9e7328bb40301e83a402e79173f84f1022b14159
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / md / dm-verity.c
1 /*
2  * Copyright (C) 2012 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
7  *
8  * This file is released under the GPLv2.
9  *
10  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
11  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
12  * hash device. Setting this greatly improves performance when data and hash
13  * are on the same disk on different partitions on devices with poor random
14  * access behavior.
15  */
16
17 #include "dm-bufio.h"
18
19 #include <linux/module.h>
20 #include <linux/device-mapper.h>
21 #include <crypto/hash.h>
22
23 #define DM_MSG_PREFIX                   "verity"
24
25 #define DM_VERITY_IO_VEC_INLINE         16
26 #define DM_VERITY_MEMPOOL_SIZE          4
27 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
28
29 #define DM_VERITY_MAX_LEVELS            63
30
31 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
32
33 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
34
35 struct dm_verity {
36         struct dm_dev *data_dev;
37         struct dm_dev *hash_dev;
38         struct dm_target *ti;
39         struct dm_bufio_client *bufio;
40         char *alg_name;
41         struct crypto_shash *tfm;
42         u8 *root_digest;        /* digest of the root block */
43         u8 *salt;               /* salt: its size is salt_size */
44         unsigned salt_size;
45         sector_t data_start;    /* data offset in 512-byte sectors */
46         sector_t hash_start;    /* hash start in blocks */
47         sector_t data_blocks;   /* the number of data blocks */
48         sector_t hash_blocks;   /* the number of hash blocks */
49         unsigned char data_dev_block_bits;      /* log2(data blocksize) */
50         unsigned char hash_dev_block_bits;      /* log2(hash blocksize) */
51         unsigned char hash_per_block_bits;      /* log2(hashes in hash block) */
52         unsigned char levels;   /* the number of tree levels */
53         unsigned char version;
54         unsigned digest_size;   /* digest size for the current hash algorithm */
55         unsigned shash_descsize;/* the size of temporary space for crypto */
56         int hash_failed;        /* set to 1 if hash of any block failed */
57
58         mempool_t *io_mempool;  /* mempool of struct dm_verity_io */
59         mempool_t *vec_mempool; /* mempool of bio vector */
60
61         struct workqueue_struct *verify_wq;
62
63         /* starting blocks for each tree level. 0 is the lowest level. */
64         sector_t hash_level_block[DM_VERITY_MAX_LEVELS];
65 };
66
67 struct dm_verity_io {
68         struct dm_verity *v;
69         struct bio *bio;
70
71         /* original values of bio->bi_end_io and bio->bi_private */
72         bio_end_io_t *orig_bi_end_io;
73         void *orig_bi_private;
74
75         sector_t block;
76         unsigned n_blocks;
77
78         /* saved bio vector */
79         struct bio_vec *io_vec;
80         unsigned io_vec_size;
81
82         struct work_struct work;
83
84         /* A space for short vectors; longer vectors are allocated separately. */
85         struct bio_vec io_vec_inline[DM_VERITY_IO_VEC_INLINE];
86
87         /*
88          * Three variably-size fields follow this struct:
89          *
90          * u8 hash_desc[v->shash_descsize];
91          * u8 real_digest[v->digest_size];
92          * u8 want_digest[v->digest_size];
93          *
94          * To access them use: io_hash_desc(), io_real_digest() and io_want_digest().
95          */
96 };
97
98 static struct shash_desc *io_hash_desc(struct dm_verity *v, struct dm_verity_io *io)
99 {
100         return (struct shash_desc *)(io + 1);
101 }
102
103 static u8 *io_real_digest(struct dm_verity *v, struct dm_verity_io *io)
104 {
105         return (u8 *)(io + 1) + v->shash_descsize;
106 }
107
108 static u8 *io_want_digest(struct dm_verity *v, struct dm_verity_io *io)
109 {
110         return (u8 *)(io + 1) + v->shash_descsize + v->digest_size;
111 }
112
113 /*
114  * Auxiliary structure appended to each dm-bufio buffer. If the value
115  * hash_verified is nonzero, hash of the block has been verified.
116  *
117  * The variable hash_verified is set to 0 when allocating the buffer, then
118  * it can be changed to 1 and it is never reset to 0 again.
119  *
120  * There is no lock around this value, a race condition can at worst cause
121  * that multiple processes verify the hash of the same buffer simultaneously
122  * and write 1 to hash_verified simultaneously.
123  * This condition is harmless, so we don't need locking.
124  */
125 struct buffer_aux {
126         int hash_verified;
127 };
128
129 /*
130  * Initialize struct buffer_aux for a freshly created buffer.
131  */
132 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
133 {
134         struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
135
136         aux->hash_verified = 0;
137 }
138
139 /*
140  * Translate input sector number to the sector number on the target device.
141  */
142 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
143 {
144         return v->data_start + dm_target_offset(v->ti, bi_sector);
145 }
146
147 /*
148  * Return hash position of a specified block at a specified tree level
149  * (0 is the lowest level).
150  * The lowest "hash_per_block_bits"-bits of the result denote hash position
151  * inside a hash block. The remaining bits denote location of the hash block.
152  */
153 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
154                                          int level)
155 {
156         return block >> (level * v->hash_per_block_bits);
157 }
158
159 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
160                                  sector_t *hash_block, unsigned *offset)
161 {
162         sector_t position = verity_position_at_level(v, block, level);
163         unsigned idx;
164
165         *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
166
167         if (!offset)
168                 return;
169
170         idx = position & ((1 << v->hash_per_block_bits) - 1);
171         if (!v->version)
172                 *offset = idx * v->digest_size;
173         else
174                 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
175 }
176
177 /*
178  * Verify hash of a metadata block pertaining to the specified data block
179  * ("block" argument) at a specified level ("level" argument).
180  *
181  * On successful return, io_want_digest(v, io) contains the hash value for
182  * a lower tree level or for the data block (if we're at the lowest leve).
183  *
184  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
185  * If "skip_unverified" is false, unverified buffer is hashed and verified
186  * against current value of io_want_digest(v, io).
187  */
188 static int verity_verify_level(struct dm_verity_io *io, sector_t block,
189                                int level, bool skip_unverified)
190 {
191         struct dm_verity *v = io->v;
192         struct dm_buffer *buf;
193         struct buffer_aux *aux;
194         u8 *data;
195         int r;
196         sector_t hash_block;
197         unsigned offset;
198
199         verity_hash_at_level(v, block, level, &hash_block, &offset);
200
201         data = dm_bufio_read(v->bufio, hash_block, &buf);
202         if (unlikely(IS_ERR(data)))
203                 return PTR_ERR(data);
204
205         aux = dm_bufio_get_aux_data(buf);
206
207         if (!aux->hash_verified) {
208                 struct shash_desc *desc;
209                 u8 *result;
210
211                 if (skip_unverified) {
212                         r = 1;
213                         goto release_ret_r;
214                 }
215
216                 desc = io_hash_desc(v, io);
217                 desc->tfm = v->tfm;
218                 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
219                 r = crypto_shash_init(desc);
220                 if (r < 0) {
221                         DMERR("crypto_shash_init failed: %d", r);
222                         goto release_ret_r;
223                 }
224
225                 if (likely(v->version >= 1)) {
226                         r = crypto_shash_update(desc, v->salt, v->salt_size);
227                         if (r < 0) {
228                                 DMERR("crypto_shash_update failed: %d", r);
229                                 goto release_ret_r;
230                         }
231                 }
232
233                 r = crypto_shash_update(desc, data, 1 << v->hash_dev_block_bits);
234                 if (r < 0) {
235                         DMERR("crypto_shash_update failed: %d", r);
236                         goto release_ret_r;
237                 }
238
239                 if (!v->version) {
240                         r = crypto_shash_update(desc, v->salt, v->salt_size);
241                         if (r < 0) {
242                                 DMERR("crypto_shash_update failed: %d", r);
243                                 goto release_ret_r;
244                         }
245                 }
246
247                 result = io_real_digest(v, io);
248                 r = crypto_shash_final(desc, result);
249                 if (r < 0) {
250                         DMERR("crypto_shash_final failed: %d", r);
251                         goto release_ret_r;
252                 }
253                 if (unlikely(memcmp(result, io_want_digest(v, io), v->digest_size))) {
254                         DMERR_LIMIT("metadata block %llu is corrupted",
255                                 (unsigned long long)hash_block);
256                         v->hash_failed = 1;
257                         r = -EIO;
258                         goto release_ret_r;
259                 } else
260                         aux->hash_verified = 1;
261         }
262
263         data += offset;
264
265         memcpy(io_want_digest(v, io), data, v->digest_size);
266
267         dm_bufio_release(buf);
268         return 0;
269
270 release_ret_r:
271         dm_bufio_release(buf);
272
273         return r;
274 }
275
276 /*
277  * Verify one "dm_verity_io" structure.
278  */
279 static int verity_verify_io(struct dm_verity_io *io)
280 {
281         struct dm_verity *v = io->v;
282         unsigned b;
283         int i;
284         unsigned vector = 0, offset = 0;
285
286         for (b = 0; b < io->n_blocks; b++) {
287                 struct shash_desc *desc;
288                 u8 *result;
289                 int r;
290                 unsigned todo;
291
292                 if (likely(v->levels)) {
293                         /*
294                          * First, we try to get the requested hash for
295                          * the current block. If the hash block itself is
296                          * verified, zero is returned. If it isn't, this
297                          * function returns 0 and we fall back to whole
298                          * chain verification.
299                          */
300                         int r = verity_verify_level(io, io->block + b, 0, true);
301                         if (likely(!r))
302                                 goto test_block_hash;
303                         if (r < 0)
304                                 return r;
305                 }
306
307                 memcpy(io_want_digest(v, io), v->root_digest, v->digest_size);
308
309                 for (i = v->levels - 1; i >= 0; i--) {
310                         int r = verity_verify_level(io, io->block + b, i, false);
311                         if (unlikely(r))
312                                 return r;
313                 }
314
315 test_block_hash:
316                 desc = io_hash_desc(v, io);
317                 desc->tfm = v->tfm;
318                 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
319                 r = crypto_shash_init(desc);
320                 if (r < 0) {
321                         DMERR("crypto_shash_init failed: %d", r);
322                         return r;
323                 }
324
325                 if (likely(v->version >= 1)) {
326                         r = crypto_shash_update(desc, v->salt, v->salt_size);
327                         if (r < 0) {
328                                 DMERR("crypto_shash_update failed: %d", r);
329                                 return r;
330                         }
331                 }
332
333                 todo = 1 << v->data_dev_block_bits;
334                 do {
335                         struct bio_vec *bv;
336                         u8 *page;
337                         unsigned len;
338
339                         BUG_ON(vector >= io->io_vec_size);
340                         bv = &io->io_vec[vector];
341                         page = kmap_atomic(bv->bv_page);
342                         len = bv->bv_len - offset;
343                         if (likely(len >= todo))
344                                 len = todo;
345                         r = crypto_shash_update(desc,
346                                         page + bv->bv_offset + offset, len);
347                         kunmap_atomic(page);
348                         if (r < 0) {
349                                 DMERR("crypto_shash_update failed: %d", r);
350                                 return r;
351                         }
352                         offset += len;
353                         if (likely(offset == bv->bv_len)) {
354                                 offset = 0;
355                                 vector++;
356                         }
357                         todo -= len;
358                 } while (todo);
359
360                 if (!v->version) {
361                         r = crypto_shash_update(desc, v->salt, v->salt_size);
362                         if (r < 0) {
363                                 DMERR("crypto_shash_update failed: %d", r);
364                                 return r;
365                         }
366                 }
367
368                 result = io_real_digest(v, io);
369                 r = crypto_shash_final(desc, result);
370                 if (r < 0) {
371                         DMERR("crypto_shash_final failed: %d", r);
372                         return r;
373                 }
374                 if (unlikely(memcmp(result, io_want_digest(v, io), v->digest_size))) {
375                         DMERR_LIMIT("data block %llu is corrupted",
376                                 (unsigned long long)(io->block + b));
377                         v->hash_failed = 1;
378                         return -EIO;
379                 }
380         }
381         BUG_ON(vector != io->io_vec_size);
382         BUG_ON(offset);
383
384         return 0;
385 }
386
387 /*
388  * End one "io" structure with a given error.
389  */
390 static void verity_finish_io(struct dm_verity_io *io, int error)
391 {
392         struct bio *bio = io->bio;
393         struct dm_verity *v = io->v;
394
395         bio->bi_end_io = io->orig_bi_end_io;
396         bio->bi_private = io->orig_bi_private;
397
398         if (io->io_vec != io->io_vec_inline)
399                 mempool_free(io->io_vec, v->vec_mempool);
400
401         mempool_free(io, v->io_mempool);
402
403         bio_endio(bio, error);
404 }
405
406 static void verity_work(struct work_struct *w)
407 {
408         struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
409
410         verity_finish_io(io, verity_verify_io(io));
411 }
412
413 static void verity_end_io(struct bio *bio, int error)
414 {
415         struct dm_verity_io *io = bio->bi_private;
416
417         if (error) {
418                 verity_finish_io(io, error);
419                 return;
420         }
421
422         INIT_WORK(&io->work, verity_work);
423         queue_work(io->v->verify_wq, &io->work);
424 }
425
426 /*
427  * Prefetch buffers for the specified io.
428  * The root buffer is not prefetched, it is assumed that it will be cached
429  * all the time.
430  */
431 static void verity_prefetch_io(struct dm_verity *v, struct dm_verity_io *io)
432 {
433         int i;
434
435         for (i = v->levels - 2; i >= 0; i--) {
436                 sector_t hash_block_start;
437                 sector_t hash_block_end;
438                 verity_hash_at_level(v, io->block, i, &hash_block_start, NULL);
439                 verity_hash_at_level(v, io->block + io->n_blocks - 1, i, &hash_block_end, NULL);
440                 if (!i) {
441                         unsigned cluster = ACCESS_ONCE(dm_verity_prefetch_cluster);
442
443                         cluster >>= v->data_dev_block_bits;
444                         if (unlikely(!cluster))
445                                 goto no_prefetch_cluster;
446
447                         if (unlikely(cluster & (cluster - 1)))
448                                 cluster = 1 << (fls(cluster) - 1);
449
450                         hash_block_start &= ~(sector_t)(cluster - 1);
451                         hash_block_end |= cluster - 1;
452                         if (unlikely(hash_block_end >= v->hash_blocks))
453                                 hash_block_end = v->hash_blocks - 1;
454                 }
455 no_prefetch_cluster:
456                 dm_bufio_prefetch(v->bufio, hash_block_start,
457                                   hash_block_end - hash_block_start + 1);
458         }
459 }
460
461 /*
462  * Bio map function. It allocates dm_verity_io structure and bio vector and
463  * fills them. Then it issues prefetches and the I/O.
464  */
465 static int verity_map(struct dm_target *ti, struct bio *bio,
466                       union map_info *map_context)
467 {
468         struct dm_verity *v = ti->private;
469         struct dm_verity_io *io;
470
471         bio->bi_bdev = v->data_dev->bdev;
472         bio->bi_sector = verity_map_sector(v, bio->bi_sector);
473
474         if (((unsigned)bio->bi_sector | bio_sectors(bio)) &
475             ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
476                 DMERR_LIMIT("unaligned io");
477                 return -EIO;
478         }
479
480         if ((bio->bi_sector + bio_sectors(bio)) >>
481             (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
482                 DMERR_LIMIT("io out of range");
483                 return -EIO;
484         }
485
486         if (bio_data_dir(bio) == WRITE)
487                 return -EIO;
488
489         io = mempool_alloc(v->io_mempool, GFP_NOIO);
490         io->v = v;
491         io->bio = bio;
492         io->orig_bi_end_io = bio->bi_end_io;
493         io->orig_bi_private = bio->bi_private;
494         io->block = bio->bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
495         io->n_blocks = bio->bi_size >> v->data_dev_block_bits;
496
497         bio->bi_end_io = verity_end_io;
498         bio->bi_private = io;
499         io->io_vec_size = bio->bi_vcnt - bio->bi_idx;
500         if (io->io_vec_size < DM_VERITY_IO_VEC_INLINE)
501                 io->io_vec = io->io_vec_inline;
502         else
503                 io->io_vec = mempool_alloc(v->vec_mempool, GFP_NOIO);
504         memcpy(io->io_vec, bio_iovec(bio),
505                io->io_vec_size * sizeof(struct bio_vec));
506
507         verity_prefetch_io(v, io);
508
509         generic_make_request(bio);
510
511         return DM_MAPIO_SUBMITTED;
512 }
513
514 /*
515  * Status: V (valid) or C (corruption found)
516  */
517 static int verity_status(struct dm_target *ti, status_type_t type,
518                          unsigned status_flags, char *result, unsigned maxlen)
519 {
520         struct dm_verity *v = ti->private;
521         unsigned sz = 0;
522         unsigned x;
523
524         switch (type) {
525         case STATUSTYPE_INFO:
526                 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
527                 break;
528         case STATUSTYPE_TABLE:
529                 DMEMIT("%u %s %s %u %u %llu %llu %s ",
530                         v->version,
531                         v->data_dev->name,
532                         v->hash_dev->name,
533                         1 << v->data_dev_block_bits,
534                         1 << v->hash_dev_block_bits,
535                         (unsigned long long)v->data_blocks,
536                         (unsigned long long)v->hash_start,
537                         v->alg_name
538                         );
539                 for (x = 0; x < v->digest_size; x++)
540                         DMEMIT("%02x", v->root_digest[x]);
541                 DMEMIT(" ");
542                 if (!v->salt_size)
543                         DMEMIT("-");
544                 else
545                         for (x = 0; x < v->salt_size; x++)
546                                 DMEMIT("%02x", v->salt[x]);
547                 break;
548         }
549
550         return 0;
551 }
552
553 static int verity_ioctl(struct dm_target *ti, unsigned cmd,
554                         unsigned long arg)
555 {
556         struct dm_verity *v = ti->private;
557         int r = 0;
558
559         if (v->data_start ||
560             ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
561                 r = scsi_verify_blk_ioctl(NULL, cmd);
562
563         return r ? : __blkdev_driver_ioctl(v->data_dev->bdev, v->data_dev->mode,
564                                      cmd, arg);
565 }
566
567 static int verity_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
568                         struct bio_vec *biovec, int max_size)
569 {
570         struct dm_verity *v = ti->private;
571         struct request_queue *q = bdev_get_queue(v->data_dev->bdev);
572
573         if (!q->merge_bvec_fn)
574                 return max_size;
575
576         bvm->bi_bdev = v->data_dev->bdev;
577         bvm->bi_sector = verity_map_sector(v, bvm->bi_sector);
578
579         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
580 }
581
582 static int verity_iterate_devices(struct dm_target *ti,
583                                   iterate_devices_callout_fn fn, void *data)
584 {
585         struct dm_verity *v = ti->private;
586
587         return fn(ti, v->data_dev, v->data_start, ti->len, data);
588 }
589
590 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
591 {
592         struct dm_verity *v = ti->private;
593
594         if (limits->logical_block_size < 1 << v->data_dev_block_bits)
595                 limits->logical_block_size = 1 << v->data_dev_block_bits;
596
597         if (limits->physical_block_size < 1 << v->data_dev_block_bits)
598                 limits->physical_block_size = 1 << v->data_dev_block_bits;
599
600         blk_limits_io_min(limits, limits->logical_block_size);
601 }
602
603 static void verity_dtr(struct dm_target *ti)
604 {
605         struct dm_verity *v = ti->private;
606
607         if (v->verify_wq)
608                 destroy_workqueue(v->verify_wq);
609
610         if (v->vec_mempool)
611                 mempool_destroy(v->vec_mempool);
612
613         if (v->io_mempool)
614                 mempool_destroy(v->io_mempool);
615
616         if (v->bufio)
617                 dm_bufio_client_destroy(v->bufio);
618
619         kfree(v->salt);
620         kfree(v->root_digest);
621
622         if (v->tfm)
623                 crypto_free_shash(v->tfm);
624
625         kfree(v->alg_name);
626
627         if (v->hash_dev)
628                 dm_put_device(ti, v->hash_dev);
629
630         if (v->data_dev)
631                 dm_put_device(ti, v->data_dev);
632
633         kfree(v);
634 }
635
636 /*
637  * Target parameters:
638  *      <version>       The current format is version 1.
639  *                      Vsn 0 is compatible with original Chromium OS releases.
640  *      <data device>
641  *      <hash device>
642  *      <data block size>
643  *      <hash block size>
644  *      <the number of data blocks>
645  *      <hash start block>
646  *      <algorithm>
647  *      <digest>
648  *      <salt>          Hex string or "-" if no salt.
649  */
650 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
651 {
652         struct dm_verity *v;
653         unsigned num;
654         unsigned long long num_ll;
655         int r;
656         int i;
657         sector_t hash_position;
658         char dummy;
659
660         v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
661         if (!v) {
662                 ti->error = "Cannot allocate verity structure";
663                 return -ENOMEM;
664         }
665         ti->private = v;
666         v->ti = ti;
667
668         if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
669                 ti->error = "Device must be readonly";
670                 r = -EINVAL;
671                 goto bad;
672         }
673
674         if (argc != 10) {
675                 ti->error = "Invalid argument count: exactly 10 arguments required";
676                 r = -EINVAL;
677                 goto bad;
678         }
679
680         if (sscanf(argv[0], "%d%c", &num, &dummy) != 1 ||
681             num < 0 || num > 1) {
682                 ti->error = "Invalid version";
683                 r = -EINVAL;
684                 goto bad;
685         }
686         v->version = num;
687
688         r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
689         if (r) {
690                 ti->error = "Data device lookup failed";
691                 goto bad;
692         }
693
694         r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
695         if (r) {
696                 ti->error = "Data device lookup failed";
697                 goto bad;
698         }
699
700         if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
701             !num || (num & (num - 1)) ||
702             num < bdev_logical_block_size(v->data_dev->bdev) ||
703             num > PAGE_SIZE) {
704                 ti->error = "Invalid data device block size";
705                 r = -EINVAL;
706                 goto bad;
707         }
708         v->data_dev_block_bits = ffs(num) - 1;
709
710         if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
711             !num || (num & (num - 1)) ||
712             num < bdev_logical_block_size(v->hash_dev->bdev) ||
713             num > INT_MAX) {
714                 ti->error = "Invalid hash device block size";
715                 r = -EINVAL;
716                 goto bad;
717         }
718         v->hash_dev_block_bits = ffs(num) - 1;
719
720         if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
721             (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
722             >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
723                 ti->error = "Invalid data blocks";
724                 r = -EINVAL;
725                 goto bad;
726         }
727         v->data_blocks = num_ll;
728
729         if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
730                 ti->error = "Data device is too small";
731                 r = -EINVAL;
732                 goto bad;
733         }
734
735         if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
736             (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
737             >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
738                 ti->error = "Invalid hash start";
739                 r = -EINVAL;
740                 goto bad;
741         }
742         v->hash_start = num_ll;
743
744         v->alg_name = kstrdup(argv[7], GFP_KERNEL);
745         if (!v->alg_name) {
746                 ti->error = "Cannot allocate algorithm name";
747                 r = -ENOMEM;
748                 goto bad;
749         }
750
751         v->tfm = crypto_alloc_shash(v->alg_name, 0, 0);
752         if (IS_ERR(v->tfm)) {
753                 ti->error = "Cannot initialize hash function";
754                 r = PTR_ERR(v->tfm);
755                 v->tfm = NULL;
756                 goto bad;
757         }
758         v->digest_size = crypto_shash_digestsize(v->tfm);
759         if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
760                 ti->error = "Digest size too big";
761                 r = -EINVAL;
762                 goto bad;
763         }
764         v->shash_descsize =
765                 sizeof(struct shash_desc) + crypto_shash_descsize(v->tfm);
766
767         v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
768         if (!v->root_digest) {
769                 ti->error = "Cannot allocate root digest";
770                 r = -ENOMEM;
771                 goto bad;
772         }
773         if (strlen(argv[8]) != v->digest_size * 2 ||
774             hex2bin(v->root_digest, argv[8], v->digest_size)) {
775                 ti->error = "Invalid root digest";
776                 r = -EINVAL;
777                 goto bad;
778         }
779
780         if (strcmp(argv[9], "-")) {
781                 v->salt_size = strlen(argv[9]) / 2;
782                 v->salt = kmalloc(v->salt_size, GFP_KERNEL);
783                 if (!v->salt) {
784                         ti->error = "Cannot allocate salt";
785                         r = -ENOMEM;
786                         goto bad;
787                 }
788                 if (strlen(argv[9]) != v->salt_size * 2 ||
789                     hex2bin(v->salt, argv[9], v->salt_size)) {
790                         ti->error = "Invalid salt";
791                         r = -EINVAL;
792                         goto bad;
793                 }
794         }
795
796         v->hash_per_block_bits =
797                 fls((1 << v->hash_dev_block_bits) / v->digest_size) - 1;
798
799         v->levels = 0;
800         if (v->data_blocks)
801                 while (v->hash_per_block_bits * v->levels < 64 &&
802                        (unsigned long long)(v->data_blocks - 1) >>
803                        (v->hash_per_block_bits * v->levels))
804                         v->levels++;
805
806         if (v->levels > DM_VERITY_MAX_LEVELS) {
807                 ti->error = "Too many tree levels";
808                 r = -E2BIG;
809                 goto bad;
810         }
811
812         hash_position = v->hash_start;
813         for (i = v->levels - 1; i >= 0; i--) {
814                 sector_t s;
815                 v->hash_level_block[i] = hash_position;
816                 s = verity_position_at_level(v, v->data_blocks, i);
817                 s = (s >> v->hash_per_block_bits) +
818                     !!(s & ((1 << v->hash_per_block_bits) - 1));
819                 if (hash_position + s < hash_position) {
820                         ti->error = "Hash device offset overflow";
821                         r = -E2BIG;
822                         goto bad;
823                 }
824                 hash_position += s;
825         }
826         v->hash_blocks = hash_position;
827
828         v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
829                 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
830                 dm_bufio_alloc_callback, NULL);
831         if (IS_ERR(v->bufio)) {
832                 ti->error = "Cannot initialize dm-bufio";
833                 r = PTR_ERR(v->bufio);
834                 v->bufio = NULL;
835                 goto bad;
836         }
837
838         if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
839                 ti->error = "Hash device is too small";
840                 r = -E2BIG;
841                 goto bad;
842         }
843
844         v->io_mempool = mempool_create_kmalloc_pool(DM_VERITY_MEMPOOL_SIZE,
845           sizeof(struct dm_verity_io) + v->shash_descsize + v->digest_size * 2);
846         if (!v->io_mempool) {
847                 ti->error = "Cannot allocate io mempool";
848                 r = -ENOMEM;
849                 goto bad;
850         }
851
852         v->vec_mempool = mempool_create_kmalloc_pool(DM_VERITY_MEMPOOL_SIZE,
853                                         BIO_MAX_PAGES * sizeof(struct bio_vec));
854         if (!v->vec_mempool) {
855                 ti->error = "Cannot allocate vector mempool";
856                 r = -ENOMEM;
857                 goto bad;
858         }
859
860         /* WQ_UNBOUND greatly improves performance when running on ramdisk */
861         v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
862         if (!v->verify_wq) {
863                 ti->error = "Cannot allocate workqueue";
864                 r = -ENOMEM;
865                 goto bad;
866         }
867
868         return 0;
869
870 bad:
871         verity_dtr(ti);
872
873         return r;
874 }
875
876 static struct target_type verity_target = {
877         .name           = "verity",
878         .version        = {1, 0, 0},
879         .module         = THIS_MODULE,
880         .ctr            = verity_ctr,
881         .dtr            = verity_dtr,
882         .map            = verity_map,
883         .status         = verity_status,
884         .ioctl          = verity_ioctl,
885         .merge          = verity_merge,
886         .iterate_devices = verity_iterate_devices,
887         .io_hints       = verity_io_hints,
888 };
889
890 static int __init dm_verity_init(void)
891 {
892         int r;
893
894         r = dm_register_target(&verity_target);
895         if (r < 0)
896                 DMERR("register failed %d", r);
897
898         return r;
899 }
900
901 static void __exit dm_verity_exit(void)
902 {
903         dm_unregister_target(&verity_target);
904 }
905
906 module_init(dm_verity_init);
907 module_exit(dm_verity_exit);
908
909 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
910 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
911 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
912 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
913 MODULE_LICENSE("GPL");