if (!timer_pending(&wc->autocommit_timer))
874 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
877 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
880 bool discarded_something = false;
882 e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
886 while (read_original_sector(wc, e) < end) {
887 struct rb_node *node = rb_next(&e->rb_node);
889 if (likely(!e->write_in_progress)) {
890 if (!discarded_something) {
891 if (!WC_MODE_PMEM(wc)) {
892 writecache_wait_for_ios(wc, READ);
893 writecache_wait_for_ios(wc, WRITE);
895 discarded_something = true;
897 if (!writecache_entry_is_committed(wc, e))
898 wc->uncommitted_blocks--;
899 writecache_free_entry(wc, e);
905 e = container_of(node, struct wc_entry, rb_node);
908 if (discarded_something)
909 writecache_commit_flushed(wc, false);
912 static bool writecache_wait_for_writeback(struct dm_writecache *wc)
914 if (wc->writeback_size) {
915 writecache_wait_on_freelist(wc);
921 static void writecache_suspend(struct dm_target *ti)
923 struct dm_writecache *wc = ti->private;
924 bool flush_on_suspend;
926 del_timer_sync(&wc->autocommit_timer);
927 del_timer_sync(&wc->max_age_timer);
930 writecache_flush(wc);
931 flush_on_suspend = wc->flush_on_suspend;
932 if (flush_on_suspend) {
933 wc->flush_on_suspend = false;
935 queue_work(wc->writeback_wq, &wc->writeback_work);
939 drain_workqueue(wc->writeback_wq);
942 if (flush_on_suspend)
944 while (writecache_wait_for_writeback(wc));
946 if (WC_MODE_PMEM(wc))
947 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
949 writecache_poison_lists(wc);
954 static int writecache_alloc_entries(struct dm_writecache *wc)
960 wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
963 for (b = 0; b < wc->n_blocks; b++) {
964 struct wc_entry *e = &wc->entries[b];
966 e->write_in_progress = false;
973 static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors)
975 struct dm_io_region region;
976 struct dm_io_request req;
978 region.bdev = wc->ssd_dev->bdev;
979 region.sector = wc->start_sector;
980 region.count = n_sectors;
981 req.bi_opf = REQ_OP_READ | REQ_SYNC;
982 req.mem.type = DM_IO_VMA;
983 req.mem.ptr.vma = (char *)wc->memory_map;
984 req.client = wc->dm_io;
985 req.notify.fn = NULL;
987 return dm_io(&req, 1, ®ion, NULL);
990 static void writecache_resume(struct dm_target *ti)
992 struct dm_writecache *wc = ti->private;
994 bool need_flush = false;
1000 wc->data_device_sectors = bdev_nr_sectors(wc->dev->bdev);
1002 if (WC_MODE_PMEM(wc)) {
1003 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
1005 r = writecache_read_metadata(wc, wc->metadata_sectors);
1007 size_t sb_entries_offset;
1008 writecache_error(wc, r, "unable to read metadata: %d", r);
1009 sb_entries_offset = offsetof(struct wc_memory_superblock, entries);
1010 memset((char *)wc->memory_map + sb_entries_offset, -1,
1011 (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset);
1016 INIT_LIST_HEAD(&wc->lru);
1017 if (WC_MODE_SORT_FREELIST(wc)) {
1018 wc->freetree = RB_ROOT;
1019 wc->current_free = NULL;
1021 INIT_LIST_HEAD(&wc->freelist);
1023 wc->freelist_size = 0;
1025 r = copy_mc_to_kernel(&sb_seq_count, &sb(wc)->seq_count,
1028 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
1029 sb_seq_count = cpu_to_le64(0);
1031 wc->seq_count = le64_to_cpu(sb_seq_count);
1033 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
1034 for (b = 0; b < wc->n_blocks; b++) {
1035 struct wc_entry *e = &wc->entries[b];
1036 struct wc_memory_entry wme;
1037 if (writecache_has_error(wc)) {
1038 e->original_sector = -1;
1042 r = copy_mc_to_kernel(&wme, memory_entry(wc, e),
1043 sizeof(struct wc_memory_entry));
1045 writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
1046 (unsigned long)b, r);
1047 e->original_sector = -1;
1050 e->original_sector = le64_to_cpu(wme.original_sector);
1051 e->seq_count = le64_to_cpu(wme.seq_count);
1056 for (b = 0; b < wc->n_blocks; b++) {
1057 struct wc_entry *e = &wc->entries[b];
1058 if (!writecache_entry_is_committed(wc, e)) {
1059 if (read_seq_count(wc, e) != -1) {
1061 clear_seq_count(wc, e);
1064 writecache_add_to_freelist(wc, e);
1066 struct wc_entry *old;
1068 old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
1070 writecache_insert_entry(wc, e);
1072 if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
1073 writecache_error(wc, -EINVAL,
1074 "two identical entries, position %llu, sector %llu, sequence %llu",
1075 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
1076 (unsigned long long)read_seq_count(wc, e));
1078 if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
1081 writecache_free_entry(wc, old);
1082 writecache_insert_entry(wc, e);
1091 writecache_flush_all_metadata(wc);
1092 writecache_commit_flushed(wc, false);
1095 writecache_verify_watermark(wc);
1097 if (wc->max_age != MAX_AGE_UNSPECIFIED)
1098 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
1103 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1109 if (dm_suspended(wc->ti)) {
1113 if (writecache_has_error(wc)) {
1118 writecache_flush(wc);
1119 wc->writeback_all++;
1120 queue_work(wc->writeback_wq, &wc->writeback_work);
1123 flush_workqueue(wc->writeback_wq);
1126 wc->writeback_all--;
1127 if (writecache_has_error(wc)) {
1136 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1142 wc->flush_on_suspend = true;
1148 static void activate_cleaner(struct dm_writecache *wc)
1150 wc->flush_on_suspend = true;
1152 wc->freelist_high_watermark = wc->n_blocks;
1153 wc->freelist_low_watermark = wc->n_blocks;
1156 static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1162 activate_cleaner(wc);
1163 if (!dm_suspended(wc->ti))
1164 writecache_verify_watermark(wc);
1170 static int process_clear_stats_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1176 memset(&wc->stats, 0, sizeof wc->stats);
1182 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1183 char *result, unsigned maxlen)
1186 struct dm_writecache *wc = ti->private;
1188 if (!strcasecmp(argv[0], "flush"))
1189 r = process_flush_mesg(argc, argv, wc);
1190 else if (!strcasecmp(argv[0], "flush_on_suspend"))
1191 r = process_flush_on_suspend_mesg(argc, argv, wc);
1192 else if (!strcasecmp(argv[0], "cleaner"))
1193 r = process_cleaner_mesg(argc, argv, wc);
1194 else if (!strcasecmp(argv[0], "clear_stats"))
1195 r = process_clear_stats_mesg(argc, argv, wc);
1197 DMERR("unrecognised message received: %s", argv[0]);
1202 static void memcpy_flushcache_optimized(void *dest, void *source, size_t size)
1205 * clflushopt performs better with block size 1024, 2048, 4096
1206 * non-temporal stores perform better with block size 512
1208 * block size 512 1024 2048 4096
1209 * movnti 496 MB/s 642 MB/s 725 MB/s 744 MB/s
1210 * clflushopt 373 MB/s 688 MB/s 1.1 GB/s 1.2 GB/s
1212 * We see that movnti performs better for 512-byte blocks, and
1213 * clflushopt performs better for 1024-byte and larger blocks. So, we
1214 * prefer clflushopt for sizes >= 768.
1216 * NOTE: this happens to be the case now (with dm-writecache's single
1217 * threaded model) but re-evaluate this once memcpy_flushcache() is
1218 * enabled to use movdir64b which might invalidate this performance
1219 * advantage seen with cache-allocating-writes plus flushing.
1222 if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) &&
1223 likely(boot_cpu_data.x86_clflush_size == 64) &&
1224 likely(size >= 768)) {
1226 memcpy((void *)dest, (void *)source, 64);
1227 clflushopt((void *)dest);
1231 } while (size >= 64);
1235 memcpy_flushcache(dest, source, size);
1238 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1242 int rw = bio_data_dir(bio);
1243 unsigned remaining_size = wc->block_size;
1246 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1247 buf = bvec_kmap_local(&bv);
1249 if (unlikely(size > remaining_size))
1250 size = remaining_size;
1254 r = copy_mc_to_kernel(buf, data, size);
1255 flush_dcache_page(bio_page(bio));
1257 writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1258 bio->bi_status = BLK_STS_IOERR;
1261 flush_dcache_page(bio_page(bio));
1262 memcpy_flushcache_optimized(data, buf, size);
1267 data = (char *)data + size;
1268 remaining_size -= size;
1269 bio_advance(bio, size);
1270 } while (unlikely(remaining_size));
1273 static int writecache_flush_thread(void *data)
1275 struct dm_writecache *wc = data;
1281 bio = bio_list_pop(&wc->flush_list);
1283 set_current_state(TASK_INTERRUPTIBLE);
1286 if (unlikely(kthread_should_stop())) {
1287 set_current_state(TASK_RUNNING);
1295 if (bio_op(bio) == REQ_OP_DISCARD) {
1296 writecache_discard(wc, bio->bi_iter.bi_sector,
1297 bio_end_sector(bio));
1299 bio_set_dev(bio, wc->dev->bdev);
1300 submit_bio_noacct(bio);
1302 writecache_flush(wc);
1304 if (writecache_has_error(wc))
1305 bio->bi_status = BLK_STS_IOERR;
1313 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1315 if (bio_list_empty(&wc->flush_list))
1316 wake_up_process(wc->flush_thread);
1317 bio_list_add(&wc->flush_list, bio);
1323 WC_MAP_REMAP_ORIGIN,
1328 static void writecache_map_remap_origin(struct dm_writecache *wc, struct bio *bio,
1332 sector_t next_boundary =
1333 read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1334 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT)
1335 dm_accept_partial_bio(bio, next_boundary);
1339 static enum wc_map_op writecache_map_read(struct dm_writecache *wc, struct bio *bio)
1341 enum wc_map_op map_op;
1346 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1347 if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1348 wc->stats.read_hits++;
1349 if (WC_MODE_PMEM(wc)) {
1350 bio_copy_block(wc, bio, memory_data(wc, e));
1351 if (bio->bi_iter.bi_size)
1352 goto read_next_block;
1353 map_op = WC_MAP_SUBMIT;
1355 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1356 bio_set_dev(bio, wc->ssd_dev->bdev);
1357 bio->bi_iter.bi_sector = cache_sector(wc, e);
1358 if (!writecache_entry_is_committed(wc, e))
1359 writecache_wait_for_ios(wc, WRITE);
1360 map_op = WC_MAP_REMAP;
1363 writecache_map_remap_origin(wc, bio, e);
1364 wc->stats.reads += (bio->bi_iter.bi_size - wc->block_size) >> wc->block_size_bits;
1365 map_op = WC_MAP_REMAP_ORIGIN;
1371 static void writecache_bio_copy_ssd(struct dm_writecache *wc, struct bio *bio,
1372 struct wc_entry *e, bool search_used)
1374 unsigned bio_size = wc->block_size;
1375 sector_t start_cache_sec = cache_sector(wc, e);
1376 sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT);
1378 while (bio_size < bio->bi_iter.bi_size) {
1380 struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec);
1383 write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector +
1384 (bio_size >> SECTOR_SHIFT), wc->seq_count);
1385 writecache_insert_entry(wc, f);
1386 wc->uncommitted_blocks++;
1389 struct rb_node *next = rb_next(&e->rb_node);
1392 f = container_of(next, struct wc_entry, rb_node);
1395 if (read_original_sector(wc, f) !=
1396 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1398 if (unlikely(f->write_in_progress))
1400 if (writecache_entry_is_committed(wc, f))
1401 wc->overwrote_committed = true;
1404 bio_size += wc->block_size;
1405 current_cache_sec += wc->block_size >> SECTOR_SHIFT;
1408 bio_set_dev(bio, wc->ssd_dev->bdev);
1409 bio->bi_iter.bi_sector = start_cache_sec;
1410 dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT);
1412 wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1413 wc->stats.writes_allocate += (bio->bi_iter.bi_size - wc->block_size) >> wc->block_size_bits;
1415 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1416 wc->uncommitted_blocks = 0;
1417 queue_work(wc->writeback_wq, &wc->flush_work);
1419 writecache_schedule_autocommit(wc);
1423 static enum wc_map_op writecache_map_write(struct dm_writecache *wc, struct bio *bio)
1428 bool found_entry = false;
1429 bool search_used = false;
1430 if (writecache_has_error(wc)) {
1431 wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1432 return WC_MAP_ERROR;
1434 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1436 if (!writecache_entry_is_committed(wc, e)) {
1437 wc->stats.write_hits_uncommitted++;
1441 wc->stats.write_hits_committed++;
1442 if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1443 wc->overwrote_committed = true;
1449 if (unlikely(wc->cleaner) ||
1450 (wc->metadata_only && !(bio->bi_opf & REQ_META)))
1453 e = writecache_pop_from_freelist(wc, (sector_t)-1);
1455 if (!WC_MODE_PMEM(wc) && !found_entry) {
1457 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1458 writecache_map_remap_origin(wc, bio, e);
1459 wc->stats.writes_around += bio->bi_iter.bi_size >> wc->block_size_bits;
1460 wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1461 return WC_MAP_REMAP_ORIGIN;
1463 wc->stats.writes_blocked_on_freelist++;
1464 writecache_wait_on_freelist(wc);
1467 write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1468 writecache_insert_entry(wc, e);
1469 wc->uncommitted_blocks++;
1470 wc->stats.writes_allocate++;
1472 if (WC_MODE_PMEM(wc)) {
1473 bio_copy_block(wc, bio, memory_data(wc, e));
1476 writecache_bio_copy_ssd(wc, bio, e, search_used);
1477 return WC_MAP_REMAP;
1479 } while (bio->bi_iter.bi_size);
1481 if (unlikely(bio->bi_opf & REQ_FUA || wc->uncommitted_blocks >= wc->autocommit_blocks))
1482 writecache_flush(wc);
1484 writecache_schedule_autocommit(wc);
1486 return WC_MAP_SUBMIT;
1489 static enum wc_map_op writecache_map_flush(struct dm_writecache *wc, struct bio *bio)
1491 if (writecache_has_error(wc))
1492 return WC_MAP_ERROR;
1494 if (WC_MODE_PMEM(wc)) {
1495 wc->stats.flushes++;
1496 writecache_flush(wc);
1497 if (writecache_has_error(wc))
1498 return WC_MAP_ERROR;
1499 else if (unlikely(wc->cleaner) || unlikely(wc->metadata_only))
1500 return WC_MAP_REMAP_ORIGIN;
1501 return WC_MAP_SUBMIT;
1504 if (dm_bio_get_target_bio_nr(bio))
1505 return WC_MAP_REMAP_ORIGIN;
1506 wc->stats.flushes++;
1507 writecache_offload_bio(wc, bio);
1508 return WC_MAP_RETURN;
1511 static enum wc_map_op writecache_map_discard(struct dm_writecache *wc, struct bio *bio)
1513 wc->stats.discards += bio->bi_iter.bi_size >> wc->block_size_bits;
1515 if (writecache_has_error(wc))
1516 return WC_MAP_ERROR;
1518 if (WC_MODE_PMEM(wc)) {
1519 writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1520 return WC_MAP_REMAP_ORIGIN;
1523 writecache_offload_bio(wc, bio);
1524 return WC_MAP_RETURN;
1527 static int writecache_map(struct dm_target *ti, struct bio *bio)
1529 struct dm_writecache *wc = ti->private;
1530 enum wc_map_op map_op;
1532 bio->bi_private = NULL;
1536 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1537 map_op = writecache_map_flush(wc, bio);
1541 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1543 if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1544 (wc->block_size / 512 - 1)) != 0)) {
1545 DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1546 (unsigned long long)bio->bi_iter.bi_sector,
1547 bio->bi_iter.bi_size, wc->block_size);
1548 map_op = WC_MAP_ERROR;
1552 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1553 map_op = writecache_map_discard(wc, bio);
1557 if (bio_data_dir(bio) == READ)
1558 map_op = writecache_map_read(wc, bio);
1560 map_op = writecache_map_write(wc, bio);
1563 case WC_MAP_REMAP_ORIGIN:
1564 if (likely(wc->pause != 0)) {
1565 if (bio_op(bio) == REQ_OP_WRITE) {
1566 dm_iot_io_begin(&wc->iot, 1);
1567 bio->bi_private = (void *)2;
1570 bio_set_dev(bio, wc->dev->bdev);
1572 return DM_MAPIO_REMAPPED;
1575 /* make sure that writecache_end_io decrements bio_in_progress: */
1576 bio->bi_private = (void *)1;
1577 atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1579 return DM_MAPIO_REMAPPED;
1584 return DM_MAPIO_SUBMITTED;
1588 return DM_MAPIO_SUBMITTED;
1593 return DM_MAPIO_SUBMITTED;
1598 return DM_MAPIO_KILL;
1602 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1604 struct dm_writecache *wc = ti->private;
1606 if (bio->bi_private == (void *)1) {
1607 int dir = bio_data_dir(bio);
1608 if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1609 if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1610 wake_up(&wc->bio_in_progress_wait[dir]);
1611 } else if (bio->bi_private == (void *)2) {
1612 dm_iot_io_end(&wc->iot, 1);
1617 static int writecache_iterate_devices(struct dm_target *ti,
1618 iterate_devices_callout_fn fn, void *data)
1620 struct dm_writecache *wc = ti->private;
1622 return fn(ti, wc->dev, 0, ti->len, data);
1625 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1627 struct dm_writecache *wc = ti->private;
1629 if (limits->logical_block_size < wc->block_size)
1630 limits->logical_block_size = wc->block_size;
1632 if (limits->physical_block_size < wc->block_size)
1633 limits->physical_block_size = wc->block_size;
1635 if (limits->io_min < wc->block_size)
1636 limits->io_min = wc->block_size;
1640 static void writecache_writeback_endio(struct bio *bio)
1642 struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1643 struct dm_writecache *wc = wb->wc;
1644 unsigned long flags;
1646 raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1647 if (unlikely(list_empty(&wc->endio_list)))
1648 wake_up_process(wc->endio_thread);
1649 list_add_tail(&wb->endio_entry, &wc->endio_list);
1650 raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1653 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1655 struct copy_struct *c = ptr;
1656 struct dm_writecache *wc = c->wc;
1658 c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1660 raw_spin_lock_irq(&wc->endio_list_lock);
1661 if (unlikely(list_empty(&wc->endio_list)))
1662 wake_up_process(wc->endio_thread);
1663 list_add_tail(&c->endio_entry, &wc->endio_list);
1664 raw_spin_unlock_irq(&wc->endio_list_lock);
1667 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1670 struct writeback_struct *wb;
1672 unsigned long n_walked = 0;
1675 wb = list_entry(list->next, struct writeback_struct, endio_entry);
1676 list_del(&wb->endio_entry);
1678 if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1679 writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1680 "write error %d", wb->bio.bi_status);
1684 BUG_ON(!e->write_in_progress);
1685 e->write_in_progress = false;
1686 INIT_LIST_HEAD(&e->lru);
1687 if (!writecache_has_error(wc))
1688 writecache_free_entry(wc, e);
1689 BUG_ON(!wc->writeback_size);
1690 wc->writeback_size--;
1692 if (unlikely(n_walked >= ENDIO_LATENCY)) {
1693 writecache_commit_flushed(wc, false);
1698 } while (++i < wb->wc_list_n);
1700 if (wb->wc_list != wb->wc_list_inline)
1703 } while (!list_empty(list));
1706 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1708 struct copy_struct *c;
1712 c = list_entry(list->next, struct copy_struct, endio_entry);
1713 list_del(&c->endio_entry);
1715 if (unlikely(c->error))
1716 writecache_error(wc, c->error, "copy error");
1720 BUG_ON(!e->write_in_progress);
1721 e->write_in_progress = false;
1722 INIT_LIST_HEAD(&e->lru);
1723 if (!writecache_has_error(wc))
1724 writecache_free_entry(wc, e);
1726 BUG_ON(!wc->writeback_size);
1727 wc->writeback_size--;
1729 } while (--c->n_entries);
1730 mempool_free(c, &wc->copy_pool);
1731 } while (!list_empty(list));
1734 static int writecache_endio_thread(void *data)
1736 struct dm_writecache *wc = data;
1739 struct list_head list;
1741 raw_spin_lock_irq(&wc->endio_list_lock);
1742 if (!list_empty(&wc->endio_list))
1744 set_current_state(TASK_INTERRUPTIBLE);
1745 raw_spin_unlock_irq(&wc->endio_list_lock);
1747 if (unlikely(kthread_should_stop())) {
1748 set_current_state(TASK_RUNNING);
1757 list = wc->endio_list;
1758 list.next->prev = list.prev->next = &list;
1759 INIT_LIST_HEAD(&wc->endio_list);
1760 raw_spin_unlock_irq(&wc->endio_list_lock);
1762 if (!WC_MODE_FUA(wc))
1763 writecache_disk_flush(wc, wc->dev);
1767 if (WC_MODE_PMEM(wc)) {
1768 __writecache_endio_pmem(wc, &list);
1770 __writecache_endio_ssd(wc, &list);
1771 writecache_wait_for_ios(wc, READ);
1774 writecache_commit_flushed(wc, false);
1782 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e)
1784 struct dm_writecache *wc = wb->wc;
1785 unsigned block_size = wc->block_size;
1786 void *address = memory_data(wc, e);
1788 persistent_memory_flush_cache(address, block_size);
1790 if (unlikely(bio_end_sector(&wb->bio) >= wc->data_device_sectors))
1793 return bio_add_page(&wb->bio, persistent_memory_page(address),
1794 block_size, persistent_memory_page_offset(address)) != 0;
1797 struct writeback_list {
1798 struct list_head list;
1802 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1804 if (unlikely(wc->max_writeback_jobs)) {
1805 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1807 while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1808 writecache_wait_on_freelist(wc);
1815 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1817 struct wc_entry *e, *f;
1819 struct writeback_struct *wb;
1824 e = container_of(wbl->list.prev, struct wc_entry, lru);
1827 max_pages = e->wc_list_contiguous;
1829 bio = bio_alloc_bioset(wc->dev->bdev, max_pages, REQ_OP_WRITE,
1830 GFP_NOIO, &wc->bio_set);
1831 wb = container_of(bio, struct writeback_struct, bio);
1833 bio->bi_end_io = writecache_writeback_endio;
1834 bio->bi_iter.bi_sector = read_original_sector(wc, e);
1835 if (max_pages <= WB_LIST_INLINE ||
1836 unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1837 GFP_NOIO | __GFP_NORETRY |
1838 __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
1839 wb->wc_list = wb->wc_list_inline;
1840 max_pages = WB_LIST_INLINE;
1843 BUG_ON(!wc_add_block(wb, e));
1848 while (wbl->size && wb->wc_list_n < max_pages) {
1849 f = container_of(wbl->list.prev, struct wc_entry, lru);
1850 if (read_original_sector(wc, f) !=
1851 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1853 if (!wc_add_block(wb, f))
1857 wb->wc_list[wb->wc_list_n++] = f;
1860 if (WC_MODE_FUA(wc))
1861 bio->bi_opf |= REQ_FUA;
1862 if (writecache_has_error(wc)) {
1863 bio->bi_status = BLK_STS_IOERR;
1865 } else if (unlikely(!bio_sectors(bio))) {
1866 bio->bi_status = BLK_STS_OK;
1872 __writeback_throttle(wc, wbl);
1876 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1878 struct wc_entry *e, *f;
1879 struct dm_io_region from, to;
1880 struct copy_struct *c;
1886 e = container_of(wbl->list.prev, struct wc_entry, lru);
1889 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1891 from.bdev = wc->ssd_dev->bdev;
1892 from.sector = cache_sector(wc, e);
1893 from.count = n_sectors;
1894 to.bdev = wc->dev->bdev;
1895 to.sector = read_original_sector(wc, e);
1896 to.count = n_sectors;
1898 c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1901 c->n_entries = e->wc_list_contiguous;
1903 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1905 f = container_of(wbl->list.prev, struct wc_entry, lru);
1911 if (unlikely(to.sector + to.count > wc->data_device_sectors)) {
1912 if (to.sector >= wc->data_device_sectors) {
1913 writecache_copy_endio(0, 0, c);
1916 from.count = to.count = wc->data_device_sectors - to.sector;
1919 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1921 __writeback_throttle(wc, wbl);
1925 static void writecache_writeback(struct work_struct *work)
1927 struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1928 struct blk_plug plug;
1929 struct wc_entry *f, *g, *e = NULL;
1930 struct rb_node *node, *next_node;
1931 struct list_head skipped;
1932 struct writeback_list wbl;
1933 unsigned long n_walked;
1935 if (!WC_MODE_PMEM(wc)) {
1936 /* Wait for any active kcopyd work on behalf of ssd writeback */
1937 dm_kcopyd_client_flush(wc->dm_kcopyd);
1940 if (likely(wc->pause != 0)) {
1943 if (unlikely(wc->cleaner) || unlikely(wc->writeback_all) ||
1944 unlikely(dm_suspended(wc->ti)))
1946 idle = dm_iot_idle_time(&wc->iot);
1947 if (idle >= wc->pause)
1949 idle = wc->pause - idle;
1952 schedule_timeout_idle(idle);
1958 if (writecache_has_error(wc)) {
1963 if (unlikely(wc->writeback_all)) {
1964 if (writecache_wait_for_writeback(wc))
1968 if (wc->overwrote_committed) {
1969 writecache_wait_for_ios(wc, WRITE);
1973 INIT_LIST_HEAD(&skipped);
1974 INIT_LIST_HEAD(&wbl.list);
1976 while (!list_empty(&wc->lru) &&
1977 (wc->writeback_all ||
1978 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark ||
1979 (jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >=
1980 wc->max_age - wc->max_age / MAX_AGE_DIV))) {
1983 if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1984 likely(!wc->writeback_all)) {
1985 if (likely(!dm_suspended(wc->ti)))
1986 queue_work(wc->writeback_wq, &wc->writeback_work);
1990 if (unlikely(wc->writeback_all)) {
1992 writecache_flush(wc);
1993 e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
1997 e = container_of(wc->lru.prev, struct wc_entry, lru);
1998 BUG_ON(e->write_in_progress);
1999 if (unlikely(!writecache_entry_is_committed(wc, e))) {
2000 writecache_flush(wc);
2002 node = rb_prev(&e->rb_node);
2004 f = container_of(node, struct wc_entry, rb_node);
2005 if (unlikely(read_original_sector(wc, f) ==
2006 read_original_sector(wc, e))) {
2007 BUG_ON(!f->write_in_progress);
2008 list_move(&e->lru, &skipped);
2013 wc->writeback_size++;
2014 list_move(&e->lru, &wbl.list);
2016 e->write_in_progress = true;
2017 e->wc_list_contiguous = 1;
2022 next_node = rb_next(&f->rb_node);
2023 if (unlikely(!next_node))
2025 g = container_of(next_node, struct wc_entry, rb_node);
2026 if (unlikely(read_original_sector(wc, g) ==
2027 read_original_sector(wc, f))) {
2031 if (read_original_sector(wc, g) !=
2032 read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
2034 if (unlikely(g->write_in_progress))
2036 if (unlikely(!writecache_entry_is_committed(wc, g)))
2039 if (!WC_MODE_PMEM(wc)) {
2045 //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
2048 wc->writeback_size++;
2049 list_move(&g->lru, &wbl.list);
2051 g->write_in_progress = true;
2052 g->wc_list_contiguous = BIO_MAX_VECS;
2054 e->wc_list_contiguous++;
2055 if (unlikely(e->wc_list_contiguous == BIO_MAX_VECS)) {
2056 if (unlikely(wc->writeback_all)) {
2057 next_node = rb_next(&f->rb_node);
2058 if (likely(next_node))
2059 g = container_of(next_node, struct wc_entry, rb_node);
2067 if (!list_empty(&skipped)) {
2068 list_splice_tail(&skipped, &wc->lru);
2070 * If we didn't do any progress, we must wait until some
2071 * writeback finishes to avoid burning CPU in a loop
2073 if (unlikely(!wbl.size))
2074 writecache_wait_for_writeback(wc);
2079 blk_start_plug(&plug);
2081 if (WC_MODE_PMEM(wc))
2082 __writecache_writeback_pmem(wc, &wbl);
2084 __writecache_writeback_ssd(wc, &wbl);
2086 blk_finish_plug(&plug);
2088 if (unlikely(wc->writeback_all)) {
2090 while (writecache_wait_for_writeback(wc));
2095 static int calculate_memory_size(uint64_t device_size, unsigned block_size,
2096 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
2098 uint64_t n_blocks, offset;
2101 n_blocks = device_size;
2102 do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
2107 /* Verify the following entries[n_blocks] won't overflow */
2108 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
2109 sizeof(struct wc_memory_entry)))
2111 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
2112 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
2113 if (offset + n_blocks * block_size <= device_size)
2118 /* check if the bit field overflows */
2120 if (e.index != n_blocks)
2124 *n_blocks_p = n_blocks;
2125 if (n_metadata_blocks_p)
2126 *n_metadata_blocks_p = offset >> __ffs(block_size);
2130 static int init_memory(struct dm_writecache *wc)
2135 r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
2139 r = writecache_alloc_entries(wc);
2143 for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
2144 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
2145 pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
2146 pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
2147 pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
2148 pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
2150 for (b = 0; b < wc->n_blocks; b++) {
2151 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
2155 writecache_flush_all_metadata(wc);
2156 writecache_commit_flushed(wc, false);
2157 pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
2158 writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
2159 writecache_commit_flushed(wc, false);
2164 static void writecache_dtr(struct dm_target *ti)
2166 struct dm_writecache *wc = ti->private;
2171 if (wc->endio_thread)
2172 kthread_stop(wc->endio_thread);
2174 if (wc->flush_thread)
2175 kthread_stop(wc->flush_thread);
2177 bioset_exit(&wc->bio_set);
2179 mempool_exit(&wc->copy_pool);
2181 if (wc->writeback_wq)
2182 destroy_workqueue(wc->writeback_wq);
2185 dm_put_device(ti, wc->dev);
2188 dm_put_device(ti, wc->ssd_dev);
2192 if (wc->memory_map) {
2193 if (WC_MODE_PMEM(wc))
2194 persistent_memory_release(wc);
2196 vfree(wc->memory_map);
2200 dm_kcopyd_client_destroy(wc->dm_kcopyd);
2203 dm_io_client_destroy(wc->dm_io);
2205 vfree(wc->dirty_bitmap);
2210 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2212 struct dm_writecache *wc;
2213 struct dm_arg_set as;
2215 unsigned opt_params;
2216 size_t offset, data_size;
2219 int high_wm_percent = HIGH_WATERMARK;
2220 int low_wm_percent = LOW_WATERMARK;
2222 struct wc_memory_superblock s;
2224 static struct dm_arg _args[] = {
2225 {0, 18, "Invalid number of feature args"},
2231 wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
2233 ti->error = "Cannot allocate writecache structure";
2240 mutex_init(&wc->lock);
2241 wc->max_age = MAX_AGE_UNSPECIFIED;
2242 writecache_poison_lists(wc);
2243 init_waitqueue_head(&wc->freelist_wait);
2244 timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
2245 timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0);
2247 for (i = 0; i < 2; i++) {
2248 atomic_set(&wc->bio_in_progress[i], 0);
2249 init_waitqueue_head(&wc->bio_in_progress_wait[i]);
2252 wc->dm_io = dm_io_client_create();
2253 if (IS_ERR(wc->dm_io)) {
2254 r = PTR_ERR(wc->dm_io);
2255 ti->error = "Unable to allocate dm-io client";
2260 wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
2261 if (!wc->writeback_wq) {
2263 ti->error = "Could not allocate writeback workqueue";
2266 INIT_WORK(&wc->writeback_work, writecache_writeback);
2267 INIT_WORK(&wc->flush_work, writecache_flush_work);
2269 dm_iot_init(&wc->iot);
2271 raw_spin_lock_init(&wc->endio_list_lock);
2272 INIT_LIST_HEAD(&wc->endio_list);
2273 wc->endio_thread = kthread_run(writecache_endio_thread, wc, "writecache_endio");
2274 if (IS_ERR(wc->endio_thread)) {
2275 r = PTR_ERR(wc->endio_thread);
2276 wc->endio_thread = NULL;
2277 ti->error = "Couldn't spawn endio thread";
2282 * Parse the mode (pmem or ssd)
2284 string = dm_shift_arg(&as);
2288 if (!strcasecmp(string, "s")) {
2289 wc->pmem_mode = false;
2290 } else if (!strcasecmp(string, "p")) {
2291 #ifdef DM_WRITECACHE_HAS_PMEM
2292 wc->pmem_mode = true;
2293 wc->writeback_fua = true;
2296 * If the architecture doesn't support persistent memory or
2297 * the kernel doesn't support any DAX drivers, this driver can
2298 * only be used in SSD-only mode.
2301 ti->error = "Persistent memory or DAX not supported on this system";
2308 if (WC_MODE_PMEM(wc)) {
2309 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
2310 offsetof(struct writeback_struct, bio),
2313 ti->error = "Could not allocate bio set";
2317 wc->pause = PAUSE_WRITEBACK;
2318 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
2320 ti->error = "Could not allocate mempool";
2326 * Parse the origin data device
2328 string = dm_shift_arg(&as);
2331 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
2333 ti->error = "Origin data device lookup failed";
2338 * Parse cache data device (be it pmem or ssd)
2340 string = dm_shift_arg(&as);
2344 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
2346 ti->error = "Cache data device lookup failed";
2349 wc->memory_map_size = bdev_nr_bytes(wc->ssd_dev->bdev);
2352 * Parse the cache block size
2354 string = dm_shift_arg(&as);
2357 if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
2358 wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
2359 (wc->block_size & (wc->block_size - 1))) {
2361 ti->error = "Invalid block size";
2364 if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) ||
2365 wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) {
2367 ti->error = "Block size is smaller than device logical block size";
2370 wc->block_size_bits = __ffs(wc->block_size);
2372 wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
2373 wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
2374 wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
2377 * Parse optional arguments
2379 r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2383 while (opt_params) {
2384 string = dm_shift_arg(&as), opt_params--;
2385 if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
2386 unsigned long long start_sector;
2387 string = dm_shift_arg(&as), opt_params--;
2388 if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
2389 goto invalid_optional;
2390 wc->start_sector = start_sector;
2391 wc->start_sector_set = true;
2392 if (wc->start_sector != start_sector ||
2393 wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
2394 goto invalid_optional;
2395 } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
2396 string = dm_shift_arg(&as), opt_params--;
2397 if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2398 goto invalid_optional;
2399 if (high_wm_percent < 0 || high_wm_percent > 100)
2400 goto invalid_optional;
2401 wc->high_wm_percent_value = high_wm_percent;
2402 wc->high_wm_percent_set = true;
2403 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2404 string = dm_shift_arg(&as), opt_params--;
2405 if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2406 goto invalid_optional;
2407 if (low_wm_percent < 0 || low_wm_percent > 100)
2408 goto invalid_optional;
2409 wc->low_wm_percent_value = low_wm_percent;
2410 wc->low_wm_percent_set = true;
2411 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2412 string = dm_shift_arg(&as), opt_params--;
2413 if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2414 goto invalid_optional;
2415 wc->max_writeback_jobs_set = true;
2416 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2417 string = dm_shift_arg(&as), opt_params--;
2418 if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2419 goto invalid_optional;
2420 wc->autocommit_blocks_set = true;
2421 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2422 unsigned autocommit_msecs;
2423 string = dm_shift_arg(&as), opt_params--;
2424 if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2425 goto invalid_optional;
2426 if (autocommit_msecs > 3600000)
2427 goto invalid_optional;
2428 wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2429 wc->autocommit_time_value = autocommit_msecs;
2430 wc->autocommit_time_set = true;
2431 } else if (!strcasecmp(string, "max_age") && opt_params >= 1) {
2432 unsigned max_age_msecs;
2433 string = dm_shift_arg(&as), opt_params--;
2434 if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1)
2435 goto invalid_optional;
2436 if (max_age_msecs > 86400000)
2437 goto invalid_optional;
2438 wc->max_age = msecs_to_jiffies(max_age_msecs);
2439 wc->max_age_set = true;
2440 wc->max_age_value = max_age_msecs;
2441 } else if (!strcasecmp(string, "cleaner")) {
2442 wc->cleaner_set = true;
2444 } else if (!strcasecmp(string, "fua")) {
2445 if (WC_MODE_PMEM(wc)) {
2446 wc->writeback_fua = true;
2447 wc->writeback_fua_set = true;
2448 } else goto invalid_optional;
2449 } else if (!strcasecmp(string, "nofua")) {
2450 if (WC_MODE_PMEM(wc)) {
2451 wc->writeback_fua = false;
2452 wc->writeback_fua_set = true;
2453 } else goto invalid_optional;
2454 } else if (!strcasecmp(string, "metadata_only")) {
2455 wc->metadata_only = true;
2456 } else if (!strcasecmp(string, "pause_writeback") && opt_params >= 1) {
2457 unsigned pause_msecs;
2458 if (WC_MODE_PMEM(wc))
2459 goto invalid_optional;
2460 string = dm_shift_arg(&as), opt_params--;
2461 if (sscanf(string, "%u%c", &pause_msecs, &dummy) != 1)
2462 goto invalid_optional;
2463 if (pause_msecs > 60000)
2464 goto invalid_optional;
2465 wc->pause = msecs_to_jiffies(pause_msecs);
2466 wc->pause_set = true;
2467 wc->pause_value = pause_msecs;
2471 ti->error = "Invalid optional argument";
2476 if (high_wm_percent < low_wm_percent) {
2478 ti->error = "High watermark must be greater than or equal to low watermark";
2482 if (WC_MODE_PMEM(wc)) {
2483 if (!dax_synchronous(wc->ssd_dev->dax_dev)) {
2485 ti->error = "Asynchronous persistent memory not supported as pmem cache";
2489 r = persistent_memory_claim(wc);
2491 ti->error = "Unable to map persistent memory for cache";
2495 size_t n_blocks, n_metadata_blocks;
2496 uint64_t n_bitmap_bits;
2498 wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2500 bio_list_init(&wc->flush_list);
2501 wc->flush_thread = kthread_run(writecache_flush_thread, wc, "dm_writecache_flush");
2502 if (IS_ERR(wc->flush_thread)) {
2503 r = PTR_ERR(wc->flush_thread);
2504 wc->flush_thread = NULL;
2505 ti->error = "Couldn't spawn flush thread";
2509 r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2510 &n_blocks, &n_metadata_blocks);
2512 ti->error = "Invalid device size";
2516 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2517 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2518 /* this is limitation of test_bit functions */
2519 if (n_bitmap_bits > 1U << 31) {
2521 ti->error = "Invalid device size";
2525 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2526 if (!wc->memory_map) {
2528 ti->error = "Unable to allocate memory for metadata";
2532 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2533 if (IS_ERR(wc->dm_kcopyd)) {
2534 r = PTR_ERR(wc->dm_kcopyd);
2535 ti->error = "Unable to allocate dm-kcopyd client";
2536 wc->dm_kcopyd = NULL;
2540 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2541 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2542 BITS_PER_LONG * sizeof(unsigned long);
2543 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2544 if (!wc->dirty_bitmap) {
2546 ti->error = "Unable to allocate dirty bitmap";
2550 r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT);
2552 ti->error = "Unable to read first block of metadata";
2557 r = copy_mc_to_kernel(&s, sb(wc), sizeof(struct wc_memory_superblock));
2559 ti->error = "Hardware memory error when reading superblock";
2562 if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2563 r = init_memory(wc);
2565 ti->error = "Unable to initialize device";
2568 r = copy_mc_to_kernel(&s, sb(wc),
2569 sizeof(struct wc_memory_superblock));
2571 ti->error = "Hardware memory error when reading superblock";
2576 if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2577 ti->error = "Invalid magic in the superblock";
2582 if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2583 ti->error = "Invalid version in the superblock";
2588 if (le32_to_cpu(s.block_size) != wc->block_size) {
2589 ti->error = "Block size does not match superblock";
2594 wc->n_blocks = le64_to_cpu(s.n_blocks);
2596 offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2597 if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2599 ti->error = "Overflow in size calculation";
2603 offset += sizeof(struct wc_memory_superblock);
2604 if (offset < sizeof(struct wc_memory_superblock))
2606 offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2607 data_size = wc->n_blocks * (size_t)wc->block_size;
2608 if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2609 (offset + data_size < offset))
2611 if (offset + data_size > wc->memory_map_size) {
2612 ti->error = "Memory area is too small";
2617 wc->metadata_sectors = offset >> SECTOR_SHIFT;
2618 wc->block_start = (char *)sb(wc) + offset;
2620 x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2623 wc->freelist_high_watermark = x;
2624 x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2627 wc->freelist_low_watermark = x;
2630 activate_cleaner(wc);
2632 r = writecache_alloc_entries(wc);
2634 ti->error = "Cannot allocate memory";
2638 ti->num_flush_bios = WC_MODE_PMEM(wc) ? 1 : 2;
2639 ti->flush_supported = true;
2640 ti->num_discard_bios = 1;
2642 if (WC_MODE_PMEM(wc))
2643 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2649 ti->error = "Bad arguments";
2655 static void writecache_status(struct dm_target *ti, status_type_t type,
2656 unsigned status_flags, char *result, unsigned maxlen)
2658 struct dm_writecache *wc = ti->private;
2659 unsigned extra_args;
2663 case STATUSTYPE_INFO:
2664 DMEMIT("%ld %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu",
2665 writecache_has_error(wc),
2666 (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2667 (unsigned long long)wc->writeback_size,
2669 wc->stats.read_hits,
2671 wc->stats.write_hits_uncommitted,
2672 wc->stats.write_hits_committed,
2673 wc->stats.writes_around,
2674 wc->stats.writes_allocate,
2675 wc->stats.writes_blocked_on_freelist,
2677 wc->stats.discards);
2679 case STATUSTYPE_TABLE:
2680 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2681 wc->dev->name, wc->ssd_dev->name, wc->block_size);
2683 if (wc->start_sector_set)
2685 if (wc->high_wm_percent_set)
2687 if (wc->low_wm_percent_set)
2689 if (wc->max_writeback_jobs_set)
2691 if (wc->autocommit_blocks_set)
2693 if (wc->autocommit_time_set)
2695 if (wc->max_age_set)
2697 if (wc->cleaner_set)
2699 if (wc->writeback_fua_set)
2701 if (wc->metadata_only)
2706 DMEMIT("%u", extra_args);
2707 if (wc->start_sector_set)
2708 DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2709 if (wc->high_wm_percent_set)
2710 DMEMIT(" high_watermark %u", wc->high_wm_percent_value);
2711 if (wc->low_wm_percent_set)
2712 DMEMIT(" low_watermark %u", wc->low_wm_percent_value);
2713 if (wc->max_writeback_jobs_set)
2714 DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2715 if (wc->autocommit_blocks_set)
2716 DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2717 if (wc->autocommit_time_set)
2718 DMEMIT(" autocommit_time %u", wc->autocommit_time_value);
2719 if (wc->max_age_set)
2720 DMEMIT(" max_age %u", wc->max_age_value);
2721 if (wc->cleaner_set)
2723 if (wc->writeback_fua_set)
2724 DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2725 if (wc->metadata_only)
2726 DMEMIT(" metadata_only");
2728 DMEMIT(" pause_writeback %u", wc->pause_value);
2730 case STATUSTYPE_IMA:
2736 static struct target_type writecache_target = {
2737 .name = "writecache",
2738 .version = {1, 6, 0},
2739 .module = THIS_MODULE,
2740 .ctr = writecache_ctr,
2741 .dtr = writecache_dtr,
2742 .status = writecache_status,
2743 .postsuspend = writecache_suspend,
2744 .resume = writecache_resume,
2745 .message = writecache_message,
2746 .map = writecache_map,
2747 .end_io = writecache_end_io,
2748 .iterate_devices = writecache_iterate_devices,
2749 .io_hints = writecache_io_hints,
2752 static int __init dm_writecache_init(void)
2756 r = dm_register_target(&writecache_target);
2758 DMERR("register failed %d", r);
2765 static void __exit dm_writecache_exit(void)
2767 dm_unregister_target(&writecache_target);
2770 module_init(dm_writecache_init);
2771 module_exit(dm_writecache_exit);
2773 MODULE_DESCRIPTION(DM_NAME " writecache target");
2774 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2775 MODULE_LICENSE("GPL");