1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2018 Red Hat. All rights reserved.
5 * This file is released under the GPL.
8 #include <linux/device-mapper.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/vmalloc.h>
12 #include <linux/kthread.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/dax.h>
16 #include <linux/pfn_t.h>
17 #include <linux/libnvdimm.h>
19 #define DM_MSG_PREFIX "writecache"
21 #define HIGH_WATERMARK 50
22 #define LOW_WATERMARK 45
23 #define MAX_WRITEBACK_JOBS 0
24 #define ENDIO_LATENCY 16
25 #define WRITEBACK_LATENCY 64
26 #define AUTOCOMMIT_BLOCKS_SSD 65536
27 #define AUTOCOMMIT_BLOCKS_PMEM 64
28 #define AUTOCOMMIT_MSEC 1000
30 #define BITMAP_GRANULARITY 65536
31 #if BITMAP_GRANULARITY < PAGE_SIZE
32 #undef BITMAP_GRANULARITY
33 #define BITMAP_GRANULARITY PAGE_SIZE
36 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
37 #define DM_WRITECACHE_HAS_PMEM
40 #ifdef DM_WRITECACHE_HAS_PMEM
41 #define pmem_assign(dest, src) \
43 typeof(dest) uniq = (src); \
44 memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \
47 #define pmem_assign(dest, src) ((dest) = (src))
50 #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM)
51 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
54 #define MEMORY_SUPERBLOCK_MAGIC 0x23489321
55 #define MEMORY_SUPERBLOCK_VERSION 1
57 struct wc_memory_entry {
58 __le64 original_sector;
62 struct wc_memory_superblock {
74 struct wc_memory_entry entries[0];
78 struct rb_node rb_node;
80 unsigned short wc_list_contiguous;
81 bool write_in_progress
82 #if BITS_PER_LONG == 64
87 #if BITS_PER_LONG == 64
91 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
92 uint64_t original_sector;
97 #ifdef DM_WRITECACHE_HAS_PMEM
98 #define WC_MODE_PMEM(wc) ((wc)->pmem_mode)
99 #define WC_MODE_FUA(wc) ((wc)->writeback_fua)
101 #define WC_MODE_PMEM(wc) false
102 #define WC_MODE_FUA(wc) false
104 #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc))
106 struct dm_writecache {
108 struct list_head lru;
110 struct list_head freelist;
112 struct rb_root freetree;
113 struct wc_entry *current_free;
118 size_t freelist_size;
119 size_t writeback_size;
120 size_t freelist_high_watermark;
121 size_t freelist_low_watermark;
123 unsigned uncommitted_blocks;
124 unsigned autocommit_blocks;
125 unsigned max_writeback_jobs;
129 unsigned long autocommit_jiffies;
130 struct timer_list autocommit_timer;
131 struct wait_queue_head freelist_wait;
133 atomic_t bio_in_progress[2];
134 struct wait_queue_head bio_in_progress_wait[2];
136 struct dm_target *ti;
138 struct dm_dev *ssd_dev;
139 sector_t start_sector;
141 uint64_t memory_map_size;
142 size_t metadata_sectors;
146 struct wc_entry *entries;
148 unsigned char block_size_bits;
151 bool writeback_fua:1;
153 bool overwrote_committed:1;
154 bool memory_vmapped:1;
156 bool high_wm_percent_set:1;
157 bool low_wm_percent_set:1;
158 bool max_writeback_jobs_set:1;
159 bool autocommit_blocks_set:1;
160 bool autocommit_time_set:1;
161 bool writeback_fua_set:1;
162 bool flush_on_suspend:1;
164 unsigned writeback_all;
165 struct workqueue_struct *writeback_wq;
166 struct work_struct writeback_work;
167 struct work_struct flush_work;
169 struct dm_io_client *dm_io;
171 raw_spinlock_t endio_list_lock;
172 struct list_head endio_list;
173 struct task_struct *endio_thread;
175 struct task_struct *flush_thread;
176 struct bio_list flush_list;
178 struct dm_kcopyd_client *dm_kcopyd;
179 unsigned long *dirty_bitmap;
180 unsigned dirty_bitmap_size;
182 struct bio_set bio_set;
186 #define WB_LIST_INLINE 16
188 struct writeback_struct {
189 struct list_head endio_entry;
190 struct dm_writecache *wc;
191 struct wc_entry **wc_list;
193 struct wc_entry *wc_list_inline[WB_LIST_INLINE];
198 struct list_head endio_entry;
199 struct dm_writecache *wc;
205 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
206 "A percentage of time allocated for data copying");
208 static void wc_lock(struct dm_writecache *wc)
210 mutex_lock(&wc->lock);
213 static void wc_unlock(struct dm_writecache *wc)
215 mutex_unlock(&wc->lock);
218 #ifdef DM_WRITECACHE_HAS_PMEM
219 static int persistent_memory_claim(struct dm_writecache *wc)
228 wc->memory_vmapped = false;
230 if (!wc->ssd_dev->dax_dev) {
234 s = wc->memory_map_size;
240 if (p != s >> PAGE_SHIFT) {
245 id = dax_read_lock();
247 da = dax_direct_access(wc->ssd_dev->dax_dev, 0, p, &wc->memory_map, &pfn);
249 wc->memory_map = NULL;
253 if (!pfn_t_has_page(pfn)) {
254 wc->memory_map = NULL;
260 wc->memory_map = NULL;
261 pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
269 daa = dax_direct_access(wc->ssd_dev->dax_dev, i, p - i,
272 r = daa ? daa : -EINVAL;
275 if (!pfn_t_has_page(pfn)) {
279 while (daa-- && i < p) {
280 pages[i++] = pfn_t_to_page(pfn);
284 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
285 if (!wc->memory_map) {
290 wc->memory_vmapped = true;
295 wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
296 wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
307 static int persistent_memory_claim(struct dm_writecache *wc)
313 static void persistent_memory_release(struct dm_writecache *wc)
315 if (wc->memory_vmapped)
316 vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
319 static struct page *persistent_memory_page(void *addr)
321 if (is_vmalloc_addr(addr))
322 return vmalloc_to_page(addr);
324 return virt_to_page(addr);
327 static unsigned persistent_memory_page_offset(void *addr)
329 return (unsigned long)addr & (PAGE_SIZE - 1);
332 static void persistent_memory_flush_cache(void *ptr, size_t size)
334 if (is_vmalloc_addr(ptr))
335 flush_kernel_vmap_range(ptr, size);
338 static void persistent_memory_invalidate_cache(void *ptr, size_t size)
340 if (is_vmalloc_addr(ptr))
341 invalidate_kernel_vmap_range(ptr, size);
344 static struct wc_memory_superblock *sb(struct dm_writecache *wc)
346 return wc->memory_map;
349 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
351 return &sb(wc)->entries[e->index];
354 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
356 return (char *)wc->block_start + (e->index << wc->block_size_bits);
359 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
361 return wc->start_sector + wc->metadata_sectors +
362 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
365 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
367 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
368 return e->original_sector;
370 return le64_to_cpu(memory_entry(wc, e)->original_sector);
374 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
376 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
379 return le64_to_cpu(memory_entry(wc, e)->seq_count);
383 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
385 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
388 pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
391 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
392 uint64_t original_sector, uint64_t seq_count)
394 struct wc_memory_entry me;
395 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
396 e->original_sector = original_sector;
397 e->seq_count = seq_count;
399 me.original_sector = cpu_to_le64(original_sector);
400 me.seq_count = cpu_to_le64(seq_count);
401 pmem_assign(*memory_entry(wc, e), me);
404 #define writecache_error(wc, err, msg, arg...) \
406 if (!cmpxchg(&(wc)->error, 0, err)) \
408 wake_up(&(wc)->freelist_wait); \
411 #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error)))
413 static void writecache_flush_all_metadata(struct dm_writecache *wc)
415 if (!WC_MODE_PMEM(wc))
416 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
419 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
421 if (!WC_MODE_PMEM(wc))
422 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
426 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
429 struct dm_writecache *wc;
434 static void writecache_notify_io(unsigned long error, void *context)
436 struct io_notify *endio = context;
438 if (unlikely(error != 0))
439 writecache_error(endio->wc, -EIO, "error writing metadata");
440 BUG_ON(atomic_read(&endio->count) <= 0);
441 if (atomic_dec_and_test(&endio->count))
445 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
447 wait_event(wc->bio_in_progress_wait[direction],
448 !atomic_read(&wc->bio_in_progress[direction]));
451 static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
453 struct dm_io_region region;
454 struct dm_io_request req;
455 struct io_notify endio = {
457 COMPLETION_INITIALIZER_ONSTACK(endio.c),
460 unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
465 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
466 if (unlikely(i == bitmap_bits))
468 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
470 region.bdev = wc->ssd_dev->bdev;
471 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
472 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
474 if (unlikely(region.sector >= wc->metadata_sectors))
476 if (unlikely(region.sector + region.count > wc->metadata_sectors))
477 region.count = wc->metadata_sectors - region.sector;
479 region.sector += wc->start_sector;
480 atomic_inc(&endio.count);
481 req.bi_op = REQ_OP_WRITE;
482 req.bi_op_flags = REQ_SYNC;
483 req.mem.type = DM_IO_VMA;
484 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
485 req.client = wc->dm_io;
486 req.notify.fn = writecache_notify_io;
487 req.notify.context = &endio;
489 /* writing via async dm-io (implied by notify.fn above) won't return an error */
490 (void) dm_io(&req, 1, ®ion, NULL);
494 writecache_notify_io(0, &endio);
495 wait_for_completion_io(&endio.c);
498 writecache_wait_for_ios(wc, WRITE);
500 writecache_disk_flush(wc, wc->ssd_dev);
502 memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
505 static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
507 if (WC_MODE_PMEM(wc))
510 ssd_commit_flushed(wc, wait_for_ios);
513 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
516 struct dm_io_region region;
517 struct dm_io_request req;
519 region.bdev = dev->bdev;
522 req.bi_op = REQ_OP_WRITE;
523 req.bi_op_flags = REQ_PREFLUSH;
524 req.mem.type = DM_IO_KMEM;
525 req.mem.ptr.addr = NULL;
526 req.client = wc->dm_io;
527 req.notify.fn = NULL;
529 r = dm_io(&req, 1, ®ion, NULL);
531 writecache_error(wc, r, "error flushing metadata: %d", r);
534 #define WFE_RETURN_FOLLOWING 1
535 #define WFE_LOWEST_SEQ 2
537 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
538 uint64_t block, int flags)
541 struct rb_node *node = wc->tree.rb_node;
547 e = container_of(node, struct wc_entry, rb_node);
548 if (read_original_sector(wc, e) == block)
551 node = (read_original_sector(wc, e) >= block ?
552 e->rb_node.rb_left : e->rb_node.rb_right);
553 if (unlikely(!node)) {
554 if (!(flags & WFE_RETURN_FOLLOWING))
556 if (read_original_sector(wc, e) >= block) {
559 node = rb_next(&e->rb_node);
562 e = container_of(node, struct wc_entry, rb_node);
570 if (flags & WFE_LOWEST_SEQ)
571 node = rb_prev(&e->rb_node);
573 node = rb_next(&e->rb_node);
576 e2 = container_of(node, struct wc_entry, rb_node);
577 if (read_original_sector(wc, e2) != block)
583 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
586 struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
589 e = container_of(*node, struct wc_entry, rb_node);
590 parent = &e->rb_node;
591 if (read_original_sector(wc, e) > read_original_sector(wc, ins))
592 node = &parent->rb_left;
594 node = &parent->rb_right;
596 rb_link_node(&ins->rb_node, parent, node);
597 rb_insert_color(&ins->rb_node, &wc->tree);
598 list_add(&ins->lru, &wc->lru);
601 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
604 rb_erase(&e->rb_node, &wc->tree);
607 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
609 if (WC_MODE_SORT_FREELIST(wc)) {
610 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
611 if (unlikely(!*node))
612 wc->current_free = e;
615 if (&e->rb_node < *node)
616 node = &parent->rb_left;
618 node = &parent->rb_right;
620 rb_link_node(&e->rb_node, parent, node);
621 rb_insert_color(&e->rb_node, &wc->freetree);
623 list_add_tail(&e->lru, &wc->freelist);
628 static inline void writecache_verify_watermark(struct dm_writecache *wc)
630 if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
631 queue_work(wc->writeback_wq, &wc->writeback_work);
634 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc)
638 if (WC_MODE_SORT_FREELIST(wc)) {
639 struct rb_node *next;
640 if (unlikely(!wc->current_free))
642 e = wc->current_free;
643 next = rb_next(&e->rb_node);
644 rb_erase(&e->rb_node, &wc->freetree);
646 next = rb_first(&wc->freetree);
647 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
649 if (unlikely(list_empty(&wc->freelist)))
651 e = container_of(wc->freelist.next, struct wc_entry, lru);
656 writecache_verify_watermark(wc);
661 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
663 writecache_unlink(wc, e);
664 writecache_add_to_freelist(wc, e);
665 clear_seq_count(wc, e);
666 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
667 if (unlikely(waitqueue_active(&wc->freelist_wait)))
668 wake_up(&wc->freelist_wait);
671 static void writecache_wait_on_freelist(struct dm_writecache *wc)
675 prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
678 finish_wait(&wc->freelist_wait, &wait);
682 static void writecache_poison_lists(struct dm_writecache *wc)
685 * Catch incorrect access to these values while the device is suspended.
687 memset(&wc->tree, -1, sizeof wc->tree);
688 wc->lru.next = LIST_POISON1;
689 wc->lru.prev = LIST_POISON2;
690 wc->freelist.next = LIST_POISON1;
691 wc->freelist.prev = LIST_POISON2;
694 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
696 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
697 if (WC_MODE_PMEM(wc))
698 writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
701 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
703 return read_seq_count(wc, e) < wc->seq_count;
706 static void writecache_flush(struct dm_writecache *wc)
708 struct wc_entry *e, *e2;
709 bool need_flush_after_free;
711 wc->uncommitted_blocks = 0;
712 del_timer(&wc->autocommit_timer);
714 if (list_empty(&wc->lru))
717 e = container_of(wc->lru.next, struct wc_entry, lru);
718 if (writecache_entry_is_committed(wc, e)) {
719 if (wc->overwrote_committed) {
720 writecache_wait_for_ios(wc, WRITE);
721 writecache_disk_flush(wc, wc->ssd_dev);
722 wc->overwrote_committed = false;
727 writecache_flush_entry(wc, e);
728 if (unlikely(e->lru.next == &wc->lru))
730 e2 = container_of(e->lru.next, struct wc_entry, lru);
731 if (writecache_entry_is_committed(wc, e2))
736 writecache_commit_flushed(wc, true);
739 pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
740 writecache_flush_region(wc, &sb(wc)->seq_count, sizeof sb(wc)->seq_count);
741 writecache_commit_flushed(wc, false);
743 wc->overwrote_committed = false;
745 need_flush_after_free = false;
747 /* Free another committed entry with lower seq-count */
748 struct rb_node *rb_node = rb_prev(&e->rb_node);
751 e2 = container_of(rb_node, struct wc_entry, rb_node);
752 if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
753 likely(!e2->write_in_progress)) {
754 writecache_free_entry(wc, e2);
755 need_flush_after_free = true;
758 if (unlikely(e->lru.prev == &wc->lru))
760 e = container_of(e->lru.prev, struct wc_entry, lru);
764 if (need_flush_after_free)
765 writecache_commit_flushed(wc, false);
768 static void writecache_flush_work(struct work_struct *work)
770 struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
773 writecache_flush(wc);
777 static void writecache_autocommit_timer(struct timer_list *t)
779 struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
780 if (!writecache_has_error(wc))
781 queue_work(wc->writeback_wq, &wc->flush_work);
784 static void writecache_schedule_autocommit(struct dm_writecache *wc)
786 if (!timer_pending(&wc->autocommit_timer))
787 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
790 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
793 bool discarded_something = false;
795 e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
799 while (read_original_sector(wc, e) < end) {
800 struct rb_node *node = rb_next(&e->rb_node);
802 if (likely(!e->write_in_progress)) {
803 if (!discarded_something) {
804 writecache_wait_for_ios(wc, READ);
805 writecache_wait_for_ios(wc, WRITE);
806 discarded_something = true;
808 writecache_free_entry(wc, e);
814 e = container_of(node, struct wc_entry, rb_node);
817 if (discarded_something)
818 writecache_commit_flushed(wc, false);
821 static bool writecache_wait_for_writeback(struct dm_writecache *wc)
823 if (wc->writeback_size) {
824 writecache_wait_on_freelist(wc);
830 static void writecache_suspend(struct dm_target *ti)
832 struct dm_writecache *wc = ti->private;
833 bool flush_on_suspend;
835 del_timer_sync(&wc->autocommit_timer);
838 writecache_flush(wc);
839 flush_on_suspend = wc->flush_on_suspend;
840 if (flush_on_suspend) {
841 wc->flush_on_suspend = false;
843 queue_work(wc->writeback_wq, &wc->writeback_work);
847 drain_workqueue(wc->writeback_wq);
850 if (flush_on_suspend)
852 while (writecache_wait_for_writeback(wc));
854 if (WC_MODE_PMEM(wc))
855 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
857 writecache_poison_lists(wc);
862 static int writecache_alloc_entries(struct dm_writecache *wc)
868 wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
871 for (b = 0; b < wc->n_blocks; b++) {
872 struct wc_entry *e = &wc->entries[b];
874 e->write_in_progress = false;
880 static void writecache_resume(struct dm_target *ti)
882 struct dm_writecache *wc = ti->private;
884 bool need_flush = false;
890 if (WC_MODE_PMEM(wc))
891 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
894 INIT_LIST_HEAD(&wc->lru);
895 if (WC_MODE_SORT_FREELIST(wc)) {
896 wc->freetree = RB_ROOT;
897 wc->current_free = NULL;
899 INIT_LIST_HEAD(&wc->freelist);
901 wc->freelist_size = 0;
903 r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t));
905 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
906 sb_seq_count = cpu_to_le64(0);
908 wc->seq_count = le64_to_cpu(sb_seq_count);
910 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
911 for (b = 0; b < wc->n_blocks; b++) {
912 struct wc_entry *e = &wc->entries[b];
913 struct wc_memory_entry wme;
914 if (writecache_has_error(wc)) {
915 e->original_sector = -1;
919 r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry));
921 writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
922 (unsigned long)b, r);
923 e->original_sector = -1;
926 e->original_sector = le64_to_cpu(wme.original_sector);
927 e->seq_count = le64_to_cpu(wme.seq_count);
931 for (b = 0; b < wc->n_blocks; b++) {
932 struct wc_entry *e = &wc->entries[b];
933 if (!writecache_entry_is_committed(wc, e)) {
934 if (read_seq_count(wc, e) != -1) {
936 clear_seq_count(wc, e);
939 writecache_add_to_freelist(wc, e);
941 struct wc_entry *old;
943 old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
945 writecache_insert_entry(wc, e);
947 if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
948 writecache_error(wc, -EINVAL,
949 "two identical entries, position %llu, sector %llu, sequence %llu",
950 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
951 (unsigned long long)read_seq_count(wc, e));
953 if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
956 writecache_free_entry(wc, old);
957 writecache_insert_entry(wc, e);
966 writecache_flush_all_metadata(wc);
967 writecache_commit_flushed(wc, false);
970 writecache_verify_watermark(wc);
975 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
981 if (dm_suspended(wc->ti)) {
985 if (writecache_has_error(wc)) {
990 writecache_flush(wc);
992 queue_work(wc->writeback_wq, &wc->writeback_work);
995 flush_workqueue(wc->writeback_wq);
999 if (writecache_has_error(wc)) {
1008 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1014 wc->flush_on_suspend = true;
1020 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1021 char *result, unsigned maxlen)
1024 struct dm_writecache *wc = ti->private;
1026 if (!strcasecmp(argv[0], "flush"))
1027 r = process_flush_mesg(argc, argv, wc);
1028 else if (!strcasecmp(argv[0], "flush_on_suspend"))
1029 r = process_flush_on_suspend_mesg(argc, argv, wc);
1031 DMERR("unrecognised message received: %s", argv[0]);
1036 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1039 unsigned long flags;
1041 int rw = bio_data_dir(bio);
1042 unsigned remaining_size = wc->block_size;
1045 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1046 buf = bvec_kmap_irq(&bv, &flags);
1048 if (unlikely(size > remaining_size))
1049 size = remaining_size;
1053 r = memcpy_mcsafe(buf, data, size);
1054 flush_dcache_page(bio_page(bio));
1056 writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1057 bio->bi_status = BLK_STS_IOERR;
1060 flush_dcache_page(bio_page(bio));
1061 memcpy_flushcache(data, buf, size);
1064 bvec_kunmap_irq(buf, &flags);
1066 data = (char *)data + size;
1067 remaining_size -= size;
1068 bio_advance(bio, size);
1069 } while (unlikely(remaining_size));
1072 static int writecache_flush_thread(void *data)
1074 struct dm_writecache *wc = data;
1080 bio = bio_list_pop(&wc->flush_list);
1082 set_current_state(TASK_INTERRUPTIBLE);
1085 if (unlikely(kthread_should_stop())) {
1086 set_current_state(TASK_RUNNING);
1094 if (bio_op(bio) == REQ_OP_DISCARD) {
1095 writecache_discard(wc, bio->bi_iter.bi_sector,
1096 bio_end_sector(bio));
1098 bio_set_dev(bio, wc->dev->bdev);
1099 generic_make_request(bio);
1101 writecache_flush(wc);
1103 if (writecache_has_error(wc))
1104 bio->bi_status = BLK_STS_IOERR;
1112 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1114 if (bio_list_empty(&wc->flush_list))
1115 wake_up_process(wc->flush_thread);
1116 bio_list_add(&wc->flush_list, bio);
1119 static int writecache_map(struct dm_target *ti, struct bio *bio)
1122 struct dm_writecache *wc = ti->private;
1124 bio->bi_private = NULL;
1128 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1129 if (writecache_has_error(wc))
1131 if (WC_MODE_PMEM(wc)) {
1132 writecache_flush(wc);
1133 if (writecache_has_error(wc))
1137 writecache_offload_bio(wc, bio);
1142 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1144 if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1145 (wc->block_size / 512 - 1)) != 0)) {
1146 DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1147 (unsigned long long)bio->bi_iter.bi_sector,
1148 bio->bi_iter.bi_size, wc->block_size);
1152 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1153 if (writecache_has_error(wc))
1155 if (WC_MODE_PMEM(wc)) {
1156 writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1157 goto unlock_remap_origin;
1159 writecache_offload_bio(wc, bio);
1164 if (bio_data_dir(bio) == READ) {
1166 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1167 if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1168 if (WC_MODE_PMEM(wc)) {
1169 bio_copy_block(wc, bio, memory_data(wc, e));
1170 if (bio->bi_iter.bi_size)
1171 goto read_next_block;
1174 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1175 bio_set_dev(bio, wc->ssd_dev->bdev);
1176 bio->bi_iter.bi_sector = cache_sector(wc, e);
1177 if (!writecache_entry_is_committed(wc, e))
1178 writecache_wait_for_ios(wc, WRITE);
1183 sector_t next_boundary =
1184 read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1185 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1186 dm_accept_partial_bio(bio, next_boundary);
1189 goto unlock_remap_origin;
1193 if (writecache_has_error(wc))
1195 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1197 if (!writecache_entry_is_committed(wc, e))
1199 if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1200 wc->overwrote_committed = true;
1204 e = writecache_pop_from_freelist(wc);
1206 writecache_wait_on_freelist(wc);
1209 write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1210 writecache_insert_entry(wc, e);
1211 wc->uncommitted_blocks++;
1213 if (WC_MODE_PMEM(wc)) {
1214 bio_copy_block(wc, bio, memory_data(wc, e));
1216 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1217 bio_set_dev(bio, wc->ssd_dev->bdev);
1218 bio->bi_iter.bi_sector = cache_sector(wc, e);
1219 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1220 wc->uncommitted_blocks = 0;
1221 queue_work(wc->writeback_wq, &wc->flush_work);
1223 writecache_schedule_autocommit(wc);
1227 } while (bio->bi_iter.bi_size);
1229 if (unlikely(bio->bi_opf & REQ_FUA ||
1230 wc->uncommitted_blocks >= wc->autocommit_blocks))
1231 writecache_flush(wc);
1233 writecache_schedule_autocommit(wc);
1237 unlock_remap_origin:
1238 bio_set_dev(bio, wc->dev->bdev);
1240 return DM_MAPIO_REMAPPED;
1243 /* make sure that writecache_end_io decrements bio_in_progress: */
1244 bio->bi_private = (void *)1;
1245 atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1247 return DM_MAPIO_REMAPPED;
1252 return DM_MAPIO_SUBMITTED;
1256 return DM_MAPIO_SUBMITTED;
1261 return DM_MAPIO_SUBMITTED;
1264 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1266 struct dm_writecache *wc = ti->private;
1268 if (bio->bi_private != NULL) {
1269 int dir = bio_data_dir(bio);
1270 if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1271 if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1272 wake_up(&wc->bio_in_progress_wait[dir]);
1277 static int writecache_iterate_devices(struct dm_target *ti,
1278 iterate_devices_callout_fn fn, void *data)
1280 struct dm_writecache *wc = ti->private;
1282 return fn(ti, wc->dev, 0, ti->len, data);
1285 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1287 struct dm_writecache *wc = ti->private;
1289 if (limits->logical_block_size < wc->block_size)
1290 limits->logical_block_size = wc->block_size;
1292 if (limits->physical_block_size < wc->block_size)
1293 limits->physical_block_size = wc->block_size;
1295 if (limits->io_min < wc->block_size)
1296 limits->io_min = wc->block_size;
1300 static void writecache_writeback_endio(struct bio *bio)
1302 struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1303 struct dm_writecache *wc = wb->wc;
1304 unsigned long flags;
1306 raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1307 if (unlikely(list_empty(&wc->endio_list)))
1308 wake_up_process(wc->endio_thread);
1309 list_add_tail(&wb->endio_entry, &wc->endio_list);
1310 raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1313 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1315 struct copy_struct *c = ptr;
1316 struct dm_writecache *wc = c->wc;
1318 c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1320 raw_spin_lock_irq(&wc->endio_list_lock);
1321 if (unlikely(list_empty(&wc->endio_list)))
1322 wake_up_process(wc->endio_thread);
1323 list_add_tail(&c->endio_entry, &wc->endio_list);
1324 raw_spin_unlock_irq(&wc->endio_list_lock);
1327 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1330 struct writeback_struct *wb;
1332 unsigned long n_walked = 0;
1335 wb = list_entry(list->next, struct writeback_struct, endio_entry);
1336 list_del(&wb->endio_entry);
1338 if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1339 writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1340 "write error %d", wb->bio.bi_status);
1344 BUG_ON(!e->write_in_progress);
1345 e->write_in_progress = false;
1346 INIT_LIST_HEAD(&e->lru);
1347 if (!writecache_has_error(wc))
1348 writecache_free_entry(wc, e);
1349 BUG_ON(!wc->writeback_size);
1350 wc->writeback_size--;
1352 if (unlikely(n_walked >= ENDIO_LATENCY)) {
1353 writecache_commit_flushed(wc, false);
1358 } while (++i < wb->wc_list_n);
1360 if (wb->wc_list != wb->wc_list_inline)
1363 } while (!list_empty(list));
1366 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1368 struct copy_struct *c;
1372 c = list_entry(list->next, struct copy_struct, endio_entry);
1373 list_del(&c->endio_entry);
1375 if (unlikely(c->error))
1376 writecache_error(wc, c->error, "copy error");
1380 BUG_ON(!e->write_in_progress);
1381 e->write_in_progress = false;
1382 INIT_LIST_HEAD(&e->lru);
1383 if (!writecache_has_error(wc))
1384 writecache_free_entry(wc, e);
1386 BUG_ON(!wc->writeback_size);
1387 wc->writeback_size--;
1389 } while (--c->n_entries);
1390 mempool_free(c, &wc->copy_pool);
1391 } while (!list_empty(list));
1394 static int writecache_endio_thread(void *data)
1396 struct dm_writecache *wc = data;
1399 struct list_head list;
1401 raw_spin_lock_irq(&wc->endio_list_lock);
1402 if (!list_empty(&wc->endio_list))
1404 set_current_state(TASK_INTERRUPTIBLE);
1405 raw_spin_unlock_irq(&wc->endio_list_lock);
1407 if (unlikely(kthread_should_stop())) {
1408 set_current_state(TASK_RUNNING);
1417 list = wc->endio_list;
1418 list.next->prev = list.prev->next = &list;
1419 INIT_LIST_HEAD(&wc->endio_list);
1420 raw_spin_unlock_irq(&wc->endio_list_lock);
1422 if (!WC_MODE_FUA(wc))
1423 writecache_disk_flush(wc, wc->dev);
1427 if (WC_MODE_PMEM(wc)) {
1428 __writecache_endio_pmem(wc, &list);
1430 __writecache_endio_ssd(wc, &list);
1431 writecache_wait_for_ios(wc, READ);
1434 writecache_commit_flushed(wc, false);
1442 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp)
1444 struct dm_writecache *wc = wb->wc;
1445 unsigned block_size = wc->block_size;
1446 void *address = memory_data(wc, e);
1448 persistent_memory_flush_cache(address, block_size);
1449 return bio_add_page(&wb->bio, persistent_memory_page(address),
1450 block_size, persistent_memory_page_offset(address)) != 0;
1453 struct writeback_list {
1454 struct list_head list;
1458 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1460 if (unlikely(wc->max_writeback_jobs)) {
1461 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1463 while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1464 writecache_wait_on_freelist(wc);
1471 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1473 struct wc_entry *e, *f;
1475 struct writeback_struct *wb;
1480 e = container_of(wbl->list.prev, struct wc_entry, lru);
1483 max_pages = e->wc_list_contiguous;
1485 bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
1486 wb = container_of(bio, struct writeback_struct, bio);
1488 bio->bi_end_io = writecache_writeback_endio;
1489 bio_set_dev(bio, wc->dev->bdev);
1490 bio->bi_iter.bi_sector = read_original_sector(wc, e);
1491 if (max_pages <= WB_LIST_INLINE ||
1492 unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1493 GFP_NOIO | __GFP_NORETRY |
1494 __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
1495 wb->wc_list = wb->wc_list_inline;
1496 max_pages = WB_LIST_INLINE;
1499 BUG_ON(!wc_add_block(wb, e, GFP_NOIO));
1504 while (wbl->size && wb->wc_list_n < max_pages) {
1505 f = container_of(wbl->list.prev, struct wc_entry, lru);
1506 if (read_original_sector(wc, f) !=
1507 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1509 if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN))
1513 wb->wc_list[wb->wc_list_n++] = f;
1516 bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
1517 if (writecache_has_error(wc)) {
1518 bio->bi_status = BLK_STS_IOERR;
1524 __writeback_throttle(wc, wbl);
1528 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1530 struct wc_entry *e, *f;
1531 struct dm_io_region from, to;
1532 struct copy_struct *c;
1538 e = container_of(wbl->list.prev, struct wc_entry, lru);
1541 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1543 from.bdev = wc->ssd_dev->bdev;
1544 from.sector = cache_sector(wc, e);
1545 from.count = n_sectors;
1546 to.bdev = wc->dev->bdev;
1547 to.sector = read_original_sector(wc, e);
1548 to.count = n_sectors;
1550 c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1553 c->n_entries = e->wc_list_contiguous;
1555 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1557 f = container_of(wbl->list.prev, struct wc_entry, lru);
1563 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1565 __writeback_throttle(wc, wbl);
1569 static void writecache_writeback(struct work_struct *work)
1571 struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1572 struct blk_plug plug;
1573 struct wc_entry *f, *g, *e = NULL;
1574 struct rb_node *node, *next_node;
1575 struct list_head skipped;
1576 struct writeback_list wbl;
1577 unsigned long n_walked;
1581 if (writecache_has_error(wc)) {
1586 if (unlikely(wc->writeback_all)) {
1587 if (writecache_wait_for_writeback(wc))
1591 if (wc->overwrote_committed) {
1592 writecache_wait_for_ios(wc, WRITE);
1596 INIT_LIST_HEAD(&skipped);
1597 INIT_LIST_HEAD(&wbl.list);
1599 while (!list_empty(&wc->lru) &&
1600 (wc->writeback_all ||
1601 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark)) {
1604 if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1605 likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) {
1606 queue_work(wc->writeback_wq, &wc->writeback_work);
1610 if (unlikely(wc->writeback_all)) {
1612 writecache_flush(wc);
1613 e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
1617 e = container_of(wc->lru.prev, struct wc_entry, lru);
1618 BUG_ON(e->write_in_progress);
1619 if (unlikely(!writecache_entry_is_committed(wc, e))) {
1620 writecache_flush(wc);
1622 node = rb_prev(&e->rb_node);
1624 f = container_of(node, struct wc_entry, rb_node);
1625 if (unlikely(read_original_sector(wc, f) ==
1626 read_original_sector(wc, e))) {
1627 BUG_ON(!f->write_in_progress);
1629 list_add(&e->lru, &skipped);
1634 wc->writeback_size++;
1636 list_add(&e->lru, &wbl.list);
1638 e->write_in_progress = true;
1639 e->wc_list_contiguous = 1;
1644 next_node = rb_next(&f->rb_node);
1645 if (unlikely(!next_node))
1647 g = container_of(next_node, struct wc_entry, rb_node);
1648 if (unlikely(read_original_sector(wc, g) ==
1649 read_original_sector(wc, f))) {
1653 if (read_original_sector(wc, g) !=
1654 read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
1656 if (unlikely(g->write_in_progress))
1658 if (unlikely(!writecache_entry_is_committed(wc, g)))
1661 if (!WC_MODE_PMEM(wc)) {
1667 //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
1670 wc->writeback_size++;
1672 list_add(&g->lru, &wbl.list);
1674 g->write_in_progress = true;
1675 g->wc_list_contiguous = BIO_MAX_PAGES;
1677 e->wc_list_contiguous++;
1678 if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) {
1679 if (unlikely(wc->writeback_all)) {
1680 next_node = rb_next(&f->rb_node);
1681 if (likely(next_node))
1682 g = container_of(next_node, struct wc_entry, rb_node);
1690 if (!list_empty(&skipped)) {
1691 list_splice_tail(&skipped, &wc->lru);
1693 * If we didn't do any progress, we must wait until some
1694 * writeback finishes to avoid burning CPU in a loop
1696 if (unlikely(!wbl.size))
1697 writecache_wait_for_writeback(wc);
1702 blk_start_plug(&plug);
1704 if (WC_MODE_PMEM(wc))
1705 __writecache_writeback_pmem(wc, &wbl);
1707 __writecache_writeback_ssd(wc, &wbl);
1709 blk_finish_plug(&plug);
1711 if (unlikely(wc->writeback_all)) {
1713 while (writecache_wait_for_writeback(wc));
1718 static int calculate_memory_size(uint64_t device_size, unsigned block_size,
1719 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
1721 uint64_t n_blocks, offset;
1724 n_blocks = device_size;
1725 do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
1730 /* Verify the following entries[n_blocks] won't overflow */
1731 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
1732 sizeof(struct wc_memory_entry)))
1734 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
1735 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
1736 if (offset + n_blocks * block_size <= device_size)
1741 /* check if the bit field overflows */
1743 if (e.index != n_blocks)
1747 *n_blocks_p = n_blocks;
1748 if (n_metadata_blocks_p)
1749 *n_metadata_blocks_p = offset >> __ffs(block_size);
1753 static int init_memory(struct dm_writecache *wc)
1758 r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
1762 r = writecache_alloc_entries(wc);
1766 for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
1767 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
1768 pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
1769 pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
1770 pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
1771 pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
1773 for (b = 0; b < wc->n_blocks; b++)
1774 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
1776 writecache_flush_all_metadata(wc);
1777 writecache_commit_flushed(wc, false);
1778 pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
1779 writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
1780 writecache_commit_flushed(wc, false);
1785 static void writecache_dtr(struct dm_target *ti)
1787 struct dm_writecache *wc = ti->private;
1792 if (wc->endio_thread)
1793 kthread_stop(wc->endio_thread);
1795 if (wc->flush_thread)
1796 kthread_stop(wc->flush_thread);
1798 bioset_exit(&wc->bio_set);
1800 mempool_exit(&wc->copy_pool);
1802 if (wc->writeback_wq)
1803 destroy_workqueue(wc->writeback_wq);
1806 dm_put_device(ti, wc->dev);
1809 dm_put_device(ti, wc->ssd_dev);
1814 if (wc->memory_map) {
1815 if (WC_MODE_PMEM(wc))
1816 persistent_memory_release(wc);
1818 vfree(wc->memory_map);
1822 dm_kcopyd_client_destroy(wc->dm_kcopyd);
1825 dm_io_client_destroy(wc->dm_io);
1827 if (wc->dirty_bitmap)
1828 vfree(wc->dirty_bitmap);
1833 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
1835 struct dm_writecache *wc;
1836 struct dm_arg_set as;
1838 unsigned opt_params;
1839 size_t offset, data_size;
1842 int high_wm_percent = HIGH_WATERMARK;
1843 int low_wm_percent = LOW_WATERMARK;
1845 struct wc_memory_superblock s;
1847 static struct dm_arg _args[] = {
1848 {0, 10, "Invalid number of feature args"},
1854 wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
1856 ti->error = "Cannot allocate writecache structure";
1863 mutex_init(&wc->lock);
1864 writecache_poison_lists(wc);
1865 init_waitqueue_head(&wc->freelist_wait);
1866 timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
1868 for (i = 0; i < 2; i++) {
1869 atomic_set(&wc->bio_in_progress[i], 0);
1870 init_waitqueue_head(&wc->bio_in_progress_wait[i]);
1873 wc->dm_io = dm_io_client_create();
1874 if (IS_ERR(wc->dm_io)) {
1875 r = PTR_ERR(wc->dm_io);
1876 ti->error = "Unable to allocate dm-io client";
1881 wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
1882 if (!wc->writeback_wq) {
1884 ti->error = "Could not allocate writeback workqueue";
1887 INIT_WORK(&wc->writeback_work, writecache_writeback);
1888 INIT_WORK(&wc->flush_work, writecache_flush_work);
1890 raw_spin_lock_init(&wc->endio_list_lock);
1891 INIT_LIST_HEAD(&wc->endio_list);
1892 wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
1893 if (IS_ERR(wc->endio_thread)) {
1894 r = PTR_ERR(wc->endio_thread);
1895 wc->endio_thread = NULL;
1896 ti->error = "Couldn't spawn endio thread";
1899 wake_up_process(wc->endio_thread);
1902 * Parse the mode (pmem or ssd)
1904 string = dm_shift_arg(&as);
1908 if (!strcasecmp(string, "s")) {
1909 wc->pmem_mode = false;
1910 } else if (!strcasecmp(string, "p")) {
1911 #ifdef DM_WRITECACHE_HAS_PMEM
1912 wc->pmem_mode = true;
1913 wc->writeback_fua = true;
1916 * If the architecture doesn't support persistent memory or
1917 * the kernel doesn't support any DAX drivers, this driver can
1918 * only be used in SSD-only mode.
1921 ti->error = "Persistent memory or DAX not supported on this system";
1928 if (WC_MODE_PMEM(wc)) {
1929 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
1930 offsetof(struct writeback_struct, bio),
1933 ti->error = "Could not allocate bio set";
1937 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
1939 ti->error = "Could not allocate mempool";
1945 * Parse the origin data device
1947 string = dm_shift_arg(&as);
1950 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
1952 ti->error = "Origin data device lookup failed";
1957 * Parse cache data device (be it pmem or ssd)
1959 string = dm_shift_arg(&as);
1963 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
1965 ti->error = "Cache data device lookup failed";
1968 wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode);
1971 * Parse the cache block size
1973 string = dm_shift_arg(&as);
1976 if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
1977 wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
1978 (wc->block_size & (wc->block_size - 1))) {
1980 ti->error = "Invalid block size";
1983 wc->block_size_bits = __ffs(wc->block_size);
1985 wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
1986 wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
1987 wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
1990 * Parse optional arguments
1992 r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1996 while (opt_params) {
1997 string = dm_shift_arg(&as), opt_params--;
1998 if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
1999 unsigned long long start_sector;
2000 string = dm_shift_arg(&as), opt_params--;
2001 if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
2002 goto invalid_optional;
2003 wc->start_sector = start_sector;
2004 if (wc->start_sector != start_sector ||
2005 wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
2006 goto invalid_optional;
2007 } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
2008 string = dm_shift_arg(&as), opt_params--;
2009 if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2010 goto invalid_optional;
2011 if (high_wm_percent < 0 || high_wm_percent > 100)
2012 goto invalid_optional;
2013 wc->high_wm_percent_set = true;
2014 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2015 string = dm_shift_arg(&as), opt_params--;
2016 if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2017 goto invalid_optional;
2018 if (low_wm_percent < 0 || low_wm_percent > 100)
2019 goto invalid_optional;
2020 wc->low_wm_percent_set = true;
2021 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2022 string = dm_shift_arg(&as), opt_params--;
2023 if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2024 goto invalid_optional;
2025 wc->max_writeback_jobs_set = true;
2026 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2027 string = dm_shift_arg(&as), opt_params--;
2028 if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2029 goto invalid_optional;
2030 wc->autocommit_blocks_set = true;
2031 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2032 unsigned autocommit_msecs;
2033 string = dm_shift_arg(&as), opt_params--;
2034 if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2035 goto invalid_optional;
2036 if (autocommit_msecs > 3600000)
2037 goto invalid_optional;
2038 wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2039 wc->autocommit_time_set = true;
2040 } else if (!strcasecmp(string, "fua")) {
2041 if (WC_MODE_PMEM(wc)) {
2042 wc->writeback_fua = true;
2043 wc->writeback_fua_set = true;
2044 } else goto invalid_optional;
2045 } else if (!strcasecmp(string, "nofua")) {
2046 if (WC_MODE_PMEM(wc)) {
2047 wc->writeback_fua = false;
2048 wc->writeback_fua_set = true;
2049 } else goto invalid_optional;
2053 ti->error = "Invalid optional argument";
2058 if (high_wm_percent < low_wm_percent) {
2060 ti->error = "High watermark must be greater than or equal to low watermark";
2064 if (WC_MODE_PMEM(wc)) {
2065 r = persistent_memory_claim(wc);
2067 ti->error = "Unable to map persistent memory for cache";
2071 struct dm_io_region region;
2072 struct dm_io_request req;
2073 size_t n_blocks, n_metadata_blocks;
2074 uint64_t n_bitmap_bits;
2076 wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2078 bio_list_init(&wc->flush_list);
2079 wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
2080 if (IS_ERR(wc->flush_thread)) {
2081 r = PTR_ERR(wc->flush_thread);
2082 wc->flush_thread = NULL;
2083 ti->error = "Couldn't spawn flush thread";
2086 wake_up_process(wc->flush_thread);
2088 r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2089 &n_blocks, &n_metadata_blocks);
2091 ti->error = "Invalid device size";
2095 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2096 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2097 /* this is limitation of test_bit functions */
2098 if (n_bitmap_bits > 1U << 31) {
2100 ti->error = "Invalid device size";
2104 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2105 if (!wc->memory_map) {
2107 ti->error = "Unable to allocate memory for metadata";
2111 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2112 if (IS_ERR(wc->dm_kcopyd)) {
2113 r = PTR_ERR(wc->dm_kcopyd);
2114 ti->error = "Unable to allocate dm-kcopyd client";
2115 wc->dm_kcopyd = NULL;
2119 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2120 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2121 BITS_PER_LONG * sizeof(unsigned long);
2122 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2123 if (!wc->dirty_bitmap) {
2125 ti->error = "Unable to allocate dirty bitmap";
2129 region.bdev = wc->ssd_dev->bdev;
2130 region.sector = wc->start_sector;
2131 region.count = wc->metadata_sectors;
2132 req.bi_op = REQ_OP_READ;
2133 req.bi_op_flags = REQ_SYNC;
2134 req.mem.type = DM_IO_VMA;
2135 req.mem.ptr.vma = (char *)wc->memory_map;
2136 req.client = wc->dm_io;
2137 req.notify.fn = NULL;
2139 r = dm_io(&req, 1, ®ion, NULL);
2141 ti->error = "Unable to read metadata";
2146 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2148 ti->error = "Hardware memory error when reading superblock";
2151 if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2152 r = init_memory(wc);
2154 ti->error = "Unable to initialize device";
2157 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2159 ti->error = "Hardware memory error when reading superblock";
2164 if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2165 ti->error = "Invalid magic in the superblock";
2170 if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2171 ti->error = "Invalid version in the superblock";
2176 if (le32_to_cpu(s.block_size) != wc->block_size) {
2177 ti->error = "Block size does not match superblock";
2182 wc->n_blocks = le64_to_cpu(s.n_blocks);
2184 offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2185 if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2187 ti->error = "Overflow in size calculation";
2191 offset += sizeof(struct wc_memory_superblock);
2192 if (offset < sizeof(struct wc_memory_superblock))
2194 offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2195 data_size = wc->n_blocks * (size_t)wc->block_size;
2196 if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2197 (offset + data_size < offset))
2199 if (offset + data_size > wc->memory_map_size) {
2200 ti->error = "Memory area is too small";
2205 wc->metadata_sectors = offset >> SECTOR_SHIFT;
2206 wc->block_start = (char *)sb(wc) + offset;
2208 x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2211 wc->freelist_high_watermark = x;
2212 x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2215 wc->freelist_low_watermark = x;
2217 r = writecache_alloc_entries(wc);
2219 ti->error = "Cannot allocate memory";
2223 ti->num_flush_bios = 1;
2224 ti->flush_supported = true;
2225 ti->num_discard_bios = 1;
2227 if (WC_MODE_PMEM(wc))
2228 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2234 ti->error = "Bad arguments";
2240 static void writecache_status(struct dm_target *ti, status_type_t type,
2241 unsigned status_flags, char *result, unsigned maxlen)
2243 struct dm_writecache *wc = ti->private;
2244 unsigned extra_args;
2249 case STATUSTYPE_INFO:
2250 DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc),
2251 (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2252 (unsigned long long)wc->writeback_size);
2254 case STATUSTYPE_TABLE:
2255 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2256 wc->dev->name, wc->ssd_dev->name, wc->block_size);
2258 if (wc->start_sector)
2260 if (wc->high_wm_percent_set)
2262 if (wc->low_wm_percent_set)
2264 if (wc->max_writeback_jobs_set)
2266 if (wc->autocommit_blocks_set)
2268 if (wc->autocommit_time_set)
2270 if (wc->writeback_fua_set)
2273 DMEMIT("%u", extra_args);
2274 if (wc->start_sector)
2275 DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2276 if (wc->high_wm_percent_set) {
2277 x = (uint64_t)wc->freelist_high_watermark * 100;
2278 x += wc->n_blocks / 2;
2279 do_div(x, (size_t)wc->n_blocks);
2280 DMEMIT(" high_watermark %u", 100 - (unsigned)x);
2282 if (wc->low_wm_percent_set) {
2283 x = (uint64_t)wc->freelist_low_watermark * 100;
2284 x += wc->n_blocks / 2;
2285 do_div(x, (size_t)wc->n_blocks);
2286 DMEMIT(" low_watermark %u", 100 - (unsigned)x);
2288 if (wc->max_writeback_jobs_set)
2289 DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2290 if (wc->autocommit_blocks_set)
2291 DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2292 if (wc->autocommit_time_set)
2293 DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies));
2294 if (wc->writeback_fua_set)
2295 DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2300 static struct target_type writecache_target = {
2301 .name = "writecache",
2302 .version = {1, 1, 1},
2303 .module = THIS_MODULE,
2304 .ctr = writecache_ctr,
2305 .dtr = writecache_dtr,
2306 .status = writecache_status,
2307 .postsuspend = writecache_suspend,
2308 .resume = writecache_resume,
2309 .message = writecache_message,
2310 .map = writecache_map,
2311 .end_io = writecache_end_io,
2312 .iterate_devices = writecache_iterate_devices,
2313 .io_hints = writecache_io_hints,
2316 static int __init dm_writecache_init(void)
2320 r = dm_register_target(&writecache_target);
2322 DMERR("register failed %d", r);
2329 static void __exit dm_writecache_exit(void)
2331 dm_unregister_target(&writecache_target);
2334 module_init(dm_writecache_init);
2335 module_exit(dm_writecache_exit);
2337 MODULE_DESCRIPTION(DM_NAME " writecache target");
2338 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2339 MODULE_LICENSE("GPL");