Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/geert/linux...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / md / dm-verity.c
1 /*
2  * Copyright (C) 2012 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
7  *
8  * This file is released under the GPLv2.
9  *
10  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
11  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
12  * hash device. Setting this greatly improves performance when data and hash
13  * are on the same disk on different partitions on devices with poor random
14  * access behavior.
15  */
16
17 #include "dm-bufio.h"
18
19 #include <linux/module.h>
20 #include <linux/device-mapper.h>
21 #include <crypto/hash.h>
22
23 #define DM_MSG_PREFIX                   "verity"
24
25 #define DM_VERITY_IO_VEC_INLINE         16
26 #define DM_VERITY_MEMPOOL_SIZE          4
27 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
28
29 #define DM_VERITY_MAX_LEVELS            63
30
31 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
32
33 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
34
35 struct dm_verity {
36         struct dm_dev *data_dev;
37         struct dm_dev *hash_dev;
38         struct dm_target *ti;
39         struct dm_bufio_client *bufio;
40         char *alg_name;
41         struct crypto_shash *tfm;
42         u8 *root_digest;        /* digest of the root block */
43         u8 *salt;               /* salt: its size is salt_size */
44         unsigned salt_size;
45         sector_t data_start;    /* data offset in 512-byte sectors */
46         sector_t hash_start;    /* hash start in blocks */
47         sector_t data_blocks;   /* the number of data blocks */
48         sector_t hash_blocks;   /* the number of hash blocks */
49         unsigned char data_dev_block_bits;      /* log2(data blocksize) */
50         unsigned char hash_dev_block_bits;      /* log2(hash blocksize) */
51         unsigned char hash_per_block_bits;      /* log2(hashes in hash block) */
52         unsigned char levels;   /* the number of tree levels */
53         unsigned char version;
54         unsigned digest_size;   /* digest size for the current hash algorithm */
55         unsigned shash_descsize;/* the size of temporary space for crypto */
56         int hash_failed;        /* set to 1 if hash of any block failed */
57
58         mempool_t *vec_mempool; /* mempool of bio vector */
59
60         struct workqueue_struct *verify_wq;
61
62         /* starting blocks for each tree level. 0 is the lowest level. */
63         sector_t hash_level_block[DM_VERITY_MAX_LEVELS];
64 };
65
66 struct dm_verity_io {
67         struct dm_verity *v;
68
69         /* original values of bio->bi_end_io and bio->bi_private */
70         bio_end_io_t *orig_bi_end_io;
71         void *orig_bi_private;
72
73         sector_t block;
74         unsigned n_blocks;
75
76         /* saved bio vector */
77         struct bio_vec *io_vec;
78         unsigned io_vec_size;
79
80         struct work_struct work;
81
82         /* A space for short vectors; longer vectors are allocated separately. */
83         struct bio_vec io_vec_inline[DM_VERITY_IO_VEC_INLINE];
84
85         /*
86          * Three variably-size fields follow this struct:
87          *
88          * u8 hash_desc[v->shash_descsize];
89          * u8 real_digest[v->digest_size];
90          * u8 want_digest[v->digest_size];
91          *
92          * To access them use: io_hash_desc(), io_real_digest() and io_want_digest().
93          */
94 };
95
96 struct dm_verity_prefetch_work {
97         struct work_struct work;
98         struct dm_verity *v;
99         sector_t block;
100         unsigned n_blocks;
101 };
102
103 static struct shash_desc *io_hash_desc(struct dm_verity *v, struct dm_verity_io *io)
104 {
105         return (struct shash_desc *)(io + 1);
106 }
107
108 static u8 *io_real_digest(struct dm_verity *v, struct dm_verity_io *io)
109 {
110         return (u8 *)(io + 1) + v->shash_descsize;
111 }
112
113 static u8 *io_want_digest(struct dm_verity *v, struct dm_verity_io *io)
114 {
115         return (u8 *)(io + 1) + v->shash_descsize + v->digest_size;
116 }
117
118 /*
119  * Auxiliary structure appended to each dm-bufio buffer. If the value
120  * hash_verified is nonzero, hash of the block has been verified.
121  *
122  * The variable hash_verified is set to 0 when allocating the buffer, then
123  * it can be changed to 1 and it is never reset to 0 again.
124  *
125  * There is no lock around this value, a race condition can at worst cause
126  * that multiple processes verify the hash of the same buffer simultaneously
127  * and write 1 to hash_verified simultaneously.
128  * This condition is harmless, so we don't need locking.
129  */
130 struct buffer_aux {
131         int hash_verified;
132 };
133
134 /*
135  * Initialize struct buffer_aux for a freshly created buffer.
136  */
137 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
138 {
139         struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
140
141         aux->hash_verified = 0;
142 }
143
144 /*
145  * Translate input sector number to the sector number on the target device.
146  */
147 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
148 {
149         return v->data_start + dm_target_offset(v->ti, bi_sector);
150 }
151
152 /*
153  * Return hash position of a specified block at a specified tree level
154  * (0 is the lowest level).
155  * The lowest "hash_per_block_bits"-bits of the result denote hash position
156  * inside a hash block. The remaining bits denote location of the hash block.
157  */
158 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
159                                          int level)
160 {
161         return block >> (level * v->hash_per_block_bits);
162 }
163
164 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
165                                  sector_t *hash_block, unsigned *offset)
166 {
167         sector_t position = verity_position_at_level(v, block, level);
168         unsigned idx;
169
170         *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
171
172         if (!offset)
173                 return;
174
175         idx = position & ((1 << v->hash_per_block_bits) - 1);
176         if (!v->version)
177                 *offset = idx * v->digest_size;
178         else
179                 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
180 }
181
182 /*
183  * Verify hash of a metadata block pertaining to the specified data block
184  * ("block" argument) at a specified level ("level" argument).
185  *
186  * On successful return, io_want_digest(v, io) contains the hash value for
187  * a lower tree level or for the data block (if we're at the lowest leve).
188  *
189  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
190  * If "skip_unverified" is false, unverified buffer is hashed and verified
191  * against current value of io_want_digest(v, io).
192  */
193 static int verity_verify_level(struct dm_verity_io *io, sector_t block,
194                                int level, bool skip_unverified)
195 {
196         struct dm_verity *v = io->v;
197         struct dm_buffer *buf;
198         struct buffer_aux *aux;
199         u8 *data;
200         int r;
201         sector_t hash_block;
202         unsigned offset;
203
204         verity_hash_at_level(v, block, level, &hash_block, &offset);
205
206         data = dm_bufio_read(v->bufio, hash_block, &buf);
207         if (unlikely(IS_ERR(data)))
208                 return PTR_ERR(data);
209
210         aux = dm_bufio_get_aux_data(buf);
211
212         if (!aux->hash_verified) {
213                 struct shash_desc *desc;
214                 u8 *result;
215
216                 if (skip_unverified) {
217                         r = 1;
218                         goto release_ret_r;
219                 }
220
221                 desc = io_hash_desc(v, io);
222                 desc->tfm = v->tfm;
223                 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
224                 r = crypto_shash_init(desc);
225                 if (r < 0) {
226                         DMERR("crypto_shash_init failed: %d", r);
227                         goto release_ret_r;
228                 }
229
230                 if (likely(v->version >= 1)) {
231                         r = crypto_shash_update(desc, v->salt, v->salt_size);
232                         if (r < 0) {
233                                 DMERR("crypto_shash_update failed: %d", r);
234                                 goto release_ret_r;
235                         }
236                 }
237
238                 r = crypto_shash_update(desc, data, 1 << v->hash_dev_block_bits);
239                 if (r < 0) {
240                         DMERR("crypto_shash_update failed: %d", r);
241                         goto release_ret_r;
242                 }
243
244                 if (!v->version) {
245                         r = crypto_shash_update(desc, v->salt, v->salt_size);
246                         if (r < 0) {
247                                 DMERR("crypto_shash_update failed: %d", r);
248                                 goto release_ret_r;
249                         }
250                 }
251
252                 result = io_real_digest(v, io);
253                 r = crypto_shash_final(desc, result);
254                 if (r < 0) {
255                         DMERR("crypto_shash_final failed: %d", r);
256                         goto release_ret_r;
257                 }
258                 if (unlikely(memcmp(result, io_want_digest(v, io), v->digest_size))) {
259                         DMERR_LIMIT("metadata block %llu is corrupted",
260                                 (unsigned long long)hash_block);
261                         v->hash_failed = 1;
262                         r = -EIO;
263                         goto release_ret_r;
264                 } else
265                         aux->hash_verified = 1;
266         }
267
268         data += offset;
269
270         memcpy(io_want_digest(v, io), data, v->digest_size);
271
272         dm_bufio_release(buf);
273         return 0;
274
275 release_ret_r:
276         dm_bufio_release(buf);
277
278         return r;
279 }
280
281 /*
282  * Verify one "dm_verity_io" structure.
283  */
284 static int verity_verify_io(struct dm_verity_io *io)
285 {
286         struct dm_verity *v = io->v;
287         unsigned b;
288         int i;
289         unsigned vector = 0, offset = 0;
290
291         for (b = 0; b < io->n_blocks; b++) {
292                 struct shash_desc *desc;
293                 u8 *result;
294                 int r;
295                 unsigned todo;
296
297                 if (likely(v->levels)) {
298                         /*
299                          * First, we try to get the requested hash for
300                          * the current block. If the hash block itself is
301                          * verified, zero is returned. If it isn't, this
302                          * function returns 0 and we fall back to whole
303                          * chain verification.
304                          */
305                         int r = verity_verify_level(io, io->block + b, 0, true);
306                         if (likely(!r))
307                                 goto test_block_hash;
308                         if (r < 0)
309                                 return r;
310                 }
311
312                 memcpy(io_want_digest(v, io), v->root_digest, v->digest_size);
313
314                 for (i = v->levels - 1; i >= 0; i--) {
315                         int r = verity_verify_level(io, io->block + b, i, false);
316                         if (unlikely(r))
317                                 return r;
318                 }
319
320 test_block_hash:
321                 desc = io_hash_desc(v, io);
322                 desc->tfm = v->tfm;
323                 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
324                 r = crypto_shash_init(desc);
325                 if (r < 0) {
326                         DMERR("crypto_shash_init failed: %d", r);
327                         return r;
328                 }
329
330                 if (likely(v->version >= 1)) {
331                         r = crypto_shash_update(desc, v->salt, v->salt_size);
332                         if (r < 0) {
333                                 DMERR("crypto_shash_update failed: %d", r);
334                                 return r;
335                         }
336                 }
337
338                 todo = 1 << v->data_dev_block_bits;
339                 do {
340                         struct bio_vec *bv;
341                         u8 *page;
342                         unsigned len;
343
344                         BUG_ON(vector >= io->io_vec_size);
345                         bv = &io->io_vec[vector];
346                         page = kmap_atomic(bv->bv_page);
347                         len = bv->bv_len - offset;
348                         if (likely(len >= todo))
349                                 len = todo;
350                         r = crypto_shash_update(desc,
351                                         page + bv->bv_offset + offset, len);
352                         kunmap_atomic(page);
353                         if (r < 0) {
354                                 DMERR("crypto_shash_update failed: %d", r);
355                                 return r;
356                         }
357                         offset += len;
358                         if (likely(offset == bv->bv_len)) {
359                                 offset = 0;
360                                 vector++;
361                         }
362                         todo -= len;
363                 } while (todo);
364
365                 if (!v->version) {
366                         r = crypto_shash_update(desc, v->salt, v->salt_size);
367                         if (r < 0) {
368                                 DMERR("crypto_shash_update failed: %d", r);
369                                 return r;
370                         }
371                 }
372
373                 result = io_real_digest(v, io);
374                 r = crypto_shash_final(desc, result);
375                 if (r < 0) {
376                         DMERR("crypto_shash_final failed: %d", r);
377                         return r;
378                 }
379                 if (unlikely(memcmp(result, io_want_digest(v, io), v->digest_size))) {
380                         DMERR_LIMIT("data block %llu is corrupted",
381                                 (unsigned long long)(io->block + b));
382                         v->hash_failed = 1;
383                         return -EIO;
384                 }
385         }
386         BUG_ON(vector != io->io_vec_size);
387         BUG_ON(offset);
388
389         return 0;
390 }
391
392 /*
393  * End one "io" structure with a given error.
394  */
395 static void verity_finish_io(struct dm_verity_io *io, int error)
396 {
397         struct dm_verity *v = io->v;
398         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_bio_data_size);
399
400         bio->bi_end_io = io->orig_bi_end_io;
401         bio->bi_private = io->orig_bi_private;
402
403         if (io->io_vec != io->io_vec_inline)
404                 mempool_free(io->io_vec, v->vec_mempool);
405
406         bio_endio(bio, error);
407 }
408
409 static void verity_work(struct work_struct *w)
410 {
411         struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
412
413         verity_finish_io(io, verity_verify_io(io));
414 }
415
416 static void verity_end_io(struct bio *bio, int error)
417 {
418         struct dm_verity_io *io = bio->bi_private;
419
420         if (error) {
421                 verity_finish_io(io, error);
422                 return;
423         }
424
425         INIT_WORK(&io->work, verity_work);
426         queue_work(io->v->verify_wq, &io->work);
427 }
428
429 /*
430  * Prefetch buffers for the specified io.
431  * The root buffer is not prefetched, it is assumed that it will be cached
432  * all the time.
433  */
434 static void verity_prefetch_io(struct work_struct *work)
435 {
436         struct dm_verity_prefetch_work *pw =
437                 container_of(work, struct dm_verity_prefetch_work, work);
438         struct dm_verity *v = pw->v;
439         int i;
440
441         for (i = v->levels - 2; i >= 0; i--) {
442                 sector_t hash_block_start;
443                 sector_t hash_block_end;
444                 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
445                 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
446                 if (!i) {
447                         unsigned cluster = ACCESS_ONCE(dm_verity_prefetch_cluster);
448
449                         cluster >>= v->data_dev_block_bits;
450                         if (unlikely(!cluster))
451                                 goto no_prefetch_cluster;
452
453                         if (unlikely(cluster & (cluster - 1)))
454                                 cluster = 1 << (fls(cluster) - 1);
455
456                         hash_block_start &= ~(sector_t)(cluster - 1);
457                         hash_block_end |= cluster - 1;
458                         if (unlikely(hash_block_end >= v->hash_blocks))
459                                 hash_block_end = v->hash_blocks - 1;
460                 }
461 no_prefetch_cluster:
462                 dm_bufio_prefetch(v->bufio, hash_block_start,
463                                   hash_block_end - hash_block_start + 1);
464         }
465
466         kfree(pw);
467 }
468
469 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
470 {
471         struct dm_verity_prefetch_work *pw;
472
473         pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
474                 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
475
476         if (!pw)
477                 return;
478
479         INIT_WORK(&pw->work, verity_prefetch_io);
480         pw->v = v;
481         pw->block = io->block;
482         pw->n_blocks = io->n_blocks;
483         queue_work(v->verify_wq, &pw->work);
484 }
485
486 /*
487  * Bio map function. It allocates dm_verity_io structure and bio vector and
488  * fills them. Then it issues prefetches and the I/O.
489  */
490 static int verity_map(struct dm_target *ti, struct bio *bio)
491 {
492         struct dm_verity *v = ti->private;
493         struct dm_verity_io *io;
494
495         bio->bi_bdev = v->data_dev->bdev;
496         bio->bi_sector = verity_map_sector(v, bio->bi_sector);
497
498         if (((unsigned)bio->bi_sector | bio_sectors(bio)) &
499             ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
500                 DMERR_LIMIT("unaligned io");
501                 return -EIO;
502         }
503
504         if ((bio->bi_sector + bio_sectors(bio)) >>
505             (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
506                 DMERR_LIMIT("io out of range");
507                 return -EIO;
508         }
509
510         if (bio_data_dir(bio) == WRITE)
511                 return -EIO;
512
513         io = dm_per_bio_data(bio, ti->per_bio_data_size);
514         io->v = v;
515         io->orig_bi_end_io = bio->bi_end_io;
516         io->orig_bi_private = bio->bi_private;
517         io->block = bio->bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
518         io->n_blocks = bio->bi_size >> v->data_dev_block_bits;
519
520         bio->bi_end_io = verity_end_io;
521         bio->bi_private = io;
522         io->io_vec_size = bio->bi_vcnt - bio->bi_idx;
523         if (io->io_vec_size < DM_VERITY_IO_VEC_INLINE)
524                 io->io_vec = io->io_vec_inline;
525         else
526                 io->io_vec = mempool_alloc(v->vec_mempool, GFP_NOIO);
527         memcpy(io->io_vec, bio_iovec(bio),
528                io->io_vec_size * sizeof(struct bio_vec));
529
530         verity_submit_prefetch(v, io);
531
532         generic_make_request(bio);
533
534         return DM_MAPIO_SUBMITTED;
535 }
536
537 /*
538  * Status: V (valid) or C (corruption found)
539  */
540 static void verity_status(struct dm_target *ti, status_type_t type,
541                           unsigned status_flags, char *result, unsigned maxlen)
542 {
543         struct dm_verity *v = ti->private;
544         unsigned sz = 0;
545         unsigned x;
546
547         switch (type) {
548         case STATUSTYPE_INFO:
549                 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
550                 break;
551         case STATUSTYPE_TABLE:
552                 DMEMIT("%u %s %s %u %u %llu %llu %s ",
553                         v->version,
554                         v->data_dev->name,
555                         v->hash_dev->name,
556                         1 << v->data_dev_block_bits,
557                         1 << v->hash_dev_block_bits,
558                         (unsigned long long)v->data_blocks,
559                         (unsigned long long)v->hash_start,
560                         v->alg_name
561                         );
562                 for (x = 0; x < v->digest_size; x++)
563                         DMEMIT("%02x", v->root_digest[x]);
564                 DMEMIT(" ");
565                 if (!v->salt_size)
566                         DMEMIT("-");
567                 else
568                         for (x = 0; x < v->salt_size; x++)
569                                 DMEMIT("%02x", v->salt[x]);
570                 break;
571         }
572 }
573
574 static int verity_ioctl(struct dm_target *ti, unsigned cmd,
575                         unsigned long arg)
576 {
577         struct dm_verity *v = ti->private;
578         int r = 0;
579
580         if (v->data_start ||
581             ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
582                 r = scsi_verify_blk_ioctl(NULL, cmd);
583
584         return r ? : __blkdev_driver_ioctl(v->data_dev->bdev, v->data_dev->mode,
585                                      cmd, arg);
586 }
587
588 static int verity_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
589                         struct bio_vec *biovec, int max_size)
590 {
591         struct dm_verity *v = ti->private;
592         struct request_queue *q = bdev_get_queue(v->data_dev->bdev);
593
594         if (!q->merge_bvec_fn)
595                 return max_size;
596
597         bvm->bi_bdev = v->data_dev->bdev;
598         bvm->bi_sector = verity_map_sector(v, bvm->bi_sector);
599
600         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
601 }
602
603 static int verity_iterate_devices(struct dm_target *ti,
604                                   iterate_devices_callout_fn fn, void *data)
605 {
606         struct dm_verity *v = ti->private;
607
608         return fn(ti, v->data_dev, v->data_start, ti->len, data);
609 }
610
611 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
612 {
613         struct dm_verity *v = ti->private;
614
615         if (limits->logical_block_size < 1 << v->data_dev_block_bits)
616                 limits->logical_block_size = 1 << v->data_dev_block_bits;
617
618         if (limits->physical_block_size < 1 << v->data_dev_block_bits)
619                 limits->physical_block_size = 1 << v->data_dev_block_bits;
620
621         blk_limits_io_min(limits, limits->logical_block_size);
622 }
623
624 static void verity_dtr(struct dm_target *ti)
625 {
626         struct dm_verity *v = ti->private;
627
628         if (v->verify_wq)
629                 destroy_workqueue(v->verify_wq);
630
631         if (v->vec_mempool)
632                 mempool_destroy(v->vec_mempool);
633
634         if (v->bufio)
635                 dm_bufio_client_destroy(v->bufio);
636
637         kfree(v->salt);
638         kfree(v->root_digest);
639
640         if (v->tfm)
641                 crypto_free_shash(v->tfm);
642
643         kfree(v->alg_name);
644
645         if (v->hash_dev)
646                 dm_put_device(ti, v->hash_dev);
647
648         if (v->data_dev)
649                 dm_put_device(ti, v->data_dev);
650
651         kfree(v);
652 }
653
654 /*
655  * Target parameters:
656  *      <version>       The current format is version 1.
657  *                      Vsn 0 is compatible with original Chromium OS releases.
658  *      <data device>
659  *      <hash device>
660  *      <data block size>
661  *      <hash block size>
662  *      <the number of data blocks>
663  *      <hash start block>
664  *      <algorithm>
665  *      <digest>
666  *      <salt>          Hex string or "-" if no salt.
667  */
668 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
669 {
670         struct dm_verity *v;
671         unsigned num;
672         unsigned long long num_ll;
673         int r;
674         int i;
675         sector_t hash_position;
676         char dummy;
677
678         v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
679         if (!v) {
680                 ti->error = "Cannot allocate verity structure";
681                 return -ENOMEM;
682         }
683         ti->private = v;
684         v->ti = ti;
685
686         if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
687                 ti->error = "Device must be readonly";
688                 r = -EINVAL;
689                 goto bad;
690         }
691
692         if (argc != 10) {
693                 ti->error = "Invalid argument count: exactly 10 arguments required";
694                 r = -EINVAL;
695                 goto bad;
696         }
697
698         if (sscanf(argv[0], "%d%c", &num, &dummy) != 1 ||
699             num < 0 || num > 1) {
700                 ti->error = "Invalid version";
701                 r = -EINVAL;
702                 goto bad;
703         }
704         v->version = num;
705
706         r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
707         if (r) {
708                 ti->error = "Data device lookup failed";
709                 goto bad;
710         }
711
712         r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
713         if (r) {
714                 ti->error = "Data device lookup failed";
715                 goto bad;
716         }
717
718         if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
719             !num || (num & (num - 1)) ||
720             num < bdev_logical_block_size(v->data_dev->bdev) ||
721             num > PAGE_SIZE) {
722                 ti->error = "Invalid data device block size";
723                 r = -EINVAL;
724                 goto bad;
725         }
726         v->data_dev_block_bits = ffs(num) - 1;
727
728         if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
729             !num || (num & (num - 1)) ||
730             num < bdev_logical_block_size(v->hash_dev->bdev) ||
731             num > INT_MAX) {
732                 ti->error = "Invalid hash device block size";
733                 r = -EINVAL;
734                 goto bad;
735         }
736         v->hash_dev_block_bits = ffs(num) - 1;
737
738         if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
739             (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
740             >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
741                 ti->error = "Invalid data blocks";
742                 r = -EINVAL;
743                 goto bad;
744         }
745         v->data_blocks = num_ll;
746
747         if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
748                 ti->error = "Data device is too small";
749                 r = -EINVAL;
750                 goto bad;
751         }
752
753         if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
754             (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
755             >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
756                 ti->error = "Invalid hash start";
757                 r = -EINVAL;
758                 goto bad;
759         }
760         v->hash_start = num_ll;
761
762         v->alg_name = kstrdup(argv[7], GFP_KERNEL);
763         if (!v->alg_name) {
764                 ti->error = "Cannot allocate algorithm name";
765                 r = -ENOMEM;
766                 goto bad;
767         }
768
769         v->tfm = crypto_alloc_shash(v->alg_name, 0, 0);
770         if (IS_ERR(v->tfm)) {
771                 ti->error = "Cannot initialize hash function";
772                 r = PTR_ERR(v->tfm);
773                 v->tfm = NULL;
774                 goto bad;
775         }
776         v->digest_size = crypto_shash_digestsize(v->tfm);
777         if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
778                 ti->error = "Digest size too big";
779                 r = -EINVAL;
780                 goto bad;
781         }
782         v->shash_descsize =
783                 sizeof(struct shash_desc) + crypto_shash_descsize(v->tfm);
784
785         v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
786         if (!v->root_digest) {
787                 ti->error = "Cannot allocate root digest";
788                 r = -ENOMEM;
789                 goto bad;
790         }
791         if (strlen(argv[8]) != v->digest_size * 2 ||
792             hex2bin(v->root_digest, argv[8], v->digest_size)) {
793                 ti->error = "Invalid root digest";
794                 r = -EINVAL;
795                 goto bad;
796         }
797
798         if (strcmp(argv[9], "-")) {
799                 v->salt_size = strlen(argv[9]) / 2;
800                 v->salt = kmalloc(v->salt_size, GFP_KERNEL);
801                 if (!v->salt) {
802                         ti->error = "Cannot allocate salt";
803                         r = -ENOMEM;
804                         goto bad;
805                 }
806                 if (strlen(argv[9]) != v->salt_size * 2 ||
807                     hex2bin(v->salt, argv[9], v->salt_size)) {
808                         ti->error = "Invalid salt";
809                         r = -EINVAL;
810                         goto bad;
811                 }
812         }
813
814         v->hash_per_block_bits =
815                 fls((1 << v->hash_dev_block_bits) / v->digest_size) - 1;
816
817         v->levels = 0;
818         if (v->data_blocks)
819                 while (v->hash_per_block_bits * v->levels < 64 &&
820                        (unsigned long long)(v->data_blocks - 1) >>
821                        (v->hash_per_block_bits * v->levels))
822                         v->levels++;
823
824         if (v->levels > DM_VERITY_MAX_LEVELS) {
825                 ti->error = "Too many tree levels";
826                 r = -E2BIG;
827                 goto bad;
828         }
829
830         hash_position = v->hash_start;
831         for (i = v->levels - 1; i >= 0; i--) {
832                 sector_t s;
833                 v->hash_level_block[i] = hash_position;
834                 s = verity_position_at_level(v, v->data_blocks, i);
835                 s = (s >> v->hash_per_block_bits) +
836                     !!(s & ((1 << v->hash_per_block_bits) - 1));
837                 if (hash_position + s < hash_position) {
838                         ti->error = "Hash device offset overflow";
839                         r = -E2BIG;
840                         goto bad;
841                 }
842                 hash_position += s;
843         }
844         v->hash_blocks = hash_position;
845
846         v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
847                 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
848                 dm_bufio_alloc_callback, NULL);
849         if (IS_ERR(v->bufio)) {
850                 ti->error = "Cannot initialize dm-bufio";
851                 r = PTR_ERR(v->bufio);
852                 v->bufio = NULL;
853                 goto bad;
854         }
855
856         if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
857                 ti->error = "Hash device is too small";
858                 r = -E2BIG;
859                 goto bad;
860         }
861
862         ti->per_bio_data_size = roundup(sizeof(struct dm_verity_io) + v->shash_descsize + v->digest_size * 2, __alignof__(struct dm_verity_io));
863
864         v->vec_mempool = mempool_create_kmalloc_pool(DM_VERITY_MEMPOOL_SIZE,
865                                         BIO_MAX_PAGES * sizeof(struct bio_vec));
866         if (!v->vec_mempool) {
867                 ti->error = "Cannot allocate vector mempool";
868                 r = -ENOMEM;
869                 goto bad;
870         }
871
872         /* WQ_UNBOUND greatly improves performance when running on ramdisk */
873         v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
874         if (!v->verify_wq) {
875                 ti->error = "Cannot allocate workqueue";
876                 r = -ENOMEM;
877                 goto bad;
878         }
879
880         return 0;
881
882 bad:
883         verity_dtr(ti);
884
885         return r;
886 }
887
888 static struct target_type verity_target = {
889         .name           = "verity",
890         .version        = {1, 2, 0},
891         .module         = THIS_MODULE,
892         .ctr            = verity_ctr,
893         .dtr            = verity_dtr,
894         .map            = verity_map,
895         .status         = verity_status,
896         .ioctl          = verity_ioctl,
897         .merge          = verity_merge,
898         .iterate_devices = verity_iterate_devices,
899         .io_hints       = verity_io_hints,
900 };
901
902 static int __init dm_verity_init(void)
903 {
904         int r;
905
906         r = dm_register_target(&verity_target);
907         if (r < 0)
908                 DMERR("register failed %d", r);
909
910         return r;
911 }
912
913 static void __exit dm_verity_exit(void)
914 {
915         dm_unregister_target(&verity_target);
916 }
917
918 module_init(dm_verity_init);
919 module_exit(dm_verity_exit);
920
921 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
922 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
923 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
924 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
925 MODULE_LICENSE("GPL");