1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2018 Red Hat. All rights reserved.
5 * This file is released under the GPL.
8 #include <linux/device-mapper.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/vmalloc.h>
12 #include <linux/kthread.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/dax.h>
16 #include <linux/pfn_t.h>
17 #include <linux/libnvdimm.h>
19 #define DM_MSG_PREFIX "writecache"
21 #define HIGH_WATERMARK 50
22 #define LOW_WATERMARK 45
23 #define MAX_WRITEBACK_JOBS 0
24 #define ENDIO_LATENCY 16
25 #define WRITEBACK_LATENCY 64
26 #define AUTOCOMMIT_BLOCKS_SSD 65536
27 #define AUTOCOMMIT_BLOCKS_PMEM 64
28 #define AUTOCOMMIT_MSEC 1000
30 #define BITMAP_GRANULARITY 65536
31 #if BITMAP_GRANULARITY < PAGE_SIZE
32 #undef BITMAP_GRANULARITY
33 #define BITMAP_GRANULARITY PAGE_SIZE
36 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
37 #define DM_WRITECACHE_HAS_PMEM
40 #ifdef DM_WRITECACHE_HAS_PMEM
41 #define pmem_assign(dest, src) \
43 typeof(dest) uniq = (src); \
44 memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \
47 #define pmem_assign(dest, src) ((dest) = (src))
50 #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM)
51 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
54 #define MEMORY_SUPERBLOCK_MAGIC 0x23489321
55 #define MEMORY_SUPERBLOCK_VERSION 1
57 struct wc_memory_entry {
58 __le64 original_sector;
62 struct wc_memory_superblock {
74 struct wc_memory_entry entries[0];
78 struct rb_node rb_node;
80 unsigned short wc_list_contiguous;
81 bool write_in_progress
82 #if BITS_PER_LONG == 64
87 #if BITS_PER_LONG == 64
91 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
92 uint64_t original_sector;
97 #ifdef DM_WRITECACHE_HAS_PMEM
98 #define WC_MODE_PMEM(wc) ((wc)->pmem_mode)
99 #define WC_MODE_FUA(wc) ((wc)->writeback_fua)
101 #define WC_MODE_PMEM(wc) false
102 #define WC_MODE_FUA(wc) false
104 #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc))
106 struct dm_writecache {
108 struct list_head lru;
110 struct list_head freelist;
112 struct rb_root freetree;
113 struct wc_entry *current_free;
118 size_t freelist_size;
119 size_t writeback_size;
120 size_t freelist_high_watermark;
121 size_t freelist_low_watermark;
123 unsigned uncommitted_blocks;
124 unsigned autocommit_blocks;
125 unsigned max_writeback_jobs;
129 unsigned long autocommit_jiffies;
130 struct timer_list autocommit_timer;
131 struct wait_queue_head freelist_wait;
133 atomic_t bio_in_progress[2];
134 struct wait_queue_head bio_in_progress_wait[2];
136 struct dm_target *ti;
138 struct dm_dev *ssd_dev;
139 sector_t start_sector;
141 uint64_t memory_map_size;
142 size_t metadata_sectors;
146 struct wc_entry *entries;
148 unsigned char block_size_bits;
151 bool writeback_fua:1;
153 bool overwrote_committed:1;
154 bool memory_vmapped:1;
156 bool high_wm_percent_set:1;
157 bool low_wm_percent_set:1;
158 bool max_writeback_jobs_set:1;
159 bool autocommit_blocks_set:1;
160 bool autocommit_time_set:1;
161 bool writeback_fua_set:1;
162 bool flush_on_suspend:1;
164 unsigned writeback_all;
165 struct workqueue_struct *writeback_wq;
166 struct work_struct writeback_work;
167 struct work_struct flush_work;
169 struct dm_io_client *dm_io;
171 raw_spinlock_t endio_list_lock;
172 struct list_head endio_list;
173 struct task_struct *endio_thread;
175 struct task_struct *flush_thread;
176 struct bio_list flush_list;
178 struct dm_kcopyd_client *dm_kcopyd;
179 unsigned long *dirty_bitmap;
180 unsigned dirty_bitmap_size;
182 struct bio_set bio_set;
186 #define WB_LIST_INLINE 16
188 struct writeback_struct {
189 struct list_head endio_entry;
190 struct dm_writecache *wc;
191 struct wc_entry **wc_list;
193 struct wc_entry *wc_list_inline[WB_LIST_INLINE];
198 struct list_head endio_entry;
199 struct dm_writecache *wc;
205 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
206 "A percentage of time allocated for data copying");
208 static void wc_lock(struct dm_writecache *wc)
210 mutex_lock(&wc->lock);
213 static void wc_unlock(struct dm_writecache *wc)
215 mutex_unlock(&wc->lock);
218 #ifdef DM_WRITECACHE_HAS_PMEM
219 static int persistent_memory_claim(struct dm_writecache *wc)
228 wc->memory_vmapped = false;
230 if (!wc->ssd_dev->dax_dev) {
234 s = wc->memory_map_size;
240 if (p != s >> PAGE_SHIFT) {
245 id = dax_read_lock();
247 da = dax_direct_access(wc->ssd_dev->dax_dev, 0, p, &wc->memory_map, &pfn);
249 wc->memory_map = NULL;
253 if (!pfn_t_has_page(pfn)) {
254 wc->memory_map = NULL;
260 wc->memory_map = NULL;
261 pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
269 daa = dax_direct_access(wc->ssd_dev->dax_dev, i, p - i,
272 r = daa ? daa : -EINVAL;
275 if (!pfn_t_has_page(pfn)) {
279 while (daa-- && i < p) {
280 pages[i++] = pfn_t_to_page(pfn);
284 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
285 if (!wc->memory_map) {
290 wc->memory_vmapped = true;
295 wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
296 wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
307 static int persistent_memory_claim(struct dm_writecache *wc)
313 static void persistent_memory_release(struct dm_writecache *wc)
315 if (wc->memory_vmapped)
316 vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
319 static struct page *persistent_memory_page(void *addr)
321 if (is_vmalloc_addr(addr))
322 return vmalloc_to_page(addr);
324 return virt_to_page(addr);
327 static unsigned persistent_memory_page_offset(void *addr)
329 return (unsigned long)addr & (PAGE_SIZE - 1);
332 static void persistent_memory_flush_cache(void *ptr, size_t size)
334 if (is_vmalloc_addr(ptr))
335 flush_kernel_vmap_range(ptr, size);
338 static void persistent_memory_invalidate_cache(void *ptr, size_t size)
340 if (is_vmalloc_addr(ptr))
341 invalidate_kernel_vmap_range(ptr, size);
344 static struct wc_memory_superblock *sb(struct dm_writecache *wc)
346 return wc->memory_map;
349 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
351 return &sb(wc)->entries[e->index];
354 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
356 return (char *)wc->block_start + (e->index << wc->block_size_bits);
359 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
361 return wc->start_sector + wc->metadata_sectors +
362 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
365 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
367 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
368 return e->original_sector;
370 return le64_to_cpu(memory_entry(wc, e)->original_sector);
374 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
376 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
379 return le64_to_cpu(memory_entry(wc, e)->seq_count);
383 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
385 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
388 pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
391 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
392 uint64_t original_sector, uint64_t seq_count)
394 struct wc_memory_entry me;
395 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
396 e->original_sector = original_sector;
397 e->seq_count = seq_count;
399 me.original_sector = cpu_to_le64(original_sector);
400 me.seq_count = cpu_to_le64(seq_count);
401 pmem_assign(*memory_entry(wc, e), me);
404 #define writecache_error(wc, err, msg, arg...) \
406 if (!cmpxchg(&(wc)->error, 0, err)) \
408 wake_up(&(wc)->freelist_wait); \
411 #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error)))
413 static void writecache_flush_all_metadata(struct dm_writecache *wc)
415 if (!WC_MODE_PMEM(wc))
416 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
419 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
421 if (!WC_MODE_PMEM(wc))
422 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
426 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
429 struct dm_writecache *wc;
434 static void writecache_notify_io(unsigned long error, void *context)
436 struct io_notify *endio = context;
438 if (unlikely(error != 0))
439 writecache_error(endio->wc, -EIO, "error writing metadata");
440 BUG_ON(atomic_read(&endio->count) <= 0);
441 if (atomic_dec_and_test(&endio->count))
445 static void ssd_commit_flushed(struct dm_writecache *wc)
447 struct dm_io_region region;
448 struct dm_io_request req;
449 struct io_notify endio = {
451 COMPLETION_INITIALIZER_ONSTACK(endio.c),
454 unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
459 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
460 if (unlikely(i == bitmap_bits))
462 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
464 region.bdev = wc->ssd_dev->bdev;
465 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
466 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
468 if (unlikely(region.sector >= wc->metadata_sectors))
470 if (unlikely(region.sector + region.count > wc->metadata_sectors))
471 region.count = wc->metadata_sectors - region.sector;
473 region.sector += wc->start_sector;
474 atomic_inc(&endio.count);
475 req.bi_op = REQ_OP_WRITE;
476 req.bi_op_flags = REQ_SYNC;
477 req.mem.type = DM_IO_VMA;
478 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
479 req.client = wc->dm_io;
480 req.notify.fn = writecache_notify_io;
481 req.notify.context = &endio;
483 /* writing via async dm-io (implied by notify.fn above) won't return an error */
484 (void) dm_io(&req, 1, ®ion, NULL);
488 writecache_notify_io(0, &endio);
489 wait_for_completion_io(&endio.c);
491 writecache_disk_flush(wc, wc->ssd_dev);
493 memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
496 static void writecache_commit_flushed(struct dm_writecache *wc)
498 if (WC_MODE_PMEM(wc))
501 ssd_commit_flushed(wc);
504 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
507 struct dm_io_region region;
508 struct dm_io_request req;
510 region.bdev = dev->bdev;
513 req.bi_op = REQ_OP_WRITE;
514 req.bi_op_flags = REQ_PREFLUSH;
515 req.mem.type = DM_IO_KMEM;
516 req.mem.ptr.addr = NULL;
517 req.client = wc->dm_io;
518 req.notify.fn = NULL;
520 r = dm_io(&req, 1, ®ion, NULL);
522 writecache_error(wc, r, "error flushing metadata: %d", r);
525 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
527 wait_event(wc->bio_in_progress_wait[direction],
528 !atomic_read(&wc->bio_in_progress[direction]));
531 #define WFE_RETURN_FOLLOWING 1
532 #define WFE_LOWEST_SEQ 2
534 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
535 uint64_t block, int flags)
538 struct rb_node *node = wc->tree.rb_node;
544 e = container_of(node, struct wc_entry, rb_node);
545 if (read_original_sector(wc, e) == block)
548 node = (read_original_sector(wc, e) >= block ?
549 e->rb_node.rb_left : e->rb_node.rb_right);
550 if (unlikely(!node)) {
551 if (!(flags & WFE_RETURN_FOLLOWING))
553 if (read_original_sector(wc, e) >= block) {
556 node = rb_next(&e->rb_node);
559 e = container_of(node, struct wc_entry, rb_node);
567 if (flags & WFE_LOWEST_SEQ)
568 node = rb_prev(&e->rb_node);
570 node = rb_next(&e->rb_node);
573 e2 = container_of(node, struct wc_entry, rb_node);
574 if (read_original_sector(wc, e2) != block)
580 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
583 struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
586 e = container_of(*node, struct wc_entry, rb_node);
587 parent = &e->rb_node;
588 if (read_original_sector(wc, e) > read_original_sector(wc, ins))
589 node = &parent->rb_left;
591 node = &parent->rb_right;
593 rb_link_node(&ins->rb_node, parent, node);
594 rb_insert_color(&ins->rb_node, &wc->tree);
595 list_add(&ins->lru, &wc->lru);
598 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
601 rb_erase(&e->rb_node, &wc->tree);
604 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
606 if (WC_MODE_SORT_FREELIST(wc)) {
607 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
608 if (unlikely(!*node))
609 wc->current_free = e;
612 if (&e->rb_node < *node)
613 node = &parent->rb_left;
615 node = &parent->rb_right;
617 rb_link_node(&e->rb_node, parent, node);
618 rb_insert_color(&e->rb_node, &wc->freetree);
620 list_add_tail(&e->lru, &wc->freelist);
625 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc)
629 if (WC_MODE_SORT_FREELIST(wc)) {
630 struct rb_node *next;
631 if (unlikely(!wc->current_free))
633 e = wc->current_free;
634 next = rb_next(&e->rb_node);
635 rb_erase(&e->rb_node, &wc->freetree);
637 next = rb_first(&wc->freetree);
638 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
640 if (unlikely(list_empty(&wc->freelist)))
642 e = container_of(wc->freelist.next, struct wc_entry, lru);
646 if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
647 queue_work(wc->writeback_wq, &wc->writeback_work);
652 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
654 writecache_unlink(wc, e);
655 writecache_add_to_freelist(wc, e);
656 clear_seq_count(wc, e);
657 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
658 if (unlikely(waitqueue_active(&wc->freelist_wait)))
659 wake_up(&wc->freelist_wait);
662 static void writecache_wait_on_freelist(struct dm_writecache *wc)
666 prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
669 finish_wait(&wc->freelist_wait, &wait);
673 static void writecache_poison_lists(struct dm_writecache *wc)
676 * Catch incorrect access to these values while the device is suspended.
678 memset(&wc->tree, -1, sizeof wc->tree);
679 wc->lru.next = LIST_POISON1;
680 wc->lru.prev = LIST_POISON2;
681 wc->freelist.next = LIST_POISON1;
682 wc->freelist.prev = LIST_POISON2;
685 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
687 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
688 if (WC_MODE_PMEM(wc))
689 writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
692 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
694 return read_seq_count(wc, e) < wc->seq_count;
697 static void writecache_flush(struct dm_writecache *wc)
699 struct wc_entry *e, *e2;
700 bool need_flush_after_free;
702 wc->uncommitted_blocks = 0;
703 del_timer(&wc->autocommit_timer);
705 if (list_empty(&wc->lru))
708 e = container_of(wc->lru.next, struct wc_entry, lru);
709 if (writecache_entry_is_committed(wc, e)) {
710 if (wc->overwrote_committed) {
711 writecache_wait_for_ios(wc, WRITE);
712 writecache_disk_flush(wc, wc->ssd_dev);
713 wc->overwrote_committed = false;
718 writecache_flush_entry(wc, e);
719 if (unlikely(e->lru.next == &wc->lru))
721 e2 = container_of(e->lru.next, struct wc_entry, lru);
722 if (writecache_entry_is_committed(wc, e2))
727 writecache_commit_flushed(wc);
729 if (!WC_MODE_PMEM(wc))
730 writecache_wait_for_ios(wc, WRITE);
733 pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
734 writecache_flush_region(wc, &sb(wc)->seq_count, sizeof sb(wc)->seq_count);
735 writecache_commit_flushed(wc);
737 wc->overwrote_committed = false;
739 need_flush_after_free = false;
741 /* Free another committed entry with lower seq-count */
742 struct rb_node *rb_node = rb_prev(&e->rb_node);
745 e2 = container_of(rb_node, struct wc_entry, rb_node);
746 if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
747 likely(!e2->write_in_progress)) {
748 writecache_free_entry(wc, e2);
749 need_flush_after_free = true;
752 if (unlikely(e->lru.prev == &wc->lru))
754 e = container_of(e->lru.prev, struct wc_entry, lru);
758 if (need_flush_after_free)
759 writecache_commit_flushed(wc);
762 static void writecache_flush_work(struct work_struct *work)
764 struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
767 writecache_flush(wc);
771 static void writecache_autocommit_timer(struct timer_list *t)
773 struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
774 if (!writecache_has_error(wc))
775 queue_work(wc->writeback_wq, &wc->flush_work);
778 static void writecache_schedule_autocommit(struct dm_writecache *wc)
780 if (!timer_pending(&wc->autocommit_timer))
781 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
784 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
787 bool discarded_something = false;
789 e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
793 while (read_original_sector(wc, e) < end) {
794 struct rb_node *node = rb_next(&e->rb_node);
796 if (likely(!e->write_in_progress)) {
797 if (!discarded_something) {
798 writecache_wait_for_ios(wc, READ);
799 writecache_wait_for_ios(wc, WRITE);
800 discarded_something = true;
802 writecache_free_entry(wc, e);
808 e = container_of(node, struct wc_entry, rb_node);
811 if (discarded_something)
812 writecache_commit_flushed(wc);
815 static bool writecache_wait_for_writeback(struct dm_writecache *wc)
817 if (wc->writeback_size) {
818 writecache_wait_on_freelist(wc);
824 static void writecache_suspend(struct dm_target *ti)
826 struct dm_writecache *wc = ti->private;
827 bool flush_on_suspend;
829 del_timer_sync(&wc->autocommit_timer);
832 writecache_flush(wc);
833 flush_on_suspend = wc->flush_on_suspend;
834 if (flush_on_suspend) {
835 wc->flush_on_suspend = false;
837 queue_work(wc->writeback_wq, &wc->writeback_work);
841 flush_workqueue(wc->writeback_wq);
844 if (flush_on_suspend)
846 while (writecache_wait_for_writeback(wc));
848 if (WC_MODE_PMEM(wc))
849 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
851 writecache_poison_lists(wc);
856 static int writecache_alloc_entries(struct dm_writecache *wc)
862 wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
865 for (b = 0; b < wc->n_blocks; b++) {
866 struct wc_entry *e = &wc->entries[b];
868 e->write_in_progress = false;
874 static void writecache_resume(struct dm_target *ti)
876 struct dm_writecache *wc = ti->private;
878 bool need_flush = false;
884 if (WC_MODE_PMEM(wc))
885 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
888 INIT_LIST_HEAD(&wc->lru);
889 if (WC_MODE_SORT_FREELIST(wc)) {
890 wc->freetree = RB_ROOT;
891 wc->current_free = NULL;
893 INIT_LIST_HEAD(&wc->freelist);
895 wc->freelist_size = 0;
897 r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t));
899 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
900 sb_seq_count = cpu_to_le64(0);
902 wc->seq_count = le64_to_cpu(sb_seq_count);
904 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
905 for (b = 0; b < wc->n_blocks; b++) {
906 struct wc_entry *e = &wc->entries[b];
907 struct wc_memory_entry wme;
908 if (writecache_has_error(wc)) {
909 e->original_sector = -1;
913 r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry));
915 writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
916 (unsigned long)b, r);
917 e->original_sector = -1;
920 e->original_sector = le64_to_cpu(wme.original_sector);
921 e->seq_count = le64_to_cpu(wme.seq_count);
925 for (b = 0; b < wc->n_blocks; b++) {
926 struct wc_entry *e = &wc->entries[b];
927 if (!writecache_entry_is_committed(wc, e)) {
928 if (read_seq_count(wc, e) != -1) {
930 clear_seq_count(wc, e);
933 writecache_add_to_freelist(wc, e);
935 struct wc_entry *old;
937 old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
939 writecache_insert_entry(wc, e);
941 if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
942 writecache_error(wc, -EINVAL,
943 "two identical entries, position %llu, sector %llu, sequence %llu",
944 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
945 (unsigned long long)read_seq_count(wc, e));
947 if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
950 writecache_free_entry(wc, old);
951 writecache_insert_entry(wc, e);
960 writecache_flush_all_metadata(wc);
961 writecache_commit_flushed(wc);
967 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
973 if (dm_suspended(wc->ti)) {
977 if (writecache_has_error(wc)) {
982 writecache_flush(wc);
984 queue_work(wc->writeback_wq, &wc->writeback_work);
987 flush_workqueue(wc->writeback_wq);
991 if (writecache_has_error(wc)) {
1000 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1006 wc->flush_on_suspend = true;
1012 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1013 char *result, unsigned maxlen)
1016 struct dm_writecache *wc = ti->private;
1018 if (!strcasecmp(argv[0], "flush"))
1019 r = process_flush_mesg(argc, argv, wc);
1020 else if (!strcasecmp(argv[0], "flush_on_suspend"))
1021 r = process_flush_on_suspend_mesg(argc, argv, wc);
1023 DMERR("unrecognised message received: %s", argv[0]);
1028 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1031 unsigned long flags;
1033 int rw = bio_data_dir(bio);
1034 unsigned remaining_size = wc->block_size;
1037 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1038 buf = bvec_kmap_irq(&bv, &flags);
1040 if (unlikely(size > remaining_size))
1041 size = remaining_size;
1045 r = memcpy_mcsafe(buf, data, size);
1046 flush_dcache_page(bio_page(bio));
1048 writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1049 bio->bi_status = BLK_STS_IOERR;
1052 flush_dcache_page(bio_page(bio));
1053 memcpy_flushcache(data, buf, size);
1056 bvec_kunmap_irq(buf, &flags);
1058 data = (char *)data + size;
1059 remaining_size -= size;
1060 bio_advance(bio, size);
1061 } while (unlikely(remaining_size));
1064 static int writecache_flush_thread(void *data)
1066 struct dm_writecache *wc = data;
1072 bio = bio_list_pop(&wc->flush_list);
1074 set_current_state(TASK_INTERRUPTIBLE);
1077 if (unlikely(kthread_should_stop())) {
1078 set_current_state(TASK_RUNNING);
1086 if (bio_op(bio) == REQ_OP_DISCARD) {
1087 writecache_discard(wc, bio->bi_iter.bi_sector,
1088 bio_end_sector(bio));
1090 bio_set_dev(bio, wc->dev->bdev);
1091 generic_make_request(bio);
1093 writecache_flush(wc);
1095 if (writecache_has_error(wc))
1096 bio->bi_status = BLK_STS_IOERR;
1104 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1106 if (bio_list_empty(&wc->flush_list))
1107 wake_up_process(wc->flush_thread);
1108 bio_list_add(&wc->flush_list, bio);
1111 static int writecache_map(struct dm_target *ti, struct bio *bio)
1114 struct dm_writecache *wc = ti->private;
1116 bio->bi_private = NULL;
1120 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1121 if (writecache_has_error(wc))
1123 if (WC_MODE_PMEM(wc)) {
1124 writecache_flush(wc);
1125 if (writecache_has_error(wc))
1129 writecache_offload_bio(wc, bio);
1134 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1136 if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1137 (wc->block_size / 512 - 1)) != 0)) {
1138 DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1139 (unsigned long long)bio->bi_iter.bi_sector,
1140 bio->bi_iter.bi_size, wc->block_size);
1144 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1145 if (writecache_has_error(wc))
1147 if (WC_MODE_PMEM(wc)) {
1148 writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1149 goto unlock_remap_origin;
1151 writecache_offload_bio(wc, bio);
1156 if (bio_data_dir(bio) == READ) {
1158 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1159 if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1160 if (WC_MODE_PMEM(wc)) {
1161 bio_copy_block(wc, bio, memory_data(wc, e));
1162 if (bio->bi_iter.bi_size)
1163 goto read_next_block;
1166 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1167 bio_set_dev(bio, wc->ssd_dev->bdev);
1168 bio->bi_iter.bi_sector = cache_sector(wc, e);
1169 if (!writecache_entry_is_committed(wc, e))
1170 writecache_wait_for_ios(wc, WRITE);
1175 sector_t next_boundary =
1176 read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1177 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1178 dm_accept_partial_bio(bio, next_boundary);
1181 goto unlock_remap_origin;
1185 if (writecache_has_error(wc))
1187 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1189 if (!writecache_entry_is_committed(wc, e))
1191 if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1192 wc->overwrote_committed = true;
1196 e = writecache_pop_from_freelist(wc);
1198 writecache_wait_on_freelist(wc);
1201 write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1202 writecache_insert_entry(wc, e);
1203 wc->uncommitted_blocks++;
1205 if (WC_MODE_PMEM(wc)) {
1206 bio_copy_block(wc, bio, memory_data(wc, e));
1208 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1209 bio_set_dev(bio, wc->ssd_dev->bdev);
1210 bio->bi_iter.bi_sector = cache_sector(wc, e);
1211 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1212 wc->uncommitted_blocks = 0;
1213 queue_work(wc->writeback_wq, &wc->flush_work);
1215 writecache_schedule_autocommit(wc);
1219 } while (bio->bi_iter.bi_size);
1221 if (unlikely(bio->bi_opf & REQ_FUA ||
1222 wc->uncommitted_blocks >= wc->autocommit_blocks))
1223 writecache_flush(wc);
1225 writecache_schedule_autocommit(wc);
1229 unlock_remap_origin:
1230 bio_set_dev(bio, wc->dev->bdev);
1232 return DM_MAPIO_REMAPPED;
1235 /* make sure that writecache_end_io decrements bio_in_progress: */
1236 bio->bi_private = (void *)1;
1237 atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1239 return DM_MAPIO_REMAPPED;
1244 return DM_MAPIO_SUBMITTED;
1248 return DM_MAPIO_SUBMITTED;
1253 return DM_MAPIO_SUBMITTED;
1256 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1258 struct dm_writecache *wc = ti->private;
1260 if (bio->bi_private != NULL) {
1261 int dir = bio_data_dir(bio);
1262 if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1263 if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1264 wake_up(&wc->bio_in_progress_wait[dir]);
1269 static int writecache_iterate_devices(struct dm_target *ti,
1270 iterate_devices_callout_fn fn, void *data)
1272 struct dm_writecache *wc = ti->private;
1274 return fn(ti, wc->dev, 0, ti->len, data);
1277 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1279 struct dm_writecache *wc = ti->private;
1281 if (limits->logical_block_size < wc->block_size)
1282 limits->logical_block_size = wc->block_size;
1284 if (limits->physical_block_size < wc->block_size)
1285 limits->physical_block_size = wc->block_size;
1287 if (limits->io_min < wc->block_size)
1288 limits->io_min = wc->block_size;
1292 static void writecache_writeback_endio(struct bio *bio)
1294 struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1295 struct dm_writecache *wc = wb->wc;
1296 unsigned long flags;
1298 raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1299 if (unlikely(list_empty(&wc->endio_list)))
1300 wake_up_process(wc->endio_thread);
1301 list_add_tail(&wb->endio_entry, &wc->endio_list);
1302 raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1305 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1307 struct copy_struct *c = ptr;
1308 struct dm_writecache *wc = c->wc;
1310 c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1312 raw_spin_lock_irq(&wc->endio_list_lock);
1313 if (unlikely(list_empty(&wc->endio_list)))
1314 wake_up_process(wc->endio_thread);
1315 list_add_tail(&c->endio_entry, &wc->endio_list);
1316 raw_spin_unlock_irq(&wc->endio_list_lock);
1319 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1322 struct writeback_struct *wb;
1324 unsigned long n_walked = 0;
1327 wb = list_entry(list->next, struct writeback_struct, endio_entry);
1328 list_del(&wb->endio_entry);
1330 if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1331 writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1332 "write error %d", wb->bio.bi_status);
1336 BUG_ON(!e->write_in_progress);
1337 e->write_in_progress = false;
1338 INIT_LIST_HEAD(&e->lru);
1339 if (!writecache_has_error(wc))
1340 writecache_free_entry(wc, e);
1341 BUG_ON(!wc->writeback_size);
1342 wc->writeback_size--;
1344 if (unlikely(n_walked >= ENDIO_LATENCY)) {
1345 writecache_commit_flushed(wc);
1350 } while (++i < wb->wc_list_n);
1352 if (wb->wc_list != wb->wc_list_inline)
1355 } while (!list_empty(list));
1358 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1360 struct copy_struct *c;
1364 c = list_entry(list->next, struct copy_struct, endio_entry);
1365 list_del(&c->endio_entry);
1367 if (unlikely(c->error))
1368 writecache_error(wc, c->error, "copy error");
1372 BUG_ON(!e->write_in_progress);
1373 e->write_in_progress = false;
1374 INIT_LIST_HEAD(&e->lru);
1375 if (!writecache_has_error(wc))
1376 writecache_free_entry(wc, e);
1378 BUG_ON(!wc->writeback_size);
1379 wc->writeback_size--;
1381 } while (--c->n_entries);
1382 mempool_free(c, &wc->copy_pool);
1383 } while (!list_empty(list));
1386 static int writecache_endio_thread(void *data)
1388 struct dm_writecache *wc = data;
1391 struct list_head list;
1393 raw_spin_lock_irq(&wc->endio_list_lock);
1394 if (!list_empty(&wc->endio_list))
1396 set_current_state(TASK_INTERRUPTIBLE);
1397 raw_spin_unlock_irq(&wc->endio_list_lock);
1399 if (unlikely(kthread_should_stop())) {
1400 set_current_state(TASK_RUNNING);
1409 list = wc->endio_list;
1410 list.next->prev = list.prev->next = &list;
1411 INIT_LIST_HEAD(&wc->endio_list);
1412 raw_spin_unlock_irq(&wc->endio_list_lock);
1414 if (!WC_MODE_FUA(wc))
1415 writecache_disk_flush(wc, wc->dev);
1419 if (WC_MODE_PMEM(wc)) {
1420 __writecache_endio_pmem(wc, &list);
1422 __writecache_endio_ssd(wc, &list);
1423 writecache_wait_for_ios(wc, READ);
1426 writecache_commit_flushed(wc);
1434 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp)
1436 struct dm_writecache *wc = wb->wc;
1437 unsigned block_size = wc->block_size;
1438 void *address = memory_data(wc, e);
1440 persistent_memory_flush_cache(address, block_size);
1441 return bio_add_page(&wb->bio, persistent_memory_page(address),
1442 block_size, persistent_memory_page_offset(address)) != 0;
1445 struct writeback_list {
1446 struct list_head list;
1450 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1452 if (unlikely(wc->max_writeback_jobs)) {
1453 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1455 while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1456 writecache_wait_on_freelist(wc);
1463 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1465 struct wc_entry *e, *f;
1467 struct writeback_struct *wb;
1472 e = container_of(wbl->list.prev, struct wc_entry, lru);
1475 max_pages = e->wc_list_contiguous;
1477 bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
1478 wb = container_of(bio, struct writeback_struct, bio);
1480 bio->bi_end_io = writecache_writeback_endio;
1481 bio_set_dev(bio, wc->dev->bdev);
1482 bio->bi_iter.bi_sector = read_original_sector(wc, e);
1483 if (max_pages <= WB_LIST_INLINE ||
1484 unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1485 GFP_NOIO | __GFP_NORETRY |
1486 __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
1487 wb->wc_list = wb->wc_list_inline;
1488 max_pages = WB_LIST_INLINE;
1491 BUG_ON(!wc_add_block(wb, e, GFP_NOIO));
1496 while (wbl->size && wb->wc_list_n < max_pages) {
1497 f = container_of(wbl->list.prev, struct wc_entry, lru);
1498 if (read_original_sector(wc, f) !=
1499 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1501 if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN))
1505 wb->wc_list[wb->wc_list_n++] = f;
1508 bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
1509 if (writecache_has_error(wc)) {
1510 bio->bi_status = BLK_STS_IOERR;
1516 __writeback_throttle(wc, wbl);
1520 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1522 struct wc_entry *e, *f;
1523 struct dm_io_region from, to;
1524 struct copy_struct *c;
1530 e = container_of(wbl->list.prev, struct wc_entry, lru);
1533 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1535 from.bdev = wc->ssd_dev->bdev;
1536 from.sector = cache_sector(wc, e);
1537 from.count = n_sectors;
1538 to.bdev = wc->dev->bdev;
1539 to.sector = read_original_sector(wc, e);
1540 to.count = n_sectors;
1542 c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1545 c->n_entries = e->wc_list_contiguous;
1547 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1549 f = container_of(wbl->list.prev, struct wc_entry, lru);
1555 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1557 __writeback_throttle(wc, wbl);
1561 static void writecache_writeback(struct work_struct *work)
1563 struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1564 struct blk_plug plug;
1565 struct wc_entry *f, *uninitialized_var(g), *e = NULL;
1566 struct rb_node *node, *next_node;
1567 struct list_head skipped;
1568 struct writeback_list wbl;
1569 unsigned long n_walked;
1573 if (writecache_has_error(wc)) {
1578 if (unlikely(wc->writeback_all)) {
1579 if (writecache_wait_for_writeback(wc))
1583 if (wc->overwrote_committed) {
1584 writecache_wait_for_ios(wc, WRITE);
1588 INIT_LIST_HEAD(&skipped);
1589 INIT_LIST_HEAD(&wbl.list);
1591 while (!list_empty(&wc->lru) &&
1592 (wc->writeback_all ||
1593 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark)) {
1596 if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1597 likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) {
1598 queue_work(wc->writeback_wq, &wc->writeback_work);
1602 if (unlikely(wc->writeback_all)) {
1604 writecache_flush(wc);
1605 e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
1609 e = container_of(wc->lru.prev, struct wc_entry, lru);
1610 BUG_ON(e->write_in_progress);
1611 if (unlikely(!writecache_entry_is_committed(wc, e))) {
1612 writecache_flush(wc);
1614 node = rb_prev(&e->rb_node);
1616 f = container_of(node, struct wc_entry, rb_node);
1617 if (unlikely(read_original_sector(wc, f) ==
1618 read_original_sector(wc, e))) {
1619 BUG_ON(!f->write_in_progress);
1621 list_add(&e->lru, &skipped);
1626 wc->writeback_size++;
1628 list_add(&e->lru, &wbl.list);
1630 e->write_in_progress = true;
1631 e->wc_list_contiguous = 1;
1636 next_node = rb_next(&f->rb_node);
1637 if (unlikely(!next_node))
1639 g = container_of(next_node, struct wc_entry, rb_node);
1640 if (unlikely(read_original_sector(wc, g) ==
1641 read_original_sector(wc, f))) {
1645 if (read_original_sector(wc, g) !=
1646 read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
1648 if (unlikely(g->write_in_progress))
1650 if (unlikely(!writecache_entry_is_committed(wc, g)))
1653 if (!WC_MODE_PMEM(wc)) {
1659 //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
1662 wc->writeback_size++;
1664 list_add(&g->lru, &wbl.list);
1666 g->write_in_progress = true;
1667 g->wc_list_contiguous = BIO_MAX_PAGES;
1669 e->wc_list_contiguous++;
1670 if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) {
1671 if (unlikely(wc->writeback_all)) {
1672 next_node = rb_next(&f->rb_node);
1673 if (likely(next_node))
1674 g = container_of(next_node, struct wc_entry, rb_node);
1682 if (!list_empty(&skipped)) {
1683 list_splice_tail(&skipped, &wc->lru);
1685 * If we didn't do any progress, we must wait until some
1686 * writeback finishes to avoid burning CPU in a loop
1688 if (unlikely(!wbl.size))
1689 writecache_wait_for_writeback(wc);
1694 blk_start_plug(&plug);
1696 if (WC_MODE_PMEM(wc))
1697 __writecache_writeback_pmem(wc, &wbl);
1699 __writecache_writeback_ssd(wc, &wbl);
1701 blk_finish_plug(&plug);
1703 if (unlikely(wc->writeback_all)) {
1705 while (writecache_wait_for_writeback(wc));
1710 static int calculate_memory_size(uint64_t device_size, unsigned block_size,
1711 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
1713 uint64_t n_blocks, offset;
1716 n_blocks = device_size;
1717 do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
1722 /* Verify the following entries[n_blocks] won't overflow */
1723 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
1724 sizeof(struct wc_memory_entry)))
1726 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
1727 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
1728 if (offset + n_blocks * block_size <= device_size)
1733 /* check if the bit field overflows */
1735 if (e.index != n_blocks)
1739 *n_blocks_p = n_blocks;
1740 if (n_metadata_blocks_p)
1741 *n_metadata_blocks_p = offset >> __ffs(block_size);
1745 static int init_memory(struct dm_writecache *wc)
1750 r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
1754 r = writecache_alloc_entries(wc);
1758 for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
1759 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
1760 pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
1761 pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
1762 pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
1763 pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
1765 for (b = 0; b < wc->n_blocks; b++)
1766 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
1768 writecache_flush_all_metadata(wc);
1769 writecache_commit_flushed(wc);
1770 pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
1771 writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
1772 writecache_commit_flushed(wc);
1777 static void writecache_dtr(struct dm_target *ti)
1779 struct dm_writecache *wc = ti->private;
1784 if (wc->endio_thread)
1785 kthread_stop(wc->endio_thread);
1787 if (wc->flush_thread)
1788 kthread_stop(wc->flush_thread);
1790 bioset_exit(&wc->bio_set);
1792 mempool_exit(&wc->copy_pool);
1794 if (wc->writeback_wq)
1795 destroy_workqueue(wc->writeback_wq);
1798 dm_put_device(ti, wc->dev);
1801 dm_put_device(ti, wc->ssd_dev);
1806 if (wc->memory_map) {
1807 if (WC_MODE_PMEM(wc))
1808 persistent_memory_release(wc);
1810 vfree(wc->memory_map);
1814 dm_kcopyd_client_destroy(wc->dm_kcopyd);
1817 dm_io_client_destroy(wc->dm_io);
1819 if (wc->dirty_bitmap)
1820 vfree(wc->dirty_bitmap);
1825 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
1827 struct dm_writecache *wc;
1828 struct dm_arg_set as;
1830 unsigned opt_params;
1831 size_t offset, data_size;
1834 int high_wm_percent = HIGH_WATERMARK;
1835 int low_wm_percent = LOW_WATERMARK;
1837 struct wc_memory_superblock s;
1839 static struct dm_arg _args[] = {
1840 {0, 10, "Invalid number of feature args"},
1846 wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
1848 ti->error = "Cannot allocate writecache structure";
1855 mutex_init(&wc->lock);
1856 writecache_poison_lists(wc);
1857 init_waitqueue_head(&wc->freelist_wait);
1858 timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
1860 for (i = 0; i < 2; i++) {
1861 atomic_set(&wc->bio_in_progress[i], 0);
1862 init_waitqueue_head(&wc->bio_in_progress_wait[i]);
1865 wc->dm_io = dm_io_client_create();
1866 if (IS_ERR(wc->dm_io)) {
1867 r = PTR_ERR(wc->dm_io);
1868 ti->error = "Unable to allocate dm-io client";
1873 wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
1874 if (!wc->writeback_wq) {
1876 ti->error = "Could not allocate writeback workqueue";
1879 INIT_WORK(&wc->writeback_work, writecache_writeback);
1880 INIT_WORK(&wc->flush_work, writecache_flush_work);
1882 raw_spin_lock_init(&wc->endio_list_lock);
1883 INIT_LIST_HEAD(&wc->endio_list);
1884 wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
1885 if (IS_ERR(wc->endio_thread)) {
1886 r = PTR_ERR(wc->endio_thread);
1887 wc->endio_thread = NULL;
1888 ti->error = "Couldn't spawn endio thread";
1891 wake_up_process(wc->endio_thread);
1894 * Parse the mode (pmem or ssd)
1896 string = dm_shift_arg(&as);
1900 if (!strcasecmp(string, "s")) {
1901 wc->pmem_mode = false;
1902 } else if (!strcasecmp(string, "p")) {
1903 #ifdef DM_WRITECACHE_HAS_PMEM
1904 wc->pmem_mode = true;
1905 wc->writeback_fua = true;
1908 * If the architecture doesn't support persistent memory or
1909 * the kernel doesn't support any DAX drivers, this driver can
1910 * only be used in SSD-only mode.
1913 ti->error = "Persistent memory or DAX not supported on this system";
1920 if (WC_MODE_PMEM(wc)) {
1921 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
1922 offsetof(struct writeback_struct, bio),
1925 ti->error = "Could not allocate bio set";
1929 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
1931 ti->error = "Could not allocate mempool";
1937 * Parse the origin data device
1939 string = dm_shift_arg(&as);
1942 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
1944 ti->error = "Origin data device lookup failed";
1949 * Parse cache data device (be it pmem or ssd)
1951 string = dm_shift_arg(&as);
1955 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
1957 ti->error = "Cache data device lookup failed";
1960 wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode);
1963 * Parse the cache block size
1965 string = dm_shift_arg(&as);
1968 if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
1969 wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
1970 (wc->block_size & (wc->block_size - 1))) {
1972 ti->error = "Invalid block size";
1975 wc->block_size_bits = __ffs(wc->block_size);
1977 wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
1978 wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
1979 wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
1982 * Parse optional arguments
1984 r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1988 while (opt_params) {
1989 string = dm_shift_arg(&as), opt_params--;
1990 if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
1991 unsigned long long start_sector;
1992 string = dm_shift_arg(&as), opt_params--;
1993 if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
1994 goto invalid_optional;
1995 wc->start_sector = start_sector;
1996 if (wc->start_sector != start_sector ||
1997 wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
1998 goto invalid_optional;
1999 } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
2000 string = dm_shift_arg(&as), opt_params--;
2001 if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2002 goto invalid_optional;
2003 if (high_wm_percent < 0 || high_wm_percent > 100)
2004 goto invalid_optional;
2005 wc->high_wm_percent_set = true;
2006 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2007 string = dm_shift_arg(&as), opt_params--;
2008 if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2009 goto invalid_optional;
2010 if (low_wm_percent < 0 || low_wm_percent > 100)
2011 goto invalid_optional;
2012 wc->low_wm_percent_set = true;
2013 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2014 string = dm_shift_arg(&as), opt_params--;
2015 if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2016 goto invalid_optional;
2017 wc->max_writeback_jobs_set = true;
2018 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2019 string = dm_shift_arg(&as), opt_params--;
2020 if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2021 goto invalid_optional;
2022 wc->autocommit_blocks_set = true;
2023 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2024 unsigned autocommit_msecs;
2025 string = dm_shift_arg(&as), opt_params--;
2026 if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2027 goto invalid_optional;
2028 if (autocommit_msecs > 3600000)
2029 goto invalid_optional;
2030 wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2031 wc->autocommit_time_set = true;
2032 } else if (!strcasecmp(string, "fua")) {
2033 if (WC_MODE_PMEM(wc)) {
2034 wc->writeback_fua = true;
2035 wc->writeback_fua_set = true;
2036 } else goto invalid_optional;
2037 } else if (!strcasecmp(string, "nofua")) {
2038 if (WC_MODE_PMEM(wc)) {
2039 wc->writeback_fua = false;
2040 wc->writeback_fua_set = true;
2041 } else goto invalid_optional;
2045 ti->error = "Invalid optional argument";
2050 if (high_wm_percent < low_wm_percent) {
2052 ti->error = "High watermark must be greater than or equal to low watermark";
2056 if (WC_MODE_PMEM(wc)) {
2057 r = persistent_memory_claim(wc);
2059 ti->error = "Unable to map persistent memory for cache";
2063 struct dm_io_region region;
2064 struct dm_io_request req;
2065 size_t n_blocks, n_metadata_blocks;
2066 uint64_t n_bitmap_bits;
2068 wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2070 bio_list_init(&wc->flush_list);
2071 wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
2072 if (IS_ERR(wc->flush_thread)) {
2073 r = PTR_ERR(wc->flush_thread);
2074 wc->flush_thread = NULL;
2075 ti->error = "Couldn't spawn flush thread";
2078 wake_up_process(wc->flush_thread);
2080 r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2081 &n_blocks, &n_metadata_blocks);
2083 ti->error = "Invalid device size";
2087 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2088 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2089 /* this is limitation of test_bit functions */
2090 if (n_bitmap_bits > 1U << 31) {
2092 ti->error = "Invalid device size";
2096 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2097 if (!wc->memory_map) {
2099 ti->error = "Unable to allocate memory for metadata";
2103 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2104 if (IS_ERR(wc->dm_kcopyd)) {
2105 r = PTR_ERR(wc->dm_kcopyd);
2106 ti->error = "Unable to allocate dm-kcopyd client";
2107 wc->dm_kcopyd = NULL;
2111 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2112 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2113 BITS_PER_LONG * sizeof(unsigned long);
2114 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2115 if (!wc->dirty_bitmap) {
2117 ti->error = "Unable to allocate dirty bitmap";
2121 region.bdev = wc->ssd_dev->bdev;
2122 region.sector = wc->start_sector;
2123 region.count = wc->metadata_sectors;
2124 req.bi_op = REQ_OP_READ;
2125 req.bi_op_flags = REQ_SYNC;
2126 req.mem.type = DM_IO_VMA;
2127 req.mem.ptr.vma = (char *)wc->memory_map;
2128 req.client = wc->dm_io;
2129 req.notify.fn = NULL;
2131 r = dm_io(&req, 1, ®ion, NULL);
2133 ti->error = "Unable to read metadata";
2138 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2140 ti->error = "Hardware memory error when reading superblock";
2143 if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2144 r = init_memory(wc);
2146 ti->error = "Unable to initialize device";
2149 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2151 ti->error = "Hardware memory error when reading superblock";
2156 if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2157 ti->error = "Invalid magic in the superblock";
2162 if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2163 ti->error = "Invalid version in the superblock";
2168 if (le32_to_cpu(s.block_size) != wc->block_size) {
2169 ti->error = "Block size does not match superblock";
2174 wc->n_blocks = le64_to_cpu(s.n_blocks);
2176 offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2177 if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2179 ti->error = "Overflow in size calculation";
2183 offset += sizeof(struct wc_memory_superblock);
2184 if (offset < sizeof(struct wc_memory_superblock))
2186 offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2187 data_size = wc->n_blocks * (size_t)wc->block_size;
2188 if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2189 (offset + data_size < offset))
2191 if (offset + data_size > wc->memory_map_size) {
2192 ti->error = "Memory area is too small";
2197 wc->metadata_sectors = offset >> SECTOR_SHIFT;
2198 wc->block_start = (char *)sb(wc) + offset;
2200 x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2203 wc->freelist_high_watermark = x;
2204 x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2207 wc->freelist_low_watermark = x;
2209 r = writecache_alloc_entries(wc);
2211 ti->error = "Cannot allocate memory";
2215 ti->num_flush_bios = 1;
2216 ti->flush_supported = true;
2217 ti->num_discard_bios = 1;
2219 if (WC_MODE_PMEM(wc))
2220 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2226 ti->error = "Bad arguments";
2232 static void writecache_status(struct dm_target *ti, status_type_t type,
2233 unsigned status_flags, char *result, unsigned maxlen)
2235 struct dm_writecache *wc = ti->private;
2236 unsigned extra_args;
2241 case STATUSTYPE_INFO:
2242 DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc),
2243 (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2244 (unsigned long long)wc->writeback_size);
2246 case STATUSTYPE_TABLE:
2247 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2248 wc->dev->name, wc->ssd_dev->name, wc->block_size);
2250 if (wc->start_sector)
2252 if (wc->high_wm_percent_set)
2254 if (wc->low_wm_percent_set)
2256 if (wc->max_writeback_jobs_set)
2258 if (wc->autocommit_blocks_set)
2260 if (wc->autocommit_time_set)
2262 if (wc->writeback_fua_set)
2265 DMEMIT("%u", extra_args);
2266 if (wc->start_sector)
2267 DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2268 if (wc->high_wm_percent_set) {
2269 x = (uint64_t)wc->freelist_high_watermark * 100;
2270 x += wc->n_blocks / 2;
2271 do_div(x, (size_t)wc->n_blocks);
2272 DMEMIT(" high_watermark %u", 100 - (unsigned)x);
2274 if (wc->low_wm_percent_set) {
2275 x = (uint64_t)wc->freelist_low_watermark * 100;
2276 x += wc->n_blocks / 2;
2277 do_div(x, (size_t)wc->n_blocks);
2278 DMEMIT(" low_watermark %u", 100 - (unsigned)x);
2280 if (wc->max_writeback_jobs_set)
2281 DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2282 if (wc->autocommit_blocks_set)
2283 DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2284 if (wc->autocommit_time_set)
2285 DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies));
2286 if (wc->writeback_fua_set)
2287 DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2292 static struct target_type writecache_target = {
2293 .name = "writecache",
2294 .version = {1, 1, 1},
2295 .module = THIS_MODULE,
2296 .ctr = writecache_ctr,
2297 .dtr = writecache_dtr,
2298 .status = writecache_status,
2299 .postsuspend = writecache_suspend,
2300 .resume = writecache_resume,
2301 .message = writecache_message,
2302 .map = writecache_map,
2303 .end_io = writecache_end_io,
2304 .iterate_devices = writecache_iterate_devices,
2305 .io_hints = writecache_io_hints,
2308 static int __init dm_writecache_init(void)
2312 r = dm_register_target(&writecache_target);
2314 DMERR("register failed %d", r);
2321 static void __exit dm_writecache_exit(void)
2323 dm_unregister_target(&writecache_target);
2326 module_init(dm_writecache_init);
2327 module_exit(dm_writecache_exit);
2329 MODULE_DESCRIPTION(DM_NAME " writecache target");
2330 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2331 MODULE_LICENSE("GPL");