dm integrity: fix a crash with unusually large tag size
[platform/kernel/linux-rpi.git] / drivers / md / dm-writecache.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Red Hat. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include <linux/device-mapper.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/vmalloc.h>
12 #include <linux/kthread.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/dax.h>
16 #include <linux/pfn_t.h>
17 #include <linux/libnvdimm.h>
18
19 #define DM_MSG_PREFIX "writecache"
20
21 #define HIGH_WATERMARK                  50
22 #define LOW_WATERMARK                   45
23 #define MAX_WRITEBACK_JOBS              0
24 #define ENDIO_LATENCY                   16
25 #define WRITEBACK_LATENCY               64
26 #define AUTOCOMMIT_BLOCKS_SSD           65536
27 #define AUTOCOMMIT_BLOCKS_PMEM          64
28 #define AUTOCOMMIT_MSEC                 1000
29
30 #define BITMAP_GRANULARITY      65536
31 #if BITMAP_GRANULARITY < PAGE_SIZE
32 #undef BITMAP_GRANULARITY
33 #define BITMAP_GRANULARITY      PAGE_SIZE
34 #endif
35
36 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
37 #define DM_WRITECACHE_HAS_PMEM
38 #endif
39
40 #ifdef DM_WRITECACHE_HAS_PMEM
41 #define pmem_assign(dest, src)                                  \
42 do {                                                            \
43         typeof(dest) uniq = (src);                              \
44         memcpy_flushcache(&(dest), &uniq, sizeof(dest));        \
45 } while (0)
46 #else
47 #define pmem_assign(dest, src)  ((dest) = (src))
48 #endif
49
50 #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM)
51 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
52 #endif
53
54 #define MEMORY_SUPERBLOCK_MAGIC         0x23489321
55 #define MEMORY_SUPERBLOCK_VERSION       1
56
57 struct wc_memory_entry {
58         __le64 original_sector;
59         __le64 seq_count;
60 };
61
62 struct wc_memory_superblock {
63         union {
64                 struct {
65                         __le32 magic;
66                         __le32 version;
67                         __le32 block_size;
68                         __le32 pad;
69                         __le64 n_blocks;
70                         __le64 seq_count;
71                 };
72                 __le64 padding[8];
73         };
74         struct wc_memory_entry entries[0];
75 };
76
77 struct wc_entry {
78         struct rb_node rb_node;
79         struct list_head lru;
80         unsigned short wc_list_contiguous;
81         bool write_in_progress
82 #if BITS_PER_LONG == 64
83                 :1
84 #endif
85         ;
86         unsigned long index
87 #if BITS_PER_LONG == 64
88                 :47
89 #endif
90         ;
91 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
92         uint64_t original_sector;
93         uint64_t seq_count;
94 #endif
95 };
96
97 #ifdef DM_WRITECACHE_HAS_PMEM
98 #define WC_MODE_PMEM(wc)                        ((wc)->pmem_mode)
99 #define WC_MODE_FUA(wc)                         ((wc)->writeback_fua)
100 #else
101 #define WC_MODE_PMEM(wc)                        false
102 #define WC_MODE_FUA(wc)                         false
103 #endif
104 #define WC_MODE_SORT_FREELIST(wc)               (!WC_MODE_PMEM(wc))
105
106 struct dm_writecache {
107         struct mutex lock;
108         struct list_head lru;
109         union {
110                 struct list_head freelist;
111                 struct {
112                         struct rb_root freetree;
113                         struct wc_entry *current_free;
114                 };
115         };
116         struct rb_root tree;
117
118         size_t freelist_size;
119         size_t writeback_size;
120         size_t freelist_high_watermark;
121         size_t freelist_low_watermark;
122
123         unsigned uncommitted_blocks;
124         unsigned autocommit_blocks;
125         unsigned max_writeback_jobs;
126
127         int error;
128
129         unsigned long autocommit_jiffies;
130         struct timer_list autocommit_timer;
131         struct wait_queue_head freelist_wait;
132
133         atomic_t bio_in_progress[2];
134         struct wait_queue_head bio_in_progress_wait[2];
135
136         struct dm_target *ti;
137         struct dm_dev *dev;
138         struct dm_dev *ssd_dev;
139         sector_t start_sector;
140         void *memory_map;
141         uint64_t memory_map_size;
142         size_t metadata_sectors;
143         size_t n_blocks;
144         uint64_t seq_count;
145         void *block_start;
146         struct wc_entry *entries;
147         unsigned block_size;
148         unsigned char block_size_bits;
149
150         bool pmem_mode:1;
151         bool writeback_fua:1;
152
153         bool overwrote_committed:1;
154         bool memory_vmapped:1;
155
156         bool high_wm_percent_set:1;
157         bool low_wm_percent_set:1;
158         bool max_writeback_jobs_set:1;
159         bool autocommit_blocks_set:1;
160         bool autocommit_time_set:1;
161         bool writeback_fua_set:1;
162         bool flush_on_suspend:1;
163
164         unsigned writeback_all;
165         struct workqueue_struct *writeback_wq;
166         struct work_struct writeback_work;
167         struct work_struct flush_work;
168
169         struct dm_io_client *dm_io;
170
171         raw_spinlock_t endio_list_lock;
172         struct list_head endio_list;
173         struct task_struct *endio_thread;
174
175         struct task_struct *flush_thread;
176         struct bio_list flush_list;
177
178         struct dm_kcopyd_client *dm_kcopyd;
179         unsigned long *dirty_bitmap;
180         unsigned dirty_bitmap_size;
181
182         struct bio_set bio_set;
183         mempool_t copy_pool;
184 };
185
186 #define WB_LIST_INLINE          16
187
188 struct writeback_struct {
189         struct list_head endio_entry;
190         struct dm_writecache *wc;
191         struct wc_entry **wc_list;
192         unsigned wc_list_n;
193         struct wc_entry *wc_list_inline[WB_LIST_INLINE];
194         struct bio bio;
195 };
196
197 struct copy_struct {
198         struct list_head endio_entry;
199         struct dm_writecache *wc;
200         struct wc_entry *e;
201         unsigned n_entries;
202         int error;
203 };
204
205 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
206                                             "A percentage of time allocated for data copying");
207
208 static void wc_lock(struct dm_writecache *wc)
209 {
210         mutex_lock(&wc->lock);
211 }
212
213 static void wc_unlock(struct dm_writecache *wc)
214 {
215         mutex_unlock(&wc->lock);
216 }
217
218 #ifdef DM_WRITECACHE_HAS_PMEM
219 static int persistent_memory_claim(struct dm_writecache *wc)
220 {
221         int r;
222         loff_t s;
223         long p, da;
224         pfn_t pfn;
225         int id;
226         struct page **pages;
227
228         wc->memory_vmapped = false;
229
230         if (!wc->ssd_dev->dax_dev) {
231                 r = -EOPNOTSUPP;
232                 goto err1;
233         }
234         s = wc->memory_map_size;
235         p = s >> PAGE_SHIFT;
236         if (!p) {
237                 r = -EINVAL;
238                 goto err1;
239         }
240         if (p != s >> PAGE_SHIFT) {
241                 r = -EOVERFLOW;
242                 goto err1;
243         }
244
245         id = dax_read_lock();
246
247         da = dax_direct_access(wc->ssd_dev->dax_dev, 0, p, &wc->memory_map, &pfn);
248         if (da < 0) {
249                 wc->memory_map = NULL;
250                 r = da;
251                 goto err2;
252         }
253         if (!pfn_t_has_page(pfn)) {
254                 wc->memory_map = NULL;
255                 r = -EOPNOTSUPP;
256                 goto err2;
257         }
258         if (da != p) {
259                 long i;
260                 wc->memory_map = NULL;
261                 pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
262                 if (!pages) {
263                         r = -ENOMEM;
264                         goto err2;
265                 }
266                 i = 0;
267                 do {
268                         long daa;
269                         daa = dax_direct_access(wc->ssd_dev->dax_dev, i, p - i,
270                                                 NULL, &pfn);
271                         if (daa <= 0) {
272                                 r = daa ? daa : -EINVAL;
273                                 goto err3;
274                         }
275                         if (!pfn_t_has_page(pfn)) {
276                                 r = -EOPNOTSUPP;
277                                 goto err3;
278                         }
279                         while (daa-- && i < p) {
280                                 pages[i++] = pfn_t_to_page(pfn);
281                                 pfn.val++;
282                         }
283                 } while (i < p);
284                 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
285                 if (!wc->memory_map) {
286                         r = -ENOMEM;
287                         goto err3;
288                 }
289                 kvfree(pages);
290                 wc->memory_vmapped = true;
291         }
292
293         dax_read_unlock(id);
294
295         wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
296         wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
297
298         return 0;
299 err3:
300         kvfree(pages);
301 err2:
302         dax_read_unlock(id);
303 err1:
304         return r;
305 }
306 #else
307 static int persistent_memory_claim(struct dm_writecache *wc)
308 {
309         BUG();
310 }
311 #endif
312
313 static void persistent_memory_release(struct dm_writecache *wc)
314 {
315         if (wc->memory_vmapped)
316                 vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
317 }
318
319 static struct page *persistent_memory_page(void *addr)
320 {
321         if (is_vmalloc_addr(addr))
322                 return vmalloc_to_page(addr);
323         else
324                 return virt_to_page(addr);
325 }
326
327 static unsigned persistent_memory_page_offset(void *addr)
328 {
329         return (unsigned long)addr & (PAGE_SIZE - 1);
330 }
331
332 static void persistent_memory_flush_cache(void *ptr, size_t size)
333 {
334         if (is_vmalloc_addr(ptr))
335                 flush_kernel_vmap_range(ptr, size);
336 }
337
338 static void persistent_memory_invalidate_cache(void *ptr, size_t size)
339 {
340         if (is_vmalloc_addr(ptr))
341                 invalidate_kernel_vmap_range(ptr, size);
342 }
343
344 static struct wc_memory_superblock *sb(struct dm_writecache *wc)
345 {
346         return wc->memory_map;
347 }
348
349 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
350 {
351         return &sb(wc)->entries[e->index];
352 }
353
354 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
355 {
356         return (char *)wc->block_start + (e->index << wc->block_size_bits);
357 }
358
359 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
360 {
361         return wc->start_sector + wc->metadata_sectors +
362                 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
363 }
364
365 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
366 {
367 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
368         return e->original_sector;
369 #else
370         return le64_to_cpu(memory_entry(wc, e)->original_sector);
371 #endif
372 }
373
374 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
375 {
376 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
377         return e->seq_count;
378 #else
379         return le64_to_cpu(memory_entry(wc, e)->seq_count);
380 #endif
381 }
382
383 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
384 {
385 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
386         e->seq_count = -1;
387 #endif
388         pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
389 }
390
391 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
392                                             uint64_t original_sector, uint64_t seq_count)
393 {
394         struct wc_memory_entry me;
395 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
396         e->original_sector = original_sector;
397         e->seq_count = seq_count;
398 #endif
399         me.original_sector = cpu_to_le64(original_sector);
400         me.seq_count = cpu_to_le64(seq_count);
401         pmem_assign(*memory_entry(wc, e), me);
402 }
403
404 #define writecache_error(wc, err, msg, arg...)                          \
405 do {                                                                    \
406         if (!cmpxchg(&(wc)->error, 0, err))                             \
407                 DMERR(msg, ##arg);                                      \
408         wake_up(&(wc)->freelist_wait);                                  \
409 } while (0)
410
411 #define writecache_has_error(wc)        (unlikely(READ_ONCE((wc)->error)))
412
413 static void writecache_flush_all_metadata(struct dm_writecache *wc)
414 {
415         if (!WC_MODE_PMEM(wc))
416                 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
417 }
418
419 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
420 {
421         if (!WC_MODE_PMEM(wc))
422                 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
423                           wc->dirty_bitmap);
424 }
425
426 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
427
428 struct io_notify {
429         struct dm_writecache *wc;
430         struct completion c;
431         atomic_t count;
432 };
433
434 static void writecache_notify_io(unsigned long error, void *context)
435 {
436         struct io_notify *endio = context;
437
438         if (unlikely(error != 0))
439                 writecache_error(endio->wc, -EIO, "error writing metadata");
440         BUG_ON(atomic_read(&endio->count) <= 0);
441         if (atomic_dec_and_test(&endio->count))
442                 complete(&endio->c);
443 }
444
445 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
446 {
447         wait_event(wc->bio_in_progress_wait[direction],
448                    !atomic_read(&wc->bio_in_progress[direction]));
449 }
450
451 static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
452 {
453         struct dm_io_region region;
454         struct dm_io_request req;
455         struct io_notify endio = {
456                 wc,
457                 COMPLETION_INITIALIZER_ONSTACK(endio.c),
458                 ATOMIC_INIT(1),
459         };
460         unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
461         unsigned i = 0;
462
463         while (1) {
464                 unsigned j;
465                 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
466                 if (unlikely(i == bitmap_bits))
467                         break;
468                 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
469
470                 region.bdev = wc->ssd_dev->bdev;
471                 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
472                 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
473
474                 if (unlikely(region.sector >= wc->metadata_sectors))
475                         break;
476                 if (unlikely(region.sector + region.count > wc->metadata_sectors))
477                         region.count = wc->metadata_sectors - region.sector;
478
479                 region.sector += wc->start_sector;
480                 atomic_inc(&endio.count);
481                 req.bi_op = REQ_OP_WRITE;
482                 req.bi_op_flags = REQ_SYNC;
483                 req.mem.type = DM_IO_VMA;
484                 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
485                 req.client = wc->dm_io;
486                 req.notify.fn = writecache_notify_io;
487                 req.notify.context = &endio;
488
489                 /* writing via async dm-io (implied by notify.fn above) won't return an error */
490                 (void) dm_io(&req, 1, &region, NULL);
491                 i = j;
492         }
493
494         writecache_notify_io(0, &endio);
495         wait_for_completion_io(&endio.c);
496
497         if (wait_for_ios)
498                 writecache_wait_for_ios(wc, WRITE);
499
500         writecache_disk_flush(wc, wc->ssd_dev);
501
502         memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
503 }
504
505 static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
506 {
507         if (WC_MODE_PMEM(wc))
508                 wmb();
509         else
510                 ssd_commit_flushed(wc, wait_for_ios);
511 }
512
513 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
514 {
515         int r;
516         struct dm_io_region region;
517         struct dm_io_request req;
518
519         region.bdev = dev->bdev;
520         region.sector = 0;
521         region.count = 0;
522         req.bi_op = REQ_OP_WRITE;
523         req.bi_op_flags = REQ_PREFLUSH;
524         req.mem.type = DM_IO_KMEM;
525         req.mem.ptr.addr = NULL;
526         req.client = wc->dm_io;
527         req.notify.fn = NULL;
528
529         r = dm_io(&req, 1, &region, NULL);
530         if (unlikely(r))
531                 writecache_error(wc, r, "error flushing metadata: %d", r);
532 }
533
534 #define WFE_RETURN_FOLLOWING    1
535 #define WFE_LOWEST_SEQ          2
536
537 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
538                                               uint64_t block, int flags)
539 {
540         struct wc_entry *e;
541         struct rb_node *node = wc->tree.rb_node;
542
543         if (unlikely(!node))
544                 return NULL;
545
546         while (1) {
547                 e = container_of(node, struct wc_entry, rb_node);
548                 if (read_original_sector(wc, e) == block)
549                         break;
550
551                 node = (read_original_sector(wc, e) >= block ?
552                         e->rb_node.rb_left : e->rb_node.rb_right);
553                 if (unlikely(!node)) {
554                         if (!(flags & WFE_RETURN_FOLLOWING))
555                                 return NULL;
556                         if (read_original_sector(wc, e) >= block) {
557                                 return e;
558                         } else {
559                                 node = rb_next(&e->rb_node);
560                                 if (unlikely(!node))
561                                         return NULL;
562                                 e = container_of(node, struct wc_entry, rb_node);
563                                 return e;
564                         }
565                 }
566         }
567
568         while (1) {
569                 struct wc_entry *e2;
570                 if (flags & WFE_LOWEST_SEQ)
571                         node = rb_prev(&e->rb_node);
572                 else
573                         node = rb_next(&e->rb_node);
574                 if (unlikely(!node))
575                         return e;
576                 e2 = container_of(node, struct wc_entry, rb_node);
577                 if (read_original_sector(wc, e2) != block)
578                         return e;
579                 e = e2;
580         }
581 }
582
583 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
584 {
585         struct wc_entry *e;
586         struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
587
588         while (*node) {
589                 e = container_of(*node, struct wc_entry, rb_node);
590                 parent = &e->rb_node;
591                 if (read_original_sector(wc, e) > read_original_sector(wc, ins))
592                         node = &parent->rb_left;
593                 else
594                         node = &parent->rb_right;
595         }
596         rb_link_node(&ins->rb_node, parent, node);
597         rb_insert_color(&ins->rb_node, &wc->tree);
598         list_add(&ins->lru, &wc->lru);
599 }
600
601 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
602 {
603         list_del(&e->lru);
604         rb_erase(&e->rb_node, &wc->tree);
605 }
606
607 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
608 {
609         if (WC_MODE_SORT_FREELIST(wc)) {
610                 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
611                 if (unlikely(!*node))
612                         wc->current_free = e;
613                 while (*node) {
614                         parent = *node;
615                         if (&e->rb_node < *node)
616                                 node = &parent->rb_left;
617                         else
618                                 node = &parent->rb_right;
619                 }
620                 rb_link_node(&e->rb_node, parent, node);
621                 rb_insert_color(&e->rb_node, &wc->freetree);
622         } else {
623                 list_add_tail(&e->lru, &wc->freelist);
624         }
625         wc->freelist_size++;
626 }
627
628 static inline void writecache_verify_watermark(struct dm_writecache *wc)
629 {
630         if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
631                 queue_work(wc->writeback_wq, &wc->writeback_work);
632 }
633
634 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc)
635 {
636         struct wc_entry *e;
637
638         if (WC_MODE_SORT_FREELIST(wc)) {
639                 struct rb_node *next;
640                 if (unlikely(!wc->current_free))
641                         return NULL;
642                 e = wc->current_free;
643                 next = rb_next(&e->rb_node);
644                 rb_erase(&e->rb_node, &wc->freetree);
645                 if (unlikely(!next))
646                         next = rb_first(&wc->freetree);
647                 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
648         } else {
649                 if (unlikely(list_empty(&wc->freelist)))
650                         return NULL;
651                 e = container_of(wc->freelist.next, struct wc_entry, lru);
652                 list_del(&e->lru);
653         }
654         wc->freelist_size--;
655
656         writecache_verify_watermark(wc);
657
658         return e;
659 }
660
661 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
662 {
663         writecache_unlink(wc, e);
664         writecache_add_to_freelist(wc, e);
665         clear_seq_count(wc, e);
666         writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
667         if (unlikely(waitqueue_active(&wc->freelist_wait)))
668                 wake_up(&wc->freelist_wait);
669 }
670
671 static void writecache_wait_on_freelist(struct dm_writecache *wc)
672 {
673         DEFINE_WAIT(wait);
674
675         prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
676         wc_unlock(wc);
677         io_schedule();
678         finish_wait(&wc->freelist_wait, &wait);
679         wc_lock(wc);
680 }
681
682 static void writecache_poison_lists(struct dm_writecache *wc)
683 {
684         /*
685          * Catch incorrect access to these values while the device is suspended.
686          */
687         memset(&wc->tree, -1, sizeof wc->tree);
688         wc->lru.next = LIST_POISON1;
689         wc->lru.prev = LIST_POISON2;
690         wc->freelist.next = LIST_POISON1;
691         wc->freelist.prev = LIST_POISON2;
692 }
693
694 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
695 {
696         writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
697         if (WC_MODE_PMEM(wc))
698                 writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
699 }
700
701 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
702 {
703         return read_seq_count(wc, e) < wc->seq_count;
704 }
705
706 static void writecache_flush(struct dm_writecache *wc)
707 {
708         struct wc_entry *e, *e2;
709         bool need_flush_after_free;
710
711         wc->uncommitted_blocks = 0;
712         del_timer(&wc->autocommit_timer);
713
714         if (list_empty(&wc->lru))
715                 return;
716
717         e = container_of(wc->lru.next, struct wc_entry, lru);
718         if (writecache_entry_is_committed(wc, e)) {
719                 if (wc->overwrote_committed) {
720                         writecache_wait_for_ios(wc, WRITE);
721                         writecache_disk_flush(wc, wc->ssd_dev);
722                         wc->overwrote_committed = false;
723                 }
724                 return;
725         }
726         while (1) {
727                 writecache_flush_entry(wc, e);
728                 if (unlikely(e->lru.next == &wc->lru))
729                         break;
730                 e2 = container_of(e->lru.next, struct wc_entry, lru);
731                 if (writecache_entry_is_committed(wc, e2))
732                         break;
733                 e = e2;
734                 cond_resched();
735         }
736         writecache_commit_flushed(wc, true);
737
738         wc->seq_count++;
739         pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
740         writecache_flush_region(wc, &sb(wc)->seq_count, sizeof sb(wc)->seq_count);
741         writecache_commit_flushed(wc, false);
742
743         wc->overwrote_committed = false;
744
745         need_flush_after_free = false;
746         while (1) {
747                 /* Free another committed entry with lower seq-count */
748                 struct rb_node *rb_node = rb_prev(&e->rb_node);
749
750                 if (rb_node) {
751                         e2 = container_of(rb_node, struct wc_entry, rb_node);
752                         if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
753                             likely(!e2->write_in_progress)) {
754                                 writecache_free_entry(wc, e2);
755                                 need_flush_after_free = true;
756                         }
757                 }
758                 if (unlikely(e->lru.prev == &wc->lru))
759                         break;
760                 e = container_of(e->lru.prev, struct wc_entry, lru);
761                 cond_resched();
762         }
763
764         if (need_flush_after_free)
765                 writecache_commit_flushed(wc, false);
766 }
767
768 static void writecache_flush_work(struct work_struct *work)
769 {
770         struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
771
772         wc_lock(wc);
773         writecache_flush(wc);
774         wc_unlock(wc);
775 }
776
777 static void writecache_autocommit_timer(struct timer_list *t)
778 {
779         struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
780         if (!writecache_has_error(wc))
781                 queue_work(wc->writeback_wq, &wc->flush_work);
782 }
783
784 static void writecache_schedule_autocommit(struct dm_writecache *wc)
785 {
786         if (!timer_pending(&wc->autocommit_timer))
787                 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
788 }
789
790 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
791 {
792         struct wc_entry *e;
793         bool discarded_something = false;
794
795         e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
796         if (unlikely(!e))
797                 return;
798
799         while (read_original_sector(wc, e) < end) {
800                 struct rb_node *node = rb_next(&e->rb_node);
801
802                 if (likely(!e->write_in_progress)) {
803                         if (!discarded_something) {
804                                 writecache_wait_for_ios(wc, READ);
805                                 writecache_wait_for_ios(wc, WRITE);
806                                 discarded_something = true;
807                         }
808                         writecache_free_entry(wc, e);
809                 }
810
811                 if (unlikely(!node))
812                         break;
813
814                 e = container_of(node, struct wc_entry, rb_node);
815         }
816
817         if (discarded_something)
818                 writecache_commit_flushed(wc, false);
819 }
820
821 static bool writecache_wait_for_writeback(struct dm_writecache *wc)
822 {
823         if (wc->writeback_size) {
824                 writecache_wait_on_freelist(wc);
825                 return true;
826         }
827         return false;
828 }
829
830 static void writecache_suspend(struct dm_target *ti)
831 {
832         struct dm_writecache *wc = ti->private;
833         bool flush_on_suspend;
834
835         del_timer_sync(&wc->autocommit_timer);
836
837         wc_lock(wc);
838         writecache_flush(wc);
839         flush_on_suspend = wc->flush_on_suspend;
840         if (flush_on_suspend) {
841                 wc->flush_on_suspend = false;
842                 wc->writeback_all++;
843                 queue_work(wc->writeback_wq, &wc->writeback_work);
844         }
845         wc_unlock(wc);
846
847         drain_workqueue(wc->writeback_wq);
848
849         wc_lock(wc);
850         if (flush_on_suspend)
851                 wc->writeback_all--;
852         while (writecache_wait_for_writeback(wc));
853
854         if (WC_MODE_PMEM(wc))
855                 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
856
857         writecache_poison_lists(wc);
858
859         wc_unlock(wc);
860 }
861
862 static int writecache_alloc_entries(struct dm_writecache *wc)
863 {
864         size_t b;
865
866         if (wc->entries)
867                 return 0;
868         wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
869         if (!wc->entries)
870                 return -ENOMEM;
871         for (b = 0; b < wc->n_blocks; b++) {
872                 struct wc_entry *e = &wc->entries[b];
873                 e->index = b;
874                 e->write_in_progress = false;
875                 cond_resched();
876         }
877
878         return 0;
879 }
880
881 static void writecache_resume(struct dm_target *ti)
882 {
883         struct dm_writecache *wc = ti->private;
884         size_t b;
885         bool need_flush = false;
886         __le64 sb_seq_count;
887         int r;
888
889         wc_lock(wc);
890
891         if (WC_MODE_PMEM(wc))
892                 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
893
894         wc->tree = RB_ROOT;
895         INIT_LIST_HEAD(&wc->lru);
896         if (WC_MODE_SORT_FREELIST(wc)) {
897                 wc->freetree = RB_ROOT;
898                 wc->current_free = NULL;
899         } else {
900                 INIT_LIST_HEAD(&wc->freelist);
901         }
902         wc->freelist_size = 0;
903
904         r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t));
905         if (r) {
906                 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
907                 sb_seq_count = cpu_to_le64(0);
908         }
909         wc->seq_count = le64_to_cpu(sb_seq_count);
910
911 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
912         for (b = 0; b < wc->n_blocks; b++) {
913                 struct wc_entry *e = &wc->entries[b];
914                 struct wc_memory_entry wme;
915                 if (writecache_has_error(wc)) {
916                         e->original_sector = -1;
917                         e->seq_count = -1;
918                         continue;
919                 }
920                 r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry));
921                 if (r) {
922                         writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
923                                          (unsigned long)b, r);
924                         e->original_sector = -1;
925                         e->seq_count = -1;
926                 } else {
927                         e->original_sector = le64_to_cpu(wme.original_sector);
928                         e->seq_count = le64_to_cpu(wme.seq_count);
929                 }
930                 cond_resched();
931         }
932 #endif
933         for (b = 0; b < wc->n_blocks; b++) {
934                 struct wc_entry *e = &wc->entries[b];
935                 if (!writecache_entry_is_committed(wc, e)) {
936                         if (read_seq_count(wc, e) != -1) {
937 erase_this:
938                                 clear_seq_count(wc, e);
939                                 need_flush = true;
940                         }
941                         writecache_add_to_freelist(wc, e);
942                 } else {
943                         struct wc_entry *old;
944
945                         old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
946                         if (!old) {
947                                 writecache_insert_entry(wc, e);
948                         } else {
949                                 if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
950                                         writecache_error(wc, -EINVAL,
951                                                  "two identical entries, position %llu, sector %llu, sequence %llu",
952                                                  (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
953                                                  (unsigned long long)read_seq_count(wc, e));
954                                 }
955                                 if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
956                                         goto erase_this;
957                                 } else {
958                                         writecache_free_entry(wc, old);
959                                         writecache_insert_entry(wc, e);
960                                         need_flush = true;
961                                 }
962                         }
963                 }
964                 cond_resched();
965         }
966
967         if (need_flush) {
968                 writecache_flush_all_metadata(wc);
969                 writecache_commit_flushed(wc, false);
970         }
971
972         writecache_verify_watermark(wc);
973
974         wc_unlock(wc);
975 }
976
977 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
978 {
979         if (argc != 1)
980                 return -EINVAL;
981
982         wc_lock(wc);
983         if (dm_suspended(wc->ti)) {
984                 wc_unlock(wc);
985                 return -EBUSY;
986         }
987         if (writecache_has_error(wc)) {
988                 wc_unlock(wc);
989                 return -EIO;
990         }
991
992         writecache_flush(wc);
993         wc->writeback_all++;
994         queue_work(wc->writeback_wq, &wc->writeback_work);
995         wc_unlock(wc);
996
997         flush_workqueue(wc->writeback_wq);
998
999         wc_lock(wc);
1000         wc->writeback_all--;
1001         if (writecache_has_error(wc)) {
1002                 wc_unlock(wc);
1003                 return -EIO;
1004         }
1005         wc_unlock(wc);
1006
1007         return 0;
1008 }
1009
1010 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1011 {
1012         if (argc != 1)
1013                 return -EINVAL;
1014
1015         wc_lock(wc);
1016         wc->flush_on_suspend = true;
1017         wc_unlock(wc);
1018
1019         return 0;
1020 }
1021
1022 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1023                               char *result, unsigned maxlen)
1024 {
1025         int r = -EINVAL;
1026         struct dm_writecache *wc = ti->private;
1027
1028         if (!strcasecmp(argv[0], "flush"))
1029                 r = process_flush_mesg(argc, argv, wc);
1030         else if (!strcasecmp(argv[0], "flush_on_suspend"))
1031                 r = process_flush_on_suspend_mesg(argc, argv, wc);
1032         else
1033                 DMERR("unrecognised message received: %s", argv[0]);
1034
1035         return r;
1036 }
1037
1038 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1039 {
1040         void *buf;
1041         unsigned long flags;
1042         unsigned size;
1043         int rw = bio_data_dir(bio);
1044         unsigned remaining_size = wc->block_size;
1045
1046         do {
1047                 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1048                 buf = bvec_kmap_irq(&bv, &flags);
1049                 size = bv.bv_len;
1050                 if (unlikely(size > remaining_size))
1051                         size = remaining_size;
1052
1053                 if (rw == READ) {
1054                         int r;
1055                         r = memcpy_mcsafe(buf, data, size);
1056                         flush_dcache_page(bio_page(bio));
1057                         if (unlikely(r)) {
1058                                 writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1059                                 bio->bi_status = BLK_STS_IOERR;
1060                         }
1061                 } else {
1062                         flush_dcache_page(bio_page(bio));
1063                         memcpy_flushcache(data, buf, size);
1064                 }
1065
1066                 bvec_kunmap_irq(buf, &flags);
1067
1068                 data = (char *)data + size;
1069                 remaining_size -= size;
1070                 bio_advance(bio, size);
1071         } while (unlikely(remaining_size));
1072 }
1073
1074 static int writecache_flush_thread(void *data)
1075 {
1076         struct dm_writecache *wc = data;
1077
1078         while (1) {
1079                 struct bio *bio;
1080
1081                 wc_lock(wc);
1082                 bio = bio_list_pop(&wc->flush_list);
1083                 if (!bio) {
1084                         set_current_state(TASK_INTERRUPTIBLE);
1085                         wc_unlock(wc);
1086
1087                         if (unlikely(kthread_should_stop())) {
1088                                 set_current_state(TASK_RUNNING);
1089                                 break;
1090                         }
1091
1092                         schedule();
1093                         continue;
1094                 }
1095
1096                 if (bio_op(bio) == REQ_OP_DISCARD) {
1097                         writecache_discard(wc, bio->bi_iter.bi_sector,
1098                                            bio_end_sector(bio));
1099                         wc_unlock(wc);
1100                         bio_set_dev(bio, wc->dev->bdev);
1101                         generic_make_request(bio);
1102                 } else {
1103                         writecache_flush(wc);
1104                         wc_unlock(wc);
1105                         if (writecache_has_error(wc))
1106                                 bio->bi_status = BLK_STS_IOERR;
1107                         bio_endio(bio);
1108                 }
1109         }
1110
1111         return 0;
1112 }
1113
1114 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1115 {
1116         if (bio_list_empty(&wc->flush_list))
1117                 wake_up_process(wc->flush_thread);
1118         bio_list_add(&wc->flush_list, bio);
1119 }
1120
1121 static int writecache_map(struct dm_target *ti, struct bio *bio)
1122 {
1123         struct wc_entry *e;
1124         struct dm_writecache *wc = ti->private;
1125
1126         bio->bi_private = NULL;
1127
1128         wc_lock(wc);
1129
1130         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1131                 if (writecache_has_error(wc))
1132                         goto unlock_error;
1133                 if (WC_MODE_PMEM(wc)) {
1134                         writecache_flush(wc);
1135                         if (writecache_has_error(wc))
1136                                 goto unlock_error;
1137                         goto unlock_submit;
1138                 } else {
1139                         writecache_offload_bio(wc, bio);
1140                         goto unlock_return;
1141                 }
1142         }
1143
1144         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1145
1146         if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1147                                 (wc->block_size / 512 - 1)) != 0)) {
1148                 DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1149                       (unsigned long long)bio->bi_iter.bi_sector,
1150                       bio->bi_iter.bi_size, wc->block_size);
1151                 goto unlock_error;
1152         }
1153
1154         if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1155                 if (writecache_has_error(wc))
1156                         goto unlock_error;
1157                 if (WC_MODE_PMEM(wc)) {
1158                         writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1159                         goto unlock_remap_origin;
1160                 } else {
1161                         writecache_offload_bio(wc, bio);
1162                         goto unlock_return;
1163                 }
1164         }
1165
1166         if (bio_data_dir(bio) == READ) {
1167 read_next_block:
1168                 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1169                 if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1170                         if (WC_MODE_PMEM(wc)) {
1171                                 bio_copy_block(wc, bio, memory_data(wc, e));
1172                                 if (bio->bi_iter.bi_size)
1173                                         goto read_next_block;
1174                                 goto unlock_submit;
1175                         } else {
1176                                 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1177                                 bio_set_dev(bio, wc->ssd_dev->bdev);
1178                                 bio->bi_iter.bi_sector = cache_sector(wc, e);
1179                                 if (!writecache_entry_is_committed(wc, e))
1180                                         writecache_wait_for_ios(wc, WRITE);
1181                                 goto unlock_remap;
1182                         }
1183                 } else {
1184                         if (e) {
1185                                 sector_t next_boundary =
1186                                         read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1187                                 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1188                                         dm_accept_partial_bio(bio, next_boundary);
1189                                 }
1190                         }
1191                         goto unlock_remap_origin;
1192                 }
1193         } else {
1194                 do {
1195                         if (writecache_has_error(wc))
1196                                 goto unlock_error;
1197                         e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1198                         if (e) {
1199                                 if (!writecache_entry_is_committed(wc, e))
1200                                         goto bio_copy;
1201                                 if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1202                                         wc->overwrote_committed = true;
1203                                         goto bio_copy;
1204                                 }
1205                         }
1206                         e = writecache_pop_from_freelist(wc);
1207                         if (unlikely(!e)) {
1208                                 writecache_wait_on_freelist(wc);
1209                                 continue;
1210                         }
1211                         write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1212                         writecache_insert_entry(wc, e);
1213                         wc->uncommitted_blocks++;
1214 bio_copy:
1215                         if (WC_MODE_PMEM(wc)) {
1216                                 bio_copy_block(wc, bio, memory_data(wc, e));
1217                         } else {
1218                                 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1219                                 bio_set_dev(bio, wc->ssd_dev->bdev);
1220                                 bio->bi_iter.bi_sector = cache_sector(wc, e);
1221                                 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1222                                         wc->uncommitted_blocks = 0;
1223                                         queue_work(wc->writeback_wq, &wc->flush_work);
1224                                 } else {
1225                                         writecache_schedule_autocommit(wc);
1226                                 }
1227                                 goto unlock_remap;
1228                         }
1229                 } while (bio->bi_iter.bi_size);
1230
1231                 if (unlikely(bio->bi_opf & REQ_FUA ||
1232                              wc->uncommitted_blocks >= wc->autocommit_blocks))
1233                         writecache_flush(wc);
1234                 else
1235                         writecache_schedule_autocommit(wc);
1236                 goto unlock_submit;
1237         }
1238
1239 unlock_remap_origin:
1240         bio_set_dev(bio, wc->dev->bdev);
1241         wc_unlock(wc);
1242         return DM_MAPIO_REMAPPED;
1243
1244 unlock_remap:
1245         /* make sure that writecache_end_io decrements bio_in_progress: */
1246         bio->bi_private = (void *)1;
1247         atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1248         wc_unlock(wc);
1249         return DM_MAPIO_REMAPPED;
1250
1251 unlock_submit:
1252         wc_unlock(wc);
1253         bio_endio(bio);
1254         return DM_MAPIO_SUBMITTED;
1255
1256 unlock_return:
1257         wc_unlock(wc);
1258         return DM_MAPIO_SUBMITTED;
1259
1260 unlock_error:
1261         wc_unlock(wc);
1262         bio_io_error(bio);
1263         return DM_MAPIO_SUBMITTED;
1264 }
1265
1266 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1267 {
1268         struct dm_writecache *wc = ti->private;
1269
1270         if (bio->bi_private != NULL) {
1271                 int dir = bio_data_dir(bio);
1272                 if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1273                         if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1274                                 wake_up(&wc->bio_in_progress_wait[dir]);
1275         }
1276         return 0;
1277 }
1278
1279 static int writecache_iterate_devices(struct dm_target *ti,
1280                                       iterate_devices_callout_fn fn, void *data)
1281 {
1282         struct dm_writecache *wc = ti->private;
1283
1284         return fn(ti, wc->dev, 0, ti->len, data);
1285 }
1286
1287 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1288 {
1289         struct dm_writecache *wc = ti->private;
1290
1291         if (limits->logical_block_size < wc->block_size)
1292                 limits->logical_block_size = wc->block_size;
1293
1294         if (limits->physical_block_size < wc->block_size)
1295                 limits->physical_block_size = wc->block_size;
1296
1297         if (limits->io_min < wc->block_size)
1298                 limits->io_min = wc->block_size;
1299 }
1300
1301
1302 static void writecache_writeback_endio(struct bio *bio)
1303 {
1304         struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1305         struct dm_writecache *wc = wb->wc;
1306         unsigned long flags;
1307
1308         raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1309         if (unlikely(list_empty(&wc->endio_list)))
1310                 wake_up_process(wc->endio_thread);
1311         list_add_tail(&wb->endio_entry, &wc->endio_list);
1312         raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1313 }
1314
1315 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1316 {
1317         struct copy_struct *c = ptr;
1318         struct dm_writecache *wc = c->wc;
1319
1320         c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1321
1322         raw_spin_lock_irq(&wc->endio_list_lock);
1323         if (unlikely(list_empty(&wc->endio_list)))
1324                 wake_up_process(wc->endio_thread);
1325         list_add_tail(&c->endio_entry, &wc->endio_list);
1326         raw_spin_unlock_irq(&wc->endio_list_lock);
1327 }
1328
1329 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1330 {
1331         unsigned i;
1332         struct writeback_struct *wb;
1333         struct wc_entry *e;
1334         unsigned long n_walked = 0;
1335
1336         do {
1337                 wb = list_entry(list->next, struct writeback_struct, endio_entry);
1338                 list_del(&wb->endio_entry);
1339
1340                 if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1341                         writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1342                                         "write error %d", wb->bio.bi_status);
1343                 i = 0;
1344                 do {
1345                         e = wb->wc_list[i];
1346                         BUG_ON(!e->write_in_progress);
1347                         e->write_in_progress = false;
1348                         INIT_LIST_HEAD(&e->lru);
1349                         if (!writecache_has_error(wc))
1350                                 writecache_free_entry(wc, e);
1351                         BUG_ON(!wc->writeback_size);
1352                         wc->writeback_size--;
1353                         n_walked++;
1354                         if (unlikely(n_walked >= ENDIO_LATENCY)) {
1355                                 writecache_commit_flushed(wc, false);
1356                                 wc_unlock(wc);
1357                                 wc_lock(wc);
1358                                 n_walked = 0;
1359                         }
1360                 } while (++i < wb->wc_list_n);
1361
1362                 if (wb->wc_list != wb->wc_list_inline)
1363                         kfree(wb->wc_list);
1364                 bio_put(&wb->bio);
1365         } while (!list_empty(list));
1366 }
1367
1368 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1369 {
1370         struct copy_struct *c;
1371         struct wc_entry *e;
1372
1373         do {
1374                 c = list_entry(list->next, struct copy_struct, endio_entry);
1375                 list_del(&c->endio_entry);
1376
1377                 if (unlikely(c->error))
1378                         writecache_error(wc, c->error, "copy error");
1379
1380                 e = c->e;
1381                 do {
1382                         BUG_ON(!e->write_in_progress);
1383                         e->write_in_progress = false;
1384                         INIT_LIST_HEAD(&e->lru);
1385                         if (!writecache_has_error(wc))
1386                                 writecache_free_entry(wc, e);
1387
1388                         BUG_ON(!wc->writeback_size);
1389                         wc->writeback_size--;
1390                         e++;
1391                 } while (--c->n_entries);
1392                 mempool_free(c, &wc->copy_pool);
1393         } while (!list_empty(list));
1394 }
1395
1396 static int writecache_endio_thread(void *data)
1397 {
1398         struct dm_writecache *wc = data;
1399
1400         while (1) {
1401                 struct list_head list;
1402
1403                 raw_spin_lock_irq(&wc->endio_list_lock);
1404                 if (!list_empty(&wc->endio_list))
1405                         goto pop_from_list;
1406                 set_current_state(TASK_INTERRUPTIBLE);
1407                 raw_spin_unlock_irq(&wc->endio_list_lock);
1408
1409                 if (unlikely(kthread_should_stop())) {
1410                         set_current_state(TASK_RUNNING);
1411                         break;
1412                 }
1413
1414                 schedule();
1415
1416                 continue;
1417
1418 pop_from_list:
1419                 list = wc->endio_list;
1420                 list.next->prev = list.prev->next = &list;
1421                 INIT_LIST_HEAD(&wc->endio_list);
1422                 raw_spin_unlock_irq(&wc->endio_list_lock);
1423
1424                 if (!WC_MODE_FUA(wc))
1425                         writecache_disk_flush(wc, wc->dev);
1426
1427                 wc_lock(wc);
1428
1429                 if (WC_MODE_PMEM(wc)) {
1430                         __writecache_endio_pmem(wc, &list);
1431                 } else {
1432                         __writecache_endio_ssd(wc, &list);
1433                         writecache_wait_for_ios(wc, READ);
1434                 }
1435
1436                 writecache_commit_flushed(wc, false);
1437
1438                 wc_unlock(wc);
1439         }
1440
1441         return 0;
1442 }
1443
1444 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp)
1445 {
1446         struct dm_writecache *wc = wb->wc;
1447         unsigned block_size = wc->block_size;
1448         void *address = memory_data(wc, e);
1449
1450         persistent_memory_flush_cache(address, block_size);
1451         return bio_add_page(&wb->bio, persistent_memory_page(address),
1452                             block_size, persistent_memory_page_offset(address)) != 0;
1453 }
1454
1455 struct writeback_list {
1456         struct list_head list;
1457         size_t size;
1458 };
1459
1460 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1461 {
1462         if (unlikely(wc->max_writeback_jobs)) {
1463                 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1464                         wc_lock(wc);
1465                         while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1466                                 writecache_wait_on_freelist(wc);
1467                         wc_unlock(wc);
1468                 }
1469         }
1470         cond_resched();
1471 }
1472
1473 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1474 {
1475         struct wc_entry *e, *f;
1476         struct bio *bio;
1477         struct writeback_struct *wb;
1478         unsigned max_pages;
1479
1480         while (wbl->size) {
1481                 wbl->size--;
1482                 e = container_of(wbl->list.prev, struct wc_entry, lru);
1483                 list_del(&e->lru);
1484
1485                 max_pages = e->wc_list_contiguous;
1486
1487                 bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
1488                 wb = container_of(bio, struct writeback_struct, bio);
1489                 wb->wc = wc;
1490                 bio->bi_end_io = writecache_writeback_endio;
1491                 bio_set_dev(bio, wc->dev->bdev);
1492                 bio->bi_iter.bi_sector = read_original_sector(wc, e);
1493                 if (max_pages <= WB_LIST_INLINE ||
1494                     unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1495                                                            GFP_NOIO | __GFP_NORETRY |
1496                                                            __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
1497                         wb->wc_list = wb->wc_list_inline;
1498                         max_pages = WB_LIST_INLINE;
1499                 }
1500
1501                 BUG_ON(!wc_add_block(wb, e, GFP_NOIO));
1502
1503                 wb->wc_list[0] = e;
1504                 wb->wc_list_n = 1;
1505
1506                 while (wbl->size && wb->wc_list_n < max_pages) {
1507                         f = container_of(wbl->list.prev, struct wc_entry, lru);
1508                         if (read_original_sector(wc, f) !=
1509                             read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1510                                 break;
1511                         if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN))
1512                                 break;
1513                         wbl->size--;
1514                         list_del(&f->lru);
1515                         wb->wc_list[wb->wc_list_n++] = f;
1516                         e = f;
1517                 }
1518                 bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
1519                 if (writecache_has_error(wc)) {
1520                         bio->bi_status = BLK_STS_IOERR;
1521                         bio_endio(bio);
1522                 } else {
1523                         submit_bio(bio);
1524                 }
1525
1526                 __writeback_throttle(wc, wbl);
1527         }
1528 }
1529
1530 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1531 {
1532         struct wc_entry *e, *f;
1533         struct dm_io_region from, to;
1534         struct copy_struct *c;
1535
1536         while (wbl->size) {
1537                 unsigned n_sectors;
1538
1539                 wbl->size--;
1540                 e = container_of(wbl->list.prev, struct wc_entry, lru);
1541                 list_del(&e->lru);
1542
1543                 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1544
1545                 from.bdev = wc->ssd_dev->bdev;
1546                 from.sector = cache_sector(wc, e);
1547                 from.count = n_sectors;
1548                 to.bdev = wc->dev->bdev;
1549                 to.sector = read_original_sector(wc, e);
1550                 to.count = n_sectors;
1551
1552                 c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1553                 c->wc = wc;
1554                 c->e = e;
1555                 c->n_entries = e->wc_list_contiguous;
1556
1557                 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1558                         wbl->size--;
1559                         f = container_of(wbl->list.prev, struct wc_entry, lru);
1560                         BUG_ON(f != e + 1);
1561                         list_del(&f->lru);
1562                         e = f;
1563                 }
1564
1565                 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1566
1567                 __writeback_throttle(wc, wbl);
1568         }
1569 }
1570
1571 static void writecache_writeback(struct work_struct *work)
1572 {
1573         struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1574         struct blk_plug plug;
1575         struct wc_entry *f, *g, *e = NULL;
1576         struct rb_node *node, *next_node;
1577         struct list_head skipped;
1578         struct writeback_list wbl;
1579         unsigned long n_walked;
1580
1581         wc_lock(wc);
1582 restart:
1583         if (writecache_has_error(wc)) {
1584                 wc_unlock(wc);
1585                 return;
1586         }
1587
1588         if (unlikely(wc->writeback_all)) {
1589                 if (writecache_wait_for_writeback(wc))
1590                         goto restart;
1591         }
1592
1593         if (wc->overwrote_committed) {
1594                 writecache_wait_for_ios(wc, WRITE);
1595         }
1596
1597         n_walked = 0;
1598         INIT_LIST_HEAD(&skipped);
1599         INIT_LIST_HEAD(&wbl.list);
1600         wbl.size = 0;
1601         while (!list_empty(&wc->lru) &&
1602                (wc->writeback_all ||
1603                 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark)) {
1604
1605                 n_walked++;
1606                 if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1607                     likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) {
1608                         queue_work(wc->writeback_wq, &wc->writeback_work);
1609                         break;
1610                 }
1611
1612                 if (unlikely(wc->writeback_all)) {
1613                         if (unlikely(!e)) {
1614                                 writecache_flush(wc);
1615                                 e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
1616                         } else
1617                                 e = g;
1618                 } else
1619                         e = container_of(wc->lru.prev, struct wc_entry, lru);
1620                 BUG_ON(e->write_in_progress);
1621                 if (unlikely(!writecache_entry_is_committed(wc, e))) {
1622                         writecache_flush(wc);
1623                 }
1624                 node = rb_prev(&e->rb_node);
1625                 if (node) {
1626                         f = container_of(node, struct wc_entry, rb_node);
1627                         if (unlikely(read_original_sector(wc, f) ==
1628                                      read_original_sector(wc, e))) {
1629                                 BUG_ON(!f->write_in_progress);
1630                                 list_del(&e->lru);
1631                                 list_add(&e->lru, &skipped);
1632                                 cond_resched();
1633                                 continue;
1634                         }
1635                 }
1636                 wc->writeback_size++;
1637                 list_del(&e->lru);
1638                 list_add(&e->lru, &wbl.list);
1639                 wbl.size++;
1640                 e->write_in_progress = true;
1641                 e->wc_list_contiguous = 1;
1642
1643                 f = e;
1644
1645                 while (1) {
1646                         next_node = rb_next(&f->rb_node);
1647                         if (unlikely(!next_node))
1648                                 break;
1649                         g = container_of(next_node, struct wc_entry, rb_node);
1650                         if (unlikely(read_original_sector(wc, g) ==
1651                             read_original_sector(wc, f))) {
1652                                 f = g;
1653                                 continue;
1654                         }
1655                         if (read_original_sector(wc, g) !=
1656                             read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
1657                                 break;
1658                         if (unlikely(g->write_in_progress))
1659                                 break;
1660                         if (unlikely(!writecache_entry_is_committed(wc, g)))
1661                                 break;
1662
1663                         if (!WC_MODE_PMEM(wc)) {
1664                                 if (g != f + 1)
1665                                         break;
1666                         }
1667
1668                         n_walked++;
1669                         //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
1670                         //      break;
1671
1672                         wc->writeback_size++;
1673                         list_del(&g->lru);
1674                         list_add(&g->lru, &wbl.list);
1675                         wbl.size++;
1676                         g->write_in_progress = true;
1677                         g->wc_list_contiguous = BIO_MAX_PAGES;
1678                         f = g;
1679                         e->wc_list_contiguous++;
1680                         if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) {
1681                                 if (unlikely(wc->writeback_all)) {
1682                                         next_node = rb_next(&f->rb_node);
1683                                         if (likely(next_node))
1684                                                 g = container_of(next_node, struct wc_entry, rb_node);
1685                                 }
1686                                 break;
1687                         }
1688                 }
1689                 cond_resched();
1690         }
1691
1692         if (!list_empty(&skipped)) {
1693                 list_splice_tail(&skipped, &wc->lru);
1694                 /*
1695                  * If we didn't do any progress, we must wait until some
1696                  * writeback finishes to avoid burning CPU in a loop
1697                  */
1698                 if (unlikely(!wbl.size))
1699                         writecache_wait_for_writeback(wc);
1700         }
1701
1702         wc_unlock(wc);
1703
1704         blk_start_plug(&plug);
1705
1706         if (WC_MODE_PMEM(wc))
1707                 __writecache_writeback_pmem(wc, &wbl);
1708         else
1709                 __writecache_writeback_ssd(wc, &wbl);
1710
1711         blk_finish_plug(&plug);
1712
1713         if (unlikely(wc->writeback_all)) {
1714                 wc_lock(wc);
1715                 while (writecache_wait_for_writeback(wc));
1716                 wc_unlock(wc);
1717         }
1718 }
1719
1720 static int calculate_memory_size(uint64_t device_size, unsigned block_size,
1721                                  size_t *n_blocks_p, size_t *n_metadata_blocks_p)
1722 {
1723         uint64_t n_blocks, offset;
1724         struct wc_entry e;
1725
1726         n_blocks = device_size;
1727         do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
1728
1729         while (1) {
1730                 if (!n_blocks)
1731                         return -ENOSPC;
1732                 /* Verify the following entries[n_blocks] won't overflow */
1733                 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
1734                                  sizeof(struct wc_memory_entry)))
1735                         return -EFBIG;
1736                 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
1737                 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
1738                 if (offset + n_blocks * block_size <= device_size)
1739                         break;
1740                 n_blocks--;
1741         }
1742
1743         /* check if the bit field overflows */
1744         e.index = n_blocks;
1745         if (e.index != n_blocks)
1746                 return -EFBIG;
1747
1748         if (n_blocks_p)
1749                 *n_blocks_p = n_blocks;
1750         if (n_metadata_blocks_p)
1751                 *n_metadata_blocks_p = offset >> __ffs(block_size);
1752         return 0;
1753 }
1754
1755 static int init_memory(struct dm_writecache *wc)
1756 {
1757         size_t b;
1758         int r;
1759
1760         r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
1761         if (r)
1762                 return r;
1763
1764         r = writecache_alloc_entries(wc);
1765         if (r)
1766                 return r;
1767
1768         for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
1769                 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
1770         pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
1771         pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
1772         pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
1773         pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
1774
1775         for (b = 0; b < wc->n_blocks; b++) {
1776                 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
1777                 cond_resched();
1778         }
1779
1780         writecache_flush_all_metadata(wc);
1781         writecache_commit_flushed(wc, false);
1782         pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
1783         writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
1784         writecache_commit_flushed(wc, false);
1785
1786         return 0;
1787 }
1788
1789 static void writecache_dtr(struct dm_target *ti)
1790 {
1791         struct dm_writecache *wc = ti->private;
1792
1793         if (!wc)
1794                 return;
1795
1796         if (wc->endio_thread)
1797                 kthread_stop(wc->endio_thread);
1798
1799         if (wc->flush_thread)
1800                 kthread_stop(wc->flush_thread);
1801
1802         bioset_exit(&wc->bio_set);
1803
1804         mempool_exit(&wc->copy_pool);
1805
1806         if (wc->writeback_wq)
1807                 destroy_workqueue(wc->writeback_wq);
1808
1809         if (wc->dev)
1810                 dm_put_device(ti, wc->dev);
1811
1812         if (wc->ssd_dev)
1813                 dm_put_device(ti, wc->ssd_dev);
1814
1815         if (wc->entries)
1816                 vfree(wc->entries);
1817
1818         if (wc->memory_map) {
1819                 if (WC_MODE_PMEM(wc))
1820                         persistent_memory_release(wc);
1821                 else
1822                         vfree(wc->memory_map);
1823         }
1824
1825         if (wc->dm_kcopyd)
1826                 dm_kcopyd_client_destroy(wc->dm_kcopyd);
1827
1828         if (wc->dm_io)
1829                 dm_io_client_destroy(wc->dm_io);
1830
1831         if (wc->dirty_bitmap)
1832                 vfree(wc->dirty_bitmap);
1833
1834         kfree(wc);
1835 }
1836
1837 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
1838 {
1839         struct dm_writecache *wc;
1840         struct dm_arg_set as;
1841         const char *string;
1842         unsigned opt_params;
1843         size_t offset, data_size;
1844         int i, r;
1845         char dummy;
1846         int high_wm_percent = HIGH_WATERMARK;
1847         int low_wm_percent = LOW_WATERMARK;
1848         uint64_t x;
1849         struct wc_memory_superblock s;
1850
1851         static struct dm_arg _args[] = {
1852                 {0, 10, "Invalid number of feature args"},
1853         };
1854
1855         as.argc = argc;
1856         as.argv = argv;
1857
1858         wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
1859         if (!wc) {
1860                 ti->error = "Cannot allocate writecache structure";
1861                 r = -ENOMEM;
1862                 goto bad;
1863         }
1864         ti->private = wc;
1865         wc->ti = ti;
1866
1867         mutex_init(&wc->lock);
1868         writecache_poison_lists(wc);
1869         init_waitqueue_head(&wc->freelist_wait);
1870         timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
1871
1872         for (i = 0; i < 2; i++) {
1873                 atomic_set(&wc->bio_in_progress[i], 0);
1874                 init_waitqueue_head(&wc->bio_in_progress_wait[i]);
1875         }
1876
1877         wc->dm_io = dm_io_client_create();
1878         if (IS_ERR(wc->dm_io)) {
1879                 r = PTR_ERR(wc->dm_io);
1880                 ti->error = "Unable to allocate dm-io client";
1881                 wc->dm_io = NULL;
1882                 goto bad;
1883         }
1884
1885         wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
1886         if (!wc->writeback_wq) {
1887                 r = -ENOMEM;
1888                 ti->error = "Could not allocate writeback workqueue";
1889                 goto bad;
1890         }
1891         INIT_WORK(&wc->writeback_work, writecache_writeback);
1892         INIT_WORK(&wc->flush_work, writecache_flush_work);
1893
1894         raw_spin_lock_init(&wc->endio_list_lock);
1895         INIT_LIST_HEAD(&wc->endio_list);
1896         wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
1897         if (IS_ERR(wc->endio_thread)) {
1898                 r = PTR_ERR(wc->endio_thread);
1899                 wc->endio_thread = NULL;
1900                 ti->error = "Couldn't spawn endio thread";
1901                 goto bad;
1902         }
1903         wake_up_process(wc->endio_thread);
1904
1905         /*
1906          * Parse the mode (pmem or ssd)
1907          */
1908         string = dm_shift_arg(&as);
1909         if (!string)
1910                 goto bad_arguments;
1911
1912         if (!strcasecmp(string, "s")) {
1913                 wc->pmem_mode = false;
1914         } else if (!strcasecmp(string, "p")) {
1915 #ifdef DM_WRITECACHE_HAS_PMEM
1916                 wc->pmem_mode = true;
1917                 wc->writeback_fua = true;
1918 #else
1919                 /*
1920                  * If the architecture doesn't support persistent memory or
1921                  * the kernel doesn't support any DAX drivers, this driver can
1922                  * only be used in SSD-only mode.
1923                  */
1924                 r = -EOPNOTSUPP;
1925                 ti->error = "Persistent memory or DAX not supported on this system";
1926                 goto bad;
1927 #endif
1928         } else {
1929                 goto bad_arguments;
1930         }
1931
1932         if (WC_MODE_PMEM(wc)) {
1933                 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
1934                                 offsetof(struct writeback_struct, bio),
1935                                 BIOSET_NEED_BVECS);
1936                 if (r) {
1937                         ti->error = "Could not allocate bio set";
1938                         goto bad;
1939                 }
1940         } else {
1941                 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
1942                 if (r) {
1943                         ti->error = "Could not allocate mempool";
1944                         goto bad;
1945                 }
1946         }
1947
1948         /*
1949          * Parse the origin data device
1950          */
1951         string = dm_shift_arg(&as);
1952         if (!string)
1953                 goto bad_arguments;
1954         r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
1955         if (r) {
1956                 ti->error = "Origin data device lookup failed";
1957                 goto bad;
1958         }
1959
1960         /*
1961          * Parse cache data device (be it pmem or ssd)
1962          */
1963         string = dm_shift_arg(&as);
1964         if (!string)
1965                 goto bad_arguments;
1966
1967         r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
1968         if (r) {
1969                 ti->error = "Cache data device lookup failed";
1970                 goto bad;
1971         }
1972         wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode);
1973
1974         /*
1975          * Parse the cache block size
1976          */
1977         string = dm_shift_arg(&as);
1978         if (!string)
1979                 goto bad_arguments;
1980         if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
1981             wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
1982             (wc->block_size & (wc->block_size - 1))) {
1983                 r = -EINVAL;
1984                 ti->error = "Invalid block size";
1985                 goto bad;
1986         }
1987         wc->block_size_bits = __ffs(wc->block_size);
1988
1989         wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
1990         wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
1991         wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
1992
1993         /*
1994          * Parse optional arguments
1995          */
1996         r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1997         if (r)
1998                 goto bad;
1999
2000         while (opt_params) {
2001                 string = dm_shift_arg(&as), opt_params--;
2002                 if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
2003                         unsigned long long start_sector;
2004                         string = dm_shift_arg(&as), opt_params--;
2005                         if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
2006                                 goto invalid_optional;
2007                         wc->start_sector = start_sector;
2008                         if (wc->start_sector != start_sector ||
2009                             wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
2010                                 goto invalid_optional;
2011                 } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
2012                         string = dm_shift_arg(&as), opt_params--;
2013                         if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2014                                 goto invalid_optional;
2015                         if (high_wm_percent < 0 || high_wm_percent > 100)
2016                                 goto invalid_optional;
2017                         wc->high_wm_percent_set = true;
2018                 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2019                         string = dm_shift_arg(&as), opt_params--;
2020                         if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2021                                 goto invalid_optional;
2022                         if (low_wm_percent < 0 || low_wm_percent > 100)
2023                                 goto invalid_optional;
2024                         wc->low_wm_percent_set = true;
2025                 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2026                         string = dm_shift_arg(&as), opt_params--;
2027                         if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2028                                 goto invalid_optional;
2029                         wc->max_writeback_jobs_set = true;
2030                 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2031                         string = dm_shift_arg(&as), opt_params--;
2032                         if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2033                                 goto invalid_optional;
2034                         wc->autocommit_blocks_set = true;
2035                 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2036                         unsigned autocommit_msecs;
2037                         string = dm_shift_arg(&as), opt_params--;
2038                         if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2039                                 goto invalid_optional;
2040                         if (autocommit_msecs > 3600000)
2041                                 goto invalid_optional;
2042                         wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2043                         wc->autocommit_time_set = true;
2044                 } else if (!strcasecmp(string, "fua")) {
2045                         if (WC_MODE_PMEM(wc)) {
2046                                 wc->writeback_fua = true;
2047                                 wc->writeback_fua_set = true;
2048                         } else goto invalid_optional;
2049                 } else if (!strcasecmp(string, "nofua")) {
2050                         if (WC_MODE_PMEM(wc)) {
2051                                 wc->writeback_fua = false;
2052                                 wc->writeback_fua_set = true;
2053                         } else goto invalid_optional;
2054                 } else {
2055 invalid_optional:
2056                         r = -EINVAL;
2057                         ti->error = "Invalid optional argument";
2058                         goto bad;
2059                 }
2060         }
2061
2062         if (high_wm_percent < low_wm_percent) {
2063                 r = -EINVAL;
2064                 ti->error = "High watermark must be greater than or equal to low watermark";
2065                 goto bad;
2066         }
2067
2068         if (WC_MODE_PMEM(wc)) {
2069                 r = persistent_memory_claim(wc);
2070                 if (r) {
2071                         ti->error = "Unable to map persistent memory for cache";
2072                         goto bad;
2073                 }
2074         } else {
2075                 struct dm_io_region region;
2076                 struct dm_io_request req;
2077                 size_t n_blocks, n_metadata_blocks;
2078                 uint64_t n_bitmap_bits;
2079
2080                 wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2081
2082                 bio_list_init(&wc->flush_list);
2083                 wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
2084                 if (IS_ERR(wc->flush_thread)) {
2085                         r = PTR_ERR(wc->flush_thread);
2086                         wc->flush_thread = NULL;
2087                         ti->error = "Couldn't spawn flush thread";
2088                         goto bad;
2089                 }
2090                 wake_up_process(wc->flush_thread);
2091
2092                 r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2093                                           &n_blocks, &n_metadata_blocks);
2094                 if (r) {
2095                         ti->error = "Invalid device size";
2096                         goto bad;
2097                 }
2098
2099                 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2100                                  BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2101                 /* this is limitation of test_bit functions */
2102                 if (n_bitmap_bits > 1U << 31) {
2103                         r = -EFBIG;
2104                         ti->error = "Invalid device size";
2105                         goto bad;
2106                 }
2107
2108                 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2109                 if (!wc->memory_map) {
2110                         r = -ENOMEM;
2111                         ti->error = "Unable to allocate memory for metadata";
2112                         goto bad;
2113                 }
2114
2115                 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2116                 if (IS_ERR(wc->dm_kcopyd)) {
2117                         r = PTR_ERR(wc->dm_kcopyd);
2118                         ti->error = "Unable to allocate dm-kcopyd client";
2119                         wc->dm_kcopyd = NULL;
2120                         goto bad;
2121                 }
2122
2123                 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2124                 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2125                         BITS_PER_LONG * sizeof(unsigned long);
2126                 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2127                 if (!wc->dirty_bitmap) {
2128                         r = -ENOMEM;
2129                         ti->error = "Unable to allocate dirty bitmap";
2130                         goto bad;
2131                 }
2132
2133                 region.bdev = wc->ssd_dev->bdev;
2134                 region.sector = wc->start_sector;
2135                 region.count = wc->metadata_sectors;
2136                 req.bi_op = REQ_OP_READ;
2137                 req.bi_op_flags = REQ_SYNC;
2138                 req.mem.type = DM_IO_VMA;
2139                 req.mem.ptr.vma = (char *)wc->memory_map;
2140                 req.client = wc->dm_io;
2141                 req.notify.fn = NULL;
2142
2143                 r = dm_io(&req, 1, &region, NULL);
2144                 if (r) {
2145                         ti->error = "Unable to read metadata";
2146                         goto bad;
2147                 }
2148         }
2149
2150         r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2151         if (r) {
2152                 ti->error = "Hardware memory error when reading superblock";
2153                 goto bad;
2154         }
2155         if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2156                 r = init_memory(wc);
2157                 if (r) {
2158                         ti->error = "Unable to initialize device";
2159                         goto bad;
2160                 }
2161                 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2162                 if (r) {
2163                         ti->error = "Hardware memory error when reading superblock";
2164                         goto bad;
2165                 }
2166         }
2167
2168         if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2169                 ti->error = "Invalid magic in the superblock";
2170                 r = -EINVAL;
2171                 goto bad;
2172         }
2173
2174         if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2175                 ti->error = "Invalid version in the superblock";
2176                 r = -EINVAL;
2177                 goto bad;
2178         }
2179
2180         if (le32_to_cpu(s.block_size) != wc->block_size) {
2181                 ti->error = "Block size does not match superblock";
2182                 r = -EINVAL;
2183                 goto bad;
2184         }
2185
2186         wc->n_blocks = le64_to_cpu(s.n_blocks);
2187
2188         offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2189         if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2190 overflow:
2191                 ti->error = "Overflow in size calculation";
2192                 r = -EINVAL;
2193                 goto bad;
2194         }
2195         offset += sizeof(struct wc_memory_superblock);
2196         if (offset < sizeof(struct wc_memory_superblock))
2197                 goto overflow;
2198         offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2199         data_size = wc->n_blocks * (size_t)wc->block_size;
2200         if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2201             (offset + data_size < offset))
2202                 goto overflow;
2203         if (offset + data_size > wc->memory_map_size) {
2204                 ti->error = "Memory area is too small";
2205                 r = -EINVAL;
2206                 goto bad;
2207         }
2208
2209         wc->metadata_sectors = offset >> SECTOR_SHIFT;
2210         wc->block_start = (char *)sb(wc) + offset;
2211
2212         x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2213         x += 50;
2214         do_div(x, 100);
2215         wc->freelist_high_watermark = x;
2216         x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2217         x += 50;
2218         do_div(x, 100);
2219         wc->freelist_low_watermark = x;
2220
2221         r = writecache_alloc_entries(wc);
2222         if (r) {
2223                 ti->error = "Cannot allocate memory";
2224                 goto bad;
2225         }
2226
2227         ti->num_flush_bios = 1;
2228         ti->flush_supported = true;
2229         ti->num_discard_bios = 1;
2230
2231         if (WC_MODE_PMEM(wc))
2232                 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2233
2234         return 0;
2235
2236 bad_arguments:
2237         r = -EINVAL;
2238         ti->error = "Bad arguments";
2239 bad:
2240         writecache_dtr(ti);
2241         return r;
2242 }
2243
2244 static void writecache_status(struct dm_target *ti, status_type_t type,
2245                               unsigned status_flags, char *result, unsigned maxlen)
2246 {
2247         struct dm_writecache *wc = ti->private;
2248         unsigned extra_args;
2249         unsigned sz = 0;
2250         uint64_t x;
2251
2252         switch (type) {
2253         case STATUSTYPE_INFO:
2254                 DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc),
2255                        (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2256                        (unsigned long long)wc->writeback_size);
2257                 break;
2258         case STATUSTYPE_TABLE:
2259                 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2260                                 wc->dev->name, wc->ssd_dev->name, wc->block_size);
2261                 extra_args = 0;
2262                 if (wc->start_sector)
2263                         extra_args += 2;
2264                 if (wc->high_wm_percent_set)
2265                         extra_args += 2;
2266                 if (wc->low_wm_percent_set)
2267                         extra_args += 2;
2268                 if (wc->max_writeback_jobs_set)
2269                         extra_args += 2;
2270                 if (wc->autocommit_blocks_set)
2271                         extra_args += 2;
2272                 if (wc->autocommit_time_set)
2273                         extra_args += 2;
2274                 if (wc->writeback_fua_set)
2275                         extra_args++;
2276
2277                 DMEMIT("%u", extra_args);
2278                 if (wc->start_sector)
2279                         DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2280                 if (wc->high_wm_percent_set) {
2281                         x = (uint64_t)wc->freelist_high_watermark * 100;
2282                         x += wc->n_blocks / 2;
2283                         do_div(x, (size_t)wc->n_blocks);
2284                         DMEMIT(" high_watermark %u", 100 - (unsigned)x);
2285                 }
2286                 if (wc->low_wm_percent_set) {
2287                         x = (uint64_t)wc->freelist_low_watermark * 100;
2288                         x += wc->n_blocks / 2;
2289                         do_div(x, (size_t)wc->n_blocks);
2290                         DMEMIT(" low_watermark %u", 100 - (unsigned)x);
2291                 }
2292                 if (wc->max_writeback_jobs_set)
2293                         DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2294                 if (wc->autocommit_blocks_set)
2295                         DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2296                 if (wc->autocommit_time_set)
2297                         DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies));
2298                 if (wc->writeback_fua_set)
2299                         DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2300                 break;
2301         }
2302 }
2303
2304 static struct target_type writecache_target = {
2305         .name                   = "writecache",
2306         .version                = {1, 1, 1},
2307         .module                 = THIS_MODULE,
2308         .ctr                    = writecache_ctr,
2309         .dtr                    = writecache_dtr,
2310         .status                 = writecache_status,
2311         .postsuspend            = writecache_suspend,
2312         .resume                 = writecache_resume,
2313         .message                = writecache_message,
2314         .map                    = writecache_map,
2315         .end_io                 = writecache_end_io,
2316         .iterate_devices        = writecache_iterate_devices,
2317         .io_hints               = writecache_io_hints,
2318 };
2319
2320 static int __init dm_writecache_init(void)
2321 {
2322         int r;
2323
2324         r = dm_register_target(&writecache_target);
2325         if (r < 0) {
2326                 DMERR("register failed %d", r);
2327                 return r;
2328         }
2329
2330         return 0;
2331 }
2332
2333 static void __exit dm_writecache_exit(void)
2334 {
2335         dm_unregister_target(&writecache_target);
2336 }
2337
2338 module_init(dm_writecache_init);
2339 module_exit(dm_writecache_exit);
2340
2341 MODULE_DESCRIPTION(DM_NAME " writecache target");
2342 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2343 MODULE_LICENSE("GPL");