dm thin: set pool read-only if breaking_sharing fails block allocation
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX   "thin"
20
21 /*
22  * Tunable constants
23  */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30                 "A percentage of time allocated for copy on write");
31
32 /*
33  * The block size of the device holding pool data must be
34  * between 64KB and 1GB.
35  */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40  * Device id is restricted to 24 bits.
41  */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45  * How do we handle breaking sharing of data blocks?
46  * =================================================
47  *
48  * We use a standard copy-on-write btree to store the mappings for the
49  * devices (note I'm talking about copy-on-write of the metadata here, not
50  * the data).  When you take an internal snapshot you clone the root node
51  * of the origin btree.  After this there is no concept of an origin or a
52  * snapshot.  They are just two device trees that happen to point to the
53  * same data blocks.
54  *
55  * When we get a write in we decide if it's to a shared data block using
56  * some timestamp magic.  If it is, we have to break sharing.
57  *
58  * Let's say we write to a shared block in what was the origin.  The
59  * steps are:
60  *
61  * i) plug io further to this physical block. (see bio_prison code).
62  *
63  * ii) quiesce any read io to that shared data block.  Obviously
64  * including all devices that share this block.  (see dm_deferred_set code)
65  *
66  * iii) copy the data block to a newly allocate block.  This step can be
67  * missed out if the io covers the block. (schedule_copy).
68  *
69  * iv) insert the new mapping into the origin's btree
70  * (process_prepared_mapping).  This act of inserting breaks some
71  * sharing of btree nodes between the two devices.  Breaking sharing only
72  * effects the btree of that specific device.  Btrees for the other
73  * devices that share the block never change.  The btree for the origin
74  * device as it was after the last commit is untouched, ie. we're using
75  * persistent data structures in the functional programming sense.
76  *
77  * v) unplug io to this physical block, including the io that triggered
78  * the breaking of sharing.
79  *
80  * Steps (ii) and (iii) occur in parallel.
81  *
82  * The metadata _doesn't_ need to be committed before the io continues.  We
83  * get away with this because the io is always written to a _new_ block.
84  * If there's a crash, then:
85  *
86  * - The origin mapping will point to the old origin block (the shared
87  * one).  This will contain the data as it was before the io that triggered
88  * the breaking of sharing came in.
89  *
90  * - The snap mapping still points to the old block.  As it would after
91  * the commit.
92  *
93  * The downside of this scheme is the timestamp magic isn't perfect, and
94  * will continue to think that data block in the snapshot device is shared
95  * even after the write to the origin has broken sharing.  I suspect data
96  * blocks will typically be shared by many different devices, so we're
97  * breaking sharing n + 1 times, rather than n, where n is the number of
98  * devices that reference this data block.  At the moment I think the
99  * benefits far, far outweigh the disadvantages.
100  */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105  * Key building.
106  */
107 static void build_data_key(struct dm_thin_device *td,
108                            dm_block_t b, struct dm_cell_key *key)
109 {
110         key->virtual = 0;
111         key->dev = dm_thin_dev_id(td);
112         key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116                               struct dm_cell_key *key)
117 {
118         key->virtual = 1;
119         key->dev = dm_thin_dev_id(td);
120         key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126  * A pool device ties together a metadata device and a data device.  It
127  * also provides the interface for creating and destroying internal
128  * devices.
129  */
130 struct dm_thin_new_mapping;
131
132 /*
133  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
134  */
135 enum pool_mode {
136         PM_WRITE,               /* metadata may be changed */
137         PM_READ_ONLY,           /* metadata may not be changed */
138         PM_FAIL,                /* all I/O fails */
139 };
140
141 struct pool_features {
142         enum pool_mode mode;
143
144         bool zero_new_blocks:1;
145         bool discard_enabled:1;
146         bool discard_passdown:1;
147 };
148
149 struct thin_c;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
152
153 struct pool {
154         struct list_head list;
155         struct dm_target *ti;   /* Only set if a pool target is bound */
156
157         struct mapped_device *pool_md;
158         struct block_device *md_dev;
159         struct dm_pool_metadata *pmd;
160
161         dm_block_t low_water_blocks;
162         uint32_t sectors_per_block;
163         int sectors_per_block_shift;
164
165         struct pool_features pf;
166         unsigned low_water_triggered:1; /* A dm event has been sent */
167         unsigned no_free_space:1;       /* A -ENOSPC warning has been issued */
168
169         struct dm_bio_prison *prison;
170         struct dm_kcopyd_client *copier;
171
172         struct workqueue_struct *wq;
173         struct work_struct worker;
174         struct delayed_work waker;
175
176         unsigned long last_commit_jiffies;
177         unsigned ref_count;
178
179         spinlock_t lock;
180         struct bio_list deferred_bios;
181         struct bio_list deferred_flush_bios;
182         struct list_head prepared_mappings;
183         struct list_head prepared_discards;
184
185         struct bio_list retry_on_resume_list;
186
187         struct dm_deferred_set *shared_read_ds;
188         struct dm_deferred_set *all_io_ds;
189
190         struct dm_thin_new_mapping *next_mapping;
191         mempool_t *mapping_pool;
192
193         process_bio_fn process_bio;
194         process_bio_fn process_discard;
195
196         process_mapping_fn process_prepared_mapping;
197         process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
202
203 /*
204  * Target context for a pool.
205  */
206 struct pool_c {
207         struct dm_target *ti;
208         struct pool *pool;
209         struct dm_dev *data_dev;
210         struct dm_dev *metadata_dev;
211         struct dm_target_callbacks callbacks;
212
213         dm_block_t low_water_blocks;
214         struct pool_features requested_pf; /* Features requested during table load */
215         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
216 };
217
218 /*
219  * Target context for a thin.
220  */
221 struct thin_c {
222         struct dm_dev *pool_dev;
223         struct dm_dev *origin_dev;
224         dm_thin_id dev_id;
225
226         struct pool *pool;
227         struct dm_thin_device *td;
228 };
229
230 /*----------------------------------------------------------------*/
231
232 /*
233  * wake_worker() is used when new work is queued and when pool_resume is
234  * ready to continue deferred IO processing.
235  */
236 static void wake_worker(struct pool *pool)
237 {
238         queue_work(pool->wq, &pool->worker);
239 }
240
241 /*----------------------------------------------------------------*/
242
243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
244                       struct dm_bio_prison_cell **cell_result)
245 {
246         int r;
247         struct dm_bio_prison_cell *cell_prealloc;
248
249         /*
250          * Allocate a cell from the prison's mempool.
251          * This might block but it can't fail.
252          */
253         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
254
255         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
256         if (r)
257                 /*
258                  * We reused an old cell; we can get rid of
259                  * the new one.
260                  */
261                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
262
263         return r;
264 }
265
266 static void cell_release(struct pool *pool,
267                          struct dm_bio_prison_cell *cell,
268                          struct bio_list *bios)
269 {
270         dm_cell_release(pool->prison, cell, bios);
271         dm_bio_prison_free_cell(pool->prison, cell);
272 }
273
274 static void cell_release_no_holder(struct pool *pool,
275                                    struct dm_bio_prison_cell *cell,
276                                    struct bio_list *bios)
277 {
278         dm_cell_release_no_holder(pool->prison, cell, bios);
279         dm_bio_prison_free_cell(pool->prison, cell);
280 }
281
282 static void cell_defer_no_holder_no_free(struct thin_c *tc,
283                                          struct dm_bio_prison_cell *cell)
284 {
285         struct pool *pool = tc->pool;
286         unsigned long flags;
287
288         spin_lock_irqsave(&pool->lock, flags);
289         dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
290         spin_unlock_irqrestore(&pool->lock, flags);
291
292         wake_worker(pool);
293 }
294
295 static void cell_error(struct pool *pool,
296                        struct dm_bio_prison_cell *cell)
297 {
298         dm_cell_error(pool->prison, cell);
299         dm_bio_prison_free_cell(pool->prison, cell);
300 }
301
302 /*----------------------------------------------------------------*/
303
304 /*
305  * A global list of pools that uses a struct mapped_device as a key.
306  */
307 static struct dm_thin_pool_table {
308         struct mutex mutex;
309         struct list_head pools;
310 } dm_thin_pool_table;
311
312 static void pool_table_init(void)
313 {
314         mutex_init(&dm_thin_pool_table.mutex);
315         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
316 }
317
318 static void __pool_table_insert(struct pool *pool)
319 {
320         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
321         list_add(&pool->list, &dm_thin_pool_table.pools);
322 }
323
324 static void __pool_table_remove(struct pool *pool)
325 {
326         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
327         list_del(&pool->list);
328 }
329
330 static struct pool *__pool_table_lookup(struct mapped_device *md)
331 {
332         struct pool *pool = NULL, *tmp;
333
334         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
335
336         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
337                 if (tmp->pool_md == md) {
338                         pool = tmp;
339                         break;
340                 }
341         }
342
343         return pool;
344 }
345
346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
347 {
348         struct pool *pool = NULL, *tmp;
349
350         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351
352         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
353                 if (tmp->md_dev == md_dev) {
354                         pool = tmp;
355                         break;
356                 }
357         }
358
359         return pool;
360 }
361
362 /*----------------------------------------------------------------*/
363
364 struct dm_thin_endio_hook {
365         struct thin_c *tc;
366         struct dm_deferred_entry *shared_read_entry;
367         struct dm_deferred_entry *all_io_entry;
368         struct dm_thin_new_mapping *overwrite_mapping;
369 };
370
371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
372 {
373         struct bio *bio;
374         struct bio_list bios;
375
376         bio_list_init(&bios);
377         bio_list_merge(&bios, master);
378         bio_list_init(master);
379
380         while ((bio = bio_list_pop(&bios))) {
381                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
382
383                 if (h->tc == tc)
384                         bio_endio(bio, DM_ENDIO_REQUEUE);
385                 else
386                         bio_list_add(master, bio);
387         }
388 }
389
390 static void requeue_io(struct thin_c *tc)
391 {
392         struct pool *pool = tc->pool;
393         unsigned long flags;
394
395         spin_lock_irqsave(&pool->lock, flags);
396         __requeue_bio_list(tc, &pool->deferred_bios);
397         __requeue_bio_list(tc, &pool->retry_on_resume_list);
398         spin_unlock_irqrestore(&pool->lock, flags);
399 }
400
401 /*
402  * This section of code contains the logic for processing a thin device's IO.
403  * Much of the code depends on pool object resources (lists, workqueues, etc)
404  * but most is exclusively called from the thin target rather than the thin-pool
405  * target.
406  */
407
408 static bool block_size_is_power_of_two(struct pool *pool)
409 {
410         return pool->sectors_per_block_shift >= 0;
411 }
412
413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
414 {
415         struct pool *pool = tc->pool;
416         sector_t block_nr = bio->bi_sector;
417
418         if (block_size_is_power_of_two(pool))
419                 block_nr >>= pool->sectors_per_block_shift;
420         else
421                 (void) sector_div(block_nr, pool->sectors_per_block);
422
423         return block_nr;
424 }
425
426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
427 {
428         struct pool *pool = tc->pool;
429         sector_t bi_sector = bio->bi_sector;
430
431         bio->bi_bdev = tc->pool_dev->bdev;
432         if (block_size_is_power_of_two(pool))
433                 bio->bi_sector = (block << pool->sectors_per_block_shift) |
434                                 (bi_sector & (pool->sectors_per_block - 1));
435         else
436                 bio->bi_sector = (block * pool->sectors_per_block) +
437                                  sector_div(bi_sector, pool->sectors_per_block);
438 }
439
440 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
441 {
442         bio->bi_bdev = tc->origin_dev->bdev;
443 }
444
445 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
446 {
447         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
448                 dm_thin_changed_this_transaction(tc->td);
449 }
450
451 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
452 {
453         struct dm_thin_endio_hook *h;
454
455         if (bio->bi_rw & REQ_DISCARD)
456                 return;
457
458         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
459         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
460 }
461
462 static void issue(struct thin_c *tc, struct bio *bio)
463 {
464         struct pool *pool = tc->pool;
465         unsigned long flags;
466
467         if (!bio_triggers_commit(tc, bio)) {
468                 generic_make_request(bio);
469                 return;
470         }
471
472         /*
473          * Complete bio with an error if earlier I/O caused changes to
474          * the metadata that can't be committed e.g, due to I/O errors
475          * on the metadata device.
476          */
477         if (dm_thin_aborted_changes(tc->td)) {
478                 bio_io_error(bio);
479                 return;
480         }
481
482         /*
483          * Batch together any bios that trigger commits and then issue a
484          * single commit for them in process_deferred_bios().
485          */
486         spin_lock_irqsave(&pool->lock, flags);
487         bio_list_add(&pool->deferred_flush_bios, bio);
488         spin_unlock_irqrestore(&pool->lock, flags);
489 }
490
491 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
492 {
493         remap_to_origin(tc, bio);
494         issue(tc, bio);
495 }
496
497 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
498                             dm_block_t block)
499 {
500         remap(tc, bio, block);
501         issue(tc, bio);
502 }
503
504 /*----------------------------------------------------------------*/
505
506 /*
507  * Bio endio functions.
508  */
509 struct dm_thin_new_mapping {
510         struct list_head list;
511
512         unsigned quiesced:1;
513         unsigned prepared:1;
514         unsigned pass_discard:1;
515
516         struct thin_c *tc;
517         dm_block_t virt_block;
518         dm_block_t data_block;
519         struct dm_bio_prison_cell *cell, *cell2;
520         int err;
521
522         /*
523          * If the bio covers the whole area of a block then we can avoid
524          * zeroing or copying.  Instead this bio is hooked.  The bio will
525          * still be in the cell, so care has to be taken to avoid issuing
526          * the bio twice.
527          */
528         struct bio *bio;
529         bio_end_io_t *saved_bi_end_io;
530 };
531
532 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
533 {
534         struct pool *pool = m->tc->pool;
535
536         if (m->quiesced && m->prepared) {
537                 list_add(&m->list, &pool->prepared_mappings);
538                 wake_worker(pool);
539         }
540 }
541
542 static void copy_complete(int read_err, unsigned long write_err, void *context)
543 {
544         unsigned long flags;
545         struct dm_thin_new_mapping *m = context;
546         struct pool *pool = m->tc->pool;
547
548         m->err = read_err || write_err ? -EIO : 0;
549
550         spin_lock_irqsave(&pool->lock, flags);
551         m->prepared = 1;
552         __maybe_add_mapping(m);
553         spin_unlock_irqrestore(&pool->lock, flags);
554 }
555
556 static void overwrite_endio(struct bio *bio, int err)
557 {
558         unsigned long flags;
559         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
560         struct dm_thin_new_mapping *m = h->overwrite_mapping;
561         struct pool *pool = m->tc->pool;
562
563         m->err = err;
564
565         spin_lock_irqsave(&pool->lock, flags);
566         m->prepared = 1;
567         __maybe_add_mapping(m);
568         spin_unlock_irqrestore(&pool->lock, flags);
569 }
570
571 /*----------------------------------------------------------------*/
572
573 /*
574  * Workqueue.
575  */
576
577 /*
578  * Prepared mapping jobs.
579  */
580
581 /*
582  * This sends the bios in the cell back to the deferred_bios list.
583  */
584 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
585 {
586         struct pool *pool = tc->pool;
587         unsigned long flags;
588
589         spin_lock_irqsave(&pool->lock, flags);
590         cell_release(pool, cell, &pool->deferred_bios);
591         spin_unlock_irqrestore(&tc->pool->lock, flags);
592
593         wake_worker(pool);
594 }
595
596 /*
597  * Same as cell_defer above, except it omits the original holder of the cell.
598  */
599 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
600 {
601         struct pool *pool = tc->pool;
602         unsigned long flags;
603
604         spin_lock_irqsave(&pool->lock, flags);
605         cell_release_no_holder(pool, cell, &pool->deferred_bios);
606         spin_unlock_irqrestore(&pool->lock, flags);
607
608         wake_worker(pool);
609 }
610
611 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
612 {
613         if (m->bio)
614                 m->bio->bi_end_io = m->saved_bi_end_io;
615         cell_error(m->tc->pool, m->cell);
616         list_del(&m->list);
617         mempool_free(m, m->tc->pool->mapping_pool);
618 }
619
620 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
621 {
622         struct thin_c *tc = m->tc;
623         struct pool *pool = tc->pool;
624         struct bio *bio;
625         int r;
626
627         bio = m->bio;
628         if (bio)
629                 bio->bi_end_io = m->saved_bi_end_io;
630
631         if (m->err) {
632                 cell_error(pool, m->cell);
633                 goto out;
634         }
635
636         /*
637          * Commit the prepared block into the mapping btree.
638          * Any I/O for this block arriving after this point will get
639          * remapped to it directly.
640          */
641         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
642         if (r) {
643                 DMERR_LIMIT("dm_thin_insert_block() failed");
644                 cell_error(pool, m->cell);
645                 goto out;
646         }
647
648         /*
649          * Release any bios held while the block was being provisioned.
650          * If we are processing a write bio that completely covers the block,
651          * we already processed it so can ignore it now when processing
652          * the bios in the cell.
653          */
654         if (bio) {
655                 cell_defer_no_holder(tc, m->cell);
656                 bio_endio(bio, 0);
657         } else
658                 cell_defer(tc, m->cell);
659
660 out:
661         list_del(&m->list);
662         mempool_free(m, pool->mapping_pool);
663 }
664
665 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
666 {
667         struct thin_c *tc = m->tc;
668
669         bio_io_error(m->bio);
670         cell_defer_no_holder(tc, m->cell);
671         cell_defer_no_holder(tc, m->cell2);
672         mempool_free(m, tc->pool->mapping_pool);
673 }
674
675 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
676 {
677         struct thin_c *tc = m->tc;
678
679         inc_all_io_entry(tc->pool, m->bio);
680         cell_defer_no_holder(tc, m->cell);
681         cell_defer_no_holder(tc, m->cell2);
682
683         if (m->pass_discard)
684                 remap_and_issue(tc, m->bio, m->data_block);
685         else
686                 bio_endio(m->bio, 0);
687
688         mempool_free(m, tc->pool->mapping_pool);
689 }
690
691 static void process_prepared_discard(struct dm_thin_new_mapping *m)
692 {
693         int r;
694         struct thin_c *tc = m->tc;
695
696         r = dm_thin_remove_block(tc->td, m->virt_block);
697         if (r)
698                 DMERR_LIMIT("dm_thin_remove_block() failed");
699
700         process_prepared_discard_passdown(m);
701 }
702
703 static void process_prepared(struct pool *pool, struct list_head *head,
704                              process_mapping_fn *fn)
705 {
706         unsigned long flags;
707         struct list_head maps;
708         struct dm_thin_new_mapping *m, *tmp;
709
710         INIT_LIST_HEAD(&maps);
711         spin_lock_irqsave(&pool->lock, flags);
712         list_splice_init(head, &maps);
713         spin_unlock_irqrestore(&pool->lock, flags);
714
715         list_for_each_entry_safe(m, tmp, &maps, list)
716                 (*fn)(m);
717 }
718
719 /*
720  * Deferred bio jobs.
721  */
722 static int io_overlaps_block(struct pool *pool, struct bio *bio)
723 {
724         return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
725 }
726
727 static int io_overwrites_block(struct pool *pool, struct bio *bio)
728 {
729         return (bio_data_dir(bio) == WRITE) &&
730                 io_overlaps_block(pool, bio);
731 }
732
733 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
734                                bio_end_io_t *fn)
735 {
736         *save = bio->bi_end_io;
737         bio->bi_end_io = fn;
738 }
739
740 static int ensure_next_mapping(struct pool *pool)
741 {
742         if (pool->next_mapping)
743                 return 0;
744
745         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
746
747         return pool->next_mapping ? 0 : -ENOMEM;
748 }
749
750 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
751 {
752         struct dm_thin_new_mapping *r = pool->next_mapping;
753
754         BUG_ON(!pool->next_mapping);
755
756         pool->next_mapping = NULL;
757
758         return r;
759 }
760
761 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
762                           struct dm_dev *origin, dm_block_t data_origin,
763                           dm_block_t data_dest,
764                           struct dm_bio_prison_cell *cell, struct bio *bio)
765 {
766         int r;
767         struct pool *pool = tc->pool;
768         struct dm_thin_new_mapping *m = get_next_mapping(pool);
769
770         INIT_LIST_HEAD(&m->list);
771         m->quiesced = 0;
772         m->prepared = 0;
773         m->tc = tc;
774         m->virt_block = virt_block;
775         m->data_block = data_dest;
776         m->cell = cell;
777         m->err = 0;
778         m->bio = NULL;
779
780         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
781                 m->quiesced = 1;
782
783         /*
784          * IO to pool_dev remaps to the pool target's data_dev.
785          *
786          * If the whole block of data is being overwritten, we can issue the
787          * bio immediately. Otherwise we use kcopyd to clone the data first.
788          */
789         if (io_overwrites_block(pool, bio)) {
790                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
791
792                 h->overwrite_mapping = m;
793                 m->bio = bio;
794                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
795                 inc_all_io_entry(pool, bio);
796                 remap_and_issue(tc, bio, data_dest);
797         } else {
798                 struct dm_io_region from, to;
799
800                 from.bdev = origin->bdev;
801                 from.sector = data_origin * pool->sectors_per_block;
802                 from.count = pool->sectors_per_block;
803
804                 to.bdev = tc->pool_dev->bdev;
805                 to.sector = data_dest * pool->sectors_per_block;
806                 to.count = pool->sectors_per_block;
807
808                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
809                                    0, copy_complete, m);
810                 if (r < 0) {
811                         mempool_free(m, pool->mapping_pool);
812                         DMERR_LIMIT("dm_kcopyd_copy() failed");
813                         cell_error(pool, cell);
814                 }
815         }
816 }
817
818 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
819                                    dm_block_t data_origin, dm_block_t data_dest,
820                                    struct dm_bio_prison_cell *cell, struct bio *bio)
821 {
822         schedule_copy(tc, virt_block, tc->pool_dev,
823                       data_origin, data_dest, cell, bio);
824 }
825
826 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
827                                    dm_block_t data_dest,
828                                    struct dm_bio_prison_cell *cell, struct bio *bio)
829 {
830         schedule_copy(tc, virt_block, tc->origin_dev,
831                       virt_block, data_dest, cell, bio);
832 }
833
834 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
835                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
836                           struct bio *bio)
837 {
838         struct pool *pool = tc->pool;
839         struct dm_thin_new_mapping *m = get_next_mapping(pool);
840
841         INIT_LIST_HEAD(&m->list);
842         m->quiesced = 1;
843         m->prepared = 0;
844         m->tc = tc;
845         m->virt_block = virt_block;
846         m->data_block = data_block;
847         m->cell = cell;
848         m->err = 0;
849         m->bio = NULL;
850
851         /*
852          * If the whole block of data is being overwritten or we are not
853          * zeroing pre-existing data, we can issue the bio immediately.
854          * Otherwise we use kcopyd to zero the data first.
855          */
856         if (!pool->pf.zero_new_blocks)
857                 process_prepared_mapping(m);
858
859         else if (io_overwrites_block(pool, bio)) {
860                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
861
862                 h->overwrite_mapping = m;
863                 m->bio = bio;
864                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
865                 inc_all_io_entry(pool, bio);
866                 remap_and_issue(tc, bio, data_block);
867         } else {
868                 int r;
869                 struct dm_io_region to;
870
871                 to.bdev = tc->pool_dev->bdev;
872                 to.sector = data_block * pool->sectors_per_block;
873                 to.count = pool->sectors_per_block;
874
875                 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
876                 if (r < 0) {
877                         mempool_free(m, pool->mapping_pool);
878                         DMERR_LIMIT("dm_kcopyd_zero() failed");
879                         cell_error(pool, cell);
880                 }
881         }
882 }
883
884 static int commit(struct pool *pool)
885 {
886         int r;
887
888         r = dm_pool_commit_metadata(pool->pmd);
889         if (r)
890                 DMERR_LIMIT("%s: commit failed: error = %d",
891                             dm_device_name(pool->pool_md), r);
892
893         return r;
894 }
895
896 /*
897  * A non-zero return indicates read_only or fail_io mode.
898  * Many callers don't care about the return value.
899  */
900 static int commit_or_fallback(struct pool *pool)
901 {
902         int r;
903
904         if (get_pool_mode(pool) != PM_WRITE)
905                 return -EINVAL;
906
907         r = commit(pool);
908         if (r)
909                 set_pool_mode(pool, PM_READ_ONLY);
910
911         return r;
912 }
913
914 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
915 {
916         int r;
917         dm_block_t free_blocks;
918         unsigned long flags;
919         struct pool *pool = tc->pool;
920
921         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
922         if (r)
923                 return r;
924
925         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
926                 DMWARN("%s: reached low water mark for data device: sending event.",
927                        dm_device_name(pool->pool_md));
928                 spin_lock_irqsave(&pool->lock, flags);
929                 pool->low_water_triggered = 1;
930                 spin_unlock_irqrestore(&pool->lock, flags);
931                 dm_table_event(pool->ti->table);
932         }
933
934         if (!free_blocks) {
935                 if (pool->no_free_space)
936                         return -ENOSPC;
937                 else {
938                         /*
939                          * Try to commit to see if that will free up some
940                          * more space.
941                          */
942                         (void) commit_or_fallback(pool);
943
944                         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
945                         if (r)
946                                 return r;
947
948                         /*
949                          * If we still have no space we set a flag to avoid
950                          * doing all this checking and return -ENOSPC.
951                          */
952                         if (!free_blocks) {
953                                 DMWARN("%s: no free space available.",
954                                        dm_device_name(pool->pool_md));
955                                 spin_lock_irqsave(&pool->lock, flags);
956                                 pool->no_free_space = 1;
957                                 spin_unlock_irqrestore(&pool->lock, flags);
958                                 return -ENOSPC;
959                         }
960                 }
961         }
962
963         r = dm_pool_alloc_data_block(pool->pmd, result);
964         if (r)
965                 return r;
966
967         return 0;
968 }
969
970 /*
971  * If we have run out of space, queue bios until the device is
972  * resumed, presumably after having been reloaded with more space.
973  */
974 static void retry_on_resume(struct bio *bio)
975 {
976         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
977         struct thin_c *tc = h->tc;
978         struct pool *pool = tc->pool;
979         unsigned long flags;
980
981         spin_lock_irqsave(&pool->lock, flags);
982         bio_list_add(&pool->retry_on_resume_list, bio);
983         spin_unlock_irqrestore(&pool->lock, flags);
984 }
985
986 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell)
987 {
988         struct bio *bio;
989         struct bio_list bios;
990
991         bio_list_init(&bios);
992         cell_release(pool, cell, &bios);
993
994         while ((bio = bio_list_pop(&bios)))
995                 retry_on_resume(bio);
996 }
997
998 static void process_discard(struct thin_c *tc, struct bio *bio)
999 {
1000         int r;
1001         unsigned long flags;
1002         struct pool *pool = tc->pool;
1003         struct dm_bio_prison_cell *cell, *cell2;
1004         struct dm_cell_key key, key2;
1005         dm_block_t block = get_bio_block(tc, bio);
1006         struct dm_thin_lookup_result lookup_result;
1007         struct dm_thin_new_mapping *m;
1008
1009         build_virtual_key(tc->td, block, &key);
1010         if (bio_detain(tc->pool, &key, bio, &cell))
1011                 return;
1012
1013         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1014         switch (r) {
1015         case 0:
1016                 /*
1017                  * Check nobody is fiddling with this pool block.  This can
1018                  * happen if someone's in the process of breaking sharing
1019                  * on this block.
1020                  */
1021                 build_data_key(tc->td, lookup_result.block, &key2);
1022                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1023                         cell_defer_no_holder(tc, cell);
1024                         break;
1025                 }
1026
1027                 if (io_overlaps_block(pool, bio)) {
1028                         /*
1029                          * IO may still be going to the destination block.  We must
1030                          * quiesce before we can do the removal.
1031                          */
1032                         m = get_next_mapping(pool);
1033                         m->tc = tc;
1034                         m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1035                         m->virt_block = block;
1036                         m->data_block = lookup_result.block;
1037                         m->cell = cell;
1038                         m->cell2 = cell2;
1039                         m->err = 0;
1040                         m->bio = bio;
1041
1042                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1043                                 spin_lock_irqsave(&pool->lock, flags);
1044                                 list_add(&m->list, &pool->prepared_discards);
1045                                 spin_unlock_irqrestore(&pool->lock, flags);
1046                                 wake_worker(pool);
1047                         }
1048                 } else {
1049                         inc_all_io_entry(pool, bio);
1050                         cell_defer_no_holder(tc, cell);
1051                         cell_defer_no_holder(tc, cell2);
1052
1053                         /*
1054                          * The DM core makes sure that the discard doesn't span
1055                          * a block boundary.  So we submit the discard of a
1056                          * partial block appropriately.
1057                          */
1058                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1059                                 remap_and_issue(tc, bio, lookup_result.block);
1060                         else
1061                                 bio_endio(bio, 0);
1062                 }
1063                 break;
1064
1065         case -ENODATA:
1066                 /*
1067                  * It isn't provisioned, just forget it.
1068                  */
1069                 cell_defer_no_holder(tc, cell);
1070                 bio_endio(bio, 0);
1071                 break;
1072
1073         default:
1074                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1075                             __func__, r);
1076                 cell_defer_no_holder(tc, cell);
1077                 bio_io_error(bio);
1078                 break;
1079         }
1080 }
1081
1082 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1083                           struct dm_cell_key *key,
1084                           struct dm_thin_lookup_result *lookup_result,
1085                           struct dm_bio_prison_cell *cell)
1086 {
1087         int r;
1088         dm_block_t data_block;
1089         struct pool *pool = tc->pool;
1090
1091         r = alloc_data_block(tc, &data_block);
1092         switch (r) {
1093         case 0:
1094                 schedule_internal_copy(tc, block, lookup_result->block,
1095                                        data_block, cell, bio);
1096                 break;
1097
1098         case -ENOSPC:
1099                 no_space(pool, cell);
1100                 break;
1101
1102         default:
1103                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1104                             __func__, r);
1105                 set_pool_mode(pool, PM_READ_ONLY);
1106                 cell_error(pool, cell);
1107                 break;
1108         }
1109 }
1110
1111 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1112                                dm_block_t block,
1113                                struct dm_thin_lookup_result *lookup_result)
1114 {
1115         struct dm_bio_prison_cell *cell;
1116         struct pool *pool = tc->pool;
1117         struct dm_cell_key key;
1118
1119         /*
1120          * If cell is already occupied, then sharing is already in the process
1121          * of being broken so we have nothing further to do here.
1122          */
1123         build_data_key(tc->td, lookup_result->block, &key);
1124         if (bio_detain(pool, &key, bio, &cell))
1125                 return;
1126
1127         if (bio_data_dir(bio) == WRITE && bio->bi_size)
1128                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1129         else {
1130                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1131
1132                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1133                 inc_all_io_entry(pool, bio);
1134                 cell_defer_no_holder(tc, cell);
1135
1136                 remap_and_issue(tc, bio, lookup_result->block);
1137         }
1138 }
1139
1140 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1141                             struct dm_bio_prison_cell *cell)
1142 {
1143         int r;
1144         dm_block_t data_block;
1145         struct pool *pool = tc->pool;
1146
1147         /*
1148          * Remap empty bios (flushes) immediately, without provisioning.
1149          */
1150         if (!bio->bi_size) {
1151                 inc_all_io_entry(pool, bio);
1152                 cell_defer_no_holder(tc, cell);
1153
1154                 remap_and_issue(tc, bio, 0);
1155                 return;
1156         }
1157
1158         /*
1159          * Fill read bios with zeroes and complete them immediately.
1160          */
1161         if (bio_data_dir(bio) == READ) {
1162                 zero_fill_bio(bio);
1163                 cell_defer_no_holder(tc, cell);
1164                 bio_endio(bio, 0);
1165                 return;
1166         }
1167
1168         r = alloc_data_block(tc, &data_block);
1169         switch (r) {
1170         case 0:
1171                 if (tc->origin_dev)
1172                         schedule_external_copy(tc, block, data_block, cell, bio);
1173                 else
1174                         schedule_zero(tc, block, data_block, cell, bio);
1175                 break;
1176
1177         case -ENOSPC:
1178                 no_space(pool, cell);
1179                 break;
1180
1181         default:
1182                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1183                             __func__, r);
1184                 set_pool_mode(pool, PM_READ_ONLY);
1185                 cell_error(pool, cell);
1186                 break;
1187         }
1188 }
1189
1190 static void process_bio(struct thin_c *tc, struct bio *bio)
1191 {
1192         int r;
1193         struct pool *pool = tc->pool;
1194         dm_block_t block = get_bio_block(tc, bio);
1195         struct dm_bio_prison_cell *cell;
1196         struct dm_cell_key key;
1197         struct dm_thin_lookup_result lookup_result;
1198
1199         /*
1200          * If cell is already occupied, then the block is already
1201          * being provisioned so we have nothing further to do here.
1202          */
1203         build_virtual_key(tc->td, block, &key);
1204         if (bio_detain(pool, &key, bio, &cell))
1205                 return;
1206
1207         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1208         switch (r) {
1209         case 0:
1210                 if (lookup_result.shared) {
1211                         process_shared_bio(tc, bio, block, &lookup_result);
1212                         cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1213                 } else {
1214                         inc_all_io_entry(pool, bio);
1215                         cell_defer_no_holder(tc, cell);
1216
1217                         remap_and_issue(tc, bio, lookup_result.block);
1218                 }
1219                 break;
1220
1221         case -ENODATA:
1222                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1223                         inc_all_io_entry(pool, bio);
1224                         cell_defer_no_holder(tc, cell);
1225
1226                         remap_to_origin_and_issue(tc, bio);
1227                 } else
1228                         provision_block(tc, bio, block, cell);
1229                 break;
1230
1231         default:
1232                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1233                             __func__, r);
1234                 cell_defer_no_holder(tc, cell);
1235                 bio_io_error(bio);
1236                 break;
1237         }
1238 }
1239
1240 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1241 {
1242         int r;
1243         int rw = bio_data_dir(bio);
1244         dm_block_t block = get_bio_block(tc, bio);
1245         struct dm_thin_lookup_result lookup_result;
1246
1247         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1248         switch (r) {
1249         case 0:
1250                 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1251                         bio_io_error(bio);
1252                 else {
1253                         inc_all_io_entry(tc->pool, bio);
1254                         remap_and_issue(tc, bio, lookup_result.block);
1255                 }
1256                 break;
1257
1258         case -ENODATA:
1259                 if (rw != READ) {
1260                         bio_io_error(bio);
1261                         break;
1262                 }
1263
1264                 if (tc->origin_dev) {
1265                         inc_all_io_entry(tc->pool, bio);
1266                         remap_to_origin_and_issue(tc, bio);
1267                         break;
1268                 }
1269
1270                 zero_fill_bio(bio);
1271                 bio_endio(bio, 0);
1272                 break;
1273
1274         default:
1275                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1276                             __func__, r);
1277                 bio_io_error(bio);
1278                 break;
1279         }
1280 }
1281
1282 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1283 {
1284         bio_io_error(bio);
1285 }
1286
1287 /*
1288  * FIXME: should we also commit due to size of transaction, measured in
1289  * metadata blocks?
1290  */
1291 static int need_commit_due_to_time(struct pool *pool)
1292 {
1293         return jiffies < pool->last_commit_jiffies ||
1294                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1295 }
1296
1297 static void process_deferred_bios(struct pool *pool)
1298 {
1299         unsigned long flags;
1300         struct bio *bio;
1301         struct bio_list bios;
1302
1303         bio_list_init(&bios);
1304
1305         spin_lock_irqsave(&pool->lock, flags);
1306         bio_list_merge(&bios, &pool->deferred_bios);
1307         bio_list_init(&pool->deferred_bios);
1308         spin_unlock_irqrestore(&pool->lock, flags);
1309
1310         while ((bio = bio_list_pop(&bios))) {
1311                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1312                 struct thin_c *tc = h->tc;
1313
1314                 /*
1315                  * If we've got no free new_mapping structs, and processing
1316                  * this bio might require one, we pause until there are some
1317                  * prepared mappings to process.
1318                  */
1319                 if (ensure_next_mapping(pool)) {
1320                         spin_lock_irqsave(&pool->lock, flags);
1321                         bio_list_merge(&pool->deferred_bios, &bios);
1322                         spin_unlock_irqrestore(&pool->lock, flags);
1323
1324                         break;
1325                 }
1326
1327                 if (bio->bi_rw & REQ_DISCARD)
1328                         pool->process_discard(tc, bio);
1329                 else
1330                         pool->process_bio(tc, bio);
1331         }
1332
1333         /*
1334          * If there are any deferred flush bios, we must commit
1335          * the metadata before issuing them.
1336          */
1337         bio_list_init(&bios);
1338         spin_lock_irqsave(&pool->lock, flags);
1339         bio_list_merge(&bios, &pool->deferred_flush_bios);
1340         bio_list_init(&pool->deferred_flush_bios);
1341         spin_unlock_irqrestore(&pool->lock, flags);
1342
1343         if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1344                 return;
1345
1346         if (commit_or_fallback(pool)) {
1347                 while ((bio = bio_list_pop(&bios)))
1348                         bio_io_error(bio);
1349                 return;
1350         }
1351         pool->last_commit_jiffies = jiffies;
1352
1353         while ((bio = bio_list_pop(&bios)))
1354                 generic_make_request(bio);
1355 }
1356
1357 static void do_worker(struct work_struct *ws)
1358 {
1359         struct pool *pool = container_of(ws, struct pool, worker);
1360
1361         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1362         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1363         process_deferred_bios(pool);
1364 }
1365
1366 /*
1367  * We want to commit periodically so that not too much
1368  * unwritten data builds up.
1369  */
1370 static void do_waker(struct work_struct *ws)
1371 {
1372         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1373         wake_worker(pool);
1374         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1375 }
1376
1377 /*----------------------------------------------------------------*/
1378
1379 static enum pool_mode get_pool_mode(struct pool *pool)
1380 {
1381         return pool->pf.mode;
1382 }
1383
1384 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1385 {
1386         int r;
1387
1388         pool->pf.mode = mode;
1389
1390         switch (mode) {
1391         case PM_FAIL:
1392                 DMERR("%s: switching pool to failure mode",
1393                       dm_device_name(pool->pool_md));
1394                 pool->process_bio = process_bio_fail;
1395                 pool->process_discard = process_bio_fail;
1396                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1397                 pool->process_prepared_discard = process_prepared_discard_fail;
1398                 break;
1399
1400         case PM_READ_ONLY:
1401                 DMERR("%s: switching pool to read-only mode",
1402                       dm_device_name(pool->pool_md));
1403                 r = dm_pool_abort_metadata(pool->pmd);
1404                 if (r) {
1405                         DMERR("%s: aborting transaction failed",
1406                               dm_device_name(pool->pool_md));
1407                         set_pool_mode(pool, PM_FAIL);
1408                 } else {
1409                         dm_pool_metadata_read_only(pool->pmd);
1410                         pool->process_bio = process_bio_read_only;
1411                         pool->process_discard = process_discard;
1412                         pool->process_prepared_mapping = process_prepared_mapping_fail;
1413                         pool->process_prepared_discard = process_prepared_discard_passdown;
1414                 }
1415                 break;
1416
1417         case PM_WRITE:
1418                 pool->process_bio = process_bio;
1419                 pool->process_discard = process_discard;
1420                 pool->process_prepared_mapping = process_prepared_mapping;
1421                 pool->process_prepared_discard = process_prepared_discard;
1422                 break;
1423         }
1424 }
1425
1426 /*----------------------------------------------------------------*/
1427
1428 /*
1429  * Mapping functions.
1430  */
1431
1432 /*
1433  * Called only while mapping a thin bio to hand it over to the workqueue.
1434  */
1435 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1436 {
1437         unsigned long flags;
1438         struct pool *pool = tc->pool;
1439
1440         spin_lock_irqsave(&pool->lock, flags);
1441         bio_list_add(&pool->deferred_bios, bio);
1442         spin_unlock_irqrestore(&pool->lock, flags);
1443
1444         wake_worker(pool);
1445 }
1446
1447 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1448 {
1449         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1450
1451         h->tc = tc;
1452         h->shared_read_entry = NULL;
1453         h->all_io_entry = NULL;
1454         h->overwrite_mapping = NULL;
1455 }
1456
1457 /*
1458  * Non-blocking function called from the thin target's map function.
1459  */
1460 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1461 {
1462         int r;
1463         struct thin_c *tc = ti->private;
1464         dm_block_t block = get_bio_block(tc, bio);
1465         struct dm_thin_device *td = tc->td;
1466         struct dm_thin_lookup_result result;
1467         struct dm_bio_prison_cell cell1, cell2;
1468         struct dm_bio_prison_cell *cell_result;
1469         struct dm_cell_key key;
1470
1471         thin_hook_bio(tc, bio);
1472
1473         if (get_pool_mode(tc->pool) == PM_FAIL) {
1474                 bio_io_error(bio);
1475                 return DM_MAPIO_SUBMITTED;
1476         }
1477
1478         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1479                 thin_defer_bio(tc, bio);
1480                 return DM_MAPIO_SUBMITTED;
1481         }
1482
1483         r = dm_thin_find_block(td, block, 0, &result);
1484
1485         /*
1486          * Note that we defer readahead too.
1487          */
1488         switch (r) {
1489         case 0:
1490                 if (unlikely(result.shared)) {
1491                         /*
1492                          * We have a race condition here between the
1493                          * result.shared value returned by the lookup and
1494                          * snapshot creation, which may cause new
1495                          * sharing.
1496                          *
1497                          * To avoid this always quiesce the origin before
1498                          * taking the snap.  You want to do this anyway to
1499                          * ensure a consistent application view
1500                          * (i.e. lockfs).
1501                          *
1502                          * More distant ancestors are irrelevant. The
1503                          * shared flag will be set in their case.
1504                          */
1505                         thin_defer_bio(tc, bio);
1506                         return DM_MAPIO_SUBMITTED;
1507                 }
1508
1509                 build_virtual_key(tc->td, block, &key);
1510                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1511                         return DM_MAPIO_SUBMITTED;
1512
1513                 build_data_key(tc->td, result.block, &key);
1514                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1515                         cell_defer_no_holder_no_free(tc, &cell1);
1516                         return DM_MAPIO_SUBMITTED;
1517                 }
1518
1519                 inc_all_io_entry(tc->pool, bio);
1520                 cell_defer_no_holder_no_free(tc, &cell2);
1521                 cell_defer_no_holder_no_free(tc, &cell1);
1522
1523                 remap(tc, bio, result.block);
1524                 return DM_MAPIO_REMAPPED;
1525
1526         case -ENODATA:
1527                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1528                         /*
1529                          * This block isn't provisioned, and we have no way
1530                          * of doing so.  Just error it.
1531                          */
1532                         bio_io_error(bio);
1533                         return DM_MAPIO_SUBMITTED;
1534                 }
1535                 /* fall through */
1536
1537         case -EWOULDBLOCK:
1538                 /*
1539                  * In future, the failed dm_thin_find_block above could
1540                  * provide the hint to load the metadata into cache.
1541                  */
1542                 thin_defer_bio(tc, bio);
1543                 return DM_MAPIO_SUBMITTED;
1544
1545         default:
1546                 /*
1547                  * Must always call bio_io_error on failure.
1548                  * dm_thin_find_block can fail with -EINVAL if the
1549                  * pool is switched to fail-io mode.
1550                  */
1551                 bio_io_error(bio);
1552                 return DM_MAPIO_SUBMITTED;
1553         }
1554 }
1555
1556 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1557 {
1558         int r;
1559         unsigned long flags;
1560         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1561
1562         spin_lock_irqsave(&pt->pool->lock, flags);
1563         r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1564         spin_unlock_irqrestore(&pt->pool->lock, flags);
1565
1566         if (!r) {
1567                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1568                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1569         }
1570
1571         return r;
1572 }
1573
1574 static void __requeue_bios(struct pool *pool)
1575 {
1576         bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1577         bio_list_init(&pool->retry_on_resume_list);
1578 }
1579
1580 /*----------------------------------------------------------------
1581  * Binding of control targets to a pool object
1582  *--------------------------------------------------------------*/
1583 static bool data_dev_supports_discard(struct pool_c *pt)
1584 {
1585         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1586
1587         return q && blk_queue_discard(q);
1588 }
1589
1590 static bool is_factor(sector_t block_size, uint32_t n)
1591 {
1592         return !sector_div(block_size, n);
1593 }
1594
1595 /*
1596  * If discard_passdown was enabled verify that the data device
1597  * supports discards.  Disable discard_passdown if not.
1598  */
1599 static void disable_passdown_if_not_supported(struct pool_c *pt)
1600 {
1601         struct pool *pool = pt->pool;
1602         struct block_device *data_bdev = pt->data_dev->bdev;
1603         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1604         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1605         const char *reason = NULL;
1606         char buf[BDEVNAME_SIZE];
1607
1608         if (!pt->adjusted_pf.discard_passdown)
1609                 return;
1610
1611         if (!data_dev_supports_discard(pt))
1612                 reason = "discard unsupported";
1613
1614         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1615                 reason = "max discard sectors smaller than a block";
1616
1617         else if (data_limits->discard_granularity > block_size)
1618                 reason = "discard granularity larger than a block";
1619
1620         else if (!is_factor(block_size, data_limits->discard_granularity))
1621                 reason = "discard granularity not a factor of block size";
1622
1623         if (reason) {
1624                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1625                 pt->adjusted_pf.discard_passdown = false;
1626         }
1627 }
1628
1629 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1630 {
1631         struct pool_c *pt = ti->private;
1632
1633         /*
1634          * We want to make sure that degraded pools are never upgraded.
1635          */
1636         enum pool_mode old_mode = pool->pf.mode;
1637         enum pool_mode new_mode = pt->adjusted_pf.mode;
1638
1639         if (old_mode > new_mode)
1640                 new_mode = old_mode;
1641
1642         pool->ti = ti;
1643         pool->low_water_blocks = pt->low_water_blocks;
1644         pool->pf = pt->adjusted_pf;
1645
1646         set_pool_mode(pool, new_mode);
1647
1648         return 0;
1649 }
1650
1651 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1652 {
1653         if (pool->ti == ti)
1654                 pool->ti = NULL;
1655 }
1656
1657 /*----------------------------------------------------------------
1658  * Pool creation
1659  *--------------------------------------------------------------*/
1660 /* Initialize pool features. */
1661 static void pool_features_init(struct pool_features *pf)
1662 {
1663         pf->mode = PM_WRITE;
1664         pf->zero_new_blocks = true;
1665         pf->discard_enabled = true;
1666         pf->discard_passdown = true;
1667 }
1668
1669 static void __pool_destroy(struct pool *pool)
1670 {
1671         __pool_table_remove(pool);
1672
1673         if (dm_pool_metadata_close(pool->pmd) < 0)
1674                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1675
1676         dm_bio_prison_destroy(pool->prison);
1677         dm_kcopyd_client_destroy(pool->copier);
1678
1679         if (pool->wq)
1680                 destroy_workqueue(pool->wq);
1681
1682         if (pool->next_mapping)
1683                 mempool_free(pool->next_mapping, pool->mapping_pool);
1684         mempool_destroy(pool->mapping_pool);
1685         dm_deferred_set_destroy(pool->shared_read_ds);
1686         dm_deferred_set_destroy(pool->all_io_ds);
1687         kfree(pool);
1688 }
1689
1690 static struct kmem_cache *_new_mapping_cache;
1691
1692 static struct pool *pool_create(struct mapped_device *pool_md,
1693                                 struct block_device *metadata_dev,
1694                                 unsigned long block_size,
1695                                 int read_only, char **error)
1696 {
1697         int r;
1698         void *err_p;
1699         struct pool *pool;
1700         struct dm_pool_metadata *pmd;
1701         bool format_device = read_only ? false : true;
1702
1703         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1704         if (IS_ERR(pmd)) {
1705                 *error = "Error creating metadata object";
1706                 return (struct pool *)pmd;
1707         }
1708
1709         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1710         if (!pool) {
1711                 *error = "Error allocating memory for pool";
1712                 err_p = ERR_PTR(-ENOMEM);
1713                 goto bad_pool;
1714         }
1715
1716         pool->pmd = pmd;
1717         pool->sectors_per_block = block_size;
1718         if (block_size & (block_size - 1))
1719                 pool->sectors_per_block_shift = -1;
1720         else
1721                 pool->sectors_per_block_shift = __ffs(block_size);
1722         pool->low_water_blocks = 0;
1723         pool_features_init(&pool->pf);
1724         pool->prison = dm_bio_prison_create(PRISON_CELLS);
1725         if (!pool->prison) {
1726                 *error = "Error creating pool's bio prison";
1727                 err_p = ERR_PTR(-ENOMEM);
1728                 goto bad_prison;
1729         }
1730
1731         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1732         if (IS_ERR(pool->copier)) {
1733                 r = PTR_ERR(pool->copier);
1734                 *error = "Error creating pool's kcopyd client";
1735                 err_p = ERR_PTR(r);
1736                 goto bad_kcopyd_client;
1737         }
1738
1739         /*
1740          * Create singlethreaded workqueue that will service all devices
1741          * that use this metadata.
1742          */
1743         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1744         if (!pool->wq) {
1745                 *error = "Error creating pool's workqueue";
1746                 err_p = ERR_PTR(-ENOMEM);
1747                 goto bad_wq;
1748         }
1749
1750         INIT_WORK(&pool->worker, do_worker);
1751         INIT_DELAYED_WORK(&pool->waker, do_waker);
1752         spin_lock_init(&pool->lock);
1753         bio_list_init(&pool->deferred_bios);
1754         bio_list_init(&pool->deferred_flush_bios);
1755         INIT_LIST_HEAD(&pool->prepared_mappings);
1756         INIT_LIST_HEAD(&pool->prepared_discards);
1757         pool->low_water_triggered = 0;
1758         pool->no_free_space = 0;
1759         bio_list_init(&pool->retry_on_resume_list);
1760
1761         pool->shared_read_ds = dm_deferred_set_create();
1762         if (!pool->shared_read_ds) {
1763                 *error = "Error creating pool's shared read deferred set";
1764                 err_p = ERR_PTR(-ENOMEM);
1765                 goto bad_shared_read_ds;
1766         }
1767
1768         pool->all_io_ds = dm_deferred_set_create();
1769         if (!pool->all_io_ds) {
1770                 *error = "Error creating pool's all io deferred set";
1771                 err_p = ERR_PTR(-ENOMEM);
1772                 goto bad_all_io_ds;
1773         }
1774
1775         pool->next_mapping = NULL;
1776         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1777                                                       _new_mapping_cache);
1778         if (!pool->mapping_pool) {
1779                 *error = "Error creating pool's mapping mempool";
1780                 err_p = ERR_PTR(-ENOMEM);
1781                 goto bad_mapping_pool;
1782         }
1783
1784         pool->ref_count = 1;
1785         pool->last_commit_jiffies = jiffies;
1786         pool->pool_md = pool_md;
1787         pool->md_dev = metadata_dev;
1788         __pool_table_insert(pool);
1789
1790         return pool;
1791
1792 bad_mapping_pool:
1793         dm_deferred_set_destroy(pool->all_io_ds);
1794 bad_all_io_ds:
1795         dm_deferred_set_destroy(pool->shared_read_ds);
1796 bad_shared_read_ds:
1797         destroy_workqueue(pool->wq);
1798 bad_wq:
1799         dm_kcopyd_client_destroy(pool->copier);
1800 bad_kcopyd_client:
1801         dm_bio_prison_destroy(pool->prison);
1802 bad_prison:
1803         kfree(pool);
1804 bad_pool:
1805         if (dm_pool_metadata_close(pmd))
1806                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1807
1808         return err_p;
1809 }
1810
1811 static void __pool_inc(struct pool *pool)
1812 {
1813         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1814         pool->ref_count++;
1815 }
1816
1817 static void __pool_dec(struct pool *pool)
1818 {
1819         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1820         BUG_ON(!pool->ref_count);
1821         if (!--pool->ref_count)
1822                 __pool_destroy(pool);
1823 }
1824
1825 static struct pool *__pool_find(struct mapped_device *pool_md,
1826                                 struct block_device *metadata_dev,
1827                                 unsigned long block_size, int read_only,
1828                                 char **error, int *created)
1829 {
1830         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1831
1832         if (pool) {
1833                 if (pool->pool_md != pool_md) {
1834                         *error = "metadata device already in use by a pool";
1835                         return ERR_PTR(-EBUSY);
1836                 }
1837                 __pool_inc(pool);
1838
1839         } else {
1840                 pool = __pool_table_lookup(pool_md);
1841                 if (pool) {
1842                         if (pool->md_dev != metadata_dev) {
1843                                 *error = "different pool cannot replace a pool";
1844                                 return ERR_PTR(-EINVAL);
1845                         }
1846                         __pool_inc(pool);
1847
1848                 } else {
1849                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1850                         *created = 1;
1851                 }
1852         }
1853
1854         return pool;
1855 }
1856
1857 /*----------------------------------------------------------------
1858  * Pool target methods
1859  *--------------------------------------------------------------*/
1860 static void pool_dtr(struct dm_target *ti)
1861 {
1862         struct pool_c *pt = ti->private;
1863
1864         mutex_lock(&dm_thin_pool_table.mutex);
1865
1866         unbind_control_target(pt->pool, ti);
1867         __pool_dec(pt->pool);
1868         dm_put_device(ti, pt->metadata_dev);
1869         dm_put_device(ti, pt->data_dev);
1870         kfree(pt);
1871
1872         mutex_unlock(&dm_thin_pool_table.mutex);
1873 }
1874
1875 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1876                                struct dm_target *ti)
1877 {
1878         int r;
1879         unsigned argc;
1880         const char *arg_name;
1881
1882         static struct dm_arg _args[] = {
1883                 {0, 3, "Invalid number of pool feature arguments"},
1884         };
1885
1886         /*
1887          * No feature arguments supplied.
1888          */
1889         if (!as->argc)
1890                 return 0;
1891
1892         r = dm_read_arg_group(_args, as, &argc, &ti->error);
1893         if (r)
1894                 return -EINVAL;
1895
1896         while (argc && !r) {
1897                 arg_name = dm_shift_arg(as);
1898                 argc--;
1899
1900                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1901                         pf->zero_new_blocks = false;
1902
1903                 else if (!strcasecmp(arg_name, "ignore_discard"))
1904                         pf->discard_enabled = false;
1905
1906                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1907                         pf->discard_passdown = false;
1908
1909                 else if (!strcasecmp(arg_name, "read_only"))
1910                         pf->mode = PM_READ_ONLY;
1911
1912                 else {
1913                         ti->error = "Unrecognised pool feature requested";
1914                         r = -EINVAL;
1915                         break;
1916                 }
1917         }
1918
1919         return r;
1920 }
1921
1922 static void metadata_low_callback(void *context)
1923 {
1924         struct pool *pool = context;
1925
1926         DMWARN("%s: reached low water mark for metadata device: sending event.",
1927                dm_device_name(pool->pool_md));
1928
1929         dm_table_event(pool->ti->table);
1930 }
1931
1932 static sector_t get_metadata_dev_size(struct block_device *bdev)
1933 {
1934         sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
1935         char buffer[BDEVNAME_SIZE];
1936
1937         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
1938                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1939                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
1940                 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
1941         }
1942
1943         return metadata_dev_size;
1944 }
1945
1946 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
1947 {
1948         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
1949
1950         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
1951
1952         return metadata_dev_size;
1953 }
1954
1955 /*
1956  * When a metadata threshold is crossed a dm event is triggered, and
1957  * userland should respond by growing the metadata device.  We could let
1958  * userland set the threshold, like we do with the data threshold, but I'm
1959  * not sure they know enough to do this well.
1960  */
1961 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
1962 {
1963         /*
1964          * 4M is ample for all ops with the possible exception of thin
1965          * device deletion which is harmless if it fails (just retry the
1966          * delete after you've grown the device).
1967          */
1968         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
1969         return min((dm_block_t)1024ULL /* 4M */, quarter);
1970 }
1971
1972 /*
1973  * thin-pool <metadata dev> <data dev>
1974  *           <data block size (sectors)>
1975  *           <low water mark (blocks)>
1976  *           [<#feature args> [<arg>]*]
1977  *
1978  * Optional feature arguments are:
1979  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1980  *           ignore_discard: disable discard
1981  *           no_discard_passdown: don't pass discards down to the data device
1982  */
1983 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1984 {
1985         int r, pool_created = 0;
1986         struct pool_c *pt;
1987         struct pool *pool;
1988         struct pool_features pf;
1989         struct dm_arg_set as;
1990         struct dm_dev *data_dev;
1991         unsigned long block_size;
1992         dm_block_t low_water_blocks;
1993         struct dm_dev *metadata_dev;
1994         fmode_t metadata_mode;
1995
1996         /*
1997          * FIXME Remove validation from scope of lock.
1998          */
1999         mutex_lock(&dm_thin_pool_table.mutex);
2000
2001         if (argc < 4) {
2002                 ti->error = "Invalid argument count";
2003                 r = -EINVAL;
2004                 goto out_unlock;
2005         }
2006
2007         as.argc = argc;
2008         as.argv = argv;
2009
2010         /*
2011          * Set default pool features.
2012          */
2013         pool_features_init(&pf);
2014
2015         dm_consume_args(&as, 4);
2016         r = parse_pool_features(&as, &pf, ti);
2017         if (r)
2018                 goto out_unlock;
2019
2020         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2021         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2022         if (r) {
2023                 ti->error = "Error opening metadata block device";
2024                 goto out_unlock;
2025         }
2026
2027         /*
2028          * Run for the side-effect of possibly issuing a warning if the
2029          * device is too big.
2030          */
2031         (void) get_metadata_dev_size(metadata_dev->bdev);
2032
2033         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2034         if (r) {
2035                 ti->error = "Error getting data device";
2036                 goto out_metadata;
2037         }
2038
2039         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2040             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2041             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2042             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2043                 ti->error = "Invalid block size";
2044                 r = -EINVAL;
2045                 goto out;
2046         }
2047
2048         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2049                 ti->error = "Invalid low water mark";
2050                 r = -EINVAL;
2051                 goto out;
2052         }
2053
2054         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2055         if (!pt) {
2056                 r = -ENOMEM;
2057                 goto out;
2058         }
2059
2060         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2061                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2062         if (IS_ERR(pool)) {
2063                 r = PTR_ERR(pool);
2064                 goto out_free_pt;
2065         }
2066
2067         /*
2068          * 'pool_created' reflects whether this is the first table load.
2069          * Top level discard support is not allowed to be changed after
2070          * initial load.  This would require a pool reload to trigger thin
2071          * device changes.
2072          */
2073         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2074                 ti->error = "Discard support cannot be disabled once enabled";
2075                 r = -EINVAL;
2076                 goto out_flags_changed;
2077         }
2078
2079         pt->pool = pool;
2080         pt->ti = ti;
2081         pt->metadata_dev = metadata_dev;
2082         pt->data_dev = data_dev;
2083         pt->low_water_blocks = low_water_blocks;
2084         pt->adjusted_pf = pt->requested_pf = pf;
2085         ti->num_flush_bios = 1;
2086
2087         /*
2088          * Only need to enable discards if the pool should pass
2089          * them down to the data device.  The thin device's discard
2090          * processing will cause mappings to be removed from the btree.
2091          */
2092         if (pf.discard_enabled && pf.discard_passdown) {
2093                 ti->num_discard_bios = 1;
2094
2095                 /*
2096                  * Setting 'discards_supported' circumvents the normal
2097                  * stacking of discard limits (this keeps the pool and
2098                  * thin devices' discard limits consistent).
2099                  */
2100                 ti->discards_supported = true;
2101                 ti->discard_zeroes_data_unsupported = true;
2102         }
2103         ti->private = pt;
2104
2105         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2106                                                 calc_metadata_threshold(pt),
2107                                                 metadata_low_callback,
2108                                                 pool);
2109         if (r)
2110                 goto out_free_pt;
2111
2112         pt->callbacks.congested_fn = pool_is_congested;
2113         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2114
2115         mutex_unlock(&dm_thin_pool_table.mutex);
2116
2117         return 0;
2118
2119 out_flags_changed:
2120         __pool_dec(pool);
2121 out_free_pt:
2122         kfree(pt);
2123 out:
2124         dm_put_device(ti, data_dev);
2125 out_metadata:
2126         dm_put_device(ti, metadata_dev);
2127 out_unlock:
2128         mutex_unlock(&dm_thin_pool_table.mutex);
2129
2130         return r;
2131 }
2132
2133 static int pool_map(struct dm_target *ti, struct bio *bio)
2134 {
2135         int r;
2136         struct pool_c *pt = ti->private;
2137         struct pool *pool = pt->pool;
2138         unsigned long flags;
2139
2140         /*
2141          * As this is a singleton target, ti->begin is always zero.
2142          */
2143         spin_lock_irqsave(&pool->lock, flags);
2144         bio->bi_bdev = pt->data_dev->bdev;
2145         r = DM_MAPIO_REMAPPED;
2146         spin_unlock_irqrestore(&pool->lock, flags);
2147
2148         return r;
2149 }
2150
2151 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2152 {
2153         int r;
2154         struct pool_c *pt = ti->private;
2155         struct pool *pool = pt->pool;
2156         sector_t data_size = ti->len;
2157         dm_block_t sb_data_size;
2158
2159         *need_commit = false;
2160
2161         (void) sector_div(data_size, pool->sectors_per_block);
2162
2163         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2164         if (r) {
2165                 DMERR("%s: failed to retrieve data device size",
2166                       dm_device_name(pool->pool_md));
2167                 return r;
2168         }
2169
2170         if (data_size < sb_data_size) {
2171                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2172                       dm_device_name(pool->pool_md),
2173                       (unsigned long long)data_size, sb_data_size);
2174                 return -EINVAL;
2175
2176         } else if (data_size > sb_data_size) {
2177                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2178                 if (r) {
2179                         DMERR("%s: failed to resize data device",
2180                               dm_device_name(pool->pool_md));
2181                         set_pool_mode(pool, PM_READ_ONLY);
2182                         return r;
2183                 }
2184
2185                 *need_commit = true;
2186         }
2187
2188         return 0;
2189 }
2190
2191 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2192 {
2193         int r;
2194         struct pool_c *pt = ti->private;
2195         struct pool *pool = pt->pool;
2196         dm_block_t metadata_dev_size, sb_metadata_dev_size;
2197
2198         *need_commit = false;
2199
2200         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2201
2202         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2203         if (r) {
2204                 DMERR("%s: failed to retrieve metadata device size",
2205                       dm_device_name(pool->pool_md));
2206                 return r;
2207         }
2208
2209         if (metadata_dev_size < sb_metadata_dev_size) {
2210                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2211                       dm_device_name(pool->pool_md),
2212                       metadata_dev_size, sb_metadata_dev_size);
2213                 return -EINVAL;
2214
2215         } else if (metadata_dev_size > sb_metadata_dev_size) {
2216                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2217                 if (r) {
2218                         DMERR("%s: failed to resize metadata device",
2219                               dm_device_name(pool->pool_md));
2220                         return r;
2221                 }
2222
2223                 *need_commit = true;
2224         }
2225
2226         return 0;
2227 }
2228
2229 /*
2230  * Retrieves the number of blocks of the data device from
2231  * the superblock and compares it to the actual device size,
2232  * thus resizing the data device in case it has grown.
2233  *
2234  * This both copes with opening preallocated data devices in the ctr
2235  * being followed by a resume
2236  * -and-
2237  * calling the resume method individually after userspace has
2238  * grown the data device in reaction to a table event.
2239  */
2240 static int pool_preresume(struct dm_target *ti)
2241 {
2242         int r;
2243         bool need_commit1, need_commit2;
2244         struct pool_c *pt = ti->private;
2245         struct pool *pool = pt->pool;
2246
2247         /*
2248          * Take control of the pool object.
2249          */
2250         r = bind_control_target(pool, ti);
2251         if (r)
2252                 return r;
2253
2254         r = maybe_resize_data_dev(ti, &need_commit1);
2255         if (r)
2256                 return r;
2257
2258         r = maybe_resize_metadata_dev(ti, &need_commit2);
2259         if (r)
2260                 return r;
2261
2262         if (need_commit1 || need_commit2)
2263                 (void) commit_or_fallback(pool);
2264
2265         return 0;
2266 }
2267
2268 static void pool_resume(struct dm_target *ti)
2269 {
2270         struct pool_c *pt = ti->private;
2271         struct pool *pool = pt->pool;
2272         unsigned long flags;
2273
2274         spin_lock_irqsave(&pool->lock, flags);
2275         pool->low_water_triggered = 0;
2276         pool->no_free_space = 0;
2277         __requeue_bios(pool);
2278         spin_unlock_irqrestore(&pool->lock, flags);
2279
2280         do_waker(&pool->waker.work);
2281 }
2282
2283 static void pool_postsuspend(struct dm_target *ti)
2284 {
2285         struct pool_c *pt = ti->private;
2286         struct pool *pool = pt->pool;
2287
2288         cancel_delayed_work(&pool->waker);
2289         flush_workqueue(pool->wq);
2290         (void) commit_or_fallback(pool);
2291 }
2292
2293 static int check_arg_count(unsigned argc, unsigned args_required)
2294 {
2295         if (argc != args_required) {
2296                 DMWARN("Message received with %u arguments instead of %u.",
2297                        argc, args_required);
2298                 return -EINVAL;
2299         }
2300
2301         return 0;
2302 }
2303
2304 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2305 {
2306         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2307             *dev_id <= MAX_DEV_ID)
2308                 return 0;
2309
2310         if (warning)
2311                 DMWARN("Message received with invalid device id: %s", arg);
2312
2313         return -EINVAL;
2314 }
2315
2316 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2317 {
2318         dm_thin_id dev_id;
2319         int r;
2320
2321         r = check_arg_count(argc, 2);
2322         if (r)
2323                 return r;
2324
2325         r = read_dev_id(argv[1], &dev_id, 1);
2326         if (r)
2327                 return r;
2328
2329         r = dm_pool_create_thin(pool->pmd, dev_id);
2330         if (r) {
2331                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2332                        argv[1]);
2333                 return r;
2334         }
2335
2336         return 0;
2337 }
2338
2339 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2340 {
2341         dm_thin_id dev_id;
2342         dm_thin_id origin_dev_id;
2343         int r;
2344
2345         r = check_arg_count(argc, 3);
2346         if (r)
2347                 return r;
2348
2349         r = read_dev_id(argv[1], &dev_id, 1);
2350         if (r)
2351                 return r;
2352
2353         r = read_dev_id(argv[2], &origin_dev_id, 1);
2354         if (r)
2355                 return r;
2356
2357         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2358         if (r) {
2359                 DMWARN("Creation of new snapshot %s of device %s failed.",
2360                        argv[1], argv[2]);
2361                 return r;
2362         }
2363
2364         return 0;
2365 }
2366
2367 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2368 {
2369         dm_thin_id dev_id;
2370         int r;
2371
2372         r = check_arg_count(argc, 2);
2373         if (r)
2374                 return r;
2375
2376         r = read_dev_id(argv[1], &dev_id, 1);
2377         if (r)
2378                 return r;
2379
2380         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2381         if (r)
2382                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2383
2384         return r;
2385 }
2386
2387 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2388 {
2389         dm_thin_id old_id, new_id;
2390         int r;
2391
2392         r = check_arg_count(argc, 3);
2393         if (r)
2394                 return r;
2395
2396         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2397                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2398                 return -EINVAL;
2399         }
2400
2401         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2402                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2403                 return -EINVAL;
2404         }
2405
2406         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2407         if (r) {
2408                 DMWARN("Failed to change transaction id from %s to %s.",
2409                        argv[1], argv[2]);
2410                 return r;
2411         }
2412
2413         return 0;
2414 }
2415
2416 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2417 {
2418         int r;
2419
2420         r = check_arg_count(argc, 1);
2421         if (r)
2422                 return r;
2423
2424         (void) commit_or_fallback(pool);
2425
2426         r = dm_pool_reserve_metadata_snap(pool->pmd);
2427         if (r)
2428                 DMWARN("reserve_metadata_snap message failed.");
2429
2430         return r;
2431 }
2432
2433 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2434 {
2435         int r;
2436
2437         r = check_arg_count(argc, 1);
2438         if (r)
2439                 return r;
2440
2441         r = dm_pool_release_metadata_snap(pool->pmd);
2442         if (r)
2443                 DMWARN("release_metadata_snap message failed.");
2444
2445         return r;
2446 }
2447
2448 /*
2449  * Messages supported:
2450  *   create_thin        <dev_id>
2451  *   create_snap        <dev_id> <origin_id>
2452  *   delete             <dev_id>
2453  *   trim               <dev_id> <new_size_in_sectors>
2454  *   set_transaction_id <current_trans_id> <new_trans_id>
2455  *   reserve_metadata_snap
2456  *   release_metadata_snap
2457  */
2458 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2459 {
2460         int r = -EINVAL;
2461         struct pool_c *pt = ti->private;
2462         struct pool *pool = pt->pool;
2463
2464         if (!strcasecmp(argv[0], "create_thin"))
2465                 r = process_create_thin_mesg(argc, argv, pool);
2466
2467         else if (!strcasecmp(argv[0], "create_snap"))
2468                 r = process_create_snap_mesg(argc, argv, pool);
2469
2470         else if (!strcasecmp(argv[0], "delete"))
2471                 r = process_delete_mesg(argc, argv, pool);
2472
2473         else if (!strcasecmp(argv[0], "set_transaction_id"))
2474                 r = process_set_transaction_id_mesg(argc, argv, pool);
2475
2476         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2477                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2478
2479         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2480                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2481
2482         else
2483                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2484
2485         if (!r)
2486                 (void) commit_or_fallback(pool);
2487
2488         return r;
2489 }
2490
2491 static void emit_flags(struct pool_features *pf, char *result,
2492                        unsigned sz, unsigned maxlen)
2493 {
2494         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2495                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2496         DMEMIT("%u ", count);
2497
2498         if (!pf->zero_new_blocks)
2499                 DMEMIT("skip_block_zeroing ");
2500
2501         if (!pf->discard_enabled)
2502                 DMEMIT("ignore_discard ");
2503
2504         if (!pf->discard_passdown)
2505                 DMEMIT("no_discard_passdown ");
2506
2507         if (pf->mode == PM_READ_ONLY)
2508                 DMEMIT("read_only ");
2509 }
2510
2511 /*
2512  * Status line is:
2513  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2514  *    <used data sectors>/<total data sectors> <held metadata root>
2515  */
2516 static void pool_status(struct dm_target *ti, status_type_t type,
2517                         unsigned status_flags, char *result, unsigned maxlen)
2518 {
2519         int r;
2520         unsigned sz = 0;
2521         uint64_t transaction_id;
2522         dm_block_t nr_free_blocks_data;
2523         dm_block_t nr_free_blocks_metadata;
2524         dm_block_t nr_blocks_data;
2525         dm_block_t nr_blocks_metadata;
2526         dm_block_t held_root;
2527         char buf[BDEVNAME_SIZE];
2528         char buf2[BDEVNAME_SIZE];
2529         struct pool_c *pt = ti->private;
2530         struct pool *pool = pt->pool;
2531
2532         switch (type) {
2533         case STATUSTYPE_INFO:
2534                 if (get_pool_mode(pool) == PM_FAIL) {
2535                         DMEMIT("Fail");
2536                         break;
2537                 }
2538
2539                 /* Commit to ensure statistics aren't out-of-date */
2540                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2541                         (void) commit_or_fallback(pool);
2542
2543                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2544                 if (r) {
2545                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2546                               dm_device_name(pool->pool_md), r);
2547                         goto err;
2548                 }
2549
2550                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2551                 if (r) {
2552                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2553                               dm_device_name(pool->pool_md), r);
2554                         goto err;
2555                 }
2556
2557                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2558                 if (r) {
2559                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2560                               dm_device_name(pool->pool_md), r);
2561                         goto err;
2562                 }
2563
2564                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2565                 if (r) {
2566                         DMERR("%s: dm_pool_get_free_block_count returned %d",
2567                               dm_device_name(pool->pool_md), r);
2568                         goto err;
2569                 }
2570
2571                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2572                 if (r) {
2573                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
2574                               dm_device_name(pool->pool_md), r);
2575                         goto err;
2576                 }
2577
2578                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2579                 if (r) {
2580                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
2581                               dm_device_name(pool->pool_md), r);
2582                         goto err;
2583                 }
2584
2585                 DMEMIT("%llu %llu/%llu %llu/%llu ",
2586                        (unsigned long long)transaction_id,
2587                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2588                        (unsigned long long)nr_blocks_metadata,
2589                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2590                        (unsigned long long)nr_blocks_data);
2591
2592                 if (held_root)
2593                         DMEMIT("%llu ", held_root);
2594                 else
2595                         DMEMIT("- ");
2596
2597                 if (pool->pf.mode == PM_READ_ONLY)
2598                         DMEMIT("ro ");
2599                 else
2600                         DMEMIT("rw ");
2601
2602                 if (!pool->pf.discard_enabled)
2603                         DMEMIT("ignore_discard");
2604                 else if (pool->pf.discard_passdown)
2605                         DMEMIT("discard_passdown");
2606                 else
2607                         DMEMIT("no_discard_passdown");
2608
2609                 break;
2610
2611         case STATUSTYPE_TABLE:
2612                 DMEMIT("%s %s %lu %llu ",
2613                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2614                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2615                        (unsigned long)pool->sectors_per_block,
2616                        (unsigned long long)pt->low_water_blocks);
2617                 emit_flags(&pt->requested_pf, result, sz, maxlen);
2618                 break;
2619         }
2620         return;
2621
2622 err:
2623         DMEMIT("Error");
2624 }
2625
2626 static int pool_iterate_devices(struct dm_target *ti,
2627                                 iterate_devices_callout_fn fn, void *data)
2628 {
2629         struct pool_c *pt = ti->private;
2630
2631         return fn(ti, pt->data_dev, 0, ti->len, data);
2632 }
2633
2634 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2635                       struct bio_vec *biovec, int max_size)
2636 {
2637         struct pool_c *pt = ti->private;
2638         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2639
2640         if (!q->merge_bvec_fn)
2641                 return max_size;
2642
2643         bvm->bi_bdev = pt->data_dev->bdev;
2644
2645         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2646 }
2647
2648 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2649 {
2650         struct pool *pool = pt->pool;
2651         struct queue_limits *data_limits;
2652
2653         limits->max_discard_sectors = pool->sectors_per_block;
2654
2655         /*
2656          * discard_granularity is just a hint, and not enforced.
2657          */
2658         if (pt->adjusted_pf.discard_passdown) {
2659                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2660                 limits->discard_granularity = data_limits->discard_granularity;
2661         } else
2662                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2663 }
2664
2665 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2666 {
2667         struct pool_c *pt = ti->private;
2668         struct pool *pool = pt->pool;
2669         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2670
2671         /*
2672          * If the system-determined stacked limits are compatible with the
2673          * pool's blocksize (io_opt is a factor) do not override them.
2674          */
2675         if (io_opt_sectors < pool->sectors_per_block ||
2676             do_div(io_opt_sectors, pool->sectors_per_block)) {
2677                 blk_limits_io_min(limits, 0);
2678                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2679         }
2680
2681         /*
2682          * pt->adjusted_pf is a staging area for the actual features to use.
2683          * They get transferred to the live pool in bind_control_target()
2684          * called from pool_preresume().
2685          */
2686         if (!pt->adjusted_pf.discard_enabled)
2687                 return;
2688
2689         disable_passdown_if_not_supported(pt);
2690
2691         set_discard_limits(pt, limits);
2692 }
2693
2694 static struct target_type pool_target = {
2695         .name = "thin-pool",
2696         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2697                     DM_TARGET_IMMUTABLE,
2698         .version = {1, 8, 0},
2699         .module = THIS_MODULE,
2700         .ctr = pool_ctr,
2701         .dtr = pool_dtr,
2702         .map = pool_map,
2703         .postsuspend = pool_postsuspend,
2704         .preresume = pool_preresume,
2705         .resume = pool_resume,
2706         .message = pool_message,
2707         .status = pool_status,
2708         .merge = pool_merge,
2709         .iterate_devices = pool_iterate_devices,
2710         .io_hints = pool_io_hints,
2711 };
2712
2713 /*----------------------------------------------------------------
2714  * Thin target methods
2715  *--------------------------------------------------------------*/
2716 static void thin_dtr(struct dm_target *ti)
2717 {
2718         struct thin_c *tc = ti->private;
2719
2720         mutex_lock(&dm_thin_pool_table.mutex);
2721
2722         __pool_dec(tc->pool);
2723         dm_pool_close_thin_device(tc->td);
2724         dm_put_device(ti, tc->pool_dev);
2725         if (tc->origin_dev)
2726                 dm_put_device(ti, tc->origin_dev);
2727         kfree(tc);
2728
2729         mutex_unlock(&dm_thin_pool_table.mutex);
2730 }
2731
2732 /*
2733  * Thin target parameters:
2734  *
2735  * <pool_dev> <dev_id> [origin_dev]
2736  *
2737  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2738  * dev_id: the internal device identifier
2739  * origin_dev: a device external to the pool that should act as the origin
2740  *
2741  * If the pool device has discards disabled, they get disabled for the thin
2742  * device as well.
2743  */
2744 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2745 {
2746         int r;
2747         struct thin_c *tc;
2748         struct dm_dev *pool_dev, *origin_dev;
2749         struct mapped_device *pool_md;
2750
2751         mutex_lock(&dm_thin_pool_table.mutex);
2752
2753         if (argc != 2 && argc != 3) {
2754                 ti->error = "Invalid argument count";
2755                 r = -EINVAL;
2756                 goto out_unlock;
2757         }
2758
2759         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2760         if (!tc) {
2761                 ti->error = "Out of memory";
2762                 r = -ENOMEM;
2763                 goto out_unlock;
2764         }
2765
2766         if (argc == 3) {
2767                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2768                 if (r) {
2769                         ti->error = "Error opening origin device";
2770                         goto bad_origin_dev;
2771                 }
2772                 tc->origin_dev = origin_dev;
2773         }
2774
2775         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2776         if (r) {
2777                 ti->error = "Error opening pool device";
2778                 goto bad_pool_dev;
2779         }
2780         tc->pool_dev = pool_dev;
2781
2782         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2783                 ti->error = "Invalid device id";
2784                 r = -EINVAL;
2785                 goto bad_common;
2786         }
2787
2788         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2789         if (!pool_md) {
2790                 ti->error = "Couldn't get pool mapped device";
2791                 r = -EINVAL;
2792                 goto bad_common;
2793         }
2794
2795         tc->pool = __pool_table_lookup(pool_md);
2796         if (!tc->pool) {
2797                 ti->error = "Couldn't find pool object";
2798                 r = -EINVAL;
2799                 goto bad_pool_lookup;
2800         }
2801         __pool_inc(tc->pool);
2802
2803         if (get_pool_mode(tc->pool) == PM_FAIL) {
2804                 ti->error = "Couldn't open thin device, Pool is in fail mode";
2805                 goto bad_thin_open;
2806         }
2807
2808         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2809         if (r) {
2810                 ti->error = "Couldn't open thin internal device";
2811                 goto bad_thin_open;
2812         }
2813
2814         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2815         if (r)
2816                 goto bad_thin_open;
2817
2818         ti->num_flush_bios = 1;
2819         ti->flush_supported = true;
2820         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2821
2822         /* In case the pool supports discards, pass them on. */
2823         if (tc->pool->pf.discard_enabled) {
2824                 ti->discards_supported = true;
2825                 ti->num_discard_bios = 1;
2826                 ti->discard_zeroes_data_unsupported = true;
2827                 /* Discard bios must be split on a block boundary */
2828                 ti->split_discard_bios = true;
2829         }
2830
2831         dm_put(pool_md);
2832
2833         mutex_unlock(&dm_thin_pool_table.mutex);
2834
2835         return 0;
2836
2837 bad_thin_open:
2838         __pool_dec(tc->pool);
2839 bad_pool_lookup:
2840         dm_put(pool_md);
2841 bad_common:
2842         dm_put_device(ti, tc->pool_dev);
2843 bad_pool_dev:
2844         if (tc->origin_dev)
2845                 dm_put_device(ti, tc->origin_dev);
2846 bad_origin_dev:
2847         kfree(tc);
2848 out_unlock:
2849         mutex_unlock(&dm_thin_pool_table.mutex);
2850
2851         return r;
2852 }
2853
2854 static int thin_map(struct dm_target *ti, struct bio *bio)
2855 {
2856         bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2857
2858         return thin_bio_map(ti, bio);
2859 }
2860
2861 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2862 {
2863         unsigned long flags;
2864         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2865         struct list_head work;
2866         struct dm_thin_new_mapping *m, *tmp;
2867         struct pool *pool = h->tc->pool;
2868
2869         if (h->shared_read_entry) {
2870                 INIT_LIST_HEAD(&work);
2871                 dm_deferred_entry_dec(h->shared_read_entry, &work);
2872
2873                 spin_lock_irqsave(&pool->lock, flags);
2874                 list_for_each_entry_safe(m, tmp, &work, list) {
2875                         list_del(&m->list);
2876                         m->quiesced = 1;
2877                         __maybe_add_mapping(m);
2878                 }
2879                 spin_unlock_irqrestore(&pool->lock, flags);
2880         }
2881
2882         if (h->all_io_entry) {
2883                 INIT_LIST_HEAD(&work);
2884                 dm_deferred_entry_dec(h->all_io_entry, &work);
2885                 if (!list_empty(&work)) {
2886                         spin_lock_irqsave(&pool->lock, flags);
2887                         list_for_each_entry_safe(m, tmp, &work, list)
2888                                 list_add(&m->list, &pool->prepared_discards);
2889                         spin_unlock_irqrestore(&pool->lock, flags);
2890                         wake_worker(pool);
2891                 }
2892         }
2893
2894         return 0;
2895 }
2896
2897 static void thin_postsuspend(struct dm_target *ti)
2898 {
2899         if (dm_noflush_suspending(ti))
2900                 requeue_io((struct thin_c *)ti->private);
2901 }
2902
2903 /*
2904  * <nr mapped sectors> <highest mapped sector>
2905  */
2906 static void thin_status(struct dm_target *ti, status_type_t type,
2907                         unsigned status_flags, char *result, unsigned maxlen)
2908 {
2909         int r;
2910         ssize_t sz = 0;
2911         dm_block_t mapped, highest;
2912         char buf[BDEVNAME_SIZE];
2913         struct thin_c *tc = ti->private;
2914
2915         if (get_pool_mode(tc->pool) == PM_FAIL) {
2916                 DMEMIT("Fail");
2917                 return;
2918         }
2919
2920         if (!tc->td)
2921                 DMEMIT("-");
2922         else {
2923                 switch (type) {
2924                 case STATUSTYPE_INFO:
2925                         r = dm_thin_get_mapped_count(tc->td, &mapped);
2926                         if (r) {
2927                                 DMERR("dm_thin_get_mapped_count returned %d", r);
2928                                 goto err;
2929                         }
2930
2931                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2932                         if (r < 0) {
2933                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2934                                 goto err;
2935                         }
2936
2937                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2938                         if (r)
2939                                 DMEMIT("%llu", ((highest + 1) *
2940                                                 tc->pool->sectors_per_block) - 1);
2941                         else
2942                                 DMEMIT("-");
2943                         break;
2944
2945                 case STATUSTYPE_TABLE:
2946                         DMEMIT("%s %lu",
2947                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2948                                (unsigned long) tc->dev_id);
2949                         if (tc->origin_dev)
2950                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2951                         break;
2952                 }
2953         }
2954
2955         return;
2956
2957 err:
2958         DMEMIT("Error");
2959 }
2960
2961 static int thin_iterate_devices(struct dm_target *ti,
2962                                 iterate_devices_callout_fn fn, void *data)
2963 {
2964         sector_t blocks;
2965         struct thin_c *tc = ti->private;
2966         struct pool *pool = tc->pool;
2967
2968         /*
2969          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
2970          * we follow a more convoluted path through to the pool's target.
2971          */
2972         if (!pool->ti)
2973                 return 0;       /* nothing is bound */
2974
2975         blocks = pool->ti->len;
2976         (void) sector_div(blocks, pool->sectors_per_block);
2977         if (blocks)
2978                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
2979
2980         return 0;
2981 }
2982
2983 static struct target_type thin_target = {
2984         .name = "thin",
2985         .version = {1, 8, 0},
2986         .module = THIS_MODULE,
2987         .ctr = thin_ctr,
2988         .dtr = thin_dtr,
2989         .map = thin_map,
2990         .end_io = thin_endio,
2991         .postsuspend = thin_postsuspend,
2992         .status = thin_status,
2993         .iterate_devices = thin_iterate_devices,
2994 };
2995
2996 /*----------------------------------------------------------------*/
2997
2998 static int __init dm_thin_init(void)
2999 {
3000         int r;
3001
3002         pool_table_init();
3003
3004         r = dm_register_target(&thin_target);
3005         if (r)
3006                 return r;
3007
3008         r = dm_register_target(&pool_target);
3009         if (r)
3010                 goto bad_pool_target;
3011
3012         r = -ENOMEM;
3013
3014         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3015         if (!_new_mapping_cache)
3016                 goto bad_new_mapping_cache;
3017
3018         return 0;
3019
3020 bad_new_mapping_cache:
3021         dm_unregister_target(&pool_target);
3022 bad_pool_target:
3023         dm_unregister_target(&thin_target);
3024
3025         return r;
3026 }
3027
3028 static void dm_thin_exit(void)
3029 {
3030         dm_unregister_target(&thin_target);
3031         dm_unregister_target(&pool_target);
3032
3033         kmem_cache_destroy(_new_mapping_cache);
3034 }
3035
3036 module_init(dm_thin_init);
3037 module_exit(dm_thin_exit);
3038
3039 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3040 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3041 MODULE_LICENSE("GPL");