Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX   "thin"
20
21 /*
22  * Tunable constants
23  */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30                 "A percentage of time allocated for copy on write");
31
32 /*
33  * The block size of the device holding pool data must be
34  * between 64KB and 1GB.
35  */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40  * Device id is restricted to 24 bits.
41  */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45  * How do we handle breaking sharing of data blocks?
46  * =================================================
47  *
48  * We use a standard copy-on-write btree to store the mappings for the
49  * devices (note I'm talking about copy-on-write of the metadata here, not
50  * the data).  When you take an internal snapshot you clone the root node
51  * of the origin btree.  After this there is no concept of an origin or a
52  * snapshot.  They are just two device trees that happen to point to the
53  * same data blocks.
54  *
55  * When we get a write in we decide if it's to a shared data block using
56  * some timestamp magic.  If it is, we have to break sharing.
57  *
58  * Let's say we write to a shared block in what was the origin.  The
59  * steps are:
60  *
61  * i) plug io further to this physical block. (see bio_prison code).
62  *
63  * ii) quiesce any read io to that shared data block.  Obviously
64  * including all devices that share this block.  (see dm_deferred_set code)
65  *
66  * iii) copy the data block to a newly allocate block.  This step can be
67  * missed out if the io covers the block. (schedule_copy).
68  *
69  * iv) insert the new mapping into the origin's btree
70  * (process_prepared_mapping).  This act of inserting breaks some
71  * sharing of btree nodes between the two devices.  Breaking sharing only
72  * effects the btree of that specific device.  Btrees for the other
73  * devices that share the block never change.  The btree for the origin
74  * device as it was after the last commit is untouched, ie. we're using
75  * persistent data structures in the functional programming sense.
76  *
77  * v) unplug io to this physical block, including the io that triggered
78  * the breaking of sharing.
79  *
80  * Steps (ii) and (iii) occur in parallel.
81  *
82  * The metadata _doesn't_ need to be committed before the io continues.  We
83  * get away with this because the io is always written to a _new_ block.
84  * If there's a crash, then:
85  *
86  * - The origin mapping will point to the old origin block (the shared
87  * one).  This will contain the data as it was before the io that triggered
88  * the breaking of sharing came in.
89  *
90  * - The snap mapping still points to the old block.  As it would after
91  * the commit.
92  *
93  * The downside of this scheme is the timestamp magic isn't perfect, and
94  * will continue to think that data block in the snapshot device is shared
95  * even after the write to the origin has broken sharing.  I suspect data
96  * blocks will typically be shared by many different devices, so we're
97  * breaking sharing n + 1 times, rather than n, where n is the number of
98  * devices that reference this data block.  At the moment I think the
99  * benefits far, far outweigh the disadvantages.
100  */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105  * Key building.
106  */
107 static void build_data_key(struct dm_thin_device *td,
108                            dm_block_t b, struct dm_cell_key *key)
109 {
110         key->virtual = 0;
111         key->dev = dm_thin_dev_id(td);
112         key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116                               struct dm_cell_key *key)
117 {
118         key->virtual = 1;
119         key->dev = dm_thin_dev_id(td);
120         key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126  * A pool device ties together a metadata device and a data device.  It
127  * also provides the interface for creating and destroying internal
128  * devices.
129  */
130 struct dm_thin_new_mapping;
131
132 /*
133  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
134  */
135 enum pool_mode {
136         PM_WRITE,               /* metadata may be changed */
137         PM_READ_ONLY,           /* metadata may not be changed */
138         PM_FAIL,                /* all I/O fails */
139 };
140
141 struct pool_features {
142         enum pool_mode mode;
143
144         bool zero_new_blocks:1;
145         bool discard_enabled:1;
146         bool discard_passdown:1;
147         bool error_if_no_space:1;
148 };
149
150 struct thin_c;
151 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
152 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
153
154 struct pool {
155         struct list_head list;
156         struct dm_target *ti;   /* Only set if a pool target is bound */
157
158         struct mapped_device *pool_md;
159         struct block_device *md_dev;
160         struct dm_pool_metadata *pmd;
161
162         dm_block_t low_water_blocks;
163         uint32_t sectors_per_block;
164         int sectors_per_block_shift;
165
166         struct pool_features pf;
167         bool low_water_triggered:1;     /* A dm event has been sent */
168
169         struct dm_bio_prison *prison;
170         struct dm_kcopyd_client *copier;
171
172         struct workqueue_struct *wq;
173         struct work_struct worker;
174         struct delayed_work waker;
175
176         unsigned long last_commit_jiffies;
177         unsigned ref_count;
178
179         spinlock_t lock;
180         struct bio_list deferred_bios;
181         struct bio_list deferred_flush_bios;
182         struct list_head prepared_mappings;
183         struct list_head prepared_discards;
184
185         struct bio_list retry_on_resume_list;
186
187         struct dm_deferred_set *shared_read_ds;
188         struct dm_deferred_set *all_io_ds;
189
190         struct dm_thin_new_mapping *next_mapping;
191         mempool_t *mapping_pool;
192
193         process_bio_fn process_bio;
194         process_bio_fn process_discard;
195
196         process_mapping_fn process_prepared_mapping;
197         process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void out_of_data_space(struct pool *pool);
202 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
203
204 /*
205  * Target context for a pool.
206  */
207 struct pool_c {
208         struct dm_target *ti;
209         struct pool *pool;
210         struct dm_dev *data_dev;
211         struct dm_dev *metadata_dev;
212         struct dm_target_callbacks callbacks;
213
214         dm_block_t low_water_blocks;
215         struct pool_features requested_pf; /* Features requested during table load */
216         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
217 };
218
219 /*
220  * Target context for a thin.
221  */
222 struct thin_c {
223         struct dm_dev *pool_dev;
224         struct dm_dev *origin_dev;
225         dm_thin_id dev_id;
226
227         struct pool *pool;
228         struct dm_thin_device *td;
229 };
230
231 /*----------------------------------------------------------------*/
232
233 /*
234  * wake_worker() is used when new work is queued and when pool_resume is
235  * ready to continue deferred IO processing.
236  */
237 static void wake_worker(struct pool *pool)
238 {
239         queue_work(pool->wq, &pool->worker);
240 }
241
242 /*----------------------------------------------------------------*/
243
244 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
245                       struct dm_bio_prison_cell **cell_result)
246 {
247         int r;
248         struct dm_bio_prison_cell *cell_prealloc;
249
250         /*
251          * Allocate a cell from the prison's mempool.
252          * This might block but it can't fail.
253          */
254         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
255
256         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
257         if (r)
258                 /*
259                  * We reused an old cell; we can get rid of
260                  * the new one.
261                  */
262                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
263
264         return r;
265 }
266
267 static void cell_release(struct pool *pool,
268                          struct dm_bio_prison_cell *cell,
269                          struct bio_list *bios)
270 {
271         dm_cell_release(pool->prison, cell, bios);
272         dm_bio_prison_free_cell(pool->prison, cell);
273 }
274
275 static void cell_release_no_holder(struct pool *pool,
276                                    struct dm_bio_prison_cell *cell,
277                                    struct bio_list *bios)
278 {
279         dm_cell_release_no_holder(pool->prison, cell, bios);
280         dm_bio_prison_free_cell(pool->prison, cell);
281 }
282
283 static void cell_defer_no_holder_no_free(struct thin_c *tc,
284                                          struct dm_bio_prison_cell *cell)
285 {
286         struct pool *pool = tc->pool;
287         unsigned long flags;
288
289         spin_lock_irqsave(&pool->lock, flags);
290         dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
291         spin_unlock_irqrestore(&pool->lock, flags);
292
293         wake_worker(pool);
294 }
295
296 static void cell_error(struct pool *pool,
297                        struct dm_bio_prison_cell *cell)
298 {
299         dm_cell_error(pool->prison, cell);
300         dm_bio_prison_free_cell(pool->prison, cell);
301 }
302
303 /*----------------------------------------------------------------*/
304
305 /*
306  * A global list of pools that uses a struct mapped_device as a key.
307  */
308 static struct dm_thin_pool_table {
309         struct mutex mutex;
310         struct list_head pools;
311 } dm_thin_pool_table;
312
313 static void pool_table_init(void)
314 {
315         mutex_init(&dm_thin_pool_table.mutex);
316         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
317 }
318
319 static void __pool_table_insert(struct pool *pool)
320 {
321         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
322         list_add(&pool->list, &dm_thin_pool_table.pools);
323 }
324
325 static void __pool_table_remove(struct pool *pool)
326 {
327         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
328         list_del(&pool->list);
329 }
330
331 static struct pool *__pool_table_lookup(struct mapped_device *md)
332 {
333         struct pool *pool = NULL, *tmp;
334
335         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
336
337         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
338                 if (tmp->pool_md == md) {
339                         pool = tmp;
340                         break;
341                 }
342         }
343
344         return pool;
345 }
346
347 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
348 {
349         struct pool *pool = NULL, *tmp;
350
351         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
352
353         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
354                 if (tmp->md_dev == md_dev) {
355                         pool = tmp;
356                         break;
357                 }
358         }
359
360         return pool;
361 }
362
363 /*----------------------------------------------------------------*/
364
365 struct dm_thin_endio_hook {
366         struct thin_c *tc;
367         struct dm_deferred_entry *shared_read_entry;
368         struct dm_deferred_entry *all_io_entry;
369         struct dm_thin_new_mapping *overwrite_mapping;
370 };
371
372 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
373 {
374         struct bio *bio;
375         struct bio_list bios;
376
377         bio_list_init(&bios);
378         bio_list_merge(&bios, master);
379         bio_list_init(master);
380
381         while ((bio = bio_list_pop(&bios))) {
382                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
383
384                 if (h->tc == tc)
385                         bio_endio(bio, DM_ENDIO_REQUEUE);
386                 else
387                         bio_list_add(master, bio);
388         }
389 }
390
391 static void requeue_io(struct thin_c *tc)
392 {
393         struct pool *pool = tc->pool;
394         unsigned long flags;
395
396         spin_lock_irqsave(&pool->lock, flags);
397         __requeue_bio_list(tc, &pool->deferred_bios);
398         __requeue_bio_list(tc, &pool->retry_on_resume_list);
399         spin_unlock_irqrestore(&pool->lock, flags);
400 }
401
402 /*
403  * This section of code contains the logic for processing a thin device's IO.
404  * Much of the code depends on pool object resources (lists, workqueues, etc)
405  * but most is exclusively called from the thin target rather than the thin-pool
406  * target.
407  */
408
409 static bool block_size_is_power_of_two(struct pool *pool)
410 {
411         return pool->sectors_per_block_shift >= 0;
412 }
413
414 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
415 {
416         struct pool *pool = tc->pool;
417         sector_t block_nr = bio->bi_iter.bi_sector;
418
419         if (block_size_is_power_of_two(pool))
420                 block_nr >>= pool->sectors_per_block_shift;
421         else
422                 (void) sector_div(block_nr, pool->sectors_per_block);
423
424         return block_nr;
425 }
426
427 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
428 {
429         struct pool *pool = tc->pool;
430         sector_t bi_sector = bio->bi_iter.bi_sector;
431
432         bio->bi_bdev = tc->pool_dev->bdev;
433         if (block_size_is_power_of_two(pool))
434                 bio->bi_iter.bi_sector =
435                         (block << pool->sectors_per_block_shift) |
436                         (bi_sector & (pool->sectors_per_block - 1));
437         else
438                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
439                                  sector_div(bi_sector, pool->sectors_per_block);
440 }
441
442 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
443 {
444         bio->bi_bdev = tc->origin_dev->bdev;
445 }
446
447 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
448 {
449         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
450                 dm_thin_changed_this_transaction(tc->td);
451 }
452
453 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
454 {
455         struct dm_thin_endio_hook *h;
456
457         if (bio->bi_rw & REQ_DISCARD)
458                 return;
459
460         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
461         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
462 }
463
464 static void issue(struct thin_c *tc, struct bio *bio)
465 {
466         struct pool *pool = tc->pool;
467         unsigned long flags;
468
469         if (!bio_triggers_commit(tc, bio)) {
470                 generic_make_request(bio);
471                 return;
472         }
473
474         /*
475          * Complete bio with an error if earlier I/O caused changes to
476          * the metadata that can't be committed e.g, due to I/O errors
477          * on the metadata device.
478          */
479         if (dm_thin_aborted_changes(tc->td)) {
480                 bio_io_error(bio);
481                 return;
482         }
483
484         /*
485          * Batch together any bios that trigger commits and then issue a
486          * single commit for them in process_deferred_bios().
487          */
488         spin_lock_irqsave(&pool->lock, flags);
489         bio_list_add(&pool->deferred_flush_bios, bio);
490         spin_unlock_irqrestore(&pool->lock, flags);
491 }
492
493 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
494 {
495         remap_to_origin(tc, bio);
496         issue(tc, bio);
497 }
498
499 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
500                             dm_block_t block)
501 {
502         remap(tc, bio, block);
503         issue(tc, bio);
504 }
505
506 /*----------------------------------------------------------------*/
507
508 /*
509  * Bio endio functions.
510  */
511 struct dm_thin_new_mapping {
512         struct list_head list;
513
514         bool quiesced:1;
515         bool prepared:1;
516         bool pass_discard:1;
517         bool definitely_not_shared:1;
518
519         int err;
520         struct thin_c *tc;
521         dm_block_t virt_block;
522         dm_block_t data_block;
523         struct dm_bio_prison_cell *cell, *cell2;
524
525         /*
526          * If the bio covers the whole area of a block then we can avoid
527          * zeroing or copying.  Instead this bio is hooked.  The bio will
528          * still be in the cell, so care has to be taken to avoid issuing
529          * the bio twice.
530          */
531         struct bio *bio;
532         bio_end_io_t *saved_bi_end_io;
533 };
534
535 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
536 {
537         struct pool *pool = m->tc->pool;
538
539         if (m->quiesced && m->prepared) {
540                 list_add_tail(&m->list, &pool->prepared_mappings);
541                 wake_worker(pool);
542         }
543 }
544
545 static void copy_complete(int read_err, unsigned long write_err, void *context)
546 {
547         unsigned long flags;
548         struct dm_thin_new_mapping *m = context;
549         struct pool *pool = m->tc->pool;
550
551         m->err = read_err || write_err ? -EIO : 0;
552
553         spin_lock_irqsave(&pool->lock, flags);
554         m->prepared = true;
555         __maybe_add_mapping(m);
556         spin_unlock_irqrestore(&pool->lock, flags);
557 }
558
559 static void overwrite_endio(struct bio *bio, int err)
560 {
561         unsigned long flags;
562         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
563         struct dm_thin_new_mapping *m = h->overwrite_mapping;
564         struct pool *pool = m->tc->pool;
565
566         m->err = err;
567
568         spin_lock_irqsave(&pool->lock, flags);
569         m->prepared = true;
570         __maybe_add_mapping(m);
571         spin_unlock_irqrestore(&pool->lock, flags);
572 }
573
574 /*----------------------------------------------------------------*/
575
576 /*
577  * Workqueue.
578  */
579
580 /*
581  * Prepared mapping jobs.
582  */
583
584 /*
585  * This sends the bios in the cell back to the deferred_bios list.
586  */
587 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
588 {
589         struct pool *pool = tc->pool;
590         unsigned long flags;
591
592         spin_lock_irqsave(&pool->lock, flags);
593         cell_release(pool, cell, &pool->deferred_bios);
594         spin_unlock_irqrestore(&tc->pool->lock, flags);
595
596         wake_worker(pool);
597 }
598
599 /*
600  * Same as cell_defer above, except it omits the original holder of the cell.
601  */
602 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
603 {
604         struct pool *pool = tc->pool;
605         unsigned long flags;
606
607         spin_lock_irqsave(&pool->lock, flags);
608         cell_release_no_holder(pool, cell, &pool->deferred_bios);
609         spin_unlock_irqrestore(&pool->lock, flags);
610
611         wake_worker(pool);
612 }
613
614 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
615 {
616         if (m->bio) {
617                 m->bio->bi_end_io = m->saved_bi_end_io;
618                 atomic_inc(&m->bio->bi_remaining);
619         }
620         cell_error(m->tc->pool, m->cell);
621         list_del(&m->list);
622         mempool_free(m, m->tc->pool->mapping_pool);
623 }
624
625 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
626 {
627         struct thin_c *tc = m->tc;
628         struct pool *pool = tc->pool;
629         struct bio *bio;
630         int r;
631
632         bio = m->bio;
633         if (bio) {
634                 bio->bi_end_io = m->saved_bi_end_io;
635                 atomic_inc(&bio->bi_remaining);
636         }
637
638         if (m->err) {
639                 cell_error(pool, m->cell);
640                 goto out;
641         }
642
643         /*
644          * Commit the prepared block into the mapping btree.
645          * Any I/O for this block arriving after this point will get
646          * remapped to it directly.
647          */
648         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
649         if (r) {
650                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
651                 cell_error(pool, m->cell);
652                 goto out;
653         }
654
655         /*
656          * Release any bios held while the block was being provisioned.
657          * If we are processing a write bio that completely covers the block,
658          * we already processed it so can ignore it now when processing
659          * the bios in the cell.
660          */
661         if (bio) {
662                 cell_defer_no_holder(tc, m->cell);
663                 bio_endio(bio, 0);
664         } else
665                 cell_defer(tc, m->cell);
666
667 out:
668         list_del(&m->list);
669         mempool_free(m, pool->mapping_pool);
670 }
671
672 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
673 {
674         struct thin_c *tc = m->tc;
675
676         bio_io_error(m->bio);
677         cell_defer_no_holder(tc, m->cell);
678         cell_defer_no_holder(tc, m->cell2);
679         mempool_free(m, tc->pool->mapping_pool);
680 }
681
682 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
683 {
684         struct thin_c *tc = m->tc;
685
686         inc_all_io_entry(tc->pool, m->bio);
687         cell_defer_no_holder(tc, m->cell);
688         cell_defer_no_holder(tc, m->cell2);
689
690         if (m->pass_discard)
691                 if (m->definitely_not_shared)
692                         remap_and_issue(tc, m->bio, m->data_block);
693                 else {
694                         bool used = false;
695                         if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
696                                 bio_endio(m->bio, 0);
697                         else
698                                 remap_and_issue(tc, m->bio, m->data_block);
699                 }
700         else
701                 bio_endio(m->bio, 0);
702
703         mempool_free(m, tc->pool->mapping_pool);
704 }
705
706 static void process_prepared_discard(struct dm_thin_new_mapping *m)
707 {
708         int r;
709         struct thin_c *tc = m->tc;
710
711         r = dm_thin_remove_block(tc->td, m->virt_block);
712         if (r)
713                 DMERR_LIMIT("dm_thin_remove_block() failed");
714
715         process_prepared_discard_passdown(m);
716 }
717
718 static void process_prepared(struct pool *pool, struct list_head *head,
719                              process_mapping_fn *fn)
720 {
721         unsigned long flags;
722         struct list_head maps;
723         struct dm_thin_new_mapping *m, *tmp;
724
725         INIT_LIST_HEAD(&maps);
726         spin_lock_irqsave(&pool->lock, flags);
727         list_splice_init(head, &maps);
728         spin_unlock_irqrestore(&pool->lock, flags);
729
730         list_for_each_entry_safe(m, tmp, &maps, list)
731                 (*fn)(m);
732 }
733
734 /*
735  * Deferred bio jobs.
736  */
737 static int io_overlaps_block(struct pool *pool, struct bio *bio)
738 {
739         return bio->bi_iter.bi_size ==
740                 (pool->sectors_per_block << SECTOR_SHIFT);
741 }
742
743 static int io_overwrites_block(struct pool *pool, struct bio *bio)
744 {
745         return (bio_data_dir(bio) == WRITE) &&
746                 io_overlaps_block(pool, bio);
747 }
748
749 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
750                                bio_end_io_t *fn)
751 {
752         *save = bio->bi_end_io;
753         bio->bi_end_io = fn;
754 }
755
756 static int ensure_next_mapping(struct pool *pool)
757 {
758         if (pool->next_mapping)
759                 return 0;
760
761         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
762
763         return pool->next_mapping ? 0 : -ENOMEM;
764 }
765
766 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
767 {
768         struct dm_thin_new_mapping *m = pool->next_mapping;
769
770         BUG_ON(!pool->next_mapping);
771
772         memset(m, 0, sizeof(struct dm_thin_new_mapping));
773         INIT_LIST_HEAD(&m->list);
774         m->bio = NULL;
775
776         pool->next_mapping = NULL;
777
778         return m;
779 }
780
781 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
782                           struct dm_dev *origin, dm_block_t data_origin,
783                           dm_block_t data_dest,
784                           struct dm_bio_prison_cell *cell, struct bio *bio)
785 {
786         int r;
787         struct pool *pool = tc->pool;
788         struct dm_thin_new_mapping *m = get_next_mapping(pool);
789
790         m->tc = tc;
791         m->virt_block = virt_block;
792         m->data_block = data_dest;
793         m->cell = cell;
794
795         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
796                 m->quiesced = true;
797
798         /*
799          * IO to pool_dev remaps to the pool target's data_dev.
800          *
801          * If the whole block of data is being overwritten, we can issue the
802          * bio immediately. Otherwise we use kcopyd to clone the data first.
803          */
804         if (io_overwrites_block(pool, bio)) {
805                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
806
807                 h->overwrite_mapping = m;
808                 m->bio = bio;
809                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
810                 inc_all_io_entry(pool, bio);
811                 remap_and_issue(tc, bio, data_dest);
812         } else {
813                 struct dm_io_region from, to;
814
815                 from.bdev = origin->bdev;
816                 from.sector = data_origin * pool->sectors_per_block;
817                 from.count = pool->sectors_per_block;
818
819                 to.bdev = tc->pool_dev->bdev;
820                 to.sector = data_dest * pool->sectors_per_block;
821                 to.count = pool->sectors_per_block;
822
823                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
824                                    0, copy_complete, m);
825                 if (r < 0) {
826                         mempool_free(m, pool->mapping_pool);
827                         DMERR_LIMIT("dm_kcopyd_copy() failed");
828                         cell_error(pool, cell);
829                 }
830         }
831 }
832
833 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
834                                    dm_block_t data_origin, dm_block_t data_dest,
835                                    struct dm_bio_prison_cell *cell, struct bio *bio)
836 {
837         schedule_copy(tc, virt_block, tc->pool_dev,
838                       data_origin, data_dest, cell, bio);
839 }
840
841 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
842                                    dm_block_t data_dest,
843                                    struct dm_bio_prison_cell *cell, struct bio *bio)
844 {
845         schedule_copy(tc, virt_block, tc->origin_dev,
846                       virt_block, data_dest, cell, bio);
847 }
848
849 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
850                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
851                           struct bio *bio)
852 {
853         struct pool *pool = tc->pool;
854         struct dm_thin_new_mapping *m = get_next_mapping(pool);
855
856         m->quiesced = true;
857         m->prepared = false;
858         m->tc = tc;
859         m->virt_block = virt_block;
860         m->data_block = data_block;
861         m->cell = cell;
862
863         /*
864          * If the whole block of data is being overwritten or we are not
865          * zeroing pre-existing data, we can issue the bio immediately.
866          * Otherwise we use kcopyd to zero the data first.
867          */
868         if (!pool->pf.zero_new_blocks)
869                 process_prepared_mapping(m);
870
871         else if (io_overwrites_block(pool, bio)) {
872                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
873
874                 h->overwrite_mapping = m;
875                 m->bio = bio;
876                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
877                 inc_all_io_entry(pool, bio);
878                 remap_and_issue(tc, bio, data_block);
879         } else {
880                 int r;
881                 struct dm_io_region to;
882
883                 to.bdev = tc->pool_dev->bdev;
884                 to.sector = data_block * pool->sectors_per_block;
885                 to.count = pool->sectors_per_block;
886
887                 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
888                 if (r < 0) {
889                         mempool_free(m, pool->mapping_pool);
890                         DMERR_LIMIT("dm_kcopyd_zero() failed");
891                         cell_error(pool, cell);
892                 }
893         }
894 }
895
896 /*
897  * A non-zero return indicates read_only or fail_io mode.
898  * Many callers don't care about the return value.
899  */
900 static int commit(struct pool *pool)
901 {
902         int r;
903
904         if (get_pool_mode(pool) != PM_WRITE)
905                 return -EINVAL;
906
907         r = dm_pool_commit_metadata(pool->pmd);
908         if (r)
909                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
910
911         return r;
912 }
913
914 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
915 {
916         unsigned long flags;
917
918         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
919                 DMWARN("%s: reached low water mark for data device: sending event.",
920                        dm_device_name(pool->pool_md));
921                 spin_lock_irqsave(&pool->lock, flags);
922                 pool->low_water_triggered = true;
923                 spin_unlock_irqrestore(&pool->lock, flags);
924                 dm_table_event(pool->ti->table);
925         }
926 }
927
928 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
929 {
930         int r;
931         dm_block_t free_blocks;
932         struct pool *pool = tc->pool;
933
934         if (get_pool_mode(pool) != PM_WRITE)
935                 return -EINVAL;
936
937         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
938         if (r) {
939                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
940                 return r;
941         }
942
943         check_low_water_mark(pool, free_blocks);
944
945         if (!free_blocks) {
946                 /*
947                  * Try to commit to see if that will free up some
948                  * more space.
949                  */
950                 r = commit(pool);
951                 if (r)
952                         return r;
953
954                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
955                 if (r) {
956                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
957                         return r;
958                 }
959
960                 if (!free_blocks) {
961                         out_of_data_space(pool);
962                         return -ENOSPC;
963                 }
964         }
965
966         r = dm_pool_alloc_data_block(pool->pmd, result);
967         if (r) {
968                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
969                 return r;
970         }
971
972         return 0;
973 }
974
975 /*
976  * If we have run out of space, queue bios until the device is
977  * resumed, presumably after having been reloaded with more space.
978  */
979 static void retry_on_resume(struct bio *bio)
980 {
981         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
982         struct thin_c *tc = h->tc;
983         struct pool *pool = tc->pool;
984         unsigned long flags;
985
986         spin_lock_irqsave(&pool->lock, flags);
987         bio_list_add(&pool->retry_on_resume_list, bio);
988         spin_unlock_irqrestore(&pool->lock, flags);
989 }
990
991 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
992 {
993         /*
994          * When pool is read-only, no cell locking is needed because
995          * nothing is changing.
996          */
997         WARN_ON_ONCE(get_pool_mode(pool) != PM_READ_ONLY);
998
999         if (pool->pf.error_if_no_space)
1000                 bio_io_error(bio);
1001         else
1002                 retry_on_resume(bio);
1003 }
1004
1005 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1006 {
1007         struct bio *bio;
1008         struct bio_list bios;
1009
1010         bio_list_init(&bios);
1011         cell_release(pool, cell, &bios);
1012
1013         while ((bio = bio_list_pop(&bios)))
1014                 handle_unserviceable_bio(pool, bio);
1015 }
1016
1017 static void process_discard(struct thin_c *tc, struct bio *bio)
1018 {
1019         int r;
1020         unsigned long flags;
1021         struct pool *pool = tc->pool;
1022         struct dm_bio_prison_cell *cell, *cell2;
1023         struct dm_cell_key key, key2;
1024         dm_block_t block = get_bio_block(tc, bio);
1025         struct dm_thin_lookup_result lookup_result;
1026         struct dm_thin_new_mapping *m;
1027
1028         build_virtual_key(tc->td, block, &key);
1029         if (bio_detain(tc->pool, &key, bio, &cell))
1030                 return;
1031
1032         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1033         switch (r) {
1034         case 0:
1035                 /*
1036                  * Check nobody is fiddling with this pool block.  This can
1037                  * happen if someone's in the process of breaking sharing
1038                  * on this block.
1039                  */
1040                 build_data_key(tc->td, lookup_result.block, &key2);
1041                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1042                         cell_defer_no_holder(tc, cell);
1043                         break;
1044                 }
1045
1046                 if (io_overlaps_block(pool, bio)) {
1047                         /*
1048                          * IO may still be going to the destination block.  We must
1049                          * quiesce before we can do the removal.
1050                          */
1051                         m = get_next_mapping(pool);
1052                         m->tc = tc;
1053                         m->pass_discard = pool->pf.discard_passdown;
1054                         m->definitely_not_shared = !lookup_result.shared;
1055                         m->virt_block = block;
1056                         m->data_block = lookup_result.block;
1057                         m->cell = cell;
1058                         m->cell2 = cell2;
1059                         m->bio = bio;
1060
1061                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1062                                 spin_lock_irqsave(&pool->lock, flags);
1063                                 list_add_tail(&m->list, &pool->prepared_discards);
1064                                 spin_unlock_irqrestore(&pool->lock, flags);
1065                                 wake_worker(pool);
1066                         }
1067                 } else {
1068                         inc_all_io_entry(pool, bio);
1069                         cell_defer_no_holder(tc, cell);
1070                         cell_defer_no_holder(tc, cell2);
1071
1072                         /*
1073                          * The DM core makes sure that the discard doesn't span
1074                          * a block boundary.  So we submit the discard of a
1075                          * partial block appropriately.
1076                          */
1077                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1078                                 remap_and_issue(tc, bio, lookup_result.block);
1079                         else
1080                                 bio_endio(bio, 0);
1081                 }
1082                 break;
1083
1084         case -ENODATA:
1085                 /*
1086                  * It isn't provisioned, just forget it.
1087                  */
1088                 cell_defer_no_holder(tc, cell);
1089                 bio_endio(bio, 0);
1090                 break;
1091
1092         default:
1093                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1094                             __func__, r);
1095                 cell_defer_no_holder(tc, cell);
1096                 bio_io_error(bio);
1097                 break;
1098         }
1099 }
1100
1101 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1102                           struct dm_cell_key *key,
1103                           struct dm_thin_lookup_result *lookup_result,
1104                           struct dm_bio_prison_cell *cell)
1105 {
1106         int r;
1107         dm_block_t data_block;
1108         struct pool *pool = tc->pool;
1109
1110         r = alloc_data_block(tc, &data_block);
1111         switch (r) {
1112         case 0:
1113                 schedule_internal_copy(tc, block, lookup_result->block,
1114                                        data_block, cell, bio);
1115                 break;
1116
1117         case -ENOSPC:
1118                 retry_bios_on_resume(pool, cell);
1119                 break;
1120
1121         default:
1122                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1123                             __func__, r);
1124                 cell_error(pool, cell);
1125                 break;
1126         }
1127 }
1128
1129 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1130                                dm_block_t block,
1131                                struct dm_thin_lookup_result *lookup_result)
1132 {
1133         struct dm_bio_prison_cell *cell;
1134         struct pool *pool = tc->pool;
1135         struct dm_cell_key key;
1136
1137         /*
1138          * If cell is already occupied, then sharing is already in the process
1139          * of being broken so we have nothing further to do here.
1140          */
1141         build_data_key(tc->td, lookup_result->block, &key);
1142         if (bio_detain(pool, &key, bio, &cell))
1143                 return;
1144
1145         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1146                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1147         else {
1148                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1149
1150                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1151                 inc_all_io_entry(pool, bio);
1152                 cell_defer_no_holder(tc, cell);
1153
1154                 remap_and_issue(tc, bio, lookup_result->block);
1155         }
1156 }
1157
1158 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1159                             struct dm_bio_prison_cell *cell)
1160 {
1161         int r;
1162         dm_block_t data_block;
1163         struct pool *pool = tc->pool;
1164
1165         /*
1166          * Remap empty bios (flushes) immediately, without provisioning.
1167          */
1168         if (!bio->bi_iter.bi_size) {
1169                 inc_all_io_entry(pool, bio);
1170                 cell_defer_no_holder(tc, cell);
1171
1172                 remap_and_issue(tc, bio, 0);
1173                 return;
1174         }
1175
1176         /*
1177          * Fill read bios with zeroes and complete them immediately.
1178          */
1179         if (bio_data_dir(bio) == READ) {
1180                 zero_fill_bio(bio);
1181                 cell_defer_no_holder(tc, cell);
1182                 bio_endio(bio, 0);
1183                 return;
1184         }
1185
1186         r = alloc_data_block(tc, &data_block);
1187         switch (r) {
1188         case 0:
1189                 if (tc->origin_dev)
1190                         schedule_external_copy(tc, block, data_block, cell, bio);
1191                 else
1192                         schedule_zero(tc, block, data_block, cell, bio);
1193                 break;
1194
1195         case -ENOSPC:
1196                 retry_bios_on_resume(pool, cell);
1197                 break;
1198
1199         default:
1200                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1201                             __func__, r);
1202                 cell_error(pool, cell);
1203                 break;
1204         }
1205 }
1206
1207 static void process_bio(struct thin_c *tc, struct bio *bio)
1208 {
1209         int r;
1210         struct pool *pool = tc->pool;
1211         dm_block_t block = get_bio_block(tc, bio);
1212         struct dm_bio_prison_cell *cell;
1213         struct dm_cell_key key;
1214         struct dm_thin_lookup_result lookup_result;
1215
1216         /*
1217          * If cell is already occupied, then the block is already
1218          * being provisioned so we have nothing further to do here.
1219          */
1220         build_virtual_key(tc->td, block, &key);
1221         if (bio_detain(pool, &key, bio, &cell))
1222                 return;
1223
1224         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1225         switch (r) {
1226         case 0:
1227                 if (lookup_result.shared) {
1228                         process_shared_bio(tc, bio, block, &lookup_result);
1229                         cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1230                 } else {
1231                         inc_all_io_entry(pool, bio);
1232                         cell_defer_no_holder(tc, cell);
1233
1234                         remap_and_issue(tc, bio, lookup_result.block);
1235                 }
1236                 break;
1237
1238         case -ENODATA:
1239                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1240                         inc_all_io_entry(pool, bio);
1241                         cell_defer_no_holder(tc, cell);
1242
1243                         remap_to_origin_and_issue(tc, bio);
1244                 } else
1245                         provision_block(tc, bio, block, cell);
1246                 break;
1247
1248         default:
1249                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1250                             __func__, r);
1251                 cell_defer_no_holder(tc, cell);
1252                 bio_io_error(bio);
1253                 break;
1254         }
1255 }
1256
1257 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1258 {
1259         int r;
1260         int rw = bio_data_dir(bio);
1261         dm_block_t block = get_bio_block(tc, bio);
1262         struct dm_thin_lookup_result lookup_result;
1263
1264         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1265         switch (r) {
1266         case 0:
1267                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1268                         handle_unserviceable_bio(tc->pool, bio);
1269                 else {
1270                         inc_all_io_entry(tc->pool, bio);
1271                         remap_and_issue(tc, bio, lookup_result.block);
1272                 }
1273                 break;
1274
1275         case -ENODATA:
1276                 if (rw != READ) {
1277                         handle_unserviceable_bio(tc->pool, bio);
1278                         break;
1279                 }
1280
1281                 if (tc->origin_dev) {
1282                         inc_all_io_entry(tc->pool, bio);
1283                         remap_to_origin_and_issue(tc, bio);
1284                         break;
1285                 }
1286
1287                 zero_fill_bio(bio);
1288                 bio_endio(bio, 0);
1289                 break;
1290
1291         default:
1292                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1293                             __func__, r);
1294                 bio_io_error(bio);
1295                 break;
1296         }
1297 }
1298
1299 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1300 {
1301         bio_io_error(bio);
1302 }
1303
1304 /*
1305  * FIXME: should we also commit due to size of transaction, measured in
1306  * metadata blocks?
1307  */
1308 static int need_commit_due_to_time(struct pool *pool)
1309 {
1310         return jiffies < pool->last_commit_jiffies ||
1311                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1312 }
1313
1314 static void process_deferred_bios(struct pool *pool)
1315 {
1316         unsigned long flags;
1317         struct bio *bio;
1318         struct bio_list bios;
1319
1320         bio_list_init(&bios);
1321
1322         spin_lock_irqsave(&pool->lock, flags);
1323         bio_list_merge(&bios, &pool->deferred_bios);
1324         bio_list_init(&pool->deferred_bios);
1325         spin_unlock_irqrestore(&pool->lock, flags);
1326
1327         while ((bio = bio_list_pop(&bios))) {
1328                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1329                 struct thin_c *tc = h->tc;
1330
1331                 /*
1332                  * If we've got no free new_mapping structs, and processing
1333                  * this bio might require one, we pause until there are some
1334                  * prepared mappings to process.
1335                  */
1336                 if (ensure_next_mapping(pool)) {
1337                         spin_lock_irqsave(&pool->lock, flags);
1338                         bio_list_merge(&pool->deferred_bios, &bios);
1339                         spin_unlock_irqrestore(&pool->lock, flags);
1340
1341                         break;
1342                 }
1343
1344                 if (bio->bi_rw & REQ_DISCARD)
1345                         pool->process_discard(tc, bio);
1346                 else
1347                         pool->process_bio(tc, bio);
1348         }
1349
1350         /*
1351          * If there are any deferred flush bios, we must commit
1352          * the metadata before issuing them.
1353          */
1354         bio_list_init(&bios);
1355         spin_lock_irqsave(&pool->lock, flags);
1356         bio_list_merge(&bios, &pool->deferred_flush_bios);
1357         bio_list_init(&pool->deferred_flush_bios);
1358         spin_unlock_irqrestore(&pool->lock, flags);
1359
1360         if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1361                 return;
1362
1363         if (commit(pool)) {
1364                 while ((bio = bio_list_pop(&bios)))
1365                         bio_io_error(bio);
1366                 return;
1367         }
1368         pool->last_commit_jiffies = jiffies;
1369
1370         while ((bio = bio_list_pop(&bios)))
1371                 generic_make_request(bio);
1372 }
1373
1374 static void do_worker(struct work_struct *ws)
1375 {
1376         struct pool *pool = container_of(ws, struct pool, worker);
1377
1378         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1379         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1380         process_deferred_bios(pool);
1381 }
1382
1383 /*
1384  * We want to commit periodically so that not too much
1385  * unwritten data builds up.
1386  */
1387 static void do_waker(struct work_struct *ws)
1388 {
1389         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1390         wake_worker(pool);
1391         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1392 }
1393
1394 /*----------------------------------------------------------------*/
1395
1396 static enum pool_mode get_pool_mode(struct pool *pool)
1397 {
1398         return pool->pf.mode;
1399 }
1400
1401 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1402 {
1403         int r;
1404         enum pool_mode old_mode = pool->pf.mode;
1405
1406         switch (new_mode) {
1407         case PM_FAIL:
1408                 if (old_mode != new_mode)
1409                         DMERR("%s: switching pool to failure mode",
1410                               dm_device_name(pool->pool_md));
1411                 dm_pool_metadata_read_only(pool->pmd);
1412                 pool->process_bio = process_bio_fail;
1413                 pool->process_discard = process_bio_fail;
1414                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1415                 pool->process_prepared_discard = process_prepared_discard_fail;
1416                 break;
1417
1418         case PM_READ_ONLY:
1419                 if (old_mode != new_mode)
1420                         DMERR("%s: switching pool to read-only mode",
1421                               dm_device_name(pool->pool_md));
1422                 r = dm_pool_abort_metadata(pool->pmd);
1423                 if (r) {
1424                         DMERR("%s: aborting transaction failed",
1425                               dm_device_name(pool->pool_md));
1426                         new_mode = PM_FAIL;
1427                         set_pool_mode(pool, new_mode);
1428                 } else {
1429                         dm_pool_metadata_read_only(pool->pmd);
1430                         pool->process_bio = process_bio_read_only;
1431                         pool->process_discard = process_discard;
1432                         pool->process_prepared_mapping = process_prepared_mapping_fail;
1433                         pool->process_prepared_discard = process_prepared_discard_passdown;
1434                 }
1435                 break;
1436
1437         case PM_WRITE:
1438                 if (old_mode != new_mode)
1439                         DMINFO("%s: switching pool to write mode",
1440                                dm_device_name(pool->pool_md));
1441                 dm_pool_metadata_read_write(pool->pmd);
1442                 pool->process_bio = process_bio;
1443                 pool->process_discard = process_discard;
1444                 pool->process_prepared_mapping = process_prepared_mapping;
1445                 pool->process_prepared_discard = process_prepared_discard;
1446                 break;
1447         }
1448
1449         pool->pf.mode = new_mode;
1450 }
1451
1452 /*
1453  * Rather than calling set_pool_mode directly, use these which describe the
1454  * reason for mode degradation.
1455  */
1456 static void out_of_data_space(struct pool *pool)
1457 {
1458         DMERR_LIMIT("%s: no free data space available.",
1459                     dm_device_name(pool->pool_md));
1460         set_pool_mode(pool, PM_READ_ONLY);
1461 }
1462
1463 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1464 {
1465         dm_block_t free_blocks;
1466
1467         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1468                     dm_device_name(pool->pool_md), op, r);
1469
1470         if (r == -ENOSPC &&
1471             !dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks) &&
1472             !free_blocks)
1473                 DMERR_LIMIT("%s: no free metadata space available.",
1474                             dm_device_name(pool->pool_md));
1475
1476         set_pool_mode(pool, PM_READ_ONLY);
1477 }
1478
1479 /*----------------------------------------------------------------*/
1480
1481 /*
1482  * Mapping functions.
1483  */
1484
1485 /*
1486  * Called only while mapping a thin bio to hand it over to the workqueue.
1487  */
1488 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1489 {
1490         unsigned long flags;
1491         struct pool *pool = tc->pool;
1492
1493         spin_lock_irqsave(&pool->lock, flags);
1494         bio_list_add(&pool->deferred_bios, bio);
1495         spin_unlock_irqrestore(&pool->lock, flags);
1496
1497         wake_worker(pool);
1498 }
1499
1500 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1501 {
1502         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1503
1504         h->tc = tc;
1505         h->shared_read_entry = NULL;
1506         h->all_io_entry = NULL;
1507         h->overwrite_mapping = NULL;
1508 }
1509
1510 /*
1511  * Non-blocking function called from the thin target's map function.
1512  */
1513 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1514 {
1515         int r;
1516         struct thin_c *tc = ti->private;
1517         dm_block_t block = get_bio_block(tc, bio);
1518         struct dm_thin_device *td = tc->td;
1519         struct dm_thin_lookup_result result;
1520         struct dm_bio_prison_cell cell1, cell2;
1521         struct dm_bio_prison_cell *cell_result;
1522         struct dm_cell_key key;
1523
1524         thin_hook_bio(tc, bio);
1525
1526         if (get_pool_mode(tc->pool) == PM_FAIL) {
1527                 bio_io_error(bio);
1528                 return DM_MAPIO_SUBMITTED;
1529         }
1530
1531         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1532                 thin_defer_bio(tc, bio);
1533                 return DM_MAPIO_SUBMITTED;
1534         }
1535
1536         r = dm_thin_find_block(td, block, 0, &result);
1537
1538         /*
1539          * Note that we defer readahead too.
1540          */
1541         switch (r) {
1542         case 0:
1543                 if (unlikely(result.shared)) {
1544                         /*
1545                          * We have a race condition here between the
1546                          * result.shared value returned by the lookup and
1547                          * snapshot creation, which may cause new
1548                          * sharing.
1549                          *
1550                          * To avoid this always quiesce the origin before
1551                          * taking the snap.  You want to do this anyway to
1552                          * ensure a consistent application view
1553                          * (i.e. lockfs).
1554                          *
1555                          * More distant ancestors are irrelevant. The
1556                          * shared flag will be set in their case.
1557                          */
1558                         thin_defer_bio(tc, bio);
1559                         return DM_MAPIO_SUBMITTED;
1560                 }
1561
1562                 build_virtual_key(tc->td, block, &key);
1563                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1564                         return DM_MAPIO_SUBMITTED;
1565
1566                 build_data_key(tc->td, result.block, &key);
1567                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1568                         cell_defer_no_holder_no_free(tc, &cell1);
1569                         return DM_MAPIO_SUBMITTED;
1570                 }
1571
1572                 inc_all_io_entry(tc->pool, bio);
1573                 cell_defer_no_holder_no_free(tc, &cell2);
1574                 cell_defer_no_holder_no_free(tc, &cell1);
1575
1576                 remap(tc, bio, result.block);
1577                 return DM_MAPIO_REMAPPED;
1578
1579         case -ENODATA:
1580                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1581                         /*
1582                          * This block isn't provisioned, and we have no way
1583                          * of doing so.
1584                          */
1585                         handle_unserviceable_bio(tc->pool, bio);
1586                         return DM_MAPIO_SUBMITTED;
1587                 }
1588                 /* fall through */
1589
1590         case -EWOULDBLOCK:
1591                 /*
1592                  * In future, the failed dm_thin_find_block above could
1593                  * provide the hint to load the metadata into cache.
1594                  */
1595                 thin_defer_bio(tc, bio);
1596                 return DM_MAPIO_SUBMITTED;
1597
1598         default:
1599                 /*
1600                  * Must always call bio_io_error on failure.
1601                  * dm_thin_find_block can fail with -EINVAL if the
1602                  * pool is switched to fail-io mode.
1603                  */
1604                 bio_io_error(bio);
1605                 return DM_MAPIO_SUBMITTED;
1606         }
1607 }
1608
1609 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1610 {
1611         int r;
1612         unsigned long flags;
1613         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1614
1615         spin_lock_irqsave(&pt->pool->lock, flags);
1616         r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1617         spin_unlock_irqrestore(&pt->pool->lock, flags);
1618
1619         if (!r) {
1620                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1621                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1622         }
1623
1624         return r;
1625 }
1626
1627 static void __requeue_bios(struct pool *pool)
1628 {
1629         bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1630         bio_list_init(&pool->retry_on_resume_list);
1631 }
1632
1633 /*----------------------------------------------------------------
1634  * Binding of control targets to a pool object
1635  *--------------------------------------------------------------*/
1636 static bool data_dev_supports_discard(struct pool_c *pt)
1637 {
1638         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1639
1640         return q && blk_queue_discard(q);
1641 }
1642
1643 static bool is_factor(sector_t block_size, uint32_t n)
1644 {
1645         return !sector_div(block_size, n);
1646 }
1647
1648 /*
1649  * If discard_passdown was enabled verify that the data device
1650  * supports discards.  Disable discard_passdown if not.
1651  */
1652 static void disable_passdown_if_not_supported(struct pool_c *pt)
1653 {
1654         struct pool *pool = pt->pool;
1655         struct block_device *data_bdev = pt->data_dev->bdev;
1656         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1657         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1658         const char *reason = NULL;
1659         char buf[BDEVNAME_SIZE];
1660
1661         if (!pt->adjusted_pf.discard_passdown)
1662                 return;
1663
1664         if (!data_dev_supports_discard(pt))
1665                 reason = "discard unsupported";
1666
1667         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1668                 reason = "max discard sectors smaller than a block";
1669
1670         else if (data_limits->discard_granularity > block_size)
1671                 reason = "discard granularity larger than a block";
1672
1673         else if (!is_factor(block_size, data_limits->discard_granularity))
1674                 reason = "discard granularity not a factor of block size";
1675
1676         if (reason) {
1677                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1678                 pt->adjusted_pf.discard_passdown = false;
1679         }
1680 }
1681
1682 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1683 {
1684         struct pool_c *pt = ti->private;
1685
1686         /*
1687          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1688          */
1689         enum pool_mode old_mode = pool->pf.mode;
1690         enum pool_mode new_mode = pt->adjusted_pf.mode;
1691
1692         /*
1693          * Don't change the pool's mode until set_pool_mode() below.
1694          * Otherwise the pool's process_* function pointers may
1695          * not match the desired pool mode.
1696          */
1697         pt->adjusted_pf.mode = old_mode;
1698
1699         pool->ti = ti;
1700         pool->pf = pt->adjusted_pf;
1701         pool->low_water_blocks = pt->low_water_blocks;
1702
1703         /*
1704          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1705          * not going to recover without a thin_repair.  So we never let the
1706          * pool move out of the old mode.  On the other hand a PM_READ_ONLY
1707          * may have been due to a lack of metadata or data space, and may
1708          * now work (ie. if the underlying devices have been resized).
1709          */
1710         if (old_mode == PM_FAIL)
1711                 new_mode = old_mode;
1712
1713         set_pool_mode(pool, new_mode);
1714
1715         return 0;
1716 }
1717
1718 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1719 {
1720         if (pool->ti == ti)
1721                 pool->ti = NULL;
1722 }
1723
1724 /*----------------------------------------------------------------
1725  * Pool creation
1726  *--------------------------------------------------------------*/
1727 /* Initialize pool features. */
1728 static void pool_features_init(struct pool_features *pf)
1729 {
1730         pf->mode = PM_WRITE;
1731         pf->zero_new_blocks = true;
1732         pf->discard_enabled = true;
1733         pf->discard_passdown = true;
1734         pf->error_if_no_space = false;
1735 }
1736
1737 static void __pool_destroy(struct pool *pool)
1738 {
1739         __pool_table_remove(pool);
1740
1741         if (dm_pool_metadata_close(pool->pmd) < 0)
1742                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1743
1744         dm_bio_prison_destroy(pool->prison);
1745         dm_kcopyd_client_destroy(pool->copier);
1746
1747         if (pool->wq)
1748                 destroy_workqueue(pool->wq);
1749
1750         if (pool->next_mapping)
1751                 mempool_free(pool->next_mapping, pool->mapping_pool);
1752         mempool_destroy(pool->mapping_pool);
1753         dm_deferred_set_destroy(pool->shared_read_ds);
1754         dm_deferred_set_destroy(pool->all_io_ds);
1755         kfree(pool);
1756 }
1757
1758 static struct kmem_cache *_new_mapping_cache;
1759
1760 static struct pool *pool_create(struct mapped_device *pool_md,
1761                                 struct block_device *metadata_dev,
1762                                 unsigned long block_size,
1763                                 int read_only, char **error)
1764 {
1765         int r;
1766         void *err_p;
1767         struct pool *pool;
1768         struct dm_pool_metadata *pmd;
1769         bool format_device = read_only ? false : true;
1770
1771         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1772         if (IS_ERR(pmd)) {
1773                 *error = "Error creating metadata object";
1774                 return (struct pool *)pmd;
1775         }
1776
1777         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1778         if (!pool) {
1779                 *error = "Error allocating memory for pool";
1780                 err_p = ERR_PTR(-ENOMEM);
1781                 goto bad_pool;
1782         }
1783
1784         pool->pmd = pmd;
1785         pool->sectors_per_block = block_size;
1786         if (block_size & (block_size - 1))
1787                 pool->sectors_per_block_shift = -1;
1788         else
1789                 pool->sectors_per_block_shift = __ffs(block_size);
1790         pool->low_water_blocks = 0;
1791         pool_features_init(&pool->pf);
1792         pool->prison = dm_bio_prison_create(PRISON_CELLS);
1793         if (!pool->prison) {
1794                 *error = "Error creating pool's bio prison";
1795                 err_p = ERR_PTR(-ENOMEM);
1796                 goto bad_prison;
1797         }
1798
1799         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1800         if (IS_ERR(pool->copier)) {
1801                 r = PTR_ERR(pool->copier);
1802                 *error = "Error creating pool's kcopyd client";
1803                 err_p = ERR_PTR(r);
1804                 goto bad_kcopyd_client;
1805         }
1806
1807         /*
1808          * Create singlethreaded workqueue that will service all devices
1809          * that use this metadata.
1810          */
1811         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1812         if (!pool->wq) {
1813                 *error = "Error creating pool's workqueue";
1814                 err_p = ERR_PTR(-ENOMEM);
1815                 goto bad_wq;
1816         }
1817
1818         INIT_WORK(&pool->worker, do_worker);
1819         INIT_DELAYED_WORK(&pool->waker, do_waker);
1820         spin_lock_init(&pool->lock);
1821         bio_list_init(&pool->deferred_bios);
1822         bio_list_init(&pool->deferred_flush_bios);
1823         INIT_LIST_HEAD(&pool->prepared_mappings);
1824         INIT_LIST_HEAD(&pool->prepared_discards);
1825         pool->low_water_triggered = false;
1826         bio_list_init(&pool->retry_on_resume_list);
1827
1828         pool->shared_read_ds = dm_deferred_set_create();
1829         if (!pool->shared_read_ds) {
1830                 *error = "Error creating pool's shared read deferred set";
1831                 err_p = ERR_PTR(-ENOMEM);
1832                 goto bad_shared_read_ds;
1833         }
1834
1835         pool->all_io_ds = dm_deferred_set_create();
1836         if (!pool->all_io_ds) {
1837                 *error = "Error creating pool's all io deferred set";
1838                 err_p = ERR_PTR(-ENOMEM);
1839                 goto bad_all_io_ds;
1840         }
1841
1842         pool->next_mapping = NULL;
1843         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1844                                                       _new_mapping_cache);
1845         if (!pool->mapping_pool) {
1846                 *error = "Error creating pool's mapping mempool";
1847                 err_p = ERR_PTR(-ENOMEM);
1848                 goto bad_mapping_pool;
1849         }
1850
1851         pool->ref_count = 1;
1852         pool->last_commit_jiffies = jiffies;
1853         pool->pool_md = pool_md;
1854         pool->md_dev = metadata_dev;
1855         __pool_table_insert(pool);
1856
1857         return pool;
1858
1859 bad_mapping_pool:
1860         dm_deferred_set_destroy(pool->all_io_ds);
1861 bad_all_io_ds:
1862         dm_deferred_set_destroy(pool->shared_read_ds);
1863 bad_shared_read_ds:
1864         destroy_workqueue(pool->wq);
1865 bad_wq:
1866         dm_kcopyd_client_destroy(pool->copier);
1867 bad_kcopyd_client:
1868         dm_bio_prison_destroy(pool->prison);
1869 bad_prison:
1870         kfree(pool);
1871 bad_pool:
1872         if (dm_pool_metadata_close(pmd))
1873                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1874
1875         return err_p;
1876 }
1877
1878 static void __pool_inc(struct pool *pool)
1879 {
1880         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1881         pool->ref_count++;
1882 }
1883
1884 static void __pool_dec(struct pool *pool)
1885 {
1886         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1887         BUG_ON(!pool->ref_count);
1888         if (!--pool->ref_count)
1889                 __pool_destroy(pool);
1890 }
1891
1892 static struct pool *__pool_find(struct mapped_device *pool_md,
1893                                 struct block_device *metadata_dev,
1894                                 unsigned long block_size, int read_only,
1895                                 char **error, int *created)
1896 {
1897         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1898
1899         if (pool) {
1900                 if (pool->pool_md != pool_md) {
1901                         *error = "metadata device already in use by a pool";
1902                         return ERR_PTR(-EBUSY);
1903                 }
1904                 __pool_inc(pool);
1905
1906         } else {
1907                 pool = __pool_table_lookup(pool_md);
1908                 if (pool) {
1909                         if (pool->md_dev != metadata_dev) {
1910                                 *error = "different pool cannot replace a pool";
1911                                 return ERR_PTR(-EINVAL);
1912                         }
1913                         __pool_inc(pool);
1914
1915                 } else {
1916                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1917                         *created = 1;
1918                 }
1919         }
1920
1921         return pool;
1922 }
1923
1924 /*----------------------------------------------------------------
1925  * Pool target methods
1926  *--------------------------------------------------------------*/
1927 static void pool_dtr(struct dm_target *ti)
1928 {
1929         struct pool_c *pt = ti->private;
1930
1931         mutex_lock(&dm_thin_pool_table.mutex);
1932
1933         unbind_control_target(pt->pool, ti);
1934         __pool_dec(pt->pool);
1935         dm_put_device(ti, pt->metadata_dev);
1936         dm_put_device(ti, pt->data_dev);
1937         kfree(pt);
1938
1939         mutex_unlock(&dm_thin_pool_table.mutex);
1940 }
1941
1942 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1943                                struct dm_target *ti)
1944 {
1945         int r;
1946         unsigned argc;
1947         const char *arg_name;
1948
1949         static struct dm_arg _args[] = {
1950                 {0, 4, "Invalid number of pool feature arguments"},
1951         };
1952
1953         /*
1954          * No feature arguments supplied.
1955          */
1956         if (!as->argc)
1957                 return 0;
1958
1959         r = dm_read_arg_group(_args, as, &argc, &ti->error);
1960         if (r)
1961                 return -EINVAL;
1962
1963         while (argc && !r) {
1964                 arg_name = dm_shift_arg(as);
1965                 argc--;
1966
1967                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1968                         pf->zero_new_blocks = false;
1969
1970                 else if (!strcasecmp(arg_name, "ignore_discard"))
1971                         pf->discard_enabled = false;
1972
1973                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1974                         pf->discard_passdown = false;
1975
1976                 else if (!strcasecmp(arg_name, "read_only"))
1977                         pf->mode = PM_READ_ONLY;
1978
1979                 else if (!strcasecmp(arg_name, "error_if_no_space"))
1980                         pf->error_if_no_space = true;
1981
1982                 else {
1983                         ti->error = "Unrecognised pool feature requested";
1984                         r = -EINVAL;
1985                         break;
1986                 }
1987         }
1988
1989         return r;
1990 }
1991
1992 static void metadata_low_callback(void *context)
1993 {
1994         struct pool *pool = context;
1995
1996         DMWARN("%s: reached low water mark for metadata device: sending event.",
1997                dm_device_name(pool->pool_md));
1998
1999         dm_table_event(pool->ti->table);
2000 }
2001
2002 static sector_t get_metadata_dev_size(struct block_device *bdev)
2003 {
2004         sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2005         char buffer[BDEVNAME_SIZE];
2006
2007         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
2008                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2009                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2010                 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
2011         }
2012
2013         return metadata_dev_size;
2014 }
2015
2016 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2017 {
2018         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2019
2020         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
2021
2022         return metadata_dev_size;
2023 }
2024
2025 /*
2026  * When a metadata threshold is crossed a dm event is triggered, and
2027  * userland should respond by growing the metadata device.  We could let
2028  * userland set the threshold, like we do with the data threshold, but I'm
2029  * not sure they know enough to do this well.
2030  */
2031 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2032 {
2033         /*
2034          * 4M is ample for all ops with the possible exception of thin
2035          * device deletion which is harmless if it fails (just retry the
2036          * delete after you've grown the device).
2037          */
2038         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2039         return min((dm_block_t)1024ULL /* 4M */, quarter);
2040 }
2041
2042 /*
2043  * thin-pool <metadata dev> <data dev>
2044  *           <data block size (sectors)>
2045  *           <low water mark (blocks)>
2046  *           [<#feature args> [<arg>]*]
2047  *
2048  * Optional feature arguments are:
2049  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2050  *           ignore_discard: disable discard
2051  *           no_discard_passdown: don't pass discards down to the data device
2052  *           read_only: Don't allow any changes to be made to the pool metadata.
2053  *           error_if_no_space: error IOs, instead of queueing, if no space.
2054  */
2055 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2056 {
2057         int r, pool_created = 0;
2058         struct pool_c *pt;
2059         struct pool *pool;
2060         struct pool_features pf;
2061         struct dm_arg_set as;
2062         struct dm_dev *data_dev;
2063         unsigned long block_size;
2064         dm_block_t low_water_blocks;
2065         struct dm_dev *metadata_dev;
2066         fmode_t metadata_mode;
2067
2068         /*
2069          * FIXME Remove validation from scope of lock.
2070          */
2071         mutex_lock(&dm_thin_pool_table.mutex);
2072
2073         if (argc < 4) {
2074                 ti->error = "Invalid argument count";
2075                 r = -EINVAL;
2076                 goto out_unlock;
2077         }
2078
2079         as.argc = argc;
2080         as.argv = argv;
2081
2082         /*
2083          * Set default pool features.
2084          */
2085         pool_features_init(&pf);
2086
2087         dm_consume_args(&as, 4);
2088         r = parse_pool_features(&as, &pf, ti);
2089         if (r)
2090                 goto out_unlock;
2091
2092         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2093         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2094         if (r) {
2095                 ti->error = "Error opening metadata block device";
2096                 goto out_unlock;
2097         }
2098
2099         /*
2100          * Run for the side-effect of possibly issuing a warning if the
2101          * device is too big.
2102          */
2103         (void) get_metadata_dev_size(metadata_dev->bdev);
2104
2105         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2106         if (r) {
2107                 ti->error = "Error getting data device";
2108                 goto out_metadata;
2109         }
2110
2111         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2112             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2113             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2114             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2115                 ti->error = "Invalid block size";
2116                 r = -EINVAL;
2117                 goto out;
2118         }
2119
2120         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2121                 ti->error = "Invalid low water mark";
2122                 r = -EINVAL;
2123                 goto out;
2124         }
2125
2126         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2127         if (!pt) {
2128                 r = -ENOMEM;
2129                 goto out;
2130         }
2131
2132         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2133                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2134         if (IS_ERR(pool)) {
2135                 r = PTR_ERR(pool);
2136                 goto out_free_pt;
2137         }
2138
2139         /*
2140          * 'pool_created' reflects whether this is the first table load.
2141          * Top level discard support is not allowed to be changed after
2142          * initial load.  This would require a pool reload to trigger thin
2143          * device changes.
2144          */
2145         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2146                 ti->error = "Discard support cannot be disabled once enabled";
2147                 r = -EINVAL;
2148                 goto out_flags_changed;
2149         }
2150
2151         pt->pool = pool;
2152         pt->ti = ti;
2153         pt->metadata_dev = metadata_dev;
2154         pt->data_dev = data_dev;
2155         pt->low_water_blocks = low_water_blocks;
2156         pt->adjusted_pf = pt->requested_pf = pf;
2157         ti->num_flush_bios = 1;
2158
2159         /*
2160          * Only need to enable discards if the pool should pass
2161          * them down to the data device.  The thin device's discard
2162          * processing will cause mappings to be removed from the btree.
2163          */
2164         ti->discard_zeroes_data_unsupported = true;
2165         if (pf.discard_enabled && pf.discard_passdown) {
2166                 ti->num_discard_bios = 1;
2167
2168                 /*
2169                  * Setting 'discards_supported' circumvents the normal
2170                  * stacking of discard limits (this keeps the pool and
2171                  * thin devices' discard limits consistent).
2172                  */
2173                 ti->discards_supported = true;
2174         }
2175         ti->private = pt;
2176
2177         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2178                                                 calc_metadata_threshold(pt),
2179                                                 metadata_low_callback,
2180                                                 pool);
2181         if (r)
2182                 goto out_free_pt;
2183
2184         pt->callbacks.congested_fn = pool_is_congested;
2185         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2186
2187         mutex_unlock(&dm_thin_pool_table.mutex);
2188
2189         return 0;
2190
2191 out_flags_changed:
2192         __pool_dec(pool);
2193 out_free_pt:
2194         kfree(pt);
2195 out:
2196         dm_put_device(ti, data_dev);
2197 out_metadata:
2198         dm_put_device(ti, metadata_dev);
2199 out_unlock:
2200         mutex_unlock(&dm_thin_pool_table.mutex);
2201
2202         return r;
2203 }
2204
2205 static int pool_map(struct dm_target *ti, struct bio *bio)
2206 {
2207         int r;
2208         struct pool_c *pt = ti->private;
2209         struct pool *pool = pt->pool;
2210         unsigned long flags;
2211
2212         /*
2213          * As this is a singleton target, ti->begin is always zero.
2214          */
2215         spin_lock_irqsave(&pool->lock, flags);
2216         bio->bi_bdev = pt->data_dev->bdev;
2217         r = DM_MAPIO_REMAPPED;
2218         spin_unlock_irqrestore(&pool->lock, flags);
2219
2220         return r;
2221 }
2222
2223 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2224 {
2225         int r;
2226         struct pool_c *pt = ti->private;
2227         struct pool *pool = pt->pool;
2228         sector_t data_size = ti->len;
2229         dm_block_t sb_data_size;
2230
2231         *need_commit = false;
2232
2233         (void) sector_div(data_size, pool->sectors_per_block);
2234
2235         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2236         if (r) {
2237                 DMERR("%s: failed to retrieve data device size",
2238                       dm_device_name(pool->pool_md));
2239                 return r;
2240         }
2241
2242         if (data_size < sb_data_size) {
2243                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2244                       dm_device_name(pool->pool_md),
2245                       (unsigned long long)data_size, sb_data_size);
2246                 return -EINVAL;
2247
2248         } else if (data_size > sb_data_size) {
2249                 if (sb_data_size)
2250                         DMINFO("%s: growing the data device from %llu to %llu blocks",
2251                                dm_device_name(pool->pool_md),
2252                                sb_data_size, (unsigned long long)data_size);
2253                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2254                 if (r) {
2255                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2256                         return r;
2257                 }
2258
2259                 *need_commit = true;
2260         }
2261
2262         return 0;
2263 }
2264
2265 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2266 {
2267         int r;
2268         struct pool_c *pt = ti->private;
2269         struct pool *pool = pt->pool;
2270         dm_block_t metadata_dev_size, sb_metadata_dev_size;
2271
2272         *need_commit = false;
2273
2274         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2275
2276         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2277         if (r) {
2278                 DMERR("%s: failed to retrieve metadata device size",
2279                       dm_device_name(pool->pool_md));
2280                 return r;
2281         }
2282
2283         if (metadata_dev_size < sb_metadata_dev_size) {
2284                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2285                       dm_device_name(pool->pool_md),
2286                       metadata_dev_size, sb_metadata_dev_size);
2287                 return -EINVAL;
2288
2289         } else if (metadata_dev_size > sb_metadata_dev_size) {
2290                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2291                        dm_device_name(pool->pool_md),
2292                        sb_metadata_dev_size, metadata_dev_size);
2293                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2294                 if (r) {
2295                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2296                         return r;
2297                 }
2298
2299                 *need_commit = true;
2300         }
2301
2302         return 0;
2303 }
2304
2305 /*
2306  * Retrieves the number of blocks of the data device from
2307  * the superblock and compares it to the actual device size,
2308  * thus resizing the data device in case it has grown.
2309  *
2310  * This both copes with opening preallocated data devices in the ctr
2311  * being followed by a resume
2312  * -and-
2313  * calling the resume method individually after userspace has
2314  * grown the data device in reaction to a table event.
2315  */
2316 static int pool_preresume(struct dm_target *ti)
2317 {
2318         int r;
2319         bool need_commit1, need_commit2;
2320         struct pool_c *pt = ti->private;
2321         struct pool *pool = pt->pool;
2322
2323         /*
2324          * Take control of the pool object.
2325          */
2326         r = bind_control_target(pool, ti);
2327         if (r)
2328                 return r;
2329
2330         r = maybe_resize_data_dev(ti, &need_commit1);
2331         if (r)
2332                 return r;
2333
2334         r = maybe_resize_metadata_dev(ti, &need_commit2);
2335         if (r)
2336                 return r;
2337
2338         if (need_commit1 || need_commit2)
2339                 (void) commit(pool);
2340
2341         return 0;
2342 }
2343
2344 static void pool_resume(struct dm_target *ti)
2345 {
2346         struct pool_c *pt = ti->private;
2347         struct pool *pool = pt->pool;
2348         unsigned long flags;
2349
2350         spin_lock_irqsave(&pool->lock, flags);
2351         pool->low_water_triggered = false;
2352         __requeue_bios(pool);
2353         spin_unlock_irqrestore(&pool->lock, flags);
2354
2355         do_waker(&pool->waker.work);
2356 }
2357
2358 static void pool_postsuspend(struct dm_target *ti)
2359 {
2360         struct pool_c *pt = ti->private;
2361         struct pool *pool = pt->pool;
2362
2363         cancel_delayed_work(&pool->waker);
2364         flush_workqueue(pool->wq);
2365         (void) commit(pool);
2366 }
2367
2368 static int check_arg_count(unsigned argc, unsigned args_required)
2369 {
2370         if (argc != args_required) {
2371                 DMWARN("Message received with %u arguments instead of %u.",
2372                        argc, args_required);
2373                 return -EINVAL;
2374         }
2375
2376         return 0;
2377 }
2378
2379 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2380 {
2381         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2382             *dev_id <= MAX_DEV_ID)
2383                 return 0;
2384
2385         if (warning)
2386                 DMWARN("Message received with invalid device id: %s", arg);
2387
2388         return -EINVAL;
2389 }
2390
2391 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2392 {
2393         dm_thin_id dev_id;
2394         int r;
2395
2396         r = check_arg_count(argc, 2);
2397         if (r)
2398                 return r;
2399
2400         r = read_dev_id(argv[1], &dev_id, 1);
2401         if (r)
2402                 return r;
2403
2404         r = dm_pool_create_thin(pool->pmd, dev_id);
2405         if (r) {
2406                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2407                        argv[1]);
2408                 return r;
2409         }
2410
2411         return 0;
2412 }
2413
2414 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2415 {
2416         dm_thin_id dev_id;
2417         dm_thin_id origin_dev_id;
2418         int r;
2419
2420         r = check_arg_count(argc, 3);
2421         if (r)
2422                 return r;
2423
2424         r = read_dev_id(argv[1], &dev_id, 1);
2425         if (r)
2426                 return r;
2427
2428         r = read_dev_id(argv[2], &origin_dev_id, 1);
2429         if (r)
2430                 return r;
2431
2432         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2433         if (r) {
2434                 DMWARN("Creation of new snapshot %s of device %s failed.",
2435                        argv[1], argv[2]);
2436                 return r;
2437         }
2438
2439         return 0;
2440 }
2441
2442 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2443 {
2444         dm_thin_id dev_id;
2445         int r;
2446
2447         r = check_arg_count(argc, 2);
2448         if (r)
2449                 return r;
2450
2451         r = read_dev_id(argv[1], &dev_id, 1);
2452         if (r)
2453                 return r;
2454
2455         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2456         if (r)
2457                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2458
2459         return r;
2460 }
2461
2462 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2463 {
2464         dm_thin_id old_id, new_id;
2465         int r;
2466
2467         r = check_arg_count(argc, 3);
2468         if (r)
2469                 return r;
2470
2471         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2472                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2473                 return -EINVAL;
2474         }
2475
2476         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2477                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2478                 return -EINVAL;
2479         }
2480
2481         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2482         if (r) {
2483                 DMWARN("Failed to change transaction id from %s to %s.",
2484                        argv[1], argv[2]);
2485                 return r;
2486         }
2487
2488         return 0;
2489 }
2490
2491 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2492 {
2493         int r;
2494
2495         r = check_arg_count(argc, 1);
2496         if (r)
2497                 return r;
2498
2499         (void) commit(pool);
2500
2501         r = dm_pool_reserve_metadata_snap(pool->pmd);
2502         if (r)
2503                 DMWARN("reserve_metadata_snap message failed.");
2504
2505         return r;
2506 }
2507
2508 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2509 {
2510         int r;
2511
2512         r = check_arg_count(argc, 1);
2513         if (r)
2514                 return r;
2515
2516         r = dm_pool_release_metadata_snap(pool->pmd);
2517         if (r)
2518                 DMWARN("release_metadata_snap message failed.");
2519
2520         return r;
2521 }
2522
2523 /*
2524  * Messages supported:
2525  *   create_thin        <dev_id>
2526  *   create_snap        <dev_id> <origin_id>
2527  *   delete             <dev_id>
2528  *   trim               <dev_id> <new_size_in_sectors>
2529  *   set_transaction_id <current_trans_id> <new_trans_id>
2530  *   reserve_metadata_snap
2531  *   release_metadata_snap
2532  */
2533 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2534 {
2535         int r = -EINVAL;
2536         struct pool_c *pt = ti->private;
2537         struct pool *pool = pt->pool;
2538
2539         if (!strcasecmp(argv[0], "create_thin"))
2540                 r = process_create_thin_mesg(argc, argv, pool);
2541
2542         else if (!strcasecmp(argv[0], "create_snap"))
2543                 r = process_create_snap_mesg(argc, argv, pool);
2544
2545         else if (!strcasecmp(argv[0], "delete"))
2546                 r = process_delete_mesg(argc, argv, pool);
2547
2548         else if (!strcasecmp(argv[0], "set_transaction_id"))
2549                 r = process_set_transaction_id_mesg(argc, argv, pool);
2550
2551         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2552                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2553
2554         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2555                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2556
2557         else
2558                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2559
2560         if (!r)
2561                 (void) commit(pool);
2562
2563         return r;
2564 }
2565
2566 static void emit_flags(struct pool_features *pf, char *result,
2567                        unsigned sz, unsigned maxlen)
2568 {
2569         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2570                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2571                 pf->error_if_no_space;
2572         DMEMIT("%u ", count);
2573
2574         if (!pf->zero_new_blocks)
2575                 DMEMIT("skip_block_zeroing ");
2576
2577         if (!pf->discard_enabled)
2578                 DMEMIT("ignore_discard ");
2579
2580         if (!pf->discard_passdown)
2581                 DMEMIT("no_discard_passdown ");
2582
2583         if (pf->mode == PM_READ_ONLY)
2584                 DMEMIT("read_only ");
2585
2586         if (pf->error_if_no_space)
2587                 DMEMIT("error_if_no_space ");
2588 }
2589
2590 /*
2591  * Status line is:
2592  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2593  *    <used data sectors>/<total data sectors> <held metadata root>
2594  */
2595 static void pool_status(struct dm_target *ti, status_type_t type,
2596                         unsigned status_flags, char *result, unsigned maxlen)
2597 {
2598         int r;
2599         unsigned sz = 0;
2600         uint64_t transaction_id;
2601         dm_block_t nr_free_blocks_data;
2602         dm_block_t nr_free_blocks_metadata;
2603         dm_block_t nr_blocks_data;
2604         dm_block_t nr_blocks_metadata;
2605         dm_block_t held_root;
2606         char buf[BDEVNAME_SIZE];
2607         char buf2[BDEVNAME_SIZE];
2608         struct pool_c *pt = ti->private;
2609         struct pool *pool = pt->pool;
2610
2611         switch (type) {
2612         case STATUSTYPE_INFO:
2613                 if (get_pool_mode(pool) == PM_FAIL) {
2614                         DMEMIT("Fail");
2615                         break;
2616                 }
2617
2618                 /* Commit to ensure statistics aren't out-of-date */
2619                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2620                         (void) commit(pool);
2621
2622                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2623                 if (r) {
2624                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2625                               dm_device_name(pool->pool_md), r);
2626                         goto err;
2627                 }
2628
2629                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2630                 if (r) {
2631                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2632                               dm_device_name(pool->pool_md), r);
2633                         goto err;
2634                 }
2635
2636                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2637                 if (r) {
2638                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2639                               dm_device_name(pool->pool_md), r);
2640                         goto err;
2641                 }
2642
2643                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2644                 if (r) {
2645                         DMERR("%s: dm_pool_get_free_block_count returned %d",
2646                               dm_device_name(pool->pool_md), r);
2647                         goto err;
2648                 }
2649
2650                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2651                 if (r) {
2652                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
2653                               dm_device_name(pool->pool_md), r);
2654                         goto err;
2655                 }
2656
2657                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2658                 if (r) {
2659                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
2660                               dm_device_name(pool->pool_md), r);
2661                         goto err;
2662                 }
2663
2664                 DMEMIT("%llu %llu/%llu %llu/%llu ",
2665                        (unsigned long long)transaction_id,
2666                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2667                        (unsigned long long)nr_blocks_metadata,
2668                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2669                        (unsigned long long)nr_blocks_data);
2670
2671                 if (held_root)
2672                         DMEMIT("%llu ", held_root);
2673                 else
2674                         DMEMIT("- ");
2675
2676                 if (pool->pf.mode == PM_READ_ONLY)
2677                         DMEMIT("ro ");
2678                 else
2679                         DMEMIT("rw ");
2680
2681                 if (!pool->pf.discard_enabled)
2682                         DMEMIT("ignore_discard ");
2683                 else if (pool->pf.discard_passdown)
2684                         DMEMIT("discard_passdown ");
2685                 else
2686                         DMEMIT("no_discard_passdown ");
2687
2688                 if (pool->pf.error_if_no_space)
2689                         DMEMIT("error_if_no_space ");
2690                 else
2691                         DMEMIT("queue_if_no_space ");
2692
2693                 break;
2694
2695         case STATUSTYPE_TABLE:
2696                 DMEMIT("%s %s %lu %llu ",
2697                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2698                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2699                        (unsigned long)pool->sectors_per_block,
2700                        (unsigned long long)pt->low_water_blocks);
2701                 emit_flags(&pt->requested_pf, result, sz, maxlen);
2702                 break;
2703         }
2704         return;
2705
2706 err:
2707         DMEMIT("Error");
2708 }
2709
2710 static int pool_iterate_devices(struct dm_target *ti,
2711                                 iterate_devices_callout_fn fn, void *data)
2712 {
2713         struct pool_c *pt = ti->private;
2714
2715         return fn(ti, pt->data_dev, 0, ti->len, data);
2716 }
2717
2718 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2719                       struct bio_vec *biovec, int max_size)
2720 {
2721         struct pool_c *pt = ti->private;
2722         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2723
2724         if (!q->merge_bvec_fn)
2725                 return max_size;
2726
2727         bvm->bi_bdev = pt->data_dev->bdev;
2728
2729         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2730 }
2731
2732 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2733 {
2734         struct pool *pool = pt->pool;
2735         struct queue_limits *data_limits;
2736
2737         limits->max_discard_sectors = pool->sectors_per_block;
2738
2739         /*
2740          * discard_granularity is just a hint, and not enforced.
2741          */
2742         if (pt->adjusted_pf.discard_passdown) {
2743                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2744                 limits->discard_granularity = data_limits->discard_granularity;
2745         } else
2746                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2747 }
2748
2749 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2750 {
2751         struct pool_c *pt = ti->private;
2752         struct pool *pool = pt->pool;
2753         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2754
2755         /*
2756          * If the system-determined stacked limits are compatible with the
2757          * pool's blocksize (io_opt is a factor) do not override them.
2758          */
2759         if (io_opt_sectors < pool->sectors_per_block ||
2760             do_div(io_opt_sectors, pool->sectors_per_block)) {
2761                 blk_limits_io_min(limits, 0);
2762                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2763         }
2764
2765         /*
2766          * pt->adjusted_pf is a staging area for the actual features to use.
2767          * They get transferred to the live pool in bind_control_target()
2768          * called from pool_preresume().
2769          */
2770         if (!pt->adjusted_pf.discard_enabled) {
2771                 /*
2772                  * Must explicitly disallow stacking discard limits otherwise the
2773                  * block layer will stack them if pool's data device has support.
2774                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2775                  * user to see that, so make sure to set all discard limits to 0.
2776                  */
2777                 limits->discard_granularity = 0;
2778                 return;
2779         }
2780
2781         disable_passdown_if_not_supported(pt);
2782
2783         set_discard_limits(pt, limits);
2784 }
2785
2786 static struct target_type pool_target = {
2787         .name = "thin-pool",
2788         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2789                     DM_TARGET_IMMUTABLE,
2790         .version = {1, 10, 0},
2791         .module = THIS_MODULE,
2792         .ctr = pool_ctr,
2793         .dtr = pool_dtr,
2794         .map = pool_map,
2795         .postsuspend = pool_postsuspend,
2796         .preresume = pool_preresume,
2797         .resume = pool_resume,
2798         .message = pool_message,
2799         .status = pool_status,
2800         .merge = pool_merge,
2801         .iterate_devices = pool_iterate_devices,
2802         .io_hints = pool_io_hints,
2803 };
2804
2805 /*----------------------------------------------------------------
2806  * Thin target methods
2807  *--------------------------------------------------------------*/
2808 static void thin_dtr(struct dm_target *ti)
2809 {
2810         struct thin_c *tc = ti->private;
2811
2812         mutex_lock(&dm_thin_pool_table.mutex);
2813
2814         __pool_dec(tc->pool);
2815         dm_pool_close_thin_device(tc->td);
2816         dm_put_device(ti, tc->pool_dev);
2817         if (tc->origin_dev)
2818                 dm_put_device(ti, tc->origin_dev);
2819         kfree(tc);
2820
2821         mutex_unlock(&dm_thin_pool_table.mutex);
2822 }
2823
2824 /*
2825  * Thin target parameters:
2826  *
2827  * <pool_dev> <dev_id> [origin_dev]
2828  *
2829  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2830  * dev_id: the internal device identifier
2831  * origin_dev: a device external to the pool that should act as the origin
2832  *
2833  * If the pool device has discards disabled, they get disabled for the thin
2834  * device as well.
2835  */
2836 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2837 {
2838         int r;
2839         struct thin_c *tc;
2840         struct dm_dev *pool_dev, *origin_dev;
2841         struct mapped_device *pool_md;
2842
2843         mutex_lock(&dm_thin_pool_table.mutex);
2844
2845         if (argc != 2 && argc != 3) {
2846                 ti->error = "Invalid argument count";
2847                 r = -EINVAL;
2848                 goto out_unlock;
2849         }
2850
2851         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2852         if (!tc) {
2853                 ti->error = "Out of memory";
2854                 r = -ENOMEM;
2855                 goto out_unlock;
2856         }
2857
2858         if (argc == 3) {
2859                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2860                 if (r) {
2861                         ti->error = "Error opening origin device";
2862                         goto bad_origin_dev;
2863                 }
2864                 tc->origin_dev = origin_dev;
2865         }
2866
2867         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2868         if (r) {
2869                 ti->error = "Error opening pool device";
2870                 goto bad_pool_dev;
2871         }
2872         tc->pool_dev = pool_dev;
2873
2874         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2875                 ti->error = "Invalid device id";
2876                 r = -EINVAL;
2877                 goto bad_common;
2878         }
2879
2880         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2881         if (!pool_md) {
2882                 ti->error = "Couldn't get pool mapped device";
2883                 r = -EINVAL;
2884                 goto bad_common;
2885         }
2886
2887         tc->pool = __pool_table_lookup(pool_md);
2888         if (!tc->pool) {
2889                 ti->error = "Couldn't find pool object";
2890                 r = -EINVAL;
2891                 goto bad_pool_lookup;
2892         }
2893         __pool_inc(tc->pool);
2894
2895         if (get_pool_mode(tc->pool) == PM_FAIL) {
2896                 ti->error = "Couldn't open thin device, Pool is in fail mode";
2897                 goto bad_thin_open;
2898         }
2899
2900         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2901         if (r) {
2902                 ti->error = "Couldn't open thin internal device";
2903                 goto bad_thin_open;
2904         }
2905
2906         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2907         if (r)
2908                 goto bad_thin_open;
2909
2910         ti->num_flush_bios = 1;
2911         ti->flush_supported = true;
2912         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2913
2914         /* In case the pool supports discards, pass them on. */
2915         ti->discard_zeroes_data_unsupported = true;
2916         if (tc->pool->pf.discard_enabled) {
2917                 ti->discards_supported = true;
2918                 ti->num_discard_bios = 1;
2919                 /* Discard bios must be split on a block boundary */
2920                 ti->split_discard_bios = true;
2921         }
2922
2923         dm_put(pool_md);
2924
2925         mutex_unlock(&dm_thin_pool_table.mutex);
2926
2927         return 0;
2928
2929 bad_thin_open:
2930         __pool_dec(tc->pool);
2931 bad_pool_lookup:
2932         dm_put(pool_md);
2933 bad_common:
2934         dm_put_device(ti, tc->pool_dev);
2935 bad_pool_dev:
2936         if (tc->origin_dev)
2937                 dm_put_device(ti, tc->origin_dev);
2938 bad_origin_dev:
2939         kfree(tc);
2940 out_unlock:
2941         mutex_unlock(&dm_thin_pool_table.mutex);
2942
2943         return r;
2944 }
2945
2946 static int thin_map(struct dm_target *ti, struct bio *bio)
2947 {
2948         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
2949
2950         return thin_bio_map(ti, bio);
2951 }
2952
2953 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2954 {
2955         unsigned long flags;
2956         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2957         struct list_head work;
2958         struct dm_thin_new_mapping *m, *tmp;
2959         struct pool *pool = h->tc->pool;
2960
2961         if (h->shared_read_entry) {
2962                 INIT_LIST_HEAD(&work);
2963                 dm_deferred_entry_dec(h->shared_read_entry, &work);
2964
2965                 spin_lock_irqsave(&pool->lock, flags);
2966                 list_for_each_entry_safe(m, tmp, &work, list) {
2967                         list_del(&m->list);
2968                         m->quiesced = true;
2969                         __maybe_add_mapping(m);
2970                 }
2971                 spin_unlock_irqrestore(&pool->lock, flags);
2972         }
2973
2974         if (h->all_io_entry) {
2975                 INIT_LIST_HEAD(&work);
2976                 dm_deferred_entry_dec(h->all_io_entry, &work);
2977                 if (!list_empty(&work)) {
2978                         spin_lock_irqsave(&pool->lock, flags);
2979                         list_for_each_entry_safe(m, tmp, &work, list)
2980                                 list_add_tail(&m->list, &pool->prepared_discards);
2981                         spin_unlock_irqrestore(&pool->lock, flags);
2982                         wake_worker(pool);
2983                 }
2984         }
2985
2986         return 0;
2987 }
2988
2989 static void thin_postsuspend(struct dm_target *ti)
2990 {
2991         if (dm_noflush_suspending(ti))
2992                 requeue_io((struct thin_c *)ti->private);
2993 }
2994
2995 /*
2996  * <nr mapped sectors> <highest mapped sector>
2997  */
2998 static void thin_status(struct dm_target *ti, status_type_t type,
2999                         unsigned status_flags, char *result, unsigned maxlen)
3000 {
3001         int r;
3002         ssize_t sz = 0;
3003         dm_block_t mapped, highest;
3004         char buf[BDEVNAME_SIZE];
3005         struct thin_c *tc = ti->private;
3006
3007         if (get_pool_mode(tc->pool) == PM_FAIL) {
3008                 DMEMIT("Fail");
3009                 return;
3010         }
3011
3012         if (!tc->td)
3013                 DMEMIT("-");
3014         else {
3015                 switch (type) {
3016                 case STATUSTYPE_INFO:
3017                         r = dm_thin_get_mapped_count(tc->td, &mapped);
3018                         if (r) {
3019                                 DMERR("dm_thin_get_mapped_count returned %d", r);
3020                                 goto err;
3021                         }
3022
3023                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3024                         if (r < 0) {
3025                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3026                                 goto err;
3027                         }
3028
3029                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3030                         if (r)
3031                                 DMEMIT("%llu", ((highest + 1) *
3032                                                 tc->pool->sectors_per_block) - 1);
3033                         else
3034                                 DMEMIT("-");
3035                         break;
3036
3037                 case STATUSTYPE_TABLE:
3038                         DMEMIT("%s %lu",
3039                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3040                                (unsigned long) tc->dev_id);
3041                         if (tc->origin_dev)
3042                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3043                         break;
3044                 }
3045         }
3046
3047         return;
3048
3049 err:
3050         DMEMIT("Error");
3051 }
3052
3053 static int thin_iterate_devices(struct dm_target *ti,
3054                                 iterate_devices_callout_fn fn, void *data)
3055 {
3056         sector_t blocks;
3057         struct thin_c *tc = ti->private;
3058         struct pool *pool = tc->pool;
3059
3060         /*
3061          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3062          * we follow a more convoluted path through to the pool's target.
3063          */
3064         if (!pool->ti)
3065                 return 0;       /* nothing is bound */
3066
3067         blocks = pool->ti->len;
3068         (void) sector_div(blocks, pool->sectors_per_block);
3069         if (blocks)
3070                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3071
3072         return 0;
3073 }
3074
3075 static struct target_type thin_target = {
3076         .name = "thin",
3077         .version = {1, 10, 0},
3078         .module = THIS_MODULE,
3079         .ctr = thin_ctr,
3080         .dtr = thin_dtr,
3081         .map = thin_map,
3082         .end_io = thin_endio,
3083         .postsuspend = thin_postsuspend,
3084         .status = thin_status,
3085         .iterate_devices = thin_iterate_devices,
3086 };
3087
3088 /*----------------------------------------------------------------*/
3089
3090 static int __init dm_thin_init(void)
3091 {
3092         int r;
3093
3094         pool_table_init();
3095
3096         r = dm_register_target(&thin_target);
3097         if (r)
3098                 return r;
3099
3100         r = dm_register_target(&pool_target);
3101         if (r)
3102                 goto bad_pool_target;
3103
3104         r = -ENOMEM;
3105
3106         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3107         if (!_new_mapping_cache)
3108                 goto bad_new_mapping_cache;
3109
3110         return 0;
3111
3112 bad_new_mapping_cache:
3113         dm_unregister_target(&pool_target);
3114 bad_pool_target:
3115         dm_unregister_target(&thin_target);
3116
3117         return r;
3118 }
3119
3120 static void dm_thin_exit(void)
3121 {
3122         dm_unregister_target(&thin_target);
3123         dm_unregister_target(&pool_target);
3124
3125         kmem_cache_destroy(_new_mapping_cache);
3126 }
3127
3128 module_init(dm_thin_init);
3129 module_exit(dm_thin_exit);
3130
3131 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3132 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3133 MODULE_LICENSE("GPL");